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the imperfect classifier are available. Robustness of estimates and design decisions to model assumptions are considered.
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Introduction

Disease prevalence estimates in the presence of an imperfect

classifier (e.g. a diagnostic test with sensitivity and/or specificity

less than one) are biased. The extent of this bias depends on the

true prevalence of the disease and the sensitivity and specificity of

the classifier under consideration. When a ‘‘gold standard’’ (that is

a classifier that has both sensitivity and specificity equal to one) is

available, at least two sampling strategies have been proposed in

order to achieve unbiased prevalence estimates. The first option

(one-phase sampling) involves classifying all individuals in the

sample using the gold standard. However, when the gold standard

is significantly more expensive than an imperfect classifier, two-

phase sampling may be cost-effective [1–6]. Two-phase (or

‘‘double’’) sampling involves classifying all individuals in the

sample with the imperfect mechanism, and then reclassifying a

subset of individuals in the sample with the gold standard.

Essentially, two-phase sampling allows the investigator to estimate

the sensitivity and specificity of the imperfect classifier using

individuals in the sample who have been classified by both the gold

standard and the imperfect classifier. These estimates can then be

used to adjust the prevalence estimate to be unbiased.

An alternative strategy to two-phase sampling is reclassification

sampling. In this design, the entire sample is classified with the

imperfect classifier, followed by a random subset of the sample

classified a second time with the imperfect classifier; generaliza-

tions of reclassification sampling allow for individuals to be

classified any number of times by the imperfect classifier.

Reclassification sampling was first proposed by Sutcliffe in 1965

and soon after by Koch (1969) [7–9]. Since then, several articles

have considered reclassification sampling (see Fujisawa and Izumi

[10] for a brief review), however, these articles consider situations

where some portion of the sample is classified at least three times.

More recently, a hypothesis test for association between two

categorical variables was proposed for reclassification sampling

(applied to Single Nucleotide Polymorphism (SNP) genotype and

disease phenotype data) [11–13]. In that setting one of the variables

is measured perfectly, the other variable is measured imperfectly,

and some fraction r of individuals is reclassified on the imperfectly

measured variable. It was shown that, as long as classification errors

are independent between classifications, only two classifications are

needed in order to carry out the hypothesis test of association.

In this paper we explore practical situations that can provide

estimates of prevalence if individuals are only classified twice.

Further, we provide a cost-effectiveness analysis of reclassification

sampling and compare it with one- and two-phase sampling.

Specifically, we evaluate which sampling strategy is the most cost-

effective in terms of the variance of the prevalence estimate and
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show that reclassification sampling is cost-effective in many

practical situations. Throughout this paper we use the term

‘‘disease prevalence’’ however, the results generalize to any binary

classification procedure that makes independent errors.

Materials and Methods

Sampling strategy
We consider a sampling strategy where a fraction of the original

sample (denoted r) is classified exactly twice using an imperfect classifier.

The remaining fraction of the sample, 1-r, is, therefore, classified

exactly once using the same classifier. One of the goals of this paper is

to find an optimal value for r. We note that all individuals are

classified into one of two mutually exclusive groups, which for con-

venience we call ‘‘Diseased’’ (Group 1) and ‘‘Not Diseased’’ (Group 2).

Error Assumptions
We make a common assumption (e.g. Fujisawa and Izumi [10])

that classification errors have a constant probability for all sample

units. Also, we assume that classification errors are independent,

meaning individuals who were misclassified the first time are as

likely as anyone else to be misclassified the second time they are

classified. For example, consider an individual who happens to be

in the 3% of individuals misclassified the first time they were

classified. If this individual is classified a second time, the

independent error assumption says that this individual still has a

3% chance of being misclassified.

Notation
y = the total number of individuals in the sample that are

classified exactly once.

z = the total number of individuals in the sample that are

classified exactly twice.

