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Balanced Metrics and Phenomenological Aspects of Heterotic
Compactifications

Abstract
ABSTRACT BALANCED METRICS AND PHENOMENOLOGICAL ASPECTS OF HETEROTIC
STRING COMPACTIFICATIONS Tamaz Brelidze Burt Ovrut, Advisor This thesis mainly focuses on
numerical methods for studying Calabi-Yau manifolds. Such methods are instrumental in linking models
inspired by the mi- croscopic physics of string theory and the observable four dimensional world. In
particular, it is desirable to compute Yukawa and gauge couplings. However, only for a relatively small class of
geometries can those be computed exactly using the rather involved tools of algebraic geometry and
topological string theory. Numerical methods provide one of the alternatives to go beyond these limitations.
In this work we describe numerical procedures for computing Calabi-Yau metrics on complete intersections
and free quotients of complete intersections. This is accomplished us- ing the balanced metrics approach and
enhancing its previous implementations with tools from Invariant Theory. In particular, we construct these
metrics on generic quintics, four-generation quotients of the quintic, Schoen Calabi-Yau complete inter-
sections and the quotient of a Schoen manifold with the Z3 × Z3 fundamental group that was previously used
to construct a heterotic standard model. We also investi- gate the dependence of Donaldson’s algorithm on the
integration scheme, as well as on the K ̈ahler and complex moduli. We then construct a numerical algorithm
for explicitly computing the spectrum of the Laplace-Beltrami operator on Calabi-Yau threefolds. One of the
inputs of this algorithm is the Calabi-Yau metric. To illustrate our algorithm, the eigenvalues and
eigenfunctions of the Laplacian are computed nu- merically on two different quintic hypersurfaces, some Z5 ×
Z5 quotients of quintics, and the Calabi-Yau threefold with the Z3 × Z3 fundamental group of the heterotic
standard model. We then explain the degeneracies of the eigenvalues in terms of the irreducible
representations of the finite symmetry groups of the threefolds. We also study the cosmic string solutions in
softly broken N = 1 supersym- metric theories that arise from heterotic string compactifications with the
MSSM spectrum. These vacua have the S U (3)C × S U (2)L × U (1)Y gauge group of the stan- dard model
augmented by additional an U (1)B −L. The B-L symmetry is sponta- neously broken by a vacuum
expectation value of one of the right-handed sneutrinos, which leads to U (1)B −L cosmic string solutions.
We present a numerical analysis that demonstrates that boson condensates can, in principle, form for theories
of this type. However, the weak Yukawa and gauge couplings of the right-handed sneu- trino suggests that
bosonic superconductivity will not occur in the simplest vacua in this context. Fermion superconductivity is
also disallowed by the electroweak phase transition, although bound state fermion currents can exist.
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ABSTRACT

BALANCED METRICS AND PHENOMENOLOGICAL ASPECTS OF

HETEROTIC STRING COMPACTIFICATIONS

Tamaz Brelidze

Burt Ovrut, Advisor

This thesis mainly focuses on numerical methods for studying Calabi-Yau

manifolds. Such methods are instrumental in linking models inspired by the mi-

croscopic physics of string theory and the observable four dimensional world. In

particular, it is desirable to compute Yukawa and gauge couplings. However, only

for a relatively small class of geometries can those be computed exactly using the

rather involved tools of algebraic geometry and topological string theory. Numerical

methods provide one of the alternatives to go beyond these limitations. In this work

we describe numerical procedures for computing Calabi-Yau metrics on complete

intersections and free quotients of complete intersections. This is accomplished us-

ing the balanced metrics approach and enhancing its previous implementations with

tools from Invariant Theory. In particular, we construct these metrics on generic

quintics, four-generation quotients of the quintic, Schoen Calabi-Yau complete inter-

sections and the quotient of a Schoen manifold with the Z3×Z3 fundamental group

that was previously used to construct a heterotic standard model. We also investi-

gate the dependence of Donaldson’s algorithm on the integration scheme, as well as
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on the Kähler and complex moduli. We then construct a numerical algorithm for

explicitly computing the spectrum of the Laplace-Beltrami operator on Calabi-Yau

threefolds. One of the inputs of this algorithm is the Calabi-Yau metric. To illustrate

our algorithm, the eigenvalues and eigenfunctions of the Laplacian are computed nu-

merically on two different quintic hypersurfaces, some Z5 ×Z5 quotients of quintics,

and the Calabi-Yau threefold with the Z3 × Z3 fundamental group of the heterotic

standard model. We then explain the degeneracies of the eigenvalues in terms of the

irreducible representations of the finite symmetry groups of the threefolds.

We also study the cosmic string solutions in softly broken N = 1 supersym-

metric theories that arise from heterotic string compactifications with the MSSM

spectrum. These vacua have the SU(3)C×SU(2)L×U(1)Y gauge group of the stan-

dard model augmented by additional an U(1)B−L. The B-L symmetry is sponta-

neously broken by a vacuum expectation value of one of the right-handed sneutrinos,

which leads to U(1)B−L cosmic string solutions. We present a numerical analysis

that demonstrates that boson condensates can, in principle, form for theories of this

type. However, the weak Yukawa and gauge couplings of the right-handed sneu-

trino suggests that bosonic superconductivity will not occur in the simplest vacua in

this context. Fermion superconductivity is also disallowed by the electroweak phase

transition, although bound state fermion currents can exist.
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Chapter 1

Introduction

1.0.1 String Theory

Our present understanding of the fundamental laws of nature rests upon two

very different yet equally successful theories, the theory of general relativity and quan-

tum mechanics. On one hand, general relativity provides an unsurpassed description of

astrophysical and cosmological phenomena up to the scales of the Hubble radius. Its main

assumption, the equivalence principle, has been tested down to ∼ 1mm. On the other

hand, quantum theory has had enormous success explaining nature on subatomic scales.

The latest manifestation of this success is the quantum field theoretic formulation of the

Standard Model of particles (SM), which agrees to astonishing accuracy with most of the

observed data from particle collisions and decay processes. Despite the success of each

of the respective theories, the formulation of a theory that incorporates both of these

paradigms into a coherent theory of unified quantum gravity presents a serious challenge

to modern physical science. For example, as a consequence of the equivalence principle, the

Newton constant GN = M−2
p has dimensions of length squared. This results in graviton
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exchange amplitudes being divergent and leads to the problem of the non-renormalizability

of gravity. In addition to the problems arising in the quantization of gravity, the Standard

Model fails to explain the large number of free parameters such as Yukawa couplings and

the masses of the particles which comprise the model.

String Theory seems to be the most promising candidate for addressing the afore-

mentioned problems. Unlike quantum field theory, its fundamental constituents are not

point-like but instead are one-dimensional. They come in two topological varieties: open

and closed strings. Their different vibrational modes give rise to different particles. For

instance, the closed string sector gives rise to a spin-2 particle, which can be identified as a

graviton. Thus, string theory naturally incorporates quantum gravity and can potentially

unify gravity and quantum mechanics. By the mid-nineties it was realized that there are

five consistent string theories: Type I, Type IIA/IIB and SO(32)/E8 × E8-heterotic. The

consistency of these theories requires a ten dimensional space time as well as a supersym-

metric spectrum of excitations. The former is in contrast to the observed dimensionality

of space time, d = 4. Thus, it is necessary to compactify the extra dimensions on a very

small length scale for them to be unobservable on modern accelerators.

A central problem of string theory is to find compactifications which can reproduce

real world physics– in particular, the Standard Model. The first and still one of the

best-motivated ways to achieve this is heterotic string compactifications on Calabi-Yau

manifolds [1]. In particular, the so-called “non-standard embedding” of E8 ×E8 heterotic

strings has been a very fruitful approach towards model building.

For a variety of reasons, the most successful models of this type to date are based

on non-simply connected Calabi-Yau threefolds. These manifolds admit discrete Wilson
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lines which, together with a non-flat vector bundle, play an important role in breaking the

heterotic E8 gauge theory down to the Standard Model [2, 3, 4, 5, 6, 7]. In the process,

they project out many unwanted matter fields. In particular, one can use this mechanism

to solve the doublet-triplet splitting problem [8, 9]. Finally, due to extra symmetry, the

non-simply connected threefolds provide better control for model building, as compared

to their simply connected covering spaces [10]. In recent work [11, 12, 13, 14], three-

generation models with a variety of desirable features were introduced. These are based on

a certain quotient of the Schoen Calabi-Yau threefold, which yields a non-simply connected

Calabi-Yau manifold with fundamental group Z3 × Z3.

Ultimately, it would be desirable to compute all of the observable quantities of

particle physics, in particular, gauge and Yukawa couplings, from the microscopic physics of

string theory [15, 16]. There are many issues which must be addressed to do this. Physical

Yukawa couplings, for example, depend on both coefficients in the superpotential and the

explicit form of the Kähler potential. In a very limited number of specific geometries [17,

18, 19, 20], the former can be computed using sophisticated methods of algebraic geometry,

topological string theory and the like. For the latter, we generally have only the qualitative

statement that a coefficient is “expected to be of order one.” Given the speed of modern

computers as well as the efficiency of today’s algorithms, it is only natural to approach this

problem numerically. Improvement and development of the appropriate numerical methods

is the main focus of this thesis work.
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1.1 Motivation

1.1.1 The 10-dimensional effective heterotic action and supersymmetry

In this chapter we will introduce some basic facts and notation used in heterotic

string compactifications. We will also provide further motivation for this thesis. We are

not aiming at delivering a comprehensive review, but rather a brief discussion of the key

concepts which will prove useful in later chapters. For a detailed description of the subject

we refer the reader to [21, 22].

The effective 10-dimensional theory consists of a Yang-Mills supermultiplet (AaM , χ
a)

coupled to the supergravity multiplet (eAM , BMN , φ, ψM , λ). On the Yang-Mills side, AaM

is the vector potential and χa is the corresponding superpartner, gaugino. On the super-

gravity side we have the vielbein eAM (the graviton), an anti-symmetric NS 2-form BMN ,

the dilaton φ , the gravitino ψM , and a spinor λ (the dilatino).The dynamics of the theory

is described by the following effective action

Shet =
1

2κ2

∫
d10x(−G)1/2[R− ∂Mφ∂Mφ−

3κ2

8g4φ2
| H |2 − κ2

4g2φ
Tr(| F |2) + . . .] (1.1)

where H = dB − ω is the field strength associated with BMN and F is the Yang-Mills

field strength. The Chern-Simons 3-form is given by ω = AaF
a − 1

3gfabcA
aAbAc, where a

runs over E8 × E8 indices. The parameter in the perturbative expansion, α′ is given by

κ2 ∼ g2α′.

We are concerned with phenomenologically relevant compactifications of this the-

ory, in particular, we are interested in a vacuum state in which the ten-dimensional back-

ground is a product of the form M4 × X, where M4 is a maximally symmetric four di-
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mensional space and X is a compact six manifold. In what follows, X is a Calabi-Yau

threefold.

Unbroken supersymmetry at tree level corresponds to a supersymmetry transfor-

mation with vanishing variation of the fermionic fields. Thus, in order to have N = 1

supersymmetry in four dimensions the fermionic variation has to vanish restricted to the

internal space. Thus, we get

0 = δψi =
1

κ
Diη +

κ

32g2φ
(Γi

jkl − 9δj iΓ
kl)ηHjkl + . . . (1.2)

0 = δχa = − 1

4g
√
φ

ΓijF aijη + . . .

0 = δλ = − 1√
2φ

(Γ · ∂φ)η +
κ

8
√

2g2φ
ΓijkηHijk + . . .

Here i, j and k run over the indices of the internal space X. In addition,we have the

following constraint on the field strength F and the 3-form H due to the Green-Schwarz

mechanism [21, 22]

dH = trR ∧R− trF ∧ F. (1.3)

Before discussing specific solutions to (1.2), we review basic properties of Calabi-

Yau manifolds that are used later.

1.1.2 Calabi-Yau three-folds

A complex manifold endowed with Kähler structure is a Calabi-Yau manifold if

it has a vanishing first Chern class c1(TX) = 0. Since the internal space of heterotic

compactifications is six dimensional, in this work we will focus on Calabi-Yau threefolds.
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In general, not every 6-dimensional manifold admits a complex structure. That is, it must

admit a globally defined tensor, J ij satisfying

J ijJ
k
i = −δkj and Nk

ij = ∂[jJ
k
i] − J

p
[iJ

q
j]∂qJ

k
p = 0 (1.4)

whereNk
ij is called the Niejenhuis tensor. A tensor J ij is called an ‘almost complex structure’

if it satisfies only the first condition in (1.4) and a ‘complex structure’ if, in addition,

the Niejenhuis tensor vanishes. A real manifold, in principle, may admit many complex

structures. Since X admits a complex structure, its cohomology groups can be decomposed

as follows

Hp(TX) =
⊕
r+s=p

Hr,s(TX) (1.5)

where Hr,s are Dolbeaut cohomologies which correspond to forms with r holomorphic and

s antiholomorphic indices. The dimensions of Hr,s are denoted by hr,s and are known as

Hodge numbers. These numbers are topological invariants of X and do not depend on the

choice of complex structure. Also, as was mentioned before, a Calabi-Yau manifold admits

a Kähler structure, which restricts the metric to the form ds2 = gab̄dz
adz̄b̄ (with a, b as

complex coordinates on X) and in addition, the associated (1, 1) form

ω =
i

2
gab̄dz

a ∧ dz̄b̄ (1.6)

is closed, i.e. dω = 0

To specify a Calabi-Yau threefold amounts to specifying both the complex and

Kähler structures. The set of parameters that span the space of complex structures is

called the complex structure moduli space and has dimension h2,1(TX). Likewise, the set
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of parameters which define the Kähler class is known as the Kähler moduli space and h1,1

counts the deformations of the Kähler structure. Locally, the complete moduli space of a

Calabi-Yau space is a direct product of these two spaces.

As a result of the above, a Calabi-Yau manifold is characterized by a simple

set of topological information. The Hodge numbers form the so-called “hodge diamond”

structure: hi,j , i+ j ≤ 3 with all Hodge numbers fixed1 except for h2,1 and h1,1. Thus, by

the index theorem the Euler number of X is just 1
2χ = h1,1 − h2,1.

Expanding ω in a set of basis forms, ω = trωr with r = 1, . . . h1,1(TX) we call the

set of parameters tr the Kähler cone of X. For each such (1, 1)-form ωr, there is a dual

2-cycle, Cs in homology h2(TX), with duality defined by

∫
Cs

ωr = δrs . (1.7)

The set of all Cr is known as the dual-cone to the Kähler cone, or the Mori Cone [23]. It

follows that the set of Cr, [W ], is an effective class of curves. That is, the class [W ] has a

holomorphic representative C.

1.1.3 Solutions of Hermitian Yang Mills Equations

Construction of realistic heterotic compactifications amounts to specifying an

appropriate internal space X as well as solving the supersymmetry constraints and the

anomaly cancelation condition. Let us consider the supersymmetry constraints. From the

expression for the gaugino variation (1.2) we have ΓijF aij = 0. Then, re-written in terms

of holomorphic indices over X, the vanishing of the gaugino variation implies that the

1h3,0 = h0,3 = 1, h1,0 = h0,1 = 0, h0,2 = h2,0 = 0.
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E8 × E8 gauge connection, A, must satisfy the hermitian Yang-Mills equations

Fab = Fab = gabFba = 0 (1.8)

where F is the field strength of A.

The simplest and most obvious solution to (1.8) is the background Yang-Mills

connection A. It is easy to check that all the constraints, including the anomaly cancela-

tion (1.3), are satisfied by this choice. Unfortunately, however, the phenomenology that

arises from this solution fails to produce any realistic models. In general (1.8) is a set of

very complicated differential equations for A and no generic solution techniques are known.

A significant breakthrough in heterotic string phenomenology was achieved due to the the-

orem by Donaldson, Uhlenbeck and Yau which states that for each poly-stable holomorphic

vector bundle V over Calabi-Yau threefold X, there exists a unique connection satisfying

the Hermitian Yang-Mills equation (1.8). Thus, to verify that our vector bundle is con-

sistent with supersymmetry on a Calabi-Yau compactification, we need only verify that it

possesses the property of poly-stablility. In other words, construction of heterotic compact-

ifications on X with N = 1 supersymmetry in four dimensional space time is equivalent

to constructing a poly-stable holomorphic vector bundle. In recent work [11, 12, 13, 14],

a class of compactifications over elliptically fibered Calabi-Yau manifolds were introduced,

using this approach. This resulted in a number of phenomenologically realistic models

with a variety of desirable features, three generations and an MSSM spectrum, for exam-

ple. However, proving stability of vector bundles is a difficult task and, despite the success,

extending this method to a wider range of Calabi-Yau manifolds as well as computating of

the parameters of the effective four dimensional theory presents a serious challenge.
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In recent work [24, 25], a plan has been outlined to analyze these problems nu-

merically. This approach relies on the natural embedding of X into a projective space

PN−1 via N sections of an ample line bundle Lk. This allows us to approximate the met-

ric on X with the pull-back of a Fubini-Study metric on the projective space, which is

specified by an N ×N hermitian matrix. By a suitable choice of this matrix we can make

the restriction of the associated Fubini-Study metric provide a good approximation to the

Ricci-flat metric on X. This procedure can be extended to vector bundle connections [25].

The approach, just described, is the main subject of this work. In what follows, we will

discuss this approach in details and provide different implementations of it for non-simply

connected Calabi-Yau threefolds as well as their quotients. In addition, we will use this

approach to solve numerically the eigenvalue problem for Laplace-Beltrami operator on

Calabi-Yau threefolds.

1.2 Outline

We begin, in Chapter 2, by explaining Donaldson’s algorithm using the example

of the simple Fermat quintic. We then extend this algorithm to a generic quintic by

calculating Calabi-Yau metrics, and test their Ricci-flatness for a number of random points

in the complex structure moduli space. We then proceed to non-simply connected manifolds

that admit fixed point free group action. we outline the general idea and review some of

the Invariant Theory, in particular the Poincaré series, Molien formula and the Hironaka

decomposition, that we will use. This formalism will then be used to calculate Ricci-

flat metric for quintics that admit a Z5 × Z5 fixed point free group action. The same

methodology is then used to calculate the Calabi-Yau metric on a generic Schoen manifold.
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Like in the case of the quintic, Schoen manifolds which admit a fixed point free Z3 × Z3

group action are then discussed.

In Chapter 3, we present a numerical algorithm for computing the spectrum of the

Laplace-Beltrami operator on Calabi-Yau threefolds. We begin by discussing the general

idea and implement it for the simplest compact threefold, the projective space P3. How-

ever, it has the advantage of being one of the few manifolds where the Laplace equation

can be solved analytically. We compare the numerical results of this computation with

the analytical solution in order to verify that our implementation is correct and to under-

stand the sources of numerical errors. We note that the multiplicities of the approximate

eigenvalues are determined by the dimensions of the corresponding irreducible represen-

tations of the symmetry group of the projective space, as expected from the analytical

solution. We then apply this machinery to quintic, Schoen manifolds and their quotients.

We conclude this chapter by considering some physical applications of the eigenvalues of

the scalar Laplacian on a Calabi-Yau threefold. In particular, we consider string compact-

ifications on these backgrounds and study the effect of the massive Kaluza-Klein modes on

the static gravitational potential in four-dimensions. We compute this potential in the case

of the Fermat quintic, and explicitly show how the potential changes as the radial distance

approaches, and passes through, the compactification scale. We then give a geometrical

interpretation to the eigenvalue of the first excited state in terms of the diameter of the

Calabi-Yau manifold. Inverting this relationship allows us to calculate the “shape” of the

Calabi-Yau threefold from the numerical knowledge of its first non-trivial eigenvalue.

In Chapter 4, we start with reviewing the spectrum, superpotential and potential

energy of the softly broken B-L MSSM theory. The structure of the B-L and electroweak

10



breaking vacuum is then presented, including the effective scalar masses at this minimum

and the B-L/electroweak hierarchy. We than show that the winding of the B-L charged

right-handed sneutrino VEV around the origin leads to a cosmic string with critical cou-

pling. The allowed patterns of soft scalar masses at the core of the cosmic string are then

discussed. For each case, the stability criterion for a scalar condensate to develop in the

string core, and, hence, for the string to be potentially superconducting, is derived. Fi-

nally, we discuss potential fermionic zero-modes, show how the anomaly freedom of the

B-L MSSM theory leads to appropriate left- and right-moving modes and present the con-

straints imposed on these currents by the breaking of B-L via the right-handed sneutrino.

Also, we explicitly check algebraic independence of primary invariants, which are

defined in 2.2, for quintics in A.

In addition, we explicitly determine the first massive eigenvalue for the Laplacian

P3 in B. Some technical aspects of semidirect products, which are useful in understanding

3.3, are discussed in B.1. In C, we explain a modification of Donaldson’s algorithm for the

numerical computation of Calabi-Yau metrics on quotients, which is used 3.4

Finally, we numerically analyze the stability criteria for a scalar condensate to

develop in the string core in D.

11



Chapter 2

Ricci-Flat Metrics

2.1 The Quintic

2.1.1 Parametrizing Metrics

Quintics are Calabi-Yau threefolds Q̃ ⊂ P4. As usual, the five homogeneous

coordinates [z0 : z1 : z2 : z3 : z4] on P4 are subject to the identification

[z0 : z1 : z2 : z3 : z4] = [λz0 : λz1 : λz2 : λz3 : λz4] ∀λ ∈ C− {0}. (2.1)

In general, a hypersurface in P4 is Calabi-Yau if and only if it is the zero locus of a degree-5

homogeneous polynomial1

Q̃(z) =
∑

n0+n1+n2+n3+n4=5

c(n0,n1,n2,n3,n4)z
n0
0 zn1

1 zn2
2 zn3

3 zn4
4 . (2.2)

1Hence the name quintic.
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Note that, abusing notation, we denote both the threefold and its defining polynomial by Q̃.

There are
(

5+4−1
4

)
= 126 degree-5 monomials, leading to 126 coefficients c(n0,n1,n2,n3,n4) ∈ C.

These can be reduced by redefining the zi-coordinates under GL(5,C). Hence, the number

of complex structure moduli of a generic Q̃ is 126− 25 = 101. A particularly simple point

in this moduli space is the so-called Fermat quintic Q̃F , defined as the zero-locus of

Q̃F (z) = z5
0 + z5

1 + z5
2 + z5

3 + z5
4 . (2.3)

We will return to the Fermat quintic later in this section.

In general, the metric on a real six-dimensional manifold is a symmetric two-index

tensor, having 21 independent components. However, on a Calabi-Yau (more generally, a

Kähler) manifold the metric has fewer independent components. First, in complex coordi-

nates, the completely holomorphic and completely anti-holomorphic components vanish,

gij(z, z̄) = 0, gı̄ ̄(z, z̄) = 0. (2.4)

Second, the mixed components are the derivatives of a single function

gī(z, z̄) = g∗ı̄j(z, z̄) = ∂i∂̄̄K(z, z̄). (2.5)

The hermitian metric gī suggests the following definition of a real (1, 1)-form, the Kähler

form

ω =
i

2
gī dzi ∧ dz̄̄ =

i

2
∂∂̄K(z, z̄). (2.6)

The Kähler potential K(z, z̄) is locally a real function, but not globally; on the overlap of
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coordinate charts one has to patch it together by Kähler transformations

K(z, z̄) ∼ K(z, z̄) + f(z) + f̄(z̄). (2.7)

The metric eq. (2.5) is then globally defined.

The 5 homogeneous coordinates on P4 clearly come with a natural SU(5) action,

so a naive ansatz for the Kähler potential would be invariant under this symmetry. How-

ever, the obvious SU(5)-invariant |z0|2 + · · · + |z4|2 would not transform correctly under

the rescaling eq. (2.1) with λ = λ(z). Therefore, one is led to the unique2 SU(5) invariant

Kähler potential

KFS =
1

π
ln

4∑
i=0

ziz̄ı̄ . (2.9)

One can slightly generalize this by inserting an arbitrary hermitian 5× 5 matrix hαβ̄,

KFS =
1

π
ln

4∑
α,β̄=0

hαβ̄zαz̄β̄. (2.10)

Any Kähler potential of this form is called a Fubini-Study Kähler potential (giving rise

to a Fubini-Study metric). At this point the introduction of an arbitrary hermitian hαβ̄

does not yield anything really new, as one can always diagonalize it by coordinate changes.

However, strictly speaking, different hαβ̄ are different Fubini-Study metrics.

The above Kähler potential is defined on the whole P4 and, hence, defines a

metric on P4. But this induces a metric on the hypersurface Q̃, whose Kähler potential

2Unique up to an overall scale, of course. The scale is fixed by demanding that ωFS is an integral class,
ω ∈ H2(P4,Z). To verify the integrality, observe that the volume integral over the curve [1 : t : 0 : 0 : 0] in
P4 is ∫

C

i

2
∂∂̄KFS

(
[1 : t : 0 : 0 : 0]

)
=

∫
C

1

π
∂t∂̄t̄ ln(1 + tt̄)

i

2
dt dt̄ = 1. (2.8)
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is simply the restriction. Unfortunately, the restriction of the Fubini-Study metric to the

quintic is far from Ricci-flat. Indeed, not a single Ricci-flat metric on any proper Calabi-

Yau threefold is known. One of the reasons is that proper Calabi-Yau metrics have no

continuous isometries, so it is inherently difficult to write one down analytically. Recently,

Donaldson presented an algorithm for numerically approximating Calabi-Yau metrics to

any desired degree [24]. To do this in the quintic context, take a “suitable” generalization,

that is, one containing many more free parameters of the Fubini-Study metric derived from

eq. (2.10) on P4. Then restrict this ansatz to Q̃ and numerically adjust the parameters so

as to approach the Calabi-Yau metric. An obvious idea to implement this is to replace the

degree-1 monomials zα in eq. (2.10) by higher degree-k monomials, thus introducing many

more coefficients in the process. However, note that the degree k is the Kähler class

k ∈ H1,1(P4,Z) ' Z. (2.11)

The reason for this is clear, for example, if we multiply KFS in eq. (2.9) by k. Then

kKFS =
k

π
ln

4∑
i=0

ziz̄i =
1

π
ln

4∑
i1,...,ik=0

zi1 · · · zik z̄ı̄1 · · · z̄ı̄k . (2.12)

Hence, if we want to keep the overall volume fixed, the correctly normalized generalization

of eq. (2.10) is

K(z, z̄) =
1

kπ
ln

4∑
i1,...,ik=0
̄1,...,̄k=0

h(i1,...,ik),(̄1,...,̄k) zi1 · · · zik︸ ︷︷ ︸
degree k

z̄̄1 · · · z̄̄k︸ ︷︷ ︸
degree k

. (2.13)

Note that the monomials zi1 · · · zik , where i1, . . . , ik = 0, . . . , 4 and integer k ≥ 0, are basis
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k 1 2 3 4 5 6 7 8

N̂k 5 15 35 70 126 210 330 495

Nk 5 15 35 70 125 205 315 460

Table 2.1: The number of homogeneous polynomials N̂k and the number of remaining
polynomials Nk after imposing the hypersurface constraint, see eq. (3.37).

vectors for the space of polynomials C[z0, . . . , zk]. For fixed total degree k, they span the

subspace C[z0, . . . , zk]k of dimension

N̂k =

(
5 + k − 1

k

)
. (2.14)

Some values of N̂k are given in 2.1. In particular, the matrix of coefficients h now must be

a hermitian N̂k × N̂k matrix.

