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Abstract 

Objective: The use of haplotypes to impute the genotypes of unmeasured single nucleotide 

variants continues to rise in popularity. Simulation results suggest that the use of the dosage as a 

one-dimensional summary statistic of imputation posterior probabilities may be optimal both in 

terms of statistical power and computational efficiency, however little theoretical understanding 

is available to explain and unify these simulation results. In our analysis, we provide a theoretical 

foundation for the use of the dosage as a one-dimensional summary statistic of genotype 

posterior probabilities from any technology. 

Methods: We analytically evaluate the dosage, mode and the more general set of all one-

dimensional summary statistics of two-dimensional (three posterior probabilities that must sum 

to 1) genotype posterior probability vectors.  

Results: We prove that the dosage is an optimal one-dimensional summary statistic under a 

typical linear disease model and is robust to violations of this model. Simulation results confirm 

our theoretical findings. 

Conclusions: Our analysis provides a strong theoretical basis for the use of the dosage as a one-

dimensional summary statistic of genotype posterior probability vectors in related tests of genetic 

association across a wide variety of genetic disease models. 

 

  



Introduction 

Access to high-throughput genotype data has facilitated the process of identifying the genetic 

component of complex diseases through genome-wide association studies (GWAS). However, 

directly measured genotype data often only covers a fraction of known single nucleotide 

polymorphisms (SNPs). Increasingly, genetic analyses leverage linkage disequilibrium (LD) to 

impute untyped SNPs. Analysis at untyped SNPs using LD information from reference panels, 

such as The International HapMap Project (T. I. H. 3 Consortium, 2010) or the 1000 genomes 

project (T. 1000 G. P. Consortium, 2010), has already yielded promising disease loci for major 

depressive disorder (Sullivan, Patrick F, de Geuss, Eco JC, Willemsen & James, Michael R, 

Smit, Jan H, Zandbelt, Tim, Arolt, Volker, Baune, 2009), Crohn's disease (Barrett et al., 2008), 

and prostate cancer (Zabaleta et al., 2009) among others. 

 While many imputation algorithms exist (e.g., MaCH (Li, Yun, Willer, Cristen J, Ding, 

Jun, Scheet, Paul, Abecasis, 2010), IMPUTE (Howie, Donnelly, & Marchini, 2009), among 

others), most algorithms generate a set of three posterior probabilities for each individual at each 

imputed SNP, representing the relative likelihood that the individual is actually each of the three 

possible genotypes at the SNP locus. While some exceptions exist (e.g., Lin et al. 2008), Hu and 

Lin (2010)), most researchers attempt to use a one-dimensional summary statistic of the two-

dimensional posterior probabilities vector (three posterior probabilities that must sum to 1) in 

place of the (unknown) true genotype in downstream statistical analyses. Common choices for 

the one-dimensional summary statistics are the mode and the weighted mean (dosage) of the 

three posterior probabilities. While posterior probabilities are common for imputed genotypes 

they also occur when using next-generation sequencing data and SNP microarray technology.  



Recently, extensive simulations demonstrated that the dosage retained enough 

information that, in most realistic settings, the use of computationally intensive mixture models 

which account for the entire posterior probability vector improved power negligibly over a 

simpler, faster analysis using the dosage (Zheng, Li, Abecasis, & Scheet, 2011). Furthermore, the 

dosage consistently outperformed the mode.  

Despite these simulation results, little theoretical work has been conducted to consider 

whether the dosage will always perform optimally relative to the mode. Furthermore, while the 

dosage is a reasonable choice of one-dimensional summary statistic, it is unknown if more 

optimal summary statistics are available. In the following manuscript we provide analytic proof 

that across a variety of disease models dosage will always outperform the mode. We then show 

that the dosage is equivalent to the optimal one-dimensional summary statistic up to a 

perturbance term which is essentially zero in all practical situations. We confirm our analytic 

results using simulation. 

 

Methods 

The following subsections are organized as follows. First, we provide an overview of our 

notation and the main genetic disease model under consideration. We then provide proof that the 

score test using the dosage is equivalent to the score test using the entire vector of posterior 

probabilities. We then show that the dosage outperforms the mode and is, in fact, the optimal 

choice of one-dimensional summary statistic across linear genetic disease models, and is a robust 

choice for non-linear models. We conclude the methods section by describing simulation 

analyses used to confirm the analytic results. 

