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Evaluating the Consistency of Gene Sets Used in the Analysis of Bacterial
Gene Expression Data

Abstract
Background
Statistical analyses of whole genome expression data require functional information about genes in order to
yield meaningful biological conclusions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) are common sources of functionally grouped gene sets. For bacteria, the SEED and
MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive
evaluation of the data obtained from these resources has been performed.

Results
We define a series of gene set consistency metrics directly related to the most common classes of statistical
analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix gene
expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG
demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene
set size.

Conclusions
Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED
and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses such data. Increased
use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve
statistical power and utility of expression data.
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RESEARCH ARTICLE Open Access

Evaluating the consistency of gene sets used in
the analysis of bacterial gene expression data
Nathan L Tintle1*, Alexandra Sitarik2, Benjamin Boerema3, Kylie Young4, Aaron A Best5 and Matthew DeJongh6

Abstract

Background: Statistical analyses of whole genome expression data require functional information about genes in
order to yield meaningful biological conclusions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) are common sources of functionally grouped gene sets. For bacteria, the SEED and
MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of
the data obtained from these resources has been performed.

Results: We define a series of gene set consistency metrics directly related to the most common classes of
statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 AffymetrixW gene
expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate
lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size.

Conclusions: Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the
SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the
SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power
and utility of expression data.

Keywords: Gene ontology, KEGG, SEED, Operons, Consistency

Background
Within the last decade, microarrays measuring whole
genome transcript abundance (gene expression arrays)
have grown in popularity. Increasingly, the data received
from this maturing technology is of high quality. How-
ever, these data are only useful if they are interpretable
biologically. In order to draw biologically relevant con-
clusions from gene expression data, a variety of statistical
analysis methods can be used.
Traditional methods for the statistical analysis of bac-

terial gene expression data include creating rank-ordered
lists of differentially expressed genes (log-ratio of genes
in two experiments), k-means clustering [1], principal
components analysis [2], on/off calling algorithms used
in flux-balance analysis [e.g., 3,4] and regulatory network
inference (RNI) [e.g., 5,6]. Newer methods include gene
set or pathway analysis [e.g., 7-9], alternative clustering

methods [e.g., 10] and integrated regulatory/metabolic
modeling approaches [e.g., 11,12].
Regardless of how bacterial gene expression data is

analyzed, high-quality biological information (e.g., gene
function) is critical to the ultimate utility of gene expres-
sion data. Increasingly, the Gene Ontology [GO; 13] and
Kyoto Encyclopedia of Genes and Genomes [KEGG; 14]
are used as a primary source of biological information
for a variety of gene expression data analysis approaches.
However, to date and despite their popularity, little effort
has been put into evaluating the consistency of gene
sets from GO or KEGG for bacterial organisms as com-
pared to other options (e.g., SEED based sets [15] and
MicrobesOnline [16] operon predictions).
In this paper we define a variety of gene set consistency

metrics that are directly related to three classes of statis-
tical analysis methods. These metrics enable us to measure
the degree to which a given gene set is likely to be inform-
ative in the context of the respective analyses. In short,
more consistent gene sets will behave in statistically opti-
mal ways. In this manuscript we use 3581 AffymetrixW

whole genome expression arrays for 17 different bacteria
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to evaluate the consistency of gene sets from GO, KEGG,
SEED and MicrobesOnline. We find that certain sources
of bacterial gene sets yield highly consistent sets across
all metrics.

Methods
Gene expression data
Seventeen diverse bacteria were selected for inclusion
in this study based on the availability of Affymetrix
GeneChipW cell intensity (CEL) files for substantial num-
bers of microarray experiments. We obtained these CEL
files from multiple sources: NCBI’s Gene Expression
Omnibus [GEO; 17], the Many Microbe Microarrays
Database [M3D; 18], and, in one case, a private laboratory
(Dr. Paul Dunman, personal communication). Expression
data from GEO and M3D is available via direct download
from those repositories, while expression data from the
private laboratory is available from Dr. Paul Dunman
upon request. Table 1 lists the 17 organisms included in
this study, the number of CEL files available for each
organism (# arrays), and the source of the CEL files for
each organism. Minimal strain and platform differences
are present within each set of CEL files for a given organ-
ism; however, any differences were ignored for our ana-
lysis. For each organism, the expression data from the
CEL files was background corrected, normalized and
summarized using Robust Multichip Averaging [19] as
implemented in R/Bioconductor [20] using the rma()
function default settings. In addition, the probe sets for
each Affymetrix GeneChip were mapped to gene identi-
fiers in the SEED [15] in order to provide a consistent
basis for analyzing each source of gene sets. The number
of genes measured by the CEL files is also included in the
table. The final analysis dataset for each organism con-
sists of a two-dimensional table containing a single ex-
pression value for each SEED gene identifier (row) and
CEL file (column).

