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Inflated Type I Error Rates When Using Aggregation Methods to Analyze
Rare Variants in the 1000 Genomes Project Exon Sequencing Data in
Unrelated Individuals: Summary Results from Group 7 at Genetic
Analysis Workshop 17

Abstract
As part of Genetic Analysis Workshop 17 (GAW17), our group considered the application of novel and
standard approaches to the analysis of genotype-phenotype association in next-generation sequencing data.
Our group identified a major issue in the analysis of the GAW17 next-generation sequencing data: type I error
and false-positive report probability rates higher than those expected based on empirical type I error levels (as
high as 90%). Two main causes emerged: population stratification and long-range correlation (gametic phase
disequilibrium) between rare variants. Population stratification was expected because of the diverse sample.
Correlation between rare variants was attributable to both random causes (e.g., nearly 10,000 of 25,000
markers were private variants, and the sample size was small [n = 697]) and nonrandom causes (more
correlation was observed than was expected by random chance). Principal components analysis was used to
control for population structure and helped to minimize type I errors, but this was at the expense of
identifying fewer causal variants. A novel multiple regression approach showed promise to handle correlation
between markers. Further work is needed, first, to identify best practices for the control of type I errors in the
analysis of sequencing data and then to explore and compare the many promising new aggregating approaches
for identifying markers associated with disease phenotypes.
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Abstract: 

As part of Genetic Analysis Workshop 17 our group considered the application of novel and 

standard approaches to the analysis of genotype-phenotype association in next-generation 

sequencing data. Our group identified a major issue in the analysis of the GAW17 next-

generation sequencing data, namely that of type I error and false positive report probability rates 

high above those expected based on empirical type I error levels (as high as 50-90%). Two main 

causes emerged: population stratification and “long-range” correlation (gametic phase 

disequilibrium) between rare variants. Population stratification was expected due to a diverse 

sample. Correlation between rare variants was attributable to both random (e.g. nearly 10K of 

25K markers were ‘private’ variants; small sample size of n=697) and non-random causes (more 

correlation was observed than was expected by random chance). Principal components analysis 

was used to control for population structure and helped minimize type I errors but this was at the 

expense of identifying fewer causal variants. A novel multiple regression approach showed 

promise to handle correlation between markers. Further work is needed to first identify best-

practices for the control of type I errors in the analysis of sequencing data; and then to explore 

and compare the many promising new aggregating approaches for identifying markers associated 

with disease phenotypes.  

 

Key words:  

population structure; correlated markers; next-generation sequencing
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Background 

The next-generation sequencing era is upon us. With the advent of this new era we usher in a 

host of questions about the statistical methods with which we will analyze sequencing data. As 

we explore state of the art sequencing analysis and major questions in the field, it is helpful to 

first look back at lessons learned from the analysis of SNP microarray data. 

The methods used to analyze common (e.g. MAF>5%) SNPs measured using SNP 

microarray technology have matured, with a generally accepted set of best practices for analysis 

of SNP microarray data (e.g. checking for HWE, quality control measures, consideration of 

population stratification, consideration of LD between SNP markers, etc.; for a review of best 

practice protocols see Laurie et al. [2010]). Despite these widely accepted best practices, 

however, some common problems have remained. The biggest unresolved problem is arguably 

that of statistical power. Most GWAS studies, to date, report predominantly small effect sizes 

(e.g. median odds ratio (OR) of all reported ORs in the NHGRI GWAS catalog is 1.3; Hindorff 

et al. [2011]).  Single marker association methods can only detect association with the genotyped 

marker and variants in linkage disequilibrium with it, necessitating the genotyping and testing of 

hundreds of thousands to millions of SNPs to provide genome-wide coverage.  Except for very 

strong associations, it is difficult to have sufficient power to identify true associations as 

statistically significant due to the severe penalty imposed by multiple-testing correction 

procedures. For example, to have sufficient (80%) power to find a SNP significant at the genome 

wide level (e.g. 1x10
-7

) with low minor allele frequency (10%) and low population prevalence 

(10%), which increases the risk of disease by 30% for each copy of the risk allele (e.g. OR=1.3; 

additive effect), one would need to have 4700 cases and 4700 controls if the actual ‘causal’ 
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variant was typed, and potentially even more if the risk variant was not typed but in LD with the 

true ‘causal’ variant [Purcell et al., 2003]. 

In an attempt to combat these power problems, some investigators have successfully used 

very large numbers of subjects (i.e. tens to hundreds of thousands) to find association (e.g. 