However, there is one remaining issue as soon as k ≥ 5, namely, that the mono-

mials will not necessarily remain independent when restricted to Q̃. In order to correctly

parametrize the degrees of freedom on Q̃, we have to pick a basis for the quotient

C [z0, . . . , z4]k

/〈
Q̃(z)

〉
(2.15)

for the degree-k polynomials modulo the hypersurface equation. Let us denote this basis

by sα, α = 0, . . . , Nk − 1. It can be shown that for any quintic

Nk =


N̂k =

(
5+k−1
k

)
0 ≤ k < 5

N̂k − N̂k−5 =
(

5+k−1
k

)
−
(
k−1
k−5

)
k ≥ 5.

(2.16)

Some values of the Nk are listed in 2.1. For any given quintic polynomial Q̃(z) and degree
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k, computing an explicit polynomial basis {sα} is straightforward. As an example, let us

consider the the Fermat quintic defined by the vanishing of Q̃F (z), see eq. (3.56). In this

case, a basis for the quotient eq. (3.36) can be found by eliminating from any polynomial

in C[z0, . . . , z4]k all occurrences of z5
0 using z5

0 = −(z5
1 + z5

2 + z5
3 + z5

4).

Using the basis sα for the quotient ring, one finally arrives at the following ansatz

Kh,k =
1

kπ
ln

Nk−1∑
α,β̄=0

hαβ̄sαs̄β̄ =
1

kπ
ln ‖s‖2h,k (2.17)

for the Kahler potential and, hence, the approximating metric. Note that they are formally

defined on P4 but restrict directly to Q̃, by construction. Obviously, this is not the only

possible ansatz for the approximating metric, and the reason for this particular choice will

only become clear later on. However, let us simply mention here that there is a rather

simple iteration scheme [26, 27, 28] involving Kh,k which will converge to the Ricci-flat

metric in the limit k → ∞. Note that, in contrast to the Fubini-Study Kähler potential

eq. (2.10), the matrix hαβ̄ in eq. (3.38) cannot be diagonalized by a GL(5,C) coordinate

change on the ambient P4 for k ≥ 2.

Let us note that there is a geometric interpretation of the homogeneous poly-

nomials, which will be important later on. Due to the rescaling ambiguity eq. (2.1), the

homogeneous polynomials are not functions on P4, but need to be interpreted as sections

of a line bundle. The line bundle for degree-k polynomials is denoted OP4(k) and, in par-

ticular, the homogeneous coordinates are sections of OP4(1). In general, the following are

the same

• Homogeneous polynomials of degree k in n variables.
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• Sections of the line bundle OPn−1(k).

Moreover, the quotient of the homogeneous polynomials by the quintic, eq. (3.36), is ge-

ometrically the restriction of the line bundle OP4(k) to the quintic hypersurface. That is,

start with the identification above,

H0
(
P4,OP4(k)

)
= C[z0, z1, z2, z3, z4]k. (2.18)

After restricting the sections of OP4(k) to Q̃, they satisfy the relation Q̃(z) = 0. Hence,

the restriction is

H0
(
Q̃,O

Q̃
(k)
)

= C[z0, z1, z2, z3, z4]k

/〈
Q̃(z)

〉
k

= C[z0, z1, z2, z3, z4]k

/(
Q̃C[z0, z1, z2, z3, z4]k−5

)
.

(2.19)

More technically, this whole discussion can be represented by the short exact sequence

0 // H0
(
P4,OP4(k − 5)

)×Q̃(z) // H0
(
P4,OP4(k)

) restrict // H0
(
Q̃,O

Q̃
(k)
)

// 0

0 // C [z0, . . . , z4]k−5

×Q̃(z) // C [z0, . . . , z4]k
// C[z0, . . . , z4]k

/〈
Q̃(z)

〉
k

// 0

(2.20)

2.1.2 Donaldson’s Algorithm

Once we have specified the form for the Kähler potential, our problem reduces

to finding the “right” matrix hαβ̄. This leads us to the notion of T-map and balanced

metrics, which we now introduce. First, note that eq. (3.38) provides a way to define an

inner product of two sections. While it makes sense to evaluate a function at a point, one

cannot “evaluate” a section (a homogeneous polynomial) at a point since the result would
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only be valid up to an overall scale3. However, after picking ‖s‖2h,k, see eq. (3.38), one can

cancel the scaling ambiguity and define

(S, S′)(p) =
S(p) S̄′(p)

‖s‖2h,k(p)
=

S(p) S̄′(p)∑
α,β̄ h

αβ̄ sα(p) s̄β̄(p)
∀p ∈ Q̃ (2.21)

for arbitrary sections (degree-k homogeneous polynomials) S, S′ ∈ H0
(
Q̃,O

Q̃
(k)
)
. Note

that the s0, . . . , sNk−1 are a basis for the space of sections, so there are always constants

cα ∈ C such that

S =

Nk−1∑
α=0

cαsα. (2.22)

The point-wise hermitian form ( , ) is called a metric on the line bundle O
Q̃

(k). Given this

metric, we now integrate eq. (2.21) over the manifold Q̃ to define a C-valued inner product

of sections

〈
S, S′

〉
=

Nk

VolCY(Q̃)

∫
Q̃

(S, S′)(p) dVolCY

=
Nk

VolCY(Q̃)

∫
Q̃

S S̄′∑
α,β̄ h

αβ̄sαs̄β̄
dVolCY .

(2.23)

Since 〈 , 〉 is again sesquilinear, it is uniquely determined by its value on the basis sections

sα, that is, by the hermitian matrix

Hαβ̄ =
〈
sα, sβ

〉
. (2.24)

In general, the matrices hαβ̄ and Hαβ̄ are completely different. However, for special metrics,

they might coincide:

3In other words, at any given point one can only decide whether the section is zero or not zero.
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Definition 1. Suppose that

hαβ̄ =
(
Hαβ̄

)−1
. (2.25)

Then the metric h on the line bundle O
Q̃

(k) is called balanced.

We note that, in the balanced case, one can find a new basis of sections {s̃α}Nk−1
α=0

which simultaneously diagonalizes H̃αβ̄ = δαβ̄ and h̃αβ̄ = δαβ̄. The interesting thing about

balanced metrics is that they have special curvature properties, in particular

Theorem 1 (Donaldson [28]). For each k ≥ 1 the balanced metric h exists and is unique.

As k →∞, the sequence of metrics

g
(k)
ī =

1

kπ
∂i∂̄̄ ln

Nk−1∑
α,β̄=0

hαβ̄sαs̄β̄ (2.26)

on Q̃ converges to the unique Calabi-Yau metric for the given Kähler class and complex

structure.

Hence, the problem of finding the Calabi-Yau metric boils down to finding the

balanced metric for each k. Unfortunately, since Hαβ̄ depends non-linearly on hαβ̄ one can

not simply solve eq. (2.25) defining the balanced condition. However, iterating eq. (2.25)

turns out to converge quickly. That is, let

T (h)αβ̄ = Hαβ̄ =
Nk

VolCY

(
Q̃
) ∫

Q̃

sαs̄β̄∑
γδ̄ h

γδ̄sγ s̄δ̄
dVolCY (2.27)

be Donaldson’s T-operator. Then
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Theorem 2 (Donaldson, [24]). For any initial metric h0, the sequence4

hn+1 =
(
T (hn)

)−1
(2.28)

converges to the balanced metric as n→∞ .

In practice, only very few (≤ 10) iterations are necessary to get very close to the

fixed point. Henceforth, we will also refer to g
(k)
ī in eq. (3.41), the approximating metric

for fixed k, as a balanced metric.

2.1.3 Integrating over the Calabi-Yau threefold

We still need to be able to integrate over the manifold in order to evaluate the

T-operator. Luckily, we know the exact Calabi-Yau volume form,

dVolCY = Ω ∧ Ω̄, (2.29)

since we can express the holomorphic volume form Ω as a Griffiths residue. To do this,

first note that the hypersurface Q̃ ⊂ P4 has complex codimension one, so we can encircle

any point in the transverse direction. The corresponding residue integral

Ω =

∮
d4 z

Q̃(z)

(2.30)

is a nowhere vanishing holomorphic (3, 0)-form and, hence, must be the holomorphic volume

form Ω. As an example, consider the Fermat quintic defined by eq. (3.56). In a patch where

4At this point, it is crucial to work with a basis of sections s0, . . . , sNk−1. For if there were a linear
relation between them then the matrix T (h) would be singular.
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we can use the homogeneous rescaling to set z0 = 1 and where z2, z3, and z4 are good local

coordinates,

Ω =

∫
dz1 ∧ · · · ∧ dz4

1 + z5
1 + z5

2 + z5
3 + z5

4

=
dz2 ∧ dz3 ∧ dz4

5z4
1

. (2.31)

To apply, for example, Simpson’s rule to numerically integrate over the Calabi-

Yau threefold one would need local coordinate charts. However, there is one integration

scheme that avoids having to go into these details: approximate the integral by Np random

points {pi},

1

Np

Np∑
i=1

f(pi) −→
∫
f dVol . (2.32)

Of course, we have to define which “random” distribution the points lie on, which in turn

determines the integration measure dVol. In practice, we will only be able to generate

points with the wrong random distribution, leading to some auxiliary distribution dA.

However, one can trivially account for this by weighting the points with wi = Ω ∧ Ω̄/dA,

1

Np

Np∑
i=1

f(pi)wi =
1

Np

Np∑
i=1

f(pi)
Ω ∧ Ω̄

dA
−→

∫
f

Ω ∧ Ω̄

dA
dA =

∫
f dVolCY . (2.33)

Note that taking f = 1 implies

1

Np

Np∑
i=1

wi = VolCY(Q̃). (2.34)

Points from Patches

We start out with what is probably the most straightforward way to pick random

points. This method only works on the Fermat quintic, to which we now restrict. Let us

22



split P4 into 5 · 4 = 20 closed sets

U`m =
{[
z0 : z1 : z2 : z3 : z4

]∣∣∣
|z`| = max(|z0|, . . . , |z4|), |zm| = max(|z0|, . . . , |̂z`|, . . . , |z4|)

}
. (2.35)

In other words, z` has the largest absolute value and zm has the second-largest absolute

value. They intersect in real codimension-1 boundaries where the absolute values are the

same and induce the decomposition

Q̃F =
⋃
`,m

Q̃F,`m (2.36)

with Q̃F,`m = Q̃F ∩U`m. Since permuting coordinates is a symmetry of the Fermat quintic,

it suffices to consider Q̃F,01. We define “random” points by

• Pick x, y, z ∈ C≤1 on the complex unit disk with the standard “flat” distribution.

• Test whether

|x|, |y|, |z| ≤
∣∣1 + x5 + y5 + z5

∣∣ 1
5 ≤ 1. (2.37)

If this is not satisfied, start over and pick new x, y, and z. Eventually, the above

inequality will be satisfied.

• The “random” point is now

[
1 : −

(
1 + x5 + y5 + z5

) 1
5 : x : y : z

]
∈ Q̃F,01, (2.38)

where one chooses a uniformly random phase for the fifth root of unity.
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By construction, the auxiliary measure is then independent of the position (x, y, z) ∈ Q̃F,`m.

Hence,

dA =
1

20
d2x ∧ d2y ∧ d2z. (2.39)

Points From Intersecting Lines With The Quintic

The previous definition only works on the Fermat quintic, but not on arbitrary

quintics. A much better algorithm [26] is to pick random lines

L ' P1 ⊂ P4 . (2.40)

Any line L determines 5 points by the intersection L ∩ Q̃ = {5pt.} whose coordinates can

be found by solving a quintic polynomial (in one variable) numerically. Explicitly, a line

can be defined by two distinct points

p = [p0 : p1 : p2 : p3 : p4], q = [q0 : q1 : q2 : q3 : q4] ∈ P4 (2.41)

as

L : C ∪ {∞} → P4, t 7→ [p0 + tq0 : p1 + tq1 : p2 + tq2 : p3 + tq3 : p4 + tq4]. (2.42)

The 5 intersection points L ∩ Q̃ are then given by the 5 solutions of

Q̃ ◦ L(t) = Q̃
(
p0 + tq0, p1 + tq1, p2 + tq2, p3 + tq3, p4 + tq4

)
= 0. (2.43)

Clearly, the auxiliary measure will depend on how we pick “random” lines. The
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easiest way is to choose lines uniformly distributed with respect to the SU(5) action on

P4. Note that a line L is Poincaré dual to a (3, 3)-current, that is, a (3, 3)-form whose

coefficients are delta-functions supported on the line L. For the expected distribution of

lines, we then average over all “random” configurations of lines. Because of this averaging

procedure, the Poincaré dual5 of the expected distribution of lines 〈L〉 is a smooth (3, 3)

form. Since there is (up to scale) only one SU(5)-invariant (3, 3) form on P4, the expected

distribution of lines must be

〈L〉 ∼ ω3
FS, (2.44)

where ωFS is the Kähler form defined by the unique SU(5)-invariant Fubini-Study Kähler

potential eq. (2.9). Restricting both sides to an embedded quintic i : Q̃ ↪→ P4, we obtain

the auxiliary measure as the expected distribution of the intersection points,

dA =
〈
Q̃ ∩ L

〉
∼ i∗

(
ω3

FS

)
. (2.45)

As a final remark, note that the the symmetry of the ambient space is, in general, not

enough to unambiguously determine the auxiliary measure. It is, as we just saw, sufficient

for any quintic hypersurface Q̃. However, for more complicated threefolds one needs a more

general theory. We will have to come back to this point in 2.4.4.

2.1.4 Results

Following the algorithm laid out in this section, we can now compute the successive

approximations to the Calabi-Yau metric on Q̃. In order to test the result, we need some

kind of measure for how close the approximate metric is to the Calabi-Yau metric. Douglas

5By the usual abuse of notation, we will not distinguish Poincaré dual quantities in the following.
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Figure 2.1: The error measure σk for the metric on the Fermat quintic, computed
with the two different point generation algorithms described in 2.1.3. In
each case we iterated the T-operator 10 times, numerically integrating
over Np = 200,000 points. Then we evaluated σk using 10,000 different
test points. The error bars are the numerical errors in the σk integral.
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et al. [26] proposed the following: First, remember that the Kähler form ω eq. (2.6) is the

Calabi-Yau Kähler form if and only if its associated volume form ω3 is proportional to the

Calabi-Yau volume form eq. (2.30). That is,

ω3(p) = (const.)×
(

Ω(p) ∧ Ω̄(p)
)
∀p ∈ Q̃ (2.46)

(the Monge-Ampére equation) with a non-vanishing proportionality constant independent

of p ∈ Q̃6. Let us define

VolK
(
Q̃
)

=

∫
Q̃
ω3 (2.47a)

and recall that

VolCY

(
Q̃
)

=

∫
Q̃

Ω ∧ Ω̄. (2.47b)

The ratio of these two constants determines the proportionality factor in eq. (2.46). This

equation can now be rewritten

ω3(p)

VolK
(
Q̃
) =

Ω(p) ∧ Ω̄(p)

VolCY

(
Q̃
) ∀p ∈ Q̃. (2.48)

Note that one often demands that the two constants, eqns. (2.47a) and (2.47b), are unity

by rescaling ω and Ω respectively. However, this would be cumbersome later on and we

will not impose this normalization. Then the integral

σ
(
Q̃
)

=
1

VolCY

(
Q̃
) ∫

Q̃

∣∣∣∣∣∣1−
ω3
/

VolK
(
Q̃
)

Ω ∧ Ω̄
/

VolCY

(
Q̃
)
∣∣∣∣∣∣ dVolCY (2.49)

6And varying over the moduli space. However, this will not concern us here.
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vanishes if and only if ω is the Calabi-Yau Kähler form. In practice, Donaldson’s algorithm

determines successive approximations to the Calabi-Yau metric. Since we know the exact

Calabi-Yau volume form Ω ∧ Ω̄, only ω is approximate and depends on the degree k.

We define σk to be the above integral evaluated with this degree-k approximation to the

Calabi-Yau Kähler form.

Let us quickly summarize the steps necessary to compute the metric. To do that,

one has to

1. Choose a degree k at which to compute the balanced metric which will approximate

the Calabi-Yau metric.

2. Choose the number Np of points, and generate this many points {pi}
Np
i=1 on Q̃. Al-

though k and Np can be chosen independently, we will argue below that Np should

be sufficiently larger than N2
k for accuracy.

3. For each point pi, compute its weight wi = dA(pi)/(Ω ∧ Ω̄).

4. Calculate a basis {sα}Nk−1
α=0 for the quotient eq. (3.36) at degree k.

5. At each point pi, calculate the (complex) numbers {sα(pi)}Nk−1
α=0 and, hence, the

integrand of the T-operator.

6. Choose an initial invertible, hermitian matrix for hγδ̄. Now perform the numerical

integration

T (h)αβ̄ =
Nk∑Np
j=1wj

Np∑
i=1

sα(pi) sβ(pi)wi∑
γδ̄ h

γδ̄ sγ(pi) sδ(pi)
. (2.50)

7. Set the new hαβ̄ to be hαβ̄ =
(
Tαβ̄

)−1
.
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8. Return to 6 and repeat until hαβ̄ converges close to its fixed point. In practice, this

procedure is insensitive to the initial choice of hαβ̄ and fewer than 10 iterations suffice.

Having determined the balanced hαβ̄, we can evaluate the metric g
(k)
ī using eq. (3.41) and,

hence, the Kähler form ω(p) at each point p, see eq. (2.6). Now form ω3(p). This lets us

compute σk by the following steps:

1. The σk integral requires much less accuracy, so one may pick a smaller number Np

of points {pi}
Np
i=1.

2. Compute

VolCY =
1

Np

Np∑
i=1

wi, VolK =
1

Np

Np∑
i=1

ω3(pi)

Ω(pi) ∧ Ω(pi)
wi, (2.51)

which numerically approximate
∫
Q̃

Ω ∧ Ω̄ and
∫
Q̃
ω3, respectively.

3. The numerical integral approximating σk is

σk =
1

Np VolCY

Np∑
i=1

∣∣∣∣∣1− ω(pi)
3
/

VolK

Ω(pi) ∧ Ω(pi)
/

VolCY

∣∣∣∣∣wi. (2.52)

As a first application, we apply this procedure to compute the Calabi-Yau metric

for the simple Fermat quintic Q̃F defined by eq. (3.56). In this case, there are two point

selection algorithms, both given in 2.1.3. We do the calculation for each and show the

results in 2.1. One can immediately see that both point selection strategies give the same

result, as they should. In fact, there is a theoretical prediction for how fast σk converges

to 0, see [26, 29, 28]. Expanding in 1
k , the error goes to zero at least as fast as

σk =
S2

k2
+
S3

k3
+ · · · , Si ∈ R. (2.53)
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In particular, the coefficient of 1
k is proportional to the scalar curvature and vanishes on a

Calabi-Yau manifold. In 2.1, we fit σk = S2
k2 + S3

k3 for k ≥ 3 and find good agreement with

the data points.

An important question is how many points are necessary to approximate the

Calabi-Yau threefold in the numerical integration for any given k. The problem is that we

really are trying to compute the Nk ×Nk-matrix hαβ̄, whose dimension increases quickly

with k, see 2.1. Hence, to have more equations than indeterminates, we expect to need

Np > N2
k (2.54)

points to evaluate the integrand of the T-operator on. To numerically test this, we compute

σk using different numbers of points Np. The result is displayed in 2.2, where we used the

more convenient logarithmic scale for σk. Clearly, the error measure σk starts out decreasing

with k. However, at some Np-dependent point it reaches a minimum and then starts to

increase. In 2.3, we plot the same σk as a function of N2
k . This confirms our guess that we

need Np > N2
k points in order to accurately perform the numerical integration. One notes

that the data points in 2.2 seem to approach a straight line as we increase Np. This would

suggest an exponential fall-off

σk ≈ 0.523e−0.324k. (2.55)

It is possible, therefore, that the theoretical error estimate eq. (2.53) could be improved

upon.

So far, we have applied our procedure to the Fermat quintic Q̃F for simplicity.

However, our formalism applies equally well to any quintic Q̃ in the 101-dimensional com-
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Figure 2.2: The error measure σk for the balanced metric on the Fermat quintic
as a function of k, computed by numerical integration with different
numbers of points Np. In each case, we iterated the T-operator 10 times
and evaluated σk on 5,000 different test points. Note that we use a
logarithmic scale for the σk axis.
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Figure 2.3: The error measure σk for the balanced metric on the Fermat quintic as
a function of N2

k = number of entries in hαβ̄ ∈ MatNk×Nk . In other
words, evaluating the T-operator requires N2

k scalar integrals. In each
case, we iterated the T-operator 10 times and finally evaluated σk using
5,000 different test points. We use a logarithmic scale for both axes.
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Figure 2.4: The error measure σk as a function of k for five random quintics, as well
as for the Fermat quintic. The random quintics are the sum over the 126
quintic monomials in 5 homogeneous variables with coefficients random
on the unit disk. We use a logarithmic scale for σk.
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plex structure moduli space with the proviso that, for a non-Fermat quintic, one must

use the L ∩ Q̃ method of choosing points. An important property of the programs that

implement our procedure is that they make no assumptions about the form of the quintic

polynomial eq. (2.2). We proceed as follows. First, fix a quintic by randomly (in the usual

flat distribution) choosing each coefficient c(n0,n1,n2,n3,n4) on the unit disk, see eq. (2.2).

Then approximate the Calabi-Yau metric via Donaldson’s algorithm and compute the error

measure σk. In 2.4, we present the results for σk for five randomly chosen quintics, and

compare them to the Fermat quintic. We observe that the convergence to the Calabi-Yau

metric does not strongly depend on the complex structure parameters.

2.2 Group Actions and Invariants

2.2.1 Quotients and Covering Spaces

Thus far, we have restricted our formalism to quintic Calabi-Yau threefolds Q̃ ⊂

P4. These are, by construction, simply connected. However, for applications in heterotic

string theory we are particularly interested in non-simply connected Calabi-Yau manifolds

where one can reduce the number of quark/lepton generations and turn on discrete Wilson

lines [30, 31, 32, 33, 34, 35, 36]. Therefore, it is of obvious interest to compute the metrics

in such cases. However, these manifolds are more complicated than hypersurfaces in pro-

jective spaces. In fact, any complete intersection in a smooth toric variety will be simply

connected7. Therefore, we are usually forced to study non-simply connected Calabi-Yau

threefolds Y ,

π1(Y ) = Π 6= 1, (2.56)

7Note, however, that there are 16 cases of smooth, non-simply connected hypersurfaces in singular toric
varieties [37].
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via their universal covering space Ỹ and the free group action Π : Ỹ → Ỹ .

In order to carry through Donaldson’s algorithm on Y , we now need to generalize

the notion of “homogeneous polynomials” to arbitrary varieties. As mentioned previously,

the homogeneous coordinates on the quintic Q̃ ∈ P4 can be interpreted as the basis of

sections of the line bundle O
Q̃

(1),

span{z0, z1, z2, z3, z4} = H0
(
Q̃,O

Q̃
(1)
)
. (2.57)

The special property of O
Q̃

(1) is that it is “very ample”, that is, its sections define an

embedding

ΦO
Q̃

(1) : Q̃→ P4, x 7→
[
z0(x) : z1(x) : z2(x) : z3(x) : z4(x)

]
. (2.58)

Hence, we need to pick a “very ample” line bundle on Ỹ in order to compute the metric

there. Furthermore, to discuss Y , we will also need to “mod out” by the group action. It

follows that the group Π must act properly on the line bundle. In mathematical terms this

is called an “equivariant line bundle”, and there is a one-to-one correspondence

Π-equivariant

line bundles on Ỹ

Π // Line bundles

on Y .
Π∗

oo (2.59)

Let us denote such a line bundle on Ỹ by L. We are specifically interested in the sections

of this line bundle, since they generalize the homogeneous coordinates. The important

observation here is that the sections of a Π-equivariant line bundle on Ỹ themselves form

a representation of Π. Furthermore, the Π-invariant sections correspond to the sections on
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the quotient. That is,

H0
(
Ỹ ,L

)Π
= H0

(
Y,L/Π

)
. (2.60)

Hence, in order to compute the metric on the quotient Y = Ỹ /Π, we can work on the

covering space Ỹ if we simply replace all sections by the Π-invariant sections.

In this chapter, we will always consider the case where Ỹ is a hypersurface or a

complete intersection in (products of) projective spaces. Then

• The sections on the ambient projective space are homogeneous polynomials.

• The sections on Ỹ are the quotient of these polynomials by the defining equations.

• The invariant sections on Ỹ are the invariant homogeneous polynomials modulo the

invariant polynomials generated by the defining equations.

The mathematical framework for counting and finding these invariants is provided by

Invariant Theory [38], which we review in the remainder of this section.

2.2.2 Poincaré and Molien

Let C[~x] be a polynomial ring in n commuting variables

~x =
(
x1, . . . , xn

)
. (2.61)

As a vector space over the ground field C, it is generated by all monomials

C[~x] = C1⊕ Cx1 ⊕ · · · ⊕ Cxn ⊕ Cx2
1 ⊕ · · · . (2.62)
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Clearly, C[~x] is an infinite dimensional vector space. However, at each degree k we have a

finite dimensional vector space of homogeneous degree-k polynomials. A concrete basis for

the degree-k polynomials would be all distinct monomials of that degree.

By definition, the Poincaré series is the generating function for the dimensions of

the vector subspaces of fixed degree, that is,

P
(
C[~x], t

)
=

∞∑
k=0

(
dimCC[~x]k

)
tk (2.63)

where C[~x]k is the vector subspace of C[~x] of degree k. The monomials of the polynomial

ring in n commuting variables x1, . . . , xn can be counted just like n species of bosons, and

one obtains

P
(
C[~x], t

)
=
∏
n

1

1− t
=
∞∑
k=0

 n+ k − 1

k

 tk. (2.64)

We have already mentioned that the homogeneous degree-k polynomials in n variables are

just the sections of OPn−1(k). Hence, the number of degree-k polynomials is the same as

the dimension of the space of sections of the line bundle OPn−1(k),

dimCC[~x]k = h0
(
Pn−1,OPn−1(k)

)
. (2.65)

Acknowledging this geometric interpretation, we also write

P
(
OPn−1 , t

)
=

∞∑
k=0

h0
(
Pn−1,OPn−1(k)

)
tk = P

(
C[~x], t

)
. (2.66)
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Furthermore, note that

P (M ⊕M ′, t) = P (M, t) + P (M ′, t) (2.67)

for any rings M and M ′.

A n-dimensional representation of a finite group G generates a group action on

the polynomials eq. (2.62). One is often interested in the invariant polynomials under this

group action, which again form a ring C [~x]G. Clearly, the invariant ring is a subring of

C [~x]. Since the group action preserves the degree of a polynomial, one can again define

the Poincaré series of the invariant ring,

P
(
C[~x]G, t

)
=
∞∑
k=0

(
dimCC[~x]Gk

)
tk. (2.68)

The coefficients in eq. (2.68) can be obtained using

Theorem 3 (Molien). Let G ⊂ GL(n,C) be a finite matrix group acting linearly on the n

variables ~x = (x1, . . . , xn). Then the Poincaré series of the ring of invariant polynomials,

that is, the generating function for the number of invariant polynomials of each degree, is

given by

P
(
C[~x]G, t

)
=

1

|G|
∑
g∈G

1

det(1− gt)
. (2.69)

Equation (2.69) is called the Molien formula.