Gene sets
For each organism, we obtained gene sets using four dif-
ferent resources: GO [13], KEGG [14], MicrobesOnline
[16], and the SEED [15]. We obtained GO annotations
from MicrobesOnline, and mapped KEGG and Microbe-
sOnline gene identifiers to SEED gene identifiers using
locus tags. GO defines hierarchies of terms for molecular
function (MF), biological process (BP), and cellular com-
ponent (CC), arranged in three separate directed acyclic
graphs. We created a gene set for each GO term by
gathering all of the organism’s genes associated with the
given GO term or with any of the GO term’s children.
KEGG defines metabolic pathway maps representing net-
works of biochemical reactions catalyzed by the enzymes
encoded in the organism’s genome. We created gene sets
from each map by gathering all genes associated with

reactions in that map. MicrobesOnline (MO) uses the
method of Price et al. [21] to create MO Predicted
Operons; we created a gene set for each Predicted
Operon for the organism. The SEED organizes functional
roles for genes into Subsystems (SS) that represent com-
ponents of cellular processes and cellular structures;
we created a gene set for each subsystem for a given or-
ganism by gathering all genes annotated with functional
roles represented in that subsystem. SEED subsystems
that represent metabolic processes are further subdivided
into Scenarios, which define input and output com-
pounds along with the subsets of functional roles that are
associated with particular components of the metabolic
process. Scenarios can be subdivided further into one or
more Paths, which define the alternative minimal subsets
of functional roles that connect scenario input and out-
put compounds (see example below) [22]. We created
gene sets for each Scenario and for each Path by gathering
all genes annotated with the respective functional roles.
In total, across the 17 organisms, we gathered 43,166 dis-
tinct gene sets containing at least two genes with gene
expression data available (see Table 1).

Example of gene sets for arginine biosynthesis
Consider the gene that encodes argininosuccinate
synthase in Escherichia coli str. K-12 substr. MG1655.
The SEED identifier for this gene is fig|83333.1.peg.3116,
and the MicrobesOnline identifier is VIMSS17244.
According to MicrobesOnline, this gene is annotated
with three GO terms: GO:0004055 argininosuccinate syn-
thase activity (MF), GO:0006526 arginine biosynthetic
process (BP), and GO:0005524 ATP binding (MF). Each of
these three GO terms is associated with multiple genes
in E. coli K-12: (1) the gene set for GO:0004055 arginino-
succinate synthase activity is composed of three genes;
(2) the gene set for GO:0006526 arginine biosynthetic
process also contains these three genes, as well as six
other genes in this metabolic pathway; and (3) term
GO:0005524 ATP binding represents a very broad set of
336 genes. In addition, each of these GO terms has parent
terms in their respective GO hierarchies, and the gene sets
for the parent terms form supersets of the gene sets
described here. For example, one of the parent terms for
GO:0006526 arginine biosynthetic process is GO:0006525
arginine metabolic process (BP), which contains genes
associated with both arginine biosynthesis as well as
arginine degradation. In all, the gene fig|83333.1.peg.3116
is present in 41 gene sets derived from the GO.
The gene is associated with two KEGG maps, both of

which represent areas of metabolism that extend well
beyond arginine biosynthesis, so their respective gene
sets for E. coli K-12 are correspondingly large: Alanine,
aspartate and glutamate metabolism (29 genes) and
Arginine and proline metabolism (43 genes).
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This gene is a member of one subsystem in the SEED,
Arginine Biosynthesis extended, which contains the eleven
genes shown in Table 2. Because this subsystem contains
functional roles corresponding to the biological process
of arginine biosynthesis, the derived gene set is similar
to the gene set for the GO term GO:0006526 arginine
biosynthetic process though not exactly the same (see
Table 2). In particular, note that four of the eleven genes
are missing from the GO:0006526 arginine biosynthetic
process gene set, even though three of them encode
enzymes that are necessary components of the arginine
biosynthesis process. Similarly, the KEGG maps either
miss vital genes (e.g., eco00250) or include many other
genes (35 additional genes in eco00330).

There is one scenario in the Arginine Biosynthesis
extended subsystem, named Glutamate to Arginine; it
defines the functional roles in the subsystem correspond-
ing to enzymes that are specifically involved in synthesiz-
ing L-arginine from L-glutamate. The gene set derived
from this scenario is a proper subset of the gene set
derived from the subsystem.
Although there are two possible Paths through the

Glutamate to Arginine scenario, one using Acetylor-
nithine deacetylase (EC 3.5.1.16) and the other using
Glutamate N-acetyltransferase (EC 2.3.1.35) to convert
N-acetylornithine to L-ornithine, E coli K-12 only encodes
one of these enzymes; thus the gene set for the Path is
exactly the same as the gene set for the scenario itself.

Table 1 Characteristics of the set of microarrays

Organism name # of
genes1

# of
arrays

Source2 Number of Gene sets

Gene Ontology KEGG
maps3

MO:
Predicted
Operons3

SEED3 Total

BP3 CC3 MF3 SS3 Scenario3 Path3

Actinobacteria

Streptomyces coelicor A3(2) 7989 55 GEO 799 117 819 113 1626 200 139 158 3971

Bacteroidetes

Bacteroidesthetaiotaomicron VPI-5482 4778 41 GEO 695 84 615 79 1008 193 93 98 2865

Cyanobacteria

Synechococcuselongatus PCC 7942 1849 104 GEO 651 106 564 89 295 257 72 90 2124

Deinococcus-Thermus

Thermusthermophilus 2215 407 GEO 604 79 499 83 441 180 86 92 2064

Firmicutes

Staphylococcus aureussubsp. aureus Mu50 2750 852 PD 697 86 604 90 521 360 98 118 2574

