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Photocatalytic Concrete Pavements: Laboratory Investigation of NO
Oxidation Rate Under Varied Environmental Conditions

Abstract
Concrete pavements containing TiO2 can be used for air pollution control by oxidizing NOX under UV-
bearing sunlight. This study employed a bench-scale photoreactor to estimate NO oxidation rates for varied
environmental conditions. Rates correlated positively with NO inlet concentration and irradiance and
negatively with relative humidity. No correlation occurred with flow rate. A decrease in slab moisture
(previously unstudied) positively correlated with NO oxidation rate at 0–2% loss of saturated mass, but
negatively correlated at losses greater that 2%. Although prior researchers deemed temperature insignificant,
data indicated a positive correlation. Overall, rates ranged from 9.8–64 nmol∙m-2∙s-1.
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Photocatalytic concrete pavements: Laboratory investigation of NO oxidation rate under varied 1 

environmental conditions 2 

Abstract 3 

Concrete pavements containing TiO2 can be used for air pollution control by oxidizing NOX under UV-4 

bearing sunlight. This study employed a bench-scale photoreactor to estimate NO oxidation rates for 5 

varied environmental conditions. Rates correlated positively with NO inlet concentration and irradiance 6 

and negatively with relative humidity. No correlation occurred with flow rate. A decrease in slab moisture 7 

(previously unstudied) positively correlated with NO oxidation rate at 0–2% loss of saturated mass, but 8 

negatively correlated at losses greater that 2%. Although prior researchers deemed temperature 9 

insignificant, data indicated a positive correlation. Overall, rates ranged from 9.8–64 nmol∙m-2∙s-1. 10 

Keywords 11 

Photocatalytic pavement; air pollution mitigation; nitrogen oxides; titanium dioxide; photoreactor 12 

bench-scale study 13 

1. Introduction 14 

Within the United States, an estimated 48 million people live within 90 m of a four-lane (or larger) 15 

highway, railroad, or airport (Primary National Ambient Air Quality Standards for Nitrogen Dioxide: 16 

Proposed Rule, 2009). This population segment is susceptible to negative health effects associated with 17 

NO2 exposure (Brauer et al., 2002; Brunekreef et al., 1997; Finkelstein et al., 2004; Garshick et al., 2003; 18 

Kim et al., 2004). Nitrogen dioxide (NO2), a motor vehicle air pollutant, is regulated by the United States 19 

Environmental Protection Agency (USEPA). The agency’s justification for this regulation has recently been 20 

confirmed with evidence from multiple epidemiologic studies associating short-term NO2 exposure and 21 

adverse respiratory symptoms, particularly in children and those affected with asthma (USEPA, 2008b).  22 
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NO2 falls within a group of highly reactive oxides of nitrogen commonly known as NOX. Nitric oxide 23 

(NO) accounts for 95% of NOX emissions (USEPA, 2001). This pollutant is freely oxidized to NO2 in the 24 

atmosphere; hence, the efforts to abate NO2 pollution target NO emissions. In fact, due to the high 25 

reactivity of the various NOX species, USEPA assumes all NOX in emissions estimates to be in the form of 26 

NO2  (USEPA, 2001). USEPA employs various mechanisms in an effort to minimize NOX exposure (e.g., 27 

improvements in public transportation, establishment of lanes for high occupancy vehicles, facilitating 28 

non-automobile travel, and promulgation of tailpipe NOX emissions standards) (Clean Air Act, 2008; 29 

USEPA, 2007). NOX mitigation strategies are not exempt from the law of diminishing marginal returns; 30 

therefore, in addition to efficiently applying conventional mechanisms, novel technologies should be 31 

considered. These technologies may yield higher levels of pollution reduction per dollar spent. 32 

Photocatalytic pavements represent one of these novel approaches. When exposed to sunlight and in the 33 

presence of a low concentration of water molecules, titanium dioxide (TiO2) contained within these 34 

pavements generates hydroxyl radicals (●OH), a powerful oxidizing agent. These radicals promote the 35 

oxidation of a variety of organic and inorganic pollutants. Notably, the photocatalytic property of these 36 

pavements results in oxidation of NOX to NO3
- (Figure 1). 37 
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 38 

Figure 1. Photocatalytic oxidation of NO and NO2 by pavement containing TiO2 (partially adapted from 39 

Ballari et al., 2011). 40 

Employment of these pavements as a mechanism to minimize the ambient concentration of NO in a 41 

targeted area will require an extensive development of what is known about NO oxidation rates under 42 

varied environmental conditions. In an effort to provide this new knowledge, various researchers have 43 

published accounts of laboratory studies that evaluated photocatalytic pavement specimens within a 44 

photoreactor, an experimental apparatus that allows for the control of various environmental conditions 45 

(Dylla et al., 2010; Hüsken et al., 2009; Murata & Tobinai, 2002). Independent environmental variables 46 

investigated have included NO concentration, irradiance, test gas flow rate, and relative humidity. 47 

Although material variables, such as TiO2 concentration and type, will also play a role, environmental 48 

variable results presented to date have not brought about a consensus in terms of the range in NO 49 

oxidation rates that can be expected. Murata et al. (2000), Hüsken et al. (2009), and Ballari et al. (2011) 50 

each suggest that NO oxidation rates positively correlate with NO concentration in situations when the 51 

photocatalytic surface was not saturated by NO; however, for tests conducted at the same environmental 52 
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conditions (1.0 ppmv, 10 W∙m-2, 3 L∙min-1, 50% RH) the range in oxidation rates was wide (38–84 nmol∙m-53 

2∙s-1).  Similarly, publications have noted a positive correlation between irradiance and oxidation rate, but 54 

at 10 W∙m-2 calculated oxidation rates were 87 nmol∙m-2∙s-1 for Murata et al. (2000) and 24 nmol∙m-2∙s-1 55 

for Hüsken et al. (2009). Both Murata et al. (2000) and Hüsken et al. (2009) observed a negative correlation 56 

between relative humidity and oxidation rate; however, at 50% relative humidity oxidation rates differed 57 

by 22 nmol∙m-2∙s-1. These prior studies have assumed that water vapor from the atmosphere serves as 58 

both the source of ●OH required for photocatalytic oxidation and the material which adsorbs on the 59 

surface and blinds photocatalytically active sites. Yet, given the porous nature of cementitious mixtures, 60 

water contained within a pavement could also serve as a ●OH source and blinding material. At the time of 61 

placement, these pores can become filled with water. As hydration occurs and pores become filled with 62 

air, water that is available as a ●OH source and blinding material decreases. Therefore, a decrease in 63 

moisture contained in the slab could lead to a either an increase or decrease in the NO oxidation rate of 64 

the slab; however, no lab investigation has tested this hypothesis. Hüsken et al. (2009) observed a positive 65 

correlation between percent NO removal (as opposed to NO oxidation rate) and flow rate (slope of a linear 66 

fit was less than -10). This finding was also reported in Ballari et al. (2010), however  in this case slope was 67 

only slightly less than -1. Finally, a review of the fundamentals of heterogeneous catalysis indicates that, 68 

due to the fact that reactant adsorption is dependent on temperature, oxidation rate appears to be 69 

correlated with temperature (Herrmann, 2010). However, literature pertaining to photocatalytic 70 

pavements is both vague and contradictory in terms of the relationship between slab temperature and 71 

