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Assessing the Impact of Non-Differential Genotyping Errors on Rare
Variant Tests of Association

Abstract
Background/Aims: We aim to quantify the effect of non-differential genotyping errors on the power of rare
variant tests and identify those situations when genotyping errors are most harmful. Methods: We simulated
genotype and phenotype data for a range of sample sizes, minor allele frequencies, disease relative risks and
numbers of rare variants. Genotype errors were then simulated using five different error models covering a
wide range of error rates. Results: Even at very low error rates, misclassifying a common homozygote as a
heterozygote translates into a substantial loss of power, a result that is exacerbated even further as the minor
allele frequency decreases. While the power loss from heterozygote to common homozygote errors tends to
be smaller for a given error rate, in practice heterozygote to homozygote errors are more frequent and, thus,
will have measurable impact on power. Conclusion: Error rates from genotype-calling technology for next-
generation sequencing data suggest that substantial power loss may be seen when applying current rare variant
tests of association to called genotypes.
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Abstract: 

Background/Aims 

We aim to quantify the effect of non-differential genotyping errors on the power of rare variant 

tests and identify those situations when genotyping errors are most harmful.  

 

Methods 

We simulated genotype and phenotype data for a range of sample sizes, minor allele frequencies, 

disease relative risks and numbers of rare variants. Genotype errors were then simulated using 

five different error models covering a wide range of error rates.  

 

Results 

Even at very low error rates, misclassifying a common homozygote as a heterozygote translates 

into a substantial loss of power, a result that is exacerbated even further as the minor allele 

frequency decreases. While the power loss from heterozygote to common homozygote errors 

tends to be smaller for a given error rate, in practice heterozygote to homozygote errors are more 

frequent and, thus, will have measurable impact on power. 

 

Conclusion 

Error rates from genotype calling technology for next-generation sequencing data suggest that 

substantial power loss may be seen when applying current rare variant tests of association to 

called genotypes.  
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Background 

 

Given the inability of common variants alone to sufficiently explain common disease heritability 

and the advent of next-generation sequencing (NGS) technology, the attention of genome-wide 

association (GWA) studies has turned toward the common disease rare variant (CDRV) 

hypothesis, which suggests that the primary contributors to common disease susceptibility may 

be rare genetic variations, typically presumed to be single-nucleotide variants (SNVs) [1-2]. 

However, the most widely used GWA testing methods are not viable for the analysis of rare 

SNVs (e.g. those occurring with minor allele frequency (MAF) less than 5%) as single variant 

testing methods are generally underpowered for detecting signals which occur so infrequently. 

 

For the analysis of rare variant data a new class of methods have been proposed which attempt to 

test aggregated sets of SNVs, such as genes or sets derived from metabolic pathways and other 

biologically relevant sets [3-13]. By aggregating SNVs to sets, the goal is to magnify the strength 

of the signal so that reasonable power for association tests can be obtained using reasonable 

sample sizes. While this new class of rare variant tests offers promise for the analysis of rare 

variants, little is known about these methods outside of the idealized simulated data 

environments where they have been developed. One realistic consideration that has been largely 

ignored in the development of rare variant tests is that of genotyping errors, which are being 

reported at high levels in NGS data [14-17]; higher than those observed in the early days of SNP 

microarray technology [18].  

 

Current genotyping algorithms follow a series of three steps to determine genotypes, with errors 

possible at any of the three steps [16]. In the first step, short reads are genotyped. Errors in 

determining genotypes at this stage have been documented to follow an auto-regressive process 

dependent on the true allele [19], with an error of approximately 0.5% per base. The second step 

of the process aligns these short reads to a reference genome, a process generally accepted to 

have a very low error rate [19]. Lastly, a Bayesian prior is used when determining genotypes that 

utilizes known information about the population MAFs at each variant site. The prior is then 

updated with the observed sequences, yielding a posterior probability that an individual is of a 

particular genotype. When there are many reads (high coverage/depth, e.g. 30x) it is easy to 

overcome the prior and call a rare variant. But at lower sequencing depth, this becomes harder to 

do. Specifically, in low-depth sequence data, some genotype callers (e.g. individual based 

callers) underestimate the total amount of rare novel variation present in the sample while others 

(e.g. population-based and linkage disequilibrium-aware callers) improve genotype calling for 

low frequency variants, but perform even more poorly at identifying singletons and doubletons.  