Streptococcus agalactiae 1880 78 GEO 571 65 477 79 257 238 64 70 1830

Streptococcus pyogenes 1849 89 GEO 556 70 488 81 248 256 57 73 1829

Mollicutes

Mycoplasma pneumoniae M129 731 43 GEO 332 46 252 42 80 80 14 14 860

Proteobacteria

Alpha

Bradyrhizobiumjaponicum 8198 195 GEO 457 111 547 103 1672 421 138 156 3605

Rhodobactersphaeroides 4084 119 GEO 767 150 724 103 757 367 110 128 3106

Rickettsia rickettsiistr.Iowa 1242 100 GEO 445 64 367 59 251 135 14 15 1350

Epsilon

Helicobacter pylori HPAG1 1521 56 GEO 572 76 426 77 248 174 42 42 1657

Gamma

Escherichia coli K12 4329 907 M3D 847 115 788 98 752 399 160 169 3328

Pasteurella multocida subsp. multocida str. Pm70 2001 72 GEO 653 77 673 81 365 328 88 91 2356

Pseudomonas aeruginosa PA01 5598 176 GEO 823 133 835 104 1042 389 136 154 3616

Shewanellaoneidensis MR-1 4050 245 M3D 746 112 641 95 705 328 109 125 2861

Vibrio parahaemolyticus RIMD 2210633 4515 42 GEO 719 109 602 93 920 418 144 165 3170

Total – 3581 – 10934 1600 9921 1469 11188 4723 1564 1767 43166
1 For which array data is available.
2 M3D=Many Microbe Microarrays Database [18], PD=The Paul Dunman Laboratory, GEO=Gene Expression Omnibus [17].
3 Gene Ontology [13], BP=Biological Process, CC=Cellular Component, MF=Molecular Function, KEGG=Kyoto Encyclopedia of Genes and Genomes [14],
MO= Microbes Online Predicted Operons using the method of Price et al. [16,21], SEED [15,22], SS=SEED subsystems, Scenario=SEED scenario, Path=SEED path.
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Table 2 Example of overlap among gene sets related to arginine biosynthesis

GeneID from
the SEED

Functional role Arginine
Biosynthesis
Extended

(SEED: SUBS)

GO: 0006526
(Arginine

Biosynthetic
Process; BP)

Alanine,
aspartate

and glutamate
metabolism
(eco00250:

KEGG)

Arginine and
Proline

Metabolism
(eco00330:
KEGG)

Glutamate
to Arginine

(SEED: Scenario,
Path)

MO: Predicted
Operons

fig|83333.1.peg.269 Ornithine carbamoyltransferase (EC 2.1.3.3) + M M + + None

fig|83333.1.peg.2440 N-succinyl-L,L-diaminopimelatedesuccinylase
(EC 3.5.1.18)

+ + M M M with peg.2339

fig|83333.1.peg.2771 N-acetylglutamate synthase (EC 2.3.1.1) + + M + + None

fig|83333.1.peg.3116 Argininosuccinate synthase (EC 6.3.4.5) + + + + + None

fig|83333.1.peg.3181 Arginine pathway regulatory
protein ArgR, repressor of argregulon

+ M M M M None

fig|83333.1.peg.3294 Acetylornithine and
N-succinyl-L,L-diaminopimelateaminotransferase
(EC 2.6.1.11 and EC 2.6.1.17)

+ M M + + None

fig|83333.1.peg.3877 Acetylornithinedeacetylase (EC 3.5.1.16) + + M + + None

fig|83333.1.peg.3878 N-acetyl-gamma-glutamyl-phosphate reductase
(EC 1.2.1.38)

+ + M + + with peg.3879
and peg.3880

fig|83333.1.peg.3879 Acetylglutamate kinase (EC 2.7.2.8) + + M + + with peg.3878
and peg.3880

fig|83333.1.peg.3880 Argininosuccinatelyase (EC 4.3.2.1) + + + + + with peg.3878
and peg.3879

fig|83333.1.peg.4164 Ornithine carbamoyltransferase (EC 2.1.3.3) + M M + + None

Number of other genes in the set1 0 2 28 34 0
1Genes in the set that don’t appear in this table.
+ means present in the set.
M means Missing (not present in the set).
None means that the gene is not present in any predicted operon.
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Lastly, Table 2 illustrates which of the genes involved
in arginine biosynthesis are predicted by MicrobesOnline
to be in an operon. There is one complete operon in
the table (fig|83333.1.peg.3878, fig|83333.1.peg.3879 and
fig|83333.1.peg.3880) and one partial operon (fig|83333.1.
peg.2440 is in an operon with fig|83333.1.peg.2339). We
note that fig|83333.1.peg.3877 is on the opposite strand
from fig|83333.1.peg.3878, fig|83333.1.peg.3879 and fig|
83333.1.peg.3880 and, thus, cannot be in the same
operon.

Consistency metrics for gene expression data analysis
We developed four different classes of metrics to measure
the consistency of gene sets in the context of common
types of statistical analyses: metrics for differential expres-
sion, absolute expression and correlation (either magni-
tude only, or magnitude and consistency). In the following
sections, we describe the four classes of metrics and how
each reflects the characteristics and assumptions of a stat-
istical method.