NO oxidation, with one source asserting that oxidation rate increases with an increase in temperature 72 

(Beeldens et al., 2011) and another reporting a decrease in oxidation rate with increased temperature 73 

(Chen & Chu, 2011).  74 

Consequently, this study employed TX Active mortar slabs and a photoreactor to evaluate the change 75 

in NO oxidation rate that occurs with changes in NO concentration, irradiance, test gas flow rate, relative 76 
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humidity, decrease in slab moisture, or temperature. In instances when published photocatalytic 77 

pavement data existed, the data collected in this study was compared with data published by other 78 

researchers in order to draw conclusions in regards to the range of NO oxidation rates that could be 79 

expected and the variation that occurs between specimens. 80 

2. Materials and Methods 81 

2.1. Photocatalytic Mortar Slab Preparation and Cleaning 82 

Three photocatalytic mortar slabs were used to evaluate this study’s objectives. These slabs measured 83 

152 mm (6 in) × 152 mm (6 in) × 25 mm (1 in). For this study, the researchers used a commercially-available 84 

cement that contains TiO2 (TX Active, Essroc Italcementi Group, Nazareth, PA). Although, the TiO2 content 85 

in this cement was not provided by the manufacturer, within patents governing photocatalytic cements, 86 

TiO2 content ranges from 2–10% by mass (Paz, 2010). The proportions of the cement (TX Active or Type 87 

I), water, and fine aggregate (ASTM C778 standard sand, U.S. Silica Co., Frederick, MD) were recorded as 88 

624 kg∙m-3 (1052 lb∙yd-3), 262 kg∙m-3 (442 lb∙yd-3), and 1412 kg∙m-3 (2380 lb∙yd-3) respectively. Given the 89 

cement proportion and the range in TiO2 cement content above, estimated TiO2 content of the mortar 90 

was 12.5–62.4 kg∙m-3. Given the small volume of the slabs constructed, the mix did not include coarse 91 

aggregate. Except for the coarse aggregate, the relative proportions of materials used to manufacture the 92 

laboratory mortar slabs were similar to that of a pavement section placed at a field site, which will be 93 

evaluated in future research efforts (citation removed to ensure blind review). Particular care was taken 94 

to use the same water-to-cement ratio for both lab and field mixtures. During the placement process, a 95 

paste of water and photocatalytic cement coats aggregates and when hardened forms the surface that is 96 

exposed to pollutants. To manufacture the slabs, a two-lift procedure was used with equal volumes of a 97 

Type I cement bottom lift followed by a TX Active photocatalytic cement top lift. A possibility exists that 98 

excess vibration and surface finishing could draw water to the surface, thereby reducing the TiO2 99 

concentration. To minimize this possibility the material was consolidated by tapping the sides of the form 100 
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with a mallet and leveled with use of a screed. Following placement, a damp cloth and plastic sheet were 101 

laid over the slab surface for a 24-h curing period. Following this initial curing period, the slabs were 102 

removed from the forms and placed in a 100% relative humidity room for the duration of a 14-d curing 103 

period.  104 

Prior to evaluating NO oxidation rates (described in Section 2.3), slabs were cleaned by immersion in 105 

water (Type I reagent grade) for 2 h and oven-dried at 60°C (140°F) for 20 h. This procedure was similar 106 

to that specified by the International Organization for Standardization (ISO) standard 22197-1:2007(E); 107 

this standard governs evaluation of NO removal by photocatalytic materials (ISO, 2007). 108 

2.2. Experimental Apparatus 109 

A flow-through poly(methyl methacrylate) (PMMA, i.e., plexiglass) photoreactor served as the primary 110 

component of the experimental apparatus. Figure 2 provides a schematic of the photoreactor, along with 111 

the NO test gas supply system, UV-A light source, and NO/NOX monitor. The international standard, ISO 112 

22197-1:2007(E), provided information on the construction and operation of the setup (ISO, 2007). The 113 

test gas supplied to the photoreactor was a mixture of breathing air (Grade D, Airgas USA, LLC, North 114 

Central Region, West Chicago, IL) and 51.6 ± 1% ppmv NO balanced in nitrogen (EPA protocol gas, Praxair, 115 

Inc., Danbury, CT) adjusted to a NO concentration of 0.11–1.0 ppmv, relative humidity of 10–70%, and 116 

flow rate of 1.5–5.0 L∙min-1. A UV-A light (XX-15BLB, Ultra-Violet Products, LLC, Upland, CA), directed at 117 

the UV-A-transparent optical window located at the top of the photoreactor, activated the photocatalytic 118 

properties of the mortar slab. The primary emissions spectrum peak from the light was 365 nm. At the 119 

location of the slab surface, the irradiance at 365 nm was measured to be 0.22–1.5 x 101 W∙m-2 using 365 120 

nm UV sensor and radiometer (CX-365 and VLX-3W, Vilber Lourmat, Marne-la-Vallée, France). Except for 121 

instances when temperature was investigated as an independent variable, slab temperature was room 122 

temperature (approximately 22°C). 123 
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As displayed in Figure 3, within the reactor, 25 mm (1 in) wide PMMA spacers secured the slab’s 124 

position and were set at a height that was either flush with or less than 2 mm below the slab surface. 125 

Within the 300 mm long reactor, the gas flowed over the slab through a cross section with a width of 150 126 

mm (6 in) and a height (H) of approximately 6 mm (0.25 in). Turbulent airflow over the slab would 127 

introduce additional variability in the test. Using the approach detailed in Hüsken et al. (2009), Reynolds 128 

number (Re) was calculated to be 42.6 using an air kinematic viscosity of 1.54 × 10-5 m2∙s-1 (1.66 × 10-5 ft2∙s-129 