 



Basic notation and disease model 

Individual genotypes provided by imputation software, as well as some SNP microarray and 

sequencing technology, are typically provided for each individual,  , as a vector of three 

posterior probabilities,    (           ), where     is the posterior probability that individual 

  has   minor alleles,         at a SNP of interest. The vector of posterior probabilities,   , can 

be interpreted as suggesting that the true minor allele count for individual  , denoted   , can be 

modeled as being a single random draw from a multinomial distribution with probabilities 

indicated by   . We assume that    is known for each individual. Let    be an indicator for 

disease status and let the probability of disease for individual   be given as   (  )  A general 

formulation for the disease-genotype relationship is             (  (  )) where     (    )  

We assume that   is a smooth function and   is a parameter vector constrained so that the range 

of   is some subset of the unit interval. We will use the term additive model, to mean that the 

function   depends on    and   only through a term of the form        . In this manuscript we 

explore two types of additive models (1) A linear additive model:            (2) and a 

(nonlinear) logistic additive model,    
        

          
. When    is unobserved, it is common to 

naively plug in a one-dimensional summary statistic such as the mode,              , or 

the dosage,            , for the genotype in the disease model.  

 

Score Test Using the Posterior Probability Vector 

Intuitively, we anticipate a loss of information when summarizing the entire posterior probability 

vector with a one-dimensional summary statistic. However, we will now show for the commonly 

used logistic model that a score test using the dosage is equivalent to a score test from a model 

that incorporates the entire posterior probability vector.  



The observed data likelihood of  ̃  for a random sample of n individuals is given by 
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where  ( ) is the log-likelihood. Thus, under the null hypothesis of no association,      and 
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Next we consider the score component for the model which substitutes the dosage for the 

unknown genotype. The model utilizing the dosage can be written    
   (            )
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. In 

this case, the score component is 
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    where again 
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.  

We note that a score test is the score component,  , divided by the negative derivative of 

the score component,  , which is known as the observed information. Thus, because   is 

equivalent and the null models under either formulation admit the same distribution for  , it 



follows that the score tests for association are equivalent.  When covariates are present,   and   

depend on  . The score statistic is computed by substituting  ̂ , the MLE estimated under the 

null model, in place of  .  

 

Optimal choice of a one dimensional summary statistic  

While we have demonstrated that the score test using the dosage is equivalent to a score test 

using the entire vector of posterior probabilities, we have not considered the power of such an 

approach. The score test is known to perform well asymptotically, but we have no reason to 

assume that the dosage will perform well in finite samples. In the following sections we explore 

intuitive choices for  , a general one-dimensional summary of the posterior probabilities, and 

then derive its optimal value. 

 

Explicit expression for the non-centrality parameter  

In Appendix A, we assume a logistic model and provide the score statistic for any one-

dimensional summary,  , of  , the true genotype. We derive the statistic under the logistic model 

because this is the most popular model choice in applied work. All subsequent power 

calculations are performed with respect to this class of test statistics. Our goal is to evaluate the 

power across a range of true models, which may or may not be logistic, seeing how the optimal 

summary depends on various assumptions about the true model. An expression is given for the 

noncentrality parameter when the true model has a general form,     (    ), and an 

analytically useful version results when we assume the true model is linear. Since a larger 

noncentrality parameter is a necessary and sufficient condition for a more powerful test, in the 



proceeding sections, we will use the noncentrality parameter to compare the efficiency of various 

one-dimensional summaries,  .  

 

Dosage Beats Mode 

In Appendix B, we prove that the dosage is more highly correlated with the true genotype than 

the mode. This result makes no assumptions about the form of the true disease model (e.g., linear 

or logistic) and holds for all finite sample sizes. We note, however, that a higher correlation 

between the imputed genotype and the true genotype does not automatically imply a more 

powerful test. To draw conclusions about higher power from higher correlation alone, one must 

also assume that the true disease model is linear:             . We consider non-linear 

models more explicitly later (Nonlinear Disease Models). 