Differential expression values
In a differential expression analysis, a researcher creates
a rank-ordered list of differential expression values D=
(d1,. . .,dM), comparing two experiments k and l, where M
is the number of genes for which expression data is avail-
able, and di ¼ ek;i=el;i , where ek,i is the normalized, back-

ground corrected expression value for the ith gene in
experiment k.
A generic statistical model for the observed differential

expression for all genes i, i= 1,. . .,n, in the set of interest,
N, which contains n genes, is di ¼ αþ βþ Eð Þi , where α
equals the overall differential expression effect for the
set of n genes, β is the additional differential expression
effect for gene i, and E is a random error term for gene i.
In order to maximize statistical power to estimate α,
(β+E) should be minimized [e.g., 7]. Thus, we propose
measuring the consistency of gene expression data as a
way to assess statistical power of different sources of sets
used in a differential expression analysis.
We propose two different metrics to assess the spread

of differential expression values: smean,diff and smedian,diff.
To obtain these values, we first compute the standard
deviation of differential expression values across the genes
in a set of interest. Specifically, we find the standard devi-
ation of {di,..dn}= sN,(k,l) for the gene set of interest, N, for
a pair of experiments (k, l). We then find the average
(smean,diff ) and median (smedian,diff ) of the standard devia-
tions across pairs of experiments. Specifically we define

smean;diff ¼
XP�1

k¼1

XP

l¼kþ1
sN ; k;lð Þ

P P�1ð Þ=2 , where P= the total number

of arrays and smedian,diff as the median of sN,(K,L) across all
unique pairs of experiments (k,l). Smaller values of smean,

diff and smedian,diff indicate more consistent gene sets.
We used random sampling to generate unbiased esti-
mates of smedian,diff and smedian,diff for all for 43,166 gene
sets, by randomly selecting 100 pairs of microarrays for
each organism.

Absolute expression values
In some cases, for example when estimating when a
gene is on or off in flux-balance analysis [e.g., 3,4],
researchers look directly at the rank ordered list of ex-
pression values E = (ek,1, ,ekj,m) to determine whether
genes have high or low expression levels. Gene set ana-
lysis can also be applied to E [7]. We can statistically
model the expression values as ei ¼ αþ βþ Eð Þi for the
ith of n genes in the set of interest. Using similar ration-
ale to the previous section, statistically optimal sets of
genes will show high consistency in values of ei.
We propose two measures of gene set consistency

related to spread of absolute expression data. For each
set of genes, we computed the mean (smean,exp) and
median (smedian,exp) standard deviations of the expression
values for all genes in a set across all arrays for an organ-
ism. Specifically, we first find the standard deviation of
the expression values for all n genes in a set of interest,
N, for each array k {ei,..en} = sN,k. These standard devia-
tions are then either averaged, across the P arrays, or the
median of sN,K (smedian,exp) across the P arrays is computed.
Smaller values of these two measures will be obtained for
sets with more consistent levels of expression. We com-
puted both metrics for all gene sets in our analysis.

Correlation between expression values
K-means and other clustering algorithms [e.g., 1,2],
operon prediction algorithms [e.g., 21] and regulatory
network inference [e.g., 5,6], typically require a dataset of
correlations between the expression values of pairs of
genes. In general, these methods operate on a rank
ordered list of pairwise gene correlations (e.g., Pearson)
and attempt to find pairs of genes showing strong pair-
wise correlations in order to argue that the pair of genes
is co-regulated. Similar to the previous two sections, we
can model the observed correlation ρi,j between a pair of
genes i and j which are both members of a gene set of
interest, as ρi;j ¼ αþ βþ Eð Þi;j. Methods that use pairwise

gene correlations operate under the assumption that sets
of genes demonstrating high and consistent average pair-
wise correlations are biologically meaningful.

Correlation between expression values: magnitude only
In order to measure gene set consistency based on cor-
relation of expression values, we computed the average
pairwise Pearson correlation (corrmean) and median pair-
wise Pearson correlation (corrmedian) across all pairs of
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genes in the set of interest across all experiments. Spe-

cifically, corrmean ¼
Xn�1

j¼1

Xn

i¼jþ1
ri;jj j

n n�1ð Þ=2 , where ri,j is the

Pearson correlation between genes i and j for the available
set of expression arrays, and n = the number of genes in
the set of interest. corrmedian is the median value of ri,j
where ri,j is computed for each unique pair of i and j,
across the set of n genes in the set. Highly consistent gene
sets will yield larger values of corrmean and corrmedian. For
all sets of more than 50 genes, we utilized random
sampling to generate unbiased estimates of corrmean and
corrmedian by selecting a random subset of 50 genes.

Correlation between expression values: magnitude and
consistency
We computed an additional measure of gene set con-
sistency that recognizes that high average pairwise correl-
ation are optimal, but that optimal gene sets will also
show consistently high correlation based on principal
components analysis (PCA). PCA was applied to the
variance-covariance matrix of gene pairs within the gene
set of interest N, across the entire set of arrays P available
for the organism using the prcomp function in R [23]. PCA
attempts to explain the variance-covariance matrix (correl-
ation structure) of a set of variables (in this case variables
are genes) through as few linear combinations of the
variables as possible. The metric we used to summarize
gene set consistency is the percent of variation explained by
the first principal component (linear combination), PC1.
Larger values of PC1 indicate stronger and more consistent
correlation between all of the genes in the set.

Using the consistency metrics
In our analyses, we computed the values of the
consistency metrics for each of the 43,166 gene sets
across the set of available expression data. We then
explored patterns in the values of the consistency metrics
to assess whether certain sources of gene sets provided
more consistent sets of genes.