 

The end result of the genotype calling process from rare variants is a high heterozygote to 

homozygote error rate, and a lower homozygote to heterozygote error rate for rarely seen 

variants in the same (e.g. singletons, doubletons). As the number of observed alleles in the 
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sample increases, the likelihood that a common homozygote is called a heterozygote increases. 

One exception is when the reference genome has an allele that is not common in the sample 

being sequenced, in which case individual-based genotype callers have a difficult time 

identifying someone as possessing the common homozygote. Potential genotyping errors at all 

stages of the production of NGS data suggest the need for research into the effect of genotyping 

errors on downstream analysis of NGS data: including the use of rare variant tests of association 

[20]. 

 

The effects of genotyping errors on common variant tests of association (single-marker methods) 

have been well explored [21-27]. Extensions of the results for measured common variants have 

also been extended to tests conducted with imputed common variants [28-30]. Specifically, 

differential genotyping errors, which occur with different probability in the cases and controls, 

can inflate the type I error rate of common variant tests [22-23, 31-32] while “non-differential” 

genotyping errors, which occur with equal frequency in the cases and controls, maintain type I 

error but decrease statistical power [25-27]. 

 

In particular, research into the effects of errors on common variant tests have found that errors 

that misclassify a major allele as a minor allele are most detrimental and that the minimum 

sample size necessary to maintain power and significance level in the presence of this type of 

error increases without bound as the MAF approaches 0 [24-26]. This last point is particularly 

concerning for the analysis of rare variant data.  

 

Recent research suggested that differential genotyping error resulting from different sequencing 

depths for cases and controls can bias rare variant tests and increase type I error [33]. But to date, 

little effort has been put into the exploring the potential effects of non-differential genotyping 

errors on the power of rare variant tests.  

 

In this manuscript we use simulation to evaluate the impact of non-differential genotyping errors 

on the power of four commonly considered rare variant tests of genetic association (CMC [3], 

WS [4], PR [5] and CMAT [6]). We start by evaluating the impact on type I error in the tests. 

Then, we evaluate the effects of genotyping error on power. Specifically, we contrast two types 

of genotyping error: misclassifying the common homozygote as the heterozygote and 

misclassifying the heterozygote as the common homozygote, with the goal of identifying 

situations where genotyping errors are particularly harmful. Our simulation analysis considers 

genotyping error rates for rare variant tests spanning those reported in recent publications. 

 

Methods 

 

Simulation of genotypes and phenotype 
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To investigate the impact of genotyping errors on rare variant tests, we first simulated genotype 

data according to an additive disease model. Simulations to assess power and type I error 

covered all 24 possible combinations of the following four parameters: Disease relative risk (γ = 

1.00, 1.25 or 2.00), sample size (n = 500 or 2000, equally split between the cases and controls), 

number of SNVs in the set (e.g. gene) (M = 8 or 64) and SNV MAF of rare/common SNVs in 

the set (0.1%/1.0% or 0.5%/5.0%). In each set of SNVs, one quarter of the SNVs in the set are 

more common (having MAF of 1% or 5%), and three quarters of the SNVs in the set are rarer 

(having MAF of 0.1% or 0.5%).  

 

Genotypes were simulated based on the specific number of SNVs and MAF distribution of the 

SNVs, while assuming independence of variants and Hardy-Weinberg equilibrium at each 

variant site. Simulation of phenotypes followed a model similar to that of [3]. In our simulation 

we set the wild-type penetrance, f0, to 0.01 for all individuals with no rare alleles at any of the M 

variant sites within the set (e.g. gene). In accordance with an additive disease model, individuals 

with rare alleles had total disease risk equal to f0 (1 + ∑(gi – 1)), gi=1 if variant . In our 

simulations we let γ1i be the same for all i variants in the set. The phenotypes for each individual 

were simulated using a Bernoulli random variable in R [34].  

 

Simulating genotyping errors  

 

Following the simulation of genotypes and phenotypes, errors were added to the genotypes. Let 

ε01 denote the probability of misclassifying a common homozygote as heterozygote, and let ε10 

denote the probability of misclassifying a heterozygote as common homozygote. Genotyping 

errors involving the less common homozygote were not considered here because of their 

extremely low observed frequency in samples and differences in how rare variant tests handle 

less common homozygotes, which would limit our ability to compare methods.  

