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We follow the lead of [2] and show how differences in the invariant α can be used
to classify certain classes of subschemes of P3. Specifically, we will seek to classify
arithmetically Cohen–Macaulay codimension 2 subschemes of P3 in the manner
Bocci and Chiantini classified points in P2. The first section will seek to motivate
our consideration of the invariant α by relating it to the Hilbert function and γ,
following the work of [2,5]. The second section will contain our results classifying
arithmetically Cohen–Macaulay codimension 2 subschemes of P3. This work is
adapted from the author’s Ph.D. dissertation [11].

© 2014 Elsevier B.V. All rights reserved.

1. The importance of α

Let k be an algebraically closed field of arbitrary characteristic. Much is known about finite sets of
reduced points Z ⊆ P2 over k. In particular, [7] classified all possible Hilbert functions of finite sets of
reduced points in PN over k. However, not much is known about the double scheme, 2Z (but see [8,6]).

Definition 1.1. In general, the m-th symbolic power of a homogeneous ideal I ⊆ R = k[PN ] is

I(m) = R ∩
( ⋂

P∈Ass(I)

(
ImRP

))
,

where Ass(I) denotes the set of associated primes of I and RP is the ring R localized at the prime P .

✩ The author wishes to thank Brian Harbourne for many helpful conversations during the preparation of this work, especially
in the process of writing the dissertation [11]. The author also wishes to thank Juan Migliore for his very helpful comments on
arithmetically Cohen–Macaulay schemes, and both Tomasz Szemberg and the referee for helpful suggestions regarding a simpler
proof of Proposition 2.10.
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When I is the ideal of a complete intersection, I(m) = Im (see [13, Lemma 5, Appendix 6]), and thus
if I = (L1, L2) (where L1, L2 are linear forms) is the ideal of a linear codimension 2 complete intersection
(e.g., a point in P2, or a line in P3), we have I(m) = (L1, L2)m.

Definition 1.2. Let Z ⊆ PN be a reduced subscheme defined by I = I(Z). The double scheme (often called
the double point scheme if Z is a set of reduced points, or the fattening) is the subscheme of PN defined
by I(2) and denoted 2Z.

In this paper, we follow the lead of Bocci and Chiantini [2] and others in studying the number α(I),
where I is the ideal of a reduced codimension 2 subscheme. Recall that, if I is a nonzero homogeneous ideal
in k[PN ], the number α(I) is the degree of a nonzero polynomial of least degree in I. (Equivalently, if Id
denotes the homogeneous component of I of degree d, α(I) = min {d : Id �= 0}.)

Now, it is not difficult to see that the number α is the degree in which the Hilbert function of the quotient
R/I first deviates from that of the ring R = k[PN ]. Indeed, recall that the Hilbert function of the quotient
of a homogeneous ideal I ⊆ R = in degree t is H(R/I, t) = dimk(Rt)− dimk(It). If t < α(I), dimk(It) = 0,
hence H(R/I, t) = dimk(Rt) =

(
t+N
N

)
.

Thus, Bocci and Chiantini, rather than compute α (or even Hilbert functions) of various planar point
configurations in P2 or their symbolic powers, chose to study the difference t := α(2Z) − α(Z). This is
related to the Waldschmidt constant

γ(I) := lim
m→∞

α(I(m))
m

.

Understanding α(I(m)) for all m ≥ 1 is a difficult task, while classifying Z based on the difference t is more
tractable (though, as t increases, it grows more difficult).

An important first observation about t is that t ≥ 1 always holds; indeed, if k has characteristic 0, let
F be a form of minimal degree α(2Z) vanishing to order at least 2 at each point of Z. Then the partial
derivatives of F vanish on Z, and the degree of the partial derivatives is less than the degree of F . If k has
characteristic p > 0, then it may happen that every partial derivative of F is identically 0. In that case,
F is the p-th power of some form G, which vanishes at each point of Z, and thus t ≥ 1.