Results
Sample characteristics
As shown in Table 1, there were 43,166 sets of at least
two genes across the eight different types of gene sets.
The number of sets from each source ranged from 1,469
sets (KEGG) to 11,188 sets (MicrobesOnline Predicted
Operons). The number of sets for each organism is
strongly related to the number of genes in the organism
(r= 0.92, p < 0.001).
Set sizes ranged from 2 to 3,661 genes. Table 3 shows

how set sizes differed by organism and by source. In
general, Predicted Operons, Scenarios and Paths were
smaller than subsystems and sets based on GO and

KEGG. While some differences in set size were observed
by organism (corresponding to the number of genes in
the organism), two separate regression models predicting
set size (log10 scaled) by either organism type or source
of sets, indicate that the source of sets accounts for
substantially more difference in set size, than does the
organism (organism type: p= 4.1x10-15; r2= 0.002; source
of sets: p < 2.2x10-16, r2= 0.13).

Characteristics of the consistency metrics
Table 4 shows how the values of the seven different
consistency metrics correlated with each other across all
gene sets considered in this analysis. Within each of the
three general types of approaches for computing con-
sistency (Differential Expression, Absolute Expression
and Correlation) the correlation between consistency
metrics is quite high. In particular, mean and median
metrics are so strongly correlated that, in general, we can
conclude that skewness/outliers are not significantly
impacting the consistency metrics. Thus, we will focus
our analysis only on the three mean based metrics and
PC1 from this point forward in the manuscript. Between
the three classes, the consistency metrics show only weak
to moderate correlation. This suggests that while there is
some overall notion of consistent gene sets regardless of
the metric used, there are still many sets that will appear
to be consistent using one metric and not consistent
using another metric. For example, a set with high correl-
ation (high corrmean)but low consistency in absolute ex-
pression (high smean,exp) could occur if the genes in the
set are co-regulated, but some genes in the set typically
show high expression levels, while other genes in the set
typically show low expression levels. We also note that
the negative correlation between differential/absolute
expression consistency metrics and correlation consis-
tency metrics is expected because differential/absolute
expression consistency metrics take small values when
applied to consistent gene sets, while correlation con-
sistency metrics take large values when applied to con-
sistent gene sets.

Consistency of expression level by source
Using the four consistency metrics to which we are
restricting the remainder of our analyses, Table 5 illus-
trates the consistency of gene sets from each of the eight
set sources. Specifically, Table 5 gives the mean of the
consistency metrics across all sets and organisms within
each of the eight set sources. Importantly, results are
similar for each of the four different consistency metrics.
Namely, Predicted Operons are the most consistent, fol-
lowed by Paths and Scenarios. Subsystems tended to per-
form slightly better than GO sets, and KEGG was typically
worst. Cellular component sets performed similar to SEED
sets when using correlation based consistency metrics.
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Table 3 Median (and maximum1) of set sizes by organism and source

Gene ontology KEGG2 MO:
Predicted
Operons2

SEED

BP2 CC2 MF2 SS2 Scen2 Path2

Actinobacteria

Streptomyces coelicor A3(2) 8 (3661) 5 (1574) 5 (4487) 15 (192) 3 (42) 7 (57) 5 (28) 5 (28)

Bacteroidetes

Bacteroidesthetaiotaomicron VPI-5482 7 (2141) 7.5 (1037) 5 (2580) 13 (53) 3 (32) 5 (74) 4 (17) 4 (17)

Cyanobacteria

Synechococcuselongatus PCC 7942 7 (1268) 11 (580) 4 (1498) 10 (66) 3 (18) 6 (47) 4 (13) 5 (13)

Deinococcus-Thermus

Thermusthermophilus 6 (1039) 6 (468) 4 (1242) 10 (63) 2 (32) 5 (39) 3 (15) 3 (15)

Firmicutes

Staphylococcus aureussubsp. aureus Mu50 8 (1413) 4.5 (711) 5 (1596) 11 (107) 2 (23) 5 (35) 4 (12) 4 (12)

Streptococcus agalactiae 6 (1064) 16 (554) 5 (1229) 8 (97) 4 (53) 5 (32) 3 (10) 4 (10)

Streptococcus pyogenes 6 (965) 11.5 (503) 5 (1138) 9 (66) 4 (46) 5 (34) 4 (10) 4(10)

Mollicutes

Mycoplasma pneumoniae M129 5 (350) 9 (196) 5 (407) 5 (52) 5 (66) 4 (32) 4.5 (9) 4.5 (9)

Proteobacteria

Alpha

Bradyrhizobiumjaponicum 7 (1578) 3 (703) 5 (2184) 24 (354) 3 (36) 8 (66) 4 (37) 4 (37)

Rhodobactersphaeroides 7 (2076) 4 (1054) 4 (2480) 15 (202) 3 (52) 6 (58) 3 (14) 3 (14)

Rickettsia rickettsiistr.Iowa 7 (549) 10 (315) 4 (622) 6 (53) 3 (29) 4 (32) 3.5 (13) 4 (13)

Epsilon

Helicobacter pylori HPAG1 6 (815) 11.5 (418) 4.5 (932) 10 (52) 4 (29) 5 (37) 3 (9) 3 (9)

Gamma

Escherichia coli K12 7 (2370) 4 (1308) 4 (2665) 14 (180) 2 (28) 6 (63) 3.5 (18) 3 (18)

Pasteurella multocida subsp. multocida str. Pm70 7 (1207) 10 (690) 4 (1412) 11 (124) 4 (33) 5 (33) 3 (12) 3 (12)

Pseudomonas aeruginosa PA01 8 (2981) 4 (1626) 4 (3511) 17 (200) 2 (31) 7 (58) 4 (26) 4 (26)

Shewanellaoneidensis MR-1 7 (1959) 5.5 (1024) 5 (2237) 14 (105) 2 (28) 7 (60) 4 (15) 4 (14)

Vibrio parahaemolyticus RIMD 2210633 7 (1618) 5 (896) 4 (1771) 12 (87) 3 (46) 6 (83) 4 (15) 4 (15)

Total 7 (3661) 6.5 (1626) 4 (4487) 12 (354) 3 (66) 6 (83) 4 (37) 4 (37)
1 The minimum set size in all cases was 2.
2Gene Ontology [13], BP=Biological Process, CC=Cellular Component, MF=Molecular Function, KEGG=Kyoto Encyclopedia of Genes and Genomes [14],
MO= Microbes Online Predicted Operons using the method of Price et al. [16,21], SEED [15,22], SS=SEED subsystems, Scenario=SEED scenario, Path=SEED path.

