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Methods in and Applications of the Sequencing of Short Non-Coding
RNAs

Abstract
Short non-coding RNAs are important for all domains of life. With the advent of modern molecular biology
their applicability to medicine has become apparent in settings ranging from diagonistic biomarkers to
therapeutics and fields ranging from oncology to neurology. In addition, a critical, recent technological
development is high-throughput sequencing of nucleic acids. The convergence of modern biotechnology with
developments in RNA biology presents opportunities in both basic research and medical settings. Here I
present two novel methods for leveraging high-throughput sequencing in the study of short non-coding
RNAs, as well as a study in which they are applied to Alzheimer's Disease (AD). The computational methods
presented here include High-throughput Annotation of Modified Ribonucleotides (HAMR), which enables
researchers to detect post-transcriptional covalent modifications to RNAs in a high-throughput manner. In
addition, I describe Classification of RNAs by Analysis of Length (CoRAL), a computational method that
allows researchers to characterize the pathways responsible for short non-coding RNA biogenesis. Lastly, I
present an application of the study of non-coding RNAs to Alzheimer's disease. When applied to the study of
AD, it is apparent that several classes of non-coding RNAs, particularly tRNAs and tRNA fragments, show
striking changes in the dorsolateral prefrontal cortex of affected human brains. Interestingly, the nature of
these changes differs between mitochondrial and nuclear tRNAs, implicating an association between
Alzheimer's disease and perturbation of mitochondrial function. In addition, by combining known genetic
factors of AD with genes that are differentially expressed and targets of regulatory RNAs that are differentially
expressed, I construct a network of genes that are potentially relevant to the pathogenesis of the disease. By
combining genetics data with novel results from the study of non-coding RNAs, we can further elucidate the
molecular mechanisms that underly Alzheimer's disease pathogenesis.
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ABSTRACT 
 

METHODS IN AND APPLICATIONS OF THE SEQUENCING OF SHORT NON-CODING RNAS 

Paul Ryvkin 

Li-San Wang 

 

Short non-coding RNAs are important for all domains of life. With the advent of modern molecular 

biology their applicability to medicine has become apparent in settings ranging from diagonistic 

biomarkers to therapeutics and fields ranging from oncology to neurology. In addition, a critical, 

recent technological development is high-throughput sequencing of nucleic acids. The 

convergence of modern biotechnology with developments in RNA biology presents opportunities 

in both basic research and medical settings. Here I present two novel methods for leveraging 

high-throughput sequencing in the study of short non-coding RNAs, as well as a study in which 

they are applied to Alzheimer’s Disease (AD). The computational methods presented here 

include High-throughput Annotation of Modified Ribonucleotides (HAMR), which enables 

researchers to detect post-transcriptional covalent modifications to RNAs in a high-throughput 

manner. In addition, I describe Classification of RNAs by Analysis of Length (CoRAL), a 

computational method that allows researchers to characterize the pathways responsible for short 

non-coding RNA biogenesis. Lastly, I present an application of the study of non-coding RNAs to 

Alzheimer’s disease. When applied to the study of AD, it is apparent that several classes of non-

coding RNAs, particularly tRNAs and tRNA fragments, show striking changes in the dorsolateral 

prefrontal cortex of affected human brains. Interestingly, the nature of these changes differs 

between mitochondrial and nuclear tRNAs, implicating an association between Alzheimer’s 

disease and perturbation of mitochondrial function. In addition, by combining known genetic 

factors of AD with genes that are differentially expressed and targets of regulatory RNAs that are 

differentially expressed, I construct a network of genes that are potentially relevant to the 

pathogenesis of the disease. By combining genetics data with novel results from the study of non-
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coding RNAs, we can further elucidate the molecular mechanisms that underly Alzheimer’s 

disease pathogenesis. 
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1.  Introduction 

1.1. RNA Biology 

1.1.1. The Central “Dogma” 
 

The central hypothesis (or as Francis Crick infamously and erroneously coined it, the ―central 

dogma‖) [35,36] of molecular biology outlines the relationship between three important types of 

organic molecules: DNA (deoxyribonucleic acids), RNA (ribonucleic acids), and proteins (Figure 

1.1). The totality of each type of molecule in the cell is referred to as the genome, the 

transcriptome, and the proteome, respectively. Under this framework, information flows from DNA 

to RNA and then to proteins; DNA serves as a template for transcription of RNA, which in turn 

serves as a template for translation into protein. Proteins form enzymes which carry out a range 

of functions throughout the cell and are generally responsible for phenotype, or the appearance 

and behavior of the organism. While we now know that there are many exceptions to this view  

[12,91,112,140,150] (Figure 1.2), it is a useful start for describing molecular biology. 
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Figure 1.1 – The central hypothesis of molecular biology. 

 

 

Figure 1.2 – The central hypothesis revised. 
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DNA can be considered a fixed information storage medium for the cell. Exceptions to 

this picture of DNA include the entire field of epigenetics which seeks to describe dynamic 

modifications to DNA, as well as the study of the processes of DNA replication and repair. In 

general, however, DNA serves only as a template and is not responsible for catalyzing other 

types of reactions. 

RNA, in contrast, exists in a constant state of flux via creation (transcription from DNA) 

and destruction (finely controlled turnover by enzymes). Similarly, proteins, which comprise 

enzymes, exist in a constant state of flux. For many years, proteins alone were considered to be 

the workhorse of the cell – after all, they catalyze nearly all of the reactions necessary to support 

life while DNA and RNA ―merely‖ store information. However, with the discovery of catalytic RNAs 

(ribozymes) [27,69,94], these molecules are now appreciated as more than simple ―messengers‖ 

between DNA and proteins. It is especially difficult to write off RNAs since the machinery that 

translates RNA into protein (the ribosome) is itself made up of RNA; indeed, it has been shown 

that the RNA (not the protein) component of this machinery is responsible for its activity [120]. 

RNA is therefore a key component of the cellular machinery and not simply a transitory 

messenger. 

Like the other ubiquitous organic polymers central to life (DNA and proteins), RNA 

primarily stores information by way of its sequence. While DNA is a polymer of the 

deoxyribonucleotides deoxyadenosine (dA), deoxycytidine (dC), deoxyguanosine (dG), and 

deoxythymidine (dT), RNA is a polymer of the ribonucleotides adenosine (A), cytidine (C), 

guanosine (G), and uridine (U) [6]. The key differences are RNA’s inclusion of a hydroxyl group 

where DNA is missing one, the substitution of uridine for thymidine, and RNA’s propensity to exist 

in a greater variety of structural forms. Analogous to DNA, it is the sequential order of the 

ribonucleotides that form the primary information content of RNA. Another form of information 

stored by RNA is its structure; RNAs are prone to fold into particular geometries which can be 

important for their catalytic functions [123,127] (Figure 1.3). The primary structure of an RNA is 
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its sequence. Its secondary structure is a graph whose nodes are nucleotides and whose edges 

represent Watson-Crick and wobble-pairing interactions between pairs of these nucleotides. Its 

tertiary structure describes long-range interactions between its base-paired and/or unpaired 

sections. Finally, the quaternary structure of an RNA models its interactions with other molecules. 

In addition to the folding geometry of the RNA, a third form of information is the presence of non-

canonical nucleotides formed by covalent modification of the standard four [3,4,37,166,169] – in 

Chapter 3 I present a method for detecting these non-canonical nucleotides. 
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Figure 1.3 – The structure of RNAs. 
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1.1.2. Protein-coding RNAs 

 

RNAs can be broadly categorized into two groups: those that code for proteins (coding RNAs) 

and those that do not (non-coding, or ncRNAs). The only extant class of coding RNAs is 

messenger RNAs (mRNAs) – however, not all mRNAs code for proteins. In higher eukaryotes, 

mRNAs are transcribed by the enzyme RNA polymerase II and undergo a sophisticated 

maturation process from the original mRNA transcript [117]: they can be spliced into various 

isoforms [65], they are capped by a special chemical structure on the 5’ end [133], they are 

polyadenylated on the 3’ end, and their sequence can be dynamically changed [139] (RNA 

editing) and chemically modified (RNA modification). The terms 5’ and 3’ correspond to the 

exposed atom of the ribose sugar in the ribonucleotide – generally a 5’ triphosphate on one end 

and a 3’ hydroxyl group on the other end. Since mRNAs are translated into proteins from 5’ to 3’, 

these are conventionally depicted as the left and right ends of the molecule, respectively. In 

eukaryotic splicing, multiple alternative forms of an RNA transcript are generated when the 

cellular splicing machinery removes sections called introns and concatenates together sections 

designated as exons, which usually contain the coding portion of the transcript (i.e., the sequence 

that will determine the translated protein). Thus one gene may produce many distinct mRNAs 

with varying sequences which are then translated into proteins with a variety of functions. 

Capping, in eukaryotic organisms, refers to the addition of the ribonucleotide N7-methylguanosine 

(m
7
G) to the 5’ carbon of the mRNA via an unconventional 5’-5’ triphosphate linkage. This cap 

serves to stabilize the mRNA and promote its export from the nucleus. Polyadenylation is a 

process whereby a homopoylmer of adenosines is sequentially added to the 3’ end of the mRNA. 

Among other functions, this poly(A) ―tail‖ regulates enzymatic degradation of the mRNA from the 

3’ end. Nearly all eukaryotic mRNAs are polyadenylated with the notable exception of the histone 

genes, where the 3’ terminus is designated by a small stem-loop RNA structure. The process of 

RNA editing generally consists of post-transcriptional changes in the sequence of an RNA. In the 

case of eukaryotic mRNAs, this is usually a deamination of adenosine to inosine or deamination 

of cytidine to uridine [85]. Inosine has similar base-pairing properties to guanosine, but overall it is 
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far less specific in its base-pairing specificity. These changes to an mRNA’s sequence can affect 

its alternative splicing, stability, and even the eventual protein sequence that is coded. Other 

types of changes to an RNA’s sequence, which always produce non-canonical nucleotides, are 

termed RNA modifications. Examples of RNA modifications are the methylation of guanosine at 

the carbon 2 amine (producing N2-methylguanosine or m
2
G) and the isomerization of uridine into 

its C-glycoside pseudouridine (Ψ). These types of modifications are believed to be rare in protein-

coding mRNAs, but the search for them is an active field of research. So far, it seems that the 

non-canonical nucleotides 5-methylcytidine (m
5
C) and N6-methyladenosine (m

6
A) can be found 

in mRNAs transcriptome-wide [115]. Furthermore, the recent discovery that a gene whose 

variants are found to be associated with obesity in humans, FTO, is an adenosine N6-

methyltransferase suggests that these modifications may play a very important role in human 

disease [57,84]. 

 

1.1.3. Non-coding RNAs 

While protein-coding mRNAs are important for deciding the sequences of proteins, the most 

abundant RNAs in the cell by far are non-coding RNAs; ribosomal RNA (rRNA) can make up over 

80% of all the RNA in mammalian cells. The next most abundant class of non-coding RNAs, 

transfer RNAs (tRNAs), can make up another 10%. Not only are non-coding RNAs the most 

abundant RNAs in the cell, they are also the most evolutionarily conserved: all cellular life on 

earth relies on ribosomes, and thus ribosomal RNA, and the similarity of its sequence among 

disparate organisms is great enough for it to act a universal phylogenetic character [128]. The 

universality of ribosomal RNA, combined with its sufficiency for ribosomal function is a central 

piece of evidence supporting the hotly-debated ―RNA world‖ hypothesis which claims that the use 

of RNA as an information storage medium preceded DNA’s on Earth [26]. 

Aside from their lack of protein-coding capacity, there are many fundamental differences 

between coding and non-coding RNAs, ranging from how they encode information to how they 
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are processed. For example, while the non-canonical nucleotide modifications described in 

Section 1.1.2 are thought to be rare in mRNAs, they are ubiquitous in non-coding RNAs. The 

most abundant non-canonical nucleotide in the cell, pseudouridine, is commonly found in rRNA 

and tRNA [73]. 

Unlike protein-coding mRNAs, there is great diversity in the non-coding RNA population 

[83,114] (Table 1.1). Unfortunately, producing a consistent nomenclature of non-coding RNAs is 

a difficult task, and currently it proceeds in an ad hoc manner publication by publication. For 

example, while some classes of RNA are defined by their location in the cell, others are defined 

by the genomic neighborhood of their DNA template. An initial useful subdivision of non-coding 

RNAs is by their size: generally ncRNAs shorter than around 50 nucleotides (nt) are considered 

short non-coding RNAs, or ―small RNAs,‖ while longer ones are referred to as long non-coding 

RNAs (lncRNAs). Section 1.1.4  describes the many types of short non-coding RNAs, while this 

section focuses on the longer ones. 
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Table 1.1 – A compendium of non-coding RNAs found in animals. 

Abbreviation Name Biological role Example(s) 

rRNA Ribosomal RNA Translation 5S rRNA 

tRNA Transfer RNA Translation tRNA
Met

CAU 

snoRNA Small nucleolar RNA RNA modification SNORD115 

snRNA Small nuclear RNA mRNA splicing U1 

scRNA Small cytoplasmic RNA Various hY1 

srpRNA Signal recognition 
particle RNA 

Protein localization  

lincRNA Long intergenic non-
coding RNA 

Various XIST, TSIX, 
MALAT1 

miRNA Micro RNA mRNA silencing let-7 

piRNA Piwi-interacting RNA Transposon silencing piR-53941 

tRF tRNA fragment Unknown tRNA
Met

CAU 5’ half 

paRNA Promoter-associated 
RNA 

Unknown EF1a promoter 

vtRNA Vault RNA Unknown; drug resistance VTRNA1-1 

aRNA Antisense RNA mRNA regulation BACE1-AS 

natRNA Natural antisense 
transcript RNA 

Unknown HAS2-AS1 

- Transposable elements Self replication SINEs and LINEs 

Hammerhead Hammerhead ribozyme mRNA regulation C10orf118 

TERC Telomerase RNA 
component 

Telomere extension TERC 

RNase P Ribonuclease P RNA 
component 

Cleavage of pre-tRNAs RPPH1 
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Ribosomal RNA is largely transcribed by RNA polymerase I and is central to an organelle 

within the cell called the ribosome [122]. Ribosomes are responsible for translating mRNAs into 

proteins. In eukaryotes the ribosome is made up of a small subunit (SSU) and large subunit 

(LSU). In the human genome ribosomal RNA exists in many copies (as rDNA), and often in long 

tandem arrays, which have long presented an obstacle to assembly of the human genome due to 

their repetitive nature. Ribosomal RNA maturation takes place in the nucleolus, a small 

substructure of the nucleus, where it is spliced and modified in myriad ways by other RNAs and 

ribonucleoprotein (RNP) complexes. Importantly, it is the structure of the rRNA that is responsible 

for its function, not necessarily its sequence; structure-over-sequence is a common theme among 

ncRNAs. 

The next most abundant class of ncRNA is transfer RNA [127]. Transfer RNAs are 

transcribed by RNA polymerase III and tend to be around 70 nt in length; they fold into a 

distinctive ―cloverleaf‖ secondary structure with an L-shaped tertiary structure. Like rRNA, the 

DNA genes from which they are transcribed (tDNA) exist with high copy number in mammalian 

genomes [13]. The function of tRNA is to act as an intermediary between mRNA and the 

ribosome. The acceptor arm of a tRNA is covalently bonded to a specific amino acid by a highly 

conserved family of proteins called tRNA aminoacyl synthases. The anticodon loop of a tRNA 

contains a three-nucleotide sequence called the ―anticodon.‖ When an mRNA is being translated 

by a ribosome, the appropriate tRNA associates with the mRNA’s current codon (three-letter code 

associated with an amino acid) by way of sequence complementarity. Thus a tRNA provides a 

link between particular codon sequences and particular amino acids, giving rise to the genetic 

code (Table 1.2). In tRNAs, both the structure and sequence are of critical importance – their 

structure allows for the appropriate interaction with the ribosome while their sequence provides 

specificity for particular codons. Notably, there are fewer tRNA anticodons encoded in the 

genome than there are complementary codons in the genetic code. This is because one tRNA 

can bind to multiple codons by way of covalent RNA modifications in the anticodon loop, yielding 

nucleotides with degenerate base pairing properties (e.g., inosine). Structural perturbations thus 
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induced adjacent to the anticodon can also alter the specificity of the codon-binding. Like mRNAs 

and rRNAs, tRNAs can also have introns that are spliced out [1]. 
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Table 1.2 – The eukaryotic nuclear genetic code. 

RNA Codon Amino acid  RNA Codon Amino acid 

UUA  
 
 

Serine (Ser) 

 CGU  
 
 

Arginine (Arg) 

UUG  CGC 

UCU  CGA 

UCC  CGG 

AGU  AGA 

AGC  AGG 

UUA  
 
 

Leucine (Leu) 

 GGU  
 

Glycine (Gly) 
UUG  GGC 

CUU  GGA 

CUC  GGG 

CUA  AUU  
Isoleucine (Ile) CUG  AUC 

GUU  
 

Valine (Val) 

 AUA 

GUC  UUU Phenylalanine (Phe) 

GUA  UUC 

GUG  CAU  
Histidine (His) CCU  

 
Proline (Pro) 

 CAC 

CCC  CAA  
Glutamine (Gln) CCA  CAG 

CCG  AAU  
Asparagine (Asn) ACU  

 
Threonine (Thr) 

 AAC 

ACC  AAA  
Lysine (Lys) ACA  AAG 

ACG  GAU  
Aspartic acid (Asp) GCU  

 
Alanine (Ala) 

 GAC 

GCC  GAA  
Glutamic acid (Glu) GCA  GAG 

GCG  UAA  
Stop codon UGU  

Cysteine (Cys) 
 UAG 

UGC  UGA 

UAU  
Tyrosine (Tyr) 

 UGG Tryptophan (Trp) 

UAC  AUG Methionine (Met) 
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Small nucleolar RNAs (snoRNAs) are, as their name suggests, non-coding RNAs that are 

generally localized to the nucleolus (but also Cajal bodies) [49]. There are three main subclasses 

of small nucleolar RNAs, each having a different set of structural and sequence motifs: C/D box, 

H/ACA box, and small Cajal body-specific (scaRNA). The main function of snoRNAs is to guide 

covalent modification of other RNAs, ranging from rRNA to small nuclear RNAs (snRNAs), via 

small nucleolar ribonucleoprotein (snoRNP) complexes. In general, C/D box snoRNAs guide 

methylation of RNAs while H/ACA box snoRNAs guide pseudouridylation of RNAs. One notable 

exception is the C/D box snoRNA SNORD115, which has complementarity to the serotonin 2 C 

receptor mRNA and alters its splicing [88]. 

Small nuclear RNAs (snRNAs) largely comprise the RNA component of the spliceosome; 

that is, they make up the machinery responsible for splicing of RNAs [51,118,154]. As their name 

suggests, they are largely localized to the nucleus. There are several families of snRNAs with 

names such as U1, U2, and so on. In conjunction with proteins they form small nuclear 

ribonucleoprotein (snRNP) complexes, which form the spliceosome. As with the other ncRNA 

types described, their genes exist in high copy number scattered throughout mammalian 

genomes [107]. 

