

Digital Collections @ Dordt

Faculty Work Comprehensive List

5-29-2015

Symbolic Powers of Edge Ideals

Mike Janssen Dordt College, mike.janssen@dordt.edu

Follow this and additional works at: https://digitalcollections.dordt.edu/faculty_work

Part of the Algebraic Geometry Commons

Recommended Citation

Janssen, M. (2015). Symbolic Powers of Edge Ideals. Retrieved from https://digitalcollections.dordt.edu/ faculty_work/265

This Conference Presentation is brought to you for free and open access by Digital Collections @ Dordt. It has been accepted for inclusion in Faculty Work Comprehensive List by an authorized administrator of Digital Collections @ Dordt. For more information, please contact ingrid.mulder@dordt.edu.

Symbolic Powers of Edge Ideals

Keywords

commutative algebra, ideals (algebra), graph theory

Disciplines Algebraic Geometry

Comments

Presentation at the 20th Biennial Conference of the Association for Christians in the Mathematical Sciences held at Redeemer College in Ancaster, Ontario, Canada on work that sprung out of a Kuyper Scholars Program project in Spring 2015 connecting algebra and graph theory.

Symbolic Powers of Edge Ideals

Mike Janssen

29 May 2015

Mike Janssen (Dordt College)

Our project

Background: a student approached me to do an honors contract in a special topics course.

My research area: commutative algebra/algebraic geometry

Our situation

Let k be an algebraically closed field (e.g., $k = \mathbb{C}$).

We will primarily consider homogeneous ideals $I \subseteq R = k[x_0, x_1, \dots, x_N]$. [The word *form* is interchangeable with *homogeneous polynomial*.]

Example

In
$$\mathbb{C}[X, Y, Z]$$
 such an ideal is $I = (XZ, YZ, X^3 - 3X^2Y - XY^2)$.
A non-example is $J = (X^2 - Y, Z^2)$.

Ordinary Powers

Given a ideals $I, J \subseteq R$, we may multiply ideals. Recall:

$$IJ = (FG : F \in I, G \in J).$$

We may extend this to (ordinary) powers:

$$I^r = (G_{i_1}G_{i_2}\cdots G_{i_r} : G_i \in I)$$

Example

Let
$$I = (X, Y) \subseteq \mathbb{C}[X, Y, Z]$$
. Then $I^2 = (X^2, XY, Y^2)$,
 $I^3 = (X^3, X^2Y, XY^2, Y^3)$, etc.

Note: We have $I^r \subseteq I^t$ if and only if $r \ge t$.

ideal gets (strictly) smaller

Symbolic Powers

Definition

Given an ideal $I \subseteq R$, we define the m-th symbolic power of I to be

$$I^{(m)} = R \cap \left(\bigcap_{P} (I^m R_P) \right).$$

This can reduce to a much cleaner definition if more information about I is available.

Note: We have $I^{(r)} \subseteq I^{(t)}$ if and only if $r \ge t$.

Ordinary vs. Symbolic

Question

What is the relationship between I^r and $I^{(m)}$?

Answer: It depends on *I*.

- **A partial answer:** $I^r \subseteq I^{(m)}$ if and only if $r \ge m$.
- A (further) partial answer: $I^{(m)} \subseteq I^r$ implies $m \ge r$.

Before elaborating, we ask: what can symbolic powers look like?

Symbolic Powers of Edge Ideals

First studied by R. Villareal in the 1990s

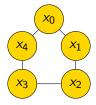
Let $V = \{x_1, x_2, ..., x_n\}$ be a set of variables and consider the (simple) graph G = (V, E), where E contains 2-element sets comprised of pairs of the variables (so, e.g., $\{x_1, x_2\} \in E$ but $\{x_1, x_2, x_3\}, \{x_1^2\} \notin E$).

Definition

Given G = (V, E) as above, the edge ideal of G is $I(G) = (x_i x_j : \{x_i, x_j\} \in E) \subseteq k[x_1, x_2, \dots, x_n].$

Fact: For an edge ideal *I*, $I^{(m)} = \bigcap_{i} P_{i}^{m}$, where the P_{i} correspond to minimal vertex covers of *G*.