 

Optimal Summary of Posterior Distribution 

Although the superiority of the dosage to the mode is an important result, we have not yet 

demonstrated that the dosage is an optimal one-dimensional summary statistic. In Appendix C, 

we show that the score test which results from using the dosage is essentially identical to a score 

test using the optimal one-dimensional statistic. In Appendix C, we start by noting that the 

optimal one-dimensional statistic yields the test with the largest noncentrality parameter. Finding 

the optimal statistic is therefore equivalent to finding the statistic which maximizes the 

noncentrality parameter defined in Appendix A. Results from perturbation theory show that the 

dosage is nearly identical to the optimal statistic in all realistic situations. When the true disease 

model is linear, it follows that the score test using the dosage is essentially optimal.  



 Taylor series expansions show that an additive logistic disease model is well 

approximated by a linear model when disease prevalence is low for all genotype groups or the 

SNP effect size is small. Additionally, we expect the projection of the additive logistic model 

onto the space of all linear models to result in a model respecting the range of   , namely some 

subset of the unit interval, since    is bounded and only takes three values. For cases in which 

this linear approximation is inadequate, our results in the section Score Test Using the Posterior 

Probability Vector still apply. These results serve as insurance that the dosage will perform 

strongly in the case of an additive logistic model, that it will be asymptotically optimal since the 

score test is asymptotically most powerful. However, there is no longer any claim on optimality 

in finite samples when the additive logistic model is not well approximated by a linear model.   

 

Nonlinear Disease Models and Covariates 

The previous sections assumed either a linear or approximately linear disease model. While the 

assumption of approximate linearity is common in practice with the use of a logistic model, we 

now consider non-linear modes of inheritance. We first analyze the situation without covariates. 

In Appendix D we derive the optimal score test for this case. As in the case of a linear model, the 

optimal statistic for a nonlinear model is well approximated by a simple one-dimensional 

statistic. Specifically, an approximation of the optimal statistic is given by a linear combination 

of the dosage and a generalization of the dosage which we call the second-order dosage.  This 

linear combination is given by   
( )     

( )
, where   

( )
           represents the     order 

dosage (which governs the     order effect) for       and   represents the ratio of the second to 

first order effects, a measure of non-linearity.  



To build some intuition about  , let us examine two common non-linear models. For a dominant 

disease model use         instead of the dosage, and for a recessive disease model use     

instead of the usual dosage. For more complex models, we can formulate the intuition behind   

as follows. The posterior distribution of the genotype can be indexed by two parameters: the 

mean and the variance. For linear and approximately linear models, one can simply pretend that 

      with little cost. For nonlinear models, the cost is non-trivial. The variance in the 

posterior distribution should then inform us on an individual basis of the cost of the assumption 

     , and allow us to adjust the weight of evidence accordingly. 

 Appendix D shows that the only change to our analysis through the inclusion of 

covariates is to allow the nonlinearity of the SNP effect to depend on the values of the covariates. 

Implementation wise, the optimal linear combination is now   
( )   (  )  

( )
 where the measure 

of effect nonlinearity,    depends on   . Such complications can be avoided if the SNP and 

covariate effects are additively separable,     (  )   (  ), in which case a common   

suffices to summarize nonlinearity of the SNP effect. 

 

Continuous Traits 

In Appendix E, we derive the optimal score test for normally distributed continuous traits which 

are linear functions of the genotype and a set of covariates. Thus we have analytically shown that 

the dosage is the optimal statistic for the additive continuous traits model considered in Zheng et 

al. (2011). 

 

Simulation 



To verify the theoretical results empirically, we calculated power using simulated data. We 

considered three different characteristics of SNPs: (1) the    coefficient between the dosages and 

the genotype (Note: this    coefficient is the value that MACH approximates with its    

imputation quality measure (Li, Yun, Willer, Cristen J, Ding, Jun, Scheet, Paul, Abecasis, 2010))  

(2) the minor allele frequency, which unless otherwise stated was set at 0.1 and (3) the odds ratio 

under an additive disease model. We consider values of   ranging from 0.1 to 1, MAF ranging 

from 0.05 to 0.5 and odds ratios ranging from 1.0 to 2.0. For each simulation setting 10,000 

SNPs were simulated with 1000 cases and 1000 controls. Disease prevalence was fixed at 50% 

among individuals with no risk alleles. Unless otherwise stated, power was calculated at the 5% 

significance level using the asymptotic distributions of the score tests. 