A somewhat mysterious and only recently described class of non-coding RNAs is that of 

long intergenic non-coding RNAs (lincRNAs) [24,87]. lincRNAs look very similar to mRNAs – they 

are transcribed by RNA polymerase II and tend to be polyadenylated and spliced – but they do 

not code for proteins and often localize to the nucleus rather than the cytoplasm. While some 

notable examples of lincRNAs, such as Xist [32] and MALAT1 [82] have been well known for 

quite some time, the recent application of high-throughput RNA-sequencing has illuminated many 

more lincRNAs with varying levels of abundance and tissue specificity. Their function and 

biological relevance are largely unknown. 
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1.1.4. Short non-coding RNAs (small RNAs) 

Short non-coding RNAs, or small RNAs (smRNAs), play an important role in higher eukaryotic 

transcriptomes. RNAs that are considered small RNAs tend to be less than 45 nt in length, 

although there is no standard cutoff for the definition. They are almost always the product of 

processing a longer transcript rather than being independently transcribed directly from the 

genome. The pathways responsible for generation of smRNAs generally consist of a number of 

proteins and ribonucleoprotein complexes that process the precursor transcript in tandem and in 

parallel. These pathways tend not to be as conserved across evolutionary distances as some 

highly conserved proteins. Plants and animals, for example, have rather distinct smRNA 

pathways that behave in quite different ways as a whole. 

 The best characterized class of smRNA to date is the microRNA [145]. MicroRNAs are a 

particular subtype of small interfering RNA (siRNA) [55]. Small interfering RNAs were first 

described by Craig C. Mello, Andrew Fire, and others in their 1998 Nature article, for which Mello 

and Fire won a Nobel Prize in 2006. They are short (~21 nt) double-stranded RNAs which 

promote gene silencing through a variety of methods – usually by either catalyzing degradation of 

an mRNA transcript or inhibition of translation of an mRNA into its concomitant protein. They 

target specific mRNAs by nature of having sequence complementarity (full or partial) to a 

particular site on the mRNA, usually in its 3’ untranslated region (3’ UTR). The distinguishing 

features of microRNAs are that they tend to be processed either from larger transcripts called 

primary miRNAs (pri-miRNAs) or from introns that have been spliced out of pre-mRNAs (so called 

mirtrons). In animals, the processing of pri-miRNAs into pre-miRNAs is accomplished in the 

nucleus by the microprocessor complex, a protein complex that includes the Drosha and 

Pasha/DGCR8 proteins; this complex recognizes hairpins on pri-miRNAs and cleaves them out, 

creating pre-miRNAs. Mirtrons bypass this processing as they originate from introns and not pri-

miRNA transcripts. The resulting pre-miRNA, which generally consists of a stem and a loop 

structure, is then exported to the cytoplasm by the protein Exportin-5. In the cytoplasm, an 

endonuclease called Dicer further processes the stem-loop pre-miRNA into a mature 
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miRNA:miRNA* duplex by cleaving out the loop and a part of the stem. Each strand of the duplex 

forms a distinct single-stranded mature miRNA with full or near-complementarity between the 

two. The convention for which one is dubbed the ―star‖ miRNA is usually set by their order of 

discovery, the method by which the miRNA was discovered, and the relative expression levels of 

each miRNA strand in the tissue in which it was discovered. The resulting mature miRNAs tend to 

be about 22nt long in animals. It is these mature miRNAs, in conjunction with the RNA-induced 

silencing complex (RISC), which form a regulatory ribonucleoprotein complex that carries out 

silencing activity on mRNAs. The class of protein that is central to RISC’s silencing activity is the 

Argonaute family. They are responsible for guiding the miRNA to its target mRNA. The miRNA-

RISC (miRISC) then silences the mRNA transcript either by inhibiting translation into protein by 

the ribosome or degradation of the mRNA via cleavage. 

Another type of small RNA found in animals is the Piwi-interacting RNA (piRNA), named 

after the Piwi class of proteins, a subclass of the Argonaute family [64,81,132,137]. Unlike 

miRNAs, piRNAs tend to be significantly longer (26-32 nt versus 22nt) and also tend to have a 

uridine on their 5’ end. The process by which they are generated is not yet fully clear. However, 

their functional role has been partially elucidated: they are involved in the silencing of ―selfish‖ 

genetic elements known as transposons as well as in the placement of epigenetic marks on 

chromatin. They are also highly active in mammalian testes and are required for mammalian 

spermatogenesis. 

There are a variety of other types of small non-coding RNAs, and in the literature they are 

generally labeled by their precursor RNA. Small RNAs can be produced from any type of 

precursor, ranging from protein-coding mRNA to non-coding RNA types such as rRNA, tRNA, 

snRNA, and snoRNA. There is evidence that some of these small RNAs are processed like and 

behave like microRNAs: they are produced by cleavage of stem-loop structures by the Dicer 

protein and go on to have regulatory effects on mRNAs [9,18,103,126]. The fact that they 

originate from precursor transcripts other than pri-miRNAs does not preclude them from behaving 
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like miRNAs. However, the vast majority of non-miRNA small RNAs that are commonly found in 

small RNA-seq datasets, for example, are entirely uncharacterized other than their annotated 

precursor transcript. For example, tRNA-derived smRNAs (known as tRFs, or tRNA fragments) 

[99], are thought to be the result of a combination of endolytic cleavage under stress response 

conditions and non-specific cleavage by Dicer – but whether they are a simply non-specific 

byproduct of smRNA processing pathways or go on to have functional regulatory roles has yet to 

be determined. In Chapter 3 I present a quantitative method that can help researchers 

characterize these largely unstudied populations of small RNAs. 

 

1.2. Measuring the transcriptome 

The advent of high-throughput sequencing (HTS), the most common subtype of which is shotgun 

sequencing, has heralded in a new age of computational biology. In current-generation shotgun 

sequencing, DNA (or RNA) is fragmented into smaller pieces and then a machine produces 

―reads‖ by reading the sequence of these fragments from either one end (single-end sequencing) 

or both ends (paired-end sequencing). While the sequencing of genomes (DNA-seq) has gained 

recent attention, researchers are starting to see the value in applying these technologies to the 

sequencing of RNA (RNA-seq) [124] (Figure 1.4). In DNA-seq, researchers seek genetic variants 

that are uncommon, as well as types of variants that are difficult to detect with genotyping 

methods. This same level of sensitivity can be applied to RNA, where the goal is to not only 

determine the sequences of RNA transcripts, but also to infer changes in their abundance and 

alternative splicing between experimental conditions or in disease states. In this dissertation I 

present alternative facets of the transcriptome that can be measured using this data, but have not 

yet been fully explored (Chapters 2 and 3). While the clinical applications of RNA-seq have yet to 

be fully realized, it can already be used for biomarker discovery and in the generation of target 

hypotheses for, e.g., drug discovery. Traditional RNA-sequencing focuses solely on 

polyadenylated messenger RNAs, perturbations of which are more amenable to interpretation 
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when the function of the coded protein is known. However, alternative forms of RNA-sequencing, 

such as those that I present in this dissertation, are just as important in assaying the impact of the 

full (coding and non-coding) transcriptome (Chapter 4). Examples of alternate forms of RNA-

sequencing are: Ribosomal RNA-depleted RNA-seq (rRNA(-) RNA-seq) [30], small RNA-seq 

(smRNA-seq) [95], cross-linking immunoprecipitation-high-throughput sequencing (CLIP-seq)  

[105], Bisulfite RNA-seq [143], methylated RNA immuniprecipitation RNA-seq (MeRIP-seq) [115], 

double-stranded RNA-seq (dsRNA-seq) [172], single-stranded RNA-seq (ssRNA-seq), and 

degradome-seq (PARE, GMUCT) [2,63,66,159]. 

 

 

Figure 1.4 – Strand-specific polyA(+) RNA-sequencing. 
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In rRNA(-)-seq, the goal is similar to that in regular polyA(+) seq – measure abundance of 

and detect alternative splicing of transcripts. However, instead of limiting the experiment to only 

those RNAs with poly(A) tails, depleting ribosomal RNA allows one to assay a wider range of 

transcripts. One downside, however, is that the presence of highly abundant non-coding, polyA(-) 

RNAs can reduce the dynamic range of the estimated read counts. Although with recent 

increases in sequencing depth capabilities, this disadvantage has grown considerably less 

important. In Chapter 4 I describe an application of rRNA(-)-seq to a study of the differences in 

non-coding RNAs in the Alzheimer’s disease brain. 

Small RNA-seq is similar to rRNA(-) seq in that its intended purpose is to infer the 

abundance of non-coding RNAs. However, the method focuses on a subgroup of non-coding 

RNAs that are shorter than a particular length; the desired range for sequenced RNAs is usually 

15-45nt. In small RNA-seq, usually the rRNA depletion is forgone and instead an additional size-

fractionation step is added: the shorter fraction of RNAs is selected by polyacrylamide gel 

electrophoresis (PAGE) and subsequent gel extraction. Again, this type of RNA-sequencing is 

applied to Alzheimer’s disease in Chapter 4. 

While the previously described methods are used to assay the abundance and splicing 

changes in RNAs, there are other aspects of the transcriptome that can be measured. For 

example, in CLIP-seq, the goal is to elucidate the binding-specificity of an RNA-binding protein. In 

short, the RNA and all its bound proteins are cross-linked, and an antibody specific to one protein 

is used to pull-down a fraction of RNA that is enriched for the protein of interest. Then after 

fragmentation and removal of the proteins, RNA-sequencing is performed on the enriched 

fraction. After mapping these reads back to the genome, one can infer all of the sites in the 

transcriptome where the protein has some binding affinity. This can be used to determine general 

rules for the specificity of this particular protein by performing de novo sequence- or structural- 

motif searches within the enriched sequences. The procedure is analogous to chromatin-

immunoprecipitation sequencing (ChIP-seq), where the goal is to find binding sites of chromatin-
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binding proteins. Among other studies, CLIP-seq has been applied to the study of an RNA-

binding protein called TDP-43 which is implicated in the pathogenesis of neurodegenerative 

disorders such as amyelotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).  

CLIP-seq is also useful for finding in vivo sites of microRNA-mRNA binding by using an antibody 

specific to proteins in the miRNA silencing machinery; such studies are extremely important for 

elucidating regulatory targets of short RNAs such as microRNAs. 

Another example of a DNA-sequencing protocol that has been adapted to RNA-seq is 

that of bisulfite sequencing. The goal in bisulfite RNA-seq is to detect sites in the transcriptome 

where a cytidine has been replaced by a 5-methylcytidine (m
5
C) – that is, one is searching for a 

particular RNA modification in all RNAs. The protocol consists of treating the RNA with bisulfite 

before sequencing. Treatment with bisulfite deaminates cytosine to uracil, but 5-methylcytidine 

resists this conversion. After sequencing, one can detect conversion at cytidines and infer that the 

cytidines that are not converted into uridine must be methylated at the N5 position. 

Computationally, this presents issues as the conversions induce mismatches between the RNA 

sequences and the genomic sequence, which complicates the process of mapping these 

sequences back to the genome. However, specific alignment methods have been developed to 

mitigate this particular issue. 

An alternative to bisulfite sequencing is another method called MeRIP-seq. Here, instead 

of using bisulfite to produce a signal at unmodified cytidines, one instead uses an m
5
C-specific 

antibody to immunoprecipitate m
5
C-enriched RNA. By sequencing this fraction one can infer that 

enriched sequences relative to a non-specific immunoprecipitation are likely to have m
5
C sites. In 

addition, this method can be applied to any modification rather than just m
5
C. An advantage over 

bisulfite RNA-seq is that it does not induce mismatches in the RNA sequences; a disadvantage is 

that it may lack nucleotide-by-nucleotide resolution of the specific sites that are methylated. 

Another facet of the transcriptome that is a very active research area is RNA structure 

prediction. Historically, structural prediction of biomolecules such as RNA has been a laborious 
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and expensive low-throughput process. Additionally, in silico predictions based on annotated 

sequences alone have limited accuracy. Now high-throughput RNA-sequencing, in conjunction 

with biochemical methods, has allowed researchers to predict RNA structures transcriptome-

wide. There are several methods for accomplishing this, but they largely rely on similar 

biochemical treatments: the differences lie in the algorithms used to infer structure from 

sequencing data. Briefly, RNA is digested by a structure-specific RNAse enzyme and the 

remaining undigested RNA is sequenced. When the desired fraction is that of double-stranded 

RNA (dsRNA), the RNA is treated with an ssRNAse (single-stranded RNAse). Similarly, when 

single-stranded RNA (ssRNA) is desired, the RNA is treated with a dsRNAse. By sequencing 

each of these types of libraries in parallel and using computational methods to infer base-pairing 

probabilities, one can begin to infer RNA secondary structure transcriptome-wide.  

Another variant on RNA-seq that is a high-throughput extension of existing low-

throughput methods is degradeome sequencing. Degradeome sequencing is a high-throughput 

version of 5’ RACE (rapid amplification of cDNA ends). The degradome is the fraction of RNA 

resulting from regulatory cleavage of transcripts – these transcripts are silenced by particular 

types of cleavage. These cleavage events leave particular biochemical marks on the 5’ ends of 

the resulting fragments – in particular, the lack of the 5’ cap of the original transcript. By selecting 

for these types of fragments with biochemical methods, one can sequence such fragments and 

infer sites where cleavages like this have occurred. This method is largely used in plant 

transcriptomes, where short regulatory RNAs such as microRNAs carry out their silencing activity 

largely by catalyzing endolytic cleavage of the target transcript. In doing so, one can find in vivo 

target sites of these regulatory RNAs. 

 

1.3. Alzheimer’s Disease 

Alzheimer’s disease (AD), the most common form of dementia, was discovered by the German 

neuropathologist Alois Alzheimer in 1906 [20]. As of 2013, it is the most expensive disease in the 
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US; its immense societal burden is estimated at $157-$215 billion per year [173]. The FDA 

currently approves of four drugs for its treatment, all of which are cholinesterase inhibitors, and 

none of which are particularly effective at treating the disease. While its prevalence increases 

drastically with age (the risk doubles every 5 years after age 65), we still do not know what 

fundamentally causes it. Also, while it is estimated to be around 70% heritable, the genetics of AD 

have yet to be fully elucidated [8]. 

Alzheimer’s disease is clinically characterized by progressive memory loss, cognitive 

impairment, and behavioral changes. The hallmarks of its neuropathology are structures known 

as senile plaques and neurofibrillary tangles. Senile plaques are extracellular protein aggregates 

consisting mainly of the pepide amyloid beta (Aβ), whose precursor protein is encoded by the 

gene APP (amyloid precursor protein), and whose function is yet unclear. The neurofibrillary 

tangles are composed of the hyperphosphorylated protein tau (gene: MAPT), which normally 

associates with microtubules, structures that maintain the internal structure and morphology of 

cells. 

Broadly, AD cases can be broadly classified into two categories based on their genetic 

underpinning (familial or sporadic) and also by the age of onset (early or late). The familial form of 

the disease is almost always caused by autosomal dominant mutations in a small number of 

genes related to production of the Aβ peptide: presenilins 1 and 2, which help process APP, and 

APP itself. The onset of the disease when it is familial (before 65) tends to be much earlier than 

when it is LOAD. Familial cases, however, are extremely rare: they only account for 0.5% to 2.5% 

of all AD cases. The vast remainder of AD cases are of unknown genetic etiology, although 

several risk factors have been identified by recent genome-wide association studies (GWAS) 

[14,79,119]. What these studies have shown is that the largest genetic risk factor for sporadic AD 

by far is apolipoprotein E (ApoE) on chromosome 19, and alleles in a small number of other 

genes confer additional risk (Table 1.3). It is not yet fully understood what roles are played by 

these genes in the pathogenesis of AD, and functional studies of them are a very active area of 
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research. It is hoped that these studies will lead to earlier and more accurate diagnosis of AD and 

ultimately to treatments for the disease. In Chapter 4 I integrate these known genetic factors with 

RNA-sequencing data in order to increase the impact of correlative functional data by connecting 

them to causative genetics data. 

Table 1.3 – Genes implicated in LOAD by genome-wide association in Caucasian populations. 

Gene 
symbol 

Chromosome Gene name 

ApoE 19 Apolipoprotein E 

TREM2 6 Triggering receptor expressed on myeloid cells 2 

TOMM40 19   Translocase of outer mitochondrial membrane 40 
homolog (yeast) 

BIN1 2 Briding integrator 1 

CLU 8 Clusterin 

ABCA7 
 

19 ATP-binding cassette sub-family A member 7 

CR1 1 Erythrocyte complement receptor 1 

PICALM 
 

11 Phosphatidylinositol binding clathrin assembly protein 

MS4A6A 
 

11 Membrane-spanning 4-domains, subfamily A 

CD33 
 

19 Myeloid cell surface antigen CD33 

CD2AP 
 

6 CD2-associated protein 

EPHA1 7 Ephrin type-A receptor 1 

 

1.4. Outline of dissertation 

In Chapter 2 I present a computational method that, in conjunction with one of many types of 

RNA-sequencing methods, can be used to detect modified ribunocleotides transcriptome-wide. 

The method can be considered a high-throughput generalization of already-existing low-

throughput methods that capitalizes on the availability of modern RNA-sequencing technology. In 

addition to detecting modified nucleotides, it can also differentiate between different types of RNA 

modifications. 

 In Chapter 3 I describe a method for characterizing and classifying many different kinds 

of non-coding RNAs using small RNA-sequencing data. The key innovation of this method is that 
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it digests RNA-sequencing into biologically relevant features, rather than black box-style features 

that can hinder the interpretability of the results, particularly by domain experts. Using these more 

interpretable features, which were selected based on their known relevance to RNA processing 

pathways, the software can predict with a high degree of accuracy the class of small non-coding 

RNA. In addition, this method has been validated by comparing across independent datasets 

where different tissue types were used for sequencing. 

 In Chapter 4 I present an integrative analysis of the rRNA-depleted and small RNA 

transcriptomes of the Alzheimer’s disease prefrontal cortex. I describe the genes that are 

differentially expressed and classify them by their coding potential, their known precursor RNAs, 

and their predicted and experimentally verified regulatory targets. By integrating rRNA(-) and 

small RNA transcriptome data with loci known to be genetically associated with AD, we can begin 

to build a network that connects AD risk-associated variants with functional genomics data from 

the human brain. 
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2. High-throughput Annotation of Modified 

Ribonucleotides (HAMR) 

Appeared in: Ryvkin P*, Leung YY*, Silverman IM*, Childress M, Valladares O, Dragomir I, 

Gregory BD, Wang L-S. HAMR: high-throughput annotation of modified ribonucleotides. RNA. 

2013. (*Joint first authors) 

 

2.1. Introduction 
 

Covalent post-transcriptional modifications of specific nucleotide bases in RNA molecules are 

known to be highly prevalent and physiologically important. However, their overall abundance and 

biological function are not well understood. This gap is even more surprising given that RNA  

modifications play a role in maintaining structure, catalytic activity, and cellular abundance of 

RNAs, and that all known classes of RNA molecules harbor various levels of diverse 

modifications. Additionally, the recent discovery that an RNA methyl-6 adenosine demethylase 

(FTO) is a risk gene in obesity highlights the significance of RNA modifications to human biology  

[57,62,84].  

 Methods for detecting such modifications are well established 

[23,34,68,70,76,77,115,130,170]. One such method is primer extension, which relies on the 

differential ability of reverse transcriptase to produce cDNAs with base-pair substitutions at 

positions occupied by modified nucleotides [161]. 
 