$I = I(C_5) = (x_0x_1, x_1x_2, x_2x_3, x_3x_4, x_4x_0)$



Here, the ring is $R = k[x_0, x_1, x_2, x_3, x_4]$, and the ideals corresponding to minimal vertex covers are $P_1 = (x_0, x_1, x_3)$, $P_2 = (x_0, x_2, x_3)$, $P_3 = (x_0, x_2, x_4)$, $P_4 = (x_1, x_2, x_4)$, $P_5 = (x_1, x_3, x_4)$. Then $I^{(2)} = P_1^2 \cap P_2^2 \cap P_3^2 \cap P_4^2 \cap P_5^2$ $= (x_0^2 x_1^2, x_0 x_1^2 x_2, x_1^2 x_2^2, x_0 x_1 x_2 x_3, x_1 x_2^2 x_3, x_2^2 x_3^2, x_0^2 x_1 x_4, x_0 x_1 x_2 x_4, x_0 x_1 x_3 x_4, x_0 x_2 x_3 x_4, x_1 x_2 x_3 x_4, x_2 x_3^2 x_4, x_0^2 x_4^2, x_0 x_3 x_4^2, x_3^2 x_4^2)$ $= I^2$.

But $I^{(t)} \neq I^t$ for all t > 2.

Mike Janssen (Dordt College)

Bipartite edge ideal characterization

Theorem (Simis-Vasconcelos-Villareal (1994))

Given an edge ideal $I = I(G) \subseteq k[x_1, x_2, ..., x_n]$ as above, the following are equivalent.

(i)
$$I^{(m)} = I^m$$
 for all $m \ge 1$.

(ii) The graph G is bipartite.

Edge ideals of non-bipartite graphs

A consequence of the previous theorem is: if G is not bipartite and I = I(G), then there exists a t > 0 such that $I^{(t)} \neq I^t$.

Our main question:

Problem

If I = I(G) and G is not bipartite, how do $I^{(m)}$ and I^r compare?

Problem (Invariant Problem)

Compute invariants related to the containment $I^{(m)} \subseteq I^r$.

A conjecture

Focus of the honors project at Dordt College in Spring 2015: what happens when G is not bipartite?

Conjecture (Ellis-Wilson-McLoud-Mann)

Let $I = I(C_{2n+1}) \subseteq k[x_1, ..., x_{2n+1}]$ be the edge ideal of the odd cycle on 2n + 1 vertices. Then

•
$$I^t = I^{(t)}$$
 for all $1 \leq t \leq n$;

•
$$I^t \neq I^{(t)}$$
 for all $t > n$.

Of importance when discussing ideal containments is the *initial degree*.

Definition

Let $J \subsetneq k[x_0, x_1, \dots, x_N]$ be a nonzero homogeneous ideal. Define

$$lpha(J) = \min \left\{ d : there \ exists \ 0
eq f \in J, \ \deg(f) = d
ight\}.$$

Note: if $\alpha(I^{(m)}) < \alpha(I^r)$ then $I^{(m)} \not\subseteq I^r$.

Example

Given an edge ideal I = I(G), $\alpha(I) = 2$ and $\alpha(I^r) = r\alpha(I) = 2r$. Computing $\alpha(I^{(m)})$ is more delicate.

Given *I*, the edge ideal of C_{2n+1} ,

$$\alpha(I^{(m)}) = 2m - \lfloor \frac{m}{n+1} \rfloor$$

Mike Janssen (Dordt College)

Half-proof of the conjecture

Proposition

Let $I = I(C_{2n+1}) \subseteq k[x_1, \ldots, x_{2n+1}]$ be the edge ideal of the odd cycle on 2n + 1 vertices. Then $I^{(t)} \neq I^t$ for all t > n.

Proof.

We know
$$\alpha(I^t) = 2t$$
 and $\alpha(I^{(t)}) = 2t - \lfloor \frac{t}{n+1} \rfloor \le 2t - 1 < 2t$ when $t > n$.

Our work attempting to prove the rest of the conjecture is ongoing.

Thanks

Thank you!