 

For each SNP and each individual   we compute posterior probabilities    by sampling from a 

Dirichlet distribution, where    (           )            (
(   ) 

 
 
  (   )

 
 
  

 
). We let   

indicate the minor allele frequency of the SNP and   be a nonnegative constant chosen to obtain 

the desired   . Varying   does not appear to greatly modify the standard deviation of the    

coefficient, which ranges between 0.02 and 0.03 across all simulations. An individual’s genotype 

   was determined by sampling from a multinomial distribution with probabilities indicated by 

the vector of posterior probabilities   .   

Results 

We conducted simulation analyses to confirm the theoretical findings described earlier. In the 

following sections we briefly describe the results of these simulation analyses. Figure 1 

empirically demonstrates that the score test for the dosage is uniformly more powerful than the 

test for mode. In this setting we note that the power for the true genotype test is much higher than 



the power for both the dosage and mode score tests. However, this is not surprising given the 

relatively low imputation quality (r
2
=0.6), used in this graph.  

As expected, as imputation quality increases, power increases (Figure 2). Furthermore, 

the power of the dosage and mode tests approaches the power of the linear trend test using the 

true genotype as r
2
 increases. We note that, for     , all three tests are identical and thus 

obtain the same power. On the other hand, for low    the dosage and mode contain little 

information about the true genotype, and so low power is obtained. Nonetheless, it is interesting 

to see that the dosage outperforms the mode even in this setting. 

 Figure 3 shows that the power of all methods increases as the log odds ratio increases. 

When the odds ratio is 1 the power is equivalent to type I error rate. Importantly, all methods 

control type I error with empirical type I error rates equal to the nominal rate of 0.05 (detailed 

results not shown). For larger odds ratios we find the expected result that true genotypes are 

more powerful than dosages, which are in turn more powerful than the mode. As odds ratios 

grow sufficiently large all methods have power approaching 1, though the power rankings of the 

three methods remains. 

 Lastly, Figure 4 shows that power decreases as minor allele frequency decreases. While 

all tests of association are low powered at a minor allele frequency of 0.05, relative power 

ordering still holds for the methods, with the true genotype yielding the highest power at 0.40, 

the dosage yielding the second highest power at 0.26, and the mode yielding the lowest power at 

0.22. 

 We also compared the dosage to the optimal summary statistic given as a dominant 

eigenvector in Appendix C. Simulations showed that the power and type I error were virtually 

identical using the two statistics (detailed results not shown). 



 

Discussion 

 Previous work has shown that the computational overhead may not be worth the modest 

power gain from using the entire vector of posterior probabilities instead of the weighted mean 

posterior probability (dosage). In our analysis, we provided analytic proof that the dosage is 

essentially equivalent to the optimal choice of a single summary statistic in all practical 

situations across a range of genetic disease models, far exceeding the power obtained from using 

the modal posterior probability. These results were confirmed via simulation.  

 There are a number of important implications of these conclusions. First, while 

theoretical results and simulations considered the score test, due to the asymptotic equivalence, 

the optimality of the dosage extends to the related likelihood ratio and Wald tests. Furthermore, 

as considered in Appendix D, extensions to models including covariates show similar results, 

unless the effects of covariates are very large. 

Superficially, our results may seem to depend (i) on the assumption that the true model is 

linear or approximately linear and (ii) on asymptotic approximations via Taylor expansions. 

However, two facts show that our results should have broad applicability across a range of 

models and for finite samples. First, the dosage is the one dimensional summary most highly 

correlated with the true genotype. This holds for all sample sizes and regardless of the true 

disease model. Second, naïvely assuming    
   (       )

     (       )
 in place of the actual mixture 

model    ∑
   (      )

     (      )
   

 
    does not change the resulting score statistic. Since it is well 

known that an additive logistic disease model is robust to misspecification (Friedlin B et al., 



2002), this suggests that the score statistic from the naïve model,     (  ), well approximates 

the score statistic from the true mixture model,    ∑  ( ) 
     

Additionally, as shown in Appendix D, in many realistic non-linear models, the dosage 

remains a nearly optimal choice of one-dimensional statistic because the degree of nonlinearity is 

negligible. Even when non-linearity of the SNP effect is appreciable, Appendix D shows that to 

the extent that the non-linearity can be explicitly described, simple adjustments to the optimal 

one-dimensional summary can be made to preserve efficiency. Trivially, for a dominant disease 

model use         instead of the dosage, and for a recessive disease model use     instead of 

the usual dosage. A method for choosing the optimal summary statistic for more complex models 

can be found in Appendix D. In additional simulation analyses, not shown here, the dosage 

showed robustness across a wide-variety of non-linear models, with robustness related to the 

extent of non-linearity. 

