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Does the Failure of the Expectations Hypothesis Matter

for Long-Term Investors?

Abstract

We solve the portfolio problem of a long-run investor when the term structure is Gaussian and

when the investor has access to nominal bonds and stock. We apply our method to a three-factor

model that captures the failure of the expectations hypothesis. We extend this model to account

for time-varying expected inflation, and estimate the model with both inflation and term structure

data. The estimates imply that the bond portfolio of a long-run investor looks very different from

the portfolio of a mean-variance optimizer. In particular, time-varying term premia generate large

hedging demands for long-term bonds.



The expectations hypothesis of interest rates states that the premium on long-term bonds over

short-term bonds is constant over time. According to this hypothesis, there are no particularly

good times to invest in long-term bonds relative to short-term bonds, nor are there particularly

bad times. Long-term bonds will always offer the same expected excess return.1

While the expectations hypothesis is theoretically appealing, it has consistently failed in U.S.

postwar data. Fama and Bliss (1987) and Campbell and Shiller (1991), among others, show that

expected excess returns on long-term bonds (term premia) do vary over time, and moreover, it

is possible to predict excess returns on bonds using observables such as the forward rate or the

term spread. This paper explores the consequences of the failure of the expectations hypothesis for

long-term investors.

We estimate a three-factor affine term structure model similar to that proposed in Dai and

Singleton (2002a) and Duffee (2002) that accounts for the fact that excess bond returns are pre-

dictable. We then solve for the optimal portfolio for an investor taking this term structure as

given. Bond market predictability will clearly affect the characteristics of the mean-variance ef-

ficient portfolio, but the consequences for long-horizon investors go beyond this. Merton (1971)

shows that when investment opportunities are time-varying, a mean-variance efficient portfolio is

generally sub-optimal. Long-horizon investors wish to hedge changes in the investment opportu-

nity set; depending on the level of risk aversion, the investor may want more or less wealth when

investment opportunities deteriorate than when they improve. As we will show, investors gain by

hedging time-variation in the term premia. Thus the investor’s bond portfolio looks different from

that dictated by mean-variance efficiency.

Despite the obvious importance of bonds to investors, as well as the strength of the empirical

findings mentioned above, recent literature on portfolio choice has focused almost exclusively on

predictability in stock returns. As shown by Fama and French (1989) and Campbell and Shiller

(1988), the price-dividend ratio predicts excess stock returns with a negative sign. Based on this

1The expectations hypothesis, as we refer to it, should be distinguished from the pure expectations hypothesis

which states that term premia are not just constant but equal to zero. Cox, Ingersoll, and Ross (1981) examine

variants of the pure expectations hypothesis in the context of continuous-time equilibrium theory, and find that they

are inconsistent with each other, and that several imply arbitrage opportunities (see however Longstaff (2000a)).

Campbell (1986) shows that these inconsistencies do not occur with the more general expectations hypothesis, which

does not require term premia to be zero. In fact, it is the expectations hypothesis, as opposed to the pure expectations

hypothesis, which is typically examined in the empirical literature (see Bekaert and Hodrick (2001) for a discussion

of recent empirical work testing the expectations hypothesis).
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finding, a number of studies (e.g. Balduzzi and Lynch (1999), Barberis (2000), Brandt (1999),

Brennan, Schwartz, and Lagnado (1997), Campbell and Viceira (1999), Liu (1999) and Wachter

(2002a)) document gains from timing the stock market based on the price-dividend ratio, and from

hedging time-variation in expected stock returns. One result of this literature is that when investors

have relative risk aversion greater than one, hedging demands dictate that their allocation to stock

should increase with the horizon. A natural question to ask is whether the same mechanism is

at work for bond returns. Just as stock prices are negatively correlated with increases in future

risk premia on stocks, bond prices are negatively correlated with increases in future risk premia on

bonds.2 This intuition suggests that time-variation in risk premia would cause the optimal portfolio

allocation to long-term bonds to increase with horizon.

In the case where the investor allocates wealth between a long and a short-term bond, we show

that this intuition holds. Hedging demands induced by time-variation in risk premia more than

double the investor’s allocation to the long-term bond. Moreover, we find large horizon effects. The

investor with a horizon of twenty years holds a much greater percentage of his wealth in long-term

bonds than an investor with a horizon of ten years. In the case of multiple long-term bonds, the

mean-variance efficient portfolio often consists of a long and short position in long-term bonds. This

occurs because of the high positive correlation between bonds of different maturities implied by

the model and found in the data. Hedging demand induced by time-varying risk premia generally

make the allocation to long-term bonds more extreme. We find that following a myopic strategy

and, in particular, failing to hedge time variation in risk premia carries a high utility cost for the

investor.

Our framework generalizes previous studies of portfolio choice when real interest rates vary over

time and there is inflation. Brennan and Xia (2002) and Campbell and Viceira (2001) estimate a

two-factor Vasicek (1977) term structure model and determine optimal bond portfolios. Both of

these studies assume that risk premia on bonds and stocks are constant.3 Our study also relates to

that of Campbell, Chan, and Viceira (2002) who estimate a vector-autoregression (VAR) including

2We consider U.S. government bonds that are not subject to default risk. Nonetheless, we use risk premia and

term premia interchangeably, as we do not take a stand on the source of the premia.
3Other work on bond returns and portfolio choice includes Brennan and Xia (2000) and Sorensen (1999), who

assume that interest rates are Vasicek, and Liu (1999) and Schroder and Skiadas (1999) who assumes general affine

dynamics. These studies assume that bonds are indexed, or equivalently, that there is no inflation. Xia (2002)

examines the welfare consequences of limited access to nominal bonds under a Vasicek model. Wachter (2002b)

shows under general conditions that as risk aversion approaches infinity, the investor’s allocation approaches 100%

in a long-term indexed bond. None of these papers explore the consequences of bond return predictability.

2



the returns on a long-term bond, a stock index, the dividend yield and the yield spread. Campbell

et al. derive an approximate solution to the optimal portfolio choice problem when asset returns

are described by the VAR. The advantage of the VAR approach is that it captures predictability in

bond and stock returns in a relatively simple way. The disadvantage is that the term structure is not

well defined; it is necessary to assume that the investor only has access to those bonds included in

the VAR. Moreover, estimating bond returns using a VAR gives up the extra information resulting

from the no-arbitrage restriction on bonds, namely that bonds have to pay their (nominal) face

value when they mature.

Rather than modeling bond return predictability using a VAR, we follow the affine bond pricing

literature (e.g. Dai and Singleton (2000, 2002a) and Duffee (2002)) and specify a nominal pricing

kernel.4 The drift and diffusion of the pricing kernel is driven by three underlying factors which

follow a multivariate Ornstein-Uhlenbeck process. The price of risk is a linear function of the state

variables. Thus the model is in the “essentially affine” class proposed by Duffee (2002), and shown

by Dai and Singleton (2002a) to capture the pattern of bond predictability in the data.

As a necessary step to showing the implications of affine term structure models for investors,

we show how parameters of the inflation process can be jointly estimated with term structure

parameters. This joint estimation produces a series for expected inflation that explains 37 percent

of the variance of realized inflation. This result has implications not only for portfolio choice

problems, but for the estimation of term structure models more generally.

The remainder of the paper is organized as follows. Section I describes the general form of an

economy where nominal bond prices are affine, and there exists equity and unhedgeable inflation.

Section II derives a closed-form solution for optimal portfolio choice when the investor has utility

over terminal wealth and over intermediate consumption. When inflation is introduced, the pricing

kernel that determines asset prices is not unique; from the point of view of the investor it is not well

defined. As He and Pearson (1991) show, there is a unique pricing kernel that gives the marginal

utility process for the investor.5 We derive a closed-form expression for this pricing kernel when

incompleteness results from inflation. This expression holds regardless of the form of the term

structure. Section III uses maximum likelihood to estimate the parameters of the process, and

demonstrates that the model provides a good fit to term structure data and to inflation. Section

IV discusses the properties of the optimal portfolio for the parameters we have estimated and

4For recent surveys of this literature, see Dai and Singleton (2002b) and Piazzesi (2002).
5Liu and Pan (2002) also associate the pricing kernel in the economy with the pricing kernel for the investor. In

Liu and Pan’s model markets are complete, so a unique pricing kernel exists.
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calculates utility costs resulting from sub-optimal strategies. Section V concludes.

I. The Economy

As in the affine term structure literature, we specify an exogenous nominal pricing kernel.

Because our purpose is modeling predictability in excess bond returns and, as Dai and Singleton

(2002a) and Duffee (2002) show, a Gaussian model is well suited for this purpose, we will assume

that all variables are homoscedastic.6

Let dz denote a d×1 vector of independent Brownian motions. Let r(t) denote the instantaneous

nominal riskfree rate. We assume that

r(X(t), t) = δ0 + δX(t), (1)

where X(t) is an m× 1 vector of state variables that follow the process

dX(t) = K(θ −X(t)) dt+ σX dz(t), (2)

under the physical measure. The matrix of loadings on the Brownian motions, σX , is m× d, K is

m×m, and θ is m× 1. Suppose there exists a price of risk Λ̄(t) that is linear in X(t):

Λ̄(t) = λ̄1 + λ̄2X(t), (3)

where λ̄1 is d × 1 and λ̄2 is d ×m. When λ̄2 = 0d×m, the price of risk is constant and the model

is a multi-factor version of Vasicek (1977). Given a process for the interest rate r and the price of

risk Λ̄, the pricing kernel is given by:

dφ̄(t)

φ̄(t)
= −r(t) dt− Λ̄(t)> dz. (4)

The pricing kernel determines the price of an asset based on its nominal payoff.

In this economy, bond yields are affine in the state variables X(t). Let P (X(t), t, s) denote the

price of such a bond maturing at s > t. Then P equals the present discounted value of the bond

payoff, namely $1:

P (X(t), t, s) = φ̄(t)−1Et

[

φ̄(s)
]

6Fisher (1998) shows that a two-factor Gaussian model can partially replicate the failure of the expectations

hypothesis, but does not make comparisons across models. Bansal and Zhou (2002) show that a regime-switching is

also successful at capturing the failure of the expectations hypothesis in the data. Ahn, Dittmar, and Gallant (2002)

discuss an affine-quadratic class of models which, as Brandt and Chapman (2002) show, is also capable of accounting

for the failure of the expectations hypothesis. Extensions of the results in this paper to quadratic models and models

with regime shifts will be considered in future work.
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As shown by Duffie and Kan (1996) nominal bond prices take the form:

P (X(t), t, s) = exp {A2(s− t)X(t) +A1(s− t)} , (5)

where A2(τ) and A1(τ) solve a system of ordinary differential equations given in Appendix A. Bond

yields are given by

y(X(t), t, s) = − 1

s− t
logP (X(t), t, s)

= − 1

s− t
(A2(s− t)X(t) +A1(s− t)) (6)

The dynamics of bond prices follow from Ito’s lemma:

dP (t)

P (t)
=

{

−A′
2(τ)X(t)−A′

1(τ) +A2(τ)K(θ −X(t)) +
1

2
A2(τ)σXσX

>A2(τ)
>

}

dt

+A2(τ)σX dz. (7)

The expression for the drift of bond prices can be simplified by applying the expressions for A2 and

A1 given in Appendix A:

dP (t)

P (t)
= (A2(τ)σXΛ̄(t) + r(t)) dt+A2(τ)σX dz.

Equation (7) shows that bond prices vary with the state variablesX(t). The correlation between

bond prices and state variables depends on the maturity of the bond through the function A2(τ).

With slight abuse of notation, we let P (t) denote a vector of m bond prices, with A2 the m ×m

matrix with rows equal to the corresponding values of A2(τ).

Our framework allows for the existence of other assets besides bonds. For concreteness, we

assume there exists a stock portfolio with price dynamics

dS(t)

S(t)
= (σSΛ̄(t) + r(t)) dt+ σS dz, (8)

The row vector σS is assumed to be linearly independent of the rows of σX , so that the stock is

not spanned by bonds. We can then group the existing assets into the vector process:




dP (t)

dS(t)



 = diag





P

S



 (µ(t) dt+ σ dz), (9)

where

σ =





A2σX

σS



 , (10)
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and µ is such that

(µ(t)− ιr(t)) = σΛ̄(t) (11)

with ι equal to an (m+1)×1 vector of ones. Because we have assumed there existm non-redundant

bonds, and because the stock is not redundant, the variance-covariance matrix of the assets, σσ>

is invertible.

Equation (11) shows why this specification allows for predictable excess returns. Because Λ̄(t)

is a function of the state variables X(t), the instantaneous expected excess return µ(t) − r(t) is

also a function of X(t). The structure of λ̄2 determines how quantities that are correlated with the

state variables, such as the yield spread, predict asset returns.

So far, we have described the nominal economy. Because we are interested in the strategies

for an investor who cares about real wealth, it is necessary to define a process for the price level.