Lindgren et al. [2009], Speliotes et al. [2010]). However, for many diseases, cohorts of such size 

do not exist. Another approach attempts to aggregate true variant-phenotype associations across 

biologically meaningful sets (e.g., genes or sets of genes/pathways) in order to both intensify the 

strength of association while simultaneously substantially decreasing the number of tests 

conducted. In many ways this field of methods is in its infancy, though has been considered by 

earlier GAWs (e.g. Tintle et al. [2009]) and others (see Wang et al. [2010] for a recent review). 

Interestingly, this class of aggregation methods for SNP microarray data was developed 

to combat similar problems to those observed in the analysis of genome-wide next-generation 

sequencing data: specifically, conducting many tests where each individual test may be for a 

variant showing a relatively weak signal (a function of risk (effect), allele frequency and the 

sample size of the study). To date, a number of methods have been proposed for next-generation 

sequencing data, all of which have a similar motivation: aggregate signals across all, or some, of 

the SNPs within a gene with the idea of intensifying the observed signal, while decreasing the 

number of tests conducted (see Dering et al. [2011] for a review). 

GAW17 provided many participants with their first attempt to analyze genotypes derived 

from next-generation sequencing data, in the context of a simulated phenotype with known 

characteristics. In our group, eleven of twelve participating groups considered approaches to 

aggregating next-generation sequencing variant signals to increase power using a mix of methods 

including (1) those originally developed for common variants (2) those exclusively developed for 
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NGS data and (3) novel extensions of these methods. Additionally, many groups also considered 

the performance of single SNP analyses on next-generation sequencing data, using both 

previously proposed and novel methods. In this summary paper we summarize the main methods 

proposed and individual findings of Group 7 participants, while also painting a broad picture of 

the current state of the field including major lessons learned and open problems that need to be 

resolved. 

 

Methods 

Data  

The data consists of 697 unrelated individuals genotyped at 24,487 autosomal SNPs, all located 

within one of 3205 different genes. Genotypes were called from whole exome reads obtained 

from the 1000 genomes project, including individuals of European (CEU, TSI), Asian (CHB, 

JPT) and African (YRI, LWK) ethnicity. No quality information (e.g. coverage depth, quality 

score) was provided for the genotypes, though Almasy et al. [2011] note the use of imputation 

for missing genotypes. The organizers of GAW17 simulated two quantitative phenotypes (Q1, 

Q2) and a latent liability trait for each individual. These traits were caused by 160 SNPs in 36 

genes, most of which had low MAF (<0.01; 89 singletons) and many of which were in the VEGF 

pathway. All SNPs increased the likelihood of trait values. The latent liability trait, Q1, Q2 and 

Q4 (caused by SNPs not included in the dataset) all positively increased the likelihood of a 

disease phenotype (y/n). Two hundred simulated phenotype replicates were included. A more 

detailed description of the data used for GAW17 is provided elsewhere (Almasy et al., 2011).  

Group 7 participants 
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Eleven separate manuscripts participated in the Group 7 discussion at the GAW 17 workshop. Of 

these, three manuscripts were not submitted for publication [Ling et al., 2011, Peralta et al., 2011 

and Zlojutro et al., 2011, personal communications], while the other eight [Aschard et al., 2011, 

Hu et al., 2011, Nock et al., 2011, Petersen et al., 2011, Scholz and Kirsten 2011, Wang et al., 

2011, Yang et al., 2011, Yang and Gu 2011], plus one paper from Group 3 that joined our group 

after the workshop [Li et al., 2011], are published in the companion BMC Proceedings volume. 

The methods and results from the nine published submissions are summarized using three broad 

categories based on the type of aggregation used. We note that, where appropriate, manuscripts 

used MAF cutoffs of 1% or 5% to classify SNPs as rare; for specific details see the referenced 

manuscripts. 

Gene level aggregations 

Five manuscripts considered various approaches to aggregating SNP variant information 

at the gene level [Aschard et al., 2011, Hu et al., 2011, Li et al., 2011, Scholz and Kirsten, 2011 

and Yang and Gu, 2011]. Here we briefly describe the methods used in these five manuscripts.  

Aschard et al. [2011] compared rare variant signal to common variant signal using standard 

approaches and then also proposed a new test where rare and common variant methods were 

combined using fisher’s combined probability test across genes. Li et al. [2011] used a multi-step 

training, testing and validation strategy, involving a weighted collapsing approach (Dering et al. 

