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Abstract 

Next-generation sequencing technology allows investigation of both common and rare variants 

in humans. Exomes are sequenced on the population level or in families to further study the 

genetics of human diseases. Genetic Analysis Workshop 17 (GAW17) provided exomic data 

from the 1000 Genomes Project and simulated phenotypes. These data enabled evaluations of 

existing and newly developed statistical methods for rare variant sequence analysis for which 

standard statistical methods fail because of the rareness of the alleles. Various alternative 

approaches have been proposed that overcome the rareness problem by combining multiple rare 

variants within a gene. These approaches are termed collapsing methods, and our GAW17 group 

focused on studying the performance of existing and novel collapsing methods using rare 

variants. All tested methods performed similarly, as measured by type I error and power. Inflated 

type I error fractions were consistently observed and might be caused by gametic phase 

disequilibrium between causal and noncausal rare variants in this relatively small sample as well 

as by population stratification. Incorporating prior knowledge, such as appropriate covariates and 

information on functionality of SNPs, increased the power of detecting associated genes. 

Overall, collapsing rare variants can increase the power of identifying disease-associated genes. 

However, studying genetic associations of rare variants remains a challenging task that requires 

further development and improvement in data collection, management, analysis, and 

computation. 

 

Key words: 1000 Genomes Project, association, collapsing methods, next-generation sequencing 



 3

Introduction 

Genome-wide association studies have successfully identified hundreds of novel genetic 

loci associated with complex disease traits. In most cases, only a small portion of the heritability 

is explained by these associated common variants [Manolio et al., 2009; Eichler et al., 2010]. 

Although the summation of these associated loci may underestimate the total amount of 

heritability that common variants can explain [Yang et al., 2010], rare genetic variants might also 

contribute a sizable proportion of the genetic susceptibility to common diseases. In contrast to 

common variants associated with small effects, rare variants with putative functional change, 

such as nonsynonymous single-nucleotide polymorphisms (SNPs), are more likely to have a 

larger effect [Kryukov et al., 2007; Gorlov et al., 2008]. 

Current technology allows an exhaustive search for rare variants by sequencing the whole 

genome of a human being [Lee et al., 2010; Lupski et al., 2010; Sobreira et al., 2010]. Although 

the cost has drastically decreased in recent years, conducting a whole-genome sequencing project 

may not be cost-efficient for identifying functional rare variants associated with common 

diseases. The 30 million base pairs of the human exome account for about 1% of the whole 

human genome. With a fixed budget, an exome sequencing project can survey a much larger 

sample (required for detecting rare variants) with better coverage of the sequence reads (higher 

quality of the calls of rare variants). Several studies have demonstrated the utility of exome 

sequencing in identifying functional variants related to human diseases [Bilguvar et al., 2010; 

Gilissen et al., 2010; Ng et al., 2010a, 2010b; Walsh et al., 2010]. 

Because of the low allele frequencies, traditional regression-based methods do not work 

well with rare variants derived from sequencing data. To address the analytical challenge of 

identifying rare genetic variants associated with diseases, investigators have developed a number 
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of collapsing methods to summarize the individual rare variants in association analyses. These 

methods have been described in detail by Dering et al. [2011a]. Genetic Analysis Workshop 17 

(GAW17) provided exome sequencing data from the 1000 Genomes Project and simulated 

phenotypic traits, both binary and quantitative [Almasy et al., 2011]. These simulated data sets 

with a large number of rare variants can be used to evaluate the existing and newly proposed 

methods to identify the associations of rare variants. For exome sequencing data, a natural unit 

for collapsing genetic variants is the gene. Although many of these collapsing methods can be 

used for common variants, GAW17 Group 15 focused on the methods’ performance in 

identifying associations of rare variants, sometimes jointly with common variants.  