1) and an air flow rate of 3 L∙min-1 (0.8 gal∙min-1). The length (Ld) for a parabolic velocity profile in the 130 

photoreactor was estimated to be approximately 27.1 mm (1.1 in) by the following equation: Ld = 0.1∙Re∙H. 131 

The estimated length was slightly longer than the length of the PMMA spacers, which indicates that 132 

approximately 1.1% of the slab surface did not have a fully developed parabolic velocity profile. At 3 L∙min-133 

1, theoretical retention time of the test gas within the photoreactor was estimated to be 38 s. Theoretical 134 

retention time of the test gas in the volume above the slab at 3 L∙min-1 was estimated to be 2.7 s.  135 

 136 

Figure 2.  Diagram of experimental apparatus (partially adapted from Ballari et al., 2011). 137 
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 138 

Figure 3. Photograph of photoreactor and mortar slab (optical window removed to facilitate viewing). 139 

A NO/NOX monitor, (Model 410 Nitric Oxide Monitor and Model 401 NO2 Converter, 2B Technologies, 140 

Inc., Boulder, CO), completed the experimental apparatus. The monitor recorded the gas concentrations 141 

at 10 s intervals and was set to measure either NO or NOX. Unlike chemiluminescence instruments, which 142 

detect the light produced when NO reacts with ozone (O3), the Model 410 measures the change in UV 143 

absorbance at 254 nm when O3 is consumed upon reaction with NO. UV absorbance is an absolute 144 

method; therefore, the analyzer requires calibration annually to correct for non-linearity that exists in the 145 

photodiode response and associated electronics. 146 

2.3. Operational Procedure 147 

Operation of the experimental apparatus was divided into two phases: parameter setting and testing. 148 

While in the parameter setting phase, the test gas flowed through the photoreactor; however, the slab 149 

was not irradiated by UV light. This phase was used to set airflow rate, relative humidity, and pollutant 150 

concentration and lasted for approximately 10 minutes. After adjusting parameters to desired values, gas 151 

flow was maintained through the photoreactor for a period sufficient to reach steady-state conditions.  152 

Gas inlet
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The testing period comprised two steps during which the UV light was turned off and on and 153 

concentrations of NO and NOX were measured. Figure 4 illustrates the UV on and off measurement cycle. 154 

Time to complete this cycle was limited to 60 minutes to minimize the possible influence of slab 155 

degeneration (e.g., due to the adsorption of reaction products) on collected data. Of note, a gap occurred 156 

between measurement of UV light on and off segments. The change in concentration that occurred when 157 

the light was turned on or off was not instantaneous. The period between measurements permitted time 158 

for concentration stabilization after each parameter change. In some instances, the time gap was not 159 

sufficient for concentration stabilization. When analyzing the data strings, these values were identified 160 

and removed. The study also did not evaluate adsorption of NO that could occur on the slab or on other 161 

surfaces within the photoreactor; rather, in similarity to other studies, this research focused on NO 162 

removal that occurred as result of irradiance by UV light (Ballari et al., 2011, Hüsken et al. 2009). 163 

 164 

Figure 4. Typical NO/NOX monitor data from testing procedure. 165 

An alternative approach to test for photocatalytic oxidation is to measure NO concentration as the 166 

test gas first flows through a bypass line and then is diverted to flow through the photoreactor. With this 167 

approach a portion of the decrease in concentration that occurs as the gas flows through the photoreactor 168 

could be due to adsorption on the slab and dilution by air leakage. Measuring the difference in 169 
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concentration between UV-off and -on periods avoided these error sources and limits the source for a 170 

change concentration to photo-oxidation and photo-dissociation. To evaluate whether photo-dissociation 171 

occurred within the photoreactor, the researchers also evaluated a slab that was not manufactured with 172 

photocatalytic cement (see Control in Table 1). A two-tailed t-test, assuming unequal variances, did not 173 

find evidence of a significant difference between average UV-off and UV-on NO concentration at 90% 174 

confidence (t=3.019, df = 4, p = 0.039). 175 

2.4. Variable Control and Measurement for Completed Tests 176 

To evaluate the objectives listed above, the study collected data on the NO oxidation rates of 177 

photocatalytic mortar slabs under varied environmental conditions. In some cases, NOX oxidation rates 178 

were also collected. The following environmental variables were considered: NO concentration (CUV off), 179 

irradiance (Irrad.), test gas flow rate (Q), relative humidity (RH), decrease in slab moisture, and slab 180 

temperature (Temp). Table 1 presents values of these variables for the tests of NO concentration, 181 

irradiance, test gas flow rate, relative humidity, and slab temperature. For these tests, at the initial 182 

measurement (Test ID 0), all variables were set at the values specified by ISO 22197-1:2007(E) (i.e., CUV off 183 

= 1.0 ppmv, Irrad. = 10 W∙m-2, Q = 3.0 L∙min-1, RH = 50%). In subsequent tests, each independent variable 184 

was decreased or increased from the ISO-specified values in order to evaluate the change in NO and NOX 185 

oxidation. To facilitate comparison to other published work, selected values of these variables were 186 

similar to values reported in said studies.   187 
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Table 1. Environmental conditions and results of tests completed. 188 

   Environmental conditions Results 

Test # Slab ID Description CUV off Irrad. Q RH Slab temp. CUV on Oxidation rate 

      (ppmv) (W∙m-2 x 101) (L∙min-1) (%) (°C) (ppmv) (nmol∙m-2∙s-1) 

      NOX NO         NOX NO NOX NO 

      x̅ s x̅ s         x̅ s x̅ s     

0   Control   1.1 0.00067 1.0 3.0 50 22i   1.1 0.0033  0.36 

0 1 Initial 1.0 0.0039 1.0 0.0046 1.0 3.0 50 22i 0.71 0.0022 0.64 0.00054 34 42 

1 1 Δ conc. 0.12 0.014 0.11 0.011 1.0 3.0 50 22i 0.068 0.00062 0.043 0.0019 6.5 9.8 

2 1 Δ conc. 0.31 0.013 0.30 0.010 1.0 3.0 50 22i 0.19 0.00055 0.15 0.00063 15 19 

3 2 Δ irrad. 1.0 0.0030 1.0 0.0036 0.22 3.0 50 22i 0.93 0.00035 0.89 0.00030 7.5 10 

4 2 Δ irrad. 1.0 0.0054 1.0 0.012 0.40 3.0 50 22i 0.88 0.00030 0.83 0.00031 11 15 