[2011]) to identify genes associated with the disease phenotype and then compared their 

approach to logistic regression and a random forest. Scholz and Kirsten [2011] compared a 

variety of gene-aggregation approaches including: the maximum statistic of all SNPs within a 

gene, Hotelling’s test, multivariate analysis and Lasso after collapsing all rare variants. Hu et al., 

[2011] applied their genetic risk score approach at both the gene and pathway level (described 
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more fully in the next section). Lastly, Yang and Gu [2011] applied unweighted and weighted 

collapsing strategies (Dering et al. [2011]) at the gene level, in addition to doing pathway 

analyses as described in the next section. 

 

Pathway level aggregations 

Five members of our group considered approaches to aggregating SNP variant information at the 

pathway or gene set level. There were two main types of approaches considered: intermediate 

summarization (SNP level data is first summarized at the gene level using a gene-level 

aggregation method and then aggregated to the pathway level) and direct summarization (SNP 

variant information is summarized directly to the pathway/gene-set level). Two groups 

considered a direct summarization approach [Hu et al., 2011 and Yang et al., 2011], two groups 

considered an intermediate summarization approach [Yang and Gu, 2011 and Nock et al., 2011] 

and one group considered both (Petersen et al., 2011). Groups used a mix of true biological 

pathways from KEGG [Hu et al. 2011], chromosome based sets [Yang et al. 2011] and 

synthetically created sets of genes containing known numbers of truly causal genes [Nock et al., 

2011, Petersen et al. 2011, Yang and Gu, 2011]. 

Intermediate summarization 

Yang and Gu [2011] and Petersen et al. [2011] used published intermediate summarization 

methods adapted for next-generation sequencing data. Namely, they first aggregated SNP scores 

to genes using the weighted and unweighted collapsing strategies (described earlier) and then 

applied GSEA [Yang and Gu 2011, Petersen et al.], VSEA [Yang and Gu], K-S [Petersen et al.] 

and Fisher’s combined probability test [Petersen et al.] using simulated and/or real gene sets. 

Nock et al. [2011] first identified potentially interesting genes using regression and gene-level 
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aggregation. Then, latent variables were constructed to evaluate the aggregate effects of rare and 

common variants in potentially interesting genes. Finally, a structural equation model was used 

to model relationships between genes, covariates and other constructs. 

Direct summarization 

The three groups that used a direct summarization strategy each used different methods. Hu et al. 

[2011] counted the total number of rare variants possessed by each individual across all SNPs 

within a given pathway, comprising an individual’s genetic risk score for that pathway which 

was regressed onto each phenotype separately. Petersen et al. [2011] also used a direct 

summarization strategy, whereby they apply weighted and unweighted collapsing strategies (see 

Dering et al. [2011]) directly to sets of SNPs defined by pathways/gene sets instead of genes. 

Yang et al. [2011] used weighted and unweighted collapsing methods, along with a novel 

variation on the weighted strategy that tunes the weights empirically using the observed 

association with the phenotype.  

No aggregation 

Wang et al. [2011] did not consider aggregation, but instead first applied a simple regression 

model for each SNP. Top ranked SNPs were then subjected to sliced inverse regression (SIR; 

dimension reduction technique). 

False positive report probability and type I error rate 

Most members of our group computed either the false positive report probability (percent of non-

causal genes (or SNPs or pathways) among all genes (causal and non causal) that meet an 

arbitrary criterion for significance; the probability the null is true given that one has rejected the 

null) or the type I error rate (percent of all non-causal genes (or SNPs or pathways) that meet an 

arbitrary criteria for significance among all non causal genes (significant and non-significant); 
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the probability that one rejects the null given that the null is true) as part of their analysis. We 

note that we use the terms “type I error” and “power” in this manuscript rather liberally as their 

utilization across papers in our group varied, including estimates of these quantities across the 

200 phenotype replicates, which all contain the same genotypes. 

Results  

Inflated false positives for gene level aggregations 

All five groups using gene level aggregation reported higher than expected type I error or false 

positive report probabilities.  Specifically, Hu et al. [2011] found a false positive report 

probability of 50% (2/4), Scholz and Kirsten [2011] had a false positive report probability that 

ranged between 94-98% and Li et al. found 8/10. Type I error rates were also inflated (Yang and 

Gu 8-11%; Aschard 9-20%) at the nominal 5% level. A variety of attempts at fixing the problem 

took place including the elimination of genes/SNPs showing spurious (see Luedtke et al. [2011]) 

association (Yang and Gu 2011, Scholz and Kirsten), use of principal components (Aschard et al. 