All 12 contributions to GAW17 Group 15 used the simulated data of 697 unrelated 

individuals. Taking advantage of 200 simulated data sets (simulated phenotypes with measured 

genotypes from the 1000 Genomes Project) of one binary trait and three quantitative traits and 

the available underlying genetic models, many contributors assessed type I error and power of 

existing and novel collapsing methods. These evaluations and comparisons help us to understand 

the performance of these methods in terms of both type I error and power.  

Several existing collapsing methods for rare variant analysis—collapsing and summation 

test (CAST), indicator coding test RVT2 (rare variant test 2), combined multivariate and 

collapsing (CMC) method, weighted-sum (WS) collapsing method, data-adaptive summation 

(aSUM), and variable threshold (VT) collapsing method—have been assessed by Group 15 

contributors. The CMC, WS, aSUM, and VT methods also provide flexible frameworks with 

which to analyze collapsed rare variants and common variants jointly. These methods have been 

summarized by Dering et al. [2011a]. Here, we describe novel approaches suggested and 

explored by Group 15 contributors.  
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Collapsing Methods for Rare Variant Analysis: Cumulative Minor Allele Test {AU: 

Because there is only one subhead, we can combine the main head and the subhead. This is 

standard practice for journals and books.} 

The cumulative minor allele test (CMAT) for rare variant analysis is derived from the 

chi-square statistic and compares the total number of rare variants present in the gene for case 

subjects and control subjects [Zawistowski et al., 2010]. For a sample with NA case subjects and 

NU control subjects, assume F > 1 variants in the region of interest (ROI), each with a weighting 

factor wj ≥ 0 (j = 1, …, F). The CMAT statistic compares the proportion of rare alleles in the 

case subjects to the proportions in the control subjects as follows:  
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are the weighted minor allele counts across all sites in the ROI for case and control subjects, 

respectively.  

Because the genetic variants may be in linkage disequilibrium and have small counts, a 

permutation strategy that shuffles the case-control labels and maintains the correlation structure 

of the genetic data is used to determine the statistical significance of the CMAT statistic. Luedtke 

et al. [2011] evaluated CMAT along with the CMC, WS, and RVT2 methods for their 

performance in analyzing the dichotomized trait. One thousand permutations were performed to 

determine the empirical p-value of each gene, that is, the ROI [Luedtke et al., 2011]. 

 

Genetic Similarity and Distance  

 An alternative approach to studying genetic associations is to investigate the relationship 

between pairs of individuals. This approach can be particularly useful for identifying clusters of 

individuals in the phenotype-genotype space. Methods based on correlating genotypic similarity 

and phenotypic similarity have been developed for genetic epidemiological research [Shannon et 

al., 2002; Beckmann et al., 2005]. In GAW17 Group 15, two pairwise approaches, one based on 

the kernel function and the other based on the Mantel test, were implemented and assessed using 

the GAW17 data.  

 

Kernel-Based Association Test 

 The kernel-based association test (KBAT) combines multiple genetic variants and 

reduces the degrees of freedom and was initially proposed to study the genetic association of 

common variants [Kwee et al., 2008]. KBAT extends the least-squares kernel machines for 

quantitative traits and the logistic kernel machine for dichotomized traits to study multivariable 
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associations [Kwee et al., 2008; Wu et al., 2010]. Li et al. [2011] implemented and investigated 

the KBAT because it is suitable for combining multiple rare variants within a ROI. For 

quantitative traits, β and h are estimated by maximizing the penalized likelihood function  

  

2 2
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1 1
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       , (4)  

 

where λ is a tuning parameter. The solution to the nonparametric function h(·) can be expressed 

as  
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for a given kernel function k(·, ·). {AU: In the preceding sentence, should the k in k(·, ·) be 

capitalized, i.e., K(·, ·), to match Eq. 5 and the subsequent text?} The kernel function K(Gik, Gjk) 

measures the genetic similarity between two individuals i and j at the SNPs in gene k. The 

estimates of β and α (equivalently, h) can be obtained by plugging h(G) into the penalized 

likelihood function.  