 For continuous responses, Zheng et al. (2011) implemented a mixture model utilizing the 

entire vector of posterior probabilities. In analyses not reported here, we did similarly with an E-

M algorithm and found that, like Zheng, dosage performed similarly with far less computational 

expense. In Appendix E we outline the proof of optimality of the dosage under a normal linear 

model for a quantitative response. While we did not provide simulations here, extensive 

consideration of this model and deviations from it can be found in Zheng et al. (2011). These 

extensive simulations also consider cases with sample sizes as low as 50 (Zheng et al.; Figure 3) 

suggesting robustness to the asymptotic assumptions underlying portions of the results shown 

here.  

 While we do not consider the new class of rare variant tests explicitly, our results may be 

extendable to two classes of rare variant tests, with a word of caution. For rare variant tests 



which collapse rare variants into a single “super variant”, the dosage is given by the probability 

that any one of the included variant sites contains the rare variant, that is by   ∏      , where 

     represents the posterior probability for person   not having a rare variant at site  . For rare 

variant tests which regress the total number of rare variants present across a set of variant sites, 

the modified dosage is given by ∑     . The former is really a special case of the latter based on 

the approximation ∑       ∑         . Suppose that the variants enter into the disease model 

additively, ∑         ∑
  

 
    . Then our results apply by thinking about the imputation of 

∑
  

 
     which now depends not only on the posterior probabilities for each     but also on the 

nuisance parameters 
  

 
. How to effectively estimate the nuisance parameters remains an area of 

active research. However, given the nuisance parameters, our results suggest that a near optimal 

summary would be ∑
  

 
    . In particular, one may justify use of  ∑      by assuming 

homogeneity of effects across variants. Caution needs to be taken for small sets of variant sets or 

sample sizes, however, because in these cases the perturbation term by which the dosage differs 

from the optimal summary may be nontrivial. Simulation studies and further analysis of these 

rare variant strategies, along with consideration of the recently proposed class of variance-

components tests, is needed. 

 Few assumptions are required on the posterior probabilities in order for the results 

described here to be valid. In particular, posterior probabilities, while commonly obtained from 

imputation, can also be obtained from both SNP microarray and next-generation sequencing 

technologies. The analytic calculations shown here directly extend to these platforms. The main 

necessary assumption about the posterior probabilities is that they are correctly calibrated—

namely, that the vector of posterior probabilities,   , can be interpreted as suggesting that the 



true minor allele count for individual  , denoted   , can be modeled as being a single random 

draw from a multinomial distribution with probabilities indicated by   . While this interpretation 

is almost uniformly made in practice, any systematic technological bias could impact this 

interpretation, making the analytic conclusions provided above no longer hold. 

 The dosage is commonly used as a shortcut to use of a wide-class of statistical methods, 

which assume knowledge of the true genotypes. We provide analytic justification of its use 

across a wide variety of genetic models.  
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Appendix A 

Much of the derivation of the non-centrality parameter follows Wu et al. (2011). The logistic 

model utilizing a general one-dimensional summary of the posterior genotype distribution,   , 

can be written as             (  (  ))   where      (  )         . Following arguments 

made in the main text (Methods: Score Test Using the Posterior Probability Vector), we can 

denote the squared score component as (   ̂ )
    (   ̂ ) where   (       )

 ,   

(       )
  and  ̂  as the vector of disease probabilities estimated under the null hypothesis. 

We note that when the SNP is typed,       and the above corresponds to the Armitage linear 

trend test.  

Define    (             )  as the vector of differences between the true disease 

probability and the null disease probability. Under   , we have      . Let      ( )  

    (  (    )). The squared score component can be rewritten as follows 

 (   ̂ )
    (   ̂ ) 

  (   ̂       )
 
  

 

  
 

     
 

   
 

 (   ̂       )  

  (   ̃ )
 
 (   ̃ )  

where       ⁄ (   ̂    ),  ̃      ⁄   , and      ⁄       ⁄ . Note that    has mean 

  and variance  . A spectral decomposition on   gives        where   (       ) and 

      (       ).    are the orthonormal eigenvectors of   corresponding to the eigenvalues 

  . Because   is    , only one of the eigenvalues is non-zero and we take this to be   . 