N = y+z = the total number of individuals in the sample.

r = z/N = the fraction of the sample that is classified twice, where

0#r#1.

yi = among individuals who are classified exactly once, the

number of individuals who are classified to the ith group (i = 1,2).

zij = the number of individuals classified exactly twice who are

classified to the ith (i = 1,2) group once, and the jth (j = 1,2) group

once. Therefore, if i=j then the individual has been inconsistently

classified.

eij = the probability that an individual who actually belongs in

the ith category is classified to the jth category, where for i = 1 or

i = 2,
P2
j~1

eij~1. If i?j then eij is the probability of a classification

error. We let i = 1 be ‘‘diseased‘‘ and i = 2 be ‘‘not diseased‘‘ and so

e11 represents sensitivity and e22 represents specificity of the test.

pi = the true probability that an individual actually belongs in

the ith category, where
P2
i~1

pi~1. Thus, p1 represents the true

population prevalence of the disease.

p*
i = the proportion of observed individuals in the ith category

after a single classification.

p*
ij = the proportion of observed individuals in the ith group once

and the jth group once. We note that if there are no classification

errors (i.e. sensitivity = specificity = 1), then p*ii = p*i = pi and, for

all i?j, p*
ij = 0.

We also briefly introduce the parameters related to budget and

cost, which are considered in section titled Optimal sampling strategy

for prevalence estimation in the Results.

c = the cost per person of the imperfect classifier,

a = the cost per person for acquisition or enrollment in the study.

cg = the cost per person of the gold standard classifier.

B = the total budget available for sample acquisition and

classification.

Results

Estimating prevalence (p1) using two classifications
System (1) describes the relationship between parameters if

there are only two classifications.

p�11~p1e2
11z(1{p1)(1{e22)2

p�12~2 p1e11(1{e11)z(1{p1)e22(1{e22)ð Þ

p�22~p1(1{e11)2z(1{p1)e2
22

ð1Þ

These equations are not independent due to the constraint

p�11zp�12zp�22~1 and, hence, the system is not uniquely

solvable. To resolve that problem, one can either reduce the

number of parameters or add an equation to the system. Fujisawa

and Izumi [10], as well as Sutcliffe [6,7], introduce additional

equations by requiring at least three classifications in order to

estimate prevalence, sensitivity and specificity. It is possible,

however, to reduce the number of parameters in the system with

an alternative constraint and avoid a third classification. We

assume that there is a relationship between sensitivity and

specificity. For example, we might assume that e22 is 80% of e11,

or, in the simplest case, that e22 = e11. In this paper we consider the

following functional relationship, e22 = h e11, where h can be any

positive number as long as 0#e22#1. In this paper we consider the

robustness of estimation and, ultimately, optimal sampling strategy

decisions if the value of h is incorrect.

If we assume that h is known, we can rewrite p1, e11 and e22 as

functions of p*11 and p*12. (See Text S1 for details).

p1~
p�11{(1{he11)2

e2
11{(1{he11)2

ð2Þ

0~e3
11 {h2{h
� �

z

e2
11 0:5 {p �12 zh2p�12

� �
zp �11 h2{p �11 z1z2h

� �
z

e11(p �11 {1{hp �11 {hp �12 )z0:5p�12

ð3Þ

Equation (3) can be solved using the cubic formula. Since p*ij

(i,j = 1,2) in (1) have a multinomial distribution, we know that their

MLE’s are the observed counts in each cell of the multinomial

distribution divided by the sample size (e.g., p̂p�12~
z12

z
, where p̂p�12

is the MLE of p*12). The system of equations (2), (3) can be

significantly simplified if we consider h = 1. In this case, by the

invariance property of MLE’s [14], we get

êe11~êe22~

1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

2z12

z

r
2

ð4Þ

p̂p1~

z11

z
{(1{êe11)2

2êe11{1
(r)z

y1

y
{(1{êe11)

2êe11{1
(1{r) ð5Þ

Where êe11,̂ee22 and p̂p1 are the MLE’s of e11, e22, and p1,

respectively. Note that equation (5) combines information from
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individuals reclassified once and individuals reclassified two times

(See Text S1 for details). Later, in the section titled Robustness of the

model assumptions (case h?1), we consider the robustness of this

approach for other values of h.