5 2 Δ irrad. 1.0 0.0015 1.0 0.0029 0.70 3.0 50 22i 0.88 0.0011 0.82 0.0015 15 20 

6 2 Δ irrad. 1.0 0.0060 1.0 0.0034 1.0 3.0 50 22i 0.86 0.0012 0.79 0.00041 17 25 

7 2 Δ irrad. 1.0 0.0049 1.0 0.0051 1.5 3.0 50 22i 0.76 0.0013 0.69 0.0012 27 34 

8 1 Δ Q 1.0 0.020 1.0 0.016 1.0 1.5 50 22i 0.58 0.0018 0.51 0.00055 28 33 

9 1 Δ Q 1.0 0.0075 1.0 0.0068 1.0 5.0 50 22i 0.84 0.0036 0.79 0.00055 27 35 

10 1 Δ RH 1.0 0.0054 1.0 0.011 1.0 3.0 10 22i 0.55 0.0021 0.50 0.0017 59 64 

11 1 Δ RH 1.0 0.0037 1.0 0.0041 1.0 3.0 20 22i 0.59 0.0024 0.52 0.00083 52 61 

12 1 Δ RH 1.0 0.0034 1.0 0.0044 1.0 3.0 70  22i 0.80 0.0025 0.73 0.00069 23 28 

13 3 Δ temp.   1.0 0.0003 1.0 3.0 20 55    0.72 0.0041  30 

14 3 Δ temp.   1.0 0.0024 1.0 3.0 20 49    0.72 0.0049  31 

15 3 Δ temp.   1.0 0.0005 1.0 3.0 20 44    0.78 0.0060  26 

16 3 Δ temp.   1.0 0.0010 1.0 3.0 20 39    0.70 0.0022  25 

17 3 Δ temp.   1.0 0.00073 1.0 3.0 20 36    0.69 0.0029  27 

18 3 Δ temp.   0.92 0.0017 1.0 3.0 20 34    0.70 0.0016  22 

19 3 Δ temp.   0.92 0.0013 1.0 3.0 20 32    0.73 0.0054  18 

20 3 Δ temp.   0.92 0.0077 1.0 3.0 20 19    0.73 0.0079  19 

21 3 Δ temp.   0.88 0.0019 1.0 3.0 20 21    0.71 0.0013  17 

22 3 Δ temp.   0.94 0.0018 1.0 3.0 20 22    0.78 0.0022  16 

23 3 Δ temp.   1.0 0.0018 1.0 3.0 20 7.1    0.85 0.0041  13 

24 3 Δ temp.   1.0 0.0013 1.0 3.0 20 13    0.81 0.0021  16 

25 3 Δ temp.     1.0 0.0011 1.0 3.0 20 15     0.81 0.0042   14 
i slab temperature not measured during test; room temperature assumed  

189 
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2.4.1. NO concentration, irradiance, test gas flow rate, and relative humidity 190 

Needle valves and a mass flow controller permitted control of NO concentration, test gas flow rate, 191 

and relative humidity. To control irradiance the distance between the UV light and photoreactor optical 192 

window was varied until the target value was observed on the radiometer at the height of the slab surface. 193 

2.4.2. Slab temperature  194 

Prior to evaluation in the photoreactor, a pre-cleaned slab (procedure in Section 2.1) was brought to 195 

an initial temperature that was either above or below room temperature. To obtain this initial 196 

temperature, a slab was placed in either an oven (60°C) or a refrigerator (2-4°C) for a period of 2 h. After 197 

removal from the oven or refrigerator, the slab was immediately loaded into the photoreactor. An infrared 198 

thermometer (15-077-966, Thermo Fisher Scientific, Waltham, MA) recorded temperature at 5 points on 199 

the slab surface (the slab center and the center of each quadrant) immediately prior to and after 200 

photoreactor evaluation. If slab temperature was greater than room temperature, photocatalytic 201 

evaluation began after temperature recording. When slab temperature is less than the test gas 202 

temperature (22°C), the possibility of water vapor condensation—which would blind photocatalytically 203 

active sties—must be considered because this condensation would falsely indicate reduced photo-204 

activity. This error can be minimized by ensuring that the lowest slab temperature is substantially above 205 

the dew point temperature of the test gas. To create a substantial difference between temperatures, the 206 

researchers selected a 20% relative humidity for the test gas (dew point = -2°C). As a result, even if the 207 

test gas air cooled 5°C as it flowed over a cool slab, relative humidity would only increase to 60% and 208 

saturation of the test gas would not occur. To further minimize this potential error, the researchers 209 

attempted to evaporate condensed water by using valves to reduce the test gas relative humidity to 0% 210 

for a 10 minute period. Following this period, the UV light was turned on, relative humidity was increased 211 

to the target value (20%), and photocatalytic evaluation began. The possibility exists that the effort to 212 
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avoid error by water condensation was unsuccessful. This possibility was evaluated by comparing the 213 

slope of the NO oxidation rate versus temperature line for observations below and above 22°C (Section 214 

3.1.6). It must also be noted, that in this portion of the study, the researchers sought to ensure that water 215 

vapor density remained constant throughout the tests, rather than relative humidity.   To achieve this 216 

goal, relative humidity was set in reference to the test gas temperature, which remained constant, rather 217 

than the variable slab temperature. 218 

Additional NO oxidation rate evaluations were completed in succession as the slab temperature 219 

increased or decreased. Three sets of successive tests were recorded at the following temperature 220 

classifications: hot (32–55°C, Test IDs 13–19), warm (19–22°C, Test IDs 20–22), and cool (7.1–15°C, Test 221 

IDs 23–25) as shown in Table 1. Conducting successive tests could lead to a decrease in reactivity over 222 

time; therefore, the testing period was reduced such that the total testing time for the hot, warm, and 223 

cool classifications was 90, 40, and 40 minutes, respectively. Slab temperature was not measured at the 224 

midpoint of each test; instead, this value was estimated. The temperature and time data collected during 225 

the hot (n = 40), warm (n = 20), and cold (n = 20) sets of successive tests fit power law curves when 226 

adjusted for asymptotic values (R2 > 0.95 for each set). For example, temperature for the hot classification 227 

was estimated using the following equation: 𝑇 = 5 × 10−5 ∙ [(𝑡 + 647)/1440]−16.76 + 28 (𝑇 =228 