Interestingly, all high-throughput RNA 

sequencing library preparation protocols require RNA to cDNA conversion by reverse 

transcription (RT), thus we reasoned it is possible to identify sites of modified nucleotides in all 

RNAs transcriptome-wide by uncovering nucleotides with significant sequence error rates. Using 

this idea, we developed HAMR, and demonstrate that this software allows fast and reliable 
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identification of modified nucleotides at single-nucleotide resolution in all RNA classes 

transcriptome-wide through the analysis of nucleotide substitutions found in various RNA-seq 

datasets. This software will provide an important tool for future work on RNA modifications, which 

are emerging as important regulators of human biology and physiology  [43,84]. 

 

2.2. Methods 
 

2.2.1. RNA extraction and sequencing 

 

Frozen human brain tissue from four female patients without neurological pathology was obtained 

from the Center for Neurodegenerative Disease Research.  Trizol extraction was performed to 

obtain total RNA. cDNA libraries for sequencing were generated following the Illumina small RNA 

library preparation procedure. The libraries were sequenced on an Illumina GAIIx machine to 

50bp and were submitted to NCBI GEO database (GSE43335). The reads were 3' adapter-

trimmed, requiring at least 6 bp of adapter sequence with at most a 6% mismatch rate. All 

untrimmed reads and trimmed reads shorter than 14bp were discarded. The remaining reads 

were mapped to the human genome (hg19) [59] using Bowtie [97] under ―-v 2‖ mode with a 

maximum 6% mismatch rate and allowing up to 100 mappings per read. Any unmapped reads 

were re-aligned to the set of tRNA transcripts with -CCA tails appended, and these were merged 

into the final alignment. For the whole transcriptome libraries, the same extractions were 

performed on brain samples from the same four patients, plus an additional male patient 

(GSE46523). Instead of initial size-fractionation, RNAs were depleted by one round of Ribominus 

(Invitrogen). Additionally, sequences mapping to known rRNA sequences were masked out of the 

dataset, and both adapter-trimmed and untrimmed reads were used. 

 The alignments were also performed using a different alignment program, BWA [102]. 

The results obtained using BWA were nearly identical to those given by Bowtie’s alignments (195 
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modified sites versus Bowtie’s 202). Reads aligning to repeat regions or annotated RNAs other 

than tRNAs were discarded. Nuclear tRNA annotations were taken from the "tRNAs" table in the 

UCSC genome browser (hg19). Annotations for mitochondrial tRNAs were generated by running 

tRNAscan-SE (v1.23) set to organelle mode on the mitochondrial genome (―chrM‖ in hg19). Multi-

mapping reads were partially resolved by taking those alignments whose mismatches aligned to 

SNPs (dbSNP 135) as the true hits, prioritizing them over alignments whose mismatches had no 

apparent explanation. The yeast data, consisting of 20.8 million reads sequenced on an Illumina 

Genome Analyzer I, was obtained from from the NCBI Sequencing Read Archive (GSM775340).  

  

2.2.2. tRNA locus clustering 
 

tRNA loci were taken from the tRNAscan annotation at UCSC and were required to have a 

tRNAscan score of 60.0. The loci were merged into families based on an empirical measure of 

sequence similarity computed from the number of reads mapping across them simultaneously, 

resulting in a clustering of tRNA loci that minimizes the number of cross-mapping reads. Each 

ordered pair of loci (i,j) is assigned a similarity value 

 (   )   
   

   
 
   

 

  where Nij is the number of reads mapping to both loci and the denominator is taken over all loci 

k. Then the symmetric similarity is 

 

 (   )    (   )      * (   )  (   )+ 

 

and the distance is set to be 
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 (   )     (   ). 

 Hierarchical clustering with k=84 clusters yielded the fewest cross-mapping reads with 

the fewest rogue clusters (those whose tRNAs decode to more than one amino acid). The two 

rogue clusters were Gly(SMC)1 containing 1 tRNA
Val

CAC and Cys(NVM)1 containing 6 tRNA
Ala

AGC, 

1 tRNA
Ala

CGC, 3 tRNA
Ala

UGC, 1 tRNA
Ser

AGA, and 1 tRNA
Val

AAC. 

 

2.2.3. Detecting candidate RT misincorporation sites 
 

The read alignment was converted to a pileup format and bases with quality score below 30 were 

discarded. Candidate RT misincorporation sites were taken to be those covered by at least 10 

reads and significantly enriched (FDR<5%) for mismatches by the binomial test, assuming a base 

call error rate of 1%. We tested two null hypotheses. The first, H0
1
, consists of the hypothesis that 

the genotype is homozygous reference. Therefore, the probability of seeing fewer than k out of 

ntot reads matching the reference nucleotide at a given site is  

 
),;(

)nucleotide reference homozygous is genotype site reads, |Pr(    

1

etot

k

i

totref

pniBinom

nkk








 

where pe is the base calling error rate. A more conservative null hypothesis, H0
2
 assumes only 

that the genotype is biallelic. It is a composite hypothesis consisting of sub hypotheses for each 

of the 10 possible genotypes. HAMR tests each possible biallelic genotype and takes the 

maximal p-value among all the tested genotypes. The advantage of using H0
2 
is that it will not 

falsely call significant any site that looks like a heterozygous or homozygous SNP. The main 

disadvantage is that it will cause HAMR to miss simple RNA edits as well as modifications that 

produce one- or two-nucleotide patterns in the cDNA. H0
2 
is more appropriate when one wishes to 

avoid false positives due to polymorphisms, but H0
1
 can be used if corroborating DNA evidence or 

other means are available to rule out such false hits. During the scan of the entire small RNA 
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transcriptome, the single nucleotides corresponding to the 5’ and 3’ ends of reads were discarded 

to reduce false positives resulting from elevated base calling error and ligation errors on read-

ends. 

 

2.2.4. tRNA modification identification 
 

RNA modification data was taken from the RNA modification database [129]. Specific locations of 

tRNA modifications were taken from the eukaryotic entries in tRNAdb 2009 and from the curated 

S. cerevisiae data at MODOMICS [38]. The tRNAdb data were given precedence over 

MODOMICS in all cases. Within the tRNAdb data, if multiple modifications were annotated for the 

same site, precedence was given to the organism closest in evolutionary distance from the target 

organism (either human or S. cerevisiae), using divergence time estimates as the means reported 

at timetree.org [75]. For each candidate modification site, an evidence level was assigned based 

on its overlap with the known modification data. The highest confidence overlap is one where a 

candidate modification occurs at a particular site in a particular tRNA for both the prediction and 

in the annotation. The next lowest confidence overlap is one where a known modification occurs 

at that site in any isoacceptor tRNA. Finally, the lowest level of evidence is the presence of a 

known modification in any eukaryotic tRNA at that site. Higher evidence data always takes priority 

over lower evidence data. If multiple possible modifications of the same evidence level are 

annotated at the same site, the modification data is marked as ambiguous. Modified sites were 

plotted on the RFAM consensus tRNA structures using SAVoR [100].  The classifier for 

identifying specific modifications by mismatch pattern is a 3-nearest-neighbor classifier in three 

dimensions, with the features being the sequenced proportions of the three non-reference 

nucleotides, after Laplace smoothing. For training data we only used the highest level of evidence 

(same site, same tRNA) and only modifications supported by at least 3 instances in the RNA-seq 

data were used.  
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2.2.5. Software 
 

The HAMR program takes as input a sequence-read alignment in BAM format (consisting of 

uniquely-mapped reads) and produces a table of genome coordinates and nucleotide frequencies 

at those coordinates. Given an assumed sequencing error-rate, it then performs a statistical 

analysis to select those sites whose mismatch rates are higher than expected by chance. The 

result is a set of sites that consist of both potential SNPs and candidate RNA modifications. 

These sites may optionally be classified as particular modifications based on the models built 

from no-chemical-treatment tRNA data. 

 The web interface allows specification of a remote, indexed BAM file and BED file with 

targeted intervals for querying. The user may specify parameters for the preprocessing steps, 

such as minimum base call quality score, minimum coverage at a site, assumed sequencing error 

rate, and significance level. Additionally, the user may use the software to predict the modification 

type based on mismatch patterns in tRNA data. 

 

2.3. Results 
 

Our method, HAMR, is able to detect the presence of multiple types of modifications present in 

RNA sequenced only once, without chemical treatment. In addition, the signals produced by 

these modifications via modulation of RT activity are present in all types of RNA sequencing 

datasets, which means that HAMR could be invaluable in gleaning more data from previous 

studies or publicly available data. We demonstrate that the method is able to detect modifications 

in two newly generated human RNA datasets as well as a publicly available yeast dataset and 

there is significant overlap in the signal detected. 
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2.3.1. Small RNA-sequencing of tRNA families 
 

tRNAs are the most highly modified cellular RNAs. Since they are highly represented in small 

RNA sequencing libraries as tRNA fragments [22]
 
we developed our approach on this type of 

data, although in principle our method can be applied to any type of RNA-seq dataset. We 

analyzed small RNA-seq data obtained using the dorsolateral prefrontal cortex of four deceased 

human patients who showed no signs of neuropathology. We found that the majority of reads 

(57%) mapped to known microRNAs, 23% to tRNAs, and the rest to other types of known RNAs 

and intergenic regions. 

 Since tRNA loci exist in multiple copies across the human genome, their associated short 

RNA-seq reads will often map to multiple loci.  Simply eliminating the ambiguously mapped reads 

would greatly reduce our data. We reasoned that the exact identity of the tRNA locus was not as 

important as the family producing each read with regards to RNA modification specificity. Given 

that isoacceptor tRNAs (those accepting the same amino acid) tend to have similar sequences 

and isodecoders (those with the same anticodon) even more, we were able to combine similar 

tRNA loci into families and refer to them by their predicted amino acid and anticodon. The 386 

high-scoring tRNA loci annotated by tRNAscan-SE [106] fell into 84 tRNA families that were 

distinct enough to greatly reduce read mapping ambiguity. The post-clustering cross-mapping 

rate (proportion of reads that map to one or more tRNA families) ranged from 9% for shorter 

reads (18 – 20 nucleotides (nt)) down to 2% for longer reads (>31nt). Furthermore, only two 

families included so-called rogue tRNAs, or tRNAs that share sequence identity with their siblings 

but code for a different amino acid.  

 

2.3.2. Detecting modified sites by mismatch rates 
 

In order to detect true post-transcriptional RNA sequence differences, we needed to exclude 

other sources of mismatches such as base calling error and DNA polymorphisms. It is noteworthy 
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that we observed an elevated mismatch rate for tRNA-derived smRNA reads, as would be 

expected when a large number of modified bases are present. In fact, when comparing the 

mismatch rates of reads mapping to tRNAs, microRNAs, and other types of RNAs, we found that 

tRNAs showed an overall elevated level of mismatches, microRNAs showed a spike 

corresponding to the ends of mature miRNAs, and other RNAs showed a gradual increase in 

mismatches towards the 3' ends of reads (Figure 2.1). These data were consistent with high 

numbers of modified bases spread across tRNA reads, with edits/additions at the ends of mature 

microRNAs [21,162], and with simple base calling error, which is expected to increase at the 3' 

ends of longer reads, respectively. The elevated-mismatch sites throughout the length of tRNA-

derived small RNA reads, not just their 3’ ends, suggested that data from smRNA-seq allowed us 

to identify true base pair modifications and not merely sequencing errors. Additionally, the 

distribution of PHRED quality scores at mismatch-containing sites 38.33 (std dev. 2.28) was 

nearly identical to that at non-mismatching sites 38.37 (std dev. 2.28). 

 

Figure 2.1 – Mismatch rates in small RNA reads mapping to three types of RNA 
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 Taking advantage of this observation to identify base modifications transcriptome-wide, 

we developed a model for allowing statistically significant identification of RNA modification sites 

based on nucleotide misincorporation by RT, while ignoring sequencing errors and single 

nucleotide polymorphisms (SNPs) due to genotype.  The model assumes a fixed base calling 

error rate, and makes a set of assumptions about the underlying genotype to model the mismatch 

rate due to chromosomal polymorphism. The simplest null hypothesis, H0
1
, assumes that the site 

is homozygous with the reference allele. Taking this as the null hypothesis results in any non-

reference nucleotide above the base calling error rate being called as a candidate modification.  A 

more conservative null hypothesis, H0
2
, assumes only that the genotype is biallelic. Under this 

assumption, we call candidate modifications where three or more nucleotides are sequenced at a 

rate higher than base call errors. Such patterns will arise at sites of RT misincorporation due to 

modifications and not at biallelic polymorphic sites.  

 We estimated library-wide base calling error to be around 1% based on the observed 

library-wide mismatch rate and on previous reports of error rates in Illumina sequencing [108]. We 

also required coverage of at least 10 reads per nucleotide, including reads with the same start 

and end positions. Under H0
2
, HAMR called 228 candidate modifications out of 5,487 sequenced 

tRNA sites. Of these, 201 (88%) did not overlap with any known SNP in dbSNP release 135 

[134]. Among these 201 sites, 123 (61%) coincided perfectly with a known modification as listed 

in tRNAdb 2009 [142] or MODOMICS [38] and 187 (93%) coincided with sites known to be 

modified on any tRNA (Figure 2.2 and Figure 2.3). 
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Figure 2.2 - Locations of known tRNA modifications predicted to affect RT incorporation 

 

            

Figure 2.3 - Modification sites predicted by HAMR 

 

 In order to test for possible violations of the biallelicity assumption under H0
2
, we 

ascertained the overlap between our called sites and known CNVs. Of the 233 genomic sites 

where we called a modification under H0
2
, 36 (15%) of the candidate sites fall within gain-of-copy 

CNVs listed in the Toronto CNV database [171]. Of the 36 sites in CNVs, 20 fall within rare CNVs 

(only 1 observation) and 16 fall within recurrent CNVs (observed more than once). This suggests 
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that, if the results are false positives due to undiscovered SNPs compounded by copy number 

variation, such instances are only a small fraction of the sites called by HAMR.  

 Since no chemical treatment that allows the identification of a specific post-transcriptional 

modification is used, our approach is limited to detecting modifications that modulate RT 

incorporation during normal sequencing library preparation. We predicted the RT effect of the 

remaining modifications based on their presence along the Watson-Crick edge (on the Watson-

Crick bonds) of the nucleoside (Table 2.1). We found that HAMR exhibits higher sensitivity where 

these types of modifications are predicted to occur (Fig. 3). While inosine (I) is known to produce 

an A>G substitution in cDNA [11] this nucleotide pattern is indistinguishable from an A/G SNP 

and so is discarded under the conservative null hypothesis H0
2
. When we used the less 

conservative null hypothesis, H0
1
, 60% of known inosine edit sites were called (Figure 2.5).   
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Table 2.1 – Selected RNA modifications and their known and predicted effects on RT 

Modification Symbol RT effect W-C edge 

Inosine I Mistranscription [67] Y 

N1-methylinosine m1I  Y 

N1-methyladenosine m1A Can't pair [67] Y 

N2-methyladenosine m2A  N 

N6-
threonylcarbamoyladenosine 

t6A Stop [67] Y 

N6-isopentenyladenosine i6A  Y 

5-methoxycarbonylmethyl-2-
thiouridine 

mcm5s2U  N 

2-methylthio-N6-
isopentenyladenosine 

ms2i6A  Y 

N6-methyl-N6-
threonylcarbamoyladenosine 

m6t6A  Y 

2-methyladenosine m2A  N 

N1-methylguanosine m1G  Y 

N2-methylguanosine m2G Pause [67] Y 

N2,N2-dimethylguanosine m2
2G  Y 

7-methylguanosine m7G  N 

Wybutosine, 
peroxywybutosine 

yW,o2yW Stop [67] Y 

Queuosine, mannosyl-
queuosine 

Q, manQ  N 

3-methylcytidine m3C  Y 

5-methylcytidine m5C Pairs [67] N 

N4-acetylcytidine ac4C  Y 

5-methyluridine 
(ribothymidine) 

m5U / T Pairs [60] N 

5-carbamoylmethyluridine ncm5U  N 

Dihydrouridine D Can't pair [67], Pairs [60] N 

Pseudouridine Ψ / Y Pairs [67], Pairs [60] N 

2’-O-methyl nucleosides Am, Cm, Gm, Um Pause w/ low dNTP [67] N 
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Figure 2.4 – HAMR’s sensitivity for detecting different types of RNA modification 

 

Figure 2.5 – HAMR’s sensitivity under the loose model H0
1
 



37 
 

2.3.3. Calling modification types by incorporation patterns in RT 

 

We hypothesized that different types of modifications affecting RT incorporation would have 

distinct incorporation patterns due to the differential base-pairing properties of the modified 

ribonucleotides. In order to visualize the incorporation patterns we mapped each potentially 

modified site (excluding known SNPs and using the conservative null hypothesis H0
2
) onto a 

ternary plot with the three dimensions corresponding to observed fractions of the three non-

reference nucleotides. This can be done for each precursor nucleotide separately (A, C, G, and 

U). The ternary plots clearly show clustering by modification type for modified adenosines and 

guanosines (Figure 2.6a,b). Using this approach, we observed thirteen sites for cytidine (m
3
C) 

(Figure 2.7), while predicting two RT-effecting sites for uridine (Figure 2.8). Interestingly, despite 

U>D (dihydrouridine) and U>Y (pseudouridine) not being predicted to affect RT incorporation, we 

were able to detect these sites and they tended to cluster together. We also found that the m
3
C 

sites were sequenced with a very similar nucleotide pattern in all four human brain samples and 

so those observations cluster together. 
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Figure 2.6 – Observed nucleotide frequencies in cDNA for different modification types and in different 

organisms 
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Figure 2.7 – Sequenced nucleotide frequencies at known tRNA m
3
C sites in the human brain 

 

 

 

Figure 2.8 – Sequenced nucleotide frequencies at known modified tRNA uridines in the human brain 
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Amongst modified adenosines, m
1
A shows a bias towards sequencing of T with varying 

amounts of G, and m
1
I shows a very similar pattern. In contrast, t

6
A shows a strong bias towards 

sequencing of C in the cDNA. Under the less conservative H0
1
, 60% of the known inosine sites 

were detected and found to be very strongly associated with a G in the cDNA, as is expected 

(Figure 2.9). At guanosines, both m
2
2G and m

1
G heavily favor sequencing of T with varying 

amounts of C and A, while peroxywybutosine (o2yW) shows more variation. Observations for 

peroxywybutosine were insufficient for us to draw strong conclusions about its RT incorporation 

patterns. 

 

 

Figure 2.9 – Sequenced nucleotide frequencies at guanosines when using the loose model H0
1 

 

 We set out to design a classifier that could take these patterns as input and predict the 

most likely modification at a site using these ternary plots. Given that m
1
A, m

1
I, and ms

2
i
6
A and 

i
6
A and t

6
A co-cluster, we decided to merge these two sets of modifications into the combined 

classes m
1
A|m

1
I|ms

2
i
6
A and i

6
A|t

6
A. Similarly, we merged m

2
G and m

2
2G into a single class, 
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m
2
G|m

2
2G. These two may be especially difficult to resolve because m

2
G is a chemical precursor 

of m
2
2G. Using a 3-nearest-neighbor classifier and leave-one-out cross-validation (LOOCV) we 

were able to differentiate between the two groups of adenosine modifications with 98% accuracy. 