Li et al. [2011] implemented the kernel function based on genetic similarity measured by 

identity-by-state (IBS) sharing between two individuals i and j at the SNPs within gene k. To 

consider the potentially larger effect of the genetic variants with lower frequency, this flexible 

kernel function can be weighted by minor allele frequency (MAF) q, as follows: 
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where Mrik denotes the genotype of individual i at SNP r in gene k and wlk is a weight based on 

qlk (the MAF of SNP l within gene k) and equals 1/( qlk)
1/2.  

 

Mantel Test 

 Instead of directly testing the associations between rare variants or their collapsed 

summary statistics, Sun et al. [2011] implemented a collapsing method to examine the 

correlation between the genetic dissimilarity (i.e., the genetic distance) and phenotypic 

dissimilarity. This method is a Mantel-type statistic that tests the dependence between the 

elements of two matrices [Mantel, 1967]. The two matrices contain data from multiple variables 

obtained on a common sample of subjects, where the rows correspond to the subjects and the 

columns contain data on the two sets of variables X and Y. For n subjects with two variables X 

and Y, two distance matrices, each with n(n − 1)/2 pairwise distances, are first calculated. The 

Mantel statistic is based on the cross-product term  

 

1 1

n n

ij ij
i j
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  , (7) 

 

where n denotes the number of subjects in the distance matrices and Xij and Yij are the pairwise 

distances between subjects i and j. The elements of a distance matrix are not independent, and 

determination of the type I error level for the correlation (i.e., Mantel’s statistic Z) between two 

distance matrices is not straightforward. Therefore the significance level is usually evaluated 
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using a permutation procedure [Beckmann et al., 2005]. For a given gene, the genetic distance Xij 

between each pair of subjects is calculated as the sum of difference of the additive effect on each 

rare SNP. For a SNP, the distance between two homozygotes is 2, but the distance is 1 between 

homozygote and heterozygote genotypes. The genetic distance between a pair of subjects on the 

gene level is the sum of the genetic distance of individual SNPs. For a gene involving two SNPs 

with alleles A/a and B/b, the genetic distance between a pair of individuals ranges from 0 (same 

genotype) to 4 (AABB vs. aabb). The phenotypic distance is the absolute difference of the 

phenotypic value between a pair of individuals (|Yi − Yj|). 

 

Integrated Analysis of Both Rare and Common Variants 

As shown in several previous studies [Li and Leal, 2008; Madsen and Browning, 2009], 

combining rare and common variants within a ROI can improve the power of identifying a 

disease-associated region when both types of genetic variants contribute to the disease. Two 

Group 15 studies proposed alternative approaches to jointly analyzing rare and common variants 

by applying variable selection and the least absolute shrinkage and selection operator (LASSO) 

[Dasgupta et al., 2011]. 

 

Data-Adaptive Forward Selection  

Dai et al. [2011] proposed a three-step procedure that uses the associated common SNP 

as an anchor to select the rare variants. The variable selection procedure starts with selecting the 

most significant common SNP in the ROI. Then the rare SNPs that improve the goodness-of-fit 

are added to the model one at a time. The selection of rare SNPs repeats until no such rare SNP 

exists in the ROI. The goodness-of-fit is measured by the F statistic of a linear regression model 
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that combines the selected variants into a collapsing score. The final test statistic is the absolute 

value of the t statistics for the final linear regression model E(y) = α + βSfinal, where Sfinal is the 

final collapsed score including all selected common and rare variants. Without knowledge of the 

distribution of the final t statistic, a genome-wide permutation needs to be performed to evaluate 

the global empirical p-value. This data-adaptive forward selection procedure selectively chooses 

only variants that improve the joint association between the ROI and the disease trait.  

 

LASSO  

The LASSO is an efficient variable selection method for high-dimensional data analysis 

[Tibshirani, 1996]. Recently, the LASSO and its variants have been adapted to the analysis of 

high-dimensional genetic variants [Szymczak et al., 2009; Dasgupta et al., 2011]. Chen et al. 