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛 °𝐶, 𝑡 = 𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, 𝑅2 = 0.99). These curves were used to estimate 229 

slab temperature at the midpoint of the photoreactor test. 230 

2.4.3. Decrease in slab moisture 231 

To evaluate the effect of a decrease in slab moisture, NO oxidation was periodically evaluated as water 232 

content decreased after starting at a saturated state. For these tests, NO concentration was set to 1.0 233 

ppmv, flow rate to 3 L∙min-1, relative humidity to 20% and UV-A irradiance to 10 W∙m-2
 at 365 nm. In 234 

similarity with the approach used in Section 2.4.2, a constant vapor density was ensured by setting relative 235 
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humidity in reference to the test gas temperature. To achieve saturation, a slab was immersed in water 236 

for 24 h. To promote a decrease in slab moisture, the slab was placed in a 60°C oven. The slab was 237 

periodically removed from this oven in order to measure slab mass and NO oxidation rate. Testing 238 

continued for the duration of 48 h. The decrease in slab moisture was presented as a percentage using 239 

the mass at the point of saturation and the calculated moisture loss (i.e., the difference in mass at 240 

saturation and at the point of photoreactor evaluation). 241 

2.5. Presentation of Results 242 

Other published works present NO removal as a percentage based on the difference between UV-off 243 

and -on concentrations of NO. Percent removal data is in part a function of lab setup (e.g., slab 244 

dimensions). Presenting results in this manner can lead to misperceptions if, for example, results are not 245 

normalized by area. In this research results are presented as the average NO oxidation rate in the reactor 246 

volume using the equation given by Minero et al. (2013): 247 

𝑁𝑂 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑃

𝑅 ∙ 𝑇
∙

𝑄

𝐴
∙ 𝐶𝑈𝑉 𝑜𝑓𝑓 ∙ 𝑙𝑛 (

𝐶𝑈𝑉 𝑜𝑓𝑓

𝐶𝑈𝑉 𝑜𝑛
) = [

𝑛𝑚𝑜𝑙

𝑚2 ∙ 𝑠
] 248 

where, 249 

𝑃 = 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =  101.3 𝑘𝑃𝑎, 250 

𝑅 = 𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 8.314 × 10−12 𝑚3 ∙ 𝑘𝑃𝑎 ∙ 𝑛𝑚𝑜𝑙−1 ∙ 𝐾−1,  251 

𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = [𝐾],  252 

𝑄 = 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 = [𝑚3/𝑠] 253 

𝐴 = 𝑠𝑙𝑎𝑏 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 = 0.023 𝑚2, 254 

𝐶𝑈𝑉 𝑜𝑓𝑓 = 𝑁𝑂 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑈𝑉 𝑙𝑖𝑔ℎ𝑡 𝑜𝑓𝑓 = [𝑝𝑝𝑚𝑣], and 255 

𝐶𝑈𝑉 𝑜𝑛 = 𝑁𝑂 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑈𝑉 𝑙𝑖𝑔ℎ𝑡 𝑜𝑛 = [𝑝𝑝𝑚𝑣]. 256 
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The recorded test gas temperature was used to calculate oxidation rate for evaluations of NO 257 

concentration, irradiance, flow rate, and relative humidity. Due to the low mass flow rate (5.6 × 10-5 kg∙s-258 

1) and specific heat of air (1.007 kJ∙kg-1∙°C-1), evaluations of slab temperature and slab moisture assumed 259 

that the test gas temperature was the same as the slab temperature.  260 

3. Results and Discussion 261 

3.1. NO Oxidation Rate for Tests Completed 262 

Table 1 documents the environmental parameters and oxidation rate results of the tests completed 263 

for this study. Of note, in each instance the value of NO oxidation rate is greater than that of NOX oxidation 264 

rate. It could be expected that since the test gas supply to the reactor was nearly entirely comprised of 265 

NO, then the NO and NOX removal values would be the same value. The discrepancy arises because NO is 266 

not oxidized completely to HNO3. Rather, a portion of the gas is transformed to NO2. NO2 that remained 267 

in the gas stream was counted as part of the outlet NOX concentration. As a result, NOX removal measured 268 

lower than NO removal.  269 

In this study, all slabs were prepared with the same procedure, materials, and proportions but in 270 

different batches. Review of Table 1 finds that although Tests IDs 0 and 6 were evaluated at the same 271 

environmental conditions, the observed NO oxidation rate differed by 51% from the mean. This difference 272 

may be due to several non-obvious factors within the mixing, placement, and curing steps. Prior research 273 

also indicated that oxidation rate differences may occur between slab replicates. For example,  Hüsken et 274 

al. (2009) found that the percent difference of degradation rates for various replicates of photocatalytic 275 

pavement materials varied from as low as 0% to as high as 63%. Noting that differences did occur between 276 

slab replicates, Figures 5 to 9 plot each independent variable versus NO oxidation rate for a selected slab. 277 

To place this study’s observations in context, overlaid on these plots are the data reported from previous 278 
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research that investigated NO oxidation rates under differing environmental conditions (Ballari et al., 279 

2010; Ballari et al., 2011; Hüsken & Brouwers, 2008; Hüsken et al., 2009; Murata et al., 2000).  280 

3.1.1. Influent NO Concentration 281 

Figure 5 indicates a correlation between inlet NO concentration and NO oxidation rate (R2 = 0.994) 282 

This correlation is also evident in the data from Murata et al. (2000) (R2 = 0.984 for 0–1.0 ppmv, R2 = 0.802 283 

for 0–5.0 ppmv), Hüsken and Brouwers (2008) and Hüsken et al. (2009) (R2 = 0.991), and Ballari et al. 284 

(2010) (R2 = 0.882). 285 

 286 

Figure 5. Effect of influent NO concentration on NO oxidation rate. 287 

A correlation between inlet concentration and NO oxidation rate was previously reported by 288 

Herrmann (1999). This publication indicated that kinetics follow a Langmuir-Hinshelwood mechanism, 289 

under which both reactants adsorb (e.g., NO and ●OH) on the surface before a new molecule is formed. 290 

For these type of reactions, kinetics typically fell into low-concentration and high-concentration 291 

classifications. In the low-concentration classification, oxidation kinetics were first-order; whereas in the 292 

high-concentration classification, oxidation kinetics were zero-order. As applied to NO degradation by 293 
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photocatalytic pavements, this framework would indicate that, at high concentration, the rate of NO 294 

oxidation would remain constant. A constant oxidation rate occurred because a finite number of active 295 

sites were available for photocatalytic degradation. Once these sites were occupied, the rate of oxidation 296 

did not increase. In contrast, while within the low-concentration classification, the active sites had not yet 297 

been filled (Herrmann 1999).  298 

For reactants adsorbed from aqueous phases, Herrmann (1999) indicated that a first-order kinetics 299 

apply when concentration is less than 10-3 M and zero-order kinetics apply at a concentration greater than 300 

5 x 10-3 M. These divisions have not been established for reactants adsorbed from a gas phase. Except for 301 