For the guanosine modification types m1G and m
2
G|m

2
2G we were able to achieve 78% 

accuracy. For the 18 observations of significant uridine sites, we were able to distinguish between 

D and Y modifications with 86% accuracy. As there was only one type of cytidine modification 

that was detected, m
3
C, a classifier was not necessary. It is informative, however, that without 

chemical treatment the only cytidine modification we detected was m
3
C. 

 

2.3.4. Expanding the tRNA modification annotation 
 

Given the incomplete nature of the annotation we used, we set out to see if our classifier could 

expand the annotation by predicting modifications across all human tRNAs. We expected that the 

universally conserved modifications, e.g., m
1
A, would appear in all sequenced tRNAs despite 

those sites sometimes being absent from known annotations. Most of the undetected 

modifications were m
2
G sites, and our low sensitivity for m

2
G is likely due to its mild effect on RT 

incorporation [168].  

 In total, we predicted 78 modification sites that were absent from the annotation 

(Supplementary Table 2). In many cases the modifications were absent because the specific 

tRNA was not listed. First, we looked at isoacceptor tRNAs and matched 25 sites to m
1
A9, 

m
1
A58, m

1
G9, m

2
2G26, m

1
G37, m

3
C32, and Y39. For the other 53 sites not previously 

uncovered, we then searched across all tRNAs; this led to an additional 39 matched sites that 

were known to be modified in at least one type of tRNA. The remaining 14 sites were considered 

completely novel. 
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Table 2.2 – All tRNA sites predicted to be modified by HAMR 

tRNA Site Predicted mod type 
Matches 
DB Type 

Glu(UUC)2 C3 m
3
C N/A Novel 

Leu(CAA)1 A26 m
1
A|m

1
I|ms

2
i
6
A N/A Novel 

Met(CAU)1 C20 m
3
C N/A Novel 

Thr(HGU)1 A39 t
6
A N/A Novel 

Thr(UGU)2 A39 t
6
A N/A Novel 

Val(UAC)1 A26 m
1
A|m

1
I|ms

2
i
6
A N/A Novel 

mtAsn(GUU)1 A72 m
1
A|m

1
I|ms

2
i
6
A N/A Novel 

mtAsn(GUU)1 G73 m
1
G N/A Novel 

mtCys(GCA)1 G45 m
1
G N/A Novel 

mtCys(GCA)1 G49 m
1
G N/A Novel 

mtCys(GCA)1 U73 Y N/A Novel 

mtGln(UUG)1 G73 m
1
G N/A Novel 

mtLys(UUU)1 A59 m
1
A|m

1
I|ms

2
i
6
A N/A Novel 

mtPhe(GAA)1 A59 m
1
A|m

1
I|ms

2
i
6
A N/A Novel 

Arg(CCK)1 G39 m
1
G N Known site on other tRNA 

Arg(UCU)3 A38 t
6
A N Known site on other tRNA 

Arg(YCG)1 A38 t
6
A N Known site on other tRNA 

Asp(GUC)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on other tRNA 

Asp(GUC)2 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on other tRNA 

Glu(YUC)1 U33 Y Y Known site on other tRNA 

Lys(UUU)1 A38 t
6
A N Known site on other tRNA 

Met(CAU)1 A38 t
6
A N Known site on other tRNA 

Met(CAU)2 A38 t
6
A N Known site on other tRNA 

Met(CAU)3 A38 t
6
A N Known site on other tRNA 

Pro(HGG)1 G6 No consensus N/A Known site on other tRNA 

Thr(CGU)1 A38 t
6
A N Known site on other tRNA 

Thr(CGU)2 A38 t
6
A N Known site on other tRNA 

Thr(HGU)1 A38 t
6
A N Known site on other tRNA 

Thr(UGU)1 A38 t
6
A N Known site on other tRNA 

Thr(UGU)2 A38 t
6
A N Known site on other tRNA 

Trp(CCA)2 A38 t
6
A N Known site on other tRNA 

Val(CAC)1 U33 Y Y Known site on other tRNA 

Val(UAC)2 G39 m
1
G N Known site on other tRNA 

mtAla(UGC)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on other tRNA 

mtAla(UGC)1 G37 No consensus N/A Known site on other tRNA 

mtArg(UCG)1 A16 m
1
A|m

1
I|ms

2
i
6
A Y Known site on other tRNA 

mtAsn(GUU)1 U1 Y Y Known site on other tRNA 

mtAsn(GUU)1 G26 m
1
G N Known site on other tRNA 

mtCys(GCA)1 G9 m
1
G Y Known site on other tRNA 

mtCys(GCA)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on other tRNA 

mtGln(UUG)1 G9 m
1
G Y Known site on other tRNA 

mtGln(UUG)1 U34 Y Y Known site on other tRNA 

mtGln(UUG)1 G37 m
2
G|m

2
2G N Known site on other tRNA 

mtGlu(UUC)1 U33 D N Known site on other tRNA 
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tRNA Site Predicted mod type 
Matches 
DB Type 

mtGlu(UUC)1 U34 D N Known site on other tRNA 

mtLys(UUU)1 U34 D N Known site on other tRNA 

mtMet(CAU)1 C32 m
3
C Y Known site on other tRNA 

mtPhe(GAA)1 U33 Y Y Known site on other tRNA 

mtPro(UGG)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on other tRNA 

mtPro(UGG)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on other tRNA 

mtVal(UAC)1 U33 Y Y Known site on other tRNA 

mtVal(UAC)1 U34 D N Known site on other tRNA 

mtVal(UAC)1 U40 D N Known site on other tRNA 

Arg(ACG)1 U39 Y Y Known site on isoacceptor 

Arg(UCG)1 G9 m
2
G|m

2
2G N Known site on isoacceptor 

Arg(UCG)1 G26 m
2
G|m

2
2G Y Known site on isoacceptor 

Arg(UCG)1 G37 m
1
G Y Known site on isoacceptor 

Arg(UCG)1 U39 Y Y Known site on isoacceptor 

Arg(UCG)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on isoacceptor 

Arg(YCG)1 U39 Y Y Known site on isoacceptor 

Ile(UAU)1 G9 m
1
G Y Known site on isoacceptor 

Ile(UAU)1 G26 No consensus N/A Known site on isoacceptor 

Thr(CGU)1 G9 No consensus N/A Known site on isoacceptor 

Thr(CGU)1 G26 m
2
G|m

2
2G Y Known site on isoacceptor 

Thr(CGU)1 C32 m3C Y Known site on isoacceptor 

Thr(CGU)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on isoacceptor 

Thr(CGU)2 G9 No consensus N/A Known site on isoacceptor 

Thr(CGU)2 G26 m
2
G|m

2
2G Y Known site on isoacceptor 

Thr(CGU)2 C32 m
3
C Y Known site on isoacceptor 

Thr(CGU)2 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on isoacceptor 

Thr(UGU)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on isoacceptor 

Thr(UGU)2 C32 m
3
C Y Known site on isoacceptor 

Thr(UGU)2 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on isoacceptor 

Thr(UGU)3 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on isoacceptor 

mtGlu(UUC)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on isoacceptor 

mtHis(GUG)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on isoacceptor 

mtLys(UUU)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on isoacceptor 

mtTrp(UCA)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on isoacceptor 

Ala(AGC)1 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Ala(AGC)1 A37 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Ala(AGC)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Ala(AGC)3 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Ala(HGC)1 A37 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Ala(HGC)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Arg(ACG)1 G9 m
1
G Y Known site on this tRNA 

Arg(ACG)1 G26 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Arg(ACG)1 G37 m
1
G Y Known site on this tRNA 

Arg(ACG)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Arg(CCK)1 G9 m
1
G Y Known site on this tRNA 

Arg(UCU)1 G9 m
1
G Y Known site on this tRNA 
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tRNA Site Predicted mod type 
Matches 
DB Type 

Arg(UCU)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Arg(UCU)2 G9 m
1
G Y Known site on this tRNA 

Arg(UCU)2 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Arg(UCU)2 C32 m
3
C Y Known site on this tRNA 

Arg(UCU)2 U39 Y Y Known site on this tRNA 

Arg(UCU)2 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Arg(UCU)3 G9 m
1
G Y Known site on this tRNA 

Arg(UCU)3 C32 m
3
C Y Known site on this tRNA 

Arg(UCU)3 U39 Y Y Known site on this tRNA 

Arg(UCU)3 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Arg(YCG)1 G9 m
1
G Y Known site on this tRNA 

Arg(YCG)1 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Arg(YCG)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Asn(GUU)1 G9 m
1
G Y Known site on this tRNA 

Asp(GUC)1 G6 m
2
G|m

2
2G Y Known site on this tRNA 

Asp(GUC)2 G6 m
2
G|m

2
2G Y Known site on this tRNA 

Cys(NVM)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Gln(CUG)1 G9 m
1
G Y Known site on this tRNA 

Gln(CUG)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Gln(UUG)1 G9 m
1
G Y Known site on this tRNA 

Gln(UUG)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Glu(UUC)1 G9 m
1
G Y Known site on this tRNA 

Glu(UUC)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Glu(UUC)2 G9 m
1
G Y Known site on this tRNA 

Glu(UUC)2 U34 Y N Known site on this tRNA 

Glu(UUC)2 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Gly(CCC)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

His(GUG)1 G37 m
1
G Y Known site on this tRNA 

His(GUG)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Ile(RAU)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Ile(UAU)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Int(CAU)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Leu(CAA)2 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Leu(CAA)2 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Leu(UAA)1 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Leu(UAA)1 G37 m
1
G Y Known site on this tRNA 

Leu(UAA)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Leu(UAG)1 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Leu(UAG)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Leu(UAG)2 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Leu(UAG)2 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Leu(WAG)1 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Leu(WAG)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Lys(CUU)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Lys(UUU)1 A37 t
6
A Y Known site on this tRNA 

Met(CAU)1 G26 m
2
G|m

2
2G Y Known site on this tRNA 
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tRNA Site Predicted mod type 
Matches 
DB Type 

Met(CAU)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Met(CAU)2 G6 m
2
G|m

2
2G Y Known site on this tRNA 

Met(CAU)2 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Met(CAU)2 U39 Y Y Known site on this tRNA 

Met(CAU)2 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Met(CAU)3 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Met(CAU)3 U39 Y Y Known site on this tRNA 

Met(CAU)3 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Phe(GAA)1 G37 m
1
G N Known site on this tRNA 

Phe(GAA)1 U39 Y Y Known site on this tRNA 

Phe(GAA)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Phe(GAA)2 A14 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Phe(GAA)2 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Phe(GAA)2 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Pro(HGG)1 U38 Y Y Known site on this tRNA 

Pro(HGG)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Ser(CGA)1 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Ser(CGA)1 C32 m
3
C Y Known site on this tRNA 

Ser(CGA)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Ser(GCU)1 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Ser(GCU)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Ser(WGA)1 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Ser(WGA)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Ser(YGA)1 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Ser(YGA)1 C32 m
3
C Y Known site on this tRNA 

Ser(YGA)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Thr(HGU)1 C32 m
3
C Y Known site on this tRNA 

Thr(HGU)1 A37 t
6
A Y Known site on this tRNA 

Thr(HGU)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Trp(CCA)1 G9 m
1
G Y Known site on this tRNA 

Trp(CCA)1 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Trp(CCA)1 G37 m
1
G Y Known site on this tRNA 

Trp(CCA)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Trp(CCA)2 G9 m
1
G Y Known site on this tRNA 

Trp(CCA)2 G37 m
1
G Y Known site on this tRNA 

Trp(CCA)2 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Trp(CCA)3 G9 m
1
G Y Known site on this tRNA 

Trp(CCA)3 G26 m
2
G|m

2
2G Y Known site on this tRNA 

Trp(CCA)3 G37 m
1
G Y Known site on this tRNA 

Trp(CCA)3 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Tyr(GUA)1 U20 D Y Known site on this tRNA 

Tyr(GUA)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Val(CAC)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Val(HAC)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Val(UAC)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

Val(UAC)2 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 
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tRNA Site Predicted mod type 
Matches 
DB Type 

mtArg(UCG)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

mtAsn(GUU)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

mtGly(UCC)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

mtLeu(UAA)1 G9 m
1
G Y Known site on this tRNA 

mtLeu(UAA)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

mtLeu(UAG)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

mtLeu(UAG)1 G37 m
1
G Y Known site on this tRNA 

mtLeu(UAG)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

mtPhe(GAA)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

mtPhe(GAA)1 A37 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

mtPro(UGG)1 G37 m
1
G Y Known site on this tRNA 

mtSer(UGA)1 C32 m
3
C Y Known site on this tRNA 

mtSer(UGA)1 A58 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

mtThr(UGU)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

mtThr(UGU)1 C32 m
3
C Y Known site on this tRNA 

mtTrp(UCA)1 A37 m
1
A|m

1
I|ms

2
i
6
A N Known site on this tRNA 

mtTyr(GUA)1 G9 m
1
G Y Known site on this tRNA 

mtTyr(GUA)1 A37 m
1
A|m

1
I|ms

2
i
6
A N Known site on this tRNA 

mtVal(UAC)1 A9 m
1
A|m

1
I|ms

2
i
6
A Y Known site on this tRNA 

 

2.3.5. Validation in S. cerevisiae small RNA dataset 

 

 In order to validate HAMR and demonstrate its utility in other organisms, we tested the software 

using a previously published yeast small RNA dataset [45].
 
We remapped the reads to the latest 

Saccharomyces cerevisiae genome release (sacCer3, UCSC) and applied the same procedure 

as with the human data to collapse the yeast tRNA loci into families. Of the 3,783 sequenced 

yeast tRNA sites with coverage greater than 10, 67 were called as potentially modified sites. Of 

these, 56 (84%) corresponded exactly to known modifications in tRNAdb or MODOMICS. Six 

more sites corresponded to positions that were not annotated as being modified on their 

particular tRNAs, but were known to be modified in an isoacceptor tRNA. The final five sites were 

known to be modified in other tRNAs. The sensitivity for RT-affecting modification was higher 

than those not predicted to affect RT incorporation (Figure 2.10). Similar to the human data, 

when we used the less conservative null hypothesis H0
1
, we were able to detect 100% of the 

inosine sites, as well as a t
6
A, an m

3
C, and an ac

4
C site (Figure 2.11). 
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Figure 2.10 – HAMR’s sensitivity in an independent S. cerevisiae dataset using the strict model H0
2 

 

Figure 2.11 - HAMR’s sensitivity in an independent S. cerevisiae dataset using the loose model H0
1 
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 The sequenced nucleotide patterns in yeast were similar to those in the human brain 

data.   (Figure 2.6c,d).  The fact that the two datasets were generated using different library 

preparations, sequenced by different versions of Illumina sequencers attests to the robustness of 

the statistical model we have developed. In fact, the classifier trained on human tRNAs was able 

to achieve 90% accuracy for modified adenosines and 65% accuracy for modified guanosines in 

yeast tRNAs. 

 

2.3.6. Validation in human rRNA(-)-seq dataset 

 

In order to ascertain the reproducibility of the tRNA modifications that were not directly present in 

the databases, we generated additional RNA-seq data from whole transcriptome (rRNA-depleted) 

libraries, which include entire tRNAs as opposed to only tRNA fragments. We compared both the 

―seminovel‖ and ―novel‖ tRNA sites in the small RNA libraries to the whole transcriptome libraries 

(Table 2.3). Seminovel here means the site is not annotated as modified on that particular tRNA, 

but is annotated on some other tRNA accepting a different amino acid. Of the 23 seminovel sites 

that were called in more than half of the smRNA libraries, 10 (43%) are also called in at least one 

whole transcriptome library. Two had drastically lower coverage in the whole transcriptome 

libraries. The remaining 13 (mostly ms
2
i
6
A38) sites could not be detected in the whole 

transcriptome libraries, possibly due to a real difference in ms
2
i
6
A modification rates between 

tRNA fragments and whole tRNAs. Of the 6 novel sites detected in more than half of the smRNA 

libraries, 4 were detected in the whole transcriptome libraries. The remaining two had drastically 

lower read coverage in the whole transcriptome libraries. 
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Table 2.3 – Comparison of novel sites in smRNA data to same loci in an rRNA(-) libraries. 

tRNA Site Predicted mod smRNA (/4) rRNA(-) (/5) Low coverage 

mtLys(UUU)1 A59 m
1
A|m

1
I|ms

2
i
6
A 4 5 N 

Val(UAC)1 A26 m
1
A|m

1
I|ms

2
i
6
A 4 2 Y 

mtPhe(GAA)1 A59 m
1
A|m

1
I|ms

2
i
6
A 4 1 Y 

Thr(HGU)1 A39 t
6
A 4 0 Y 

Met(CAU)1 C20 m
3
C 3 5 

 mtAsn(GUU)1 A72 m
1
A|m

1
I|ms

2
i
6
A 3 0 Y 

Glu(UUC)2 C3 m
3
C 2 5 N 

Leu(CAA)1 A26 m
1
A|m

1
I|ms

2
i
6
A 2 0 N 

 

Table 2.4 – Comparison of seminovel sites to rRNA(-) libraries. 

tRNA Site Known mod smRNA (/4) rRNA(-) (/5) 
Low 
coverage 

Asp(GUC)1 A9 m
1
A 4 5 N 

Asp(GUC)2 A9 m
1
A 4 5 N 

Pro(HGG)1 G6 m
2
G 4 5 N 

mtAla(UGC)1 A9 m
1
A 4 5 N 

mtAla(UGC)1 G37 m
1
G|o2yW 4 5 N 

mtGln(UUG)1 G37 m
1
G|o2yW 4 5 N 

mtPro(UGG)1 A9 m
1
A 4 5 N 

mtCys(GCA)1 G9 m
1
G|m

2
G|xG 4 4 N 

mtGlu(UUC)1 U34 xU 4 2 N 

Arg(YCG)1 A38 ms
2
i
6
A 4 0 N 

Lys(UUU)1 A38 ms
2
i
6
A 4 0 Y 

Met(CAU)3 A38 ms
2
i
6
A 4 0 N 

Thr(HGU)1 A38 ms
2
i
6
A 4 0 N 

mtPhe(GAA)1 U33 Y 4 0 N 

mtVal(UAC)1 U34 xU 4 0 N 

mtLys(UUU)1 U34 xU 3 3 N 

Arg(CCK)1 G39 Gm 3 0 N 

Arg(UCU)3 A38 ms
2
i
6
A 3 0 Y 

Met(CAU)1 A38 ms
2
i
6
A 3 0 N 

Met(CAU)2 A38 ms
2
i
6
A 3 0 N 

Thr(CGU)1 A38 ms
2
i
6
A 3 0 N 

Thr(UGU)2 A38 ms
2
i
6
A 3 0 N 

mtAsn(GUU)1 U1 Y 3 0 N 

Glu(YUC)1 U33 Y 2 0 N 

Thr(CGU)2 A38 ms
2
i
6
A 2 0 N 

Thr(UGU)1 A38 ms
2
i
6
A 2 0 N 

Val(UAC)2 G39 Gm 2 0 N 

mtCys(GCA)1 A58 m
1
A 2 0 N 
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2.3.7. Detecting modifications in other RNAs 

 

Scanning the entire human small RNA transcriptome and excluding tRNAs revealed 73 sites with 

mismatch patterns potentially corresponding to RNA modifications (Table 2.5). Nearly half (36) of 

these sites fell within known pre-microRNAs. Since the microRNA sites nearly always fell within 2 

nucleotides of the 3’ ends of mature microRNAs as annotated by mirBase [93], they most likely 

correspond to untemplated nucleotide additions, a phenomenon that has previously been 

observed in small RNA-seq datasets [31]. 