 

Three different error models were considered in the primary simulation study: (Model 1) ε01 = p, 

ε10 = 0, (Model 2) ε01 = 0, ε10 = p and (Model 3) ε01 = ε10 = p. We considered 10 values of p: 

0.000, 0.001, 0.005, 0.010, 0.015, 0.020, 0.025, 0.030, 0.040 and 0.050. Genotyping errors were 

simulated without regard to an individual’s disease status to illustrate non-differential genotyping 

error. We also extended our simulation study to reflect the fact that the use of a prior distribution 

means that genotype calling algorithms make it difficult to detect the rarest variants, and so in 

practice ε10 may be much greater than ε01. In an extended simulation we considered the following 

two models: {Model 4: (0,0), (0,0.01), (0,0.05), (0,0.10), (0,0.15), (0,0.20), (0,0.25), (0,0.30), 

(0,0.40) and (0,0.50), Model 5: (0,0), (0.001, 0.01), (0.005,0.05), (0.01, 0.10), (0.015, 0.15), 

(0.02, 0.20), (0.03, 0.30), (0.04, 0.40) and (0.05, 0.50), where ordered pairs of values represent 

(ε01, ε10)}. 

 

Rare variant tests used to analyze data 
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CMC 

 

The CMC method aggregates the genotype data from multiple variant sites within a set of 

interest (e.g. all rare variants within a gene) to a dichotomous variable for each subject (1 if the 

subject has any minor alleles in the set and 0 otherwise). The CMC approach collapses variants 

within a priori defined subsets and then performs a multivariate test, treating each collapsed 

subset as a SNV. In our case, we collapse all rare variants with MAF strictly less than 1% into a 

single group, and then asymptotically evaluate Hotelling’s T
2
 on the groups (one group of SNVs 

with MAF less than 1%, in addition to each SNV with MAF 1% or greater treated as its own 

group). 

 

WS 

 

The novelty of the WS method is that it uses a weighting scheme to put more emphasis on rarer 

SNVs. For each variant site, a weight is calculated proportional to an estimate of the standard 

error of the total number of minor alleles in controls. For each subject, a score is summed over 

all variant sites, equal to the number of minor alleles at each site divided by the site’s weight. 

The subjects are ranked by score from greatest to least, and the test statistic is defined as the sum 

of the rankings of all cases. To obtain a p-value for the test, case/control status is permuted 

among the individuals 1000 times to obtain an empirical distribution under the null hypothesis. 

 

PR  

 

The PR method models subjects’ case/control statuses as binary responses to a univariate logistic 

regression for which the lone covariate is the proportion of rare variant sites at which a subject 

has at least one minor allele. Formally, for each subject and rare variant site, a variable is defined 

as 1 if the subject has any minor alleles at the site and 0 otherwise. For each subject, the 

covariate is defined as the average of these dichotomous variables across all rare variant sites. A 

hypothesis test of whether the regression coefficient for the covariate is significantly different 

from zero is conducted using the asymptotic distribution of the likelihood ratio test statistic. 

 

CMAT  

 

CMAT is similar in spirit to a 2-by-2 chi-squared test. The four values constituting the 2-by-2 

table are the total number of minor alleles among all controls, the total number of major alleles 

among all controls, the total number of minor alleles among all cases and the total number of 

major alleles among all cases. Rather than using an asymptotic chi-squared distribution to obtain 

the corresponding p-value to the test statistic, the significance of the test is determined using 

phenotype permutations to avoid assumptions such as linkage equilibrium.  
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Estimating Power and Type I Error 

 

For all cases where the relative risk is set to 1 (no genotype-phenotype association), 3000 

random samples were generated for each combination of simulation model parameters (γ1i=1, n, 

M, MAF, ε01 and ε10). For situations where the relative risk is greater than one, 5000 random 

samples were generated for each combination of the simulation model parameters. Type I error 

and power were estimated as the proportion of the simulated samples with p-values less than a 

significance level of 0.05. 

 

Explaining the Impact of Genotyping Error on Power 

 

We used regression models to further explore the effects of simulation parameters (error level, 

sample size, MAF and relative risk) on power loss. Specifically, we created a regression model 

predicting the change (y) in power due to a 0.5% increase in error rates. Explanatory variables in 

the model included power (x1) before the 0.5% increase in error, error rate (x2) before increase, 

sample size (x3), MAF (x4) and relative risk (x5). 