Define a stochastic price level Π(t) such that

dΠ(t)

Π(t)
= π(X(t), t) dt+ σΠ dz. (12)

It is assumed that expected inflation π(t) is affine in the state variables:7

π(t) = ζ0 + ζX(t). (13)

In what follows, we do not require that there exists an asset that is riskfree in real terms. In

nominal terms, such an asset would have diffusion proportional to σΠdz; thus the existence of a

real riskfree asset is equivalent to the existence of a portfolio that perfectly hedges Π(t). As long as

markets are incomplete (no real riskfree asset exists), there are more sources of risk than there are

independent risky assets: there are m+1 risky assets (m bonds and one stock), but m+2 sources

of risk (m state variables, the stock and the price level). As a consequence, the price of risk and

the pricing kernel are not unique. Any process Λ that satisfies

σΛ = µ− rι (14)

is a valid price of risk. Because (14) is a system of m+1 equations in m+2 unknowns, the solution

is not unique. In what follows, Λ̄ denotes the price of risk that is specified in (3), while Λ denotes

a (generic) solution to (14).

7It is sufficient for the portfolio choice results to require that r(t) − π(t) is an affine function. However, (1), or

equivalently (13), is required to achieve affine bond prices.
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Of special interest is the unique price of risk, Λ∗, that both prices and is spanned by the

underlying assets. This price of risk can be found by projecting Λ̄ onto the rows of σ (i.e. the

loadings of asset returns on the underlying Brownian motions):

Λ∗ = σ>
(

σσ>
)−1

σΛ̄ = σ>
(

σσ>
)−1

σΛ = σ>
(

σσ>
)−1

(µ− rι). (15)

The last two equalities hold for any price of risk satisfying (14). Because we have assumed ho-

moscedasticity, Λ∗ has the same functional form as Λ̄, with

λ∗1 = σ>(σσ>)−1σλ̄1 (16)

λ∗2 = σ>(σσ>)−1σλ̄2. (17)

replacing λ̄1 and λ̄2 in (3).

The price of risk Λ∗ is of interest for several reasons. First, the Cauchy inequality implies:

max
σ

σΛ∗

√
σσ>

=
(Λ∗)>Λ∗

√

(Λ∗)>Λ∗
=
√

(Λ∗)>Λ∗,

thus the norm of Λ∗ equals the maximal Sharpe ratio. The maximal Sharpe ratio is always positive,

even if Λ∗ is not; this is because an investor can take both short and long positions in any asset.

Second, any price of risk Λ can be written as a sum of Λ∗ and a process that is in the null space of

σ. That is,

Λ = σ>
(

σσ>
)−1

σΛ +

(

Λ− σ>
(

σσ>
)−1

σΛ

)

= Λ∗ + ν. (18)

The second term, ν, satisfies σν = 0, and thus is in the null space of the underlying asset returns.

This term completely determines Λ: there is a one-to-one mapping between valid prices of risk Λ

and processes ν in the null space of σ. We denote the pricing kernel associated with Λ∗(t) by φ∗(t),

and the pricing kernel associated with Λ∗(t) + ν(t) by φν(t), where

dφ∗(t)

φ∗(t)
= −r(t) dt− (Λ∗(t))> dz, (19)

and
dφν(t)

φν(t)
= −r(t) dt− (Λ∗(t) + ν(t))> dz. (20)

While we started by defining a pricing kernel for nominal assets, we could have equivalently

defined payoffs in real terms, and defined a pricing kernel for real assets. Any nominal pricing

kernel φν(t) is associated with a “real” pricing kernel. For an asset with nominal value V (s) at

time s, the price at time t (assuming the asset pays no dividends between t and s) equals

V (t) = Et

[

φν(s)

φν(t)
V (s)

]

. (21)
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It follows directly from (21) that for the real payoff V (s)/Π(s),

V (t)

Π(t)
= Et

[

φν(s)Π(s)

φν(t)Π(t)

(

V (s)

Π(s)

)]

. (22)

Therefore φν(t)Π(t) is a valid pricing kernel when asset prices are expressed in real terms. This

also follows from the interpretation of φν(t) as a system of Arrow-Debreu state prices. Normalizing

φν(0) = 1 and Π(0) = 1, φν(t) is a ratio of units of consumption at time 0 to dollars at time t. Then

φν(t)Π(t) is a ratio of consumption at time 0 to consumption at time t. We choose to model prices

in nominal rather than real terms for ease of comparison to the affine term structure literature.

The connection between incomplete markets and the lack of a real riskfree rate can also be seen

from the real pricing kernel associated with the nominal kernel φν(t). It follows from Ito’s Lemma

that
d(φν(t)Π(t))

φν(t)Π(t)
= (−r(t) + π(t)− σΠ(Λ

∗(t) + ν(t))) dt+ (σΠ − Λ∗(t)− ν(t)) dz (23)

If a real riskfree rate were to exist, its real return must equal r(t) − π(t) + σΠ(Λ
∗(t) + ν(t)), the

drift of the real pricing kernel. While π(t), r(t) and σΠΛ
∗(t) are observable (note that Λ∗(t) can

be inferred from asset prices using equation (15)), σΠν(t) is not. In particular, any choice of ν

satisfying σν = 0 is consistent with the same asset prices, but implies different values of σΠν, and

thus different real riskfree rates.

To summarize, the investor has access to an asset with riskless nominal return r, and m+1 risky

assets whose nominal price dynamics are described by (9), (10), and (11). Nominal markets are

complete in that there exists a full term structure of nominal bonds.8 However, real markets may

be incomplete, because there may not exist a combination of assets spanning unexpected inflation.

Equivalently, there may not exist an asset that is riskfree in real terms.

II. Optimal portfolio choice

In this section, we derive the optimal portfolio allocation for an investor who takes bond and

stock prices as given. Section A describes the general form of the solution when there is unexpected

inflation. Section B specializes to the case of an affine term structure.

A. Portfolio choice when inflation cannot be entirely hedged: General results

We first solve the portfolio choice problem for an investor with power utility over terminal

wealth at date T , and then generalize to the case of consumption withdrawal. We assume that the

8Below we also consider cases where the investor has access to only a subset of the bonds (incomplete nominal

markets).
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investor solves:

max
W (T )>0

Et

[

(W (T )/Π(T ))1−γ

1− γ

]

, (24)

such that W (T ) can be achieved by taking positions in the underlying assets with initial wealth

W (0):
dW (t)

W (t)
= w(t)>(µ(t)− r(t)ι) dt+ r(t) dt+ w(t)>σ(t) dz (25)

where w(t) is an (m + 1) × 1 vector of portfolio weights that satisfies integrability conditions. To

disallow doubling strategies, we require that W (t) > 0 for all t (see Dybvig and Huang (1988)).

To solve this problem, it is convenient to use the martingale technique of Cox and Huang (1989),

Karatzas, Lehoczky, and Shreve (1987) and Pliska (1986) generalized to the case of incomplete

markets by He and Pearson (1991).9 Cox and Huang (1989) show that when markets are complete,

the dynamic budget constraint (25) can be replaced by a static budget constraint analogous to the

no-arbitrage condition (5) that determines bond prices. That is

E [φ(T )W (T )] = W (0). (26)

for the unique pricing kernel φ(t). When markets are incomplete, however, wealth, like any trade-

able asset, must satisfy

E [φν(T )W (T )] = W (0). (27)

for any pricing kernel φν . In general, optimizing with respect to (27) for a particular pricing kernel

produces an incorrect answer because it is not be possible to replicate the resulting process for

wealth by trading in the underlying assets.

The insight of He and Pearson (1991) is that it suffices to verify (27) with respect to a single

pricing kernel φν∗ . As He and Pearson show, the incomplete-markets problem can be recast as a

complete-markets problem by “adding” sufficient assets to complete the market, but setting the

return process on these assets so that their weight in the investor’s optimal portfolio is zero. In

other words, it suffices to chose ν such that in the complete market with (unique) pricing kernel

φν , the “additional” assets are not traded by the investor. The resulting pricing kernel φν∗ is called

the minimax kernel because it is the kernel that minimizes the investor’s maximized utility; the

“worst” way to add assets from the point of view of the investor is to set their return processes

such that the investor does not want to trade them.

9Recently, Schroder and Skiadas (1999, 2002) extend this work to a broader class of stochastic processes for the

state variables and to a broader class of utility functions, including recursive utility.
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Thus the incomplete-markets case can be solved like the complete markets case if φν∗ , given by

dφν∗(t)

φν∗(t)
= −r(t) dt− (Λ∗(t) + ν∗(t))> dz, (28)

is used as the pricing kernel. Precisely, the investor optimizes wealth with respect to

E [φν∗(T )W (T )] = W (0). (29)

For some Lagrange multiplier l, the investor’s first-order condition equals

W (T )−γ

Π(T )1−γ
= lφν∗(T ),

and the optimal terminal wealth policy is given by

W (T ) =
(

lφν∗(T )Π(T )1−γ
)− 1

γ . (30)

Substituting back into (29) gives the expression for l.10 Given φν∗ , (30) describes optimal wealth.

Given optimal wealth, and hence an optimal portfolio rule, φν∗ is determined by setting the demand

for the non-traded assets to zero.

The investor’s terminal wealth policy has an economic interpretation. Rearranging,

W (T )

Π(T )
= (lφν∗(T )Π(T ))

− 1
γ . (31)

The left hand side is equal to real wealth. The term inside parenthesis on the right hand side is

proportional to φν∗(T )Π(T ). This equals the real pricing kernel corresponding to the nominal kernel

φν∗ . Thus (31) states that the greater the price of a given state, the less the agent consumes in

that state. The lower the risk aversion (γ), the more the agent adjusts terminal wealth in response

to changes in the state-price density. Note however, that φν∗ is also implicitly a function of γ.

The optimal portfolio allocation is derived using (30). Define a new state variable equal to the

real wealth of the log utility investor if the unique price of risk were φν∗ . In our environment with

inflation, this state variable equals:

Zν∗(t) = (lφν∗(t)Π(t))−1 . (32)

10Solving (29) for l implies

l = W (0)−γ
(

E
(

φν∗(T )
1− 1

γ Π(T )
1− 1

γ

))γ

.
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No-arbitrage implies that wealth at time t must equal the present discounted value of wealth at

time T , where the discounting is accomplished by the minimax pricing kernel:

W (t) = φν∗(t)
−1Et

[

φν∗(T )Π(T )Zν∗(T )
1
γ

]

= Π(t)Zν∗(t)Et

[

Zν∗(T )
1
γ
−1
]

. (33)

The next theorem characterizes the optimal wealth and portfolio weights.

Theorem 1. Assume that the investor has utility over terminal wealth with coefficient of relative

risk aversion γ. At time t, optimal wealth takes the form

W (t) = Π(t)Zν∗(t)
1
γF (X(t), t, T ), (34)

where Zν∗(t) is given by (32). The minimax pricing kernel equals

dφν∗

φν∗
= −r dt− (Λ∗ + ν∗)>dz,

with

ν∗ = (1− γ)
(

σΠ − (σΠσ
>)(σσ>)−1σ

)>

. (35)

The function F satisfies the partial differential equation

1− γ

γ
(r − π)F + FX

(

K(θ −X) +
1

γ
σX(Λ∗ + ν∗) +

γ − 1

γ
σXσ

>
Π

)

+ Ft +

1

2

(

1

γ

1− γ

γ
((Λ∗ + ν∗)>(Λ∗ + ν∗) + σ>ΠσΠ)F + tr

(

FXXσXσ
>
X

)

)

=

γ − 1

γ
σΠ(Λ

∗ + ν∗)F + FXσX(Λ∗ + ν∗), (36)

with boundary condition F (X(T ), T, T ) = 1.11 The optimal portfolio allocation equals

w(t) =
1

γ
(σσ>)−1(µ− ιr) +

(

1− 1

γ

)

(σσ>)−1(σσ>Π) + (σσ>)−1(σσ>X)
1

F
(FX)> . (37)

The remainder of the investor’s wealth, 1− w(t)>ι, is invested in the nominal riskfree asset.

The proof is given in Appendix B. The minimax price of risk equals the price of risk spanned

by the existing assets plus ν∗, where ν∗ equals 1 − γ times the unhedgeable part of inflation risk.

Thus ν∗ can be interpreted as an investor-specific measure of market incompleteness.

Equation (37) shows that the investor can be viewed as investing in m + 2 “funds”. The first

fund is the portfolio that is instantaneously mean-variance efficient. It is straightforward to check

11tr(·) denotes the trace. FXX is the m×m matrix of second derivatives.
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that this portfolio achieves the maximum Sharpe ratio
√

(Λ∗)>Λ∗. The second fund adjusts for

the fact that the first fund is mean-variance efficient in nominal rather than real terms. Together,

these portfolios constitute what is known as “myopic demand”, namely the optimal allocation if

the investor ignores the future investment opportunity set.

It is the last term in (37) that is the focus of this study. This term represents the sum of the

m hedge portfolios:

(σσ>)−1(σσ>X)
1

F
(FX)> =

1

F

M
∑

j=1

(σσ>)−1(σσ>Xj
)FXj

Hedge portfolio j is formed by projecting state variable j onto the available assets. Scaling the

portfolio is the sensitivity of wealth to state variables j, 1
F

(

FXj

)>
. If increases in state variable j

increase wealth in the future, then the investor allocates a positive amount to the hedge portfolio

(σσ>)−1(σσ>Xj
), a negative amount if the effect on wealth is negative. Because we have assumed

that there are as many non-redundant bonds as state variables, it is possible to completely hedge

the state variables by trading in the underlying assets. Moreover, hedging demand for bonds is

nonzero. Because bonds are the discounted value of $1, their prices co-vary with the variables that

affect the investment opportunity set, namely X(t).