2.2.3 Hironaka Decomposition

Although eq. (2.69) contains important information about C[x1, . . . , xn]G, the

most detailed description is provided by the Hironaka decomposition, which we discus
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next. To construct this, one first needs to find n homogeneous polynomials θ1, . . . , θn,

invariant under the group action, such that the quotient

C[x1, . . . , xn]
/
〈θ1, . . . , θn〉 (2.70)

is zero-dimensional. The above condition is equivalent [39] to demanding that the system

θi = 0, i = 1, . . . n has only the trivial solution. This guaranties that the θi are algebraically

independent. Then

Theorem 4 (Hironaka decomposition). With respect to θ1, . . . , θn chosen as above, the

ring of G-invariant polynomials can be decomposed as

C[~x]G = η1C[θ1, . . . , θn]⊕ η2C[θ1, . . . , θn]⊕ · · · ⊕ ηsC[θ1, . . . , θn]. (2.71)

Clearly, the ηi are themselves G-invariant polynomials in C[~x]. Thus any G-

invariant polynomial is a unique linear combination of ηi’s, where the coefficients are

polynomials in θi. The polynomials θi are called the “primary” invariants and ηj the

“secondary” invariants. Note that, while the number of primary invariants is fixed by the

number of variables x1, . . . , xn, the number s of secondary polynomials depends on our

choice of primary invariants. Using eq. (2.64) with each xi replaced by θi, we find that the

Poincaré series for C[θ1, . . . , θn] is given by

P
(
C[θ1, . . . , θn], t

)
=

1

(1− tdeg(θ1)) . . . (1− tdeg(θn))
. (2.72)

Moreover, multiplication by ηi shifts all degrees by deg(ηi). Therefore, applying eq. (2.67)
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we obtain the Poincaré series for the Hironaka decomposition,

P
(
C[~x]G, t

)
=

tD1

(1− td1) · · · (1− tdn)
+ · · ·+ tDs

(1− td1) · · · (1− tdn)

=
tD1 + · · ·+ tDs

(1− td1) · · · (1− tdn)
,

(2.73)

where Dj = deg(ηj) and di = deg(θi). Each term in the numerator of eq. (2.73) corresponds

to a secondary invariant.

2.3 Four-Generation Quotient of Quintics

2.3.1 Four Generation Models

Were one to compactify the heterotic string on a generic quintic Q̃ using the

standard embedding, then the four-dimensional effective theory would contain 1
2χ(Q̃) =

100 net generations. A well known way to reduce this number [1] is to compactify on

quintics that admit a fixed point free Z5 × Z5 action. In that case, the quotient manifold

Q = Q̃
/

(Z5 × Z5) has only 1
2χ(Q) = 100

|Z5×Z5| = 4 generations. In this section, these special

quintics and their Z5 × Z5 quotient will be described. We then compute the Calabi-Yau

metrics directly on these quotients Q using a generalization of our previous formalism.

Recall from 2.1 that a generic quintic Q̃ ⊂ P4 is defined as the zero locus of

a degree-5 polynomial of the form eq. (2.2). In general, it is the sum of 126 degree-

5 monomials, leading to 126 coefficients c(n0,n1,n2,n3,n4) ∈ C. However, not all of these

quintic threefolds admit a fixed point free Z5 × Z5 action. To be explicit, we will consider
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the following two actions on the five homogeneous variables defining P4,

g1



z0

z1

z2

z3

z4


=



0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0





z0

z1

z2

z3

z4



g2



z0

z1

z2

z3

z4


=



1 0 0 0 0

0 e
2πi
5 0 0 0

0 0 e2 2πi
5 0 0

0 0 0 e3 2πi
5 0

0 0 0 0 e4 2πi
5





z0

z1

z2

z3

z4


.

(2.74)

Clearly g5
1 = 1 = g5

2, but they do not quite commute:

g1g2 = e
2πi
5 g2g1 ⇔ g1g2g

−1
1 g−1

2 = e
2πi
5 . (2.75)

However, even though g1 and g2 do not form a matrix representation of Z5 × Z5, they do

generate a Z5 × Z5 action on P4 because on the level of homogeneous coordinates we have

to identify

[z0 : z1 : z2 : z3 : z4] = [e
2πi
3 z0 : e

2πi
3 z1 : e

2πi
3 z2 : e

2πi
3 z3 : e

2πi
3 z4]

= g1g2g
−1
1 g−1

2

(
[z0 : z1 : z2 : z3 : z4]

)
.

(2.76)

If the quintic polynomial Q̃(z) is Z5 × Z5-invariant, then the corresponding hypersurface
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will inherit this group action. One can easily verify that the dimension of the space of

invariant homogeneous degree-5 polynomials is 6, as we will prove in eq. (2.91) below.

Taking into account that one can always multiply the defining equation by a constant,

there are 5 independent parameters φ1, . . . , φ5 ∈ C. Thus the Z5 ×Z5 symmetric quintics

form a five parameter family which, at a generic point in the moduli space, can be written

as

Q̃(z) =
(
z5

0 + z5
1 + z5

2 + z5
3 + z5

4

)
+ φ1

(
z0z1z2z3z4

)
+ φ2

(
z3

0z1z4 + z0z
3
1z2 + z0z3z

3
4 + z1z

3
2z3 + z2z

3
3z4

)
+ φ3

(
z2

0z1z
2
2 + z2

1z2z
2
3 + z2

2z3z
2
4 + z2

3z4z
2
0 + z2

4z0z
2
1

)
+ φ4

(
z2

0z
2
1z3 + z2

1z
2
2z4 + z2

2z
2
3z0 + z2

3z
2
4z1 + z2

4z
2
0z2

)
+ φ5

(
z3

0z2z3 + z3
1z3z4 + z3

2z4z0 + z3
3z0z1 + z3

4z1z2

)
.

(2.77)

The explicit form of these invariant polynomials is derived in 2.3.3 and given in eq. (2.91).

Note that, even though the Z5×Z5 action on P4 necessarily has fixed points, one can check

that a generic (that is, for generic φ1, . . . , φ5) quintic threefold Q̃ is fixed-point free.

Now choose any quintic defined by eq. (3.72). Since the Z5 × Z5 action on it is

fixed point free, the quotient

Q = Q̃
/(

Z5 × Z5

)
(2.78)
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is again a smooth Calabi-Yau threefold. Its Hodge diamond is given by [22]

hp,q
(
Q
)

= hp,q
(
Q̃/
(
Z5 × Z5

))
= 1

0

0

1

0

5

1

0

0

1

5

0

1

0

0

1 , (2.79)

where we again see that there is a h2,1(Q) = 5-dimensional complex structure moduli space

parametrized by the coefficients φ1, . . . , φ5.

2.3.2 Sections on the Quotient

We now extend Donaldson’s algorithm to compute the Calabi-Yau metric directly

on the quotient Q = Q̃
/

(Z5 × Z5). To do this, we will need to count and then explicitly

construct the Z5×Z5 invariant sections, that is, the Z5×Z5 invariant polynomials, on the

covering space Q̃ ∈ P4, as discussed in 2.2.1. These then descend to the quotient Q and

can be used to parametrize the Kahler potential and the approximating balanced metrics.

One technical problem, however, is that the two group generators g1 and g2 in

eq. (2.74) do not commute; they only commute up to a phase. Therefore, the homogeneous

coordinates

span
{
z0, z1, z2, z3, z4

}
= H0

(
Q̃,O

Q̃
(1)
)

(2.80)

do not carry a Z5×Z5 representation. The solution to this problem is to enlarge the group.

Each generator has order 5 and, even though they do not quite generate Z5 × Z5, they
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commute up to a phase. Hence, g1 and g2 generate the “central extension”

1 −→ Z5 −→ G −→ Z5 × Z5 −→ 1 (2.81)

with |G| = 125 elements. This group G is also called a Heisenberg group since it is formally

the same as [x, p] = 1, only in this case over Z5. It follows that H0(Q̃,O
Q̃

(1)) does carry

a representation of G and, hence, so does H0(Q̃,O
Q̃

(k)) for any integer k.

Note that, when acting on degree-k polynomials pk(z), the commutant eq. (2.75)

becomes

g1g2g
−1
1 g−1

2

(
pk(z)

)
= e2πi k

5 pk(z). (2.82)

Therefore, if and only if k is divisible by 5 then the G representation reduces to a true

Z5 × Z5 representation on H0(Q̃,O
Q̃

(k)). That is, k must be of the form

k = 5`, ` ∈ Z. (2.83)

The formal reason for this is that only the line bundles O
Q̃

(5`) are Z5×Z5 equivariant. The

invariant subspaces of these Z5 × Z5 representations define the invariant sections. Hence,

we only consider homogeneous polynomials of degrees divisible by 5 which are invariant

under the action of Z5 × Z5 in the following.
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2.3.3 Invariant Polynomials

As a first step, determine the Z5×Z5 invariant sections on the ambient space P4.

That is, we must find the invariant ring

C[z0, z1, z2, z3, z4]G (2.84)

over P4, where G is the Heisenberg group defined in the previous subsection. One can read

off the number of invariants N̂G
k at each degree k from the Molien series

P
(
C[z0, z1, z2, z3, z4]G, t

)
=
∑
k

N̂G
k tk =

1

|G|
∑
g∈G

1

det
(
1− tg

) =

= 1 + 6t5 + 41t10 + 156t15 + 426t20 + 951t25 + 1856t30 + 3291t35 + 5431t40+

+ 8476t45 + 12651t50 + 18206t55 + 25416t60 + 34581t65 + · · · (2.85)

We see that the only invariants are of degree k = 5`, as discussed in the previous subsection.

To go further than just counting the invariants, one uses the Hironaka decomposition

which was introduced in 2.2.3. For that, we need to choose 5 primary invariants, the same

number as homogeneous coordinates. Unfortunately, any 5 out of the 6 quintic invariant

polynomials are never algebraically independent. Hence, picking five degree-5 invariants

never satisfies the requirements for them to be primary invariants. It turns out that the

primary invariants of minimal degree consist of three degree-5 and two degree-10 invariants,

which we will list in eq. (3.79) below. First, however, let us rewrite the Molien series as in

45



eq. (2.73),

P
(
C[z0, z1, z2, z3, z4]G, t

)
=

1 + 3t5 + 24t10 + 44t15 + 24t20 + 3t25 + t30(
1− t5

)3(
1− t10

)2 . (2.86)

We see that this choice of primary invariants requires

1

|G|

5∏
i=1

deg θi =
53102

|G|
= 100 = 1 + 3 + 24 + 44 + 24 + 3 + 1 (2.87)

secondary invariants in degrees up to 30. We again note that this decomposition is not

unique, as one can always find different primary and secondary invariants. However, our

choice of primary invariants is minimal, that is, leads to the least possible number (= 100)

of secondary invariants.

Knowing the number of secondary invariants is not enough, however, and we need

the actual G-invariant polynomials. As will be explicitly checked in A, the five G-invariant

polynomials

θ1 = z5
0 + z5

1 + z5
2 + z5

3 + z5
4 = z5

0 + (cyc)

θ2 = z0z1z2z3z4

θ3 = z3
0z1z4 + z0z

3
1z2 + z0z3z

3
4 + z1z

3
2z3 + z2z

3
3z4 = z3

0z1z4 + (cyc)

θ4 = z10
0 + z10

1 + z10
2 + z10

3 + z10
4 = z10

0 + (cyc)

θ5 = z8
0z2z3 + z0z1z

8
3 + z0z

8
2z4 + z8

1z3z4 + z1z2z
8
4 = z8

0z2z3 + (cyc)

(2.88)

satisfy the necessary criterion to be our primary invariants, where (cyc) denotes the sum

over the five different cyclic permutations z0 → z1 → · · · → z4 → z0. Next, we need a basis

for the corresponding secondary invariants, which must be of degrees 0, 5, 10, 15, 20, 25,
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and 30 according to eq. (2.86). In practice, these 100 secondary invariants can easily be

found using Singular [40, 41]. They are

η1 = 1, (2.89a)

η2 = z2
0z1z

2
2 + (cyc), η3 = z2

0z
2
1z3 + (cyc), η4 = z3

0z2z3 + (cyc), (2.89b)

η5 = z5
0z

5
2 + (cyc), η6 = z4

0z
3
2z

3
3 + (cyc), η7 = z4

0z
3
1z

3
4 + (cyc),

η8 = z4
0z

2
1z

4
2 + (cyc), η9 = z4

0z
4
1z

2
3 + (cyc), η10 = z6

0z
2
2z

2
3 + (cyc),

η11 = z6
0z

2
1z

2
4 + (cyc), η12 = z6

0z1z
3
3 + (cyc), η13 = z6

0z
3
2z4 + (cyc),

η14 = z6
0z

3
1z2 + (cyc), η15 = z6

0z3z
3
4 + (cyc), η16 = z7

0z1z
2
2 + (cyc),

η17 = z7
0z

2
3z4 + (cyc), η18 = z7

0z
2
1z3 + (cyc), η19 = z8

0z1z4 + (cyc),

η20 = z3
0z

2
1z

2
2z

3
3 + (cyc), η21 = z4

0z
2
1z

3
3z4 + (cyc), η22 = z4

0z1z
3
2z

2
4 + (cyc),

η23 = z4
0z

3
1z

2
2z3 + (cyc), η24 = z4

0z1z2z
4
3 + (cyc), η25 = z5

0z
2
1z2z

2
3 + (cyc),

η26 = z5
0z

2
1z

2
2z4 + (cyc), η27 = z5

0z1z
3
2z3 + (cyc), η28 = z5

0z
3
1z3z4 + (cyc),

(2.89c)
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η29 = z15
0 + (cyc), η30 = z10

0 z
5
2 + (cyc), η31 = z10

0 z
5
3 + (cyc),

η32 = z10
0 z

5
1 + (cyc), η33 = z6

0z
3
1z

6
2 + (cyc), η34 = z6

0z
6
1z

3
3 + (cyc),

η35 = z7
0z

4
2z

4
3 + (cyc), η36 = z7

0z
4
1z

4
4 + (cyc), η37 = z7

0z
2
1z

6
3 + (cyc),

η38 = z7
0z

6
2z

2
4 + (cyc), η39 = z7

0z
6
1z

2
2 + (cyc), η40 = z8

0z
3
1z

4
3 + (cyc),

η41 = z8
0z

4
2z

3
4 + (cyc), η42 = z8

0z
4
1z

3
2 + (cyc), η43 = z7

0z
7
1z3 + (cyc),

η44 = z8
0z

6
2z3 + (cyc), η45 = z8

0z2z
6
3 + (cyc), η46 = z8

0z
6
1z4 + (cyc),

η47 = z9
0z

2
1z

4
2 + (cyc), η48 = z9

0z
4
1z

2
3 + (cyc), η49 = z1

01z2
1z

2
4 + (cyc),

η50 = z1
01z1z

3
3 + (cyc), η51 = z1

01z3
1z2 + (cyc), η52 = z1

01z3z
3
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η100 = z30
0 + (cyc) = z30

0 + z30
1 + z30

2 + z30
3 + z30

4 . (2.89g)

The Hironaka decomposition of the ring of G-invariant homogeneous polynomials is then

C[z0, z1, z2, z3, z4]G =
100⊕
i=1

ηiC[θ1, θ2, θ3, θ4, θ5]. (2.90)

As a simple application, we can read off a basis for the invariant degree-5 polynomials,

C
[
z0, z1, z2, z3, z4

]G
5

= span
{
η1θ1, η1θ2, η1θ3, η2, η3, η4

}
= span

{
θ1, θ2, θ3, η2, η3, η4

}
.

(2.91)

Note that this is the basis of invariant quintic polynomials used in eq. (3.72) to define Q̃(z).
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2.3.4 Invariant Sections on the Quintic

The next step is to restrict the G-invariant sections on P4 to the hypersurface Q̃.

In 2.1, we showed how to accomplish this for all sections on generic quintics Q̃ ∈ P4. Since

the sections on the ambient space are nothing but homogeneous polynomials, the restricted

sections were the quotient of the homogeneous polynomials by the hypersurface equation

Q̃ = 0,

H0
(
P4,OP4(k)

) restrict // H0
(
Q̃,O

Q̃
(k)
)

C[z0, z1, z2, z3, z4]k
Q̃=0 //

(
C[z0, z1, z2, z3, z4]

/〈
Q̃
〉)

k
.

(2.92)

Now consider the quintics defined by eq. (3.72), which allow a Z5 × Z5 action. Here, one

only wants to know the G-invariant sections on Q̃, since these correspond to the sections

on the Z5 × Z5 quotient Q = Q̃
/

(Z5 × Z5). Moreover, since the G-invariant polynomials

are of degree 5`, we only consider this case. Hence, the G-invariant sections are

H0
(
P4,OP4(5`)

)G restrict // H0
(
Q̃,O

Q̃
(5`)

)G

C[z0, z1, z2, z3, z4]G5`
Q̃=0 //

(
C[z0, z1, z2, z3, z4]

/〈
Q̃
〉)G

5`
.

(2.93)

Finally, we identify the invariant sections on Q̃ with sections on the quotient manifold Q,

as discussed in 2.2.1. Therefore, the sections on Q are

H0
(
Q,O

Q̃
(5`)

/
(Z5 × Z5)

)
= H0

(
Q̃,O

Q̃
(5`)

)G
=
(
C[z0, z1, z2, z3, z4]

/〈
Q̃
〉)G

5`
. (2.94)
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5` 5 10 15 20 25 30 35 40

N̂G
5` 6 41 156 426 951 1856 3291 5431

NG
5` 5 35 115 270 525 905 1435 2140

Table 2.2: The number of G-invariant degree 5`-homogeneous polynomials N̂G
5`,

eq. (2.85), and the number of remaining invariant polynomials NG
5` af-

ter imposing the hypersurface equation Q̃(z) = 0, see eq. (3.72).

By unravelling the definitions and using eq. (3.78), the invariant subspace of the quotient

ring is given by

(
C[z0, z1, z2, z3, z4]

/〈
Q̃(z)

〉)G
= C[z0, z1, z2, z3, z4]G

/〈
Q̃(z)

〉G
=

(
100⊕
i=1

ηiC
[
θ1, θ2, θ3, θ4, θ5

])/( 100⊕
i=1

Q̃ ηiC
[
θ1, θ2, θ3, θ4, θ5

])
. (2.95)

Using eq. (3.72), the hypersurface equation is

Q̃(z) = 0 ⇔

z5
0 + z5

1 + z5
2 + z5

3 + z5
4 = − φ1

(
z0z1z2z3z4

)
− · · · ⇔

θ1 = − φ1θ2 − φ2θ3 − φ3η2 − φ4η3 − φ5η4,

(2.96)

and, hence, we can simply eliminate θ1. Therefore, forming the quotient is particularly

easy, and we obtain

(
C[z0, z1, z2, z3, z4]

/〈
Q̃(z)

〉)G
=

100⊕
i=1

ηiC[θ2, θ3, θ4, θ5]. (2.97)

We list the number N̂G
5` of G-invariant degree-5` polynomials on P4 as well as the number

of invariant polynomials after restricting to Q̃, NG
5`, in 2.2. Since we know the homoge-
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neous degrees of the primary and secondary invariants, θ and η respectively, it is a simple

combinatorial problem to list all NG
5` monomials in eq. (2.97) of fixed degree 5`. They then

form a basis for the sections on Q,

H0
(
Q,O

Q̃
(5`)

/
(Z5 × Z5)

)
= span

{
sα
}NG

5`−1

α=0

=

(
100⊕
i=1

ηiC[θ2, θ3, θ4, θ5]

)
5`

=

100⊕
i=1

ηiC[θ2, θ3, θ4, θ5]5`−deg ηi . (2.98)

2.3.5 Results

We have now computed an explicit basis of invariant sections of O
Q̃

(5`), which

can be identified with a basis of sections on the quotient manifold Q = Q̃
/

(Z5×Z5). This

is all we need to extend Donaldson’s algorithm to Q. Literally the only difference in the

computer program used in 2.1.4 is that now

• the degree of the polynomials must be k = 5`, ` ∈ Z>, and

• the sections are given in eq. (2.98).

Hence, one can compute the balanced metrics on Q. As ` → ∞, these will approach the

unique Calabi-Yau metric. We write σ5`(Q) for the error measure computed directly for

the balanced metrics on the non-simply connected threefold Q. Note that there is still

a 5-dimensional complex structure moduli space of such threefolds. However, as we have

seen in 2.4, the details of the complex structure essentially play no role in how fast the

balanced metrics converge to the Calabi-Yau metric. Therefore, as an example, in 2.5 we

plot σ5` for the quotient QF = Q̃F
/

(Z5 × Z5) of the Fermat quintic. Note that the error

measure tends to zero as `→∞, as it should.
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Figure 2.5: The error measure σ5`(QF ) on the non-simply connected threefold QF =

Q̃F
/

(Z5 × Z5). For each ` ∈ Z> we iterated the T-operator 10 times,
numerically integrating using Np = 1,000,000 points. Then we evaluated
σ5`(QF ) using 20,000 different test points. Note that all three plots show
the same data, but with different combinations of linear and logarithmic
axes.
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Comparison With the Covering Space

0.1
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N2 = # of entries in hαβ̄ ∈ MatN×N

σk(Q̃F )

σ̃5`(Q̃F )

Figure 2.6: The metric pulled back fromQF = Q̃F
/

(Z5×Z5) compared with the met-

ric computation on Q̃F . The error measures are σ̃5`(Q̃F ) and σk(Q̃F ),
respectively. On the left, we plot them by the degree of the homogeneous
polynomials. On the right, we plot them as a function of N2, the number
of sections squared. On QF , the number of sections is NG

5`; on Q̃F the
number of sections is Nk. The σ-axis is logarithmic.

We have now extended Donaldson’s algorithm so as to compute the successive

approximations to the Calabi-Yau metric directly on the quotient manifold Q. Clearly,

these metrics can be pulled back to Z5 × Z5 symmetric metrics on the covering space Q̃,

thus approximating the Calabi-Yau metric on Q̃. Let us denote by ω5` the balanced Kähler

form on Q computed at degree-5`, and by q∗ω5` its pull-back to Q̃. We define σ̃5`(Q̃) to
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be the error measure evaluated using the pull-back metric, that is,

σ̃5`

(
Q̃
)

=
1

VolCY

(
Q̃
) ∫

Q̃

∣∣∣∣∣∣1−
q∗ω3

5`

/
VolK

(
Q̃
)

Ω ∧ Ω̄
/

VolCY

(
Q̃
)
∣∣∣∣∣∣ dVolCY =

=
1

VolCY(Q)

∫
Q

∣∣∣∣∣∣1−
ω3

5`

/
VolK(Q)

Ω ∧ Ω̄
/

VolCY(Q)

∣∣∣∣∣∣dVolCY = σ5`(Q). (2.99)

Now recall that in 2.1 it was shown how to determine the Calabi-Yau metric on any

quintic threefold. This, of course, includes the Z5 × Z5 quintics Q̃ defined by eq. (3.72).

However, since most quintics do not admit a finite group action, the procedure specified

in 2.1 finds the Calabi-Yau metric using generic homogeneous polynomials. That is, it

finds an explicit polynomial basis for H0(Q̃,O
Q̃

(k)), computes the balanced metric and

determines the Calabi-Yau metric as the k → ∞ limit. When applied to our Z5 × Z5

quintics, this second method will also compute the unique Z5 × Z5 symmetric Calabi-Yau

metric. However, it does so as the limit of balanced metrics constructed from sections of

O
Q̃

(k) which do not share this symmetry, rather than from invariant sections of O
Q̃

(5`)

as above. That is, this second method does not exploit the Z5 × Z5 symmetry. The

associated error measure σk is evaluated using eq. (3.44) for Z5 × Z5-symmetric quintics.

It is of some interest to compare these two methods for calculating the Calabi-Yau metric

on Q̃. Specifically, in the left plot of 2.6 we compare the error measure σ̃5` to σk on the

Fermat quintic Q̃F . Interestingly, for fixed degrees k = 5` the pull-back metric is a worse

approximation to the Calabi-Yau metric on Q̃ than the metric computed on Q̃ without

taking the symmetry into account. The reason is that, in addition to the Z5×Z5 invariant

polynomials on Q̃, there are many more that transform with some character of Z5 × Z5.

These polynomials provide extra degrees of freedom at fixed degree 5`, which allow the
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balanced metric to be a better fit to the Calabi-Yau metric.

However, a more just comparison is by the amount of the numerical effort, that

is, the number (NG
5`)

2 and (Nk)
2, respectively, of entries in the hαβ̄ matrix. We plot σ̃5`

and σk as a function of N2 in 2.6. We see that, except for the two lowest-degree cases

5` = k = 5 and 5` = k = 10, the pull-back metric computation (that is, using invariant

sections) is more efficient.

2.4 Schoen Threefolds

2.4.1 As Complete Intersections

By definition, Schoen type Calabi-Yau threefolds are the fiber product of two dP9

surfaces, B1 and B2, fibered over P1. Recall that a dP9 surface is defined as a blow-up

of P2 at 9 points. In principle, these points can be “infinitesimally close”, that is, one of

the blow-up points lies within a previous blow-up, but we will only consider the generic

case where all 9 points are distinct. Moreover, we are going to restrict ourselves to the

case where “no Kodaira fibers collide”. In that case, the Hodge diamond of the Schoen

threefold X̃ is [4, 35, 42]

hp,q
(
X̃
)

= 1

0

0

1

0

19

19

0

0

19

19

0

1

0

0

1 . (2.100)
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These generic Schoen Calabi-Yau threefolds can be written as a complete intersection as

follow [12, 13, 36, 43]. First, consider the ambient variety P2×P1×P2 with coordinates

(
[x0 : x1 : x2], [t0 : t1], [y0 : y1 : y2]

)
∈ P2×P1×P2 . (2.101)

The Calabi-Yau threefold X̃ is then cut out as the zero-set of two equations of multi-degrees

(3, 1, 0) and (0, 1, 3), respectively. The two equations are of the form

P̃ (x, t, y) = t0P̃1

(
x0, x1, x2

)
+ t1P̃2

(
x0, x1, x2

)
= 0, (2.102a)

R̃(x, t, y) = t1R̃1

(
y0, y1, y2

)
+ t0R̃2

(
y0, y1, y2

)
= 0 (2.102b)

where P̃1, P̃2, R̃1, and R̃2 are cubic polynomials. The ambient space P2×P1×P2 is a toric

variety and X̃ is a toric complete intersection Calabi-Yau threefold [44, 45, 46].

2.4.2 Line Bundles and Sections

The first Chern classes of line bundles on X̃ form a

h1,1
(
X̃
)

= 19 (2.103)

dimensional lattice. Note, however, that most of them do not come from the ambient space

which has

h1,1
(
P2×P1×P2

)
= 3. (2.104)

In other words, most of the divisors D and their associated line bundles L(D) are not toric;

that is, they cannot be described by toric methods. We could embed X̃ in a much more
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complicated toric variety [45] where all divisors are toric. However, for now8 we will simply

ignore the non-toric divisors and restrict ourselves to line bundles on X̃ that are induced

from P2×P1×P2.

The line bundles on P2×P1×P2 are classified by their first Chern class

c1

(
OP2×P1×P2(a1, b, a2)

)
= (a1, b, a2) ∈ Z3 = H2

(
P2×P1×P2,Z

)
. (2.105)

Just as in the P4 case previously, their sections are homogeneous polynomials of the ho-

mogeneous coordinates. Now, however, there are three independent degrees, one for each

factor. That is, the sections of OP2×P1×P2(a1, b, a2) are homogeneous polynomials of

• degree a1 in x0, x1, x2,

• degree b in t0, t1,

• degree a2 in y0, y1, y2.