[2011] applied LASSO regression to select common variants that should remain in the model. 

They performed a 10-fold cross-validation for estimating the shrinkage parameter (λ) for the 

LASSO. The common variants remaining in the model after LASSO selection and the covariates 

and rare variant score were then fitted in a multiple regression model. The joint genetic 

association of common and rare variants was tested using the partial F test. 

Table I summarizes the analyses of rare variants performed by GAW17 Group 15 

contributors. Both the quantitative traits and the dichotomized trait were analyzed. Because the 

contributors decided to be either blinded or unblinded to the simulation answers, the analytical 

strategies discussed during the GAW17 meetings were heterogeneous. However, all contributors 

chose to use similar analytical approaches in their final contributions. Given the causal genetic 

associations simulated in 200 replicates, all work groups evaluated the performance of existing 

or novel approaches by testing type I error fraction and power [Chen et al., 2011; Dai et al., 
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2011; Dering et al., 2011b; Luedtke et al., 2011; Sun et al., 2011] or receiver operating 

characteristic (ROC) curves with similar measurements [Li et al., 2011; Lin et al., 2011; Sung et 

al., 2011]. Because all causal SNPs were nonsynonymous in the simulation model, six out of 

nine work groups examined the performance of collapsing methods by including 

nonsynonymous SNPs only. Almost all contributors implemented permutation tests to determine 

the statistical significance resulting from the nonstandard distribution of the test statistics derived 

from the collapsing methods. The inclusion of covariates was also considered to assess its impact 

on the performance of these methods. 

 

Results 

After extensive investigations of the collapsing methods for rare variant analysis, we 

observed several common themes in our group. Although the power can be improved under 

specific scenarios, such as filtering nonsynonymous SNPs and inclusion of appropriate 

covariates, the overall performance of all tested methods was similarly poor. By adjusting for 

multiple testing of thousands of genes, all collapsing methods were underpowered to detect 

genes with causal rare variants in 697 unrelated samples except for a few top genes, such as 

FLT1 and KDR for the simulated quantitative trait Q1.  

We also observed surprisingly high type I error fractions for Q1 and Q2 across all tested 

methods. For Q4, which did not have any causal genetic variants simulated, the type I error 

fraction of the tested methods was not inflated. Two work groups in Group 15 further 

investigated the potential causes of the inflated type I error [Luedtke et al., 2011; Sung et al., 

2011] and identified hundreds of SNPs in gametic phase disequilibrium with the causal rare 

variants. Gametic phase disequilibrium, also called gametic disequilibrium, is the nonrandom 
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correlation between genetic loci. Here, we use the term to define such nonrandom correlation 

between loci that are located beyond a local haplotype block, sometimes on different 

chromosomes. In extreme cases, a noncausal SNP had identical genotypes as the causal SNP for 

all 697 individuals.  

Another potential cause of inflated type I error is population structure. Principal 

components analysis (PCA), which is used to adjust for population structure, reduces type I error 

[He et al., 2011; Luedtke et al., 2011], but the effectiveness of controlling the false positives is 

influenced by the MAF [He et al., 2011]. Specifically, PCA reduced false-positive fractions more 

effectively in common SNPs (MAF > 0.05) than in rare SNPs (MAF < 0.01). Unfortunately, 

although false-positive fractions were reduced, the power to detect true associations was also 

reduced by using PCA. 

Not surprisingly, we confirmed that the power for identifying associations of rare variants 

can be improved by including the appropriate prior knowledge. For instance, incorporating the 

correct covariates in the model increased both sensitivity and specificity [Lin et al., 2011]. In 

addition, the power to identify associated genes increased by selecting only the nonsynonymous 

SNPs for all collapsing methods, because all causal rare variants were nonsynonymous SNPs in 

the simulation model. Meanwhile, the synonymous-SNPs-only test served as a negative control 

for assessing the false-positive fraction. Given that all simulated effects of rare variants were 

deteriorating, the data-adaptive methods, such as the aSUM method, did not perform better than 

the non-data-adaptive methods. 