Also of interest is the investor’s indirect utility. Cox and Huang (1989) show that it is possible

to derive indirect utility from the expression for wealth. Corollary 2 generalizes this result to the

case where there is unexpected inflation (and specializes to the case of power utility):

Corollary 2. Define the investor’s indirect utility function as follows:

J(W (t),Π(t), X(t), t, T ) = Et

[

1

1− γ

(

W (T )

Π(T )

)1−γ
]

(38)

Then J(W,Π, X, t, T ) takes the form

J(W (t),Π(t), X(t), t, T ) =
1

1− γ

(

W (t)

Π(t)

)1−γ

F (X(t), t, T )γ

where F (X(t), t, T ) is defined in Theorem 1.

The proof of Corollary 2 can be found in Appendix B.

These results generalize to the case where the investor has utility over consumption between

times 0 and T . At each time, besides allocating wealth among assets, the investor also decides what

proportion of wealth to consume. The investor solves

max E

[∫ T

0
e−ρt (c(t)/Π(t))1−γ

1− γ
dt

]

(39)
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s.t. dW (t) =
(

w(t)> (µ(t)− r(t) ι) + r(t)
)

W (t) dt+ w(t)>σW (t) dz − c(t) dt

W (T ) ≥ 0

As shown in Wachter (2002a), computing the solution to this case does not require solving a

new partial differential equation.12 As in the case of terminal wealth, the dynamic problem can

be recast as static problem for an endogenous pricing kernel. Using arguments similar to those

in the proof of Theorem 1, it can be shown that, when the only market incompleteness comes

from inflation, the investor-specific pricing kernel (φν∗) for the case of intermediate consumption

takes the same form as the investor-specific pricing kernel for terminal wealth. The static budget

constraint is therefore equal to:

E

[∫ T

0
c(t)φν∗(t) dt

]

= W (0) (40)

The following corollary describes the form of the investor’s consumption policy, optimal wealth,

and portfolio allocation.

Corollary 3. The optimal consumption policy c(t) satisfies:

c(t)

Π(t)
= (lφν∗(t)Π(t))

− 1
γ e

− ρ
γ
t
, (41)

where l is the Lagrange multiplier that allows (40) to hold. Optimal wealth is given by

W (t) = Zν∗(t)
1
γΠ(t)

∫ T

t

F (X(t), t, s)e
− ρ

γ
(s−t)

ds, (42)

where Zν∗(t) is defined by (32), and F satisfies the partial differential equation (36) The optimal

portfolio weights are given by (37) with F replaced by
∫ T

t
Fe

− ρ
γ
(s−t)

.

Theorem 1 shows that in the homoskedastic setting of our paper, the investment opportunity

set is determined by Λ∗ and r − π. This can be seen from the differential equation (36), and the

fact that σΠ, σX , σS , and ν∗ (by (35)) are constant. Note that r and π do not appear separately

in (36), they only appear as the difference r − π. For convenience, we abuse terminology slightly

and refer r − π as the real riskfree rate, keeping in mind that there may not exist an asset that is

riskfree in real terms.13

12While the results in Wachter (2002a) assumed that markets were complete, the same reasoning can be applied

here because the adjustment for incomplete markets in the minimax pricing kernel (35) takes a particularly simple

form.
13Indeed, the results in Section I show that this only equals the real riskfree rate if markets are completed such

that the price of inflation risk is zero.
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B. Portfolio allocation when the nominal term structure is affine

Theorem 1, Corollary 2, and Corollary 3 do not require that bond yields be affine. They hold

generally, as long as the investor has power utility over terminal wealth. The following corollary

explicitly solves for the portfolio weights, given the assumptions on Λ̄, r, and π.

Corollary 4. Assume Λ̄ and r − π are linear in the state variables X(t), and that inflation and

asset prices are homoscedastic, and the investor has utility over terminal wealth given by (24).

Then F takes the form:

F (X(t), t, T ) = exp

{

1

γ

(

1

2
X(t)>B3(τ)X(t) +B2(τ)X(t) +B1(τ)

)}

, (43)

where τ = T − t and the matrix B3, the vector B2, and the scalar B1 satisfy a system of ordinary

differential equations. The optimal portfolio rule equals:

w(t) =
1

γ
(σσ>)−1(µ− ιr) +

γ − 1

γ
(σσ>)−1(σσ>Π) +

1

γ
(σσ>)−1(σσ>X)

(

B3(τ) +B3(τ)
>

2
X(t) +B2(τ)

>

)

. (44)

The remainder of the investor’s wealth, 1− w(t)>ι, is invested in the nominal riskfree asset.

The proof of Corollary 4 and the differential equations for B3, B2, and B1 can be found in

Appendix B. A noteworthy special case arises when risk premia are constant. Then B3(τ) = 0,

as can be checked by setting λ∗2 = 0 into the differential equation (B7). The optimal portfolio

allocation is constant, and F is exponential-affine. A two-factor version of this case is considered

by Brennan and Xia (2002).

Why do time-varying risk premia produce a functional form for optimal wealth (43), and hence

for indirect utility (by Corollary 2), that is exponential quadratic? As Campbell and Viceira (1999)

discuss, the reason is that the investor can profit both when risk premia σΛ∗ are especially high and

positive, and when they are especially low and negative. A function for wealth that is quadratic in

X(t) captures this quality. Note that exponential-quadratic wealth implies a portfolio rule that is

linear in the state variables.

Using Corollary 3, it is also possible to write down an explicit formula for the optimal portfolio

for an investor with utility over consumption.

Corollary 5. Assume Λ̄ and r − π are linear in the state variables X(t), and that inflation and

asset prices are homoscedastic. Suppose the investor has utility over consumption. The optimal
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portfolio weights equal:

w(t) =
1

γ
(σσ>)−1(µ− ιr) +

γ − 1

γ
(σσ>)−1(σσ>Π) +

1

γ
(σσ>)−1(σσ>X)





∫ T

t
F (t, t+ τ)

(

1
2(B3(τ) +B3(τ)

>)X(t) +B2(τ)
>
)

e
− ρ

γ
τ
dτ

∫ T

t
F (t, t+ τ)e

− ρ
γ
τ
dτ





The results above show that wealth, indirect utility, and the optimal allocation are available

in closed form up to the solution of ordinary differential equations. In the following sections, we

estimate the parameters of the model and evaluate the implications for portfolio choice.

III. Estimation

The previous sections described optimal portfolio choice when the nominal term structure is

affine and the investor has access to stock as well as bonds. In this section we estimate a three-

factor term structure model that has been shown to perform well in out-of-sample forecasting

(Duffee (2002)), and in replicating the failure of the expectations hypothesis seen in the data (Dai

and Singleton (2002a))14. Our estimation differs from the estimation in these studies in that we

incorporate data on equity returns, and most importantly, on inflation.15

There are five sources of risk in the model. The first three are due to the state variables X

defined by (2), the fourth is due to the stock price S defined in (8), and the fifth is due to the price

level Π defined in (12). Thus dz is a 5× 1 vector of independent Brownian motions, σX is a 3× 5

matrix, and σS and σΠ are 1 × 5 vectors. Without loss of generality, we order the elements of dz

so that when σX , σS and σΠ are stacked, the resulting 5× 5 matrix is lower triangular:









σX

σS

σΠ









=





















σX(1,1) 0 0 0 0

σX(2,1) σX(2,2) 0 0 0

σX(3,1) σX(3,2) σX(3,3) 0 0

σS(1) σS(2) σS(3) σS(4) 0

σΠ(1) σΠ(2) σΠ(3) σΠ(4) σΠ(5)





















14In the notation of these papers, the model we estimate is known as A0(3), because it contains three factors and

no square root processes.
15There is a substantial literature on using yields on nominal bonds to extract expected inflation. This includes

Boudoukh, Richardson, and Whitelaw (1994), Fama (1975), Fama and Gibbons (1982), and Mishkin (1981) who

use a regression approach, and Ang and Bekaert (2003), Boudoukh (1993), Pennacchi (1991), and Sun (1992), who

estimate expected inflation within a term structure framework that precludes the existence of arbitrage.
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Thus dz1 is the risk arising from X1, dz2 is risk arising from X2 that is orthogonal to the risk in

X1, dz3 is risk arising from X3 that is orthogonal to the risk in X1 and X2, etc.

In the estimation, we seek to identify

Λ∗(t) = λ∗1 + λ∗2X(t)

the unique price of risk that is within the span of the underlying assets. Given the ordering for dz,

it follows that λ∗1 and λ∗2 take the form:

λ∗1 = [ λ∗1(1) . . . λ∗1(4) 0 ]>

and

λ∗2 =

















λ∗2(1,1) . . . λ∗2(1,3)
...

...

λ∗2(4,1) . . . λ∗2(4,3)

0 0 0

















λ∗1 and λ∗2 have zeros in the fifth row because both bonds and stocks load only on the first four

Brownian motions. Otherwise, λ∗1 and λ∗2 would not be within the span of σ as required.16

As Dai and Singleton (2000) discuss, the processes for X, Λ∗ and r have too many degrees of

freedom to be identified by the data. For example, it is not possible to simultaneously identify θ

and δ0. Following Dai and Singleton (2000) and Duffee (2002) we set θ = 03×1, and specify that K

is lower triangular. Further, we set

σX =
[

I3×3 03×2

]

(45)

analogously to Dai and Singleton and Duffee who set σX equal to the identity matrix.

With the restrictions described above, all of the parameters in the model can, in principle,

be identified. In practice, the large number of parameters in such models has led to concerns of

over-fitting. We follow Duffee (2002) in further restricting the matrix K and the price of risk λ∗2 in

order that the estimation be more reliable. Given the form of σX (and because bonds load only on

the state variables), the first three rows of λ∗1 and λ∗2 are determined by risk premia on bonds and

can be identified from term structure data. We place the same restrictions on these elements of λ∗2

as does Duffee (2002). In addition, we restrict the fourth row of λ∗2 so that the equity premium is

16Below we also consider the case of incomplete nominal markets. For these cases, Λ∗ must be adjusted further so

that it is within the span of the existing assets.
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constant. We set this requirement because of the difficulty in identifying three separate sources of

variation in the equity premium that all arise from the term structure, and because the focus of

this paper is on bond return, rather than stock return, predictability. Because σS is determined

from the variance-covariance matrix of bond and stock returns, and because the first three and fifth

rows of λ∗1 and λ∗2 are determined, the equation for the equity premium is given by

σS(λ
∗
1 + λ∗2X(t)) = η0.

Note that this is a system of four equations in four unknowns. The fourth element in λ∗1 is deter-

mined by

σSλ
∗
1 = η0 (46)

while the three elements in the fourth row of λ∗2 are determined by

σSλ
∗
2 = 01×3 (47)

Rather than estimate the fourth row of λ∗1 and λ∗2 directly, we estimate η0 and back out λ∗1 and λ∗2

using (46) and (47) respectively.

Our bond data consist of monthly observations on zero coupon yields for three-month, six-

month, one, two, five, and ten year U.S. government bonds. The bond data is available from the

website of Gregory Duffee. Monthly observations on the CPI and on returns on a broad stock index

are available from CRSP. The sample begins in 1952 and ends in 1998. Following Duffee (2002), we

assume that prices on the three-month, one-year, and five-year bonds are measured with normally

distributed errors. The model implies that state variables, stock returns, and realized inflation are

jointly normally distributed. The parameters are thus δ0, δ, ζ0, ζ, K, λ∗1, λ
∗
2, σS , σΠ, and η0, and

the variance-covariance matrix of the errors. We estimate the model using maximum likelihood, an

alternative to the Generalized Method of Moments approach of Gibbons and Ramaswamy (1993).

Details are contained in Appendix E.

Tables I, II and III describe the results from our estimation. Because the yields are in annual

terms, time is in years. As shown in Table I, the parameters δ0 and ζ0 equal 0.056 and 0.040

respectively. The value of δ0 is approximately equal to the mean of the three-month Treasury bill

return in the data, 0.055. The value of ζ0 is approximately equal to the mean of inflation in the data,

which is 0.039. While the ability to match these values these may seem like a natural property

for a model to have, as Campbell and Viceira (2001) discuss, it is not guaranteed that models

such as this one fit time series means. In fact, the affine models investigated by Duffee (2002) all
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result in an estimate of δ0 that is too low compared to the mean of the short-term interest rate.17

Surprisingly, including inflation in the estimation helps to estimate this parameter.

Table II describes the elements of σS and σΠ. The first and third elements of σS are negative,

consistent with a positive correlation between bond and stock returns (indeed, as Table IV shows,

the correlation is positive). The fourth element of σS (by far the largest) represents the component

of stock returns orthogonal to bond returns. The fourth element of σΠ is negative and significant,

consistent with a negative correlation between unexpected changes in the price level and stock

returns. Moreover, note that the correlation between unexpected inflation and the first and the

third state variables is positive, while the correlation between unexpected inflation and the second

state variable is negative. Because bond returns are negatively correlated with the first and third

state variables (Table V), but positively correlated with the second state variable, this is consistent

with a negative correlation between unexpected inflation and bond returns. The estimates in

Table II imply that the volatility of unexpected inflation,
√

σΠσ′Π = 0.93 percent per annum. This

is close to, but smaller than the volatility of realized inflation in the data (1.17 percent). This

makes sense; the state variables add information and thus reduce the volatility.