[2011]), genomic control (Aschard et al. [2011]) and pooling data across phenotype replicates 

[Li et al., 2011]. 

 

Inflated false positives for pathway level aggregations 

Similarly, all five groups applying a pathway level approach found inflated type I error rates.  

Specifically, false positive report probability tended to be quite high (13/20 Yang et al. [2010], 

60.3% for Nock et al. [2011], and 62/72 and 1/3 for Hu et al. [2011]. Type I error rates were also 

inflated (5-9% Yang and Gu; Petersen et al. (up to 50%)). Eliminating spurious genes [Petersen 

et al. 2011 and Yang and Gu 2011] showed substantial improvement in error rates. Using 

principal components did control the type I error rate but no significantly associations remained.  
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Inflated false positives for non-aggregating analysis 

Wang et al. [2011] looked first at the 30 most significant SNPs after application of a regression 

technique on the first 10 replicates and found that 80% of them were false positives. After the 

application of their dimension reduction approach using SIR, the average false positive report 

probability dropped to 20% (4 out of 5 markers selected are causal). 

 

Comparative results of aggregation approaches 

The following sections provide a comparative analysis of the various aggregation approaches. 

All manuscripts are considered except two groups which proposed novel approaches [Nock et 

al., 2011 and Wang et al., 2011] that were not directly compared to existing approaches. 

 

Gene level aggregation 

Aschard et al. [2011] found that collapsing was outperformed by traditional multivariate 

approaches in gene-based association tests, and showed weak power (9-23%) after controlling 

the type I error rate using genomic control as long as a gene included common variants 

(MAF>1%). However, importantly, this power was essentially zero when considering genes that 

included only rare variants. While Li et al. [2011] did not explicitly control the type I error rate, 

they used an ROC curve to compare methods, finding that a novel extension of the Empirical 

Bayes Risk Prediction model provided the highest AUC (area under the curve). Scholz and 

Kirsten [2011] compared methods and found that genes with multiple independent causal 

variants were better detected by multivariate methods (after collapsing rare variants), whereas 

genes with a single causal variant were better detected using the maximum association statistic 



 11 

within a gene; findings that were true regardless of the methods applied to control the type I error 

rate.  

 

Comparing gene and pathway level aggregation 

Hu et al. [2011] and Yang and Gu [2011] explored multiple levels of aggregation and both found 

that aggregating directly to the pathway level yielded more power than first aggregating at the 

gene level.  

 

Pathway level aggregation 

Among groups that compared different pathway level aggregation methods, Yang and Gu [2011] 

found that the novel VSEA method outperformed the standard GSEA method. Petersen et al., 

found that, when summarizing significance at the gene level first, Fishers combined probability 

test outperformed GSEA and the K-S approach, while direct application of the weighted-sum 

method on all SNPs from the pathway tended to yield the most power. Yang et al. [2011] had 

preliminary evidence that MCMC may outperform the genetic algorithms (GA) they considered, 

but they acknowledge that this could be due to particular choices made about the implementation 

of the GA procedures. 

 

Discussion 

In general, Group 7 participants observed very highly inflated Type I errors (as high as 50%), 

high false positive report probabilities (up to 90%) and low power to detect the simulated causal 

variants.  Even after attempts to control type I errors (e.g. correcting for population 

stratification), power was generally quite low. One exception that resulted in high power was the 
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results of collapsing methods (pathway or gene level) where the collapsed variants include a very 

high proportion of causal variants with higher MAF (e.g. FLT1 and KDR). Since only non-

synonymous SNPs predicted by SIFT [Ng and Henikoff, 2001] were included in the causal 

model, reducing the analysis to only non-synonymous SNPs was thought to improve power, 

though results showed only modest improvement [Scholz et al., 2011, Luedtke et al., 2011].   

Two main reasons for Type I errors were addressed during our group discussions and in 

our papers: population stratification and correlation between markers, which we will briefly 

describe in the following sections. 

Population stratification 

When the first round of rare variant collapsing methods were proposed and published, little was 

made of the issue of population stratification. While the treatment of population stratification and 

covariates is a reasonably straightforward issue in regression based approaches on SNP 

microarray data (common variants), little has been published on best practices for handling 

population stratification in next-generation sequencing data. The level of population stratification 

in this sample was large since subjects were taken from 6 populations. Many members of our 

group considered population stratification in their analysis most commonly through the use of 

principal components. In general, this reduced the type I error rate, however many group 

members still saw increased type I errors even after accounting for population stratification. 