),0(~: 2

55443322110  Nxxxxxy   

Significant explanatory variables in this model indicate variables which impact power loss 

differentially for a fixed error increase. In order to evaluate change in power at 0.5% increments 

of change in error, only six levels of error are considered: 0%, 0.5%, 1.0%, 1.5%, 2.0%, and 

2.5%. Thus our regression spans 96 data points (16 simulation configurations times 6 error 

levels).  

 

Results 

 

Type I error rate 

 

For each of the 80 simulation settings used to assess type I error rate (all combinations of n, M 

and MAF for the 10 error levels in error Model 3), each of the four rare variant tests methods 

maintained a 5% type I error rate. The average type I error rates across the 80 simulation settings 

was 5% (WS), 4.7% (CMC and PR) and 4.3% (CMAT). Linear models (details not given) 

regressing the type I error rate on the simulation parameters (sample size, number of SNVs, SNV 

MAF and error rate), suggest that small sample size makes CMC more conservative, while small 

sample size, a small number of SNVs and small SNV MAF each cause both PR and CMAT to be 

more conservative. The type I error rate of WS was unaffected by any of simulation parameters. 

Importantly, the type I error rate was not associated with the size of the genotyping errors for any 

of the methods. 

 

Power 
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The following sections consider the impact of genotyping errors on the power of rare variant 

tests. Each type of error (ε01, ε10) is first considered separately (Models 1 and 2), and then a more 

complex error model (Model 3) is considered which allows both errors to occur simultaneously. 

 

Impact of common homozygote to heterozygote errors 

 

Table 1 shows the average power of each of the four methods across the 16 combinations of risk 

(1.25 and 2.00), sample size, number of SNVs and MAF for different error simulation settings. 

Considering situations where only common homozygote to heterozygote errors are present 

(ε01>0, ε10=0; Model 1), each of the four rare variant methods shows significant loss of power, 

even for low genotyping error rates. For example, methods averaged about 2% loss in power 

from as little as a 0.1% homozygote to heterozygote error rate. As ε01 increases, larger power 

losses are observed. For example, when ε01 = 1% power loss was approximately 10%, and when 

ε01 = 5% power loss was approximately 25-30%.  This trend held true across the 16 genotype-

phenotype simulation settings. 

 

<Insert Table 1 about here> 

 

Table 2 gives the results of the regression for five covariates explaining the change in power due 

to a 0.5% increase in genotyping error rate. Within the common homozygote-to-heterozygote-

only error model (Model 1) there were some significant relationships between the covariates and 

power loss due to increased error. MAF showed a significant impact on power loss for WS, PR 

and CMAT. Because these coefficients are positive, this means that decreasing the minor allele 

frequency increases the impact of genotyping errors. While CMC did not have a significant 

change in power loss based on MAF, increased number of SNVs and increased relative risk were 

both significantly associated with increased power loss due to error. Lastly, all methods showed 

significantly less effect of errors on power as error rates increased, meaning that, after 

controlling for overall power, the most substantial power loss for a given increase in error rates 

was observed moving from 0 to 0.5% genotyping errors.  

 

<Insert Table 2 about here> 

 

Impact of heterozygote to common homozygote errors 

 

In general, the impact of heterozygote to common homozygote errors on power (Model 2) is 

much lower than the impact of common homozygote to heterozygote errors (Model 1). Table 1 

illustrates only modest decreases in power as the value of ε10 decreases. In summary, over the 

four methods and 16 sets of simulation parameters, the average decrease in power due to a 0.1% 

rate of misclassifying the heterozygote as the major homozygote was 0.1%. The average 



 9 

decrease in power due to a 5% rate of misclassifying the heterozygote as the major homozygote 

was 4.1%. While the loss in power due to heterozygote to major homozygote genotyping error is 

minimal, separate simple linear regressions (details not shown) of power versus the error rate 

indicate that power is significantly related to error rate for each of the four methods. So the 

impact of the error is small but real. Finally, our regression analysis (Table 2) shows that under 

this error scheme, there was no covariate in any of the four models which had a significant 

impact on the effect on power of a 0.5% error increase.  