Other than δ0 described above, the parameters that we estimate for the term structure are very

close to those found by Duffee (2002).18 As Table III shows, the restrictions on λ∗2 imposed above

imply that two factors determine time-varying risk premia on bonds. The first is given by the

transitory factor X2, while the second is a linear combination of X1, X2 and X3, and hence is more

persistent. Table III also shows that the estimated equity premium equals 7.5 percent.19

Figures 1-3 illustrate the implications of the model for average yield spreads, standard deviations

of yield spreads, and Campbell-Shiller long-rate regressions. Each figure plots the values in the data

(“sample”) and the values implied by the model. Following Dai and Singleton (2002a), we construct

95 percent confidence bands by simulating 500 sample paths from our model with length equal to

the sample path in the data. Figures 1 and 2 show that the model implies average yield spreads

and standard deviations of yield spreads close to those found in the data. The confidence bands

17Duffee ends his sample in 1994. This does not account for the difference however. We estimate the A0(3) model

without inflation, and find δ0 = .044 percent, even when we include the last four years of the sample.
18The variance covariance matrix for the errors, which we do not report, is nearly identical to that found by Duffee

(2002).
19We find that the sample equity premium 12

563

∑563
t=1[logSt+1 − logSt −

y(t,t+.25)
12

] = 6.25 percent. This value

differs from our estimate of η0 in part because the maximum likelihood estimate of δ0 is not exactly equal to

1
563

∑563
t=1 y(t, t+ .25), and in part because this sample means ignores Jensen’s inequality, which η0 takes into account

(see, e.g., (E2)).

18



reflect the well-known result that means are estimated much more imprecisely than variances. In

both cases, the data falls well within the error bands implied by the model. We conclude that the

model does a reasonable job of fitting the cross-sectional moments of bond yields. Because the

model must fit cross-sectional and time-series moments together, the fit to the cross-section is not

automatic.

Because our aim is to study the implications of the expectations puzzle for investors, it is

especially important to determine whether the model accounts for the expectations puzzle found

in the data. To do so, we follow the approach of Dai and Singleton (2002a) and check whether the

model replicates the empirical findings of Campbell and Shiller (1991). Dai and Singleton explain

the connection between the Campbell-Shiller regressions and time-variation in risk premia in detail.

Figure 3 plots the slope coefficients from regressions of quarterly changes in yields on the scaled

yield spread, as described in Campbell and Shiller (1991). If the expectations hypothesis held, the

coefficients would be identically equal to 1. Instead, Campbell and Shiller find coefficients that are

negative and decrease with maturity. Figure 3 replicates this result in our data, and shows that

the model captures both the negative coefficients and the downward slope. Except for values at the

very short end of the term structure, the data falls within the 95 percent confidence bands implied

by the model. It is apparent from Figure 3 that the model captures the failure of the expectations

hypothesis found in the data. To the extent that the failure of the expectations hypothesis is

a bit less extreme in the model than the data, we may understate the implications for long-run

investors.20

Figure 4 plots the time series of monthly realized inflation, and our expected inflation series

constructed from the state variables using the relationship

π(t) = ζ0 + ζX(t),

where values for ζ0 and ζ come from the maximum likelihood estimation described above, and

are given in Table I. Our joint estimation procedure allows inflation to influence the dynamics of

20Expectations hypothesis regressions are subject to small-sample biases that could go in either direction (Bekaert,

Hodrick, and Marshall (1997, 2001) , Stambaugh (1999), Volkanov (1998)). Longstaff (2000b) finds that tests fail

to reject the expectations hypothesis at the short end of the term structure and argues that the failure of the

expectations hypothesis may be due to a liquidity premium in Treasury Bill rates. Bekaert and Hodrick (2001) argue

that standard tests tend to reject the expectations hypothesis even when it is true. They find, however, that the data

remain inconsistent with the expectations hypothesis, even after adjusting for small-sample properties. Accounting

for these biases within the investment decision is beyond the scope of this manuscript, but will be pursued in future

work.
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state variables. In practice, however, this effect is small, and except for the effect on δ0 described

above, our parameter values are close to what we would find by first estimating the term structure

model, and then regressing realized inflation on the factors. This latter strategy would, of course,

understate the standard errors on ζ.

Figure 4 shows that our expected inflation series does indeed forecast realized inflation. In

fact, expected inflation accounts for 37 percent of the variance of realized inflation. It is worth

emphasizing that these results come about even though the factors X(t) are linear combinations of

yields alone. Thus long-term bond yields contain substantial information about future inflation.

Figure 5 plots the time series for the nominal interest rate r(t) implied by the model. While

not shown in the graph, r(t) is essentially equal to the three-month yield. The difference between

the nominal interest rate r(t) and π(t), which we informally refer to as the real interest rate, is also

shown on the graph. This series is positive through nearly the entire sample. Thus the expected

inflation and real riskfree rate implied by the model have reasonable time-series properties.

The results in Section II show that the real interest rate r − π and the price of risk Λ∗ are the

important quantities for investors. The top panel of Figure 6 plots the time series of risk premia

(a linear transformation of Λ∗) for the one, five, and ten year bonds implied by the model. As

Figure 6 shows, risk premia are highly volatile, especially in the latter half of the sample. Table III

implies that there are two factors driving risk premia: the first is the highly transitory second

state variable, the second is a linear combination of all three state variables that is much more

persistent. Nonetheless, all three risk premia appear to move closely together. This is consistent

with the findings of Cochrane and Piazzesi (2002), who show that a single factor can explain much

of the time-variation in expected excess returns on bonds. The bottom panel of Figure 6 plots the

time series of the maximal Sharpe ratio
√

(Λ∗)>Λ∗. The Sharpe ratio tends to take on its largest

values when excess returns are unusually negative or positive. This large variation in investment

opportunities suggests that the optimal allocation to bonds will also vary substantially as a function

of the state variables.

Taking the results in this section together, we conclude that our model succeeds in capturing im-

portant features of the term structure and of inflation. The next section considers the implications

of our parameter estimates for portfolio choice.

IV. Portfolio allocation under the failure of the expectations hypothesis

This section combines the theoretical results from Section II with the parameter estimates

from Section III to evaluate the implications of the failure of the expectations hypothesis for long-
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horizon investors. The failure of the expectations hypothesis could affect the optimal portfolio in

two ways. First, the myopic portfolio, 1
γ
(σσ>)−1(µ− ιr) + γ−1

γ
(σσ>)−1(σσ>Π), depends directly on

risk premia. If risk premia vary, so does myopic demand. Second, time-varying risk premia imply

that investment opportunities vary over time (as long as changes in risk premia are not directly

offset by changes in volatility). As Merton (1971) shows, the investor hedges these changes in the

investment opportunity set, implying that the optimal allocation is not mean-variance efficient.

Hedging demand causes the optimal portfolio for a long-horizon investor to differ from the optimal

portfolio for an investor with a short horizon. Both effects are present in theory. The question is,

are they economically significant?

A. Optimal allocation between a long-term bond, stock, and the nominal riskfree asset

To investigate the effect of time-varying risk premia on optimal portfolios, we first consider the

case where the investor has access to a single long-term bond, stock, and a nominally riskfree asset.

This case allows us to temporarily abstract from questions pertaining to the optimal composition

of the bond portfolio, and focus on the horizon properties taking the composition as given.21 The

results in Theorem 1 apply only to the case where nominal markets are complete, namely when

there are the same number of long-term bonds as state variables. However, they are easily modified

for the case of incomplete nominal markets. Optimal wealth and allocation to long-term bonds still

take the same form as in Corollary 4. Theorem 1 and Corollary 4 are extended to the incomplete-

market case in Appendix C.22

Figure 7 plots the optimal allocation for the investor who allocates wealth between a five-year

bond, stock, and the nominally riskfree asset. The investor is assumed to have utility over wealth

at the end of the horizon. In the left panel, risk aversion γ = 4, in the right panel γ = 10. Both

myopic demand and hedging demand depend on the current premia on bonds over the riskfree

rate. Thus the optimal allocation is a function of the state as well as the horizon. In order to

understand how the optimal portfolio varies with the state, we plot the optimal allocation when

the state variables are equal to their long-run mean of zero, and then we vary each state variable

by two unconditional standard deviations. The results are similar in each case, so we discuss only

the effects of varying X1.
23

21Note however that there is a cost to restricting the maturity of the bond. Brennan and Xia (2002) show in a

related setting that, if the investor is allowed to trade only one bond, the optimal maturity of the bond depends on

the investor’s horizon.
22The results for utility over consumption (Corollary 5) have no straightforward extension.
23The unconditional variance-covariance matrix of the state variables can be calculated using the results of Ap-
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The risk premium on the five-year bond equals two percent per annum when the state variables

are at their long-run mean, six percent when X1 is two standard deviations below its long-run

mean, and minus three percent when X1 is two standard deviations above its long-run mean. The

negative relationship between the risk premium on the five-year bond and X1 is implied by the

parameter estimates in Table III and the correlation between the five-year bond and the state

variables in Table V. In particular, Table III shows that λ2(3,1) > 0 and λ2(i,1) = 0 for i = 1, 2. This

means that the price of risk associated with the third Brownian motion is increasing and the price

of risk for the first two Brownian motions is constant in X1. Because state variables can be exactly

identified with Brownian motions, the price of X3-risk is increasing in X1. Because bond prices

load negatively on X3, risk premia on bonds are decreasing in X1. Note that the equity premium

is constant in X1 by construction: the fourth row of λ∗2 is set so that σSλ
∗
2 = 0.

The top panel in Figure 7 shows the optimal allocation when X1 is two standard deviations

below its long-run mean (risk premium = six percent), the middle panel shows the allocation when

X1 is at its long-run mean (risk premium = two percent), and the bottom panel shows the allocation

when X1 is two standard deviations above its long-run mean (risk premium = minus three percent).

The myopic allocation is equal to the y-intercept, because, under power utility, it is independent

of horizon. Not surprisingly, the lower is X1 (and the greater are risk premia), the greater is the

myopic allocation to the five-year bond. When risk premia are at their long-run mean, the optimal

allocation to bonds is positive. When risk premia are negative, the optimal allocation involves

taking a short position in the long-term bond. Because of the positive correlation between returns

on the five-year bond and on the stock, an increase in the risk premium on the five-year bond leads

to a lower allocation to the stock. A comparison between the panels shows that the investor with

risk aversion γ = 4 times the market more aggressively than the investor with risk aversion equal

to 10.

There are strong horizon effects for long-term bonds.24 For values of X1 implying positive bond

premia, the allocation to the five-year bond rises steadily with the horizon. When bond premia are

negative, the optimal allocation initially falls, but then rises after a horizon of about one year. The

pendix E. The unconditional standard deviation is 0.93 for X1, 0.39 for X2, and 3.0 for X3. Varying X3 has smaller

effects on myopic demand, which can be seen by comparing 0.93λ∗2(3, 1) to 3λ∗2(3, 3). Because X3 is a more persistent

variable, the effects on hedging demand are larger. By contrast, X2 has a larger effect on risk premia, and thus on

myopic demand. However, its effects on hedging demand are smaller because it is much less persistent.
24Relative to the long-term bond, stocks have a low correlation with the investment opportunity set and thus

negligible horizon effects.
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difference between short-horizon and long-horizon investors is economically large. For example,

when X1 is at its long-run mean, the myopic investor with γ = 10 allocates 20 percent of his wealth

to the long-term bond. An investor with γ = 10 and a horizon of 20 years, by contrast, allocates

over 100 percent of his wealth to the long-term bond. While hedging demand for γ = 4 is smaller

than that for γ = 10 as a proportion of myopic demand, it is still economically large. When the

state variables are at their long-run mean, hedging demand more than doubles the allocation to

the five-year bond for the γ = 4 investor.

What drives the horizon effects seen in Figure 7? As discussed in Section II, hedging demand

arises from two sources. One is time-variation in risk premia, the other is time-variation in the

real riskfree rate, r − π. To separate out these two effects, Figure 8 plots the allocation when the

investor has the correct myopic demand but hedges only time variation in the real riskfree rate

(plain lines) and the allocation when the investor has the correct myopic demand but hedges only

time variation in risk premia (lines with circles).

Suppose first that the investor hedges only time variation in the real riskfree rate (that is, in

the calculation of hedging demand, risk premia are assumed to be constant). This allocation is

given by (44), the same equation that defines the optimal allocation, but with λ∗2 set equal to

zero in the equations for B3(τ), B2(τ) and B1(τ). Figure 8 shows that hedging demand induced

by time-variation in the real riskfree rate is positive and increasing in the horizon, though it is

substantially smaller than the full hedging demand shown in Figure 7.