Asymptotically   
 (   ̃ )    (  

  ̃   ). Thus, 

 (   ̂ )
    (   ̂ )  (   ̃ )

 
    (   ̃ )       

 ( )  



where   is the noncentrality parameter, and    ̃     
  ̃  (  

  ̃ )
 
. Note that     ̃  

    ‖  ‖‖ ̃ ‖      ‖ ̃ ‖ since    is orthonormal and     ‖ ̃ ‖ is simply the length of 

the projection of  ̃  in the direction of   . In this case    
   ⁄  

‖   ⁄  ‖
.  

Thus the quantity which determines power is      where   is the angle between    ⁄   

and  ̃ , i.e. how well the summary of the posterior genotype distribution   is aligned with the 

ways in which the truth deviates from the null hypothesis,  ̃     ̂ . 

Consider the special case of a disease model which is truly linear,           . Under 

this model       . The noncentrality parameter is 

(  
  ̃ )

 
 (   

  )  (         ‖ ‖‖ ‖)
 
. Note that the key quantity is         or how 

well aligned our summary   is with the true genotype vector  .  



Appendix B 

We now consider the special cases of the score test from Appendix A where the one-dimensional 

summary statistic    is equal to    (dosage) or    (mode).         is then the observed 

correlation between    and the true genotype    and we show that the dosage is always more 

highly correlated with the true genotype than is the mode. In this Appendix we assume that the 

posterior probability vectors    (           ) are drawn i.i.d from some arbitrary distribution 

on the 2-simplex. We note that this implies    and    are now both random variables whereas 

above when    was treated as fixed, the dosage and mode were also fixed. In other sections of 

this paper we condition on    and thus we are able to treat them as constant. 

 

Using the law of total covariance 

    (     )   (   (        ))     ( (     )  (     ))     (  )  

Because given   ,    is a constant and thus    (        )    and     (     ). A second 

application of the law of total covariance gives: 

   (     )   (   (        ))     ( (     )  (     ))     (     ) 

Let       represent    (     ) and       represent    (     ). Thus, by substitution, we have  

      
       

  
   (     )

√   (  )   (  )
 

   (     )

√   (  )   (  )
  

  
   (  )√   (  )    (     )√   (  )

√   (  )   (  )   (  )
  

  
√   (  )   (  )    (     )

√   (  )   (  )
  

     

since    (     )  √   (  )   (  ) by the Cauchy-Schwarz inequality. 



 So far, no asymptotic arguments have been used. Asymptotics come into play only in 

linking      
  to          and      

  to         , where      
  and      

  are the population 

counterparts of the sample quantities,          and         . The justification for using dosage 

over mode in any particular sample depends on the inequality                   rather than 

the inequality      
       

 . As    ,               
  and               

  (Lang, 

2000). Thus as    ,                   almost surely. And so, based on the equation for 

the noncentrality parameter shown in Appendix A, the test using the dosage has a larger 

noncentrality parameter than the test using the mode, implying that the score test using the 

dosage test has more power than the test using the mode.  

  



Appendix C 

For the set of linear trend tests using the statistic (   ̂ )
    (   ̂ ), we derive the optimal 

 , where we define optimal to be the   which yields the most powerful score test. 

Thus, to find the optimal   we wish to maximize the noncentrality parameter   
  ̃  ̃ 

    

(see Appendix A) subject to the constraint that ‖  ‖   . Under the linear disease model, 

 ̃     
      where    is a multiplicative constant that is irrelevant to the optimization 

problem. Thus we wish to solve the optimization problem given as follows: 

         (  (      )(      )
 
 ) subject to        

Because         and the optimal   is unique only up to scaling (significance of the test does 

not depend on how we scale  ), we can reformulate the problem as: 

        (      )                    The first-order conditions are  

 ( ( ) ( )     ( )    )     

Thus   is dominant eigenvector of 

  ( ) ( )     ( ) 

   

         ( )  

where    ( )      (           
 ).  