 

Equal errors model  

 

Overall, in the equal errors model (Model 3), power is similar to that of Model 1, since the 

unique impact of heterozygote to homozygote errors (Model 2) is minimal (see Table 1). 

Similarly, the coefficients of the regression model in Table 2 for the equal errors model (Model 

3) are also very similar to their counterparts for the homozygote-to-heterozygote-only error 

model (Model 1). 

 

Consideration of other genotyping error models 

 

Tables 3a and 3b give results analogous to those of Table 1, except they consider error Models 4 

and 5, which were designed to represent error models closer to those observed when using 

current genotype calling algorithms for next-generation sequencing data. Namely, genotype error 

rates from the heterozygote to the common homozygote are much larger than the reverse, due to 

the fact that genotype callers for rare variant data make extremely rare variants difficult to detect. 

First, Table 3a illustrates that when heterozygote-to-homozygote error rates increase to values 10 

times greater than those considered in error Model 2, there can be appreciable power loss. 

However, when these much larger error rates are combined with substantially lower (10 times 

smaller) common homozygote to heterozygote errors, the observed power loss is still mainly 

driven by the homozygote to heterozygote errors. 

 

<Insert Tables 3a and 3b about here> 

 

To further illustrate the significance of this power loss due to error, we consider one particular 

choice of simulation parameters. Figure 1 shows the power curves of the four methods as 

functions of the error level for the setting of 1000 cases and 1000 controls genotyped to test the 

association of an gene which includes 8 rare variants (six SNVs with MAF 0.1% and two SNVs 

with MAF 1%) with the phenotype, which follows an additive disease model with all SNVs 

causal with relative risk 2.00. Power decreases slowly as a function of error level when it is at the 

top and bottom of the range and decreases most quickly near the value 50%. 

 

<Insert Figure 1 about here> 
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Discussion 

 

Our results confirm that all four rare variant methods maintain type-I error in the presence of 

non-differential genotyping errors under all simulation settings considered here. However, power 

loss from non-differential genotyping errors can be substantial, even for low error rates, and is 

particularly problematic for errors misclassifying the common homozygote as a heterozygote, i.e. 

identifying an individual as possessing a risk allele when one is not actually present. Power loss 

can also be particularly substantial for variant sites with low MAF. 

 

As has been documented for single marker tests of association, there can be substantial power 

loss from genotyping errors, especially errors calling an individual as a heterozygote when they 

are actually the common homozygote. This substantial power loss is not surprising when put into 

context; for example, if the common homozygote to heterozygote error rate is 2 percent and the 

MAF of a SNV is 1 percent or less, then about two-thirds of heterozygote observations at that 

base pair in the data will be incorrect genotype calls. In fact, whenever the population MAF for a 

SNV is less than half the error rate, it is likely that the majority of minor alleles observed at that 

variant site are not actually minor alleles but genotype misclassifications. This point is readily 

seen when realizing that the observed rare variants will be a mixture of errors from the common 

homozygote (observed at a rate of ε01(1-MAF)
2
) and true heterozygotes ((1-ε10)2MAF(1-MAF)). 

For small MAF, the errors from the common homozygote will be approximately ε01, while the 

true heterozygotes will be at most about 2MAF; thus, a reasonable rule of thumb is that 

whenever 2MAF <ε01, the majority of minor alleles observed are errors. 

 

Power loss for heterozygote to homozygote errors is substantially less than that from 

homozygote to heterozygote errors of the same rate. Furthermore, power loss from a mix of error 

types (homozygote to heterozygote and heterozygote to homozygote) showed a semi-additive 

impact on power-loss. These results are line with the results of Kang et al. [24, 25] who explored 

common variant tests of association. 

 

However, observed rates for heterozygote to common homozygote errors can be very large 

because current genotype calling algorithms make it very difficult to call rare alleles. Genotype 

calling algorithms are tuned to minimize the type I error in the genotype calling process, making 

it difficult to discover rare novel variants. The choice of genotype caller can significantly affect 

the performance of rare variant testing methods. Population- and LD-aware callers exacerbate 

the bias against discovery and genotyping of rare non-reference variants. This increases the 

heterozygote to common homozygote error rate. In case of imputed genotypes, the choice of 

reference panel for imputation can have a higher impact on imputation accuracy of rare variants. 