Hedging demand resulting from the real riskfree rate is positive because long-term bond prices

and the real riskfree rate are negatively correlated (Table V). A multi-period investor chooses the

optimal portfolio not only to maximize the Sharpe ratio, but also so that future wealth has the

“right” correlation with future investment opportunities. If γ > 1, the investor has lower marginal

utility of wealth when the real riskfree rate is high; the income effect dominates (a higher riskfree

rate makes him richer, he can afford a lower payoff in those states). If γ < 1, the investor has lower

marginal utility of wealth when the riskfree rate is low; the substitution effect dominates (wealth

is more valuable when the riskfree rate is higher because it can be invested at a higher rate). Thus

the investor with γ > 1 invests more than the mean-variance efficient allocation in assets that have

a negative covariance with changes in the riskfree rate. These assets pay off when the riskfree rate

is low, giving the investor more wealth when marginal utility for wealth is highest.

All of the reasoning above goes through regardless of the level of risk premia. Indeed, Figure 8

shows that hedging demand coming from the real riskfree rate does not depend on the value of the
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state variables. Mathematically, this follows from the fact that B3(τ) ≡ 0 when λ∗2 = 0, as noted

in Section II. When the investor only hedges changes in the real interest rate, hedging demand is

non-stochastic.

A number of studies (e.g. Brennan and Xia (2000), Sorensen (1999), Wachter (2002b)) have

argued that a time-varying riskfree rate leads investors with longer horizons to allocate a greater

percentage of their portfolio to long-term bonds. According to this argument, long-term bonds are

negatively correlated with the riskfree rate, and thus should be over-weighted in the portfolios of

investors with risk aversion greater than one. The limitation with this argument is that it requires

bonds to be real. Nominal bonds are negatively correlated with the nominal riskfree rate, but the

investor desires to hedge the real riskfree rate r − π, and nominal bonds may not be negatively

correlated with the real riskfree rate. For our calibration, long-term bonds are indeed negatively

correlated with the real riskfree rate, though it is important to note that this is an empirical, not

a theoretical result. Thus the investor with risk aversion greater than one chooses to increase her

allocation to long-term bonds relative to the myopic portfolio. Because changes in the real riskfree

rate are persistent, the longer the investor’s horizon, the greater the effect of the riskfree rate on

indirect utility, and the greater is hedging demand.

We now consider the optimal allocation when the investor hedges bond risk premia, but not the

riskfree rate (that is, in the calculation of hedging demand, the real riskfree rate r − π is assumed

to be constant). This is calculated by setting ζ = δ in the equations for B3, B2, and B1. This

allocation is shown in Figure 8 and marked with circles. When bond risk premia are positive,

hedging demand induced by time-varying risk premia is also positive. When bond risk premia are

negative, hedging demand induced by time-varying risk premia is negative at short horizons and

positive at long horizons.

Consider first the case where risk premia on long-term bonds are positive. A rise in bond risk

premia counts as an improvement in investment opportunities, while a fall in bond risk premia

counts as a deterioration. The same reasoning that applied in the case of a time-varying riskfree

rate applies here too. When the income effect dominates (γ > 1), hedging demand is positive

for assets that are negatively correlated with bond premia. As shown in Table V, bond prices and

bond risk premia are negatively correlated. This explains why hedging demand for long-term bonds

induced by time-variation in risk premia is positive when bond risk premia are positive. Moreover,

changes in risk premia are persistent, as are changes to the real riskfree rate. Thus the longer is

the investor’s horizon, the greater is hedging demand, and the greater is the total allocation to the
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long-term bond.

This reasoning also explains why hedging demand for the long-term bond can be negative when

bond risk premia are negative. Figure 8 shows that when risk premia are negative, hedging demand

arising from time-variation in risk premia causes the allocation to fall with the horizon before

increasing again. When the investor is short the long-term bond, decreases in the risk premium

represent improvements in the investment opportunity set. In order to hedge these changes, the

investor has a more negative allocation to the long-term bond than the myopic investor. However,

rather than steadily decreasing in the horizon, hedging demand begins to increase after a horizon

of about two years, and eventually becomes positive.

This counter-intuitive result arises because average risk premia on bonds are positive. Because

risk premia are linear functions of the mean-reverting state variables X(t), risk premia that are

negative in the present imply that, in the future, risk premia are likely to pass through zero. A

long-horizon investor cares not only about risk premia today, but also about risk premia at all

future points in time. Zero is the least advantageous value for the investor because neither a short

nor a long position is profitable in expectation. All else equal, a long-term investor would prefer

positive risk premia because they are more likely to stay positive, than negative risk premia are to

stay negative. In a setting with time-varying equity premia, Campbell and Viceira (1999) and Kim

and Omberg (1996) also note that when the risk premium is negative but close to zero, hedging

demand is positive for long-horizon investors.

Returning to Figure 7, it is clear that optimal hedging demand is not simply a sum of hedging

demand when only the real riskfree rate varies and hedging demand when only risk premia vary. It

arises from a nonlinear interaction between the two. Because the investor uses the long-term bond

to hedge time-variation in the real riskfree rate, she has an additional reason to prefer positive risk

premia in the long run. This induces her to hedge risk premia to a greater extent than she would

if the riskfree rate were constant.

This section has shown that accounting for time-variation in the risk premia on long-term

bonds has two effects on the investor’s optimal portfolio. First, it induces investors to time the

bond market. A lower risk premium on a long-term bond leads the investor to allocate less wealth

to the bond at all horizons. The second effect arises from the investor’s wish to hedge changes in the

risk premium and the real riskfree rate. This causes the optimal portfolio to increase dramatically

with the horizon. Thus the failure of the expectations hypothesis “matters” for long-term investors,

at least in the case where the investor has access to a single long-term bond. The following section
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generalizes these results to the case where the investor has access to multiple long-term bonds.

B. Optimal allocation to multiple long-term bonds

Panel A of Table VI shows the optimal allocation when the investor has access to a three-

year bond, a ten-year bond, stock, and a nominally riskless asset. As in the previous section, we

determine the optimal allocation for the long-run mean of the state variables, and for the state

variables plus and minus one standard deviation. We report only the effects of varying X1.

For all three values of the state variable, the myopic portfolio consists of a short position in at

least one of the bonds. These leveraged positions arise because of the correlation structure of bond

returns implied by the model (and found in the data). Table IV shows the implied correlations in

bond returns (Panel A), and correlations of monthly log bond returns from the data (Panel B).25 As

Table IV shows, bonds at all maturities are highly correlated. Thus any estimated difference in the

risk-return trade-off between the three and ten-year bond leads the investor to leverage the bonds

off one another. In the context of a time-varying real interest rate, Brennan and Xia (2002) and

Campbell and Viceira (2001) also find that the investor takes highly levered positions in long-term

bonds.

When risk premia are high and positive, the investor takes a leveraged position in the ten-year

bond, financed by a short position in the three-year bond and the riskfree asset. In this case, hedging

demand makes the myopic allocation more extreme. Because the investor has a long position in

the ten-year bond, decreases in the risk premium on the ten-year bond reflect deteriorations in the

investment opportunity set. The investor hedges these changes in risk premia by allocating more,

relative to myopic demand, to the ten-year bond. Because the investor has a short position in the

three-year bond, increases in the risk premium reflect deteriorations in the investment opportunity

set. This leads the investor to take a greater short position in the three-year bond. It is also the

case that the three-year bond acts as a hedge on the ten-year bond and vice-versa; this may also

contribute to the positions moving in opposite directions.

When risk premia are positive but closer to zero, the optimal allocation changes. Now the

risk-return trade-offs are such that the myopic portfolio consists of a positive fraction of wealth in

the three-year bond and a negative fraction in the ten-year bond. Hedging demands also reverse

in sign. For short horizons, hedging demand is positive for the three-year bond and negative for

25Because yield data is unavailable for all maturities, the correlations in Panel B rely on approximating the yield

on the 9 year, 11-month bond with the yield on the ten-year bond. Thus the correlations in Panel B are essentially

correlations between changes in yields.
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the ten-year bond. At long horizons, however, hedging demand is positive for both the ten and the

three year bonds.

Finally, when risk premia are negative, the investor holds a positive position in the three-year

bond and a negative position in the ten-year bond. Hedging demands cause these positions to

become more extreme. Investment opportunities deteriorate when the risk premium on the ten-

year bond rises or the risk premium on the three-year bond falls. The investor chooses the optimal

portfolio so that wealth is higher when this occurs. That is, the investor increases her weight in

the three-year bond and decreases her weight in the ten-year bond.

Panel B of Table VI examines the case where the investor has access to three long-term bonds,

stock, and the riskfree asset. Because the nominal market is complete in this last case, it does

not matter for the investor’s utility or wealth which three bonds are chosen. Thus without loss of

generality, we assume that the investor has access to a one, five, and a ten-year bond. Moreover,

the investment opportunity set can be fully hedged by trading in bonds, thus hedging demand for

stock is identically zero. The caveat stated for the case where the investor has access to two bonds

applies to an even greater extent in this case. Because the three bonds are so highly correlated,

the investor can achieve (perceived) high Sharpe ratios while taking on less risk than when he had

access to fewer bonds. This leads to a highly leveraged myopic portfolio.

When risk premia are positive, the myopic allocation consists of a positive position in the

ten-year and one-year bonds and a negative position in the five-year bond. Hedging demand is

non-monotonic for all three bonds. For the one-year bond, hedging demand is negative, but is less

negative for investors with longer horizons than for shorter horizons. For the five-year bond, hedging

demand is positive, but is also smaller in magnitude for longer horizons than shorter horizons. For

γ = 10, hedging demand switches sign for the five-year bond and becomes positive at long horizons.

For the ten-year bond hedging demand is negative at very short horizons (one year) but positive

at long horizons.

When risk premia are negative, the myopic allocation is still positive for the one-year bond,

but the allocation to the ten-year bond is below that for the five-year bond.26 Hedging demand is

positive for the one and five-year bonds, and negative for the ten-year bond. Hedging demand is

monotonic except at very long horizons (20 years) where it diminishes slightly. In this case, hedging

demand results in a more extreme allocation to all three bonds.

26For the parameter values we consider, they are both negative. When risk premia become more negative, however,

the allocation to the ten-year bond is negative and the five-year bond is positive.
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C. Utility costs of sub-optimal strategies

In order to assess the economic importance of the failure of the expectations hypothesis, we

calculate utility costs under strategies that fail to take it into account. Three sub-optimal strategies

are considered. For the first (and least) sub-optimal strategy, the investor times the bond-market

optimally (the mean-variance efficient portfolio varies over time) and optimally hedges the real

interest rate. However, the investor does not hedge time-varying risk premia. As discussed in

Section A, the optimal portfolio rule when the investor follows this strategy takes the form

ŵ(t) = α0 + α1X(t) (48)

where

α0 =
1

γ
(σσ>)−1σλ∗1 +

γ − 1

γ
(σσ>)−1(σσ>Π) +

1

γ
(σσ>)−1(σσ>X)B∗

2(τ)
>

α1 =
1

γ
(σσ>)−1σλ∗2

where B∗
2(τ) is given by (B8) in the case of complete nominal markets and (C2) in the case of

incomplete nominal markets, with λ∗2 set equal to zero. Note that B3(τ) = 0 if λ∗2 = 0. For this

strategy, myopic demand is a function of the state variables, but hedging demand is non-stochastic.

For the second strategy we consider, the investor fails to hedge both time-varying risk premia

and the time-varying riskfree rate, but follows the optimal myopic strategy. This strategy also takes

the form (48), where

α0 =
1

γ
(σσ>)−1σλ∗1 +

γ − 1

γ
(σσ>)−1(σσ>Π)

α1 =
1

γ
(σσ>)−1σλ∗2

We refer to this as the conditional myopic strategy.

Finally, we consider a static mean-variance investor. This investor’s allocation equals the un-

conditional mean-variance portfolio, namely (48), with

α0 =
1

γ
(σσ>)−1σλ∗1 +

γ − 1

γ
(σσ>)−1(σσ>Π)

α1 = 03×3

This investor neither hedges time-variation in the investment opportunity set, nor times the bond

market. We refer to this as the unconditional myopic strategy.
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To calculate utility costs, we solve for indirect utility (38) when the investor follows a strategy

of the form (48). Because indirect utility is an expectation of future direct utility, it is a martingale

and thus has zero drift. From the Markov property it is a function of wealth, the price level, X(t),

and the horizon. Thus indirect utility corresponding to the strategy ŵ(t) must satisfy the partial

differential equation:

Jt + LJ = 0 (49)

where L is the infinitesimal generator of J given by

LJ = JWW (ŵ>(µ− rι) + r) + JXµX + JΠΠπ +

JWXWσXσ
>ŵ(t) + JWΠWΠŵσσ>Π + JXΠΠσXσ

>
Π

+
1

2
JWWW 2ŵ>σσ>ŵ +

1

2
JΠΠΠ

2σΠσ
>
Π +

1

2
tr(JXXσXσ

>
X) (50)

For the cases where the allocation is linear in X(t), the solution of (49) takes the same form as

indirect utility when an investor follows an optimal strategy. Namely, when γ > 1:27

Ĵ(W (t),Π(t), X(t), t, T ) =
1

1− γ

(

W (t)

Π(t)

)1−γ

Ĥ(X(t), t, T ),

where Ĥ(X(t), t, T ) is exponential quadratic. When γ = 1, indirect utility is quadratic. More

details can be found in Appendix D.