Table 2.5 – Candidate sites of modification across the entire small RNAome 

RNA type No. sites 
tRNA 166 

miRNA 36 
mt-tRNA 13 
intergenic 11 

mRNA_intron 5 
rRNA 5 

transposon 4 
ncRNA_exon 3 

Antisense mRNA exon 2 
Antisense transposon 2 

snRNA 2 
Antisense mRNA intron 1 
Antisense ncRNA exon 1 

scRNA 1 
 

2.3.8. Software 
  

Users may submit a link to a remote indexed BAM (read alignment) file to the online version of 

HAMR. HAMR detects candidate modification sites either transcriptome-wide or at selected loci 

specified by transcript ID or genomic coordinates. Users may also opt to filter out known dbSNP 

sites for human data and select various options affecting the stringency of the analysis, including 

p-value or FDR thresholds, minimum coverage, and which null hypothesis to use. The web 

version of HAMR is available at http://wanglab.pcbi.upenn.edu/hamr. 

http://wanglab.pcbi.upenn.edu/hamr
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2.4. Discussion 
 

Here we present HAMR, a high-throughput method to map RNA modifications within all classes 

of RNAs by identifying misincorporation of nucleotides by reverse transcriptase during production 

of cDNA products. While traditional methods use chemical treatment of the RNAs prior to RT, 

many modifications are still detectable even without treatment due to their effect on RT 

incorporation. This is advantageous because it allows for retrospective assays of potential RNA 

modifications in existing RNA-seq datasets, and also because it allows for the detection of RNA 

modifications with only one sequencing run. However, it is worth noting that the use of different 

chemical treatments in addition to different types of RT enzymes should expand the range of 

modifications that are detectable by HAMR. Since many modifications also cause complete halts 

in RT, a future research direction is to develop a method that allows the utilization fragment 

endpoint locations for modification mapping. 

 We have also found that the number of allowed mismatches in read alignment places a 

limit on the detection of nearby modifications. Improvement of methods, like the one presented 

here, will thus necessitate development of an alignment method that allows mismatches at 

arbitrary sites. This would be similar to the mapping methods used for bisulfite sequencing data 

[163], which are designed to map reads accurately in the face of cytosine deamination. 
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3. Classification of RNAs by Analysis of 

Length (CoRAL) 

 

Appeared in: Leung YY*, Ryvkin P*, Ungar LH, Gregory BD, Wang L-S. CoRAL: predicting non-

coding RNAs from small RNA-sequencing data. Nucleic Acids Res. 2013. (*Joint first authors) 

 

3.1. Introduction 

One of the most significant biological discoveries of the last decade includes the discovery of new 

types of RNAs and their specific functions in eukaryotic cells [48,153]. For instance, non-coding 

RNAs (ncRNAs) are transcripts that are not translated into proteins but serve other important 

biological functions. ncRNAs have highly diverse functions including protein translation (transfer 

RNAs (tRNAs) and ribosomal RNAs (rRNAs)), regulation of gene expression (microRNAs 

(miRNAs) and long intergenic non-coding RNAs (lincRNAs)) [71,87], pre-mRNA splicing (small 

nuclear RNAs (snRNAs)) [16], RNA modification (small nucleolar RNAs (snoRNAs)) [111], and 

the list is still expanding. Advances in high-throughput sequencing technologies have led to the 

unexpected discovery that up to 93% of the human genome is transcribed in some tissues [25]. 

Thus, it is not surprising that the non-coding RNA database [19] includes 135 different ncRNA 

classes. Unfortunately, the classification of most RNAs in this database is more representative of 

the historical process by which the ncRNAs were discovered such as sedimentation coefficient 

(e.g. 4.5S RNA) or cellular location (e.g. snoRNA), than of their true cellular function. This gap 

highlights the fact that most transcribed regions are still of unknown molecular function and 

biological significance.  

Given that little is known about most ncRNAs, a potential approach is to gather an enormous 

amount of experimental data efficiently and systematically using RNA-seq, and analyze these 
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data using sophisticated computational approaches. Unlike microarrays, RNA-seq does not rely 

on target probe hybridization, and thus one does not need to know in advance which regions are 

being transcribed. These properties make RNA-seq a promising tool to study ncRNA biology. 

Additionally, RNA-seq is highly versatile in that it can be modified to study specific properties, e.g. 

small RNA sequencing (smRNA-seq) [95] where gel-based size selection is used to enrich for 

RNAs with particular sequence lengths.  

While traditional methods predict RNA function using primary sequence or alignment 

information, new approaches using RNA-seq data have been proposed. For example, the 

miRDeep2 algorithm [58] searches for genomic regions that fold into hairpin structures and are 

enriched for sequenced reads next to the hairpin loop region (the expected location of mature 

miRNAs) to identify potential miRNA loci. Additionally, Langenberger et al. [96] pioneered the use 

of smRNA-seq features such as abundance and block length distribution to classify ncRNAs. 

Their method DARIO [53] uses random forest (RF) classifiers to differentiate between tRNA, 

miRNA, and snoRNA loci with reasonable performance. However, features generated from 

DARIO are not normalized by transcript-wide abundance; as a result, the most informative feature 

for miRNA identification is their overall abundance. This does not generalize well to other ncRNAs 

and is simply a result of the fact that miRNAs are highly abundant in human smRNA-seq 

datasets. 

Erhard and Zimmer [50] used similarities between RNA transcripts to classify ncRNAs. Their 

similarity measure was created based on the relative positions and lengths obtained from 

sequencing experiments. However, relative positions of reads require good knowledge on the 

start- and end-points of transcripts within a genome sequence, which is a challenge for newly 

discovered classes of ncRNA. Evaluation of their method on two classes of RNA (miRNAs and 

tRNAs) yielded performance with recall values of 98% and precision of 60% for miRNAs and 

~80% for tRNAs, which leaves room for improvement.  

To address the limitations of these previous RNA function classifiers, we have developed a 

framework for classifying RNA transcripts by functional categories using smRNA-seq data (Fig. 
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1), which can then be applied to identify unannotated RNAs with similar functions in other 

organisms in the future. To do this, we first designed algorithms to generate several types of 

features from smRNA-seq data based on read length distribution, strand specificity, and the 

secondary structure of the transcript for transcribed genomic regions. We then applied a multi-

class classification algorithm with feature selection and cross validation schemes included to train 

classifiers among a collection of known RNA functional classes including lincRNAs, miRNAs, 

scRNAs, C/D box snoRNAs, snRNAs, and transposon-derived RNAs. For each RNA class, we 

identified the most informative features that might be associated with the molecular mechanisms 

and metabolic processes of the functional classes. Trained models, informative features, and 

annotation results have been validated using: 1) external datasets, 2) SAVoR [100], a 

visualisation tool for RNA structures [101], and 3) curation of the primary literature. 

 

3.2. Methods 

3.2.1. Processing of small RNA-seq data  

The smRNA-seq data used for our analysis came from four sources: human brain data generated 

as part of this study (GSE43335), a previously published dataset from human skin (GSE31037) 

[86], and published datasets from human liver (SRR040571) and muscle (SRR040572) [52]. The 

human brain data was obtained by sequencing small RNAs (smRNAs) extracted from the 

dorsolateral prefrontal cortex of four deceased human patients with no apparent pathology. All 

reads were trimmed to remove the Illumina 3’ adapter sequence using cutadapt [110], and only 

those reads containing the adapter were taken as true smRNA reads. Reads were mapped to the 

reference genome GRCh37/hg19 using Bowtie [97] and those mapping to multiple loci were 

discarded. In order to merge reads into transcribed loci, we used the RSEQTools’ [72] 

bgrSegmenter tool. (Table 3.1) 
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Table 3.1 – Number of reads and loci at each stage of smRNA-seq processing 

 Raw 
reads 
(millions) 

3’ adapter 
trimmed 
reads 
(millions) 

Uniquely 
mapped 
reads 
(millions) 

Small RNA 
loci, > 1 read 

Small RNA 
loci, > 15 reads 

Brain 104.1 51.9 (50%) 15.4 (30%) 6,246 4,525 (72%) 

Skin 307.0 188.4 (61%) 85.4 (28%) 11,423 8,638 (76%) 

Liver 3.37 1.48 (44%) 1.15 (78%) 269 216 (80%) 

Muscle 3.79 3.42 (90%) 0.368 (11%) 218 178 (82%) 

 

3.2.2. Labelling training data  

Functional categories were assigned to loci by overlapping their coordinates with RNA 

annotations from the UCSC Genome Browser [59]. While there are many different types of 

ncRNA described, we focused on a subset of functional classes where sufficient numbers of 

confirmed loci were available to train predictive models.  

For quality control purposes, loci covered by fewer than 15 reads were discarded. This value 

was chosen as a compromise between selecting high quality sufficiently transcribed regions and 

identifying significant levels of loci for each class (Figure 3.1). Based on these criteria the 

following six RNA classes were selected: lincRNAs, miRNAs, scRNAs, C/D box snoRNAs, 

snRNAs and transposon-derived RNAs (Figure 3.2 and Figure 3.3). We excluded rRNAs and 

tRNAs because they are easily identifiable by sequence homology alone. 
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Figure 3.1 – The effect of read count thresholds on the ability to detect smRNA loci 
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Figure 3.2 – Summary of RNA classes in the brain smRNA-seq 

 

 

 

Figure 3.3 – Summary of RNA classes in the skin smRNA-seq 
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3.2.3. Feature generation 

We noted that features used for classification purposes should be flexible, comprehensive, 

efficient, and scalable. Therefore, we developed features that would be most likely to reflect the 

underlying biological properties of small ncRNAs. For example, microRNAs are consistently 

processed into their mature form of 22 nucleotide (nt) fragments as a consequence of Dicer’s 

activity on the stem-loop structure of pre-microRNAs [10]. It is reasonable to assume, then, that 

the lengths of smRNAs are consistent with some aspects of their biogenesis, which should also 

be consistent within classes sharing the same molecular function. Thus, for a transcribed locus i 

that starts at genomic position a and ends at position b, we define the length features as: 






b

ak

Lk

iL

(i)

N
s

Length

 

for read lengths 3014  L  , where NLk is the number of reads of length L mapping to base k 

and Length (i) is the length of locus i. The values of these 17 features are then transformed into 

log-odds-ratios via the following normalization procedure: 

piL =
1+ siL

siL
14£L£30

å
, xiL = log

piL

1/17

æ

è
ç

ö

ø
÷ 

In addition to the read lengths, we introduced a feature based on the abundance of antisense 

transcription. The numerical value of this feature reflects the number of reads mapped to the 

antisense strand of the transcribed locus. This feature is generated based on the assumption that 

the presence of antisense transcription at a locus is relevant to the biogenesis of smRNAs from 

this region. Another important feature that is likely to be specific to smRNA biogenesis is the 

specificity of cleavage positions. We encode this as two features: 5’ and 3’ positional entropy. The 

entropy is computed based on the distributions of the 5’ and 3’ end positions of all smRNA reads 

mapped to a given locus, respectively. This entropy feature is designed to capture the specificity 

(or degeneracy) of RNA cleaving-enzymes specific to the production of different types of 

smRNAs. For example, the processing of mature microRNAs from pre-microRNAs tends to 

produce fragments with a more stable 5’ cleavage position (low entropy) and more variable 3’ end 
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(higher entropy). We also generate features corresponding to the base composition of the reads, 

weighted by their expression: these are the four nucleotide frequencies transformed into a log-

odds ratio relative to equal base frequencies. Additionally, we compute the predicted minimum 

free energy of the genomic region surrounding the transcribed locus (40 bp on either side) using 

RNAfold with the default parameters [78]. 

 

3.2.4. Feature selection and classification framework  

In order to identify features that are most representative of the six ncRNA classes, we used the R 

package varSelRF (version 0.7-3) [41], which finds a small, optimal set of non-redundant features 

for each class. When computing the feature importance we used varSelRF with parameters 

(mtryFactor=4, vars.drop.fac = 0.35, ntree = 1e3). For the number of variables mtryFactor setting 

we tried various values and saw no difference in performance, so we used a value corresponding 

to the square root of the number of features as recommended in the literature [144]. Similarly, the 

number of trees did not greatly affect accuracy but had a large impact on running time. The 

selected variable drop factor yielded classifiers with the highest training accuracy. Random forest 

was used as a classifier to distinguish between multiple RNA classes. The feature selection 

portion uses both backwards variable elimination and selection based on the variable importance 

index outputted by the RF model. When training the models, 100 RF models comprised of 1000 

trees were built to determine the stability of results.  

 

3.2.5. Evaluation of performance 

Typically the performance of a binary-class classifier is evaluated by comparing values from the 

confusion matrix, including rates of true positives (TP), true negatives (TN), false positives (FP), 

and false negatives (FN). Other commonly used measures for binary classification are accuracy, 

recall/sensitivity, and positive predictive value. Measures for multi-class classification are 

generalized from measures used in binary classification. ACCk is the overall accuracy, which is 
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the proportion of predictions that are correct: ACCk = (TPk+TNk)/(TPk+TNk+FPk+FNk). For every 

class Ck, the class-specific evaluation measures are defined by recall (RECk) and positive 

predictive value (PPVk), derived from counts of Ck from the confusion matrix. RECk is defined as 

the proportion of positive labelled samples that are predicted as positive: RECk = TPk/(TPk+FNk), 

whereas PPVk is defined as the proportion of positive samples that are correctly identified: PPVk 

= TPk/(TPk+FPk).  

 

3.3. Results 

3.3.1. Visualization of the length features  

We hypothesized that the lengths of some small ncRNAs are specific to particular classes of 

precursor ncRNAs. Therefore, we tested the distribution of the read length feature for three of the 

ncRNA classes in the human brain and skin datasets. miRNAs demonstrated a strong peak at 22 

nt in length (Figure 3.4, Figure 3.3, and Figure 3.10), which is consistent with what is known 

about the length of mature miRNAs in animals. Products coming from C/D box snoRNAs tend to 

be depleted of shorter RNAs and enriched for longer RNAs (Figure 3.6, Figure 3.7, and Figure 

3.11). Transposon-derived smRNAs appear to show slightly different distributions depending on 

the tissue type. For example, they show a weak broad peak around 19 – 23 nt in the brain data 

and a flatter, weaker bias towards 16 – 22 nt in the skin data (Figure 3.8, Figure 3.9, and Figure 

3.12). 
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Figure 3.4 – Read length spectrum for brain miRNAs 

 

 

Figure 3.5 – Read length spectrum for skin miRNAs 

   

 

Figure 3.6 – Read length spectrum for brain C/D box snoRNAs 

 

Figure 3.7 – Read length spectrum for skin C/D box snoRNAs 
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Figure 3.8 – Read length spectrum for brain transposon-derived smRNAs 

 

Figure 3.9 – Read length spectrum for skin transposon-derived smRNAs 
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Figure 3.10 – SAVoR plot for a brain microRNA 
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Figure 3.11 – SAVoR plot for a brain C/D box snoRNA 

 

 

Figure 3.12 – SAVoR plot for a brain transposon-derived smRNA locus 
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In addition, we examined the correlations among the features in the brain dataset (Figure 3.13). 

Unsurprisingly, features corresponding to adjacent lengths correlate very strongly. Interestingly, 

there appear to be four clusters of lengths: 14 – 18 nt, 19 – 20 nt, 21 – 23 nt, and 24 – 30 nt. 

These results suggest that specific classes of smRNAs tend to have coherent lengths. We also 

found that positional entropy at both ends of human brain small RNAs strongly correlate. This 

suggests that small RNAs with high 5’ cleavage specificity tend to also have high 3’ cleavage 

specificity. 
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Figure 3.13 – Correlation heatmap of all the features in the brain data 
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3.3.2. Discriminative power of features  

Due to the varying number of loci within each ncRNA class, it can be challenging to visualize all 

loci in a dataset. In order to determine how well the length features were able to separate the loci, 

we built RF trees by classifying one ncRNA class versus all other classes. We then applied 

multidimensional scaling (MDS) to the proximity matrix obtained from the RF trees. miRNA, C/D 

box snoRNAs, and transposon-derived RNAs were the most visually distinguishable classes of 

smRNAs using our features (Figure 3.14 and Figure 3.15), and this pattern was found to be 

consistent between the two (brain and skin) datasets. 

 

 

 
Figure 3.14 – Multidimensional-scaling projection of the features in the brain data 
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Figure 3.15 - Multidimensional-scaling projection of the features in the skin data 

 

 

3.3.3. Comparison with existing classification approaches – DARIO and miRDeep 

We compared our method with a published method (DARIO), which was designed for classifying 

smRNAs by their precursor ncRNA loci. Since DARIO only uses three classes of ncRNAs 

(miRNAs, C/D box snoRNAs, and tRNAs) for building its classification model, we ran CoRAL 

while limiting the data to those three classes only (Table 3.2). 
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Table 3.2 – Comparison of a 3-class CoRAL model to DARIO 

 
DARIO CoRAL 

miRNA 

REC (%) 90 94 

PPV (%) 92 95 

C/D box snoRNA 

REC (%) N/A 88 

PPV (%) N/A 91 

tRNA 

REC (%) 84 90 

PPV (%) 81 87 

Overall accuracy (%) 87 91 

 

CoRAL gives the best results for all three classes, with an improvement of ~ 3 – 4% for 

miRNAs and tRNAs. DARIO reported none of the loci as being annotated as snoRNAs and so 

that class was unable to be compared, but demonstrates that CoRAL is able to identify these 

RNAs that cannot be distinguished by DARIO. When restricting the comparison to miRNAs and 

tRNAs, CoRAL’s predictive performance is 91%, which is a 4% improvement over the same 

analysis performed by DARIO.  

Additionally, we compared our results to those produced by miRDeep2 on the brain data (ran 

with default parameters). miRDeep2 had a recall of 81% and PPV of 98%, whereas CoRAL had a 

recall of 88% and PPV of 91% for miRNAs, while also predicting 5 other RNA classes. Thus, 

CoRAL has increased functional classification capabilities as well as improved overall 

performance compared the to currently available classifier options. 

 

3.3.4. Building a classification model using 6 classes of ncRNAs 
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There are currently more than 135 classes of ncRNAs in the NONCODE database. Here, we 

focused on a subset of functional classes where sufficient numbers of confirmed loci were 

available for us to build our predictive models. A total of six classes were included: lincRNAs, 

miRNAs, scRNAs, C/D box snoRNAs, snRNAs, and transposon-derived smRNAs. Performance 

measures were averaged over 1000 different seeds of RF classifiers (Table 3.3).    