Correlation between markers 

In the analysis of SNP microarray data, understanding and leveraging marker correlation is a 

critical part of the design and analysis of most studies, with most of the effort involving linkage 

disequilibrium (correlation of markers generally located in close proximity on the genome). 

However, collapsing and aggregating methods should not be impacted much by LD when 
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aggregating at the gene or pathway level unless there is LD between genes or between pathways, 

something that is usually assumed to be a relatively small problem [Li and Leal, 2008], though it 

is unclear if rare variant methods correctly account for LD blocks within genes/sets. In the data 

considered for this workshop, however, there appears to be correlation between markers, genes 

and pathways that are located far apart on the genome. For example, one of the causal variants 

(private variant C4S1877) is identical to 27 other SNPs in different genes. In another case, 

BUD13 (identified by both Li et al. [2011] and Luedtke et al. [2011]) was a non-causal gene 

showing strong association with Q1 and contained a SNP that was strongly correlated with a 

causal SNP in KDR (r=-0.20, p=9x10
-8

). This correlation between markers that are located far 

apart in the genome is not LD in the truest sense, and was identified as either long-range 

correlation or gametic phase disequilibrium at the workshop. There are two possible explanations 

for the observed correlations: random and non-random causes. 

Random correlation between markers is a phenomenon that is unique to rare variants in 

next-generation sequencing data. For example, the chance that two randomly selected markers 

are perfectly correlated decreases as the allele frequency increases. As noted earlier, when a large 

number of private variants are in a sample (e.g. 9433 on 697 individuals), most private variants 

are perfectly correlated with many other private variants (the 9433 markers were distributed 

across 685 individuals, yielding only 685 distinguishable markers). Random correlation between 

markers is typically not an issue in analysis of common variants. 

Another explanation is non-random correlation. In follow-up analyses both Luedtke et al. 

[2011] and Aschard et al. [2011] demonstrated that correlations between SNPs were significantly 

beyond what is expected due to random chance alone (detailed results not shown). Further 

information on data production and cleaning would be needed to explain the cause of non-



 14 

random correlation between genotypes. Regardless of the cause, few methods have been 

proposed that handle correlated markers for next-generation sequencing data. One such approach 

with promising results has been proposed by Wang et al. [2011], in which they suggest using a 

multiple regression approach of individual correlated SNPs on the phenotype to identify SNPs 

with the strongest marginal effect (detailed results available from the authors). 

Where we stand now 

When type I errors are not well-controlled, evaluation of power becomes meaningless; thus, our 

group has little ability to report on the relative value of various methods in terms of statistical 

power. However, two themes are worth noting. First, as corroborated by a number of groups 

using a variety of approaches, optimal analysis methods are very dependent upon number, 

strength and MAF of markers associated with disease. In this dataset, a few markers with 

MAF>1% had strong association with the phenotype, and so were able to be found by many 

groups, across replicates, using SNP-based, gene-based or pathway-based approaches. In fact, 

SNP-based methods showed some value for these SNPs since the signal is so strong that it 

remains significant even after applying very stringent correction. However, groups struggled to 

detect markers with lower MAF and weaker effects, especially for those genes containing few 

causal SNPs. Pathway methods lend a partial solution, however high (>50%) power is only 

observed when sets of genes contain a large fraction of causal genes: it is unclear if this will be 

the case in practice. Second, as is often the case with a major new technological breakthrough, 

there are a host of good and promising ideas about how to analyze next-generation sequencing 

data, and there were many novel, interesting and still promising approaches proposed by the 

members of our group. Unfortunately, we can make few conclusive statements about many of the 

approaches due to inflated type I errors.  
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Conclusions 

As we saw with the advent of the analysis of SNP microarray data a decade ago, as we enter the 

next-generation sequencing era there are more questions and ideas than there are concrete 

answers about best-practices for the analysis of these data. However, our groups have identified a 

major issue in the analysis of the GAW17 next-generation sequencing data, namely that of type I 

errors and false positive probabilities high above those expected based on empirical type I error 

levels. Certain themes emerged as best practices for the handling of this type I error problem 

including the use of principal components analysis to control for population structure.  

Additionally, multiple groups found evidence of correlation between markers located far apart in 

the genome attributable to both random and non-random causes. While no conclusive statements 

can be made, control of population structure and evaluation of random and non-random 

correlation between markers may help to control inflation of type I errors. Further work is 

needed to first identify best-practices for the control of type I errors in the analysis of next-

generation sequencing data, and then to explore and compare the many promising new 

approaches for identifying markers associated with disease phenotypes.  
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