We measure the utility costs of following a suboptimal strategy by calculating the percent of

wealth the suboptimal investor would be willing to give away in return for being “allowed” to follow

the optimal strategy. In other words, we solve for the quantity ℘ such that

1

1− γ

(

W (0)

Π(0)

)1−γ

Ĥ(X(0), 0, T ) =
1

1− γ

(

W (0)(1− ℘(X(0), 0, T ))

Π(0)

)1−γ

H(X(0), 0, T ) (51)

The left hand side is the time-zero indirect utility of the investor who follows a sub-optimal strategy

and starts with wealth W (0). The right-hand side is the time-zero indirect utility of the investor

who follows an optimal strategy and starts with wealth W (0)(1− ℘). Note that while ℘ measures

utility cost, the units are fractions of wealth, not utils.

It follows from (51) that

℘(X(0), 0, T ) = 1−
[

H(X(0), 0, T )

Ĥ(X(0), 0, T )

] 1
γ−1

27The form of the value function for γ = 1 is discussed in Appendix D.
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When γ > 1, H < Ĥ, implying that the investor would be willing to give up a positive percent of

wealth in order to follow the optimal strategy. Because H and Ĥ are positive, ℘ lies between zero

and one. The closer ℘ is to one, the more wealth the investor would be willing to give up to follow

the optimal strategy, and thus the greater the cost to following the sub-optimal strategy.

Figure 9 plots the percent of wealth (100 × ℘) an investor following a sub-optimal strategy

would be willing to give up in order to follow an optimal strategy when a five-year bond, the stock,

and the nominal riskfree asset are available. Utility costs are plotted for risk aversion equal to one,

four, ten, and 25. The top panel plots the cost of following the unconditional myopic strategy, the

middle panel the cost of following the conditional myopic strategy, and the lower panel the cost

of hedging only the riskfree rate. For γ > 1, the costs fall as the strategies come closer to the

optimum; the unconditional myopic strategy is more costly than the conditional myopic strategy,

which is in turn more costly than only hedging the riskfree rate. For the log utility investor (γ = 1)

it is optimal to do no hedging at all. Therefore the cost of the conditional myopic strategy and the

strategy of hedging only the riskfree rate are zero.

The cost of following the unconditional myopic strategy is very high. For γ = 1, an investor with

a horizon of twenty years is willing to give up nearly 100 percent of wealth in order to follow the

optimal strategy. The cost of this strategy falls as risk aversion rises. However, even the investor

with risk aversion of 25 is willing to give up 40 percent of wealth in order to follow the optimal

strategy. Failure to time and to hedge the bond market clearly results in a large utility loss for the

investor.

Failure to hedge time-variation in investment opportunities is also costly. A highly risk averse

investor (γ = 25) with a horizon of 20 years is willing to give up 20 percent of wealth in order to

switch from the conditional myopic strategy to the optimal strategy. The cost of failing to hedge

is lower, the lower is risk aversion. An investor with risk aversion equal to four is willing to give up

six percent of wealth. Switching from a the strategy that hedges only the riskfree rate to the fully

optimal strategy is worth six percent of wealth for the investor with risk aversion of 25, and four

percent of wealth for the investor with risk aversion of four. The cost of failing to hedge risk premia

falls off more slowly with risk aversion than the overall cost of failing to hedge. This is because less

risk averse investors allocate a greater percentage of their wealth to the long-term bond so they are

more exposed to time-variation in risk premia.

Figure 10 shows the utility cost of suboptimal strategies when the investor has access to a three-

year and a ten-year bond, the stock, and the nominal riskfree asset. The utility costs of suboptimal
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strategies when two long-term bonds are available are higher than those when one long-term bond

is available for all strategies and all investors. In particular, the costs of failing to hedge are much

higher than before, and are no longer increasing in risk aversion. The investor with γ = 4 and a

horizon of twenty years would give up 26 percent of wealth to switch from the conditional myopic

strategy to the optimal strategy. The investor with γ = 25 would be willing to give up 24 percent

of wealth to switch. Failure to hedge risk premia is nearly as costly as failure to hedge completely.

The investor with γ = 4 is willing to give up 24 percent of wealth to switch from the strategy of

hedging only the riskfree rate to the fully optimal strategy. In the case of two long-term bonds,

there is greater scope for taking advantage of time-variation in risk premia. Because time-variation

in risk premia is a more important component of hedging demand, and because less risk averse

investors are particularly affected by time-variation in risk premia, the failure to hedge is costly

even for investors with low risk aversion. It is also possible to compute utility costs of sub-optimal

strategies when the investor has access to three long-term bonds. Results available from the authors

show that in this case, the costs are larger still. Moreover, the cost of failing to hedge risk premia

is even closer to the cost of failing to hedge at all.

This section has shown that following the unconditional myopic strategy, while optimal in the

case where investment opportunities are constant, carries high utility costs when they are time-

varying. The utility costs are large even when the investor allocates wealth between the nominally

riskfree asset, one long-term bond and the stock; the effect does not rely on the investor taking

large offsetting positions in bonds if different maturities. Moreover, following a conditional myopic

strategy is also costly, as is following a conditional myopic strategy but hedging only the riskfree

rate (rather than both the riskfree rate and risk premia). Thus the failure of the expectations

hypothesis is important for long-term investors: treating risk premia as if they are constant results

in economically significant costs.

V. Conclusion

We have shown that the failure of the expectations hypothesis has potentially important con-

sequences for the portfolios of long-term investors. For an investor who allocates wealth between

a long and a short-term bond, time-variation in risk premia induces hedging demand that is large

and positive. We find that long horizon investors should hold a greater fraction of their portfolio in

the long-term bond; an effect that persists out to a horizon of twenty years. When the investor has

access to multiple long-term bonds, hedging demands generally make the optimal allocation more

extreme. We find that failing to hedge time-variation in return predictability carries large utility
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costs for the long-term investor.

We establish these results by extending the affine term structure literature to account for ex-

pected inflation. Jointly estimating a process for inflation and bond prices produces a series for

expected inflation that can account for a large portion of the variance of realized inflation, even

though it is constructed from bond yields alone.

Our framework is rich enough to include time-variation in the real interest rate, in risk premia on

stock returns, and in expected inflation, but at the same time admits explicit solutions in near-to-

closed form. Multiple extensions of our model are possible. For example, it is possible to extend our

empirical results to allow for state variables other than those extracted from bond yield. We could

examine the relative importance of these state variables, as in Ait-Sahalia and Brandt (2001). We

could also modify our model to allow for parameter uncertainty, as in Barberis (2000), or learning,

as in Xia (2001). Clearly there are important aspects of the portfolio choice problem that we do

not address. Transaction costs, parameter uncertainty, and non-expected utility preferences have

all been fruitfully explored in the context of stock-return predictability. Bonds present a similar,

yet richer framework to explore these same issues.
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Appendix A. Bond Prices

Following Cox, Ingersoll, and Ross (1985), we assume that bond prices are smooth functions of

the state variables X(t) and of time. No-arbitrage implies that P satisfies

PXK(θ −X(t)) +
1

2
tr
(

PXXσXσ
>
X

)

+ Pt − r(t)P = PXσXΛ̄(t) (A1)

with boundary condition P (X(t), t, t) = 1. Equation (A1) follows from equating the instantaneous

expected excess return to the volatility multiplied by the price of risk.

Conjecture that

P (X(t), t, T ) = exp {A2(τ)X(t) +A1(τ)} , (A2)

where τ = T − t. Substituting back into (A1) and matching coefficients on X(t) and the constants

produces the following system of ordinary differential equations for the row vector A2(τ) and the

scalar A1(τ):

A′
2(τ) = −A2(τ)

(

K + σX λ̄2
)

− δ (A3)

A′
1(τ) = A2(τ)

(

Kθ − σX λ̄1
)

+
1

2
A2(τ)σXσX

>A2(τ)
> − δ0. (A4)

The boundary conditions are A2(0) = 01×m and A1(0) = 0.

Appendix B. Optimal portfolio allocation

Proof of Theorem 1: It follows from the Markov property of (Π, Zν∗ , X) that wealth under the

optimal policy may be written as

W (t) = G(Π(t), Zν∗(t), X(t), t, T )

for some function G. Define a function F such that

G(Π(t), Zν∗(t), X(t), t, T ) = Π(t)Zν∗(t)
1
γF (X(t), t, T ).

Because wealth is an asset, it satisfies a no-arbitrage differential equation analogous to that of

bonds. Applying Ito’s lemma to G and matching the instantaneous expected excess return on
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wealth to its volatility times the price of risk produces:28

LG+Gt − rG =
(

GZν∗
Zν∗((Λ

∗ + ν∗)> − σΠ) +GΠΠσΠ +GXσX

)

(Λ∗ + ν∗), (B1)

where

LG = Zν∗GZν∗
µZν∗

+GΠΠπ +GXK(θ −X) + Zν∗GZν∗XσXσ
>
Zν∗

+ΠGΠXσXσ
>
Π +

1

2

(

Z2ν∗GZν∗Zν∗
σZν∗

σ>Zν∗
+Π2GΠΠσΠσ

>
Π + tr

(

GXXσXσ
>
X

))

,

with boundary condition

G(Π(T ), Zν∗(T ), X(T ), T, T ) = Π(T )Zν∗(T )
1
γ .

Note that the no-arbitrage relationship for G only holds for the minimax pricing kernel φν∗ , while

the bond pricing equation (A1) holds for any pricing kernel. Substituting (34) into (B1) results in

the partial differential equation for F given in the text.

In order that optimal wealth satisfy the dynamic budget constraint (25), the diffusion terms

from the two processes must match. Therefore the price of risk and the optimal portfolio must

jointly satisfy:
1

γ
(Λ∗ + ν∗)> +

γ − 1

γ
σΠ +

FX

F
σX = w>σ, (B2)

where w is the N × 1 vector of portfolio weights. The left-hand side follows from Ito’s lemma

applied to G. Inflation risk σΠ is not spanned by the row vectors of σ, thus for general ν, this

equation does not have a solution.

We need to find ν∗ so that the unhedgeable part of σΠ drops out.29 This is equivalent to setting

the demand on the non-traded assets to zero. Rewrite σΠ as

σΠ = (σΠσ
>)(σσ>)−1σ +

(

σΠ − (σΠσ
>)(σσ>)−1σ

)

. (B3)

28From Ito’s lemma we can write

dZν∗(t) = µZν∗ dt+ σZν∗ dz

with

µZν∗ =
(

r(t)− π(t) + (Λ∗ + ν
∗)>(Λ∗ + ν

∗) + σΠσ
>
Π + σΠΛ̄

)

Zν∗(t)

σZν∗ = ((Λ∗ + ν
∗)> − σΠ)Zν∗(t)

29ν∗ does not have to cancel out the unhedgeable parts of Λ∗, because the columns of Λ∗ are spanned by the rows

of σ. In fact, this is the reason for defining Λ∗ as a projection of Λ̄ onto the available assets.
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The first term is the projection of σΠ onto the traded assets. The second term is orthogonal to the

traded assets. In order for (B2) to have a solution, ν∗ must satisfy

1

γ
(ν∗)> =

1− γ

γ

(

σΠ − (σΠσ
>)(σσ>)−1σ

)

Therefore,

ν∗ = (1− γ)
(

σ>Π − σ>(σσ>)−1σσ>Π

)>

. (B4)

Because ν∗ is orthogonal to the basis assets, (Λ∗ + ν∗), where Λ∗ is given by (15), is indeed a valid

price of risk.

Substituting (B4) back into (B2) produces

1

γ
(µ− ιr)>(σσ>)−1σ +

γ − 1

γ
(σΠσ

>)(σσ>)−1σ +
1

F
FX(σXσ

>)(σσ>)−1σ = w>σ.

The equation for the optimal allocation (37) follows from multiplying both sides of the equation by

σ>(σσ>)−1 and taking the transpose. 2

Proof of Corollary 2: The argument follows that of Cox and Huang (1989), generalized to the

case of unexpected inflation. The investor’s problem at time 0 can equivalently be written as

max
W (t)>0

E0 [J(W (t),Π(t), X(t), t, T )]

subject to the static budget constraint. The first order condition is given by

JW (t) = lφν̂(t)
−1

where φν̂(t) is the minimax pricing kernel. We do not know a priori that φν̂ = φν∗ . As is well-

known, the solution to (38) takes the form:

J(W (t),Π(t), X(t), t, T ) =
1

1− γ

(

W (t)

Π(t)

)1−γ

H(X(t), t, T ). (B5)

Our goal is to prove the relationship between the functions H and F .

Define Ẑ analogously to (32) as:

Ẑ(t) = (lφν̂(t)Π(t))−1 .

Then the investor’s first-order condition can be re-written as

JW (t) = Ẑ(t)−1Π(t)−1
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Substituting in from (B5) implies that

W (t) = Ẑ(t)
1
γΠ(t)H(X(t), t, T )

1
γ . (B6)

Because W (t) is an asset, it must satisfy partial differential equation (B1). Comparing (B6) with

(34), it follows that H
1
γ and ν̂ must jointly satisfy the partial differential equations (36) and (B2).