The number of such polynomials (that is, the dimension of the linear space of polynomials)

is counted by the Poincaré series

P
(
OP2×P1×P2 , (x, t, y)

)
=

∑
a1,b,a2

h0
(
P2×P1×P2,O(a1, b, a2)

)
xa1tbya2

=
1

(1− x)3

1

(1− t)2

1

(1− y)3
.

(2.106)

We now want to restrict the sections to the complete intersection X̃ ⊂ P2×P1×P2; that

8This will be partially justified in 3.5, where we investigate a certain Z3 × Z3-quotient of X̃. There, only
the toric line bundles will be relevant.
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is, find the image

H0
(
P2×P1×P2,O(a1, b, a2)

)
restrict // H0

(
X̃,O

X̃
(a1, b, a2)

)
// 0 (2.107)

for9 a1, b, a2 > 0. As discussed previously, this amounts to finding a basis for the quotient

space

H0
(
X̃,O

X̃
(a1, b, a2)

)
=
(
C
[
x0, x1, x2, t0, t1, y0, y1, y2

]/〈
P̃ , R̃

〉)
(a1,b,a2)

(2.108)

of degree (a1, b, a2). Note that this quotient by more than one polynomial is much more

difficult than the case where one quotients out a single polynomial, as we did for quintics

in 2.1. In general, this requires the technology of Gröbner bases [48]. Suffices to say that

we are in a very advantageous position here.

By a suitable coordinate change, we can assume that the t0y
3
0 term in R̃ is absent.

That is,

P̃ = t0x
3
0 + · · ·

R̃ = 0 · t0y3
0 + t0y

2
0y1 + · · · .

(2.109)

Then, for otherwise generic polynomials P̃ and R̃ and lexicographic monomial order

x0 ≺ y0 ≺ t0 ≺ x1 ≺ y1 ≺ t1 ≺ x2 ≺ y2, (2.110)

9Note that c1
(
OX̃(a1, b, a2)

)
∈ H2(X,Z) is in the interior of the Kähler cone if and only if a1, b, a2 > 0,

see [47].
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the two polynomials generating

〈
P̃ , R̃

〉
⊂ C[x0, x1, x2, t0, t1, y0, y1, y2] (2.111)

already form a Gröbner basis. This means that the quotient in eq. (2.108) can be imple-

mented simply by eliminating the leading monomials t0x
3
0 and t0y

2
0y1 in the polynomial

ring C[x0, x1, x2, t0, t1, y0, y1, y2].

2.4.3 The Calabi-Yau Volume Form

As in the case of a hypersurface, one can express the (3, 0)-form of the complete

intersection as a Griffiths residue. By definition, the zero loci P̃ = 0 and R̃ = 0 intersect

transversally, so one can encircle each in an independent transverse direction. The double

residue integral

Ω =

∮ ∮
d2 x dt d2 y

P̃ · R̃
(2.112)

is again independent of the chosen inhomogeneous coordinate chart. Hence, it defines a

holomorphic (3, 0)-form which must be the holomorphic volume form.

2.4.4 Generating Points

Since the defining Equations (2.102a), (2.102b) are at most cubic in the x and y

coordinates, there is a particularly nice way to pick points. This is a generalization of the

L∩ Q̃ method presented in 2.1.3 to generate points in generic quintics. In the present case,

select a specific P1×P1 in the ambient space, namely,

P1×{pt.} × P1 ⊂ P2×P1×P2 . (2.113)
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This can easily be done with an SU(3) × SU(2) × SU(3)-invariant probability density of

such configurations. The intersection

(
P1×{pt.} × P1

)
∩ X̃ = {9 points} (2.114)

consists of nine points. To compute the coordinates of the nine points, one needs to solve

two cubic equations, which can be done analytically10.

We still need the distribution of these “random” points. First, note that there

are three obvious (1, 1)-forms. These are the pull-backs

π∗1
(
ωP2

)
, π∗2

(
ωP1

)
, π∗3

(
ωP2

)
(2.115)

of the standard (SU(m+ 1) symmetric) Fubini-Study Kähler forms on Pm, where πi is the

projection on the i-th factor of the ambient space. However, here the SU(3)×SU(2)×SU(3)

symmetry of the ambient space is not enough to determine the distribution of points

uniquely.

In general, the question about the distribution of zeros was answered by Shifman

and Zelditch [49]. Let us quickly review the result. Let L be a line bundle on a complex

manifold Y and pick a basis s0, . . . , sN−1 of sections

span
{
s0, . . . , sN−1

}
= H0(Y,L). (2.116)

Moreover, let L be base-point free, that is, the sections do not have a common zero. In

10Recall that, to generate points on the quintic, we had to solve a quintic polynomial. This can only be
done numerically.
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other words,

ΦL : Y → PN−1, x 7→
[
s0(t) : s1(t) : · · · : sN−1(t)

]
(2.117)

is a well-defined map. The sections generate the N -dimensional vector space H0(Y,L)

which contains the unit sphere SH0(Y,L). In other words, if we define s0, . . . , sN−1 to be

an orthonormal basis, then SH0(Y,L) is the common SU(N)-orbit of the basis sections.

We take a random section s ∈ SH0(Y,L) to be uniformly distributed with respect to the

usual “round” measure, that is, SU(N)-uniformly distributed.

Finally, switch from each such section s to its zero locus Zs in Y , and consider

the expected distribution of the random zero loci. Then

Theorem 5 (Shifman, Zelditch). Under the above assumptions (in particular, that ΦL is

well-defined) the expected distribution of zero loci Zs is

〈
ZL

〉
=

1

N
Φ∗LωFS, (2.118)

where ωFS is the standard Fubini-Study Kähler form on PN−1.

Note that, in our case, the embedding X̃ ⊂ P2×P1×P2 is generated by the three

line bundles

H0
(
X̃,O

X̃
(1, 0, 0)

)
=span{x0, x1, x2} ⇒ ΦO

X̃
(1,0,0) : X̃ → P2,

H0
(
X̃,O

X̃
(0, 1, 0)

)
=span{t0, t1} ⇒ ΦO

X̃
(0,1,0) : X̃ → P1,

H0
(
X̃,O

X̃
(0, 0, 1)

)
=span{y0, y1, y2} ⇒ ΦO

X̃
(0,0,1) : X̃ → P2 .

(2.119)

Although none of the three Φ maps is an embedding, they are all well-defined. This is
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(a1, b, a2) (1, 1, 1) (2, 2, 2) (3, 3, 3) (4, 4, 4) (5, 5, 5) (6, 6, 6)

N̂(a1,b,a2) 18 108 400 1125 2646 5488

N(a1,b,a2) 18 108 343 801 1566 2728

Table 2.3: The number of degree (a1, b, a2)-homogeneous polynomials N̂(a1,b,a2) over

P2×P1×P2 and the number of remaining polynomials N(a1,b,a2) on X̃

after imposing the two equalities P̃ = 0 = R̃ defining the complete inter-
section.

sufficient for the theorem of Shifman and Zelditch. We point out that the Φ maps are

nothing but the restriction of the projections π to X̃ ⊂ P2×P1×P2,

ΦO
X̃

(1,0,0) = π1|X̃ , ΦO
X̃

(0,1,0) = π2|X̃ , ΦO
X̃

(0,0,1) = π3|X̃ . (2.120)

Hence, the expected distribution of a zero-loci of sections on X̃ is

〈
ZO

X̃
(1,0,0)

〉
∼ π∗1

(
ωP2

)∣∣
X̃
,
〈
ZO

X̃
(0,1,0)

〉
∼ π∗2

(
ωP1

)∣∣
X̃
,
〈
ZO

X̃
(0,0,1)

〉
∼ π∗3

(
ωP2

)∣∣
X̃
.

(2.121)

These are precisely the three (1, 1)-forms we introduced previously in eq. (2.115). There-

fore, if we independently pick the two P1 factors and the point in eq. (2.113), then the

distribution of simultaneous zero loci is

dA ∼ π∗1
(
ωP2

)
∧ π∗2

(
ωP1

)
∧ π∗3

(
ωP2

)∣∣∣
X̃
. (2.122)

In other words, the points generated by the above algorithm are randomly distributed with

respect to the auxiliary measure dA.
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2.4.5 Results

The new feature of the Schoen Calabi-Yau threefold, as opposed to the quintic,

is that one now has different directions in the Kähler moduli space. On quintic threefolds

there is only one Kähler modulus, which is just the overall volume. Now, however, there

is a 19 = h1,1(X̃) dimensional Kähler moduli space of which we parametrize 3 directions

by the toric line bundles O
X̃

(a1, b, a2). Note that, here as elsewhere in algebraic geometry,

one has to work with integral Kähler classes that are the first Chern classes of some line

bundle. This is not a real restriction, however, since any irrational slope direction in the

Kähler moduli space can be approximated by a rational slope. A line with rational slope

always intersects points in H2(X̃,Z).

By way of an example, choose the direction (1, 1, 1)Z> ⊂ H2(X̃,Z) in the Kähler

moduli space; that is, the line bundles of the form O
X̃

(k, k, k) for k ∈ Z, k > 0. We list

in 2.3 the number of sections in both P2×P1×P2 and in its restriction to the Schoen

manifold X̃. Note that they grow very fast with k, and quickly grow outside of the range

amenable to computation. However, the degree of accuracy of the metric on X̃ is essentially

determined by N2
(k,k,k), the number of metric parameters that we fit to approximate the

Calabi-Yau metric. Recall from the Hodge diamond eq.(2.100) that the complex structure

moduli space is 19 = h2,1(X̃)-dimensional. However, as in 2.4, the convergence of the

balanced metrics is essentially independent of the choice of complex structure. Hence, as

an example, we choose a specific Z3×Z3 symmetric Schoen threefold (λ1 = λ2 = 0, λ3 = 1)

defined in the next section. In 2.7, we plot the error measure σ(k,k,k) vs. k for this manifold

and find very fast convergence. Note how the k = 3 data point already approaches to

within 10% of the limit Np(= 106) > N2
(k,k,k)(= 117, 649), but still yields a quite small

64
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0.1

k=0 k=1 k=2 k=3 k=4 k=5

σ
(k
,k
,k

)

O
X̃

(k, k, k)

N(1,1,1) = 18, N2
(1,1,1) = 324

N(2,2,2) = 108, N2
(2,2,2) = 11,664

N(3,3,3) = 343, N2
(3,3,3) = 117,649

σ(k,k,k)

Figure 2.7: The error measure σ(k,k,k) for the metric on a Z3×Z3 Schoen threefold X̃.
We iterated the T-operator 5 times, numerically integrating using Np =
1,000,000 points. Finally, we integrated σ(k,k,k) using 10,000 points.

N(k,k,k) is the number of sections h0
(
X̃,OX̃(k, k, k)

)
.

65



value of σ(3,3,3) ≈ 4× 10−2.

2.5 The Z3 × Z3 Manifold

2.5.1 A Symmetric Schoen Threefold

For special complex structures, the Schoen Calabi-Yau threefold has a free Z3 × Z3

group action [43, 50], which we now describe. Recall that the Schoen threefolds can be

written as complete intersections in

(
[x0 : x1 : x2], [t0 : t1], [y0 : y1 : y2]

)
∈ P2×P1×P2, (2.123)

as discussed in 2.4. Let us start by defining the Z3 × Z3 group action on the ambient

space [35], where it is generated by (ω = e
2πi
3 )

γ1 :



[x0 : x1 : x2] 7→ [x0 : ωx1 : ω2x2]

[t0 : t1] 7→ [t0 : ωt1]

[y0 : y1 : y2] 7→ [y0 : ωy1 : ω2y2]

(2.124a)

and

γ2 :



[x0 : x1 : x2] 7→ [x1 : x2 : x0]

[t0 : t1] 7→ [t0 : t1] (no action)

[y0 : y1 : y2] 7→ [y1 : y2 : y0].

(2.124b)

The two generators commute up to phases on each of the two P2 factors and, hence, define

a Z3 × Z3 group action on the ambient space. Note that γ2 acts non-torically, that is, not
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by a phase rotation. In order to define a Z3 × Z3-symmetric Calabi-Yau threefold, we have

to ensure that the zero locus P̃ = 0 = R̃ is mapped to itself by the group action. For

that to be the case, one must restrict the polynomials P̃ and R̃ to have a special form.

It was shown in [35] that one need only constrain the cubic polynomials P̃1, P̃2, R̃1, R̃2

in eqns. (2.102a) and (2.102b). Specifically, the Z3 × Z3-symmetric Schoen Calabi-Yau

threefolds are defined by the simultaneous vanishing of the two polynomials

P̃ (x, t, y) = t0P̃1

(
x0, x1, x2

)
+ t1P̃2

(
x0, x1, x2

)
R̃(x, t, y) = t1R̃1

(
y0, y1, y2

)
+ t0R̃2

(
y0, y1, y2

)
,

(2.125)

where

P̃1

(
x0, x1, x2

)
= x3

0 + x3
1 + x3

2 + λ1x0x1x2

P̃2

(
x0, x1, x2

)
= λ3

(
x2

0x2 + x2
1x0 + x2

2x1

)
R̃1

(
y0, y1, y2

)
= y3

0 + y3
1 + y3

2 + λ2y0y1y2

R̃2

(
y0, y1, y2

)
= y2

0y1 + y2
1y2 + y2

2y0.

(2.126)

In the following, we will always take P̃ , R̃ to be of this form. Note that, up to coordinate

changes, the polynomials depend on 3 complex parameters λ1, λ2, and λ3.

One can easily check that P̃ is completely invariant under the Z3 × Z3 group

action, as one naively expects. However, R̃ is not quite invariant. Rather, it transforms

like a character of Z3 × Z3. That is,

P̃ (γ1x, γ1t, γ1y) =P̃ (x, t, y) P̃ (γ2x, γ2t, γ2y) =P̃ (x, t, y) (2.127)

R̃(γ1x, γ1t, γ1y) =e
2πi
3 R̃(x, t, y) R̃(γ2x, γ2t, γ2y) =R̃(x, t, y). (2.128)
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Nevertheless, the zero set P̃ = 0 = R̃ is invariant under the group action. Moreover, the

fixed point sets of γ1 and γ2 on the ambient space P2×P1×P2 are

{
[1:0:0], [0:1:0], [0:0:1]

}
×
{

[0:1], [1:0]
}
×
{

[1:0:0], [0:1:0], [0:0:1]
}
,{

[1:1:1], [1:ω:ω2], [1:ω2:ω]
}
× P1×

{
[1:1:1], [1:ω:ω2], [1:ω2:ω]

}
,

(2.129)

respectively. For generic11 λi, the Calabi-Yau threefold X̃ misses the Z3 × Z3-fixed points.

Therefore, the quotient

X = X̃
/(

Z3 × Z3

)
=
{
P̃ = 0 = R̃

}/(
Z3 × Z3

)
(2.130)

is a smooth Calabi-Yau threefold with fundamental group π1(X) = Z3 × Z3. Its Hodge

diamond is given by [35]

hp,q
(
X
)

= hp,q
(
X̃
/(

Z3 × Z3

))
= 1

0

0

1

0

3

3

0

0

3

3

0

1

0

0

1 . (2.131)

The complex structure moduli space is h2,1(X) = 3-dimensional and parametrized by λ1,

λ2, and λ3.

2.5.2 Invariant Polynomials

As discussed in 2.4.2, sections of line bundles on X̃ are homogeneous polynomials

in [x0 : x1 : x2], [t0 : t1] and [y0 : y1 : y2], modulo the ideal 〈P̃ , R̃〉. We now want to

11Note, however, that λ1 = λ2 = λ3 = 0 is singular. A non-singular choice of complex structure is, for
example, λ1 = λ2 = 0 and λ3 = 1.
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consider the quotient X = X̃
/

(Z3 × Z3). Therefore, we are only interested in polynomials

that are invariant under our group action. Let us start with the group action on the

homogeneous coordinates (x0, x1, x2, t0, t1, y0, y1, y2) of P2×P1×P2. The two generators

defined in eqns. (3.112a) and (3.112b) can be represented by the 8× 8 matrices

γ1 =



1 0 0 0 0 0 0 0

0 ω 0 0 0 0 0 0

0 0 ω2 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 ω 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 ω 0

0 0 0 0 0 0 0 ω2



, γ2 =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0



. (2.132)

One can easily check that [γ1, γ2] 6= 0 and, in fact, the γ1 and γ2 actions commute up to

multiplication by the central12 matrix

δ = diag(ω, ω, ω, 1, 1, ω, ω, ω). (2.133)

In other words, the homogeneous coordinates

span
{
x0, x1, x2, t0, t1, y0, y1, y2

}
= H0

(
P2×P1×P2,O(1, 0, 0)⊕ O(0, 1, 0)⊕ O(0, 0, 1)

)
(2.134)

12Commuting with γ1 and γ2.
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of P2×P1×P2 carry a representation of a Heisenberg group Γ, which is the central exten-

sion

0 −→ Z3 −→ Γ
χ1×χ2

−−−−−−−→ Z3 × Z3 −→ 0. (2.135)

Note that the map χ1 × χ2 is defined in terms of the two characters

χ1(γ1) =e
2πi
3 , χ1(γ2) =1, χ1(δ) =1,

χ2(γ1) =1, χ2(γ2) =e
2πi
3 , χ2(δ) =1

(2.136)

of Γ, which will be important in the following. As discussed previously for quintics, 2.3.2,

not all line bundles are Z3 × Z3-equivariant. However, computing the polynomials invari-

ant under the Heisenberg group Γ is sufficient for our purposes. The Γ-invariants are

automatically the Z3 × Z3-invariant sections of Z3 × Z3-equivariant line bundles. Their

number N̂Γ
(a1,b,a2) in each multi-degree (a1, b, a2) can be read off from the multi-variable

Molien series [51],

P
(
C[x0, x1, x2, t0, t1, y0, y1, y2]Γ, (x, t, y)

)
=
∑
a1,b,a2

N̂Γ
(a1,b,a2)x

a1tbya2

=
1

|Γ|
∑
γ∈Γ

1

det
(

1− γ diag(x, x, x, t, t, y, y, y)
)

= 1 + t+ t2 + 2t3 + 2x3 + 2y3 + 2x2y + 2xy2 + 2t4 + · · · . (2.137)

However, to construct the Hironaka decomposition it is sufficient to determine the number

of invariant linearly independent polynomials of total degree a1 +b+a2. The corresponding
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Poincaré series can be obtained from eq. (2.137) by setting x = t = y = τ ,

P
(
C[x0, x1, x2, t0, t1, y0, y1, y2]Γ, τ

)
=
∑
k

N̂Γ
k τ

k

=
1

|Γ|
∑
γ∈Γ

1

det(1− γτ)

= 1 + τ + τ2 + 10τ3 + 16τ4 + 22τ5 + 85τ6 + 142τ7 + 199τ8 + 488τ9 + · · · . (2.138)

Next, we need to choose 3 + 2 + 3 = 8 primary invariants. Similarly to the quintic case in

2.3.3, we choose our primary invariants to be of the lowest possible degree. It is not hard

to check that homogeneous polynomials

θ1 = t0 θ2 = t31 (2.139a)

θ3 = x0x1x2 θ4 = x3
0 + x3

1 + x3
2 (2.139b)

θ5 = y0y1y2 θ6 = y3
0 + y3

1 + y3
2 (2.139c)

θ7 = x3
0x

3
1 + x3

0x
3
2 + x3

1x
3
2 θ8 = y3

0y
3
1 + y3

0y
3
2 + y3

1y
3
2. (2.139d)

can be chosen as our primary invariants. They are, in fact, the choice with the lowest

degrees. Rewriting eq. (2.138) as a fraction with the denominator corresponding to our

choice of the primary invariants, we get

P
(
C[x0, x1, x2, t0, t1, y0, y1, y2]Γ, τ

)
=

1

(1− τ)(1− τ3)5(1− τ6)2

(
1 + 4τ3 + 6τ4 + 6τ5 + 26τ6 + 27τ7 + 27τ8 + 46τ9+

+ 42τ10 + 42τ11 + 26τ12 + 27τ13 + 27τ14 + 4τ15 + 6τ16 + 6τ17 + τ18
)
. (2.140)
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deg(η) # of η

0 1
3 4
4 6
5 6
6 26
7 27
8 27
9 46
10 42
11 42
12 26
13 27
14 27
15 4
16 6
17 6
18 1

deg(η) # of η

(0, 0, 0) 1
(0, 1, 0) 1
(0, 2, 0) 1
(3, 0, 0) 2
(0, 3, 0) 2
(0, 0, 3) 2
(2, 0, 1) 2
(1, 0, 2) 2
(0, 4, 0) 2
(3, 1, 0) 3
(1, 1, 2) 4
(2, 1, 1) 4
(0, 1, 3) 3

...
...

Table 2.4: Degrees of the 324 secondary invariants η1, . . . , η324. On the left, we list
the number of secondary invariants by total degree. On the right, we list
some of invariants by their three individual (a1, b, a2)-degrees.

Thus, the number of secondary invariants is

3562

|Γ|
= 324 = 1 + 4 + 6 + 6 + 26 + 27 + 27 + 46+

42 + 42 + 26 + 27 + 27 + 4 + 6 + 6 + 1.

(2.141)

Notice that the polynomials in eq. (2.139) are homogeneous of multi-degree (a1, b, a2).

Since the group action eq. (2.132) does not mix the degrees, it follows that the secondary

invariants will also be homogeneous polynomials. They are, moreover, separately homoge-

neous in the variables [x0 : x1 : x2], [t0 : t1], and [y0 : y1 : y2]. Here, we present the first

few secondary invariants

η1 = 1, (2.142a)
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η2 = x2y0y1 + x1y0y2 + x0y1y2, η3 = x2y0y1 + x1y0y2 + x0y1y2,

η4 = x0y
2
0 + x1y

2
1 + x2y

2
2, η5 = x1x2y0 + x0x2y1 + x0x1y2,

η6 = x2
0y0 + x2

1y1 + x2
2y2, η7 = t1y0y

2
1 + t1y

2
0y2 + t1y1y

2
2,

η8 = x1t1y0y1 + x0t1y0y2 + x2t1y1y2, η9 = x2t1y
2
0 + x0t1y

2
1 + x1t1y

2
2,

η10 = x0x2t1y0 + x0x1t1y1 + x1x2t1y2, η11 = x2
1t1y0 + x2

2t1y1 + x2
0t1y2,

η12 = x0x
2
1t1 + x2

0x2t1 + x1x
2
2t1, η13 = t21y

2
0y1 + t21y

2
1y2 + t21y0y

2
2,

η14 = x1t
2
1y

2
0 + x2t

2
1y

2
1 + x0t

2
1y

2
2, η15 = x0t

2
1y0y1 + x2t

2
1y0y2 + x1t

2
1y1y2,

...
....

(2.142b)

We list the number of secondary invariants for a given degree in 2.4. Thus we obtain the

following Hironaka decomposition for the ring of Γ-invariant polynomials,

C[x0, x1, x2, t0, t1, y0, y1, y2]Γ =
324⊕
i=1

ηiC[θ1, . . . , θ8]. (2.143)

Finally, we need to restrict the invariant ring eq. (2.143) to the complete intersection

threefold X̃. In other words, one must mod out the invariant ideal

〈
P̃ , R̃

〉Γ
=
〈
P̃ , R̃

〉
∩ C[x0, x1, x2, t0, t1, y0, y1, y2]Γ (2.144)

generated by the complete intersection equations P̃ = 0 = R̃.

Since P̃ is invariant, the ideal generated by P̃ is just the invariant ring multiplied

by P̃ , 〈
P̃
〉Γ

=
324⊕
i=1

P̃ ηiC[θ1, . . . , θ8]. (2.145)
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However, the ideal generated by R̃ is not as simple. From eqns. (2.128) and (2.136) we see

that R̃ transforms like the character χ1. Thus the elements of the invariant ring that are

divisible by R̃ must also be divisible by a χ2
1-transforming polynomial (like t21, for example).

One can generalize the Molien formula eq. (2.138) to count these “covariant” polynomials

transforming like χ2
1 [52], namely

P
(
C[x0, x1, x2, t0, t1, y0, y1, y2]χ

2
1 , τ
)

=
1

|Γ|
∑
γ∈Γ

χ1(γ)2

det(1− γχ1(γ)2τ)

= τ2 + 7τ3 + 13τ4 + 22τ5 + 79τ6 + 136τ7 + 199τ8 + 478τ9 . . . (2.146)

Choosing the same primary invariants as previously, eq.(2.139), one can rewrite eq.(2.146)

as

P
(
C[x0, x1, x2, t0, t1, y0, y1, y2]χ

2
1 , τ
)

=

1

(1− τ)(1− τ3)5(1− τ6)2

(
τ2 + 6τ3 + 6τ4 + 4τ5 + 27τ6 + 27τ7 + 26τ8 + 42τ9+

+ 42τ10 + 46τ11 + 27τ12 + 27τ13 + 26τ14 + 6τ15 + 6τ16 + 4τ17 + τ20
)
. (2.147)

Summing the coefficients in the numerator, we see that we again get the same number

(= 324) of secondary χ2
1-covariant generators. This is expected since we are using the same

primary invariants. The first few secondary χ2
1-covariants are:

η
χ2

1
1 = t21, (2.148a)
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η
χ2

1
2 = x2

0x2 + x0x
2
1 + x1x2

2, η
χ2

1
3 = y1y

2
2 + y0y

2
1 + y2

0y2,

η
χ2

1
4 = x2y1y2 + x0y0y2 + x1y0y1, η

χ2
1

5 = x2y
2
0 + x0y

2
1 + x1y

2
2,

η
χ2

1
6 = x2

0y2 + x2
2y1 + x2

1y0, η
χ2

1
7 = x0x1y1 + x0x2y0 + x1x2y2,

η
χ2

1
8 = y2

0y1 + y2
1y2 + y0y

2
2t1, η

χ2
1

9 = x0x1t1y0 + x0x2t1y2 + x1x2t1y1,

η
χ2

1
10 = x1t1y

2
0 + x2t1y

2
1 + x0t1y

2
2, η

χ2
1

11 = x2t1y0y2 + x0t1y0y1 + x1t1y1y2,

η
χ2

1
12 = x0x

2
2t1 + x2

0x1t1 + x2
1x2t1, η

χ2
1

13 = x2
1t1y2 + x2

2t1y0 + x2
0t1y1,

η
χ2

1
14 = x2t

2
1y

2
2 + x0t

2
1y

2
0 + x1t

2
1y

2
1, η

χ2
1

15 = x2t
2
1y0y1 + x0t

2
1y1y2 + x1t

2
1y0y2,

...
....