In order to find the expected value and variance of the

prevalence estimate (p̂p1) given in (5) we use a first order Taylor

series approach as described in Casella and Berger [14]. The

Taylor series approach says for a set of random variables
~TT~ T1,:::,Tk)ð Þ with means ~hh~ h1,:::,hk)ð Þ that for any differen-

tiable function g(~TT), E g(~TT)
h i

&g ~hh
� �

. In our case, the functions

used for g(~TT) are equations shown in Text S1, and thus we have

the result that E(p̂p1)&p1, E (̂ee11)&e11 and E (̂ee22)&e22. We can

use the same Taylor series approach to find the variance of p̂p1 as

Var(p̂p1)&

1

N

r
p�11(1{p�11)z0:25p�12(1{p�12){p�1(1{p�1){p�11p�12

(2e11{1)2

� �
z

1

r

p�12(1{p�12)(1{2p�1)2

4(2e11{1)6

 !
z

1

(2e11{1)2

(p�11)(p�12)(1{2p�1)

(2e11{1)2
{

p�12(1{p�12)(1{2p�1)

2(2e11{1)2

zp�1(1{p�1)

0
B@

1
CA

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð6Þ

Text S2 provides details on how the variance formula is derived

and also provides the variance of the sensitivity estimate Var(̂ee11):
A simulation study using R [15] was conducted in order to

investigate the quality of the Taylor series approximation. To

conduct the simulation, seven values of disease prevalence (0.001,

0.01, 0.05, 0.10, 0.25, 0.40 and 0.50), five values of sensitivity

(equal to specificity; 0.80, 0.90, 0.95, 0.99, 0.999), ten values of the

reclassification rate r (0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95,

0.99, 1.0), and three values for the total sample size n ( = z+y; 500,

1000 and 5000) were selected. We considered all possible

combinations of these parameters (76561063 = 1050), except

for 105 settings where z = r*n,50, since estimates with less than 50

reclassified individuals can be unstable. For each of the 945 (1050-

105) combinations examined, 2000 samples were simulated.

Ninety-two percent (868/945) of the cases examined had a

simulated expected value within 1023 of the true sensitivity with

100% of the cases (945/945) within 1022. Similarly, 79% (749/945)

of the cases examined had a simulated expected value within 1023 of

the true prevalence with 98% (922/945) of the cases within 1022. The

most biased estimates occurred when prevalence was very low (e.g.,

prevalence#0.01) and when sensitivity/specificity was lower (e.g.,

sensitivity#0.90). In these cases, the tendency was to underestimate

the sensitivity/specificity, which results in an overestimate of the

prevalence. For example, the most biased sensitivity estimate was

when the true sensitivity was 80%, but the estimate was 79.4%, which

occurred when n = 5000 and r = 0.01, for prevalence 10%. Addi-

tionally, the most biased prevalence estimate was when prevalence

was 0.1%, sensitivity was 80%, r = 0.05 and n = 1000, when the

estimated prevalence was 3.0%.

To ease in interpretation, and to allow for comparison across

different sample sizes, variance differences between the simulated

and theoretical variance are reported multiplied by a factor of 1/n.

Eighty-five percent (799/945) of the cases examined have a

difference between theoretical and simulated variance of less than

1021(1/n) for sensitivity with 96% (911/945) less than 1/n. Also,

65% (615/945) of the cases have a difference between theoretical

and simulated variance of less than 1021(1/n) for prevalence with

87% (826/945) having a difference in variances less than 1/n.

Similar to the results for expected value, the most biased estimates

occurred when prevalence was very low (e.g., prevalence#0.01)

and when sensitivity/specificity was lower (e.g., sensitivity#0.90).