Therefore, ν̂ must equal ν∗ and H
1
γ must equal F . 2

Proof of Corollary 4: To solve for F , we conjecture the form of it and then we verify. Our

conjecture is that

F (X(t), t, T ) = exp

{

1

γ

(

1

2
X>

t B3(τ)Xt +B2(τ)Xt +B1(τ)

)}

where τ = T − t, B1(τ) is a matrix, B2(τ) is a row vector, and B3(τ) is a scalar. Substituting the

hypothesized solution back into the PDE (36) and matching coefficients on X(t)> [ · ]X(t), X(t),

and the constant terms, leads to a system of ordinary differential equations:

B′
3(τ) = (B3(τ) +B3(τ)

>)

[(

1

γ
− 1

)

σXλ
∗
2 −K

]

+ (
1

4γ
(B3(τ) +B3(τ)

>)σXσX
>(B3(τ) +B3(τ)

>) +

(

1

γ
− 1

)

λ∗2
>λ∗2 (B7)

B′
2(τ) = B2(τ)

[(

1

γ
− 1

)

σXλ
∗
2 −K +

1

2γ
σXσX

>(B3(τ) +B3(τ)
>)

]

+

1

2

[

θ>K> +

(

1

γ
− 1

)

λ∗1
>σX

> +

(

1− 1

γ

)

σΠσ
>
X

]

(B3(τ) +B3(τ)
>)

+ (1− γ)(δ − ζ) +

(

1

γ
− 1

)

λ∗1
>λ∗2 + (γ − 1)σΠλ

∗
2 (B8)

B′
1(τ) = B2(τ)

[

Kθ +

(

1

γ
− 1

)

σXλ
∗
1 +

(

1− 1

γ

)

σXσΠ
>

]

+
1

2γ
B2(τ)σXσX

>B2(τ)
> +

1

4
tr
(

(B3(τ) +B3(τ)
>)σXσX

>
)

+
1

2

(

1

γ
− 1

)

(λ∗1
>λ∗1 + ν∗>ν∗) +

γ

2
σΠσ

>
Π

+ (1− γ)σΠλ
∗
1 + (1− γ)(δ0 − ζ0) (B9)
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Appendix C. Optimal portfolio allocation under incomplete nominal markets

This Appendix modifies the results above to the case where the investor has fewer bonds than

state variables. In this case, nominal markets are incomplete. To determine the minimax price of

risk in this case we project σΠ and σX on the available assets:

σΠ = (σΠσ
>)(σσ>)−1σ + (σΠ − (σΠσ

>)(σσ>)−1σ)

σX = (σXσ
>)(σσ>)−1σ + (σX − (σXσ

>)(σσ>)−1σ).

It is useful to define the residual of the projections as

(σΠ
⊥) = σΠ − (σΠσ

>)(σσ>)−1σ

(σX
⊥) = σX − (σXσ

>)(σσ>)−1σ.

Equation (B2), and the same reasoning as in Appendix B implies that that ν∗ takes the form

ν∗ = (1− γ)
(

σΠ − (σΠσ
>)(σσ>)−1σ

)>

− γ
(

σX − (σXσ
>)(σσ>)−1σ

)> FX
>

F
.

Conjecturing that the functional form for F is given by (43) in Corollary 4, we derive the following

ODE’s from (36):

B′
3(τ) = { }+

(

1

γ
− 1

)(

1

4
(B3(τ) +B3(τ)

>)(σX
⊥)(σX

⊥)
>
(B3(τ) +B3(τ)

>)

)

−
(

1

γ
− 1

)(

1

2
(B3(τ) +B3(τ)

>)σX(σX
⊥)

>
(B3(τ) +B3(τ)

>)

)

(C1)

B′
2(τ) = { }+

(

1

γ
− 1

)(

1− γ

2
(σΠ

⊥)σ>X(B3(τ) +B3(τ)
>)−B2(τ)σX(σX

⊥)
>
(B3(τ) +B3(τ)

>)

)

+

(

1

γ
− 1

)(

1

2
(B2(τ)(σX

⊥)− (1− γ)(σΠ
⊥))(σX

⊥)
>
(B3(τ) +B3(τ)

>)

)

+
γ − 1

2
σΠ(σX

⊥)(B3(τ) +B3(τ)
>) (C2)

B′
1(τ) = { }+

(

1

γ
− 1

)

B2(τ)σX

(

(1− γ)(σΠ
⊥)− (σX

⊥)B2(τ)
)>

+

1

2

1− γ

γ
B2(τ)(σX

⊥)(σX
⊥)

>
B2(τ)

> −
(

1

γ
− 1

)

(1− γ)B2(τ)(σX
⊥)(σΠ

⊥)
>
+

(γ − 1)σΠ(σX
⊥)

>
B2(τ)

> (C3)
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The terms { } represents the quantity on the right hand side of equations (B7), (B8), and (B9)

respectively.

Note that when markets are complete, the new terms on the right hand side of (C1), (C2), and

(C3) reduce to zero. In particular, (σΠ
⊥)σ>X = 0 because σ>X is now within the span of σ.

Appendix D. Indirect utility for sub-optimal strategies.

It follows from the partial differential equation (49) that indirect utility takes the form:

J(W (t),Π(t), X(t), T ) =
1

1− γ

(

W (t)

Π(t)

)1−γ

H(X(t), t, T ).

where H(X(t), t, T ) satisfies the partial differential equation

Ht + (1− γ)H
(

w(t)>(µ(t)− ιr(t)) + r(t)− π(t)
)

− γHw(t)>σσ>w(t)− (1− γ)Hw(t)>σσ>Π −
γ − 2

2
HσΠσ

>
Π

+HX

(

K(θ −X(t)) + (1− γ)σXσ
>w(t)− (1− γ)σXσ

>
Π

)

+
1

2
tr(HXXσXσ

>
X) = 0. (D1)

Suppose that the strategy of interest can be expressed as

w(t) = α0 + α1X(t), (D2)

for some constant scalar α0 and vector α1. When the trading strategy can be expressed as (D2), it

follows from (D1) that H(X(t), t, T ) is exponential quadratic:

H(X(t), t, T ) = exp
{

X(t)>Γ3X(t) + Γ2X(t) + Γ1

}

.

where Γ3, Γ2, and Γ1 satisfy the following system of ordinary differential equations:

Γ′
3 = (Γ3 + Γ>

3 )
[

(1− γ)σXσ
>α1 −K

]

+
Γ3 + Γ>

3

2
σXσ

>
X

Γ3 + Γ>
3

2

+ 2(1− γ)α>
1 σλ

∗
2 − γ(1− γ)α>

1 σσ
>α1 (D3)

Γ′
2 = Γ2

[

(1− γ)σXσ
>α1 + σXσX

>Γ3 + Γ>
3

2
−K

]

+
[

θ>K> + (1− γ)α>
0 σσ

>
X − (1− γ)σΠσ

>
X

] Γ3 + Γ>
3

2

+ (1− γ)
[

α>
0 σλ

∗
2 + δ − ζ + (λ∗1)

>σ>α1

]

− (1− γ)2σΠσ
>α1 − γ(1− γ)α>

0 σσ
>α0 (D4)
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Γ′
1 = Γ2

[

Kθ + (1− γ)σXσ
>α0 − (1− γ)σXσΠ

>
]

+
1

2
Γ2σXσX

>Γ>
2

+ (1− γ)(α>
0 σλ

∗
1 + δ0 − ζ0)− (1− γ)2σΠσ

>α0 −
γ(1− γ)

2
α>
0 σσ

>α0

− (1− γ)(γ − 2)

2
σΠσΠ

> +
1

2
tr

(

Γ3 + Γ>
3

2
σXσ

>
X

)

(D5)

For γ = 1 the indirect utility function takes the form:

J(W (t),Π(t), X(t), T ) = log

(

W (t)

Π(t)

)

+Q(X(t), t, T ).

where Q(X(t), t, T ) satisfies the partial differential equation

Qt +
(

w(t)>(µ(t)− ιr(t)) + r(t)− π(t)
)

− 1

2
w(t)>σσ>w(t) +

1

2
σΠσ

>
Π

+QX (K(θ −X(t))) +
1

2
tr(QXXσXσ

>
X) = 0. (D6)

It follows from (D6) that Q(X(t), t, T ) is quadratic:

Q(X(t), t, T ) = X(t)>∆3X(t) + ∆2X(t) + ∆1,

and that ∆3, ∆2, and ∆1 satisfy:

∆′
3 = −(∆3 +∆>

3 )K + 2α>
1 σλ

∗
2 − α>

1 σσ
>α1

∆′
2 = −∆2K + θ>K>∆3 +∆>

3

2
+ α>

0 σλ
∗
2 + δ − ζ + (λ∗1)

>σ>α1 − α>
0 σσ

>α0

∆′
1 = ∆2Kθ + (α>

0 σλ
∗
1 + δ0 − ζ0 −

1

2
α>
0 σσ

>α0) +
1

2
σΠσΠ

> +
1

2
tr

(

∆3 +∆>
3

2
σXσ

>
X

)

Appendix E. Estimation

This section extends the results of Duffee (2002) to include inflation and stock return data in

the estimation of bond yields. For convenience, it is assumed that the state variables are Gaussian

(as in the body of the paper). Duffee’s quasi-maximum likelihood results for square-root models

can be extended in a similar fashion. In what follows, let eM denote the matrix exponential of M ,

let (xi)i denote the diagonal matrix with diagonal elements xi, and let (xi,j)i,j denote the matrix

with the (i, j) element equal to xi,j . It is assumed that K is diagonalizable.

Let Y (t) denote the vector of perfectly observed yields at time t. Namely

Y (t) =











y(X(t), t, τ1)
...

y(X(t), t, τm)
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for maturities (τ1, · · · , τm), where y is defined in (6). Let Ỹ denote the vector of yields which are

observed imperfectly. From (5), it follows that the perfectly observed yields can be inverted to find

the state variables:

X(t) = L−1
1 (Y (t)− L0) .

where L1 is an m ×m matrix with row i given by −A2(τi)/τi, and L0 is a vector with elements

−A1(τi)/τi. Let f(· | ·) denote (with slight abuse of notation), the conditional likelihood function.

Then the likelihood function for yields can be related to the likelihood function for the state variables

by

f(Y (t+ 1), S(t+ 1),Π(t+ 1) | Y (t), S(t),Π(t)) =

1

det [L1]
f(X(t+ 1), S(t+ 1),Π(t+ 1) | X(t), S(t),Π(t)). (E1)

Let ε(t) denote the observation errors on the yields that are not perfectly observed. We assume

that ε(t) is independent of innovations to the state variables or to inflation. Under this assumption,

the full likelihood is given by:

lt = log f(Y (t), S(t),Π(t) | Y (t− 1), S(t− 1),Π(t− 1)) +

log f(Ỹ (t) | Y (t), S(t),Π(t))

= log f(Y (t), S(t),Π(t) | Y (t− 1), S(t− 1),Π(t− 1)) + log f(ε(t) | Y (t))

It therefore suffices to specify f(X(t+ 1), S(t+ 1),Π(t+ 1) | X(t), S(t),Π(t)).

We show that f(X(t+1), logS(t+1), log Π(t+1) | X(t), logS(t), log Π(t)) is multivariate normal,

and calculate the mean and variance. Consider the augmented state vector

X̂(t) =









X(t)

logS(t)

logΠ(t)









The continuous time dynamics of this vector are defined by

dX̂(t) = (κ1X̂ + κ2)dt+ σ
X̂
dz, (E2)

where

κ1 =









−K 03×1 03×1

η + δ 0 0

ζ 0 0









, κ2 =









Kθ

η0 + δ0 − 1
2σSσS

>

ζ0 − 1
2σΠσΠ

>









, σ
X̂

=









σX

σS

σΠ
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Applying Ito’s lemma to the process e−κ1tX̂t, it follows that:

X̂(T ) = eκ1(T−t)X̂t +

∫ T

t

eκ1(T−s)κ2 ds+

∫ T

t

eκ1(T−s)σ
X̂
dw(s). (E3)

Which shows that X̂T is normally distributed conditional on X̂t.

Assume that κ1 is diagonalizable. Let U be such that

κ1 = UDU−1, D diagonal.

From the definition of the matrix exponential and (E3), it follows that

Et(X̂(T )) = eκ1(T−t)X̂(t) +

(∫ T

t

UeD(T−s)U−1 ds

)

κ2.

Note that eD(T−t) =
(

edi(T−t)
)

i
. Performing the integration element-by-element produces:

Et(X̂(T )) = eκ1(T−t)X̂t + U (f(di, T − t))i U
−1κ2.

where

f(di, T − t) =







− 1
di
(1− edi(T−t)) di 6= 0

T − t di = 0

This completes the derivation of the conditional mean.