(2.148b)

Hence, the space of χ2
1-covariant polynomials, that is, transforming like χ2

1, is given by the

“equivariant Hironaka decomposition” [52] (compare with eq. (2.143))

C[x0, x1, x2, t0, t1, y0, y1, y2]χ
2
1 =

324⊕
i=1

η
χ2

1
i C[θ1, . . . , θ8]. (2.149)

To summarize, even though R̃ is not invariant, it generates an ideal which contains Γ-

invariant polynomials. Using the above generalization of the Hironaka decomposition, a

basis for these invariants is

〈
R̃
〉Γ

=

324⊕
i=1

R̃ η
χ2

1
i C [θ1, . . . , θ8] . (2.150)

2.5.3 Quotient Ring

By the results of the previous section, we know for any fixed multi-degree (a1, b, a2):
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(a1, b, a2) N̂Γ NΓ

(2,1,1) 4 4
(2,2,1) 6 6
(2,3,1) 8 8
(2,4,1) 10 10
(2,5,1) 12 12
(2,6,1) 14 14
(2,7,1) 16 16
(2,8,1) 18 18
(2,9,1) 20 20
(2,10,1) 22 22
(2,11,1) 24 24
(2,12,1) 26 26
(2,13,1) 28 28
(2,14,1) 30 30
(2,15,1) 32 32
(2,16,1) 34 34
(2,17,1) 36 36
(2,18,1) 38 38
(2,19,1) 40 40
(2,20,1) 42 42
(2,21,1) 44 44
(2,22,1) 46 46
(2,23,1) 48 48
(2,24,1) 50 50
(2,25,1) 52 52
(2,26,1) 54 54

(a1, b, a2) N̂Γ NΓ

(2,27,1) 56 56
(2,28,1) 58 58
(2,29,1) 60 60
(2,30,1) 62 62
(2,31,1) 64 64
(2,32,1) 66 66
(2,33,1) 68 68
(2,34,1) 70 70
(3,1,3) 23 20
(3,2,3) 34 29
(3,3,3) 46 38
(3,4,3) 57 47
(3,5,3) 68 56
(3,6,3) 80 65
(4,1,2) 20 18
(4,2,2) 30 26
(4,3,2) 40 34
(4,4,2) 50 42
(4,5,2) 60 50
(4,6,2) 70 58
(4,7,2) 80 66
(5,1,1) 14 12
(5,2,1) 21 17
(5,3,1) 28 22
(5,4,1) 35 27
(5,5,1) 42 32

(a1, b, a2) N̂Γ NΓ

(5,6,1) 49 37
(5,7,1) 56 42
(5,8,1) 63 47
(5,9,1) 70 52
(5,10,1) 77 57
(5,11,1) 84 62
(5,12,1) 91 67
(5,1,4) 70 53
(6,1,3) 63 48
(6,2,3) 94 66
(7,1,2) 48 38
(7,2,2) 72 52
(7,3,2) 96 66
(8,1,1) 30 23
(8,2,1) 45 31
(8,3,1) 60 39
(8,4,1) 75 47
(8,5,1) 90 55
(8,6,1) 105 63
(10,1,2) 88 64
(11,1,1) 52 37
(11,2,1) 78 48
(11,3,1) 104 59
(11,4,1) 130 70
(14,1,1) 80 54
(14,2,1) 120 68

Table 2.5: All homogeneous degrees leading to few (≤ 70) invariant sections NΓ =

NΓ
(a1,b,a2) on X̃. For comparison, we also list the number N̂Γ =

N̂Γ
(a1,b,a2) = dimC[~x,~t, ~y]Γ(a1,b,a2) of invariant polynomials before quoti-

enting out the relations generated by the complete intersection equations
P̃ = 0 = R̃.
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• A (finite) basis for the Γ-invariant polynomials

I = C
[
~x,~t, ~y

]Γ
(a1,b,a2)

. (2.151)

In particular, the polynomials are linearly independent of each other.

• Generators for the Γ-invariant ideal generated by the complete intersection eqns. (2.102a)

and (2.102b),

J =
〈
P̃ , R̃

〉Γ

(a1,b,a2)
=
〈
P̃
〉Γ

(a1,b,a2)
+
〈
R̃
〉Γ

(a1,b,a2)

=
〈
P̃ · C

[
~x,~t, ~y

]Γ
(a1−3,b−1,a2)

, R̃ · C
[
~x,~t, ~y

]χ2
2

(a1,b−1,a2−3)

〉
(a1,b,a2)

.

(2.152)

The generating polynomials of J are not automatically linearly independent.

It remains to find a basis for the quotient

(
C
[
~x,~t, ~y

]/〈
P̃ , R̃

〉)Γ

(a1,b,a2)
= C

[
~x,~t, ~y

]Γ
(a1,b,a2)

/〈
P̃ , R̃

〉Γ

(a1,b,a2)
= I/J, (2.153)

corresponding to the restriction of the invariant sections on P2×P1×P2 to the complete

intersection X̃. This is technically more difficult than the previous quotients, where we

were able to use Gröbner bases or pick suitable primary invariants to find the quotient.

Here, we will resort to a numerical computation of the quotient. To do this, note that the

ideal elements J are linear combinations of invariants I. Hence, thinking of I, J as column

vectors, there is a matrix

M ∈ Mat|J |×|I|(C) : MI = J. (2.154)
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The kernel of M is a basis for the quotient I/J . Of course, due to floating-point precision

limits, there are generally no exact null-vectors. However, the singular value decomposi-

tion [53] is a well-behaved numerical algorithm to compute an orthonormal basis for the

kernel. In 2.5 we list the dimension

NΓ
(a1,b,a2) = dimC

(
I/J

)
(2.155)

of the quotient space for various multi-degrees (a1, b, a2).

2.5.4 Results

We implemented Donaldson’s algorithm to compute the Calabi-Yau metric on the

threefold X = X̃
/

(Z3 × Z3). As discussed earlier, the convergence of the balanced metrics

is essentially independent of the complex structure. Hence, we will consider an explicit

example where λ1 = λ2 = 0, λ3 = 1. In 2.8 we demonstrate that the numerical metric

indeed approximates the Calabi-Yau metric, as it should.

In contrast to the quintic, where the single Kähler modulus is the overall volume,

the Schoen quotient threefold X has a h1,1(X) = 3-dimensional Kähler moduli space, see

eq. (2.131). The Kähler moduli are determined through the three independent degrees

(a1, b, a2). Note that the integer k = gcd(a1, b, a2) in 2.8 serves only to measure the

refinements along a ray in the Kähler moduli space. In order to properly compare the metric

convergence for different rays in the Kähler moduli space, we should consider (NΓ
(a1,b,a2))

2,

which is the number of free parameters in the ansatz for the Kähler potential and, hence,

measures the numerical complexity of the whole algorithm. We do this in 2.9, and see that

the accuracy is essentially determined by (NΓ
(a1,b,a2))

2, and depends only slightly on the
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k · (4, 1, 2)

k · (5, 1, 1)

Figure 2.8: The error measure σ(a1,b,a2)(X) for the metric on the Z3 × Z3-quotient
X, computed for different Kähler moduli but common complex structure
λ1 = λ2 = 0, λ3 = 1. Note that we chose k = gcd(a1, b, a2) as the inde-
pendent variable, and stopped increasing k as soon as NΓ exceeded 200.
In each case we iterated the T-operator 5 times, numerically integrating
using Np = 50,000 points. Then we evaluated σ(a1,b,a2)(X) using 5,000
different test points.
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Figure 2.9: The same data as in 2.8, but plotted as a function of the number of free
parameters (NΓ

(a1,b,a2))
2 in the ansatz for the Kähler potential.
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details of the Kähler moduli.

Finally, we note again that σ(a1,b,a2)(X) is also the error measure for the metric

pulled back to the covering space X̃ of X. It is useful to compare this result with the

convergence of the Calabi-Yau metric on X̃ obtained directly as discussed in 2.4. We have

numerically performed this comparison and obtained results similar to those found in the

quintic case, see 2.4. That is, when measured by the numerical effort involved, the Z3×Z3

symmetric method of this section is far more efficient.
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Chapter 3

Solving the Laplace Equation

3.1 Solving the Laplace Equation

Consider any d-dimensional, real manifold X. We will only be interested in closed

manifolds; that is, compact and without boundary. Given a Riemannian metric1 gµν on

X, the Laplace-Beltrami operator ∆ is defined as

∆ = − 1
√
g
∂µ(gµν

√
g∂ν) = −δ d= − ∗ d∗d , (3.1)

where g = det gµν . Since this acts on functions, ∆ is also called the scalar Laplace operator.

We will always consider the functions to be complex-valued. Since ∆ commutes with

complex conjugation, the scalar Laplacian acting on real functions would essentially be the

same.

An important question is to determine the corresponding eigenvalues λ and the

1We denote the real coordinate indices by µ, ν, . . . .
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eigenfunctions φ defined by

∆φ = λφ. (3.2)

As is well-known, the Laplace operator is hermitian. Due to the last equality in eq. (3.1),

all eigenvalues are real and non-negative. Our goal in this chapter is to find the eigenvalues

and eigenfunctions of the scalar Laplace operator on specific manifolds X with metrics gµν .

Since X is compact, the eigenvalues of the Laplace operator will be discrete.

Let us specify the n-th eigenvalue by λn. Symmetries of the underlying manifold will, in

general, cause λn to be degenerate; that is, to have multiple eigenfunctions. We denote by

µn the multiplicity at level n. Each eigenvalue depends on the total volume of the manifold.

To see this, consider a linear rescaling of distances; that is, let gµν 7→ ρ2gµν . Clearly,

Vol
(
ρ2gµν

)
= ρd Vol

(
gµν
)
, λn

(
ρ2gµν

)
= ρ−2λn

(
gµν
)
. (3.3)

Therefore, each eigenvalue scales as

λn ∼ Vol−
2
d . (3.4)

In the following, we will always normalize the volume to unity when computing eigenvalues.

Now consider the linear space of complex-valued functions on X and define an

inner product by

〈e|f〉 =

∫
X
ēf
√
g ddx, e, f ∈ C∞(X,C). (3.5)

Let {fa} be an arbitrary basis of the space of complex functions. For reasons to become

clear later on, we will primarily be working with bases that are not orthonormal with
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respect to the inner product eq. (3.5). Be that as it may, for any complex function e one

can always find a function ẽ so that

e =
∑
a

fa〈fa|ẽ〉. (3.6)

Given the basis of functions {fa}, the matrix elements ∆ab of the Laplace operator are

∆ab =
〈
fa
∣∣∆∣∣fb〉 =

∫
X
f̄a∆fb

√
gddx = −

∫
X
f̄a d∗ dfb =

∫
X

〈
dfa
∣∣dfb〉

=

∫
X
gµν
(
∂µf̄a

)(
∂νfb

) √
gddx.

(3.7)

Thus far, we have considered arbitrary d-dimensional, real manifolds X and any

Riemannian metric gµν . Henceforth, however, we restrict our attention to even dimensional

manifolds that admit a complex structure preserved by the metric. That is, we will assume

that X is a D = d
2 -dimensional complex manifold with an hermitian2 metric3 gī defined

by

gµν dxµ ⊗ dxν =
1

2
gī
(

dzi ⊗ dz ̄ + dz ̄ ⊗ dzi
)
. (3.8)

With X so restricted, it follows that

gµν∂µf̄a ∂νfb = 2gı̄j
(
∂ ı̄ f̄a ∂jfb + ∂j f̄a ∂ ı̄fb

)
(3.9)

and, hence,

∆ab = 2

∫
X
gı̄j
(
∂ ı̄ f̄a ∂jfb + ∂j f̄a ∂ ı̄fb

)
det(g)

(
i
2

)D D∏
r=1

dzr ∧ dz̄r̄. (3.10)

2In particular, Kähler metrics are hermitian.
3We denote the holomorphic and anti-holomorphic indices by i, ı̄, j, ̄, . . . .
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Using this and eq. (3.6) for each eigenfunction φn,i, eq. (3.2) becomes

∑
b

〈
fa
∣∣∆∣∣fb〉〈fb|φ̃n,i〉 =

∑
b

λn〈fa|fb〉〈fb|φ̃n,i〉, i = 1, . . . , µn. (3.11)

Thus, in the basis {fa}, solving the Laplace eigenvalue equation is equivalent to the gener-

alized eigenvalue problem for the infinite dimensional matrix ∆ab, where the matrix 〈fa|fb〉

indicates the “non-orthogonality” of our basis with respect to inner product eq. (3.5).

In general, very little known about the exact eigenvalues and eigenfunctions of

the scalar Laplace operator on a closed Riemannian manifold X, including those that are

complex manifolds with hermitian metrics. The universal exception are the zero modes,

where the multiplicity has a cohomological interpretation. Specifically, the solutions to

∆φ = 0 are precisely the locally constant functions and, hence, the multiplicity of the zero

eigenvalue is

µ0(X) = h0
(
X,C

)
=
∣∣π0(X)

∣∣, (3.12)

the number of connected components of X. Furthermore, on symmetric spaces G/H one

can completely determine the spectrum of the Laplace operator in terms of the represen-

tation theory of the Lie groups G and H. Indeed, in the next section we will discuss one

such example in detail. However, in general, and certainly for proper Calabi-Yau three-

folds, exact solutions of ∆φ = λφ are unknown and one must employ numerical methods to

determine the eigenvalues and eigenfunctions. The purpose of this work is to present such

a numerical method, and to use it to determine the spectrum of ∆ on physically relevant

complex manifolds. Loosely speaking, the algorithm is as follows.

First, we specify the complex manifold X of interest as well as an explicit her-
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mitian metric. For Kähler manifolds, the Fubini-Study metric can always be constructed.

However, this metric is never Ricci-flat. To calculate the Ricci-flat Calabi-Yau metric, one

can use the algorithm presented in [24, 26] and extended in [54]. This allows a numerical

computation of the Calabi-Yau metric to any desired accuracy. Giving the explicit metric

completely determines the Laplace operator ∆. Having done that, we specify a countably

infinite set {fa} that spans the space of complex functions. One can now calculate any

matrix element ∆ab = 〈fa|∆|fb〉 and coefficient 〈fa|fb〉 using the scalar product specified

in eq. (3.5) and evaluated using numerical integration over X. As mentioned above, the

most convenient basis of functions {fa} will not be orthonormal. Clearly, calculating the

infinite dimensional matrices ∆ab and 〈fa|fb〉, let alone solving for the infinite number of

eigenvalues and eigenfunctions, is not possible. Instead, we greatly simplify the problem by

choosing a finite subset of slowly-varying functions as an approximate basis. For simplicity

of notation, let us take {fa|a = 1, . . . , k} to be our approximating basis. The k×k matrices

(∆ab)1≤a,b≤k and 〈fa|fb〉1≤a,b≤k are then finite dimensional and one can numerically solve

eq. (3.11) for the approximate eigenvalues and eigenfunctions. It is important to note that

this procedure generically violates any underlying symmetries of the manifold and, hence,

each eigenvalue will be non-degenerate. Finally, we successively improve the accuracy of

the approximation in two ways: 1) for fixed k the numerical integration of the matrix ele-

ments is improved by summing over more points and 2) we increase the dimension k of the

truncated space of functions. In the limit where both the numerical integration becomes

exact and where k → ∞, the approximate eigenvalues λn and eigenfunctions φn converge

to the exact eigenvalues λ̂m and eigenfunctions φm,i with multiplicity µm. Inspired by our

work on Calabi-Yau threefolds, this algorithm to compute the spectrum of the Laplacian
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was recently applied to elliptic curves in [55].

3.2 The Spectrum of ∆ on P3

In this section, we use our numerical method to compute the eigenvalues and

eigenfunctions of ∆ on the complex projective threefold

P3 = S7
/
U(1) = SU(4)

/
S
(
U(3)× U(1)

)
(3.13)

with a Kähler metric proportional to the Fubini-Study metric, rescaled so that the total

volume is unity. As mentioned above, since this is a symmetric space of the form G/H, the

equation ∆φ = λφ can be solved analytically. The results were presented in [56]. Therefore,

although P3 is not a phenomenologically realistic string vacuum, it is an instructive first

example since we can check our numerical algorithm against the exact eigenvalues and

eigenfunctions. Note that, in this case, the metric is known analytically and does not need

to be determined numerically.

3.2.1 Analytic Results

Let us begin by reviewing the known analytic results [56]. The complete set of

eigenvalues of ∆ on P3 were found to be [56]

λ̂m =
4π
3
√

6
m(m+ 3), m = 0, 1, 2, . . . , (3.14)

87



where we determine the numerical coefficient, corresponding to our volume normalization,

in B. Furthermore, it was shown in [56] that the multiplicity of the m-th eigenvalue is

µm =

(
m+ 3

m

)2

−
(
m+ 2

m− 1

)2

=
1

12
(m+ 1)2(m+ 2)2(2m+ 3). (3.15)

This result for the multiplicity has a straightforward interpretation. As is evident from

the description of P3 in eq. (3.13), one can define an SU(4) action on our projective space.

Thus the eigenstates of the Laplace operator eq. (3.2) carry representations of SU(4). In

general, any representation of SU(4) is characterized by a three dimensional weight lattice.

In particular, for each irreducible representation there exists a highest weight

w = m1w1 +m2w2 +m3w3, (3.16)

where w1, w2, and w3 are the fundamental weights and m1,m2,m3 ∈ Z≥0. Starting with

the highest weight, one can generate all the states of the irreducible representation. It turns

out that multiplicity eq. (3.15) is precisely the dimension of the irreducible representation

of SU(4) generated by the highest weight m(w1 + w3) = (m, 0,m). Hence, the eigenspace

associated with the m-th eigenvalue λ̂m carries the irreducible representation (m, 0,m) of

SU(4) for each non-negative integer m. For convenience, we list the low-lying eigenvalues

and their corresponding multiplicities in 3.1.

The eigenfunctions of ∆ on P3 = S7
/
U(1) are the U(1)-invariant spherical har-

monics on S7. In terms of homogeneous coordinates [z0 : z1 : z2 : z3] on P3, the eigenfunc-
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m µm λ̂m

0 1 0

1 15 16π
3√6
' 27.662

2 84 40π
3√6
' 69.155

3 300 72π
3√6
' 124.48

4 825 112π
3√6
' 193.64

5 1911 160π
3√6
' 276.62

6 3920 216π
3√6
' 373.44

7 7344 280π
3√6
' 484.09

Table 3.1: Eigenvalues of ∆ on P3. Each eigenvalue is listed with its multiplicity.

tions can be realized as finite linear combinations of functions of the form4

(
degree kφ monomial

)(
degree kφ monomial

)
(
|z0|2 + |z1|2 + |z2|2 + |z3|2

)kφ . (3.17)

One can show this as follows. Let 4 and 4 be the fundamental representations of SU(4).

Algebraically, one can show that

Symkφ 4⊗ Symkφ 4 =
⊕kφ

m=0
(m, 0,m), (3.18)

where (m, 0,m) are the irreducible representations of SU(4) defined above. Now note that

C[~z]kφ , the complex linear space of degree-kφ homogeneous polynomials in z0, z1, z2, z3,

naturally carries the Symkφ 4 reducible representation of SU(4). Similarly, C[~̄z]kφ carries

4We label the degree of the monomials here by kφ to distinguish it from the degree kh of polynomials in
Donaldson’s algorithm.
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the Symkφ 4 representation. Defining

Fkφ =
C[z0, z1, z2, z3]kφ ⊗ C[z̄0, z̄1, z̄2, z̄3]kφ(∑3

j=0 |zj |2
)kφ (3.19)

to be the space of functions spanned by the degree kφ monomials, then it follows from

eq. (3.18) that one must have the decomposition

Fkφ =

kφ⊕
m=0

span
{
φm,1, . . . , φm,µm

}
, (3.20)

where µm = dim(m, 0,m). Note the importance of the SU(4)-invariant denominator, which

ensures that the whole fraction is of homogeneous degree zero, that is, a function on P3.

To illustrate this decomposition, first consider the trivial case where kφ = 0.

Noting that µ0 = 1, eq. (3.20) yields

φ0,1 = 1, (3.21)

corresponding to the trivial representation 1 of SU(4) and the lowest eigenvalue λ0 = 0.

Now, let kφ = 1. In this case µ0 = 1 and µ1 = 15. It follows from eq. (3.20) that there

must exist a basis of F1 composed of the eigenfunctions of ∆ in the 1 and 15 irreducible

representations of SU(4) respectively. This is indeed the case. We find that one such basis

choice is

φ0,1 =
|z0|2 + |z1|2 + |z2|2 + |z3|2∑3

j=0 |zj |2
= 1, (3.22)
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corresponding to the lowest eigenvalue λ0 = 0, and

φ1,1 = z0z̄1

/∑3
j=0 |zj |2 φ1,2 = z1z̄0

/∑3
j=0 |zj |2

φ1,3 = z0z̄2

/∑3
j=0 |zj |2 φ1,4 = z2z̄0

/∑3
j=0 |zj |2

φ1,5 = z0z̄3

/∑3
j=0 |zj |2 φ1,6 = z3z̄0

/∑3
j=0 |zj |2

φ1,7 = z1z̄2

/∑3
j=0 |zj |2 φ1,8 = z2z̄1

/∑3
j=0 |zj |2

φ1,9 = z1z̄3

/∑3
j=0 |zj |2 φ1,10 = z3z̄1

/∑3
j=0 |zj |2

φ1,11 = z2z̄3

/∑3
j=0 |zj |2 φ1,12 = z3z̄2

/∑3
j=0 |zj |2

φ1,13 =
(
z1z̄1 − z0z̄0

)/∑3
j=0 |zj |2

φ1,14 =
(
z2z̄2 − z0z̄0

)/∑3
j=0 |zj |2

φ1,15 =
(
z3z̄3 − z0z̄0

)/∑3
j=0 |zj |2 ,

(3.23)

corresponding to the first non-trivial eigenvalue λ1 = 16π
3√6

. Note that we recover the

constant eigenfunction for kφ = 0 through the cancellation of the numerator in eq. (3.22).

This pattern, where one recovers all the lower eigenmodes through the factorization of

the numerator in each representation by an appropriate power of
∑3

j=0 |zj |2, continues for

arbitrary kφ. In other words, there is a sequence of inclusions

{1} = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ C∞
(
P3,C

)
. (3.24)

Note that

dimFkφ =

(
kφ + 3

kφ

)2

, (3.25)

which, together with eq. (3.18), explains the multiplicities given in eq. (3.15).
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Although a basis of Fkφ composed of eigenfunctions of ∆ would be the most

natural, there is no need to go through the exercise of decomposing the space into SU(4)-

irreducible representations. For numerical calculations, it is simpler to use the equivalent

basis

Fkφ = span
{
fa
∣∣ a = 0, . . . ,dimFkφ − 1

}
= span

(degree kφ monomial
)(

degree kφ monomial
)/( 3∑

j=0

|zj |2
)kφ

(3.26)

for any finite value of kφ, even though these functions are generically not themselves eigen-

functions of ∆. In the limit where kφ →∞, the basis eq. (3.26) spans the complete space

of eigenfunctions.

3.2.2 Numerical Results

Following the algorithm presented at the end of the 3.1, we now numerically

solve the eigenvalue problem for the scalar Laplace operator ∆ on P3. Unlike more phe-

nomenologically interesting Calabi-Yau threefolds, where one must numerically compute

the Kähler metric using Donaldson’s method [24, 26, 54], on P3 the Kähler potential is

given by eq. (2.13) and, hence, the metric and ∆ are known explicitly. This eliminates the

need for the first few steps of our algorithm, greatly simplifying the calculations in this

section. Furthermore, the SU(4) action on the eigenfunctions allows us to identify a com-

plete basis for the space of complex functions in terms of monomials of the form eq. (3.17).

Since we know the exact eigenvalues and eigenfunctions on P3, this is an excellent venue

for checking the numerical accuracy of the remaining steps in our algorithm as well as the

correctness of our implementation.
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Given the metric, ∆ and the complete basis of functions, the next step in our

algorithm is to specify an approximating basis for the linear space of complex functions.

This is easily accomplished by restricting to

Fkφ = span
{
fa

∣∣∣ a = 0, . . . ,
(kφ+3
kφ

)2
− 1
}
, (3.27)

see eq. (3.26), for any finite value of kφ. Next, we need to specify the volume measure in

the integrals required to evaluate the matrix elements 〈fa|∆|fb〉 and 〈fa|fb〉. Each matrix

element requires one integral over P3, as in eq. (3.7). The volume form is completely

determined by the metric to be

dVolK =
1

3!
ω3, (3.28)

where ω is the Kähler (1, 1)-form given by the Kähler potential eq. (2.13). Although

P3 is simple enough to employ more elaborate techniques of integration, we will use the

same numerical integration algorithm as with Calabi-Yau threefolds later on. That is, we

approximate the integral by summing over nφ random points,

1

nφ

nφ∑
i=1

f(pi) −→
∫
f dVol, (3.29)

where f is an arbitrary function on P3. The integration measure dVol in eq. (3.29) is

determined by the distribution of points. In other words, the random distribution of

points must be chosen carefully in order to approximate the integral with our desired

volume form dVolK . However, this can easily be done: simply pick the points in an SU(4)-

uniform distribution. The corresponding integral measure is (up to overall scale) the unique

SU(4)-invariant volume form, the Fubini-Study volume form. The normalization is fixed
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by our convention that VolK(P3) = 1.

The process of numerically evaluating integrals by summing over a finite number

nφ of points has one straightforward consequence. As discussed above, in the analytic

solution the m-th eigenvalue λ̂m is degenerate with multiplicity µm given in eq. (3.15). The

reason for the degeneracy is that the m-th eigenspace carries the (m, 0,m) highest weight

representation of SU(4). However, even though the nφ points have an SU(4)-uniform

distribution, the simple fact that they are finite explicitly breaks the SU(4) symmetry.

The consequence of this is that the degeneracy of each eigenvalue is completely broken. It

follows that in the numerical calculation, instead of one eigenvalue λ̂m with multiplicity

µm, one will find µm non-degenerate eigenvalues λn. Only in the limit that nφ → ∞ will

these converge to a single degenerate eigenvalue as

λ0 = λ0, . . . , λµ0−1 → λ̂0 = 0,

λ1, . . . , λ15 = λµ0 , . . . , λµ0+µ1−1 → λ̂1 = 16π
3√6
,

λ16, . . . , λ99 = λµ0+µ1 , . . . , λµ0+µ1+µ2−1 → λ̂2 = 40π
3√6
,

...

(3.30)

We are now ready to numerically compute the finite basis approximation to the

Laplace operator 〈fa|∆|fb〉 and the coefficient matrix 〈fa|fb〉 for any fixed values of kφ and

nφ. The coefficients do not form the unit matrix, indicating that the approximating basis

eq. (3.26) of Fkφ is not orthonormal. Even though one could orthonormalize the basis, this

would be numerically unsound and it is easier to directly solve the generalized eigenvalue

problem eq. (3.11). We implemented this algorithm in C++. In practice, the most time-

consuming part is the evaluation of the numerical integrals for the matrix elements of the
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Figure 3.1: Spectrum of the scalar Laplacian on P3 with the rescaled Fubini-Study
metric. Here we fix the space of functions by choosing degree kφ = 3,
and evaluate the Laplace operator at a varying number of points nφ.

Laplace operator. We perform this step in parallel on a 10-node dual Opteron cluster, using

MPI [57] for communication. Finally, we use LAPACK [53] to compute the eigenvalues

and eigenvectors. Note that the matrix eigenvectors are the coefficients 〈fa|φ̃〉 and, hence,

the corresponding eigenfunction is

φ =

dimFkφ−1∑
a=0

fa〈fa|φ̃〉. (3.31)

We present our results in two ways. First fix kφ, thus restricting the total number
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of non-degenerate eigenvalues λn to dimFkφ . These eigenvalues are then plotted against

the number of points nφ that we use to evaluate an integral. For smaller values of nφ,

the eigenvalues are fairly spread out. However, as nφ is increased the eigenvalues break

into distinct groups, each of which rapidly coalesces toward a unique value. One can then

compare the limiting value and multiplicity of each group against the exact analytic result.