We follow the lead of [2] and say that a subscheme Z ⊆ PN has type (d − t, d) if α(Z) = d − t and
α(2Z) = d.

Bocci and Chiantini examine cases when t is small; specifically, they consider t = 1, 2. When t = 1, they
use Bézout’s Theorem to find:

Theorem 1.3. (See Example 3.1, Proposition 3.2, and Theorem 3.3 of [2].) Let Z ⊆ P2 be a finite set of
points. Then t = 1 if and only if either Z is a set of collinear points and α(Z) = 1 or Z is a star configuration
of

(
d
2
)

points and α(Z) = d− 1.

That α(Z) = 1 and α(2Z) = 2 when Z is a set of collinear points is clear. A star configuration of points
in P2 is the finite subset Z of

(
d
2
)

points of pairwise intersection of d lines, where d ≥ 3. See Fig. 1 for a
star configuration Z when d = 5. Let F be the product of the five linear forms corresponding to the lines,
and G be the form F divided by one of the linear forms. Then it is clear that F vanishes to order 2 at each
of the 10 points and G vanishes to order at least 1 at each point; it is known that F and G are forms of
minimal degree vanishing to order 2 and 1, respectively, which means that Z has type (4, 5).

When t = 2, Bocci and Chiantini also obtain classification results, though these are much more com-
plicated. The situation can be roughly described as follows: either α(2Z) = 4 and Z lies in a conic, or
α(2Z) > 4 and Z lies in the nodes of the union of rational curves.
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Fig. 1. A star configuration formed by the pairwise intersection of 5 lines in P2.

There are several possible avenues for generalizing these results; the first we consider is to look at higher
symbolic powers. We borrow the following notation from [5]:

Notation 1.4. Let Z ⊆ P2 be a finite fixed set of arbitrary points. Then we use the notation αm,n(Z) :=
α(I(m)) − α(I(n)) for m > n.

In [5], Dumnicki et al. obtain stronger results by requiring the successive differences αm+1,m to be constant
as m increases.

They then prove:

Theorem 1.5. (See Theorems 3.1 and 4.14 of [5].) If

α2,1(Z) = α3,2(Z) = · · · = αt+1,t(Z) = d,

then

(1) for d = 1 and t ≥ 2 the set Z is contained in a line, i.e., α(Z) = 1;
(2) for d = 2 and t ≥ 4 the set Z is contained in a conic, i.e., α(Z) = 2.

Moreover, both results are sharp, i.e., there are examples showing that one cannot relax the assumptions
on t.

The authors believe that such a result should be true for cubics as well.
Another recently-explored avenue is to points in P1 × P1; in [1], the authors extend the results of [2,5]

to bi-homogeneous ideals over P1 × P1.
A third avenue for generalizing the results of Bocci and Chiantini is to consider subschemes of higher

dimensional projective spaces, and this is the direction we will take in the remainder of this note. However,
rather than look at point configurations, we will examine configurations of lines in P3. Although the study
of fat lines has been the subject of some recent study (see e.g., [9,10,4]), little is still so far known about
them.

Herein, we begin the task of extending the t = 1 result of Bocci and Chiantini to lines in P3 by examining
line configurations which are arithmetically Cohen–Macaulay (ACM). At the time of this writing, all known
examples of line configurations with t = 1 are ACM. Indeed, question of the existence of t = 1 line
configurations which are not ACM is open at this time. One of our goals in this work is to draw further
attention to this situation by examining the ACM case. We also show that the usual notion of a star
configuration (as defined in [2] and generalized in [6], among others) is not general enough, and introduce
the notion of a pseudo-star configuration. This work is based on [11].
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2. Lines in P3

Throughout the remainder, let S = k[P3] = k[x, y, z, w] and R = k[P2] = k[x, y, z] be the homogeneous
coordinate rings of P3 and P2, respectively.

Broadly speaking, the two types of configurations of lines in P3 we will discuss are the coplanar config-
urations and the pseudo-star configurations.