From (E3), the conditional variance satisfies:

Vart(X̂(T )) = Et

[

(∫ T

t

eκ1(T−u)σ
X̂
dwu

)(∫ T

t

eκ1(T−u)σ
X̂
dwu

)>
]

=

= Et

[∫ T

t

eκ1(T−u)σ
X̂
σ>
X̂
eκ1(T−u)> du

]

=

=

∫ T

t

eκ1(T−u)σ
X̂
σ>
X̂

(

eκ1(T−u)
)>

du.

Let Ω = U−1σ
X̂
σ>
X̂
(U−1)>. Integrating the above equation element-by-element produces:

Vart(X̂(T )) =

∫ T

t

UeD(T−u)ΩeD(T−u)U> du

= U [g(di, dj , T − t)Ωi,j ]i,j U
>,

where

g(di, dj , T − t) =







− 1
di+dj

(1− e(di+dj)(T−t)) di 6= 0 or dj 6= 0

T − t di = dj = 0

This completes the derivation of the conditional variance-covariance matrix.
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Table I

Processes for the Riskfree Rate and Expected Inflation

The three-factor model described in Section 3 is estimated using monthly data on bond yields, inflation,

and stock returns from 1952-1998. The nominal interest rate r(t) = δ0 + δ1X1(t) + δ2X2(t) + δ3X3(t),

expected inflation equals π(t) = ζ0 + ζ1X1(t) + ζ2X2(t) + ζ3X3(t). The process for X is given by dX(t) =

−KX(t) dt+σXdz(t) where σX is shown in Table II. Outer product standard errors are given in parentheses.

Parameter values are annual and in natural units.

Panel A: Constant terms

δ0 ζ0

0.056 0.040

(0.034) (0.026)

Panel B: Coefficients on state variables

X1 X2 X3

ζi 0.018 0.018 0.007

( 0.002) ( 0.004) (0.0005)

δi 0.018 0.007 0.010

(0.0003) (0.0009) (0.0003)

K1,i 0.576 0 0

(0.027)

K2,i 0 3.343 0

(0.210)

K3,i -0.421 0 0.083

(0.170) (0.055)



Table II

Volatility Matrix

Estimates of loadings on the Brownian motions. For example, the unpredictable component of the stock

price is given by σS(1)dz1+σS(2)dz2+σS(3)dz3+σS(4)dz4+σS(5)dz5. σX and the last entry of σS cannot

be identified from the data; they are set equal to the values below without loss of generality. Outer product

standard errors are in parentheses.

dz1 dz2 dz3 dz4 dz5

1 0 0 0 0

σX 0 1 0 0 0

0 0 1 0 0

σS (×100) -1.255 0.572 -2.946 14.277 0

(0.578) (0.592) (0.632) (0.304) -

σΠ (×100) 0.001 -0.011 0.133 -0.084 0.911

(0.042) (0.042) (0.042) (0.042) (0.024)



Table III

Prices of Risk

Estimates of the price of risk Λ∗ = λ∗1+λ
∗

2X(t) and of the equity premium. The first three rows of λ
∗

1 and λ
∗

2

control risk premia on bonds (because σX takes the form shown in Table II). zi(t) is the ith Brownian motion.

The fourth row is determined by the equity premium σSΛ
∗ = η0. The fifth row is zero by construction.

Outer product standard errors are in parentheses. Parameter values are annual and in natural units.

Equity premium η0 .075

(.025)

Source of risk λ∗1 λ∗2

X1 X2 X3

z1(t) -0.563 0 1.754 0

(0.212) (0.078)

z2(t) -0.245 0 -1.815 0

(0.078) (0.169)

z3(t) -0.219 0.537 0.376 -0.082

(0.052) (0.174) (0.117) (0.055)

z4(t) 0.440 0.111 0.305 -0.017

zt(5) 0 0 0 0



Table IV

Asset Return Correlations

The first panel shows conditional correlations of asset returns implied by the parameter values in Tables I,

II, and III. For example, the conditional correlation between returns on the 1-year bond and on the stock

is equal to A2(1)σXσ
>

S (A2(1)σSσ
>

S A2(1)
>)−1/2(σSσ

>

S )
−1/2 by (7). The second panel shows unconditional

correlations from the data.

Panel A: Model

1-year Bond 5-year Bond 10-year Bond Stock

1-year 1.000 0.878 0.741 0.191

5-year 1.000 0.950 0.208

10-year 1.000 0.212

Stock 1.000

Panel B: Data

1-year Bond 5-year Bond 10-year Bond Stock

1-year 1.000 0.853 0.734 0.190

5-year 1.000 0.932 0.192

10-year 1.000 0.214

Stock 1.000



Table V

Correlations between Asset Returns, Innovations to Inflation, and Innovations to the

Investment Opportunity Set

Panel A shows conditional correlations between asset returns and innovations to inflation (Π), expected

inflation (π), the nominal interest rate (r), and the “real” interest rate (r − π) implied by the parameter

values in Tables I, II, and III. Panel B shows conditional correlations between asset returns and innovations

to risk premia on the one-year, five-year and ten-year bonds. Panel C shows conditional correlations between

asset returns and innovations to the state variables. For example, the correlation between returns on the

one-year bond and innovations to Π is equal to A2(1)σXσ
>

Π (A2(1)σΠσ
>

ΠA2(1)
>)−1/2(σΠσ

>

Π )
−1/2 by (7).

Panel A: Interest Rate and Inflation

1-year Bond 5-year Bond 10-year Bond Stock

Π -0.085 -0.118 -0.137 -0.117

π -0.459 -0.112 -0.117 -0.087

r -0.779 -0.478 -0.418 -0.148

r − π -0.477 -0.704 -0.570 -0.091

Panel B: Risk Premia

1-year Bond 5-year Bond 10-year Bond Stock

µ1 − r -0.213 -0.471 -0.341 -0.031

µ5 − r -0.157 -0.445 -0.336 -0.026

µ10 − r -0.034 -0.380 -0.319 -0.015

Panel C: State Variables

1-year Bond 5-year Bond 10-year Bond Stock

X1 -0.764 -0.366 -0.143 -0.086

X2 0.313 0.512 0.345 0.039

X3 -0.564 -0.777 -0.927 -0.201



Table VI

Optimal Allocation when there are Multiple Long-term Bonds

Allocations to the assets for an investor with investment horizons of 0, 1, 10 and 20 years, and coefficients

of relative risk aversion (γ) of 4 and 10. Panel A shows the optimal portfolios for different horizons when

the investor is able to invest in the 3-year bond, 10-year bond, the stock, and the risk free rate. Panel B

shows the optimal portfolios for different horizons when the investor is able to invest in the 1-year bond,

5-year bond, 10-year bond, the stock, and the risk free rate. Shown are the allocations to the bonds and the

stock; the allocation to the riskfree asset is one minus the sum of these quantities. X2 and X3 are set equal

to zero while X1 is set equal to minus one standard deviation (1.9) in the top panel, 0 in the middle panel,

and plus one standard deviation in the bottom panel. “Premium” refers to the risk premium on the 5-year

bond implied by each value of X = (X1, X2, X3).

Panel A: Allocation to 2 Bonds and the Stock

γ = 4 γ = 10

0 years 1 year 10 years 20 years 0 years 1 year 10 years 20 years

Premium = 12% 3-yr -0.73 -1.64 -2.62 -2.67 -0.28 -0.70 -1.36 -1.55
10-yr 2.79 3.39 3.85 3.93 1.11 1.41 1.80 1.99
Stock 0.49 0.45 0.45 0.45 0.19 0.17 0.17 0.17

Premium = 2% 3-yr 2.86 4.13 4.66 4.61 1.16 1.86 2.11 1.93
10-yr -0.84 -1.11 -1.23 -1.15 -0.35 -0.48 -0.44 -0.26
Stock 0.82 0.81 0.80 0.80 0.33 0.32 0.31 0.32

Premium = -8% 3-yr 6.46 9.90 11.94 11.89 2.59 4.41 5.58 5.40
10-yr -4.47 -5.62 -6.32 -6.23 -1.80 -2.37 -2.68 -2.51
Stock 1.16 1.16 1.16 1.16 0.46 0.46 0.46 0.46



Panel B: Allocation to 3 Bonds and the Stock

γ = 4 γ = 10

0 years 1 year 10 years 20 years 0 years 1 year 10 years 20 years

Premium = 12% 1-yr 28.61 19.53 19.30 19.42 11.44 7.22 7.46 7.54

5-yr -15.91 -13.28 -14.33 -14.48 -6.35 -5.21 -6.21 -6.52

10-yr 8.09 7.83 8.55 8.70 3.22 3.16 3.84 4.15

Stock 0.40 0.40 0.40 0.40 0.16 0.16 0.16 0.16

Premium = 2% 1-yr 21.58 19.22 19.50 19.63 8.62 7.51 7.62 7.69

5-yr -8.25 -6.66 -6.35 -6.51 -3.29 -2.51 -2.43 -2.72

10-yr 2.29 1.75 1.61 1.77 0.90 0.65 0.73 1.02

Stock 0.77 0.77 0.77 0.77 0.30 0.30 0.30 0.30

Premium = -8% 1-yr 14.54 18.91 19.71 19.85 5.81 7.80 7.77 7.84

5-yr -0.60 -0.03 1.63 1.46 -0.22 0.19 1.36 1.08

10-yr -3.51 -4.34 -5.33 -5.16 -1.42 -1.86 -2.39 -2.11

Stock 1.13 1.13 1.13 1.13 0.45 0.45 0.45 0.45
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Figure 1. Model-implied yield spread means. Bond yields are in annual terms, and defined as in

Equation (6). The short-term yield has maturity of 3 months. “Sample” refers to yield spreads

calculated using data from 1953–1998 on bonds of selected maturities.

1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

Maturity (years)

Y
ie

ld
 S

pr
ea

ds
 S

ta
nd

ar
d 

D
ev

ia
tio

ns

Sample
Population
Monte Carlo Mean
Monte Carlo 95% Confidence Bands

Figure 2. Model-implied yield spread standard deviations. Yields are in annual terms, and

defined as in (6). The short-term yield has maturity of 3 months. “Sample” refers to yield spreads

calculated using data from 1953–1998 on bonds of selected maturities.
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Figure 3. Model-implied coefficients on Campbell-Shiller (1991) long-rate regressions. Quarterly

changes in yields, y(t, s) − y(t + 1
4 , s), are regressed on the spread between the (s − t) -year bond,

and the 3-month bond, scaled by 1/(4(s− t)−1). “Sample” refers to yield spreads calculated using

data from 1953–1998 on bonds of selected maturities.
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Figure 4. Changes in log CPI (from data) and expected inflation π(t) implied by the model and

parameter estimates in Table I.
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Figure 5. The nominal and real riskfree rate implied by the model and parameter estimates in

Table I.
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Figure 6. The top panel shows risk premia (in annual percentages) on long-term bonds implied

by the model. The risk premium is defined as the instantaneous expected excess return over the

nominal riskfree rate. The bottom panel shows the time series of the maximum Sharpe ratio

achievable by taking a position in bonds, stock and the nominal riskfree asset.
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Figure 7. Optimal allocation as a function of horizon for an investor with utility over terminal

wealth and access to a 5-year bond the stock market, and the nominal riskfree asset. Shown are

the allocations to the bond and the stock; the allocation to the riskfree asset is one minus the sum

of these quantities. X2 and X3 are set equal to zero while X1 is set equal to minus one standard

deviation (1.9) in the top panel, 0 in the middle panel, and plus one standard deviation in the

bottom panel. “Premium” refers to the risk premium on the 5-year bond implied by each value of

X = (X1, X2, X3). Risk aversion γ = 4 (left panel) or 10 (right panel).
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Figure 8. Allocation when the investor hedges only the real riskfree rate (plain lines) and when

the investor hedges only risk premia (lines with circles) as a function of horizon. The investor has

utility over terminal wealth and access to a 5-year bond the stock market, and the nominal riskfree

asset. Shown are the allocations to the bond and the stock; the allocation to the riskfree asset is

one minus the sum of these quantities. For the stock, the two allocations lie on top of each other.

X2 and X3 are set equal to zero while X1 is set equal to minus one standard deviation (1.9) in the

top panel, 0 in the middle panel, and plus one standard deviation in the bottom panel. “Premium”

refers to the risk premium on the 10-year bond implied by each value of X = (X1, X2, X3). Risk

aversion γ = 4 (left panel) or 10 (right panel).
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Figure 9. Utility costs, measured as the percent of wealth an investor following a sub-optimal

strategy would be willing to give up in order to follow an optimal strategy. The top panel shows the

cost of following the unconditional myopic strategy. The middle panel shows the cost of following

the conditional myopic strategy. The bottom panel shows the cost of following the conditional

myopic strategy and hedging only the riskfree rate. The investor is assumed to have access to a

5-year bond, the stock market, and a nominal riskfree asset. γ refers to relative risk aversion.
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Figure 10. Utility costs, measured as the percent of wealth an investor following a sub-optimal

strategy would be willing to give up in order to follow an optimal strategy. The investor is assumed

to have access to two long-term bonds, the stock market, and a nominal riskfree asset. The top

panel shows the cost of following the unconditional myopic strategy. The middle panel shows the

cost of following the conditional myopic strategy. The bottom panel shows the cost of following the

conditional myopic strategy and hedging only the riskfree rate. γ refers to relative risk aversion.
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