 

Table 3.3 – Cross-tissue comparison of a 6-class CoRAL classifier 

 

Brain Skin 

CoRAL Baseline CoRAL Baseline 

lincRNA 

Count 13 34 

Recall (%) 16 0 1 1 

PPV    (%) 62 0 38 2 

miRNA 

Count 397 465 

Recall (%) 91 78 89 71 

PPV    (%) 88 43 86 42 

scRNA 

Count 93 41 

Recall (%) 78 1 29 0 

PPV    (%) 81 7 49 0 

C/D box 
snoRNA 

Count 209 176 

Recall (%) 94 14 88 5 

PPV    (%) 79 22 81 15 

snRNA 

Count 87 113 

Recall (%) 28 1 57 1 

PPV    (%) 67 7 67 9 

transposon 

Count 187 361 

Recall (%) 77 5 80 24 

PPV    (%) 74 15 77 28 

Overall 
Count 986 1190 

Accuracy (%) 81 33 79 33 

 

For both datasets, the overall accuracy is approximately 80%, which is a significant 

improvement over the baseline of 33%. The best performing classes are miRNA, C/D box 

snoRNA, and transposon-derived RNAs. The performance of these three classes is also 

consistent between the two tissue types. In contrast, the lincRNA, scRNA, and snRNA classes 
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performed more poorly. The lower performance of these classes can possibly be attributed to 

their smaller representation among loci, since there were fewer smRNA loci present from these 

regions for both tissue types. Another potential reason for the lower performance is that these 

classes are less cohesive than the other classes. lincRNAs generally do not share any structural 

properties and are known to have diverse functional roles [24]. scRNAs are in fact an umbrella 

group for two distinct types of RNAs: human Y (HY) RNAs and the BC200 small cytoplasmic RNA  

[152], which have different secondary structures and likely different functions in the cell. Finally, 

the snRNA class is a highly incoherent grouping due to the structural diversity among its 

members. For example, while the U1 and U2 RNAs are both small, localized to the nucleus, and 

involved in pre-mRNA splicing, they perform very different functions and have very different 

secondary structures [16]. Therefore, it is reasonable to expect more diversity in the properties of 

smRNAs being produced by cleavage of snRNAs as opposed to the three better performing RNA 

classes.  

 

3.3.5. Features that can discriminate between classes of small RNAs 

While we were interested in comparing the reproducibility of the smRNA features for various 

ncRNA classes, an important biological question to ask is which features are specific to which 

ncRNA classes. To determine this, we counted the number of times a feature is selected out of 

the 1000 RF models (Figure 3.16). In order to provide potentially biologically informative insights, 

we also marked features as being lower- or higher-valued in one class than in the others. We 

found that smRNAs from C/D box snoRNAs often have a higher positional entropy at their 5’ end 

and are very short (< 16 nt) or long (> 25nt). Interestingly, the length bias for these smRNAs is 

more marked in the brain data than in the skin data, but the entropy bias is consistent between 

tissues. snRNAs do not have many discriminative features in the skin dataset but in the brain they 

seem to preferentially produce shorter RNAs. Transposon-derived RNAs show very low positional 

entropy – suggesting that their cleavage positions tend to be very consistent. They also seem to 
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be depleted of miRNA-length products (22 – 24 nt), while being enriched for shorter products (< 

19nt) and having high minimum free energy (MFE) values for their secondary structure. 

 

Figure 3.16 - Feature importance map of the 6-class classifier for each tissue 

 

 We found the class-specific features were largely consistent across the two tissues, but vary 

widely for the ncRNA classes under study. For instance, lincRNAs show a propensity to produce 

shorter RNAs (14 – 17 nt), with slightly longer RNAs being produced in the skin data. Additionally, 

miRNAs were broadly distinguished by the production of fragments between 20 and 23 nt long, 

and this was very consistent between the tissue types. They also display a strong bias for low 5’ 

positional entropy and high 3’ entropy. This mirrors what is already known about lower variability 

of miRNA cleavage at the 5’ end and higher variability at the 3’ end [46]. 

Small cytoplasmic RNA (scRNA)-derived smRNAs demonstrated a broad peak of 

discrimination at 27 nt for both tissue types, with skin RNAs showing longer lengths. It has 

previously been shown that Y RNA (a type of scRNA) fragments do produce miRNA-like smRNAs 

but their potential function is still unclear [158]. scRNA-derived RNAs are moderately consistent 

between the two tissue types, but consistently show a preference for longer products with high 

MFE values. 
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Similar to scRNAs, C/D box snoRNAs were found to produce longer fragments. In both 

tissues, the positional entropy at both ends of the resulting smRNAs tended to be high, indicating 

a great degree of variability in cleavage positions. The pattern for snRNAs was less clear 

because their processing was highly inconsistent between the tissue types, with the exception of 

the production of 14 nt fragments, which was seen in both the brain and skin datasets. This may 

be due to the heterogeneity in the properties (especially structural) of RNAs that are collectively 

referred to as snRNAs. In contrast, we found that the features distinguishing transposable 

element-derived smRNAs were almost entirely consistent between the two tissues. With the most 

discriminative features being high cleavage specificity, high MFE, smaller products, and the 

absence of miRNA-sized products. Thus, determining the mechanism of transposon-derived 

smRNA processing and their functions will likely be an interesting future research direction. 

In order to determine whether a subset of features was the most useful for overall 

classification we selected the first five dimensions from the MDS analysis. This resulted in a drop 

in overall accuracy of 8% (data not shown). This suggests that while a small number of features 

capture most of the differences between the classes, many other features are still highly 

informative. More importantly, results obtained from the original features are more conducive to 

interpretation than a model that is only generated based on a projection of the original features. 

 

3.3.6. Validation of the classification models between datasets 

In order to evaluate the robustness of our classification models, we performed validation using 

independent datasets. In order to do this, we trained RF models on the brain data and applied 

them to the skin data and vice versa. Overall, the models were found to work fairly well, showing 

an accuracy of approximately 80% in both cases (Table 3.3). This suggests that patterns of 

smRNAs produced from ncRNAs are generally consistent and mostly non-tissue specific. 

However, we found that the degree of consistency varies among the classes of smRNAs. 

miRNAs, C/D box snoRNAs, and transposon-derived RNAs show the most consistent results 

both within and between tissue types. However, the lincRNA and snRNA classes display very 
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tissue-specific patterns of smRNA processing (Table 3.3). This is expected for lincRNAs given 

their tissue-specific patterns of expression. Besides tissue specificity, one other potential reason 

why certain classes perform much better across tissue types may be the number of loci present 

within the tissues being used for analysis. Since we are using a fixed minimum of 20 reads 

mapping to each locus, differences in overall expression between the tissue types will result in a 

different number of loci in each class (Figure 3.17, Figure 3.18, Figure 3.19, Figure 3.20, 

Figure 3.21, and Figure 3.22). Therefore, while the cross-tissue classifier performs well overall, it 

is limited by not only the number of loci in each class but also the consistency in these numbers 

across the tissue types being studied.  

 

Figure 3.17 – lincRNA-derived smRNA locus overlap between brain and skin 

 

Figure 3.18 - miRNA locus overlap between brain and skin 
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Figure 3.19 - scRNA-derived smRNA locus overlap between brain and skin 

 

Figure 3.20 – C/D box snoRNA-derived smRNA locus overlap between brain and skin 

 

 

Figure 3.21 - snRNA-derived smRNA locus overlap between brain and skin 

 

 

Figure 3.22 - Transposon-derived smRNA locus overlap between brain and skin 
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In order to further vaildate the robustness of the classifier when applied to different datasets, 

we tested additional publically-available smRNA-seq datasets for human liver and muscle (Table 

3.4). We restricted the classes to those represented by at least 10 loci in all four datasets 

(miRNA, C/D box snoRNA, and tRNA). For each pair of datasets we trained the model on one 

and tested on the other. Overall the accuracies (65-93%) suggest that the model can classify 

across tissue types fairly well, conditional on the training dataset having high enough sequencing 

depth to fully characterize the lower-abundance small RNAs. For example, the liver dataset has 

far fewer reads than the others and thus performed poorest (<70%) when used as the training 

dataset. Despite this, the model was able to classify liver smRNAs fairly well (77-93%) when 

trained on the other tissue types. Overall, our results suggest that CoRAL is a comprehensive 

and robust method for classifying RNAs using smRNA-seq datasets. 

 

Table 3.4 – Four-way independent cross-validation of the 3-class classifier 

 Test    

Train Brain Skin Liver Muscle 

Brain 91% 87% 93% 91% 

Skin 81% 89% 81% 90% 

Liver 71% 67% 93% 92% 

Muscle 63% 67% 93% 100% 

 

3.4. Conclusions  

Patterns of cleavage in human ncRNAs appear to be non-random and reflect specificity in the 

processes that produce smRNAs from the corresponding precursors. This is despite the fact that 

the classes of ncRNAs studied here are defined based on differing criteria (sequence homology, 

secondary structure homology, biological function, cellular localization, and transcript length). 

While it is unknown whether these fragments or the cleavage of the precursors have some 

biological function, the non-random nature of the cleavage events hints at some role. 
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We also found that the classification features that distinguished each class of ncRNA are 

generally consistent across tissue types in humans, suggesting there are as-yet unknown 

biological pathways regulating their biogenesis. We also demonstrated that some types of 

ncRNAs show more tissue specific properties (lincRNAs, scRNAs, and snRNAs). However, the 

other three RNA classes (miRNAs, C/D box snoRNAs, and transposon-derived RNAs) are highly 

reproducible and consistent across two of the tissue types tested in our study.  

As compared to previous work like DARIO, one of the significant contributions of CoRAL is the 

development of biologically interpretable features such as fragment length, cleavage specificity, 

and antisense transcription. These features are able to capture the essence of ncRNAs, i.e., how 

they are processed into smaller fragments. It seems likely that the features revealed by CoRAL 

can serve as a basis for further exploration and validation.  

The ability of CoRAL to consistently annotate loci between tissue types suggests that it may 

be useful in annotating ncRNAs in other organisms and even more tissue types using only 

smRNA sequencing data. Thus, it will be a powerful tool for the annotation of future non-coding 

transcriptomes in this era of genomic progress, which complements other currently available 

comparative genomics methodologies.  It is worth noting that our approach may even outperform 

homology-based methods, given the lower homology due to compensatory evolution in many 

classes of RNAs [113]. 

 

3.4.1. Software Availability 

The CoRAL source code required genome annotation files, and prediction results are available at: 

http://wanglab.pcbi.upenn.edu/coral . 

  

http://wanglab.pcbi.upenn.edu/coral
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4. Characterizing the non-coding 
transcriptome of Alzheimer’s Disease 

 

4.1. Introduction 

Studies of the transcriptome in Alzheimer’s disease are not new [15,17,33,104,116,155]. 

However, all of these studies tend to focus on the protein-coding portion of the transcriptome 

while ignoring the non-coding portion. While there is a preponderance of functional data for 

proteins (often of a non-directional nature such as simple binding or association), an advantage of 

studying non-coding RNAs is that there are also many known directional relationships amongst 

them. For example, snRNAs direct splicing of pre-mRNAs; another example is that of ribosomal 

RNAs, differential expression of which might indicate a global downregulation of translation in the 

face of environmental stress. Another example is that of tRNAs as, again, markers of cellular 

stress – in particular, small RNAs deriving from their cleavage. Here we present a study of the 

non-coding transcriptome (both long and short) transcripts in the dorsolateral prefrontal cortex of 

the AD-affected brain. 

4.2. Methods 

4.2.1. RNA-sequencing 

The small RNA and rRNA(-) sequencing were performed as described in section 2.2.1. 

4.2.2. Calling small RNA loci and building smRNA locus families 

By taking uniquely-mapping reads only, we can lose up to 60% of the reads in a small RNA 

library. We can mitigate this issue by keeping some cross-mapping reads and losing the ability to 

distinguish between different loci that are copies of the same or very similar gene (this is 

acceptable as they will never be resolvable at a given read-length.) In order to accomplish this, 

the method for clustering tRNAs by empirical cross-mapping rates in Chapter 2 was generalized 

and adapted to all small RNA loci in a transcriptome. Here the clustering quality criterion was 
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defined so as to minimize inclusion of multiple RNA classes into one cluster, and the value of K (# 

clusters) was chosen to minimize this value. Clusters were heavily penalized if they contained loci 

coming from a priori pairs defined as incompatible (Table 4.1). 

Table 4.1 – RNA classes defined as incompatible when clustering loci. 

RNA class Incompatible classes 

miRNA tRNA, mt-tRNA, snoRNA, snRNA, rRNA 

tRNA miRNA, snoRNA, snRNA, rRNA 

mt-tRNA miRNA, snoRNA, snRNA, rRNA 

snoRNA miRNA, tRNA, mt-tRNA, snRNA, rRNA 

snRNA miRNA, tRNA, mt-tRNA, snoRNA, rRNA 

rRNA miRNA, tRNA, mt-tRNA, snoRNA, snRNA 

 

4.2.3. Predicting the impact of tRNA activity changes on protein translation 

Given a list of tRNAs that whose activities are predicted to increase, and the set of codons in the 

coding sequence of every human gene (obtained from Ensembl), we can assign to each gene the 

importance of that particular subset of tRNAs in its translation. First we take the reverse 

complement of each anticodon to determine approximately the set of codons it recognizes 

(ignoring post-transcriptional modifications of the anticodon sequence and non-canonical base-

pairing). Then we can compute, for each protein-coding sequence in the genome, a score 

indicating the importance of this set of anticodons to that gene’s translation (assuming no 

positional biases along the transcript in translational efficiency): 

   
∑     

  
 

where Si  is the score for sequence i, Iij  is an indicator whose value is 1 when codon j of sequence 

i is targeted by the list of given anticodons, and Ni is the length of sequence i in codons. 



81 
 

Sequences were required to be at least 50 codons long and the maximally scoring transcript 

within a gene’s set of transcripts was used as the score for that gene. 

 

4.2.4. Building a network of AD-related genes 

MicroRNA targets were taken from two databases of experimentally validated microRNA-mRNA 

interactions: mirTarBase and miRecords. Targets of the minor spliceosome were considered to 

be those genes that have U12 introns according to the database U12DB [5]. Protein-protein 

interactions were taken from the STRING tool [56]. 

 

4.3. Results 

4.3.1. Sample characteristics and RNA-seq processing statistics 
 

In order to characterize the prefrontal cortex non-coding transcriptome in AD, we performed two 

types of RNA sequencing on brain tissue from seven patients (Table 4.2). The patients were all 

non-Hispanic Caucasian females matched for age-of-death (mean 79 years vs. 79.25 years). The 

first set of libraries was generated by depleting ribosomal RNA (rRNA) from total RNA, allowing 

us to assay the expression of long non-coding and all coding transcripts independent of the 

presence of polyadenylated tails. The second set of libraries was generated by selecting for small 

RNAs (smRNA) by size fractionation, and these libraries were expected to elucidate the 

expression of, among other transcripts, short regulatory RNAs known as microRNAs. 

Table 4.2 – Summary of samples and RNA-seq data processing 

 rRNA(-) reads (millions) smRNA reads (millions) 

Dx ApoE  Age Raw  Filtered Mapped Unique Raw Trimmed Mapped 

AD ε3/ε4 81 83.6 38.3 24.1 14.1 32.5 21.3 17.3 

AD ε3/ε3 83 72.1 33.6 18.3 7.9 31.6 17.8 14.2 

AD ε3/ε4 73 73.1 32.5 19.1 8.2 25.3 15.6 11.0 

N ε3/ε3 92 59.2 27.2 15.2 9.4 26.0 12.3 8.8 

N ε2/ε3 72 81.2 32.6 18.7 11.6 30.0 13.9 11.6 
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N ε3/ε3 68 39.3 21.0 12.1 7.0 29.4 18.6 15.2 

N ε3/ε3 85 66.5 27.7 14.1 8.8 18.7 7.1 6.1 

 

4.3.2. Global changes in non-rRNA transcription in the AD brain 

The rRNA(-) libraries, as expected, were dominated by mRNAs – first exonic reads at 30% of the 

total, followed by intronic reads at 20% (Figure 4.1). Despite introns being far longer than exons, 

they were underrepresented in total RNA due to splicing; the abundance of mature mRNA versus 

pre-mRNA transcripts resulted in higher coverage of exons. The next most sequenced class of 

RNAs was mitochondrial tRNAs, containing 10-20% of the reads. Strikingly, there was a great 

degree of variability in total mt-tRNA abundance between the samples – this variability is not seen 

for any of the other types of transcripts, including nuclear tRNAs. Broadly, the data suggest that 

mt-tRNAs are slightly less abundant in the AD samples, although this difference is not statistically 

significant. This depletion of mt-tRNA transcripts in the AD samples is potentially an indicator of 

cell death in the AD-affected cells. 

Following mt-tRNA transcripts in abundance were sequences corresponding to 

transposable elements. The data suggest that transposable elements are widely expressed in this 

region of the brain, but there did not seem to be a difference between the AD and normal 

samples. The next most-sequenced class of reads consisted of those with no known annotation, 

which we call ―intergenic.‖ While 10% of these regions are  pseudogenes, it is likely that a large 

fraction of these reads are spurious mappings due to SNPs, sequencing errors, splicing, RNA 

editing, and cryptic exons or introns confounding the alignment. After intergenic reads the next 

most abundant classes were sno- and sn- (small nucleolar and small nuclear) RNAs. 

Approximately 10% of reads fell on the strand opposite to the annotated RNA and were labeled 

as ―antisense.‖ The class of RNAs showing the most antisense transcription was transposable 

elements (Figure 4.2). This antisense transcription could be indicative of antisense RNA-

mediated silencing of transposable elements in the brain transcriptome. 
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Figure 4.1- Summary of sequenced RNAs in the rRNA(-) libraries 
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Figure 4.2 – Summary of antisense transcription in the rRNA(-) libraries 

 

4.3.3. Global changes in small RNA biogenesis in the AD brain 

 

In contrast to the rRNA(-) libraries, the small RNA (smRNA) libraries were largely 

composed of microRNAs (Figure 4.3), which accounted for 60-70% of the reads. The next most 

abundant class of smRNAs were tRNA-derived fragments (tRFs), containing 10-20% of the 

reads. There was a very striking pattern in global read counts: miRNAs were overall depleted in 

the AD brain while tRFs were overall enriched. Since the next largest class, snoRNA-derived 

smRNAs, did not differ between the conditions, the data do not suggest that the apparent drop in 

overall miRNA abundance was a simple consequence of an increase in tRF abundance or that 

the apparent increase in tRF abundance was an artifact resulting from a drop in miRNA 

abundance. Interestingly, despite the difference in tRF abundance, the rRNA(-) libraries showed 
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no change in full-length tRNA transcript levels. This suggests a difference in the activity of the tRF 

biogenesis processes (e.g., tRNA cleavage) in the AD state. Increased tRNA cleavage is known 

to be an indicator of cellular stress response in eukaryotes [28,61,151]. By contrast, the inverse 

relationship was seen for mt-tRNAs: the full-length transcripts were depleted in AD, but there was 

no apparent difference in fragments derived from mt-tRNAs. This suggests that nuclear and 

mitochondrial tRNAs are perturbed by distinct mechanisms in the AD state. 