While the general strategy for genotype calling algorithms is reasonable in light of the finding 

that homozygote to heterozygote errors are so costly, it would be valuable to investigate whether 
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current genotype calling algorithms are “tuned” correctly so that genome-wide power loss is 

minimized. 

 

One promising method for reducing the impact of genotyping errors on downstream analysis is 

the use of probabilistic genotypes, instead of genotype calls. Current genotype calling algorithms 

provide a vector of posterior probabilities for each individual at each of the three possible 

genotypes. These posterior probabilities capture the uncertainty in genotypes that exists after 

applying a genotype calling algorithm. In downstream tests of association on imputed genotypes, 

using posterior probabilities has been shown to provide increased power over the use of called 

genotypes [35], a result that has also been shown for measured common variants [36-37]. 

Similarly, another recently proposed approach [12] incorporates genotyping errors directly into 

the test statistic to handle the hazards outlined in this manuscript. 

 

Table 1 suggests that, on average, power loss is similar across all four methods WS, PR, CMAT 

and CMC, suggesting that no one method is more or less susceptible to genotyping error than the 

others. While the goal of our simulation was not to provide a comprehensive comparison of the 

four rare variant methods considered here, for our choices of simulation settings, WS almost 

always yielded the most power. In fact, the relative ordering of the power of the different 

methods (WS, PR, CMAT and CMC) stayed the same in almost all cases. 

 

While our analysis has provided a broad overview of the impact of genotyping errors on rare 

variant tests of association, there are limitations to our analysis. First, while we have used a 

published simulation technique to generate genotypes and phenotypes, other more sophisticated 

models exist, including modeling other disease modes of inheritance, simulating haplotypes 

instead of distinct genotypes and assessing the impact of neutral (non-causal) variants on 

resulting tests of association. Furthermore, many more rare variant analysis methods have been 

proposed than were compared in this manuscript. While the impact of genotyping errors may be 

different on different tests and in different settings, at this point we have no reason to believe that 

the general pattern of results will not hold in these cases. Additionally, we considered a broad 

range of simulation parameters, but the novelty of the field of analysis of rare variants with real 

data limits our ability to say that parameters chosen in our models are necessarily realistic. This 

is a limitation of any current methodological paper related to rare variant analysis. Lastly, our 

analysis is limited to association studies which may be more prone to error and less powerful 

than some family-based association studies for rare variants, as well as to only four of the most 

common rare variant tests of association. Further work is necessary to explore these alternative 

tests.  

 

Overall, we have found that genotyping errors can have substantial impact on the power of rare 

variant tests. Even small (0.1%) non-differential error rates can produce significant power loss 

when errors are made in identifying the more common homozygote as a heterozygote. Today’s 
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genotype calling algorithms generally have much higher error rates for heterozygotes to 

homozygotes, which produce less power loss in general but do cause measurable power loss as 

rates increase. In all cases, power loss is magnified as the MAF decreases a particularly 

concerning result for tests involving the rarest variants. Care should be taken in the design and 

analysis of rare variant studies to consider the potential impact of genotyping errors on rare 

variant tests of association. 
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Table 1. Average power by genotype error rate
1
  

 CMC WS PR CMAT 

Error rate ε01 only 

(Model 

1) 

ε10 only 

(Model 

2) 

Both 

(Model 3) 

ε01 only 

(Model 

1) 

ε10 only 

(Model 

2) 

Both 

(Model 

3) 

ε01 only 

(Model 

1) 

ε10 only 

(Model 

2) 

Both 

(Model 

3) 

ε01 only 

(Model 

1) 

ε10 only 

(Model 

2) 

Both 

(Model 

3) 