Table 4 Pearson correlations between consistency metrics

Differential expression Absolute expression Correlation

Magnitude only Magnitude and
consistency

smean,diff smedian,diff smean,exp smedian,exp corrmean corrmedian PC1

smean,diff 1.0

smedian,diff 0.95 1.0

smean,exp 0.38 0.40 1.0

smedian,exp 0.36 0.39 0.99 1.0

corrmean -0.15 -0.21 -0.30 -0.28 1.0

corrmedian -0.15 -0.21 -0.29 -0.28 0.98 1.0

PC1 -0.30 -0.42 -0.43 -0.43 0.64 0.62 1.0
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Results using the three median based consistency metrics
yielded similar patterns (results not shown).

Comparing sources accounting for set size differences
We have already seen that some sources (especially GO
and KEGG) can generate extremely large sets. In

practice, very large sets are often ignored in gene expres-
sion analysis due to both biological and computational
practicalities. In the following section we expand our set
source comparisons to account for set size differences
to ensure that the observed differences in gene set con-
sistency are not attributable to set size differences
between the sources.
Figures 1a-d show the average value of the four con-

sistency metrics across different set sizes, for each of the
eight different sources of sets (we restrict the analysis to
combinations of set sources and set sizes containing at
least 20 sets). In general, the patterns remain as sug-
gested by Table 5. For all eight sources of sets gene set
consistency tends to decrease as set size increases. Fur-
thermore, in general, gene set consistency is impacted
similarly for each of the eight sources. Thus, sources of
sets that are the best/worst will retain that status across
all set sizes. In particular, we note that Predicted Operons
were typically the most consistent, followed by Paths and
Scenarios, regardless of set size across all four con-
sistency metrics. As observed in Table 5, Cellular Com-
ponent sets tend to be well correlated, comparable to
Predicted Operons, and better than Scenarios/Paths, but

Table 5 Mean levels of consistency metrics by source
(rank out of the 8 sources in parentheses)

smean,diff
a smean,exp

a corrmean
b PC1

b

Gene Ontology BP 0.10 (7) 1.23 (5) 0.43 (6) 0.37 (7)

CC 0.10 (5) 1.26 (7) 0.50 (3) 0.42 (4)

MF 0.10 (6) 1.24 (6) 0.42 (8) 0.40 (6)

KEGG 0.10 (8) 1.28 (8) 0.43 (7) 0.31 (8)

MO: Predicted Operons 0.06 (1) 0.92 (1) 0.57 (1) 0.56 (1)

SEED SS 0.09 (4) 1.19 (4) 0.47 (5) 0.41 (5)

Scenarios 0.08 (3) 1.06 (3) 0.49 (4) 0.49 (2)

Paths 0.08 (2) 1.05 (2) 0.50 (2) 0.48 (3)

a. Smaller values mean more consistent sets, because there is less variability
within the set.
b. Larger values mean more consistent sets, because the sets contain genes
with higher correlations.

Figures 1 Gene set consistency by gene set size across the eight gene set sources. a. Assessing gene set consistency using smean,diff
1 . 1

Smaller values of smean,exp indicate more consistent sources. b. Assessing gene set consistency using smean,exp
1 . 1 Smaller values of smean,diff

indicate more consistent sources. c. Assessing gene set consistency using corrmean
1 . 1Larger values of corrmean indicate more consistent sources.1

d. Assessing gene set consistency using PC1
1. 1 Larger values of PC1 indicate more consistent sources.
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perform more poorly than Scenarios/Paths when evalu-
ated by smean,diff and smean,exp when the Cellular Compo-
nents sets contain at least 6 genes.

Comparing sources accounting for set size and organism
differences
We recognize that some organisms may, in general, or
in particular, provide more or less consistent sets. Thus,
we used a general linear modeling approach to evaluate
gene set consistency across the eight sources of sets,
controlling for both set size and organism. Specifically,
we predicted each gene set consistency metric by different
combinations of set source, set size (log-transformed
number of genes) and organism. The first model only
predicted gene set consistency by source, the second
model used source and set size, the third used source,
set size and organism. The fourth, final model, included
source, set size and organism, along with all possible
interaction terms between these variables (the first three
models only contained the main effects terms).
Detailed results are available in Additional file 1:

Table S1 and Additional file 2: Table S2. In general,
the relationship of source to gene set consistency
remained unchanged in models controlling for set size
and organism. In other words, the differences in gene
set consistency are not accounted for by set size or
organism: The “ranking” of gene set sources based on
the four consistency metrics described earlier remains
virtually unchanged from Table 4, even after accounting
for organism and set size differences. We also found that
the most complex linear model (containing all possible
interaction terms) explained only modestly more vari-
ability in consistency metrics than was explained by the
model with only main effects terms. This suggests that
while certain organism, set size and source combinations
may be particularly good/bad, most of the differences
are explained simply by source (e.g., GO poorer than
Predicted Operons), set size (larger sets tend to be less
consistent) and organism alone (certain organisms tend
to have more consistent sets than others). Additional
file 3: Table S3 gives the model r2 values (% of total
variability in the gene set consistency metric explained
by the model) for four different types of models.