In these cases, the simulated variance tended to be more than

theoretical (predicted) variance for sensitivity, and less than the

theoretical (predicted) variance for prevalence. For example, the

most biased variance estimate for sensitivity occurred for sensitivity

80%, prevalence 10%, r = 5%, n = 1000, when the simulated

variance was 0.0004 larger than the theoretical (predicted)

variance. Additionally, the most biased estimate of the variance

for prevalence occurred when the prevalence was 0.1%, sensitivity

was 80%, r = 0.01 and n = 5000, when the simulated variance was

0.007 less than the theoretical (predicted) variance.

As anticipated, the Taylor Series approximation approach

provides reasonable estimates, except in situations where the most

extreme values of the parameters occur. Having established that

the estimates shown in (4) and (5) are approximately unbiased with

known variance, confidence intervals are easily obtained using the

delta method [14]. Details of a simulation study which verified

proper coverage probabilities for the confidence intervals are not

shown.

Optimal sampling strategy for prevalence estimation
We now discuss how to optimize reclassification sampling, and

then compare an optimally designed reclassification sampling

study to the traditional one- and two-phase sampling methods.

In order to optimally design a reclassification sampling study we

need to establish the value of the reclassification rate r, 0,r#1, so

that the variance of the p̂p1 estimator (given in (6)) is minimized for

a fixed budget B. The available budget is used to cover costs of

sample acquisition (Na), as well as initial and subsequent

classification (2cNr+N(12r)c), leading to equation (7):

B~Nr(az2c)zN(1{r)(azc) ð7Þ

Based on equations (6) and (7) we find the variance of the

prevalence estimate as a function of r. We can then find the

optimal value of r by finding the minimum variance of the

prevalence estimate Var(p̂p1) for 0,r#1.

We examined six different values of p1 (0.01, 0.05, 0.10, 0.25,

0.40 and 0.50), seven different values of e11 (0.999, 0.99, 0.98,

0.95, 0.90, 0.85, 0.80), nine different values of c (0.001, 0.01, 0.05,

0.10, 0.20, 0.50, 1, 2, and 5), and two different values of a (0 and 1;

representing samples that have already been obtained (a = 0), or

samples that have acquisition cost that can be expressed relative to

the classification cost, c (a = 1) yielding 756 total combinations.

While the budget (and hence sample size) does affect the value of

the variance, it does not change the optimal value of r (see Text S3

for details).

Overall, 379 of the 756 optimal values of r were at 1.0, and 109

times the optimal value of r was at 0.01. We used r = 0.01 as the

minimum value of r. The remaining 256 cases yielded an optimal r

between 0.01 and 1. In 100 of the 109 times that the optimal value

was at 0.01, the prevalence was 50% (the other nine times was

when prevalence was at 40%). In contrast, when the optimal

reclassification rate was at r = 1, prevalence tended to be lower,

acquisition costs were present, classification costs were low, and

sensitivity was lower.

As is described in the introduction, previous work by McNamee

[3] compared the cost effectiveness of two-phase (double) sampling

to one-phase sampling. Text S4 uses our notation to give equations

for the variance of one and two-phase sampling.

ð6Þ

The Cost-Effectiveness of Reclassification
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To compare reclassification sampling to one- and two-phase

sampling we first establish which of one- or two-phase sampling is

the most cost-effective by minimizing the two variances given in

Text S4 equations (S.4.1) and (S.4.2). Then we compare the

variance obtained from an optimally designed reclassification

study to the minimum of the other two. Tables 1, 2, 3 how the ratio

of SEtwo phase=SEreclassification for the prevalence estimate. In all

cases where the ratio is greater then 1, reclassification sampling

provides a smaller standard error for the same budget. The cost

ratio is the ratio of the cost of the gold standard (cg) to the

classification cost for the cheap classifier (c). All values shown in

Tables 1, 2, 3 assume an acquisition cost (a) of 0, though values for

a = 1 follow a similar pattern (detailed results not shown).

Additionally, as explained in Text S4, values in Tables 1, 2, 3 are

independent of budget/sample size considerations.