Ballari et al. (2010), which only had 3 observations, t-tests of the data presented in Figure 5 rejected a null 302 

hypothesis that slope equaled 0 nmol m-2∙s-1∙ppmv-1 (p = <0.033). Based on this analysis, it is evident that 303 

this data falls into first-order oxidation kinetics, indicating that active sites have not been filled. For 304 

applications of photocatalytic pavement, a determination of where the breakpoint between first- and 305 

zero-order oxidation kinetics occurs is not necessary. Locations where these pavements may be installed 306 

can be assumed to have NOX concentrations near the National Ambient Air Quality Standards (NAAQSs) 307 

for NO2 (i.e., 53 and 100 ppbv) (Primary National Ambient Air Quality Standards for Nitrogen Dioxide: Final 308 

Rule, 2010). These values are substantially below the 1.0 ppmv upper limit of the data analyzed; therefore, 309 

field applications can also be assumed to be characterized by first-order oxidation kinetics. 310 

In addition to finding evidence that influent NO concentration affects NO oxidation rates, a t-test 311 

which compared the slope of linear regression lines for the presented data sets found no significant 312 

difference between this study’s data and the data from Hüsken and Brouwers (2008) and Hüsken et al. 313 

(2009) (t = -1.429, df = 3, p = 0.248), and Ballari et al. (2010) (t = -0.515, df = 2, p = 0.658). A similar t-test 314 

did find that the slope was significantly different than the 0–1.0 ppmv data from Murata et al. (2000) (t = 315 

-10.834, df = 4, p = 0.000). Review of Murata et al. (2000)’s writing found that the reactor setup was not 316 
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markedly different that that of the authors’; therefore, material chacateristics are also likely to influence 317 

the activity of photocatalytic pavements. More broadly, it can be concluded that because these slopes are 318 

significantly different, a generalized assumption of the effect of NO concentration on NO oxidation rate 319 

cannot be made. Instead, if a photocatalytic material is to be used in the field, it would be wise to complete 320 

lab evaluations in order to project levels of oxidation that could be observed in the field. 321 

3.1.2. UV-A Irradiance 322 

Figure 6 indicates a positive correlation between UV-A irradiance and NO oxidation (R2 = 0.996). This 323 

correlation is also evident in the data from Murata et al. (2000) (R2 = 0.910), Hüsken et al. (2009) (R2 = 324 

0.940), and Ballari et al. (2011) (R2 = 0.986). This positive correlation exists because increased UV-A 325 

irradiance on a photocatalytic surface increases the rate at which electron holes are created. An increase 326 

in the rate of electron-hole generation results in the increased production rate of hydroxyl radicals, which 327 

oxidize NO. Multiple publications report that the relationship between irradiance and pollutant oxidation 328 

can be divided into two classifications. Although disagreement exists on the value of the division point 329 

between classes (10–250 W∙m-2), the publications note a linear relationship below the division point and 330 

a non-linear relationship above this point (Herrmann et al., 2007; Jacoby et al., 1995; Kumar et al., 1995; 331 

Lim et al., 2000; Obee & Brown, 1995). Jacoby et al. (1995) explains that under the linear classification, 332 

electron holes are filled by reactions with species on the photocatalytic surface (e.g., OH-) faster than by 333 

recombination with excited electrons; in contrast, under the non-linear classification, holes are filled by 334 

recombination at a faster rate than by reaction with other species.  335 
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 336 

Figure 6. Effect of UV-A irradiance on NO oxidation rate [Ballari et al. (2011) collected data at 0.52 337 
ppmv inlet NO concentration, all other studies used a 1.0 ppmv inlet NO concentration]. 338 

As noted above, a linear relationship is apparent when reviewing the data collected in this study (R2 = 339 

0.996). Comparison of this data with Hüsken et al. (2009) did not find a significant difference in the slope 340 

of each data set’s linear regression lines (t = -0.403, df = 14, p = 0.693). However, it should be noted that 341 

Hüsken et al. (2009) asserted power law relationship between percent NO removal and irradiance (y = 342 

8.583x0.431, R2 = 0.998) and concluded that linear behavior was limited to observations above 4 W∙m-2. 343 

Linear behavior is also apparent in Ballari et al. (2011) (R2 = 0.986), but comparison of slopes did find a 344 

significant difference (t = -8.462, df = 7, p = 0.000).  In contrast, the data from Murata et al. (2000) appears 345 

non-linear (R2 = 0.910 for linear regression). Furthermore, a t-test comparing the slope of linear regression 346 

lines between this data set and the authors’ found a significant difference (t = -5.672, df = 7, p = 0.001). In 347 

similarity with the conclusion reached in Section 3.1.1, this difference indicates that lab evaluation of a 348 

specific material selected for field application is warranted in order to assess its NO oxidation potential. 349 

As reported by Grant and Slusser (2005), mean daytime UV-A irradiance ranged from 10.5 to 22.3 350 

W∙m-2 for the most northern and southern locations (Fairbanks, Alaska, latitude 65.1°N and Homestead, 351 

FL, latitude 25.4°N, respectively) according to the United States Department of Agriculture (USDA) climate 352 
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monitoring network. In addition to knowledge of the mean UV-A irradiance, application of photocatalytic 353 

pavement also requires knowledge on the change in irradiance during daylight hours. This knowledge is 354 

needed because in urban areas NOX ambient concentration reportedly follows a diurnal pattern 355 

associated with traffic. Urban background monitoring in London, UK, found that NO2 peaks both in early 356 

morning and late afternoon and NO, which oxidizes quickly to NO2 during daylight hours, peaks in early 357 

morning (Bigi & Harrison, 2010). At these peaks, irradiance values are substantially lower than the mean 358 

daytime value. For example, at the 40th parallel north, which roughly runs through the center of the United 359 

States, the difference between the typical mid-summer peak UV radiation and the radiation 4 hours earlier 360 

in the day is more than 70% (Long et al., 1996). At present, oxidation rates at these low irradiance values 361 

are quite low. To be effective at peak pollution hours, the ongoing efforts by other researchers to enhance 362 

TiO2’s photo-induced reactivity must be incorporated into new formulations of photocatalytic pavements. 363 

3.1.3. Flow Rate 364 

A model utility test on the data collected in this study (presented in Figure 7) did not reject a null 365 

hypothesis that slope equaled 0 nmol∙m-2∙s-1∙°C-1 (t = 0.118, df = 2, p = 0.925), and therefore did not provide 366 

evidence of a correlation between flow rate and NO oxidation rate. The same conclusion was found with 367 

analysis of data from Hüsken and Brouwers (2008) and Hüsken et al. (2009) (t = 0.631, df = 2, p = 0.642). 368 