Reduced analyses
SEED Paths have been identified as providing some of the
most consistent sets, second only to Predicted Operons.
However, Paths are only defined for genes involved in meta-
bolic processes. To evaluate whether the benefits of Paths
are due to the way they are constructed, or simply because
they cover metabolic processes (and that, perhaps, sets con-
structed on metabolic processes, regardless of source, will
tend to be consistent), we conducted a follow-up analysis
similar to Table 5 using only gene sets containing genes

present in a Path. In effect, we reduced KEGG, GO, SS
and Predicted Operon sets to only those containing meta-
bolic process genes. Additional file 4: Table S4 provides
detailed results. In general, the results are similar to those
observed in Table 4, with modest improvement for Cellular
Component sets. Thus, we find the Cellular Component
sets consisting of metabolic process genes tend to per-
form comparably to Paths/Scenarios across all four
consistency metrics. Because Predicted Operons also per-
formed well, we performed the same reduced analysis
considering only genes that appear in at least one Pre-
dicted Operon. We observed little change in results
(see Additional file 5: Table S5).
Furthermore, to ensure that the strong consistency

demonstrated by Predicted Operons, Paths and Scenarios
is not because these sources have a large degree of over-
lap in their sets, we computed the percent of genes
appearing in more than one set from a source, as a frac-
tion of the total genes appearing at least once in a set for
the source. As expected, only 0.1% of the genes in at least
one Predicted Operons are in more than one predicted
operon. Similarly, only modest overlap in sets was
observed for Paths (29.5% of genes in a Path set are in
more than one Path set), with similar values for Scenar-
ios (22.6%), KEGG (21.1%) and Subsystems (29.5%) All
Gene Ontology based sets exhibited high overlap, with
Molecular Function and Biological Process sets showing
the largest overlap (60.5% and 75.1% of genes in at least
two sets, respectively), while Cellular Component (GO)
sets exhibited slightly lower overlap (36.1%.). We also
computed, for each combination of source and organism,
the proportion of an organism’s genes that were in at
least one gene set for that source. Averaging across all
organisms we find that 8.5% of genes are in at least one
SEED Path, 8.6% are in at least on SEED Scenario, 25.5%
are in at least one GO Cellular Component set, 29.9% are
in at least one KEGG set, 48.5% are in at least one SEED
Subsystem, 49.9% are in at least one GO Biological
Process set, 58.2% are in at least one GO Molecular
Function set and 79.4% are in at least one MO Pre-
dicted Operon. While there were significant differences
in these percentages between organisms, the general
pattern of results stayed the same.

Arginine biosynthesis example revisited
Our analysis shows that gene sets derived from Pre-
dicted Operons, SEED Paths and Scenarios are the most
consistent, while those derived from GO and KEGG
tend to be the least consistent. To understand why this
may be the case, we further consider the particular
example discussed earlier in the Methods (see Table 2).
Table 2 illustrates that SEED Paths and Scenarios pro-

vide specific detailed information about the metabolic
function of an organism, and provide a specificity of
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information not captured by related GO sets and KEGG
sets. In this example, the GO set does not include genes
that are known to be essential to arginine biosynthesis,
but for some reason are not annotated with the appro-
priate GO term. On the other hand, the KEGG sets in-
clude numerous other genes that are not directly related
to arginine biosynthesis. Lastly, while operons tend to
show strong correlation there is little operonal structure
in this set of genes.
Additional file 6: Table S6 provides the values of the

gene set consistency metrics for each of the sets in
Table 2. In short, gene set consistency illustrated in Add-
itional file 6: Table S6 follows the general trends seen earl-
ier. Namely, the GO sets, including the two small sized
sets (GO: 0005524 (MF) with 3 genes, and GO: 0006526
(BP) with 9 genes) show less consistency than does the
Scenario/Path being illustrated (Glutamate to Arginine
(SEED: Scenario/Path) with 9 genes). Additionally, the
Scenario/Path (Glutamate to Arginine (SEED: Scenario/
Path) eliminates the exact two genes in the Subsystem
with the, overall, weakest pairwise correlations with the
rest of the members of the set (fig|83333.1.peg.2440 and
fig|83333.1.peg.3181; see Additional file 7: Figure 1). Not-
ably, while the one operon shown in Additional file 6:
Table S6 has the highest consistency on all metrics,
the small drop in gene set consistency from using the
scenario/path may, potentially, be worth it due to the
increased biological knowledge. Of course, this is depen-
dent upon the goals of the experiments being analyzed,
and the true biology of the organism under consideration.

Discussion
In this manuscript we have provided the first compre-
hensive, cross-organismal look at bacterial gene expres-
sion patterns across multiple gene set sources using a set
of gene expression consistency metrics directly related
to numerous disparate statistical analysis approaches.
Ultimately, we find that MO Predicted Operons perform
well across organisms and set sizes, regardless of the
analytic approach being used. Scenarios and Paths from
the SEED also perform well in a variety of situations.
Cellular Component sets from the Gene Ontology per-
form well in analyses based on correlating pairs of genes.