Let  *
 be the dominant eigenvector of    , which ignores the covariance term. Below, 

we justify why ignoring the covariance term has negligible effect in most situations. Note that 

   
 

‖ ‖
 and since the scaling on   does not matter for testing purposes, this suggests we take 

        if the covariance term can be ignored.   



To justify approximating   with  *
, in essence why it is acceptable to ignore the 

covariance term, we can assume without loss of generality that    
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 ]  

   (  ). Applying a result from perturbation theory, see Equation 6 in [11], yields : 
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where CV is the coefficient of variation where     .  

We can interpret 
 

   (  )
 as a measure of of the signal to noise ratio (of the imputation 

process) for individual i. Thus, ∑   
 

   (  )

 
    is a weighted sum that measures the overall 

precision of the imputation process, where the weights,  
   (  )

   (  )
, serve as a standardization factor.   

As n goes to infinity, the weighted sum of the precisions goes to infinity as well, i.e. there is an 

accumulation of genotype information across individuals so that the angle between   and    

goes to 0.  Finally, we combine the bound with the following approximation for small angles, 

               
 

 
           to conclude that g

*
 and g are essentially identical.  

Finally, we note that, since the   ’s are observed, one can always calculate 
 

   (  )
 for 

each study  to find an upper bound on how much   and    are expected to differ. However, we 

note that in our analyses, details not shown, for practical sample sizes,   and   will be very 

close.  

  



Appendix D 

We now consider more general disease models and study how a nonlinear effect of genotype 

count on disease risk impacts the efficacy of one-dimensional summaries of the posterior 

probability vector. Let    be the genotype of individual   and    be a vector of covariates. Let 

  (     )   (     ) and       (  )   (    ). Note that the inclusion of covariates in the 

model suggests that     may vary between individuals, unlike in previous appendices. Because 

   has only three states, any   is sufficiently described by a quadratic fit through the three points, 

and so without loss of generality we assume   is quadratic. Then: 

         (     )    (  )    (    )      (    )  
   

There are two assumptions we can make to simplify the analysis: (i)   is sufficiently linear in    

(   (    )   ) for all    values and (ii) that interactions between    and    are negligible 

(  (    )    ( ) is free of   ). A special form of (ii) occurs when we assume that the SNP and 

covariate effects are additively separable:     (  )   (  ). Then         (  ) and the 

problem reduces to the case without covariates. If we make both assumptions (i) and (ii), then the 

intuitions derived in Appendices B and C for a disease model where risk is linear in genotype 

count are expected to hold. The logistic model belongs to this class, thus explaining why dosage 

performs so well in this important case. To see this in the simple case of no covariates, let 

   
        

          
  (  ) and Taylor expand this expression about the dosage   : 

    (  )    (  )(     )     (  )(     )
   

One can show that    (  )    
   (    )(     )       

 . A linear approximation to the 

logistic model results if we can justify ignoring the second order term. The upper bound already 

gives us some grounds for doing so. In addition,    (  ) is near zero and thus negligible if      



(low prevalence in a prospective cohort study), if        (approximately equal number of cases 

and control in a case-control study), or if the SNP effect is small.  

We now move towards an analysis applicable towards a general disease model by first 

relaxing the assumption (ii), i.e., the effect of    does not depend on the value of   . Then 

 ̃    
 

    where       (  (    )). The optimization problem for the non-centrality 

parameter becomes         (        )                  . If   is far from being 

proportional to the identity matrix, then this implies that the amount of “signal” we can expect 

from different individuals is different on average. Thus the scheme which treats all individuals 

equally is suboptimal. 

 We now relax assumption (i), linearity of the SNP effect. To optimize the noncentrality 

parameter on average, we solve we solve            (      
  ) subject to        

Recalling that    represents the vector of differences between the true disease probability and 

the null disease probability, it follows that from the Taylor series expansion that the     vector 

   is given by (   )  (  (    )      (    )  
 ). Following the results of Appendix C, the 

solution is the dominant eigenvector of   
 

 [ (  ) (  )
 
    (  )]  

 
 

 .  

Using the same arguments from perturbation theory,  (  ) is an essentially optimal one 

dimensional summary. Here,  (   )   (  (    )      (    )  
 )    (    )  

( )  

   (    )  
( )

, where   
( )

  (  
( )

)            gives what we call the     order dosage. We 

note that in most realistic situations  (  )  (  ) will be large enough that the angle between 

the dosage vector,  (  ), and the optimal summary    will be essentially  .  