Tables 1, 2, 3 present values for a variety of prevalence,

sensitivity and cost ratio values. We note that in many cases,

reclassification sampling provides a substantial reduction in the

standard error of the prevalence estimate as compared to one or

two-phase sampling. As shown in Tables 1, 2, 3, reclassification

becomes increasingly effective as the cost ratio increases (that is,

the gold standard becomes more expensive as compared to the

imperfect classifier). Also, reclassification sampling provides

increasing advantages as the prevalence increases.

Robustness of the model assumptions (case h?1)
It is of interest to know how robust the estimates provided

earlier ((4) and (5)) are to violations of the assumption that h = 1.

To answer this question we conducted a simulation study to

evaluate the bias in cases where sensitivity and specificity are not

equal. We extended an earlier simulation study and examined

seven values of disease prevalence (0.001, 0.01, 0.05, 0.10, 0.25,

0.40 and 0.50), five values of sensitivity (0.80, 0.90, 0.95, 0.99,

0.999), five values of specificity (0.80, 0.90, 0.95, 0.99, 0.999), ten

values of the reclassification rate r (0, 0.01, 0.05, 0.10, 0.25, 0.50,

0.75, 0.90, 0.95, 0.99, 1.0), and three values for the total sample

size n ( = z+y; 500, 1000 and 5000). For each combination of

prevalence, sensitivity, specificity, reclassification rate and sample

size (4725, since we eliminated 525 combinations where

z = r*n,50), 2000 samples were simulated.

In order to investigate robustness, we started by evaluating the

extent of bias for prevalence estimates in cases where

0.95#h#1.05, but h?1. In 73.5% (695/945) of cases, the bias

for the prevalence estimate was within 1% of the true prevalence,

with all bias within 3% of the true prevalence estimate. However,

in contrast to our results earlier for cases where h = 1, the largest

bias occurred when the prevalence was large. For example, the

largest bias occurred when prevalence was 50%, sensitivity was

99.9%, specificity was 95%, n = 500, r = 0.25, and the average

observed prevalence was 53.7%.

As h deviated more and more from one, the bias increased

rather dramatically, The maximum bias observed was 12.6%

(estimated prevalence of 52.6%), when the observed prevalence

was 40%, the sensitivity was 0.999, the specificity was 80%,

r = 5%, and n = 1000. Thus, estimates of prevalence are relatively

robust in situations where the sensitivity and specificity are not

equal (h?1), as long as the extent of the inequality keeps

0.95#h#1.05.

In the previous section we evaluated the bias of the prevalence

estimates to misspecifications of h. In this section we consider the

robustness of the ratio of standard errors comparing two-phase to

reclassification sampling (presented in Tables 1, 2, 3) to

misspecifications of h. To do this we compare the simulated

standard error of the prevalence estimate to the theoretical

standard error of the prevalence estimate (for a value of h equal to

1). We recommend a conservative approach where a researcher

should use the value of specificity for both parameters e11 and e22

in the theoretical computation as long as the prevalence is less than

50% and when prevalence is more than 50% use the sensitivity as

a value for e11 and e22. For example, if sensitivity = 90%,

specificity = 95% and prevalence is less than 50%, the researcher

should use e11 = e22 = 0.95 in the theoretical computation. Using

this rule in the theoretical computation yields theoretical ratios of

Table 1. Ratios of Standard Errors (SEtwo phase=SEreclassification)
when Sensitivity = Specificity = 0.99.

Cost Ratio (cg/c)

Prevalence Optimal ra 5 25 50 100 500

0.01 1 0.88 1.19 1.47 1.87 3.59

0.05 0.32 1.04 1.46 1.78 2.22 4.11

0.10 0.20 1.15 1.61 1.95 2.43 4.47

0.25 0.08 1.29 1.78 2.16 2.69 4.92

0.40 0.03 1.36 1.88 2.27 2.83 5.17

0.50 0.01 1.39 1.93 2.33 2.90 5.30

aThe optimal reclassification rate for reclassification sampling.
doi:10.1371/journal.pone.0032058.t001

Table 2. Ratios of Standard Errors (SEtwo phase=SEreclassification)
when Sensitivity = Specificity = 0.95.