The independence of oxidation rate and flow rate aligns with the overall approach used by Hunger et. al 369 

(2010) to model the oxidation of NO on photocatalytic concrete surfaces. Using a Langmuir-Hinshelwood 370 

model and data collected with a photoreactor, Hunger et. al (2010) established that it is the conversion 371 

of adsorbed species that limits the reaction rate, rather than mass transfer from the test gas to the sample 372 

surface. 373 
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 374 

Figure 7. Effect of flow rate on NO oxidation rate. 375 

Results, presented in the form of percent NO removal, were determined to be 51, 37, and 21% for 376 

flow rates of 1.5, 3, and 5 L∙min-1, respectively. Using these units, a negative relationship was evident 377 

between flow rate and percent removal (t = -27.718, df = 2, p = 0.023). This relationship was also 378 

documented by other researchers (Ballari et al., 2010; Dylla et al., 2010; Hüsken & Brouwers, 2008; Hüsken 379 

et al., 2009). These studies suggested that percent NO removal from a specific volume of test gas increases 380 

proportionally to the residence time over a photocatalytic surface because more time exists for pollutants 381 

to absorb and be oxidized at active sites.  Overall, the lack of a correlation between flow rate and NO 382 

oxidation rate could simplify modeling efforts as stakeholders consider field applications. However, given 383 

the wide array of variables that need to be considered, this modeling effort will be challenging and is likely 384 

to have a high degree of uncertainty.  385 

3.1.4. Relative Humidity 386 

Figure 8 indicates a negative correlation between relative humidity and NO oxidation rate for the 387 

mortar slabs (created with cement that contains TiO2) used in this study (R2 = 0.996, t = -22.257, df = 3, p 388 

= 0.002). This correlation was also found in the study by  Murata et al. (2000) (t = -4.307, df = 5, p = 0.013) 389 

and Hüsken and Brouwers (2008) and Hüsken et al. (2009) (t = -22.408, df = 7, p = 0.000). Photocatalytic 390 
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degradation of NO by pavement containing titanium dioxide occurs when NO is oxidized by ●OH (Figure 391 

1). These ●OH are generated by oxidation of an OH- by an electron hole. Current understanding proposes 392 

that water adsorbed on the slab serves as the source for OH-. Intuition would thereby suggest that 393 

increased humidity would result in an increased rate of NO oxidation. By observation, the opposite has 394 

been found to be true. In addition to photocatalytic properties, materials containing TiO2 also exhibit 395 

photo-induced superhydrophilicity (i.e., water on the surface has a contact angle of nearly 0°) (Fujishima 396 

et al., 2008). Adsorbed water vapor disperses over the surface, blinding photocatalytically active sites 397 

(Beeldens, 2007).  398 

 399 

Figure 8. Effect of relative humidity on NO oxidation rate. 400 

Although a negative correlation was found in each data set displayed in Figure 8, both data values and 401 

relationships differed. A null hypothesis that the difference in slopes of regression lines was 0 (i.e., HO: B1 402 

– B2 = 0) was used to compare this study’s data to the data obtained by other researchers. This evaluation 403 

found a significant difference in slope between this study and both Murata et al. (2000) (t = 2.859, df = 6, 404 

p = 0.029) and Hüsken and Brouwers (2008) and Hüsken et al. (2009) (t = -9.378, df = 8, p = 0.000). 405 

Evaluation of the y-intercept found a significant difference between this study and both Murata et al. 406 

(2000) (t = -423.737, df = 6, p = 0.000) and Hüsken and Brouwers (2008) and Hüsken et al. (2009) (t = 407 
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978.105, df = 8, p = 0.000). This evaluation provides further evidence of the complexity of photocatalytic 408 

pavement materials. As concluded in previous sections, the researchers recommend that individual 409 

materials undergo a thorough evaluation prior to field evaluation.  410 

The observed negative correlation that occurs as a result of water’s blinding effect could limit the 411 

effectiveness of photocatalytic pavement in humid regions. Based on 2006–2008 data, the five counties 412 

with the highest ambient NO2 concentration in the form of the 2010-promulgated NO2 standard for 413 

counties within the United States are as follows: Cook, IL, San Diego, CA, Los Angeles, CA, Erie, NY, and 414 

Denver, CO (USEPA, 2010a). With the exception of Denver County, each of the listed counties frequently 415 

experiences high humidity conditions. As displayed in Figure 8, the NO oxidation rate at high humidity is 416 

substantially diminished. Unless photocatalytic pavements can be modified to lessen their sensitivity to 417 

changes in relative humidity, effective application in these polluted areas will be difficult.  418 

3.1.5. Decrease in Slab Moisture 419 

Figure 9 presents data obtained from a slab that was periodically removed from a 60°C oven and 420 

evaluated in the photoreactor as internal moisture decreased from a saturated state. For a decrease in 421 

moisture of 0–2% of saturated mass, a positive correlation is apparent (R2 = 0.822) and a 0 slope null 422 

hypothesis was rejected (t = 4.310, df = 5, p = 0.013). Conversely, for a decrease in slab moisture greater 423 

than 2% of saturated mass, a negative correlation is apparent (R2 = 0.985) and a 0 slope null hypothesis 424 

was rejected (t = -14.152, df = 5, p = 0.001). These observations can be explained as follows: between 0 425 

and 2% decrease in moisture, as water is evaporated from the slab it no longer blinds active sites and the 426 

NO oxidation rate increases. This explanation is similar to the explanation for the correlation between 427 

relative humidity and NO oxidation rates. For a decrease in moisture above 2% the rate of NO oxidation 428 

appears to be limited because water contained within the slab is not available as a source for ●OH. While 429 

the primary purpose of these results is to indicate that slab moisture influences NO oxidation rate, it is 430 
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worth noting that these tests occurred at an average slab temperature of approximately 50°C. Data 431 

presented in Section 3.1.6 indicates that this elevated slab temperature increased reactivity by 60% in 432 

comparison to slabs at 22°C.  433 

 434 

Figure 9. Effect of decrease in slab moisture due to water evaporation on NO oxidation rate 435 
(photoreactor vapor density held constant). 436 

In this study, the peak NO oxidation rate was observed at 2% decrease in slab moisture. Under field 437 

condition a different peak would be observed. This difference would arise because water content varies 438 

throughout the depth of a concrete pavement; therefore, the decrease in moisture at the pavement 439 

surface would differ from the decrease in moisture throughout the entire slab. Overall, the findings 440 

presented in Figure 9 complicate recommendations for field application of TiO2-containing pavements. 441 