0 60.2% 60.4% 60.3% 76.8% 76.6% 76.8% 72.4% 72.4% 72.5% 71.4% 71.4% 71.6% 

0.1% 58.7% 60.5% 58.4% 74.8% 76.8% 75.0% 70.9% 72.4% 71.1% 70.0% 71.4% 70.1% 

0.5% 53.5% 60.3% 53.4% 70.2% 76.6% 69.9% 67.2% 72.4% 66.9% 66.3% 71.4% 66.0% 

1% 47.7% 60.1% 47.1% 65.4% 76.4% 65.2% 62.9% 72.1% 62.8% 62.2% 71.1% 62.1% 

1.5% 42.4% 60.1% 41.9% 61.9% 76.3% 61.7% 59.8% 72.1% 59.4% 59.1% 71.1% 58.7% 

2.0% 38.2% 59.9% 37.6% 59.2% 76.4% 58.5% 57.2% 72.0% 56.4% 56.6% 71.1% 55.7% 

2.5% 36.2% 60.0% 35.5% 56.9% 76.3% 56.3% 55.0% 72.1% 54.3% 54.3% 71.1% 53.6% 

3.0% 34.4% 59.9% 33.6% 54.6% 76.1% 54.0% 52.7% 71.7% 52.0% 52.1% 70.8% 51.4% 

4.0% 32.4% 60.0% 31.4% 51.4% 76.1% 50.3% 49.6% 71.7% 48.4% 49.2% 70.7% 47.8% 

5.0% 30.3% 59.6% 29.2% 48.6% 76.0% 47.2% 46.7% 71.6% 45.1% 46.2% 70.6% 44.7% 

1
 Margin of error ≤ 0.35% for all estimates 
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Table 2. Coefficients from regression models  

 ε01 only 

(Model 1) 

ε10 only 

(Model 2) 

Both 

(Model 3) 

Parameter CMC WS PR CMAT CMC WS PR CMAT CMC WS PR CMAT 

Previous 

Power 

-.080* .020 .009 .011 -.002 -.001 -.001 -.000 -.085* .015 .007 .010 

Error Level -.027*** -.016** -.012* -.011* -.000 .001 .000 .000 -.029*** -.017** -.013* -.012* 

Sample Size
a
 -.026 .008 .004 .004 .000 .000 .000 .001 -.027 .007 .003 .003 

Number of 

SNVs
a
 

-.026** .004 -.000 -.001 -.001 .000 .000 .000 -.027** .002 -.002 -.002 

MAF
a
 -.010 .036** .032* .032* -.001 .000 .000 .000 -.011 .035* .034* .034* 

Relative 

Risk
a
 

-.058** .017 .007 .007 -.000 -.000 .000 .000 -.062** .016 .007 .007 

*p<0.05, **p<0.01, ***p<0.001 
a 
Coefficients for these terms are interpreted as the change in the reduction in power from moving from the high to the low simulation 

setting. For example, for sample size, values in the table indicate how power losses change as one moves from having 2000 to 500 

individuals in the study. 
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Table 3. Average power by genotype error rate
1
  

ε10 only (Model 4) Both (Model 5; 10(ε01)= ε10) 

Error rate 

(ε10) 

CMC WS PR CMAT Error rate 

(ε01, ε10) 

CMC WS PR CMAT 

0.0% 60.1% 76.2% 72.1% 71.1% 0.0%/0.0% 60.4% 76.4% 72.3% 71.3% 

1.0% 60.1% 76.2% 72.2% 71.1% 0.1%/1.0% 58.6% 74.6% 71.0% 69.9% 

5.0% 59.7% 75.5% 71.5% 70.4% 0.5%/5.0% 52.4% 68.8% 65.9% 64.9% 

10% 59.0% 75.0% 70.8% 69.6% 1.0%/10% 44.7% 62.4% 60.0% 59.0% 

15% 58.0% 74.0% 69.5% 68.3% 1.5%/15% 38.2% 57.5% 55.4% 54.5% 

20% 57.5% 73.0% 68.5% 67.3% 2.0%/20% 32.3% 53.1% 51.0% 50.2% 

25% 56.6% 72.1% 67.4% 66.0% 2.5%/25% 28.3% 48.6% 46.6% 45.8% 

30% 55.9% 71.1% 66.1% 64.7% 3.0%/30% 25.5% 44.5% 42.6% 41.8% 

40% 53.6% 68.9% 63.3% 61.9% 4.0%/40% 20.7% 36.9% 34.4% 33.7% 

50% 50.6% 65.7% 59.7% 58.3% 5.0%/50% 16.1% 29.5% 26.9% 26.3% 

1 Margin of error ≤ 0.35% in all cases 
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 Figure 1. An example of how the power for each of the four methods diminishes as the error level increases in error Model 5 for one 

choice of simulation settings (high sample size, low number of SNVs, low MAF and high relative risk)
1
.  

 

Caption 

*Heterozygote to homozygote error rates are 10 times larger.  

1. Margin of error ≤ 1.41% in all cases 
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