Definition 2.1. A pseudo-star configuration (or pseudostar) of lines in P3 is a finite collection of lines formed
by the pairwise intersection of hyperplanes such that no three of the hyperplanes meet in a line.

There is a growing body of literature on the study of star configurations (see [6] and the references
therein). Indeed, star configurations were one of the first examples studied in [3] in which the resurgence
ρ(I) was introduced. The easiest examples, of course, are star configurations of points in P2, but star
configurations can be defined in any codimension in any projective space.

As defined in [6], a star configuration of lines in P3 is a collection of lines formed by the pairwise
intersections of hyperplanes which meet properly, meaning that the intersection of any j of the hyperplanes
is empty or has codimension j. For the case of the pseudostars, we replace the requirement that the planes
meet properly with the requirement that no three of the planes meet in a line; therefore, it may be that in
a pseudostar in P3, more than three planes meet in a single point.

The easiest example of a pseudostar in P3 is a star configuration of lines.
Another easy example of a pseudostar in P3 is a projective cone over a star configuration of points in P2:

Example 2.2. Suppose I ⊆ R defines a star configuration Z of points in P2. The projective cone over Z is
a subscheme of P3 defined by the extension IS of I to S. This is an example of a pseudostar.

The proof of our main theorem will be powered by the notion of arithmetically Cohen–Macaulay sub-
schemes. In particular, for an ACM subscheme X ⊆ PN we will exploit the relationship between α(X) and
α(X ∩H), where H is a general hyperplane.

Definition 2.3. A subscheme X ⊆ PN is arithmetically Cohen–Macaulay (ACM) if the homogeneous coor-
dinate ring k[PN ]/I(X) of the subscheme is Cohen–Macaulay.

Several familiar linear configurations are ACM.

Lemma 2.4. Any collection of coplanar lines in P3 is ACM.

Proof. If I ⊆ S is the ideal of coplanar lines, then I is a complete intersection ideal, and thus S/I is
Cohen–Macaulay. �
Lemma 2.5. Let L denote a finite union of lines in P3. If L is a star configuration of lines in P3 or a
projective cone over a star configuration of points in P2, L and 2L are ACM.

Proof. If L is a star configuration of lines in P3, then L and 2L are ACM by [6, Proposition 2.9 and
Theorem 3.1], respectively. Suppose L is a projective cone over a star configuration Z in P2. Then I(L) =
I(Z)S, and (R/I(Z))[w] ∼= S/I(Z)S = S/I(L). Since R/I(Z) is Cohen–Macaulay, so is (R/I(Z))[w], and
hence also S/I(L). Therefore L is ACM. A similar argument can be carried out for I(2Z) = (I(Z))(2). �
Proposition 2.6. Pseudostars and their symbolic squares are ACM.
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Proof. The reduced case was proved, though not explicitly, in [6, Proposition 2.9] (but see [6, Remark 2.13]).
The symbolic square case can be found in the first part of the proof of [6, Theorem 3.2], as the assumption
that the hyperplanes meet properly can be relaxed to the assumption that no three hyperplanes contain a
line. �
Proposition 2.7. (See Corollary 1.3.8 of [12].) Let X ⊆ PN be an arithmetically Cohen–Macaulay scheme of
dimension at least 1, and suppose H ⊆ PN is a general hyperplane. Let X∩H denote the general hyperplane
section of X, S = k[PN ], and R = S/I(H) ∼= k[PN−1]. Then the Hilbert function of R/I(X ∩H) is given
by

H
(
R/I(X ∩H), t

)
= H

(
S/I(X), t

)
−H

(
S/I(X), t− 1

)
.

A useful corollary of Proposition 2.7 is the following.

Corollary 2.8. Suppose X ⊆ PN is an arithmetically Cohen–Macaulay scheme of dimension at least 1, and
H ⊆ PN is a general hyperplane. If X ∩ H denotes the general hyperplane section of X, then α(X) =
α(X ∩H).