We find perfect agreement. To be concrete, let us present the numerical results for the

case kφ = 3. We plot these results in 3.1. As nφ is increased from 10,000 to 1,000,000,

the dimF3 = 400 eigenvalues λn cluster into 4 distinct groups with multiplicity 1, 15,

84 and 300. These clusters approach the theoretical values of the first four eigenvalues

respectively, as expected. That is, the numerically calculated eigenvalues condense to the

analytic results for the eigenvalues and multiplicities listed in 3.1 on page 89. At any nφ,

the eigenfunction φn associated with each λn is evaluated as a sum over the basis functions

{fa|a = 0, . . . , 399}. We do not find it enlightening to present the numerical coefficients.

The second way to present our numerical results is to fix nφ and study the de-

pendence of the eigenvalues on kφ. As was discussed in 3.2.1, since the eigenfunctions of

the Laplace operator are linear combinations of the elements of our basis, the accuracy of

λn should not depend on kφ. However, increasing kφ does add higher-frequency functions

to the approximating space of functions. More explicitly, going from kφ to kφ+1 will add

an extra µkφ+1
eigenvalues to the numerical spectrum, corresponding to the dimension of

the (kφ+1, 0, kφ+1) irreducible representation of SU(4). This is exactly the behavior that

we observe in 3.2.
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Figure 3.2: Spectrum of the scalar Laplacian on P3 with the rescaled Fubini-Study
metric. Here we evaluate the spectrum of the Laplace operator as a
function of kφ, while keeping the number of points fixed at nφ = 100,000.
Note that kφ determines the dimension of the matrix approximation to
the Laplace operator.

3.2.3 Asymptotic Behaviour

It is of interest to compare the asymptotic behaviour of the numerical solution to

the theoretical prediction of Weyl’s formula, which determines the asymptotic growth of

the spectrum of the scalar Laplace operator. Specifically, it asserts that on a Riemannian

manifold X of real dimension d, the eigenvalues grow as λn ∼ n
2
d for large n. Here it is

important to keep track of multiplicities by including the degenerate eigenvalue multiple

times in the sequence {λn}, as we do in our numerical calculations. The precise statement
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of Weyl’s formula is then that

lim
n→∞

λ
d/2
n

n
=

(4π)
d
2 Γ
(
d
2 + 1

)
Vol(X)

. (3.32)

Applying this to P3, which has d = 6 and the volume scaled to VolK(P3) = 1, we find that

lim
n→∞

λ3
n

n
= 384π3. (3.33)

In 3.3 we choose kφ = 3 and plot λ3
n
n as a function of n for the numerical values of λn,

as well as for the exact values listed in 3.1. The numerical results are presented for six

different values of nφ. For each value of nφ, as well as for the exact result, the λ3
n
n break

into three groups, corresponding to the first three massive levels with multiplicities 15, 84,

and 300, respectively. Note that, as nφ gets larger, the numerical results converge to the

exact result. That is, each segment approaches a curve of the form const.
n . Furthermore,

as the number of eigenvalues increase, the end-points of the curves asymptote toward the

Weyl limit 384π3.

3.3 Quintic Calabi-Yau Threefolds

Quintics are Calabi-Yau threefolds Q̃ ⊂ P4. Denote the usual homogeneous coor-

dinates on P4 by z = [z0 : z1 : z2 : z3 : z4]. A hypersurface in P4 is Calabi-Yau if and only

if it is the zero locus of a degree-5 homogeneous polynomial

Q̃(z) =
∑

n0+n1+n2+n3+n4=5

c(n0,n1,n2,n3,n4)z
n0
0 zn1

1 zn2
2 zn3

3 zn4
4 . (3.34)
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Figure 3.3: Check of Weyl’s formula for the spectrum of the scalar Laplacian on P3

with the rescaled Fubini-Study metric. We fix the space of functions by

taking kφ = 3 and evaluate
λ3
n

n as a function of n at a varying number
of points nφ. Note that the data used for the eigenvalues is the same as
for kφ = 3 in 3.1.
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By the usual abuse of notation, we denote both the defining polynomial Q̃(z) and the

corresponding hypersurface {Q̃(z) = 0} ⊂ P4 by Q̃. There are
(

5+4−1
4

)
= 126 degree-5

monomials, leading to 126 coefficients c(n0,n1,n2,n3,n4) ∈ C. These are not all independent

complex structure parameters, since the linear GL(5,C)-action on the five homogeneous

coordinates is simply a choice of coordinates. Hence, the number of complex structure

moduli of a generic quintic Q̃ is 126− 25 = 101.

A natural choice of metric on P4 is the Fubini-Study metric gī = ∂i∂̄̄KFS, where

KFS =
1

π
ln

4∑
i=0

ziz̄ı̄ . (3.35)

This induces a metric on the hypersurface Q̃, whose Kähler potential is simply the restric-

tion. Unfortunately, the restriction of the Fubini-Study metric to the quintic is far from

Ricci-flat. Recently, however, Donaldson [24] presented an algorithm for numerically ap-

proximating Calabi-Yau metrics to any desired accuracy. To do this in the quintic context,

one takes a suitable generalization, that is, one containing many more free parameters, of

the Fubini-Study metric. The parameters are then numerically adjusted so as to approach

the Calabi-Yau metric.

Explicitly, Donaldson’s algorithm is the following. Pick a basis for the quotient

C [z0, . . . , z4]k

/〈
Q̃(z)

〉
(3.36)

of the degree-k polynomials on P4 modulo the hypersurface equation. Let us denote this
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basis by sα, α = 0, . . . , N(k)− 1 where

N(k) =


(

5+k−1
k

)
0 ≤ k < 5

(
5+k−1
k

)
−
(
k−1
k−5

)
k ≥ 5.

(3.37)

For any given quintic polynomial Q̃(z) and degree k, computing an explicit polynomial

basis {sα} is straightforward. Now, make the following ansatz

Kh,k =
1

kπ
ln

N(k)−1∑
α,β̄=0

hαβ̄sαs̄β̄ (3.38)

for the Kähler potential. The hermitian N(k)×N(k)-matrix hαβ̄ parametrizes the metric

on Q̃ and is chosen to be the unique fixed point of the Donaldson T-operator

T (h)αβ̄ =
N(k)

VolCY

(
Q̃
) ∫

Q̃

sαs̄β̄∑
γδ̄ h

γδ̄sγ s̄δ̄
dVolCY, (3.39)

where

dVolCY = Ω ∧ Ω̄ (3.40)

and Ω is the holomorphic volume form. The metric determined by the fixed point of the

T-operator is called “balanced”. Hence, we obtain for each integer k ≥ 1 the balanced

metric

g
(k)
ī =

1

kπ
∂i∂̄̄ ln

N(k)−1∑
α,β̄=0

hαβ̄sαs̄β̄. (3.41)

Note that they are formally defined on P4 but restrict directly to Q̃, by construction. One
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can show [28] that this sequence

g
(k)
ī

k→∞
−−−−→ gCY

ī (3.42)

of balanced metrics converges to the Calabi-Yau metric on Q̃.

It is important to have a measure of how closely the balanced metric g
(k)
ī at a

given value of k approximates the exact Calabi-Yau metric gCY
ī . One way to do this is the

following. Let g
(k)
ī be a balanced metric, ωk the associated (1, 1)-form and denote by

VolK
(
Q̃, k

)
=

∫
Q̃

ω3
k

3!
, VolCY

(
Q̃
)

=

∫
Q̃

Ω ∧ Ω̄ (3.43)

the volume of Q̃ evaluated with respect to ωk and the holomorphic volume form Ω respec-

tively. Now note that the integral

σk
(
Q̃
)

=
1

VolCY

(
Q̃
) ∫

Q̃

∣∣∣∣∣∣1−
ω3
k

3!

/
VolK

(
Q̃, k

)
Ω ∧ Ω̄

/
VolCY

(
Q̃
)
∣∣∣∣∣∣ dVolCY (3.44)

must vanish as ωk approaches the Calabi-Yau Kähler form. That is

σk
k→∞−→ 0. (3.45)

Following [26], we will use σk as the error measure for how far balanced metric g
(k)
ī is from

being Calabi-Yau. Finally, to implement our volume normalization we will always scale

the balanced metric so that

VolK
(
Q̃, k

)
= 1 (3.46)
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at each value of k.

3.3.1 Non-Symmetric Quintic

In this subsection, we will pick random5 coefficients c(n0,n1,n2,n3,n4) for the 126

different quintic monomials in the 5 homogeneous coordinates. An explicit example, which

we use for the analysis in this section, is given by

Q̃(z) = (−0.319235 + 0.709687i)z5
0 + (−0.327948 + 0.811936i)z4

0z1

+ (0.242297 + 0.219818i)z4
0z2 + · · ·+ (−0.265416 + 0.122292i)z5

4 . (3.47)

We refer to this as the “random quintic”. Of course, any other random choice of coefficients

would lead to similar conclusions. The polynomial eq. (3.47) completely fixes the complex

structure. Furthermore, the single Kähler modulus determines the overall volume, which

we set to unity.

Using Donaldson’s algorithm [24, 26, 54] which we outlined above, one can com-

pute an approximation to the Calabi-Yau metric on the quintic defined by eq. (3.47). The

accuracy of this approximation is determined by

• The degree k ∈ Z≥0 of the homogeneous polynomials used in the ansatz eq. (3.38) for

the Kähler potential. To distinguish this degree from the one in the approximation

to the Laplace operator, we denote them from now on by kh and kφ, respectively. In

this section, we will use

kh = 8. (3.48)

5To be precise, we pick uniformly distributed random numbers on the unit disk {z ∈ C : |z| ≤ 1}.
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Note that the choice of degree kh determines the number of parameters

hαβ̄ ∈ Mat
(
N(kh)×N(kh),C

)
(3.49)

in the ansatz for the Kähler potential, eq. (3.38). This is why kh is essentially limited

by the available memory. We choose kh = 8 because it gives a good approximation

to the Calabi-Yau metric, see below, without using a significant amount of computer

memory (≈ 7 MiB).

• The number of points used to numerically integrate within Donaldson’s T-operator [26].

To distinguish this number from the number of points used to evaluate the Laplacian,

we denote them by nφ and nh respectively. As argued in [54], to obtain a good ap-

proximation to the Ricci-flat metric one should choose nh � N(kh)2, where N(kh) is

the number of degree-kh homogeneous monomials in the 5 homogeneous coordinates

modulo the Q̃(z) = 0 constraint, see eq. (3.37). In our computation, we will always

take

nh = 10 ·N(kh)2 + 50,000. (3.50)

This rather arbitrary number is chosen for the following reasons. First, the leading

term assures that nh � N(kh)2 by an order of magnitude and, second, the addition

of 50,000 points guarantees that the integrals are well-approximated even for small

values of kh. It follows from eq. (3.37) that for kh = 8 we will use

nh = 2,166,000 (3.51)

points in evaluating the T-operator.
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Using the Donaldson algorithm with kh and nh given by eqns. (3.48) and (3.51) respectively,

one can now compute a good approximation to the Calabi-Yau metric in a reasonable

amount of time6. The expression for the metric itself is given as a sum over monomials on

Q̃ of degree kh = 8 with numerically generated complex coefficients. It is not enlightening

to present it here. However, it is useful to compute the error measure defined in eq. (3.44)

for this metric. We find that

σ8 ≈ 5× 10−2, (3.52)

meaning that, on average, the approximate volume form
ω3

8
3! and the exact Calabi-Yau

volume form Ω∧Ω̄ agree to about 5%. Finally, having found an approximation to the Ricci-

flat metric, one can insert it into eq. (3.1) to determine the form of the scalar Laplacian.

We can now compute the spectrum of the scalar Laplace operator as discussed

in the previous section. First, one must specify a finite-dimensional approximation to the

space of complex-valued functions on Q̃. For any finite value of kφ, we choose

Fkφ = span

{
sαs̄β̄(∑4
i=0 |zi|2

)kφ
∣∣∣∣∣ α, β̄ = 0, . . . , N(kφ)− 1

}
, (3.53)

where {sα|α = 0, . . . , N(kφ)− 1} are a basis for the homogeneous polynomials modulo the

hypersurface constraint

span{sα} = C [z0, . . . , z4]kφ

/〈
Q̃(z)

〉
. (3.54)

Such a basis was already determined during the Donaldson algorithm for the metric, the

only difference being that now the degree is kφ instead of kh. The counting function N(kφ)

6That is, within a few hours of “wall” time.
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is given by eq. (3.37). Clearly,

dimFkφ = N(kφ)2. (3.55)

Computing the matrix elements of the Laplace operator requires another numer-

ical integration which is completely independent of the one in the T-operator. We denote

the number of points in the matrix element integration by nφ, as we did in the previous

section. We first present the resulting eigenvalue spectrum for fixed kφ = 3 plotted against
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λ
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Figure 3.4: Eigenvalues of the scalar Laplace operator on the same “random quintic”
defined in eq. (3.47). The metric is computed at degree kh = 8, using
nh = 2,166,000 points. The Laplace operator is evaluated at degree
kφ = 3 on a varying number nφ of points.

an increasing number of points nφ. Our results are shown in 3.4. From eq. (3.37) we see
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that N(3) = 35 and, hence, there are 352 = 1,225 non-degenerate eigenvalues λ0, . . . ,

λ1,224. Note that for smaller values of nφ the eigenvalues are fairly spread out, and that

they remain so as nφ is increased. This reflects the fact that for any Calabi-Yau manifold

there is no continuous isometry, as there was for the P3. Furthermore, for the random

quintic eq. (3.47) there is no finite isometry group either. Therefore, one expects each

eigenvalue to be non-degenerate, and our numerical results are clearly consistent with this.

At any nφ, the eigenfunctions φn are a linear combination of the 1,225 basis functions. We

do not find it enlightening to list the numerical coefficients explicitly.

Note that the accuracy of the numerical integration for the matrix elements7 is

not as crucial as in the T-operator, since we are primarily interested in the low lying

eigenvalues corresponding to slowly-varying eigenfunctions. This is nicely illustrated by

3.4, where the eigenvalues rather quickly approach a constant value as we increase nφ, even

though nφ � nh. For this reason, nφ = 200,000 gives a sufficiently good approximation

and we will use this value for the reminder of this subsection.

A second way to present our numerical results is to fix nφ and study the depen-

dence of the eigenvalues on kφ. This is presented in 3.5. We first note that the number

of eigenvalues indeed grows as N(kφ)2, as it must. Second, as one expects, the smaller

eigenvalues do not change much as one increases kφ. The higher eigenvalues, however,

depend strongly on the truncation of the space of functions, since their eigenfunctions vary

quickly.

Finally, we plot λ3
n/n as a function of n in 3.6. We see that this ratio does

approach the theoretical value of 384π3 as kφ and n increase. This confirms that the

7Recall that nh → ∞ is the continuum limit for the numerical integration in the T-operator, and
nφ → ∞ is the continuum limit for the numerical integration determining the matrix elements of the
Laplace operator.
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Figure 3.5: Eigenvalues of the scalar Laplace operator on a random quintic plotted
against kφ. The metric is computed at degree kh = 8, using nh =
2,166,000 points. The Laplace operator is then evaluated at nφ = 200,000
points.
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Figure 3.6: Check of Weyl’s formula for the spectrum of the scalar Laplace operator
on a random quintic. The metric is computed at degree kh = 8, using
nh = 2,166,000 points. The Laplace operator is evaluated at nφ =
200,000 points and degrees kφ = 1, 2, 3. Note that the data for the
eigenvalues is the same as in 3.5. According to Weyl’s formula, the exact
eigenvalues have to satisfy lim

n→∞
λ3
n/n = 384π3.
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volume normalization in eq. (3.46) is being correctly implemented and that our numerical

results are consistent with Weyl’s formula eq. (3.32).

3.3.2 Fermat Quintic

We repeat the analysis of the previous section for the Fermat quintic defined by

Q̃F (z) = z5
0 + z5

1 + z5
2 + z5

3 + z5
4 . (3.56)

As before, the single Kähler modulus is chosen so that the volume of the Fermat quintic

is unity. Now, however, we are at a different point in the complex structure moduli space,

eq. (3.56) instead of the random quintic eq. (3.47). Hence, we will perform the numerical

integrations now using points lying on a different hypersurface inside P4. Except for using

different points, we compute the Calabi-Yau metric on Q̃F using Donaldson’s algorithm

exactly as in the previous subsection. In particular

• The degree kh ∈ Z≥0 of the homogeneous polynomials used in the ansatz eq. (3.38)

for the Kähler potential is chosen to be

kh = 8. (3.57)

This is the same degree as we used for the random quintic.

• We take the number of points used to numerically integrate Donaldson’s T-operator

to be

nh = 10 ·N(8)2 + 50,000 = 2,166,000 (3.58)

This satisfies the condition that nh � N(kh)2, ensuring that the numerical integra-
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tion is sufficiently accurate.

Using kh and nh given by eqns. (3.57) and (3.58) respectively, one can compute an approx-

imation to the Calabi-Yau metric using Donaldson’s algorithm. The numerical expression

for the metric is tedious and will not be presented here. The error measure eq. (3.44) for

this kh = 8 balanced metric is

σ8 ≈ 5× 10−2. (3.59)

Hence, the approximate volume form
ω3

8
3! and the exact Calabi-Yau volume form Ω ∧ Ω̄

agree to about 5%. The metric determines the scalar Laplacian, eq. (3.1).

To determine the matrix elements of the Laplace operator, one has to select an

approximating basis for the linear space of complex functions on Q̃F , eq. (3.56). For any

finite kφ, we again choose the function space Fkφ as in eqns. (3.53) and (3.54). This basis

was already determined during the Donaldson algorithm for the metric. Computing the

matrix elements of the Laplace operator requires another numerical integration which is

completely independent of the one in the T-operator. As we did previously, we denote the

number of points in the matrix element integration by nφ.

We first present the resulting eigenvalue spectrum for fixed kφ = 3 plotted against

an increasing number of points nφ. Our results are shown in 3.7. Note from eq. (3.55) that

the total number of eigenvalues is given by dimF3 = N(3)2 = 1,225. One immediately

notices a striking difference compared to the analogous graph for the random quintic, 3.4.

Here, the eigenvalues converge towards degenerate levels. For smaller values of nφ, the

eigenvalues are fairly spread out. However, as nφ is increased the eigenvalues begin to

condense into degenerate levels. Clearly, this must be due to symmetries of the Fermat

quintic. As mentioned above, no Calabi-Yau manifold has a continuous isometry. However,
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Figure 3.7: Eigenvalues of the scalar Laplace operator on the Fermat quintic. The
metric is computed at degree kh = 8, using nh = 2,166,000 points. The
Laplace operator is evaluated at degree kφ = 3 using a varying number
nφ of points.
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unlike the random quintic, the Fermat quintic eq. (3.56) does possess a finite isometry

group, which we will specify below in detail. Therefore, the exact eigenvalues of ∆ on

Q̃F should be degenerate with multiplicities given by the irreducible representations of

this finite group. As we will see in 3.3.3, the numerically computed degeneracies of the

eigenvalues exactly match the irreducible representations of a this finite isometry group.

Again, we do not find it enlightening to present the numerical results for the eigenfunctions.

Moreover, as discussed previously, the accuracy of the matrix element integration for low-

lying eigenvalues need not be as great as for the T-operator. As is evident from 3.7, a value

of nφ = 500,000 is already highly accurate and we will use this value in the remainder of

this subsection.

A second way to present our numerical results is to fix nφ as in the previous

paragraph and study the dependence of the eigenvalues on kφ. This is presented in 3.8.

We first note that the number of eigenvalues grows as N(kφ)2, as it must. Second, as

one expects, the smaller eigenvalues do not change much as one increases kφ, whereas the

higher eigenvalues depend strongly on the truncation of the space of functions. This is also

to be expected, since their eigenfunctions vary quickly.

Third, let us plot λ3
n/n as a function of n in 3.9. This ratio approaches the theo-

retical value of 384π3 as kφ and n increase. This confirms that the volume normalization

in eq. (3.46) is being correctly implemented and that our numerical results are consistent

with Weyl’s formula eq. (3.32).

3.3.3 Symmetry Considerations

Recall from 3.7 that the eigenvalues of the scalar Laplace operator condense to a

smaller number of degenerate levels as nφ → ∞, that is, in the limit where the numerical
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Figure 3.8: Eigenvalues of the scalar Laplace operator on the Fermat quintic. The
metric is computed at degree kh = 8, using nh = 2,166,000 points.
The Laplace operator is evaluated at nφ = 500,000 points with varying
degrees kφ.

114



384π3

0

5000

10000

15000

20000

0 100 200 300 400 n

λ3
n

n kφ = 1

kφ = 2

kφ = 3

Figure 3.9: Check of Weyl’s formula for the spectrum of the scalar Laplace operator
on the Fermat quintic. The metric is computed at degree kh = 8, using
nh = 2,166,000 points. The Laplace operator is evaluated at nφ =
500,000 points and degrees kφ = 1, 2, 3. Note that the data for the
eigenvalues is the same as in 3.8. According to Weyl’s formula, the exact
eigenvalues have to satisfy lim

n→∞
λ3
n/n = 384π3.
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integration becomes exact. The same phenomenon is clearly visible at different values of

kφ, see 3.8. Of course the eigenvalues are never exactly degenerate due to numerical errors,

but counting the nearby eigenvalues allows one to determine the multiplicities. Averaging

over the eigenvalues in each cluster yields an approximation to the associated degenerate

eigenvalue. Using the data from 3.8, we list the low-lying degenerate eigenvalues and

their multiplicities8 in 3.2. As discussed previously, multiplicities in the spectrum of the

m 0 1 2 3 4 5

λ̂m 1.18× 10−14 41.1± 0.4 78.1± 0.5 82.1± 0.3 94.5± 1 102± 1

µm 1 20 20 4 60 30

Table 3.2: The degenerate eigenvalues λ̂m and their multiplicities µm on the Fermat
quintic, as computed from the numerical values calculated with kh = 8,
nh = 2,166,000, kφ = 3, nφ = 500,000. The errors are the standard
deviation within the cluster of µn numerical eigenvalues.

Laplace-Beltrami operator results must follow from some symmetry. In 3.2, we saw that the

SU(4) symmetry of P3 leads to degenerate eigenspaces of the scalar Laplacian. However,

a proper Calabi-Yau threefold never has continuous isometries, unlike projective space.

Nevertheless, a suitable non-Abelian9 finite group action is possible and, in fact, explains

the observed multiplicities, as we now show.

First, note that for each distinct eigenvalue the corresponding space of eigenfunc-

tions must form a representation10 of the symmetry group. Clearly, the degeneracies of the

eigenvalues observed in 3.7 and 3.8 must arise from an isometry of Q̃F . In fact, the Fermat

quintic does have a large non-Abelian finite symmetry group. To see this, note that the

zero set of eq. (3.56) is invariant under

8Interestingly, the correct multiplicity µ1 = 20 was derived by a completely different argument in [58].
9An Abelian symmetry group would only have one-dimensional representations and, hence, need not

lead to degenerate eigenvalues. Note that any finite group has a finite number of irreducible representations
and, therefore, one expects only a finite number of possible multiplicities for the eigenvalues of the Laplace
operator. This is in contrast to the aforementioned P3 case, where the multiplicities grow without bound.

10An actual linear representation, not just a representation up to phases (projective representation).
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• Multiplying a homogeneous coordinate by a fifth root of unity. However, not all

(Z5)5 phases act effectively because the projective coordinates are identified under

the rescaling

[
z0 : z1 : z2 : z3 : z4

]
=
[
λz0 : λz1 : λz2 : λz3 : λz4

]
. (3.60)

Only (Z5)5
/
Z5 ' (Z5)4 acts effectively.

• Any permutation of the 5 homogeneous coordinates. The symmetric group S5 acts

effectively.

• Complex conjugation Z2.

The first two groups act by analytic maps, and together generate the semidirect product

Aut
(
Q̃F
)

= S5 n
(
Z5

)4
(3.61)

of order 75, 000. Our notation and the relevant group theory is discussed in B.1. The full

discrete symmetry group, including the complex conjugation Z2, is

Aut
(
Q̃F
)

= Z2 n Aut
(
Q̃F
)

=
(
S5 × Z2

)
n
(
Z5

)4
(3.62)

and of order 150,000. Note that even though the Z2 acts as complex conjugation on the

base space, the whole Aut(Q̃F ) acts linearly on the the basis of complex functions on

Q̃F and, hence, on the eigenfunctions. There are 80 distinct irreducible representations

occurring in 14 different dimensions, ranging from 1 to 120. We list them in 3.3.

We conclude by noting that the multiplicities listed in 3.2 also occur in 3.3. That
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d 1 2 4 5 6 8 10 12 20 30 40 60 80 120

# of irreps
in dim d

4 4 4 4 2 4 4 2 8 8 12 18 4 2

Table 3.3: Number of irreducible representations of Aut(Q̃F ) = Z2 n Aut(Q̃F ) in
each complex dimension.

is, the eigenspaces of the degenerate eigenvalues of the scalar Laplacian on Q̃F , computed

using our numerical algorithm, indeed fall into irreducible representations of the finite

symmetry group
(
S5 × Z2

)
n
(
Z5

)4
, as they must. This gives us further confidence that

our numerical computation of the Laplacian spectrum is reliable.

3.3.4 Donaldson’s Method

Donaldson [24] conjectured a method to compute the eigenvalues of the scalar

Laplace operator that is completely independent of our approach. His calculation of the

spectrum of the scalar Laplacian is very much tied into his algorithm for computing bal-

anced (Calabi-Yau) metrics. In our algorithm, on the other hand side, any metric could be

used and no particular simplifications arise just because the metric happens to be balanced

or Calabi-Yau. Because they are so different, it is quite interesting to compare both meth-

ods. We will now review his proposal, and then compare it with our previous computation

of the eigenvalues on the Fermat quintic as well as the random quintic.

In this alternative approach to calculating the spectrum of the Laplace-Beltrami

operator, one first has to run through Donaldson’s algorithm for the metric. In particular,

one had to choose a degree k, fix a basis {sα|α = 0, . . . , N(k)−1}, and obtain the balanced

metric hαβ̄ as the fixed point of Donaldson’s T-operator. Let us write

(
sα, sβ) =

sαs̄β̄∑
γδ̄ h

γδ̄sγ s̄δ̄
(3.63)
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for the integrand of the T-operator eq. (3.39). Donaldson’s alternative calculation of the

eigenvalues then hinges on the evaluation of the integral

Qαβ̄,γ̄δ = N(k)

∫
X

(sα, sβ)(sγ , sδ) dVolCY, (3.64)

where we again normalize Vol(X) = 1. One can think of Q as a linear operator on the

space of functions11

FD
k = span

{
(sα, sβ)

∣∣∣ 0 ≤ α, β̄ ≤ N(k)− 1
}
, (3.65)

acting via

Q : FD
k → FD

k , (sα, sβ) 7→
∑

Qαβ̄,γ̄δh
γ̄σhτ̄ δ(sσ, sτ ). (3.66)

In [24], Donaldson conjectures that

lim
k→∞

Q = e
− ∆

4π 3
√
N(k) (3.67)

as operators on

lim
k→∞

FD
k = C∞(X,C). (3.68)

For explicitness, let us look in more detail at the individual steps as they apply to any

quintic X = Q̃ ⊂ P4:

1. First, pick a degree k and a basis
{
s0, . . . , sN(k)−1

}
of degree-k homogeneous poly-

nomials modulo the hypersurface equation Q̃ = 0.