In contrast to the rRNA(-) libraries, only a very small proportion of the smRNA reads 

derived from the opposite strand to the annotated one (i.e., are antisense) (Figure 4.4). In 

general, however, the trend of the antisense smRNA reads is skewed towards repetitive elements 

similar to the rRNA(-) reads. 
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Figure 4.3 – Summary of sequenced RNAs in the smRNA-seq libraries 
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Figure 4.4 – Summary of antisense transcription in the smRNA libraries 

 

Differentially expressed transcripts in the AD brain 

Within the rRNA(-) libraries we found 215 differentially expressed RNAs, 62 of which were non-

coding. The most commonly differentially expressed non-coding RNAs were tRNAs, followed by 

lincRNAs and snoRNAs (Figure 4.5). Interestingly, while the total number of reads mapping to 

tRNAs wasn’t significantly different between the AD and normal groups, there were still many 

tRNA transcripts that were differentially expressed. We also detected 6 downregulated transcripts 

that were transcribed in a head-to-head fashion adjacent to protein-coding mRNAs (suggesting a 

bidirectional promoter), which in the literature have been termed promoter-associated RNAs 

(paRNAs) [40,74,149]. 
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Figure 4.5 – Number of differentially expressed ncRNA transcripts by RNA class 

 

Of the top 10 downregulated genes by significance, there were 5 mRNAs, 2 snoRNAs, 2 

tRNAs, and a ncRNA that is antisense to the gene STXBP5 (Table 4.3). Included among the top 

10 downregulated genes was ADCYAP1/PACAP; this gene has been shown to be 

neuroprotective in mouse models of AD via its upregulation of the alpha-secretase pathway [89]. 

Another top 10 gene, FAM190A, is a top GWAS hit for attention deficit disorder [98]. Also on the 

list was PUM2, a gene whose deficiency causes nesting behavior abnormalities in mice, a feature 

shared with mouse models of APP [54,136].The two tRNAs both code for cysteine: tRNA
Cys

GCA. 

One resides in a tandem cluster of tRNA
Cys

 on chromosome 7 and the other lies in an intron of 

the gene CPNE4 on chromosome 3, near a tandem copy of itself. 
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The top downregulated snoRNA is the C/D box snoRNA SNORD79 – it lies in an intron of 

the GAS5 gene, an ncRNA thought to function as a host for snoRNAs [138]. SNORD79 is 

predicted to guide 2'O-ribose methylation of 28S rRNA at residue A3809; therefore, its 

downregulation could negatively impact rRNA function. Similarly, the other snoRNA on the top 10 

downregulated list is the H/ACA box snoRNA SNORA36A, found on chromosome X in the intron 

of DKC1, a gene whose mutations can cause X-linked dyskeratosis congenita. Interestingly, 

DKC1 is itself a member of H/ACA box snoRNPs, and is also a member of telomerase. 

SNORA36A is predicted to guide pseudouridylation of 18S rRNA at residues U105 and U1244. 

Therefore its downregulation, like that of SNORD79, could negatively impact rRNA maturation. 

The ncRNA transcript STXBP5-AS is antisense to the gene STXBP5 which encodes for a protein 

thought to be involved in neurotransmitter release – mutations in the gene are associated with 

venous thrombosis. It is unclear what the relationship between antisense transcripts and the 

regulation of their sense-strand counterparts is. 

 

Table 4.3 – Top 10 AD-downregulated transcripts in the rRNA(-) libraries. 

Symbol UCSC id 
log2(fold 
change) P-value Description 

ADCYAP1 uc010dkh.3 -0.70 1.5E-06 
Homo sapiens adenylate cyclase 
activating polypeptide 1 (pituitary) 

TRNA_Cys uc021xee.1 -0.69 1.5E-06 tRNA Cys (anticodon GCA) 

SNORD79 uc009wwk.1 -0.67 1.2E-07 small nucleolar RNA, C/D box 79 

TRNA_Cys uc022aox.1 -0.66 7.4E-06 tRNA Cys (anticodon GCA) 

PDCD10 uc003fez.3 -0.60 2.5E-05 Programmed cell death 10 

SNORA36A uc004fmn.3 -0.58 4.4E-05 
Small nucleolar RNA, H/ACA box 
36A 

STXBP5-AS uc003qls.2 -0.56 1.7E-05 ncRNA antisense to STXBP5 

LINC00086 uc004eyv.4 -0.55 7.7E-05 lincRNA 

ANKRD30BL uc002tti.3 -0.55 1.8E-04 
Ankyrin repeat domain 30B-like 
ncRNA 

JA040723 uc022bqt.1 -0.53 1.2E-04 piRNA piR-31490 

 

In addition to the downregulated transcripts, there were also many upregulated 

transcripts (Table 4.4). Among the top 10 upregulated RNAs were 3 tRNAs, 6 mRNAs, and 1 

uncharacterized lincRNA. The tRNAs consisted of two serine-charged tRNAs (tRNA
Ser

CGA, 
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tRNA
Ser

GCU) and one tRNA
Glu

UUC. One of the tRNA
Ser

 loci lies in the promoter of B3GNT1 and the 

other lies just downstream of the circadian-rhythm-related gene PER1. Included among the 

mRNAs is that of MLXIPL, a candidate gene for genetic association with plasma triglyceride 

levels [90]. This is especially intriguing since defects in ApoE are associated with plasma 

triglyceride levels. Another top upregulated gene is CNST (cosortin) which interacts with 

connexins, a class of proteins that could be involved in AD pathogenesis pathways [92]. Yet 

another top upregulated gene, ZMYM5, is known to repress the transcription of PSEN1, one of 

the genes whose familial variants can cause AD [125]. Interestingly, two components of the minor 

spliceosome (U6atac and U12 snRNAs) are both significantly upregulated in the AD brain. The 

minor spliceosome responds positively to stress [167], and so the cell stress-related component 

of AD may play a role in its upregulation. One of the genes whose expression is modulated by the 

minor splicesome is PTEN, which can be found in NFTs in AD [141]. 
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Table 4.4 – Top 10 AD-upregulated transcripts in the rRNA(-) libraries 

Symbol UCSC id 
log2(fold 
change) 

P-
value Description 

TRNA_Ser uc021tps.1 0.85 
2.4E-

12 tRNA Ser (anticodon CGA) 

TRNA_Ser uc021qlw.1 0.78 
4.5E-

09 tRNA Ser (anticodon GCT) 

TRNA_Glu uc021vol.1 0.63 
1.7E-

06 tRNA Glu (anticodon TTC) 

TPD52L1 uc003pzu.1 0.55 
8.2E-

06 Tumor protein D52-like 1 

AK054921 uc004fbf.1 0.63 
7.7E-

06 
Highly similar to 40S 
RIBOSOMAL PROTEIN S15A. 

MLXIPL uc003tyn.1 0.66 
7.1E-

06 MLX interacting protein-like 

SPAG5 uc002hbq.3 0.55 
2.4E-

05 Sperm associated antigen 5 

TCONS_00016137 N/A 0.59 
5.7E-

05 N/A 

CNST uc001ibp.3 0.41 
6.8E-

05 
Homo sapiens consortin, 
connexin sorting protein 

ZMYM5 uc010tcn.1 0.55 
9.3E-

05 
Homo sapiens zinc finger, MYM-
type 5 (ZMYM5) 

 

4.3.4. Differentially expressed small RNAs in the AD brain 

There were a total of 456 small RNA loci differentially expressed in the human prefrontal cortex 

(Figure 4.6). The largest class of D.E. smRNAs was the intergenic class, which consists of those 

small RNA loci that don’t overlap any annotated RNA whatsoever. It is likely that a large fraction 

of these are the result of cross-mapping errors whether from SNP-induced mismatches or 

extremely high-abundance RNAs combined with the normal rate of base-calling error. 
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Figure 4.6 - Number of differentially expressed smRNA loci by ncRNA class. 

 

The next largest class was small RNAs deriving from mRNAs. It is unknown whether 

these are specifically processed from double-stranded structures on mRNAs or are simple mRNA 

fragments resulting from exonuclease activity on degrading transcripts. Since 60% of these 

mRNA-derived smRNA loci had lengths shorter than 50nt, it is likely that the class is a mix of the 

two: small, well defined loci and larger loci that are home to a larger number of more varied 

cleavage events. This proportion (60%) was not different between upregulated and 

downregulated mRNA-derived smRNA loci. Interesting members of the list include APOD, genetic 

variants in which are associated with AD in Chinese and Japanese populations [29,135]. GLRX2, 

glutaredoxin 2, is a mitochondrial protein involved in protection against oxidative stress in 

mitochondria. SCD5, involved in fatty acid metabolism [7], has been shown to be upregulated in 
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the AD brain. SPP1, or osteopontin, is a gene whose protein product is a biomarker for mild 

cognitive impairment [147] and AD. SQSTM1 has been shown to be overexpressed in the AD 

brain, and it also associates with the neurofibrillary tangles (NFTs) characteristic of AD [121]. 

CRYAB (Alpha-b crystallin) associates with NFTs as well [109]. CLSTN1 (calsyntenin I) has been 

shown to regulate amyloid beta production [157]. 

Table 4.5 – Differentially expressed small RNAs derived from mRNAs or antisense transcripts 

Type Gene Locus log2(FC) FDR 

mRNA exon CLDN12 chr7:90044707-90044724(+) -1.91 0.02 

Antisense mRNA ENTPD4 chr8:23315089-23315113(+) 1.89 0.03 

Antisense mRNA ADAD1 chr4:123332506-123332525(+) -2.08 0.04 

mRNA exon KIF5C chr2:149829885-149829908(+) 1.76 0.05 

mRNA exon UHMK1 chr1:162470009-162470034(+) 1.95 0.06 

mRNA exon TOB1 chr17:48943684-48943732(-) -1.64 0.07 

Antisense mRNA BEND6 chr6:56820040-56820056(-) -1.47 0.07 

mRNA exon MAP2 chr2:210543331-210543381(+) 1.41 0.08 

mRNA exon KCNMA1 chr10:78629571-78629589(-) 1.86 0.08 

mRNA exon NEFH chr22:29885590-29885903(+) 1.71 0.08 

Antisense mRNA C1GALT1C1 chrX:119760650-119760667(-) -1.28 0.08 

mRNA exon GLRX2 chr1:193074487-193074511(-) -1.59 0.10 

mRNA exon MEF2C chr5:88014477-88014502(-) 1.16 0.10 

mRNA exon NEFH chr22:29885387-29885507(+) 1.53 0.10 

Antisense mRNA ATM chr11:108161209-108161226(+) 1.20 0.11 

mRNA exon SCD5 chr4:83550834-83550935(-) 1.51 0.12 

Antisense mRNA CD163 chr12:7651550-7651659(-) 1.61 0.12 

mRNA exon SPP1 chr4:88903663-88904132(+) 1.46 0.12 

mRNA exon TMEM123 chr11:102268541-102268559(-) 1.20 0.12 

mRNA exon WDR82 chr3:52290206-52290229(-) 1.29 0.12 

Antisense mRNA B2M chr15:45007645-45007842(+) 1.28 0.12 

mRNA exon KCTD16 chr5:143586444-143586466(+) 1.38 0.12 

mRNA exon SQSTM1 chr5:179264066-179264095(+) 1.23 0.12 

mRNA exon QDPR chr4:17503379-17503480(-) 1.23 0.12 

mRNA exon MAN1A2 chr1:117957358-117957443(+) 1.28 0.13 

mRNA exon EIF4G3 chr1:21268544-21268587(-) 1.22 0.14 

mRNA exon SLC17A7 chr19:49936063-49936090(-) 1.20 0.14 

mRNA exon PDZD2 chr5:32087421-32087437(+) 1.31 0.15 

mRNA exon SON chr21:34949108-34949132(+) 1.25 0.15 
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Antisense mRNA SEC16B chr1:177929373-177929391(+) -1.38 0.15 

mRNA exon GLUL chr1:182353819-182353853(-) 1.37 0.16 

Antisense mRNA TTLL6 chr17:46840131-46840146(+) -1.17 0.16 

mRNA exon CRYAB chr11:111779396-111779441(-) 1.11 0.16 

mRNA exon KDR chr4:55945467-55945483(-) 1.22 0.16 

mRNA exon NHP2 chr5:177576651-177576675(-) 1.07 0.16 

mRNA exon DLG2 chr11:83170812-83170846(-) 1.19 0.17 

mRNA exon ENC1 chr5:73923655-73923709(-) -1.35 0.17 

mRNA exon CNTN1 chr12:41331379-41331447(+) -1.34 0.17 

Antisense mRNA ICA1 chr7:8167738-8167756(+) 1.19 0.17 

mRNA exon CPE chr4:166408644-166408696(+) -1.17 0.17 

mRNA exon NECAP1 chr12:8242814-8242849(+) -1.36 0.18 

mRNA exon LAP3 chr4:17609300-17609343(+) 1.32 0.18 

mRNA exon DNAJC6 chr1:65880026-65880103(+) 1.15 0.18 

mRNA exon FTH1 chr11:61735039-61735097(-) 1.24 0.21 

mRNA exon PSD3 chr8:18393376-18393440(-) 1.07 0.21 

mRNA exon SYNE1 chr6:152647191-152647214(-) 1.19 0.21 

Antisense mRNA ZMYM5 chr13:20425915-20425933(+) -1.25 0.21 

Antisense mRNA NIPAL3 chr1:24746024-24746043(-) -1.20 0.22 

mRNA exon RPL30 chr8:99057206-99057270(-) 0.95 0.22 

mRNA exon GNAS chr20:57478778-57478839(+) -1.02 0.22 

mRNA exon SRCIN1 chr17:36708098-36708114(-) 1.03 0.22 

mRNA exon MAP1B chr5:71493868-71493952(+) 1.02 0.22 

mRNA exon OSGIN1 chr16:83994344-83994359(+) 1.23 0.22 

mRNA exon CLSTN1 chr1:9811636-9811688(-) 0.76 0.22 

mRNA exon SPOCK2 chr10:73827391-73827428(-) -1.18 0.22 

Antisense mRNA WRAP73 chr1:3564083-3564098(+) -1.00 0.23 

Antisense mRNA APOD chr3:195300738-195300842(-) 0.93 0.25 

mRNA exon CPE chr4:166418676-166418744(+) -1.14 0.25 
 

Similarly to the mRNA-derived smRNAs, snoRNA-derived smRNAs tended to be 

upregulated rather than downregulated in the AD-affected samples (Table 4.6). Interestingly, 

these transcripts largely did not overlap with the transcripts that were differentially expressed in 

the rRNA(-) libraries. The only snoRNA showing changes in both libraries was SNORA18, with 

both the full-length transcripts and the small RNA products being upregulated in AD. SNORA18 is 

an ―orphan‖ snoRNA – that is, its target RNA is unknown.   
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Table 4.6 – Differentially expressed snoRNAs in rRNA(-) and smRNA libraries 

Transcript Log2(fold change) Predicted target 

 

rRNA(-) smRNA 

 SCARNA16 

 

0.92 Pseudouridylation of U1 snRNA U5 

SNORA18 0.43 1.1 Unknown 

SNORA26 0.39 

 

2'O-ribose methylation of 28S rRNA A389  

SNORA31 

 

-1.44 Pseudouridylation of 28S rRNA U3713 & 18S U218 

SNORA36A -0.58 

 

Pseudouridylation of 18S rRNA U105, U1244 

SNORA53 

 

0.91 Unknown 

SNORA5A 

 

0.91 Pseudouridylation of 18S rRNA U1625, U1238 

SNORA65 

 

0.84 Pseudouridylation of 28S rRNA U4373, U4427 

SNORA68 0.35 

 

Pseudouridylation of 28S rRNA U4393 

SNORA77 0.45 

 

Pseudouridylation of 18S rRNA U814 

SNORD11 

 

0.93 2'O-ribose methylation of 18S rRNA G509 

SNORD115-39 0.42 

 

5HT-2C mRNA 

SNORD115-40 0.43 

 

5HT-2C mRNA 

SNORD115-48 

 

-0.93 5HT-2C mRNA 

SNORD117 

 

0.64 Unknown 

SNORD121B 

 

0.89 2'O-ribose methylation of 28S rRNA G4607 

SNORD15B 

 

-1.15 2'O-ribose methylation of 28S rRNA A3764 

SNORD36B 

 

0.64 2'O-ribose methylation of 18S rRNA A668 

SNORD36C 

 

0.67 2'O-ribose methylation of 28S rRNA A3703 

SNORD4B 

 

-1.02 2'O-ribose methylation of 18S rRNA U121 

SNORD60 

 

0.91 2'O-ribose methylation of 28S rRNA G4340 

SNORD73A 

 

0.69 2'O-ribose methylation of 28S rRNA G1747 

SNORD79 -0.67 

 

2'O-ribose methylation of 28S rRNA A3809 
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 Several microRNAs were differentially expressed in the smRNA libraries (Table 4.7). 

Downregulation of mir-132 has been shown to be implicated in derepression of FOXO3 and thus 

promote neuronal apoptosis in AD [160]. The totality of predicted targets of these miRs is given in 

Table 4.8. 

 

Table 4.7 – Differentially expressed microRNAs. 

microRNA log2(Fold change) False discovery rate 

mir-412 -1.71 0.064 

mir-886 1.41 0.102 

mir-4326 1.50 0.115 

mir-381 0.78 0.116 

mir-889 0.85 0.121 

mir-877 -0.88 0.159 

mir-96 -1.05 0.162 

mir-132 -0.76 0.162 

mir-95 0.65 0.178 

mir-26a-2 0.58 0.211 

mir-556 -0.99 0.214 

mir-425 -0.57 0.223 
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Table 4.8 – Experimentally validated targets of the D.E. miRNAs. 

microRNA Target gene Description 

miR-132 ARHGAP32 Rho GTPase-activating protein 

miR-132 CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) 

miR-132 RFX4 regulatory factor X, 4 (influences HLA class II expression) 

miR-132 SIRT1 sirtuin (silent mating type information regulation 2 homolog)  

mir-26a CHFR checkpoint with forkhead and ring finger domains 

mir-26a EZH2 enhancer of zeste homolog 2 (Drosophila) 

mir-26a PLAG1 pleiomorphic adenoma gene 1 

mir-26a PTP4A1 protein tyrosine phosphatase type IVA, member 1 

mir-26a SMAD1 SMAD family member 1 

mir-26a STRADB STE20-related kinase adapter protein beta 

mir-26a TAF12 
TAF12 RNA polymerase II, TATA box binding protein (TBP)-
associated factor, 20kDa 

mir-26a TGFBR2 transforming growth factor, beta receptor II (70/80kDa) 

miR-381 LRRC4 leucine rich repeat containing 4 

miR-412 ACVR1C activin A receptor, type IC 

miR-877 EFNA5 ephrin-A5 

miR-877 ELF1 E74-like factor 1 (ets domain transcription factor) 

miR-877 FXR2 fragile X mental retardation, autosomal homolog 2 

miR-877 SCN3A sodium channel, voltage-gated, type III, alpha subunit 

miR-877 SMG5 Smg-5 homolog, nonsense mediated mRNA decay  

miR-877 TP53INP2 tumor protein p53 inducible nuclear protein 2 

miR-95 SNX1 sorting nexin 1 

miR-96 ADCY6 adenylate cyclase 6 

miR-96 AQP5 aquaporin 5 

miR-96 CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) 

miR-96 CELSR2 
cadherin, EGF LAG seven-pass G-type receptor 2 (flamingo 
homolog, Drosophila) 

miR-96 FOXO1 forkhead box O1 

miR-96 FOXO3 forkhead box O3; forkhead box O3B pseudogene 

miR-96 HTR1B 5-hydroxytryptamine (serotonin) receptor 1B 

miR-96 IRS1 insulin receptor substrate 1 

miR-96 KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 

miR-96 MITF microphthalmia-associated transcription factor 

miR-96 MYRIP myosin VIIA and Rab interacting protein 

miR-96 NR3C1 
nuclear receptor subfamily 3, group C, member 1 (glucocorticoid 
receptor) 

miR-96 ODF2 outer dense fiber of sperm tails 2 

miR-96 PRMT5 protein arginine methyltransferase 5 
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4.3.5. tRNAs are differentially expressed and processed in the AD brain 

Several tRNAs, both nuclear and mitochondrial, were differentially expressed in the AD brain. In 

addition, we found that tRNAs also tended to be differentially processed – that is, the cleavage of 

tRNAs into small RNAs known as tRNA fragments, or tRFs, changes in the AD brain (Table 4.9, 

Table 4.10). Differential expression in the rRNA(-) libraries indicates differences in the abundance 

of the long tRNA transcript, whereas differential expression in the smRNA libraries indicates 

differential processing of the tRNA into tRNA fragments. With the exception of one tRF deriving 

from a pseudogenic tRNA on chr1, all the tRNA-associated small RNAs were strongly 

upregulated in AD. This potentially corresponds to a decrease in the activity and/or increase in 

cleavage of these tRNAs. In addition to the fragments, many tRNA transcripts themselves were 

downregulated, including most prominently tRNA
Cys

GCA and the mitochondrial mt-tRNA
Pro

UGG. Only 

in one case did we observe changes in both the tRNA transcript and its fragments: tRNA
Lys

UUU 

shows upregulation of both. Interestingly, tRNA-associated small RNAs, mRNA-associated small 

RNAs, and snoRNA-associated small RNAs were the only overall-upregulated classes of small 

RNAs in AD.  

miR-96 RYK RYK receptor-like tyrosine kinase 
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Table 4.9 – Downregulated tRNAs and tRNA fragments in the AD brain with expression fold-changes. 