On the basis of relative humidity, areas with sustained periods of low humidity would be recommended 442 

for application. It would be assumed that mitigation of NO pollution would continue as long as relative 443 

humidity remained low. However, sustained low humidity would also cause evaporation of water 444 

contained in the pores of the slab. Based on the data presented, a photocatalytic concrete pavement 445 

could be expected to remove NO initially; however, over time NO oxidation would decrease and the 446 

benefits would be lost. If TiO2-containing pavement is to be applied in the field to mitigate NO pollution, 447 
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this complicating factor requires further investigation and methods to maintain moisture in the pavement 448 

may need to be developed. 449 

3.1.6. Slab Temperature  450 

Figure 10 displays the effect of temperature on NO oxidation rate on axes of NO oxidation rate versus 451 

temperature (Figure 10a) and 𝑙𝑛(𝑁𝑂 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒) versus the inverse of temperature (Figure 10b).  452 

Linear regression of this data found a R2 value of 0.880. A model utility test rejected a null hypothesis that 453 

slope equaled 0 nmol∙m-2∙s-1∙°C-1 with confidence in excess of 99.99% (t = 8.963, df = 12). As noted in 454 

Section 2.4.2, tests which occurred at slab temperatures below 22°C presented the possibility of error due 455 

to water condensation. Linear regression of data points above 22°C found a slope of 0.459 nmol∙-2∙s-1∙°C-1 456 

(R2 = 0.725, n = 7); for data points below 22°C the slope was 0.252 nmol∙m-2∙s-1 °C-1 (R2 = 0.417, n = 6). A 457 

pooled-variance t-test of a null hypothesis that the difference between these two slopes was 0 (i.e., HO: 458 

B1 – B2 = 0) indicated that the slopes were not significantly different (t = 0.967, df = 9, p = 0.359). Although 459 

the values of the slopes differ, the data collected did not support a claim that this difference was 460 

significant. 461 
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Figure 10. Effect of temperature on NO oxidation rate. 464 

The effect of temperature on NO oxidation rates has not been studied in previous photoreactor 465 

studies; therefore, comparison with other data sets was not possible. Other photocatayltic pavement 466 

studies that do make statements in regard to the impact of temperature on oxidation rates are often 467 

vague. In most instances these studies assert that the oxidation rate increases with an increase in 468 

temperature (Beeldens et al., 2011) and that only large differences in temperature (i.e., summer vs. 469 

winter) are significant (Dylla et al., 2011). In addition to being vague, the literature also is contradictory 470 

and one source reported a decrease in oxidation rate with increased temperature (Chen & Chu, 2011). 471 

One aqueous photocatalysis publication, Herrmann (1999), does provide useful insight for this study. It 472 

stated that in the range of 20–80°C, activation energy was negligible and was not a rate limiting step.  473 

Furthermore, at temperatures below 0°C, the apparent activation energy of the photocatalyst increased 474 

leading to a decrease in oxidation rate. 475 

The Arrhenius equation offers an empirical relationship between a reaction rate constant (𝑘), 476 

temperature (𝑇), pre-exponential factor (𝐴), activation energy (𝐸𝑎), and the universal gas constant (𝑅):  477 

𝑘 = 𝐴 ∙ 𝑒
−𝐸𝑎
𝑅∙𝑇  478 

Using log properties, this equation can also be expressed as follows: 479 

ln 𝑘 =
−𝐸𝑎

𝑅
(

1

𝑇
) + ln 𝐴 480 

When graphed on axes of 𝑙𝑛(𝑁𝑂 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒) and the inverse of temperature (1/𝑇), reactions that 481 

follow the Arrhenius equation exhibit a linear relationship. Figure 10b does not display this type of 482 

relationship. Overall, while the information discussed in this section partially explains the observations; it 483 

would appear that given the complexity of photocatalytic pavement materials, other factors also 484 

influenced the reported observations.  485 
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4. Conclusions 486 

Photocatalytic pavements offer a novel technological option to mitigate NOX pollution. In order for 487 

these pavements to be adopted by potential stakeholders, information is needed that documents the NO 488 

oxidation rate under varied environmental conditions.  A positive correlation was observed between NO 489 

oxidation rate and influent NO concentration. Comparison of this study with Hüsken and Brouwers (2008), 490 

Hüsken et al. (2009) and Ballari et al. (2010), who also studied cementitious photocatalytic pavements,  491 

found no significant difference in the slope of regression lines through this data. However, a significant 492 

difference in slope was observed in comparison with Murata et al. (2000). A positive correlation was also 493 

observed between NO oxidation rates and UV-A irradiance (R2 = 0.996). Comparison of this study with 494 

Hüsken et al. (2009) found no significant difference in the slope of regression lines through this data. A 495 

significant difference in slope was observed in comparison with Murata et al. (2000). A correlation was 496 

not observed between NO oxidation rates and flow rate. This same conclusion was reached with analysis 497 

of data from Hüsken and Brouwers (2008) and Hüsken et al. (2009). A negative correlation was observed 498 

between NO oxidation rate and relative humidity. In contrast with evaluations for UV-A irradiance and NO 499 

concentration, no significant difference was found with comparison of this study to Murata et al. (2000). 500 

A significant difference in slope was observed between this study and Hüsken and Brouwers (2008) and 501 

Hüsken et al. (2009). Decrease in slab moisture, a variable not investigated in prior work, was found to 502 

affect NO oxidation rates. At losses of 0–2% of saturated mass, a positive correlation was observed; 503 

whereas, at losses greater that 2% a negative correlation was observed. A positive correlation was 504 

documented for slab temperature. This finding contrasts previous assertions which considered this 505 

variable insignificant.  506 

Overall, it can be concluded that photocatalytic mortar slabs manufactured with TX Active pavement 507 

are highly sensitive to changes in environmental variables. NO oxidation rates observed in this study 508 

ranged from 9.8–64 nmol∙m-2∙s-1. Furthermore, significant differences were found by comparison to other 509 
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studies. Therefore, if a potential stakeholder is considering use of this technology to mitigate NOX 510 

emissions, careful preliminary work should be undertaken to both evaluate the environmental conditions 511 

of the test site and the properties of the selected photocatalytic material.  512 
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Black and White Versions of Color Figures 635 

 636 

 637 

Figure1. Photocatalytic oxidation of NO and NO2 by pavement containing TiO2 (partially adapted from 638 

Ballari et al., 2011). 639 

 640 

 641 

Figure 2.  Diagram of experimental apparatus (partially adapted from Ballari et al., 2011). 642 
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 643 

Figure 3. Photograph of photoreactor and mortar slab (optical window removed to facilitate viewing). 644 
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