11Note the similarity with the approximate space of functions Fkφ used previously, eq. (3.53). When
computing the matrix elements of the Laplace operator directly, the precise form of the denominator is not
overly important as long as it has the correct homogeneous degree, and we always chose (

∑
|zj |2)kφ for

simplicity.
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2. Compute the Calabi-Yau metric via Donaldson’s algorithm. It is determined by the

N(k)×N(k) hermitian matrix hαβ̄.

3. Compute the N(k)4 scalar integrals in eq. (3.64). The numerical integration can be

performed just as in Donaldson’s T-operator, see 3.3.

4. Compute the N(k)2 ×N(k)2 matrix

QN(k)α+β̄
N(k)γ+δ̄ =

N(kh)−1∑
σ̄,τ=0

Qαβ̄,σ̄τh
γσ̄hτ δ̄ (3.69)

and find its eigenvalues Λn. Note that Qji is not hermitian12 and one should use the

Schur factorization13 to compute eigenvalues.

5. Discard all Λn ≤ 0, these correspond to high eigenvalues of the Laplacian that are

not approximated well at the chosen degree k. The eigenvalues of the scalar Laplace

operator are

λn = −4π 3
√
N(k) ln Λn. (3.70)

We note that, in this approach to the spectrum of the Laplace-Beltrami operator, there is

only one degree k that controls the accuracy of the eigenvalues of the scalar Laplacian and

at the same time the accuracy of the Calabi-Yau metric. In fact, computing the integral

eq. (3.64) at degree k is about as expensive as computing Donaldson’s T-operator at degree

2k. In other words, a general limitation of this approach is that one has to work with a

relatively low precision metric.

In 3.10 we compare the two approaches for computing the spectrum of the Laplace-

12Qji is, however, conjugate to a hermitian matrix and hence has real eigenvalues.
13Instead of the dqds algorithm we use for computing eigenvalues of hermitian matrices.
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Figure 3.10: Donaldson’s method of computing the spectrum (polygon symbols) of
the scalar Laplace operator on the Fermat quintic compared to our di-
rect computation (crosses). Note that the blue symbols are the highest-
accuracy values, respectively. See 3.3.4 for further discussion.
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Beltrami operator on the Fermat quintic. We compute the eigenvalues using Donaldson’s

method at degrees k = 1, 2, 3 and evaluate the necessary integral eq. (3.64) using n =

10N(k)2+100,000 points. For comparison, we also plot the eigenvalues obtained by directly

computing the matrix elements of the Laplacian which we always compute at degree kφ = 3

using nφ = 500,000 points. To estimate the effect of the metric on the eigenvalues, we

run our algorithm first with the metric obtain at degree kh = 3 and14 nh = 62250 (bad

approximation to the Calabi-Yau metric, red diagonal crosses) as well as with kh = 8 and

nh = 2,166,000 (good approximation to the Calabi-Yau metric, blue upright crosses). We

find that the eigenvalues do not strongly depend on the details of the metric. Generally,

Donaldson’s method and the direct computation yield very similar results. There is a slight

disagreement for the second and third massive level, where the matrix element calculation

points toward µ2 = 20, µ3 = 4 while Donaldson’s method suggests the opposite order

µ3 = 4, µ4 = 20. We suspect this is to be a numerical error due to the finite degrees and it

would be interesting to go to higher degree in k, kφ, and kh.

Finally, in 3.11 we repeat this comparison for the quintic eq. (3.47) with random

coefficients. In this case, there are no discrete symmetries and one expects all massive

levels to be non-degenerate. We again find good agreement between the two approaches

towards solving the Laplace equation.

3.4 Z5 × Z5 Quotients of Quintics

Thus far, we have restricted our examples to quintic Calabi-Yau threefolds Q̃ ⊂

P4. These manifolds are simply connected by construction. However, for a wide range of

14The number of points nh is always obtained from the heuristic eq. (3.50).
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Figure 3.11: Donaldson’s method of computing the spectrum (polygon symbols) of
the scalar Laplace operator on the random quintic compared to our di-
rect computation (crosses). Note that the blue symbols are the highest-
accuracy values, respectively. In Donaldson’s method the numerical
integration was performed with n = 10N(k) + 100,000 points. In the
direct computation, the metric was approximated at degree kh = 8 us-
ing nh = 2,166,000 points and the Laplace operator was evaluated at
nφ = 500,000 points.
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applications in heterotic string theory we are particularly interested in non-simply con-

nected manifolds where one can reduce the number of quark/lepton generations as well as

turn on discrete Wilson lines. Therefore, in this section we will consider the free Z5 × Z5

quotient of quintic threefolds, see [54] for more details.

3.4.1 Z5 × Z5 Symmetric Quintics and their Metrics

Explicitly, the group action on the homogeneous coordinates [z0 : · · · : z4] ∈ P4 is

g1 :
[
z0 : z1 : z2 : z3 : z4

]
−→

[
z0 : e

2πi
5 z1 : e2 2πi

5 z2 : e3 2πi
5 z3 : e4 2πi

5 z4

]
,

g2 :
[
z0 : z1 : z2 : z3 : z4

]
−→

[
z1 : z2 : z3 : z4 : z0

]
.

(3.71)

As we discussed in 3.3, a generic quintic is a zero locus of a degree-5 polynomial containing

126 complex coefficients. However, only a small subset of these quintics is invariant under

the Z5 × Z5 action above. As we will show below, the dimension of the space of invariant

homogeneous degree-5 polynomials is 6. Taking into account that one can always multiply

the defining equation by a constant, there are 5 independent parameters φ1, . . . φ5 ∈ C.

Thus, the Z5 × Z5 symmetric quintics form a five parameter family which can be written
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as

Q̃(z) =
(
z5

0 + z5
1 + z5

2 + z5
3 + z5

4

)
+ φ1

(
z0z1z2z3z4

)
+ φ2

(
z3

0z1z4 + z0z
3
1z2 + z0z3z

3
4 + z1z

3
2z3 + z2z

3
3z4

)
+ φ3

(
z2

0z1z
2
2 + z2

1z2z
2
3 + z2

2z3z
2
4 + z2

3z4z
2
0 + z2

4z0z
2
1

)
+ φ4

(
z2

0z
2
1z3 + z2

1z
2
2z4 + z2

2z
2
3z0 + z2

3z
2
4z1 + z2

4z
2
0z2

)
+ φ5

(
z3

0z2z3 + z3
1z3z4 + z3

2z4z0 + z3
3z0z1 + z3

4z1z2

)
,

(3.72)

where φ1, . . . , φ5 ∈ C are local coordinates on the complex structure moduli space. From

now on, Q̃ ⊂ P4 will always refer to a quintic of this form.

For generic coefficients15 φi, the hypersurface Q̃ is a smooth Calabi-Yau threefold.

Moreover, although the group action eq. (3.71) necessarily has fixed points in P4, these fixed

points do not intersect a generic hypersurface Q̃. Thus the quotient

Q = Q̃
/(

Z5 × Z5

)
(3.73)

is again a smooth Calabi-Yau threefold. As a general principle, we will compute quantities

on the quotient Q by computing the corresponding invariant quantities on the covering

space Q̃. For example, the complex structure moduli space of Q is the moduli space of

Z5 × Z5-invariant complex structures on Q̃. Hence, its dimension is

h2,1(Q) = dimH2,1
(
Q) = dimH2,1

(
Q̃)Z5×Z5 = 5, (3.74)

15For example, any sufficiently small neighbourhood of (φ1, . . . , φ5) = (0, . . . , 0) ∈ C5. Note that setting

all φi = 0 yields the Fermat quintic Q̃F , see eq. (3.56).
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corresponding to the 5 independent parameters φ1, . . . , φ5 in a Z5 × Z5-invariant quintic

Q̃(z).

In the same spirit, we will compute the Calabi-Yau metric on Q by performing

the analogous computation on the covering space Q̃. To begin, one must choose a degree kh

and determine a basis sα for the corresponding Z5 × Z5-invariant homogeneous degree-kh

polynomials

span{sα} = C[z0, . . . , z4]Z5×Z5
kh

/〈
Q̃(z)

〉
(3.75)

on Q̃. Note, however, that for any homogeneous degree-kh polynomial pkh(z)

g1g2g
−1
1 g−1

2

(
pkh(z)

)
= e2πi

kh
5 pkh(z) (3.76)

and, hence, the two Z5 generators in eq. (3.71) do not always commute. It follows that for

a space of homogeneous polynomials to carry a linear representation of Z5 × Z5, let alone

have an invariant subspace, their degree kh must be divisible by 5; that is,

kh ∈ 5Z. (3.77)

This can be understood in various ways, and we refer to [54] for more details. Henceforth,

we will assume that eq. (3.77) is satisfied.

The first step in determining the basis of sections {sα} on Q̃ is to find a basis for

the invariant polynomials C[z0, . . . , z4]Z5×Z5
kh

on P4. Such a basis is given by the Hironaka

decomposition

C[z0, z1, z2, z3, z4]Z5×Z5
kh

=
100⊕
i=1

ηiC[θ1, θ2, θ3, θ4, θ5]kh−deg(ηi). (3.78)
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Here, the θj = θj(z) and ηi = ηi(z) are themselves homogeneous polynomials of various

degrees16. The θ1, . . . , θ5 are called “primary invariants” and the η1, . . . , η100 are called

“secondary invariants”. The primary and secondary invariants are not unique, but one

minimal choice is [54]

θ1 = z5
0 + z5

1 + z5
2 + z5

3 + z5
4

θ2 = z0z1z2z3z4

θ3 = z3
0z1z4 + z3

1z2z0 + z3
2z3z1 + z3

3z4z2 + z3
4z0z3

θ4 = z10
0 + z10

1 + z10
2 + z10

3 + z10
4

θ5 = z8
0z2z3 + z8

1z3z4 + z8
2z4z0 + z8

3z0z1 + z8
4z1z2

(3.79)

and

η1 = 1,

η2 = z2
0z1z

2
2 + z2

1z2z
2
3 + z2

2z3z
2
4 + z2

3z4z
2
0 + z2

4z0z
2
1 ,

η3 = z2
0z

2
1z3 + z2

1z
2
2z4 + z2

2z
2
3z0 + z2

3z
2
4z1 + z2

4z
2
0z2,

η4 = z3
0z2z3 + z3

1z3z4 + z3
2z4z0 + z3

3z0z1 + z3
4z1z2,

η5 = z5
0z

5
2 + z5

1z
5
3 + z5

2z
5
4 + z5

3z
5
0 + z5

4z
5
1 ,

...

η100 = z30
0 + z30

1 + z30
2 + z30

3 + z30
4 .

(3.80)

For example, the 6-dimensional space of invariant degree-5 homogeneous polynomials on

16The degrees of the θj , ηi are multiples of 5, of course.
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P4 is

C[z0, z1, z2, z3, z4]Z5×Z5
5 =

100⊕
i=1

ηiC[θ1, θ2, θ3, θ4, θ5]5−deg(ηi)

= η1θ1C⊕ η1θ2C⊕ η1θ3C⊕ η2C⊕ η3C⊕ η4C,

(3.81)

thus proving eq. (3.72).

Using the Hironaka decomposition, we can now determining the basis sα in

eq. (3.75) by modding out the equation Q̃(z) = 0 which defines the covering space. This

was discussed in [54]. The result is that one can simply eliminate the first primary invariant

using

θ1 = −φ1θ2 − φ2θ3 − φ3η2 − φ4η3 − φ5η4, (3.82)

yielding

span{sα} =
100⊕
i=1

ηiC[θ2, θ3, θ4, θ5]kh−deg(ηi) (3.83)

where α = 0, . . . , NZ5×Z5(kh)− 1. The number NZ5×Z5(kh) of Z5 × Z5-invariant homoge-

neous degree-kh polynomials modulo Q̃ = 0 was tabulated in [54]. In particular, the first

three values are

NZ5×Z5(0) = 1, NZ5×Z5(5) = 5, NZ5×Z5(10) = 35, (3.84)

which we will use below.

We now have everything in place to compute the metric on Q. First, one specifies

the five complex structure parameters φi which define the Z5×Z5-symmetric covering space

Q̃. Then, all one has to do is to replace the homogeneous polynomials in the procedure
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outlined in 3.3 by Z5 × Z5-invariant homogeneous polynomials. Donaldson’s algorithm

then calculates the Calabi-Yau metric on the Z5×Z5-symmetric quintic Q̃ and, hence, the

metric on the quotient Q = Q̃
/

(Z5×Z5). In fact, we use a refinement of this method which

is even more efficient, that is, achieves higher numerical accuracy in less computing time.

As it is not relevant to the spectrum of the Laplace operator, we relegate the details to C.

Henceforth, we will always use the following parameters in the computation of the metric.

• The degree of the invariant homogeneous polynomials for the Kähler potential is

taken to be

kh = 10. (3.85)

• The number of points used to evaluate the T-operator is

nh = 10×
(

# of independent entries in hαβ̄
)

+ 100,000 = 406,250. (3.86)

Note that hαβ̄, the matrix of free parameters in Donaldson’s ansatz for the metric,

is block diagonal in C. Therefore, the total number of independent entries is in fact

30,625 and not simply NZ5×Z5(10)2 = 1,225.

As always, it is unenlightening to present the numerical result for the approximation to

the Calabi-Yau metric. It is useful, however, to consider the error measure σ10. As an

important example, let us choose as our Calabi-Yau manifold the Z5 × Z5 quotient of the

Fermat quintic Q̃F . The computation of the metric takes about half an hour of wall time,

with the resulting error measure of σ10 = 2.8× 10−2.
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3.4.2 The Laplacian on the Quotient

Having computed the Calabi-Yau metric on the quotient Q = Q̃
/

(Z5 × Z5), we

now turn to the calculation of the spectrum of the Laplace-Beltrami operator ∆. To

begin, one must specify a finite-dimensional approximation to the space of complex valued

functions on Q. Note, however, that the scalar functions on Q are precisely the invariant

functions on the covering space Q̃. More formally, an invariant function on Q̃ is of the form

q∗f = f ◦ q, where f is a function on the quotient Q and q : Q̃ → Q is the quotient map.

Hence, we will specify a finite-dimensional approximation to the space of complex-valued

Z5 × Z5-invariant functions on Q̃. For any finite value of kφ, we choose

FZ5×Z5
kφ

= span

{
sαs̄β̄(∑4
i=0 |zi|2

)kφ
∣∣∣∣∣ α, β̄ = 0, . . . , NZ5×Z5(kφ)− 1

}
, (3.87)

where {sα} is a basis for the invariant homogeneous polynomials modulo the hypersurface

constraint

span{sα} = C [z0, . . . , z4]Z5×Z5
kφ

/〈
Q̃(z)

〉
. (3.88)

We already had to determine such a basis while applying Donaldson’s algorithm for the

metric, the only difference now is that the degree is kφ instead of kh. The counting function

NZ5×Z5(kφ) is the same, and some of its values were given in eq. (3.84). Clearly,

dimFZ5×Z5
kφ

=
(
NZ5×Z5(kφ)

)2
. (3.89)

Having specified FZ5×Z5
kφ

, we can now calculate any matrix element on Q simply

by replacing the approximating space of functions on Q by the invariant functions on Q̃
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and integrating over Q̃. For example, the matrix elements of the Laplacian on Q are

∆ab =
〈
fa
∣∣∆∣∣fb〉 =

∫
Q
f̄a∆fb dVol(Q) =

1∣∣Z5 × Z5

∣∣ ∫
Q̃

(q∗f̄a)∆(q∗fb) dVol(Q̃). (3.90)

Computing the matrix elements requires another numerical integration that is completely

independent of the one in the T-operator. As previously, we denote the number of points

in the matrix element integration by nφ.

Having evaluated the matrix elements, one can now numerically solve the matrix

eigenvalue equation eq. (3.11) for the eigenvalues and eigenfunctions of the Laplacian.

Note that the factors of 1
|Z5×Z5| cancel out of this equation, leaving identical eigenvalues

and eigenfunctions on Q̃ and Q, respectively. Since the functions in FZ5×Z5
kφ

live on the

covering space, we are actually solving

∆
Q̃
φn = λZ5×Z5

n φn, φn ∈ C∞(Q̃,C)Z5×Z5 (3.91)

on Q̃. Note that, as always, the volume measure of the integrals is chosen so that Vol(Q̃) =

1. For the reasons stated above, the invariant eigenfunctions on Q̃ can be identified with the

eigenfunctions of the Laplacian on Q at the same eigenvalue, but with Vol(Q) = 1
|Z5×Z5| =

1
25 . However, since we want to adhere to our convention of normalizing Vol(Q) = 1, we

have to rescale the volume and hence the eigenvalues λZ5×Z5
n . Using eqns. (3.3) and (3.4),

the eigenvalues λn on Q are

λn =
λZ5×Z5
n
3
√

25
. (3.92)

Using this method, one can compute the spectrum of the Laplace-Beltrami operator on

the quotient of any Z5 × Z5 symmetric quintic.
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3.4.3 Quotient of the Fermat Quintic

As an explicit example, let us consider the quotient of the Fermat quintic,
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Figure 3.12: Eigenvalues λZ5×Z5
n of the scalar Laplace operator on the Fermat quintic

Q̃F acting on Z5×Z5-invariant eigenfunctions. Up to an overall factor
due to our volume normalization, these are the same as the eigenvalues
λn of the scalar Laplace operator on the quotient QF = Q̃F

/
(Z5×Z5).

The metric is computed at degree kh = 10 and nh = 406,250 points.
The Laplace operator is evaluated using nφ = 100,000 points.

QF = Q̃F

/(
Z5 × Z5

)
. (3.93)

We numerically computed the spectrum of the scalar Laplace operator for each of the three

values kφ = 0, 5, 10 using eq. (3.84). The resulting eigenvalues are shown in 3.12. Note
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n λZ5×Z5
n λn = λ

Z5×Z5
n
3√25

λ̂ µ

0 3.586 1.226 λ̂0 = 1.23 µ0 = 1

1 100.7 34.45

λ̂1 = 34.8± 0.5 µ1 = 4
2 101.2 34.61

3 101.4 34.68

4 103.9 35.53

5 107.8 36.86
λ̂2 = 37.1± 0.4 µ2 = 2

6 109.2 37.36

7 140.50 48.05

λ̂3 = 48.3± 0.2 µ3 = 4
8 141.16 48.28

9 141.47 48.38

10 141.78 48.49

11 149.57 51.15 λ̂4 = 51.2 µ4 = 1

12 166.91 57.08
λ̂5 = 57.5± 0.6 µ5 = 2

13 169.48 57.96

14 181.00 61.90
λ̂6 = 62.4± 0.8 µ6 = 2

15 184.15 62.98

16 191.49 65.48

17 193.55 66.19

18 198.65 67.94
...

...
...

...
...

Table 3.4: Low-lying eigenvalues of the scalar Laplace operator on QF , the Z5×Z5-
quotient of the Fermat quintic, computed with kh = kφ = 10, nh =
406,250, nφ = 100,000. The first two columns are the numerical results.

The third column specifies λ̂, the average over the eigenvalues that are
converging to a single degenerate level. The final column counts the mul-
tiplicities of each such level.
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that we present both the eigenvalues λZ5×Z5
n on Q̃ as well as the normalized eigenvalues λn

on Q defined by eq. (3.92).

We list the numerical values of the first few eigenvalues in 3.4 and make the

following two observations. First, the lowest eigenvalue λ0 is no longer zero up to machine

precision, as it was in 3.2. This is so because the constant function is not part of the

approximate space of functions at kφ = 10 and, therefore, the lowest eigenvalue λ0 only

approaches zero as kφ increases. The actual numerical value λ0 ≈ 1.2 gives us an estimate of

the error introduced by truncating the space of functions. Second, the low-lying eigenvalues

clearly form degenerate levels. As usual, the numerical error caused by the truncation of the

space of functions increases as we go to higher eigenvalues. However, the first 16 eigenvalues

are sufficiently well separated that we can conjecture the underlying multiplicities µ. We

list these degeneracies together with the best approximation to the true eigenvalue λ̂ in

3.4. Clearly, the degeneracies in the spectrum strongly hint at an underlying symmetry.

We will discuss the associated isometry group in the following subsection.

3.4.4 Group Theory and the Quotient Eigenmodes

The free Z5 ×Z5 action eq. (3.71) is a subgroup of the symmetries of the Fermat

quintic,

Z5 × Z5 ⊂ Aut
(
Q̃F
)
, (3.94)

given in eq. (3.62). Naively, one now would like to form the quotient to obtain the remaining

symmetries on QF = Q̃F /(Z5 × Z5). However, the Z5 × Z5 subgroup is not normal, that
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is, not closed under conjugation. The only possibility is to form the normal closure17

〈
Z5 × Z5

〉Aut(Q̃F )
=
{
h−1gh

∣∣∣ g ∈ Z5 × Z5, h ∈ Aut(Q̃F )
}
. (3.95)

The quotient by the normal closure is well-defined, and we obtain

Aut(QF ) = Aut
(
Q̃F
)/〈

Z5 × Z5

〉Aut(Q̃F )
= D20, (3.96)

the dihedral group with 20 elements. However, just looking at the representation theory of

Aut(QF ) is insufficient to understand the multiplicities of the eigenvalues of the Laplacian.

Instead, one must use all of Aut(Q̃F ), even those elements (called “pseudo-symmetries”

in [22]) that do not correspond to symmetries of the quotient QF . On a practical level,

we also note that D20 has only 1- and 2-dimensional irreducible representations and could

never explain the multiplicity µ1(QF ) = 4, for example, listed in 3.4.

As we discussed in 3.3.3, the symmetry group of the Fermat quintic has 80 distinct

irreducible representations occurring in 14 different dimensions. Let us label them by

ρd,i, where d is the complex dimension and i = 1, . . . , nd distinguishes the nd different

representations in dimension d. Under the Z5 × Z5 quotient

Q̃F −→ QF = Q̃F
/

(Z5 × Z5) (3.97)

all non-invariant eigenfunctions of the Laplacian are projected out and each invariant eigen-

function descends to an eigenfunction on QF . Hence, the degeneracies of the eigenvalues

17Also called the conjugate closure.
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d 1 2 4 5 6 8 10 12 20 30 40 60 80 120

nd 4 4 4 4 2 4 4 2 8 8 12 18 4 2

dimZ5×Z5
d 1 2 0 1 2 0 2 4 0 2 0 4 0 4

Table 3.5: Number nd of distinct irreducible representations of Aut(Q̃F ) in complex
dimension d. We also list the dimension dimZ5×Z5

d of the Z5×Z5-invariant
subspace for each representation, see eq. (3.99). Note that it turns out to
only depend on the dimension d of the representation.

Q̃F −→ QF

µ0(Q̃F ) = 1 −→ µ0(QF ) = 1

µ1(Q̃F ) = 20 −→ 0

µ2(Q̃F ) = 20 −→ 0

µ3(Q̃F ) = 4 −→ 0

µ4(Q̃F ) = 60 −→ µ1(QF ) = 4

µ5(Q̃F ) = 30 −→ µ2(QF ) = 2

Table 3.6: Projection of the multiplicity of eigenvalues on the Fermat quintic Q̃F to
the Z5 × Z5-quotient QF .

are counted by the dimension

dim
(
ρZ5×Z5
d,i

)
(3.98)

of the Z5 × Z5-invariant subspace. It turns out that, for the chosen Z5 × Z5 ⊂ Aut(Q̃F ),

this dimension depends only on d, and not on the index i. We denote the common value

by

dimZ5×Z5
d = dim

(
ρZ5×Z5
d,1

)
= · · · = dim

(
ρZ5×Z5
d,nd

)
(3.99)

and tabulate it in 3.5.

Using this and the multiplicities of the eigenvalues on the Fermat quintic Q̃F given

in 3.2, we can now perform the Z5 ×Z5-quotient and obtain the degeneracies of the scalar

Laplacian on the QF . The results are listed in 3.6. We find complete agreement with the

spectrum found by directly computing the eigenvalues on QF given in 3.4. Naturally, this
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comparison is limited by the number of eigenvalues we were able to compute on Q̃F . The

agreement of the lower lying levels, however, gives us confidence that the values of λ̂m and

µm for m = 3, 4, 5, 6, . . . given in 3.4 are also a good approximation to the exact results on

the quotient.

3.4.5 Varying the Complex Structure

To numerically compute any metric-dependent quantity on a Calabi-Yau mani-

fold, one has to fix the complex structure and Kähler moduli to specific values. This was

done, for example, in 3.4.3, where the moduli were chosen so that the covering space was

the Fermat quintic with unit volume. In this section, we will extend our results to the

one-parameter family of Z5 × Z5 symmetric quintics Q̃ψ defined by the vanishing of the

polynomial

Q̃ψ =
∑

z5
i − 5ψ

∏
zi. (3.100)

The Kahler modulus will always be fixed so that the volume of Q̃ψ is unity. The complex

structure parameter ψ can, in principle, take on any complex value. However, for simplicity,

we will only consider ψ ∈ R in this subsection. Note that each Q̃ψ is indeed a quintic with

the free Z5 × Z5 symmetry in eq. (3.72). Hence, the quotient

Qψ = Q̃ψ

/(
Z5 × Z5

)
(3.101)

is a smooth Calabi-Yau threefold.

We have computed the spectrum of the scalar Laplace operator on this one-

parameter family of quotients for various values of ψ. The resulting ψ-dependent spectrum

can be found in 3.13. Note that this one-parameter family of Z5 × Z5-symmetric quintics
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Figure 3.13: Spectrum of the scalar Laplace operator on the real 1-parameter family
Qψ of quintic quotients. The metric is computed at degree kh = 10
with nh = 406,250. The Laplace operator is evaluated at kφ = 10 and
nφ = 50,000 points.
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passes through two special points,

ψ = 0: Without the
∏
zi term, Q̃ψ=0 = Q̃F is exactly the Fermat quintic. We will inves-

tigate the symmetry enhancement at this point in the next subsection.

ψ = 1: This is the so-called conifold point, where the quintic is singular. On the covering

space Q̃ψ=1 ⊂ P4, the singularity is at

zC =
[
1 : 1 : 1 : 1 : 1] (3.102)

and its images under the Z5×Z5 symmetry group. At these points the hypersurface

equation fails to be transversal,

∂Q̃ψ=1

∂z0
(zC) = · · · =

∂Q̃ψ=1

∂z4
(zC) = Q̃ψ=1(zC) = 0, (3.103)

causing the singularity.

Perhaps surprisingly, the spectrum of the scalar Laplace operator shows no trace of the

conifold singularity at ψ = 1. However, the reason for this is straightforward. The low-

lying modes are slowly-varying functions and, in particular, are almost constant near any

point-like singularity. For example, the first massive eigenvalue is essentially determined

by the diameter of the manifold, see 3.6.2, and does not depend on local details of the

metric.

3.4.6 Branching Rules

Let us return to spectrum of the Laplace-Beltrami operator in 3.13 and focus on

the neighbourhood of ψ = 0. Clearly, Qψ=0 = QF is the quotient of the Fermat quintic,
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while Qψ 6=0 is a deformation of the Fermat quotient that breaks part of its discrete isometry

group. In particular, note that for small non-zero values of ψ

• The first massive level µ1(QF ) = 4 splits into two pairs of eigenvalues.

• The second massive level µ2(QF ) = 2 remains two-fold degenerate.

In this subsection, we will attempt to understand this from the group-theoretical perspec-

tive.