Cost Ratio (cg/c)

Prevalence Optimal ra 5 25 50 100 500

0.01 1 0.94 1.54 2.04 2.78 5.94

0.05 1 1.09 1.86 2.45 3.28 6.79

0.10 0.74 1.16 1.96 2.56 3.40 6.98

0.25 0.21 1.41 2.34 3.03 4.01 8.13

0.40 0.07 1.58 2.60 3.37 4.45 9.01

0.50 0.01 1.68 2.76 3.57 4.71 9.54

aThe optimal reclassification rate for reclassification sampling.
doi:10.1371/journal.pone.0032058.t002

Table 3. Ratios of Standard Errors (SEtwo phase=SEreclassification)
when Sensitivity = Specificity = 0.80.

Cost Ratio (cg/c)

Prevalence Optimal ra 5 25 50 100 500

0.01 1 0.33 0.65 0.90 1.26 2.78

0.05 1 0.68 1.33 1.84 2.56 5.61

0.10 1 0.87b 1.72 2.36 3.28 7.13

0.25 1 1.08b 2.19 2.99 4.12 8.88

0.40 0.22 1.19b 2.44 3.33 4.57 9.84

0.50 0.01 1.34b 2.75 3.74 5.14 11.06

aThe optimal reclassification rate for reclassification sampling.
bCompared to one-phase sampling, because in these cases, one-phase sampling

provides estimates with smaller standard errors then with two-phase sampling.
doi:10.1371/journal.pone.0032058.t003
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SEtwo phase=SEreclassification within 10% of the ratios presented in

Tables 1, 2, 3 (meaning (Observed Ratio-Theoretical Ratio)/

Theoretical Ratio is no more than 0.1) in 98.6% of cases examined

as long as the expected values of z11 and z12 are both at least 5 and

0.90#h#1.10. Thus, we have shown that the ratios of standard

errors in Tables 1, 2, 3are relatively robust to situations where the

sensitivity and specificity are not equal.

Application of reclassification sampling
Fujisawa and Izumi [10] provide prevalence, sensitivity, and

specificity estimates based on repeated classifications of an

individual’s blood type according to the MNSs blood typing

system. As a proof of concept of the methods proposed earlier for

computing estimates and confidence intervals for sensitivity,

specificity and prevalence we apply the estimation procedure to

data from Fujisawa and Izumi [10] on individuals only classified

two times. Results are shown in Table 4. These estimates were

computed using software available at (http://www.dordt.edu/

statgen and following the links to software).

Our estimates of prevalence and sensitivity/specificity are

within the confidence intervals provided by Fujisawa and Izumi,

except for the specificity confidence interval provided by Fujisawa

and Izumi for Hiroshima (0.957, 0.993), which does not include

our point estimate of 0.998.

Discussion

In this paper we evaluated reclassification sampling, considering

the situation where some fraction of the sample is classified by the

same imperfect method two times. We demonstrated how to

estimate prevalence and sensitivity/specificity for reclassification

sampling. We established that reclassification sampling is cost-

effective in many cases when compared to one and two-phase

sampling. We also demonstrated the extent of robustness of

estimates and the sampling strategy decision to violations of model

assumptions.

The fact that reclassification sampling is more cost-effective

than one- and two-phase sampling to estimate prevalence may not

be intuitive. However, consider the following example. Let’s

assume that a diagnostic test with sensitivity and specificity of 95%

is available for $1.00 per application, and a gold-standard

diagnostic test is available for $100. Table 2 shows that if the

prevalence of the disease in the population is 1% then recla-

ssification sampling is approximately 2.78 times more cost-effective

than two-phase sampling. Using optimality criterion for two-phase

sampling, a researcher will use the gold standard on approximately

11.5% of the total sample, n. For a budget of $10,000 this means

that a researcher will be able to have approximately 800 people in

the study. An optimally designed reclassification study uses an r = 1

(everyone gets reclassified). Thus, the reclassification study will

have 5,000 people in the study. In essence, having more than 6

times as many people in the reclassification study outweighs the

perfect data obtained from the gold-standard in the two-phase

sample.