Table 6 summarizes the optimal set sources by statistical
method.
Gene Ontology sets and KEGG sets, which are the most

popular choices for statistical analysis of gene expression
data, generally perform quite poorly compared to Pre-
dicted Operons, Scenarios and Paths. This poor perform-
ance is not attributable to differences in set sizes, is
consistent across organisms, and is not a result of Predicted
Operons/Scenarios/Paths focusing on portions of the gen-
ome which provide higher consistency metrics overall.
The source of Paths, Scenarios and Subsystems is the

SEED, which was developed on the premise that a key
component of improved high-throughput annotation is
experts annotating single subsystems over all genomes,
rather than all the genes in a single genome [15]. Anno-
tation using the SEED specifically focuses on ensuring
that functional subsystems are annotated coherently and
completely. The fact that GO may have less rigorous
standardized protocols for bacterial genome annotation
with GO terms, and thus fails to ensure that functional
subsystems are annotated coherently and completely may
be contributing to less consistency in bacterial expression
data for GO based sets [24,25].
As illustrated with the example of arginine bio-

synthesis, GO and KEGG tend to link together disparate
sets of genes, translating into lower consistency metrics
across organisms. The widespread use of less consistent
sets is important because it translates directly into low
statistical power when conducting gene expression data
analysis, meaning that the application of GO and KEGG
gene sets to gene expression data is significantly weaken-
ing the ability to make global biological conclusions
from gene expression data. Thus, use of Predicted
Operons, Scenarios, Paths and the GO: Cellular Compo-
nent hierarchy when analyzing bacterial gene expression
data should improve statistical power across numerous
statistical analysis techniques, and, ultimately, yield
increased and improved biological conclusions.
However, there are limitations of Predicted Operons,

Scenarios, Paths and the GO: Cellular Component hier-
archy. First, while operons are important in some analyses
(e.g., regulatory network inference), genes in the same
operon are not necessarily of the same function, and so
may have limited immediate biological meaning. This

Table 6 Summary of optimal set sources by statistical method

Statistical methods Consistency metric Top 3 or 4 most optimal set sources

Rank ordered differential expression;
Gene set analysis on differential expression

smean,diff Predicted Operons, Paths, Scenarios

Rank ordered absolute expression;
On/off calling algorithms; Flux-balance analysis;
Gene set analysis on absolute expression

smean,exp Predicted Operons, Paths, Scenarios

Correlation of pairs of genes; K-means clustering;
Regulatory Network Inference; Operon prediction

corrmean, PC1 Predicted Operons, Gene Ontology:
Cellular Component Hierarchy, Paths, Scenarios
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limitation of operons is an inherent advantage of Scenarios
and Paths which are directly related to metabolic function.
So, while Predicted Operons may tend to perform better
than Scenarios/Paths overall, the biological utility of Sce-
narios and Paths may be greater. However, we note that
Scenarios and Paths are computed only on central and
intermediary metabolism, and so are limited in their util-
ity for research questions outside of that area. Addition-
ally, the GO: Cellular component hierarchy, performed
well on correlation metrics and so may have utility for
statistical analysis approaches based on correlation of
expression profiles (e.g., regulatory network inference).
However, like Scenarios and Paths, the CC hierarchy
covers a limited number of genes.
We note that our use of the GO, KEGG, SEED and

Microbes Online was designed to represent a typical
approach to utilizing the most common resources. More
sophisticated approaches (e.g., leveraging network top-
ology in the analysis, use of evidence codes) and alter-
native databases may yield different results. In our
analysis we did not explicitly model inter-set separ-
ation, though, as shown, GO sets showed significantly
more overlap. While our analyses are based on stand-
ard statistical approaches to integrating gene set informa-
tion which typically do not consider inter-set separation,
further work could consider the impact of inter-set sep-
aration on our findings. Furthermore, while our analysis
focuses on statistical power, use of Paths, Scenarios and
Predicted Operons in the analysis of real data is needed
to validate that improved statistical power, ultimately,
yields improved biological conclusions. Lastly, we note
that numerous approaches to evaluating semantic simi-
larity between gene annotations have been proposed
to assess the quality of ontologies [e.g., 25,26]. Our
approach is fundamentally different than these in that
our focus is on evaluating the statistical power of methods
that use ontologies as a source of gene sets. Further work
is needed to better understand qualitative differences in
the semantic similarity approach and our approach.
It is also important to note that our conclusions about

GO and KEGG are limited to bacteria only. Furthermore,
our conclusions about the utility of GO and KEGG only
apply to the statistical analysis of expression data using
methods described earlier. In sum, we have demonstrated
that for a diverse set of bacteria, Predicted Operons, Sce-
narios, Paths and the GO: Cellular Component provide
more consistently expressed sets of genes, which trans-
late into improved statistical power.

Conclusions
Ultimately, our analysis argues strongly for the increased
use of MicrobesOnline Predicted Operons, SEED-based
Scenarios/Paths and the Gene Ontology Cellular com-
ponent hierarchy in the analysis of bacterial gene

expression data across a variety of widely used statis-
tical analysis approaches. While our results suggest that
increased statistical power will be obtained through the
use of MicrobesOnline Predicted Operons, SEED-based
Scenarios/Paths and the Gene Ontology Cellular compo-
nent sets, further analysis is needed to ensure statistical
improvements translate to improved biological interpret-
ation. Additionally, comparative analyses are needed to
explore increased use of SEED-based Scenarios/Paths
and MicrobesOnline Predicted Operons for analyses that
do not involve gene expression data.
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