Note that   
( )

 is denoted d in the rest of this paper. The relative importance of the first-

order versus the second-order dosage in our optimal summary is determined by the relative 

magnitudes of   (    ) and    (    ). If the effect on risk of the second allele differs 

significantly from that of the first, i.e.    (    ) is large in magnitude, then the first-order dosage 

is an insufficient summary.  

 This is result is intuitive. The extent to which we need information beyond the dosage 

depends on the extent to which the disease model is non-linear. Note that   (    ) and    (    ) 

are not known, so implementing the optimal one-dimensional summary is infeasible for highly 

nonlinear risk models unless one is willing to make an educated guess about the relative degree 

of the second order effect. For example, if we believe that the second-order effect is some 

fraction   of the first-order effect,    (    )     (    ) for all   , then an optimal summary 

would be   
( )     

( )
. Otherwise    (  ) may depend on the covariate value for each 

individual and the optimal summary for each individual would weight the first and second order 

dosages differently,   
( )   (  )  

( )
. Note that in most cases   is unknown and the degree of 

freedom lost by trying to estimate   may more than outweigh any efficiency gain from obtaining 

a better summary of   . 

 

  



Appendix E 

Suppose now that    is a quantitative trait. Let   (       )
 , where each    is a column 

vector of covariates for individual   of length   . Assume the normal linear model given by: 

                         where   is a constant length    column vector and    

 (    ). Further let   (   ), where   is    . The F-statistic testing          is 

  (     ) 

  (    )  (    )
 

Where     (   )     and     (   )    . The noncentrality parameter of the statistic is 

an increasing function of: 

  (     )      [     ]    

  is unknown. Suppose we replace   with  ̂ (accordingly    with   ̂). The non-centrality 

parameter for the F-statistic from using  ̂ is     [  ̂    ]   . To maximize power, we again 

maximize this noncentrality parameter. That is, we seek to solve the following optimization 

problem: 

   
 ̂   

 [    [     ]        [  ̂    ]   ]     
 ̂   

 [    [     ̂]   ] 

The first-order condition can be given as (in the expectation below, note that  ̂ is fixed since it 

only depends on the covariates and hyperparameters governing the distribution of  ) 

 [  
 (     ̂) ]   [  

 (    ̂) ]    
 (    ̂) [ ]    

This says that if  ̂ is optimal, then the column space of  ̂ and   must contain  [ ]. Thus one 

optimal solution is  ̂   [ ], the dosage. This solution may not be unique just as the basis 

vectors of a vector space are not unique. 

 



Figure 1 ROC Curve evaluating asymptotic significance of different approaches to summarizing 

posterior probability vectors 

 

Caption: The asymptotic power of the dosage approach dominates the power of the test when 

using the mode, for all type I error rates. The figure illustrates the power of a test of case-control 

association for a SNP with MAF=0.10, odds ratio =1.28, and 1000 cases and 1000 controls. In 

this case the imputation r
2
 was 0.60. The relatively low imputation r

2 
explains why the dosage 

and mode are not performing better relative to the power of the test when using the true 

genotype. 

  



Figure 2 Evaluating the power of the dosage and mode across different levels of imputation 

accuracy 

 

Caption: Regardless of imputation accuracy, the dosage provides a more powerful choice of 

summary statistic than the mode. As expected, power increases as imputation accuracy increases. 

The figure illustrates the power of a test of case-control association for a SNP with MAF=0.10, 

odds-ratio=1.28, and 1000 cases and 1000 controls. 

  

  



Figure 3 Evaluating the power of the dosage and mode across different values of the odds ratio 

 

Caption For both small and large odds ratios, the dosage provided a more powerful alternative 

than the mode.  The figure illustrates the power of a test of case-control association for a SNP 

with MAF=0.10, imputation r
2
=0.6, and 1000 cases and 1000 controls. 

  



Figure 4 Evaluating the power of the dosage and mode across different minor allele frequencies 

 

Caption Across all minor allele frequencies, the dosage provided a more powerful alternative 

than the mode.  The figure illustrates the power of a test of case-control association for a SNP 

with odds ratio of 1.25, imputation r
2
=0.6, and 1000 cases and 1000 controls. 
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