Proof. This follows immediately from Proposition 2.7 and the definitions of the Hilbert function and α. �
Corollary 2.9. Let L be a pseudostar in P3 formed by the pairwise intersection of d planes, no three of which
contain any line. Then α(L) = d− 1 and α(2L) = d.

Proof. We first fix our notation. Let H1, H2, . . . , Hd ⊂ P3, d > 2 (if d ≤ 2, the lines resulting from the
pairwise intersection of the hyperplanes will be coplanar) be hyperplanes, no three of which contain any
line. Set �ij = Hi ∩Hj for all i < j, and put L =

⋃
1≤i<j≤d �ij . Then L is a pseudostar.

We first show that α(L) = d − 1. By Corollary 2.8, it is enough to show that the general hyperplane
sections of L form a star configuration of points in P2.

A general hyperplane H meets each Hi in a line Li; as H is general, Li meets each �ij , j �= i in distinct
points pij ∈ H ∼= P2. The points pij , j �= i, form a star configuration of points in H ∼= P2, as each line Li

contains d − 1 points pij , j �= i; each point pij lies on exactly two lines, Li and Lj , hence we have exactly(
d
2
)

points. Thus, the general hyperplane sections of L form a star configuration.
To see that α(2L) = d, note that d ≥ α(2L) > α(L) = d− 1. �
The following proposition shows that if a general hyperplane intersects three or more lines in P3 in

collinear points, the lines must lie in a plane.

Proposition 2.10. A general hyperplane intersects d ≥ 3 non-coplanar lines in P3 in d non-collinear points.

Proof. Note that it is sufficient to prove the proposition for d = 3, and let L = �1 ∪ �2 ∪ �3 be the union of
3 non-coplanar lines �1, �2, �3. Fix a general point p ∈ �1, and let π be the projection from p. Observe that,
if π(�2) = π(�3), then �2 and �3 span a plane meeting �1 at p, which is impossible since p is general, unless
L is coplanar. Thus, π(�2) �= π(�3).

Then take general points q2 ∈ π(�2) \ π(�3) and q3 ∈ π(�3) \ π(�2). Their preimages p2 ∈ �2, p3 ∈ �3
determine, with p ∈ �1, a general plane meeting the three non-coplanar lines in non-collinear points. �

Another way to say this is:

Corollary 2.11. If d � 3 lines in P3 intersect a general hyperplane H in collinear points, then the lines are
coplanar.
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Fig. 2. Three lines �1, �2, �3 in P3 such that �2 ∩ �3 = ∅.

We set the following notation.

Notation 2.12. Let H1, H2, . . . , Hd ⊂ P3 be hyperplanes, no three of which contain any line. Set �ij = Hi∩Hj

for all i < j, and put L =
⋃

1≤i<j≤d �ij .

We now come to the main result of this work, which describes an extension of Bocci and Chiantini’s t = 1
result for points in P2. In P2 every codimension 2 subscheme is ACM, as all finite sets of points in any PN

are ACM. In higher dimensions, not every codimension 2 subscheme in PN is ACM (e.g., three skew lines
in P3). However, the natural generalization of the Bocci–Chiantini result seems to be for ACM codimension
2 subschemes (but see Question 3.1).

Theorem 2.13. Let L be a union of lines �1, �2, . . . , �s.

(a) If L is ACM of type (d− 1, d) for some d > 1, then L is either a pseudostar or coplanar.
(b) If L is either a pseudostar or coplanar, then L has type (d− 1, d) for some d > 1.

Proof. We begin by proving (a), and first treat the cases in which 1 ≤ s ≤ 3 in an ad hoc fashion.
Indeed, if s = 1, we have a single line, which is coplanar, so (a) holds.
For s = 2, either the lines meet, in which case they are coplanar, or the lines are skew. If the lines �1, �2 are

skew, then, without loss of generality, we may take I(�1) = (x, y) and I(�2) = (z, w), so I(L) = (x, y)∩(z, w),
α(L) = 2, and α(2L) = α((x, y)2 ∩ (z, w)2) = 4 so L has type (d− 2, d). In either case, if s = 2, (a) holds.