The assumption of independent errors for the reclassification

sampling strategy is crucial to its utility. If errors are not

independent then reclassifying individuals does not ‘‘clean-up’’

the mistakes—instead misclassifying individuals time after time.

There are likely many applications where the independent error

assumption is legitimate. Tintle et al. [16] provide data which

suggests that Single Nucleotide Polymorphism (SNP) genotyping

errors appear to follow an independent misclassification pattern.

Additionally, Fujisawa and Izumi [10] argue that the independent

error assumption may be legitimate for blood typing data.

Conceivably there are many other classification processes

(diagnostic tests, etc.) where errors are independent and for which

reclassification sampling provides an alternative, and in many

cases more efficient, sampling strategy.

It is interesting to consider cases when the optimal strategy

requires the reclassification of the entire sample (r = 1). It may

suggest that increasing the number of reclassifications may provide

further reduction in the variance estimate. We considered cases of

multiple reclassifications when a separate optimal rate can be

found for each stage. More specifically let ri be the percentage of

the sample that is reclassified i times. We considered the optimal

selection of a vector of rates (r1,r2,:::,rk) that minimizes Var(p̂p1).
Note that having multiple classifications does not rely on

knowledge of h. However, a preliminary analysis of this design,

using the EM-algorithm, did not reveal any substantial gains in the

cost-effectiveness. In other words, three or more classifications

provided little increase in efficiency as compared to two

classifications.

We note that, in some settings, known values of the sensitivity

and specificity are available. In these cases neither two-phase

sampling nor reclassification sampling is necessary because

prevalence estimates can be made unbiased by incorporating

known sensitivity/specificity estimates into the estimation. The

purpose of both two-phase sampling and reclassification sampling

is to provide empirical estimates of sensitivity/specificity which can

then be used to adjust prevalence estimates to be unbiased.

To this point, two-phase (double) sampling has been the

primary alternative sampling strategy for investigators handling

data subject to misclassification errors. McNamee [3] has shown

that for prevalence estimation two-phase sampling can be cost-

effective. However, reclassification can provide relatively large

improvements in precision when compared to two-phase sampling

with realistic and robust assumptions on sensitivity and specificity.

Precision gains increase as the relative cost of the gold standard

increases and as the prevalence increases. Software is provided to

assist investigators in making a decision about which sampling

strategy is most cost-effective based on their sampling costs,

anticipated sensitivity/specificity and prevalence.

When two-phase sampling was originally proposed, the gold-

standard classifier was used on a random subsample of all

individuals. However, Cochran [17] and more recently McNamee

Table 4. Prevalence estimation using reclassified data from Fujisawa and Izumi (2000).

Number of subjects testing positive for the antigen M

City z11 z12 z22 n = z êe11~êe22 (95% CI) p̂p1 (95% CI)

Hiroshima 1918 8 419 2345 0.998 (0.997, 0.999) 0.821 (0.805, 0.836)

Nagasaki 958 13 257 1228 0.994 (0.992, 0.998) 0.788 (0.766, 0.811)

doi:10.1371/journal.pone.0032058.t004
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[3] demonstrated how using the gold standard at different rates in

different groups provides an even more optimal version of two-

phase sampling. Conceivably, a similar concept could be applied

to reclassification sampling. Specifically, rather than reclassifying a

random subsample of all individuals, reclassify r1 individuals who

are diagnosed as ‘‘diseased’’ the first time, and reclassify r2
individuals who are diagnosed as ‘‘not diseased’’ the first time,

where r1 is not necessarily equal to r2. Thus ‘‘conditional

reclassification sampling’’ may provide an even further optimized

reclassification sampling strategy. Preliminary simulation studies

suggest this to be the case.
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