We also observed interesting features of some novel approaches. The forward selection 

method combining both common and rare variants achieved substantially higher power than 
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other methods, which considered either rare or common variants regardless of their associations 

with the outcome [Dai et al., 2011].  

 

Discussion 

Inflation of Type I Error 

Overall we found that collapsing methods had limited capability to identify most causal 

genes because of low power and high type I error fraction. Inflated type I error fractions were 

consistently observed for simulated traits using all collapsing methods. The expected type I error 

for Q4, which has no causal variants, suggested that the inflation was not due to the statistical 

methods. A large number of SNPs in noncausal genes were in gametic phase disequilibrium with 

causal SNPs simulated for Q1 and Q2 [Li et al., 2011; Luedtke et al., 2011; Sung et al., 2011]; 

that is, they were highly correlated with causal SNPs. These highly correlated or even identical 

genotypes may account for the large number of false-positive genes for Q1, Q2, and the affection 

status. Because the number of rare variants (especially the private mutations observed only once 

in the sample) was much larger than the sample size, it was more likely that causal and noncausal 

variants shared the same or similar genotype distributions. For the sample size of 697, at least 

two private mutations were on the same individual’s genome among every 698 rare variants with 

private mutations. These pairs of rare variants, which may include simulated causal variants, had 

perfect correlation. The spurious correlations among causal and noncausal rare variants could 

have been caused by gametic phase disequilibrium and population stratification [Luedtke et al., 

2011]. A further analysis showed a higher amount of gametic phase disequilibrium than random 

chance, which suggests potential genotyping errors from the exomic sequencing; however, no 
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information about genotype calling, cleaning, or other preprocessing steps were available for 

these data to allow us to further pinpoint the cause.  

 

Permutation and Computation 

 Because of the unknown distribution of the test statistics and because of potential 

correlation among genetic variants, the Group 15 contributors needed to use permutation to 

accurately determine the statistical significance for most collapsing methods of rare variant 

analysis. Permutation is a computationally expensive procedure that generates the null 

distribution of the test statistic by deconstructing the relationship between predictors and 

outcome repeatedly. Permutation of high-dimensional data requires a large amount of 

computational resources. To achieve a significant empirical p-value adjusted for multiple testing, 

investigators need hundreds of thousands of permutations to scan the human exome. In a 

simplified example, a Bonferroni-corrected p-value of 0.05 for 20,000 human genes requires at 

least 400,000 permutations (1/(0.05/20,000)). Although the total number of human genes is 

approximately fixed in the equation, other factors (e.g., a non-gene-based ROI) might increase 

the total number of permutations needed.  

Improvements in both software and hardware can address this computational challenge. 

Well-implemented algorithms can greatly speed up the computation of high-throughput data for 

genetic epidemiological studies [Schwarz et al., 2010]. A large number of permutations can also 

be easily parsed into smaller jobs to take advantage of parallel computing available in all high-

performance computing facilities and smaller scale computer clusters. The multicore design of 

the latest CPUs and graphic processing units (GPUs) combined with parallel programming 
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techniques will help genetic epidemiologists to address computational challenges in analyzing 

rare variants and sequencing data.  

On the other hand, genetic epidemiologists start to face another issue of data 

management: how to securely transfer, store, and back up the large amount of sequencing data 

(terabytes rather than gigabytes). A well-designed computation environment will be critical to 

conquer these technical bottlenecks for analyzing next-generation sequencing data. More 

important, like all new forms of data for genetic epidemiological studies, the next-generation 

sequencing data need to be carefully examined and cleaned. The issue of data quality cannot be 

overemphasized at the early stage of the analysis of next-generation sequencing data. The valid 

scientific findings have to rely on high-quality sequencing data that are likely to be more critical 

for studying rare variants.  