If s = 3, we have three possible configurations. If the lines meet in a single point, they are either coplanar
or a pseudostar. If the lines do not meet in a single point but intersect pairwise, they are coplanar. The last
case involves lines �1, �2, �3 such that �2 and �3 do not meet, but �2 ∩ �1 �= ∅ and �3 ∩ �1 �= ∅, as in Fig. 2.
In this case, we can, after an appropriate change of coordinates, assume I(�1) = (x, z), I(�2) = (y, z), and
I(�3) = (x,w). One can easily verify using a computer algebra system that L = �1 ∪ �2 ∪ �3 is of type (2, 4)
and is not a pseudostar (in particular, a pseudostar of three lines meets in a point). Thus, (a) is satisfied
for 1 ≤ s ≤ 3. To finish the proof we consider the case that s ≥ 4.

Suppose L has type (d− 1, d) for some d ≥ 2, and let H denote a general hyperplane. As L is ACM, we
can apply Proposition 2.7 to L to see that α(L) = α(L∩H) = d− 1, and since d = α(2L) ≥ α(2(L∩H)) >
α(L∩H) = d− 1 (see [2]), the general hyperplane sections L∩H must have type (d− 1, d) in H ∼= P2. By
[2], this means that the general hyperplane sections L ∩H of L are either a set of collinear points or a star
of points in P2.

If L∩H is a set of collinear points, we must have that L is a set of coplanar lines (see Proposition 2.10).
Otherwise, by Proposition 2.10 (since s ≥ 4 and thus s− 1 ≥ 3) we have d (non-disjoint) collections of d− 1
collinear points (in fact, we have

(
d
2
)

points total, since L ∩H is a star in H ∼= P2). Each of the
(
d
2
)

points
is the hyperplane section of exactly one of the �ij ’s, so we must have s =

(
d
2
)

lines �ij , with d (non-disjoint)
collections of d− 1 ≥ 3 coplanar lines. Moreover, since we have d hyperplanes meeting in

(
d
2
)

lines, it must
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be that no three hyperplanes meet in a line, or else we would have strictly fewer than
(
d
2
)

lines, and thus
strictly fewer than

(
d
2
)

hyperplane sections. Thus, L forms a pseudostar.
We now turn to (b). Note that if L is coplanar, L clearly has type (1, 2). If L is a pseudostar, then by

Corollary 2.9 L has type (d− 1, d) for some d > 1. �
3. Future work

It seems as that pairing this approach with an inductive argument may generalize Theorem 2.13 to ACM
codimension 2 subschemes of PN , N > 3, but this has not yet been explored.

There are several other avenues for future work.
We made use of the assumption that the lines in question in P3 are arithmetically Cohen–Macaulay

(ACM). Our hope is that this future work will result in the relaxation (or removal) of this assumption. To
that end, a natural question is:

Question 3.1. Does there exist a configuration of lines of type (d− 1, d) which is not ACM?

Indeed, computational examples suggest that adding a disjoint line to a (d− 1, d) (ACM) configuration
yields a non-ACM configuration of type (d, d + 2).

If the answer to Question 3.1 is no, then the ACM hypothesis in Theorem 2.13 is unnecessary.
Another interesting question (suggested by Juan Migliore) is:

Question 3.2. Which reduced (possibly irreducible) curves in P3 have type (d− 1, d) for some d > 1?

As every finite set of points in PN (for any N ≥ 1) is ACM, another natural question to ask is:

Question 3.3. Which configurations of points in P3 have type (d− 1, d)?

In [2], the authors also classify configurations of points in P2 which have type (d− 2, d). Thus, we ask:

Question 3.4. Which arrangements of lines in P3 have type (d− 2, d)? Which arrangements of points in P3

have type (d− 2, d)?
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