Transcript Locus log2(FC) p-value 

tRFΨ
GUC chr1:161492987(+) -1.08 1.5E-02 

tRNACys
GCA chr3:131947943(-) -0.67 1.5E-06 

tRNACys
GCA chr7:149007280(+) -0.64 7.2E-06 

mt-tRNAPro
UGG chrM:15954(-) -0.50 1.4E-04 

tRNAArg
CCG chr6:28849164(+) -0.49 3.8E-04 

tRNATyr
GUA chr14:21121257(-) -0.45 1.2E-03 

tRNAVal
AAC chr6:27618706(-) -0.45 1.4E-03 

tRNAArg
UCG chr6:26299904(+) -0.44 1.8E-03 

tRNATyr
GUA chr14:21131350(-) -0.43 2.2E-03 

tRNAArg
CCU chr17:73030525(-) -0.43 1.9E-03 

tRNAArg
UCG chr6:26323045(+) -0.39 4.1E-03 

tRNACys
GCA chr15:80036996(+) -0.39 5.0E-03 

tRNAVal
CAC chr6:27248048(-) -0.32 3.6E-03 

 

Table 4.10 – Upregulated tRNAs and tRNA fragments in the AD brain with expression fold-changes. 

Transcript Locus log2(FC) p-value 

tRFThr
AGU chr17:8090478(+) 1.55 8.8E-04 

tRFIle
AAU chr6:27205343(-) 1.50 5.0E-03 

tRFLys
UUU chr17:8022468(+) 1.35 1.7E-03 

tRFΨ
UGC chr6:28601911(-) 1.32 2.2E-02 

tRFMet
CAU chr8:124169459(-) 1.27 8.3E-03 

tRFAsn
GUU chr1:148248113(+) 1.19 1.6E-02 

tRFAla
UGC chr11:50233925(-) 1.18 9.6E-03 

tRFThr
UGU chr6:28442320(-) 1.06 2.7E-03 

tRFAla
CGC chr2:157257280(+) 1.03 6.6E-03 

tRFPhe
GAA chr12:125412379(-) 0.96 7.5E-03 

tRFΨ
AGG chr16:3202636(-) 0.86 2.0E-02 

tRNASer
CGA chr17:8042198(-) 0.84 2.0E-12 

tRFGln
CUG chr15:66161389(-) 0.81 2.3E-02 

tRNASer
GCU chr11:66115590(+) 0.78 2.2E-09 

tRFGlu
UUC chr13:45491997(-) 0.76 2.8E-02 

mt-tRNAAsp
GUC chrM:7516(+) 0.72 9.0E-08 

tRNAGlu
UUC chr2:131094700(-) 0.63 1.4E-06 

tRNALys
UUU chr17:8022472(+) 0.50 3.9E-04 

tRNALys
CUU chr5:180634754(+) 0.44 2.0E-03 

tRNATrp
CCA chr6:26331671(-) 0.39 4.6E-03 

tRNAAsp
GUC chr12:96429798(+) 0.39 2.5E-03 

tRNAAla
UGC chr12:125424511(+) 0.37 3.5E-03 
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While it is unclear what the global effects of these changes in tRNA expression and 

processing are, we can start by predicting their effect on the translation of specific mRNAs into 

proteins by finding those mRNAs which, by virtue of their coding sequences, would be most 

affected if the tRNAs with corresponding anticodons were perturbed. In order to separate the sets 

of anticodons into those whose associated tRNAs decrease in activity and those whose tRNAs 

increase in activity, we make a few assumptions about the nature of the expression changes in 

tRNAs and their associated fragments. We assume that increase of the cleavage process 

corresponds to an inhibition of tRNA activity, and so can combine the upregulated tRFs with the 

downregulated tRNAs into a set of tRNAs, and thus anticodons, whose activity is downregulated. 

Conversely, those tRNAs that are upregulated or whose concomitant fragments are 

downregulated can be presumed to be increasing in activity. Given the sets of anticodons that are 

uptranslated and those that are downtranslated, we can score each gene by taking the proportion 

of its codons that are complementary to any of the anticodons in each of the two lists. 

Furthermore, we limit the set of genes to those having at least one count in the brain whole 

transcriptome RNA-seq dataset (Table 4.11, Table 4.12.). 

Table 4.11 – Top 10 brain-expressed genes predicted to be down-translated due to tRNA changes. 

Gene Description Anticodon 
score 

Num. 
codons 

SRP14 Signal recognition particle 14kDa  0.198 171 

PRKCG Protein kinase C, gamma 0.190 58 

VOPP1 Vesicular, overexpressed in cancer, prosurvival protein 1 0.185 65 

TMEM123 Transmembrane protein  123 0.182 66 

EPN2 Epsin 2 0.180 61 

MLH1 MutL homolog 1 0.179 117 

FAM3A Family with sequence similarity 3, member A 0.175 63 

ST3GAL5 ST3 beta-galactoside alpha-2,3-sialyltransferase 5 0.174 144 

GALNT13 
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase 13 0.172 58 

LRRCC1 Leucine rich repeat and coiled-coil domain containing 1 0.171 111 
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Table 4.12 - Top 10 brain-expressed genes predicted to be up-translated due to tRNA changes. 

Gene Description Anticodon 
score 

Num. 
codons 

RPS25 Ribosomal protein S25 0.183 120 

SRP14 Signal recognition particle 14kDa 0.164 171 

RERE Arginine-glutamic acid dipeptide (RE) repeats 0.162 105 

RAI14 Retinoic acid induced 14 0.159 63 

HMGN5 High mobility group nucleosome binding domain 5 0.148 603 

SREK1IP1 SREK1-interacting protein 1 0.145 468 

RSRC2 Arginine/serine-rich coiled-coil 2 0.143 77 

CCDC91 Coiled-coil domain containing 91 0.142 380 

ARGLU1 Arginine and glutamate rich 1 0.141 206 

DMD Dystrophin (DMD) 0.138 123 
 

 In order to assess the biological significance of these sets of genes, we look for 

enrichment of particular biological pathways in the top 1,000 genes by codon-score. Strikingly, 

the list of putatively down-translated genes is enriched for KEGG pathways that correspond to 

several neurodegenerative disorders, including Alzheimer’s disease (Table 4.13). While this 

enrichment is largely a result of the presence in the list of mitochondrial Complex I genes, the list 

also includes several genes thought to be highly significant in AD pathogenesis: ADAM10 (alpha 

secretase), BACE1 (beta-secretase), SNCA (synuclein alpha), TF (transferrin), and PICALM. 

Table 4.13 – KEGG pathways enriched for putative down-translated genes 

KEGG Pathway Adjusted p-value 

Ribosome 0.0002 

Oxidative phosphorylation 0.0017 

Huntington’s disease 0.0017 

Alzheimer’s disease 0.0062 

Vasopressin-regulated water reabsorption   0.0062 

Parkinson’s disease 0.0102 

Glycosphingolipid biosynthesis - ganglio series 0.0103 

Glycosaminoglycan biosynthesis - chondroitin sulfate 0.0103 

Epithelial cell signaling in Helicobacter pylori infection 0.0103 

Lysosome 0.0127 

 

4.3.6. Functional characterization of the differentially expressed transcripts 
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We combined the rRNA(-) and smRNA libraries into a list of genes based on differential 

expression of transcripts, of smRNA loci, and of microRNAs (by including their targets). 

microRNA target predictions were taken from three sources. The first is StarBase [165], which 

uses Argonaute CLIP-seq data to locate candidate miRNA target sites and then uses sequence-

based prediction tools to associate microRNAs. We also included all experimentally validated 

predictions compiled within the mirTarBase and miRecord databases [80,164]. When a microRNA 

went up in expression in AD, we considered its targets as going down (repressed) and vice versa. 

We also included genes associated with ncRNAs found to be D.E. in the rRNA(-) libraries; for 

example, if an antisense transcript was D.E. then we included the sense transcript in the list. 

Notable observations relevant to AD pathology include downregulation of genes involved in 

cytoskeleton organization (DLC1, LIMA1, CEP76, RAC1, MAP4, TMSB4X, RICTOR, DST, 

CTNNB1) and nuclear localization (KPNA3, KPNB1, TNPO1). Notable among the upregulated 

categories are TGF-beta signaling genes (MAPK1, ACVR2B, E2F5, SMAD7, PPP2CB, SMAD5, 

RBL1, SMAD2, THBS3, ACVR1C, ACVR1), dysfunction of which has been implicated in AD [39]. 

In addition, apoptotic genes (MEF2C, PRKCZ, TMX1, ZAK, XIAP, STAT5B, MITF, CBX4, SOX4, 

FOXO1, EIF5A, FOXO3, STK17A, ITM2B, MST4, ACVR1C, PEA15, IGF1R, G2E3, MAP3K5, 

KRAS, SQSTM1, BCL11B, PPP2CB, RASA1, DHCR24, KCNMA1, SPPL3, BCL10, SGK3) are 

thought to be critical in AD pathogenesis and indeed appear to be upregulated in these data. 
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Table 4.14 - Top downregulated functional categories in AD. 

Category P-value 

GO:0003714~transcription corepressor activity 1.8E-05 

GO:0048598~embryonic morphogenesis 1.6E-04 

hsa03040:Spliceosome 1.7E-02 

GO:0001657~ureteric bud development 7.1E-03 

GO:0016477~cell migration 3.3E-03 

GO:0009967~positive regulation of signal transduction 5.9E-03 

GO:0048568~embryonic organ development 4.8E-03 

GO:0008139~nuclear localization sequence binding 9.4E-03 

GO:0030522~intracellular receptor-mediated signaling pathway 6.1E-03 

GO:0007049~cell cycle 1.2E-02 

GO:0051493~regulation of cytoskeleton organization 1.0E-02 

GO:0051056~regulation of small GTPase mediated signal transduction 1.0E-02 

GO:0000059~protein import into nucleus, docking 5.7E-03 

GO:0007584~response to nutrient 1.2E-02 

 

 

 

Table 4.15 - Top upregulated functional categories in AD. 

Category P-value 

GO:0016563~transcription activator activity 4.7E-03 

GO:0030323~respiratory tube development 2.6E-05 

GO:0042981~regulation of apoptosis 2.6E-06 

GO:0019901~protein kinase binding 2.5E-03 

GO:0045934~negative regulation of nucleobase, nucleoside, nucleotide and nucleic 
acid metabolic process 1.1E-03 

GO:0003714~transcription corepressor activity 6.8E-03 

GO:0001944~vasculature development 6.8E-04 

GO:0035295~tube development 3.5E-06 

GO:0000226~microtubule cytoskeleton organization 8.1E-03 

GO:0001784~phosphotyrosine binding 1.4E-02 

GO:0016568~chromatin modification 4.4E-03 

GO:0048598~embryonic morphogenesis 5.7E-03 

hsa04350:TGF-beta signaling pathway 2.2E-04 

GO:0004674~protein serine/threonine kinase activity 8.2E-04 

GO:0001843~neural tube closure 9.2E-03 
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4.3.7. Building an integrative network 

While expression data can inform us about associations between disease state and regulatory 

changes, their impact can be greatly increased by integrating such findings with genetics data. 

The recent influx in genetics results for Alzheimer’s disease, along with burgeoning 

pathway/interaction datasets, allows us to link functional correlations with potentially causal 

factors in an unprecedented fashion. Here we present a network of genes that has been ―seeded‖ 

by known genetic factors in AD, as well as the MAPT (tau) gene which is a key factor in the 

formation of the NFTs (Figure 4.7). It should be noted that while MAPT is not known to be a 

genetic factor in AD, AD is considered by many pathologists to be a tauopathy due to the 

hallmark involvement of NFTs. In addition, we have included all of the genes whose protein 

products are directly involved in the processing of APP: PSEN1, PSEN2, PSENEN, NCSTN, 

APH1A, APH1B (gamma-secretase), BACE1, BACE2 (beta-secretase), and ADAM10 (alpha-

secretase). In addition to protein-protein interactions, we have also included microRNA-target 

interactions, the interaction between ZMYM5 and the promoter of PSEN1, interactions between 

gamma secretase components and APP, and interactions between SNORD115 loci and the 

HTR2C gene. MicroRNAs mir-132, mir-96, and mir-26a appear to be highly-connected within this 

network, as well as SIRT1, SDC4, SNRPF. SIRT1 is an aging-associated gene and has been 

found to be neuroprotective against Abeta toxicity and NFT formation in mouse brains [44]. SDC4 

(syndecan-4) is involved in the healing process, and its downregulation in AD may indicate an 

impaired ability to recover from the damage inflicted during AD pathology [47]. 

Red elements were upregulated and blue elements were downregulated; triangles are 

miRNAs, circles are full transcripts, and squares are smRNA loci derived from mRNAs. 
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Figure 4.7 – An integrative network of AD. 
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4.4. Discussion 

In the Alzheimer’s disease state we observe several global changes in the expression of non-

coding RNAs. The most striking change is that of tRNAs and a recently discovered class of RNAs 

comprised of tRNA fragments (tRFs). By comparing the anticodons associated with the tRNAs 

with the coding sequences of the human genome, we have presented a list of genes most likely 

to be translationally perturbed by the changes in tRNA expression. Enriched among this set of 

genes are Complex I members, implicating an association between tRNA dysregulation, 

mitochondrial function, and Alzheimer’s disease. While the mitochondrial cascade hypothesis is a 

longstanding theory in the AD field [148], its connection to tRNAs remains largely unexplored. 

Another, independent, piece of evidence suggesting mitochondrial involvement in AD is the 

transcriptional downregulation of the mitochondrially encoded gene NADH dehydrogenase 6, yet 

another member of Complex I. In addition to perturbations to Complex I function, we also observe 

an overall decrease in mitochondrial tRNA expression. While we also see perturbations to other 

genes known to be involved in AD (particularly those involved in amyloid beta metabolism and 

related genes), our data lend great weight to the mitochondrial cascade hypothesis as an 

important avenue of research in AD. Another interesting gene with a high likelihood of 

translational changes given the tRNA changes is the signal recognition particle gene SRP14. The 

SRP is a ribonucleotide complex composed of the 7SL non-coding RNA as well as several 

proteins, including SRP14. This complex is responsible for targeting proteins to the endoplasmic 

reticulum (ER). This provides another potential piece of evidence that ER stress is associated 

with the pathology of AD, a theory that has recently gained traction [156]. 

By performing non-traditional RNA-sequencing we are able to elucidate the transcriptome 

of the AD brain in novel ways. The addition of non-coding RNAs, particularly those that modify 

other RNAs, helps to induce directionality to the characterization of genes associated with the 

disease state. As opposed to producing a simple set of correlations of gene expression amongst 
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an incohesive group of genes, we can now begin to generate hypotheses based on annotated 

regulatory connections. For example, the inclusion of microRNAs provides a ―flow‖ to the network 

where microRNAs are upstream of their targets. The addition of genetically-associated loci can 

also provide a hint of causality where gene expression alone fails to do so. The field of genomics 

benefits the most when the cycle of hypothesis generating studies and functional studies flows 

continuously; here I have demonstrated that insights learned from small-scale functional studies 

can be fed back into a higher-throughput correlational study in order to sharpen its impact. 

 

5. Conclusion 

In this dissertation I have presented several methods for analyzing the non-coding transcriptome 

and an application of such studies to a disease: namely, Alzheimer’s disease. Given the 

longstanding prejudice against it in gene expression studies, the non-coding transcriptome is a 

treasure trove of unmined biological insights. By moving beyond simple assays of differential 

expression of protein-coding mRNAs we can finally begin to elucidate many previously neglected 

facets of the transcriptome. 

In Chapter 2 I presented a method for examining noncanonical nucleotides in non-coding 

RNAs. Non-canonical nucleotides are just now coming of age in the field of epigenetics (DNA 

methylation and hydroxymethylation in particular), but the field of epitranscriptomics is only just 

beginning to be appreciated. These modified nucleotides are already established as biomarkers 

in some cancers [42,131,146] – but their incorporation into actual transcripts has yet to be studied 

in many disease systems. Ongoing work in the next several years will likely focus on the 

differences in incorporation of these modifications between disease and affected states, as well 

as across tissue types and even in evolutionary studies across species. 
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In Chapter 3 I described a method for characterizing small non-coding RNAs using a 

robust model that works both within and across a variety of tissue types. By beginning to describe 

the uncharacterized portion of the transcriptome we can begin to apply it to medicine – the most 

likely application of such basic biology is in the field of diagnostic biomarkers. Currently 

dominated by protein-based biomarkers, nucleotide-based biomarkers are likely to play a 

significant role in the coming years due to their greater easy of handling, greater reproducibility, 

and their pliability to large-scale molecular biology techniques. 

In Chapter 4 I showcased a study of the non-coding transcriptome in Alzheimer’s 

disease. By combining heretofore-uncharacterized non-coding changes in the AD transcriptome 

with known genetically associated loci, I was able to build a network that connected seemingly 

distant regions of the correlational-gene-expression network. Furthermore, the inclusion of 

regulatory RNAs like microRNAs and the differentially expressed minor spliceosome create an 

unprecedented opportunity for generating clearer directional hypotheses from gene expression 

data. Finally, the changes I describe in tRNA expression preferentially affect genes implicated in 

mitochondrial function, lending weight to the mitochondrial cascade hypothesis in AD. 
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