 

Real Data Analysis: The More We Know, the More We Know What We Don’t Know 

One of the biggest questions still unanswered after extensive studies of simulated data is 

how to best analyze the real data with many rare variants from sequencing projects. With limited 

simulation models, we are not able to evaluate all scenarios where these assumptions are 

violated. In practice, we do not know the location and effect of noncoding causal variants (e.g., 

cis-regulatory elements), the proportion of causal variants that change protein coding 

(nonsynonymous vs. synonymous SNPs), the weight of a genetic variant relative to the allele 

frequency, the direction of the genetic effects (deteriorating vs. protective), or the boundary of an 

ROI. In that regard, the data-adaptive approaches and methods that require minimal assumptions 

are more favorable. Several interesting directions should be considered or combined in the future 

analysis of rare variants. The aSUM statistic addresses the issue that causal variants may not 
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have effects all in one direction. Unfortunately, the GAW17 data simulated only deteriorating 

effects that do not allow a formal test to examine the benefit of this flexible approach. The 

weighted KBAT seems to be less sensitive to the assumption of lower MAF and larger effect 

size. It suffers less power loss than the WS method when this assumption is violated [Li et al., 

2011]. 

All Group 15 contributors chose the gene, a natural unit of the human genome, as the 

ROI for collapsing genetic variants. However, the ROI can also be based on nongenic regions, 

such as transcriptional regulatory regions, functional domains within a gene, or a set of related 

genes (e.g., a protein complex or a pathway) [Dering et al., 2011a; Tintle and Pugh, 2011]. The 

benefits of choosing alternative ROIs cannot be assessed using the GAW17 data because of the 

limitation of the simulation. In real data analysis, using an alternative collapsing unit may help to 

identify disease-related molecular mechanisms by enriching the genetic signal.  

 Sequencing data provide the ultimate resolution of the genetic variants in human DNA. 

With large populations sequenced, eventually we will be able to identify the causal genetic 

associations on the human genome. With the improvements in measurement, data processing, 

management, and methods of analysis, we will be able to further understand the genetic causes 

of complex diseases and develop strategies to deliver better prevention, diagnosis, and treatment 

to the public.   
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Table I. Overview of Group 15 contributions 

Contribution Phenotype Collapsing method Rare SNP MAF (%) SNP filter Type I error Power Permutation 

Chen et al. [2011] Q1, Q4 RVT, aSUM, CMC, LASSO 0.5, 1, 5 All Y Y Y 

Dai et al. [2011] Q1, Q2 Forward selection, CAST, WS, 

RVT 

1 All Y Y Y 

Dering et al. [2011b] Affected CAST, CMC, WS, RVT 1, 2, 3, 5, 7, 10 All, nsyn, syn Y Y Y 

He  et al. [2011] Q1 RVT, aSUM 1 nsyn Y Y Y 

Li et al. [2011] Q1, Q2, Q4, Affected CMC, WS, KBAT, Bayesian 

mixed-effects model 

5 nsyn, syn Y Y Y 

Lin et al. [2011] Q1, Q2, Q4, Affected VT, WS, RVT 1, 5 All Y Y Y 

Luedtke  et al. [2011] Affected CMC, WS, RVT, CMAT 5 All, nsyn Y Y Y 

Sun  et al. [2011] Q1, Q4, Affected Mantel test 5 All, nsyn Y Y Y 

Sung et al. [2011] Q1, Q2 RVT 5 All, nsyn Y Y N 

 

CAST, collapsing and summation test; CMC, combined multivariate and collapsing method; WS, weighted-sum method; aSUM, 

adaptive summation method; RVT, rare variant test; VT, variable threshold method; CMAT, cumulative minor allele test; KBAT, 

kernel-based association test; nsyn, nonsynonymous; syn, synonymous. 
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