As discussed in 3.4.4, the multiplicities of the eigenvalues on the quotient Qψ =

Q̃ψ/(Z5 × Z5) are really determined by the representation theory of the symmetry group

of the covering space. We have to distinguish two cases.

ψ = 0: This is the case of the Fermat quintic, whose symmetries we already discussed in

3.3.3,

Aut
(
Q̃ψ=0

)
= Aut

(
Q̃F
)

=
(
S5 × Z2

)
n
(
Z5

)4
. (3.104)

The irreducible representations of Aut
(
Q̃F
)

were presented in 3.5.

ψ 6= 0: In this case, the invariance of the
∏
zi monomial gives one further constraint on

the (Z5)4 phase rotations. In other words, turning on ψ breaks the phase rotation

symmetry to (Z5)3. The remaining symmetry group is18

Aut
(
Q̃ψ 6=0

)
=
(
S5 × Z2

)
n
(
Z5

)3
. (3.105)

The irreducible representations of Aut
(
Q̃ψ 6=0

)
are given in 3.7. Note that, by con-

struction, this group is a proper subgroup of the full symmetry group, both of which

18Since we chose ψ to be real, the complex conjugation Z2 remains unbroken.
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d 1 4 5 6 20 24 30 40 48 60

nd 4 4 4 2 8 2 8 4 2 2

dimZ5×Z5
d 1 0 1 2 0 4 2 0 0 4

Table 3.7: Number nd of distinct irreducible representations of Aut(Q̃ψ 6=0) in com-

plex dimension d. We also list the dimension dimZ5×Z5

d of the Z5 × Z5-
invariant subspace for each representation. Note that it turns out to only
depend on the dimension d of the representation.

Aut(Q̃F ) ⊃ Aut(Q̃ψ 6=0)

1 −→ 1

2 −→ 1⊕ 1

4 −→ 4

5 −→ 5

6 −→ 6

8 −→ 4⊕ 4

10 −→ 5⊕ 5

12 −→ 6⊕ 6

Aut
(
Q̃F
)
⊃ Aut

(
Q̃ψ 6=0

)
20 −→ 20

30 −→ 30

401 −→ 40

402 −→ 20⊕ 20

601 −→ 60

602 −→ 30⊕ 30

80 −→ 40⊕ 40

120 −→ 48⊕ 48⊕ 24

Table 3.8: Branching rules for the decomposition of the irreducible representations of
Aut(Q̃F ) into the irreducible representations of its subgroup Aut(Q̃ψ 6=0).
Note that there are always numerous distinct representations in each di-
mension, see 3.5 and 3.7.

containing the free Z5 × Z5 action. That is,

Aut
(
Q̃ψ=0

)
⊃ Aut

(
Q̃ψ 6=0

)
⊃ Z5 × Z5. (3.106)

As one turns on the ψ-deformation, the eigenvalues must split according to the group-

theoretical branching rules. We list these in 3.8.

Finally, we are really interested in the eigenvalues on the quotient Qψ, which

means that one must restrict to the Z5 × Z5-invariants of each representation. For the

Fermat quintic, we listed the number and the dimension, dimZ5×Z5
d , of these invariants in
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3.5. We list the analogous information for the Z5 × Z5-invariants within the irreducible

representations of Aut(Q̃ψ 6=0) in 3.7. This allows us to compute the splitting of the eigen-

values on the quotient Qψ. However, just knowing the multiplicities turns out to be not

quite enough since same-dimensional but different irreducible representations can branch in

different ways. In particular, the first massive level on Qψ=0 comes from a 60-dimensional

representation of Q̃ψ=0, which can branch in two ways according to 3.8. However, since we

have seen in 3.13 that the eigenvalues do branch, this 60-dimensional representation must

be of the type 602.

To summarize, these group theoretical considerations are completely compatible

with the observed branching of the eigenvalues under the complex structure deformation

by ψ. The low-lying eigenvalues of the scalar Laplacian on Qψ split as

Z5 × Z5

invariants

⊂
Aut

(
Q̃ψ=0

)
irreps

Aut
(
Q̃ψ 6=0

)
irreps

⊃
Z5 × Z5

invariants

µ0

(
Qψ=0

)
= 1 ⊂ 1 //1 ⊃ µ0

(
Qψ 6=0

)
= 1

30 ⊃ µ2

(
Qψ 6=0

)
= 2

µ1

(
Qψ=0

)
= 4 ⊂ 602

11dddddddddddddddd

--ZZZZZZZZZZZZZZZZ ⊕
30 ⊃ µ1

(
Qψ 6=0

)
= 2

µ2

(
Qψ=0

)
= 2 ⊂ 30 //30 ⊃ µ3

(
Qψ 6=0

)
= 2.

(3.107)

3.4.7 Another Family

Finally, let us consider another family of complex structure moduli. First, we

deform the Fermat quintic to a generic Z5×Z5 invariant polynomial; that is, switch on all

coefficients in eq. (3.72). Then restrict to the real one-parameter family of covering spaces
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defined by

Q̃ϕ =
∑

z5
i + ϕ

∏
z5
i + iϕ

(
z3

0z1z4 + cyc
)

+ (1− i)ϕ
(
z2

0z1z
2
2 + cyc

)
− (1− 2i)ϕ

(
z2

0z
2
1z3 + cyc

)
− (2− i)ϕ

(
z3

0z2z3 + cyc
)

(3.108)

and form the quotient spaces

Qϕ = Q̃ϕ

/(
Z5 × Z5

)
. (3.109)

For generic values of ϕ, this breaks all symmetries of the Fermat quintic except for the free

Z5×Z5 that we are dividing out. Consequently, we expect no degeneracies in the spectrum

of the Laplace-Beltrami operator. In 3.14, we plot the spectrum of ∆ and, indeed, observe

that the degeneracies of the eigenvalues on the Fermat quintic Qϕ=0 are broken as ϕ is

turned on.

3.5 The Heterotic Standard Model Manifold

In this last section, we will compute the spectrum of the Laplace-Beltrami op-

erator on the torus-fibered Calabi-Yau threefold X with π1(X) = Z3 × Z3 that was used

in [59] to construct a heterotic standard model. The threefold X is most easily described

in terms of its universal cover X̃, which is the complete intersection

X̃ =
{
P̃ (x, t, y) = 0 = R̃(x, t, y)

}
⊂ P2

[x0:x1:x2]×P1
[t0:t1]×P2

[y0:y1:y2] (3.110)
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Figure 3.14: Spectrum of the scalar Laplace operator on the real 1-parameter family
Qϕ of quintic quotients. The metric is computed at degree kh = 10,
nh = 406,250 and the Laplace operator evaluated at kφ = 10 and
nφ = 50,000 points.
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defined by the degree-(3, 1, 0) and (0, 1, 3) polynomials

P̃ (x, t, y) = t0

(
x3

0 + x3
1 + x3

2 + λ1x0x1x2

)
+ t1λ3

(
x2

0x2 + x2
1x0 + x2

2x1

)
R̃(x, t, y) = t1

(
y3

0 + y3
1 + y3

2 + λ2y0y1y2

)
+ t0

(
y2

0y1 + y2
1y2 + y2

2y0

)
.

(3.111)

Note that λ1, λ2, λ3 ∈ C end up parametrizing the complex structure of X. For generic

λi, the two maps

γ1 :


[x0 : x1 : x2] 7→ [x0 : ωx1 : ω2x2]

[t0 : t1] 7→ [t0 : ωt1]

[y0 : y1 : y2] 7→ [y0 : ωy1 : ω2y2]

(3.112a)

and

γ2 :


[x0 : x1 : x2] 7→ [x1 : x2 : x0]

[t0 : t1] 7→ [t0 : t1]

[y0 : y1 : y2] 7→ [y1 : y2 : y0]

(3.112b)

generate a free Z3 × Z3 group action on X̃. Hence, the quotient

X = X̃
/(

Z3 × Z3

)
(3.113)

is a smooth Calabi-Yau threefold. In addition to the h2,1(X) = 3 complex structure moduli

of X, there are also h1,1(X) = 3 Kähler moduli. The Kähler class on the algebraic variety

X is determined by a line bundle L whose first Chern class is represented by the Kähler

class,

c1(L) = [ωX ] ∈ H1,1(X,Z) = H1,1(X,C) ∩H2(X,Z). (3.114)
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Pulling back to the covering space with the quotient map q, the Kähler class is equivalently

encoded by an equivariant19 line bundle

q∗
(
L
)

= O
X̃

(a1, b, a2), (3.115)

which is determined by some a1, b, a2 ∈ Z>0. Note that, by definition, the sections of

O
X̃

(a1, b, a2) are the homogeneous polynomials in x, t, and y of multidegree (a1, b, a2).

We now want to compute the Calabi-Yau metric on the quotient X using Donald-

son’s algorithm. However, as discussed in detail in the previous section, we will formulate

everything in terms of Z3 × Z3-invariant data on the covering space X̃. First, one has to

pick a multidegree

kh =
(
a1, b, a2

)
∈
(
Z>0

)3
, a1 + a2 ≡ 0 mod 3 (3.116)

determining the Kähler class of the metric. Then one has to find a basis

span
{
sα
∣∣α = 0, . . . , N(kh)− 1

}
=

= C[x0, x1, x2, t0, t1, y0, y1, y2]Z3×Z3
kh

/〈
R̃(x, t, y), P̃ (x, t, y)

〉
(3.117)

for the invariant sections of O
X̃

(a1, b, a2) modulo the complete intersection equations, as

described in detail in [54]. This is all the data needed to apply Donaldson’s algorithm and

compute the approximate Calabi-Yau metric. Note that, since we always normalize the

volume to unity, the exact Calabi-Yau metric only depends on the ray Qkh but not on the

19As was shown in [35, 54], equivariance requires a1 + a2 ≡ 0 mod 3. We will always use the equivariant
action specified by eqns. (3.112a) and (3.112b).
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“radial” distance gcd(a1, b, a2). However, the number of sections N(kh) and, therefore, the

number of parameters in the matrix hαβ, does depend on kh explicitly. Going from kh to

2kh, 3kh, . . . increases the number of parameters and subsequently improves the accuracy

of the Calabi-Yau metric computed through Donaldson’s algorithm.

3.5.1 The Spectrum of the Laplacian on X

Having determined the metric, we now turn towards the spectrum of the Laplace-

Beltrami operator. We do this again by computing the matrix elements of the Laplacian on

the covering in an approximate basis of Z3 × Z3-invariant functions, completely analogous

to 3.4.1. To specify the truncated space of invariant functions on X̃, fix a multidegree kφ

proportional to kh; that is,

kφ = (kφ1, kφ2, kφ3) ∈ Qkh ∩
(
Z≥0

)3
. (3.118)

Then pick a basis
{
sα
∣∣α = 0, . . . , N(kφ)− 1

}
of degree-kφ homogeneous, Z3 × Z3-invariant

polynomials. These define a finite-dimensional space of invariant functions on X̃ as

FZ3×Z3
kφ

=

{
sαs̄β̄(∑

|xi|2
)kφ1

(∑
|ti|2

)kφ2
(∑
|yi|2

)kφ3

∣∣∣∣∣ α, β̄ = 0, . . . , N(kφ)− 1

}
. (3.119)

By computing the matrix elements of the Laplacian and solving the (generalized) matrix

eigenvalue problem, we obtain the eigenvalues λZ3×Z3
n of the Laplacian on the covering

space X̃ acting on Z3 × Z3-invariant functions. These are identical to the eigenvalues of
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the Laplacian on X, but with volume

Vol(X) =
1

|Z3 × Z3|
Vol(X̃). (3.120)

In the computation on X̃ we normalized the volume to unity. Hence, after rescaling the

volume of X back to one, the eigenvalues of the scalar Laplacian on X are

λn =
λZ3×Z3
n

3
√

9
. (3.121)

In 3.15, we compute the spectrum of the Laplace-Beltrami operator on X at two

different points in the Kähler moduli space but with the same complex structure. Recall

that we always normalize the volume, corresponding to the “radial” distance in the Kähler

moduli space, to unity. The non-trivial Kähler moduli are the “angular” directions in the

Kähler cone, and we consider the two different rays Q·(2, 1, 1) and Q·(2, 2, 1). As expected,

the actual eigenvalues do depend on the Kähler moduli, as is evident from 3.15.

Furthermore, note that there appear to be no multiplicities in the spectrum. At

first sight, this might be a surprise to the cognoscente, as there is a residual symmetry. By

construction [35], the covering space X̃ comes with a (Z3)4 group action of which only a

Z3 × Z3 subgroup acts freely and can be divided out to obtain X. The remaining generators

are

γ3 :


[x0 : x1 : x2] 7→ [x1 : x2 : x0]

[t0 : t1] 7→ [t0 : t1]

[y0 : y1 : y2] 7→ [y0 : y1 : y2]

(3.122a)
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Figure 3.15: Eigenvalues of the scalar Laplace operator on the Z3 × Z3-threefold X
with complex structure λ1 = 0 = λ2, λ3 = 1 and at two distinct points
in the Kähler moduli space. The metric is computed at degree kh =
(6, 3, 3) and nh = 170,560 points as well as degree kh = (6, 6, 3) and
nh = 290,440 points, corresponding to the two different Kähler moduli.
The matrix elements of the scalar Laplacian are always evaluated on
nφ = 500,000 points. The blue pluses and crosses, corresponding in
each case to kφ with the largest radial distance, are the highest precision
eigenvalues for the two metrics.

149



Aut(X̃)-Rep. ρ1, . . . , ρ36 ρ37, . . . , ρ54 ρ55, . . . , ρ81

dim(ρ) 1 1 2

dim
(
ρZ3×Z3

)
0 1 0

Table 3.9: Number nd of distinct irreducible representations of Aut(X̃) in complex
dimension d. We also list the dimension dimZ3×Z3

d of the Z3×Z3-invariant
subspace for each representation.

and

γ4 :


[x0 : x1 : x2] 7→ [x0 : x1 : x2]

[t0 : t1] 7→ [t0 : t1]

[y0 : y1 : y2] 7→ [y1 : y2 : y0]

(3.122b)

in addition to γ1 and γ2, see eqns. (3.112a) and (3.112b). Moreover, we used the point

λ1 = 0 = λ2, λ3 = 1 where the polynomials eq. (3.111) are also invariant under complex

conjugation. Hence, the symmetry group on the covering space is

Aut(X̃) = Z2 n
(
Z3

)4
= D6 ×

(
Z3

)3
. (3.123)

To understand the latter identity, note the Z2 action in the semidirect product:

• Complex conjugation commutes with γ2, γ3, and γ4.

• Complex conjugation does not commute with γ1, but satisfies

γ1

(
[x̄0 : x̄1 : x̄2], [t̄0 : t̄1], [ȳ0, ȳ1, ȳ2]

)
= γ2

1

(
[x0 : x1 : x2], [t0 : t1], [y0, y1, y2]

)
. (3.124)

Hence, γ1 together with complex conjugation generate D6, the dihedral group with

6 elements.

The group Aut(X̃) is of order 162 = 6×33 and has one- and two-dimensional representations
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due to the D6 factor. As discussed previously, the surviving eigenfunctions on the quotient

X are the Z3 × Z3-invariant eigenfunctions on the covering space X̃. Hence, we have to

determine the subspace invariant under the freely acting Z3 × Z3 inside of Aut(X̃). We

list all this data in 3.9. We find that all the multiplicities on X̃ are, indeed, one.

3.6 The Sound of Space-Time

3.6.1 Kaluza-Klein Modes of the Graviton

Consider a 10-dimensional spacetime of the form R3,1 × Y , where Y is some real,

compact 6-dimensional Calabi-Yau manifold. Since Y is compact, there is a scale associated

with it. Let us agree on a unit of length L such that Vol(Y ) = 1 · L6. The gravitational

interactions in this world are complicated, but have two easy limiting cases. First, if the

separation r of two probe masses M1 and M2 is large, then the gravitational potential

between them is given by Newton’s law

V (r � L) = −G4
M1M2

r
. (3.125)

In the other extreme, when r is very small, the potential becomes the Green-Schwarz-

Witten law

V (r � L) = −G10
M1M2

r7
. (3.126)

By dimensional analysis

G4 ∼
G10

L6
, (3.127)

151



with a constant of proportionality independent of Y to be determined below. In-between

these two extremal limits for the separation r, the gravitational potential is a complicated

interpolation between eq. (3.125) and eq. (3.126).

There are two alternative ways of describing fields on R3,1 × Y . One can ei-

ther directly use 10-dimensional field theory, or work with an infinite tower of massive

Kaluza-Klein fields depending on R3,1 only. Both methods are equivalent, but for the

purposes of this work only consider the Kaluza-Klein compactification [60, 61, 62]. In

this approach, the single 10-dimensional massless graviton g
(10D)
AB , A,B = 0, . . . , 9 is de-

composed into 4-dimensional gravitons, vectors, and scalars. For simplicity, let us only

consider 4-dimensional gravity, that is, 4-d fields with symmetrized indices a, b = 0, . . . , 3.

Then

g
(10D)
ab

(
x0, . . . , x3, y1, . . . , y6) =

∞∑
n=0

φn(y1, . . . , y6) · g(4D),n
ab (x0, . . . , x3), (3.128)

where the (y1, . . . , y6) ∈ Y -dependence of the 10-dimensional metric is now encoded in a

basis of functions φn ∈ C∞(Y,R). The most useful such basis consists of the solutions to

the equations of motion on Y , that is, the eigenfunctions of the scalar Laplace operator

∆Y φn(y1, . . . , y6) = λnφn(y1, . . . , y6), λn ≤ λn+1. (3.129)

The corresponding 4-dimensional Lagrangian contains the infinite tower of fields g
(4D),n
ab of

mass

mn =
√
λn, n = 0, . . . ,∞. (3.130)

As discussed previously, there is a unique zero mode λ0 = 0 leading to a single massless
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graviton in 4 dimensions. The gravitational potential is then the sum of the potential due

to the massless graviton plus the Yukawa-interaction of the massive modes,

V (r) = −G4
M1M2

r

∞∑
n=0

e−mnr = −G4
M1M2

r

(
1 +

∞∑
n=1

e−mnr

)
. (3.131)

At distance scales r � 1
m1

, only the massless graviton propagates. This expected behaviour

is clearly visible in the r � 1
m1

limit of eq. (3.131), and one immediately recovers eq. (3.125).

At distance scales r � 1
m1

, on the other hand, the massless graviton as well as the infinite

tower of massive spin-2 fields propagate. The corresponding asymptotic behaviour of the

gravitational potential is less obvious. However, note that the asymptotic growth

lim
n→∞

λ3
n

n
= 384π3L−6 ⇔ mn

n→∞
−−−−−→ 2

6
√

6
√
π n1/6L−1 (3.132)

of the Kaluza-Klein masses is known from Weyl’s formula, see 3.2.3. Hence, the r � 1
m1

limit of eq. (3.131) is

V (r) = −G4
M1M2

r

∞∑
n=0

e−mnr

−→ ∼ −G4
M1M2

r

∫ ∞
n=0

e−2 6√6
√
πn1/6r/L dn = − 15G4L

6

8π3︸ ︷︷ ︸
=G10

M1M2

r7
.

(3.133)

Again, this matches the expected behaviour eq. (3.126).

The purpose of this section is to fill the gap between the extremal limits and

determine the gravitational potential at distances r ' L. This explicitly depends on

the details of the internal Calabi-Yau threefold Y , and there is no way around solving

eq. (3.129). The eigenvalues λn and corresponding eigenfunctions φn depend on the Calabi-
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Figure 3.16: The gravitational potential V (r) computed from eq. (3.131) on R3,1 ×
Q̃F , where Q̃F is the Fermat quintic with unit volume, Vol(Q̃F ) = 1·L6.
The Kaluza-Klein masses mn =

√
λn are computed using the numerical

results for λn given in 3.3.2.
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Yau metric and can only be computed numerically. We have presented a detailed algorithm

for calculating the spectrum of ∆ in this chapter, and given the results for a number of

different Calabi-Yau threefolds. As an example, let us compute the gravitational potential

V (r) derived from the numerical eigenvalues of the scalar Laplace operator on the Fermat

quintic discussed in 3.3.2. The result is plotted in 3.16.

3.6.2 Spectral Gap

As is evident from 3.16, deviations from the pure 1
r (green line) and 1

r7 (red line)

potentials occur for r in the region where these gravitational potentials have a similar

magnitude. In fact, these curves intersect at

G4
M1M2

r0
=

15G4L
6

8π3

M1M2

r7
0

⇔ r0 =
6

√
15

8π3
L ≈ 0.627L. (3.134)

Note that this point of intersection is independent of the Calabi-Yau manifold and its geom-

etry. As will become clear below, for Calabi-Yau threefolds which are relatively “round”,

such as the Fermat quintic, r0 is a good estimate for the point of substantial deviation

from the 1
r potential. However, for geometries that are stretched or develop a throat in at

least one direction, this deviation point is best determined by another scale, in principle

independent of the volume of the internal space. This other scale is the mass m1 of the
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lightest Kaluza-Klein mode20, see eq. (3.131). For such manifolds, the spectral gap21 λ1

and, hence, the mass m1 becomes smaller. Eventually, the manifold may be sufficiently

elongated that 1
m1
� r0. In this case 1

m1
becomes the best estimate of the point of deviation

from the 1
r potential.

Of course, both the volume and λ1 = m2
1 are determined by the geometry of the

internal Calabi-Yau manifold. However, what geometric property really determines the

spectral gap λ1? In fact, this is determined by the “diameter” of the manifold. Recall that

the diameter D is defined to be the largest separation of any two points, as measured by the

shortest geodesic between them. Then, on an arbitrary real d-dimensional manifold with

non-negative scalar curvature22, the spectral gap is essentially determined by the diameter

via [64, 65]

π2

D2
≤ λ1 ≤

2d(d+ 4)

D2
⇔ π

D
≤ m1 ≤

√
2d(d+ 4)

D
. (3.137)

Clearly, in a compactification where all internal directions are essentially of equal size, the

diameter is of the order of 1 · L. However, as soon as there is even one elongated internal

direction or one long throat/spike develops, the diameter can be very large. Hence, the

20The leading order correction to the gravitational potential is often [63, 58] parametrized by the lowest
Kaluza-Klein mass m1 and its multiplicity µ1 as

V (r) ≈ −G4
M1M2

r

(
1 + µ1e

−m1r
)
. (3.135)

While this works well for symmetric spaces like spheres and tori with their large multiplicities and widely-
separated eigenvalues, there are two issues when dealing with more general manifolds:

• The multiplicity is caused by symmetries, and tiny non-symmetric deformations can (and will) make
the eigenvalues non-degenerate (see 3.4).

• The separation between the zero mode and the first massive mode is, in general, much larger than
the separation between the first and second mode. For example, on the non-symmetric “random
quintic” Calabi-Yau threefold in 3.3.1,

m0 = 0, m1 ≈ 5.95, m2 ≈ 6.00. (3.136)

21The first massive eigenvalue of the scalar Laplacian, λ1, is also called the spectral gap since it is the
gap between the unique zero mode λ0 = 0 and the first massive mode.

22In particular, a Calabi-Yau d
2
-fold.
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spectral gap becomes very small and deviations from 1
r gravity appear for relatively large

values of r ∼ 1
m1

.

The definition of the diameter D is very impractical if one wants to explicitly cal-

culate it, since this would require global knowledge about the shortest geodesics. However,

to get a rough estimate of D, one can reverse the inequalities eq. (3.137) and then use

the numerically computed value for λ1. For example, on the Fermat quintic our numerical

computation in 3.3.3 yielded λ1 ≈ 41.1. Therefore, the diameter must be in the range

0.490 ≈ π√
λ1
≤ D ≤

√
2 · 6(6 + 4)√

λ1
≈ 1.71. (3.138)

Thus, computing the value of λ1 numerically on a Calabi-Yau threefold for specific values

of its moduli gives us direct information about the “shape” of the manifold; information

that would be hard to obtain by direct calculation of the diameter D. For example, it

follows from eq. (3.138) that the Fermat quintic is relatively “round”.
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Chapter 4

Cosmic Strings

4.1 Introduction

Heterotic string and M -theory when compactified on smooth geometric and vec-

tor bundle backgrounds [1, 22, 66, 67, 68, 69, 70] can give rise to “heterotic standard

models” [12, 14, 71]; that is, four-dimensional N = 1 supersymmetric theories with ex-

actly the matter and Higgs spectrum of the MSSM. Supersymmetry can be spontaneously

broken by non-perturbative effects in the hidden sector. Integrating out this sector, the

low-energy theory contains “soft” supersymmetry breaking operators whose generic form

is well-known [72, 73]. To be phenomenologically viable, any such theory must have two

properties: 1) three right-handed neutrino chiral multiplets, one per family, and 2) “mat-

ter parity”, a discrete Z2 symmetry which prohibits too rapid baryon and lepton number

violating processes [74, 75, 76].

These two properties are most easily satified in heterotic standard models con-

structed using vector bundles with SU(4) structure group [13, 77]. In addition to the MSSM

spectrum, such vacua have three right-handed neutrino chiral multiplets, thus satisfying the
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first property. The low-energy gauge group also contains the SU(3)C × SU(2)L × U(1)Y

gauge group of the standard model augmented, however, by a gauged U(1)B−L factor.

This contains matter parity as a discrete subgroup. If the B-L symmetry could be sponta-

neously broken to its matter parity subgroup, then the second property would be satisfied

as well. However, this is not possible in smooth heterotic compactifications since the nec-

essary 3(B − L)-even multiplets are disallowed as zero-modes. A second solution is to

have U(1)B−L radiatively broken at low energy, not too far above the electroweak scale. It

would then act as a custodial symmetry for matter parity, suppressing baryon and lepton

violating decays yet not unduly affecting electroweak physics.

In several recent papers [78, 79], it was shown using a quasi-analytic solution

to the renormalization group equations (RGEs) that this can indeed occur for a range of

initial soft breaking parameters. Scaling down from the compactifcation mass, the gauged

U(1)B−L is first spontaneously broken by a non-zero vacuum expectation value (VEV) of

the third family right-handed sneutrino. This is followed by radiative VEVs developing

in the Higgs fields which induce an electroweak phase transition. The B-L/electroweak

hierarchy was found to be of O(10)-O(100). Recently, these results have been expanded

to a much wider range of initial soft parameters using a completely numerical solution of

the RGEs. This work will appear elsewhere [80]. Here, we simply note that this expanded

range of parameters leads to three distinct possibilities for the soft mass squared parameters

of squarks/sleptons at the electroweak scale. In addition to the negative third family right-

handed sneutrino mass, 1) all such parameters are positive, 2) all are positive with the

exception of a right-handed charged slepton and 3) all are positive with the exception of a

left-handed squark. Each possibility can play an interesting role in cosmology.
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The starting point of this work is the assumption that smooth heterotic compact-

ifications with SU(4) structure group are potentially phenomenologically viable theories

for low-energy particle physics. The distinct signature of this type of vacuum is that a

gauged U(1)B−L symmetry is spontaneously broken at a low scale, not too far above the

electroweak phase transition. As is well-known [81, 82], the breaking of a gauged Abelian

symetry can lead to topologically stable cosmic strings. In principle, these strings can

exhibit a wide variety of observable cosmological phenomena [83, 84, 85, 86, 87]. However,

much of the analysis of cosmic strings has been carried out within the context of grand uni-

fied theories or specially constructed supersymmetric models whose spectra contain fields

in addition to those of the MSSM with right-handed neutrinos [88, 89, 90, 91, 92, 93, 94].

Furthermore, the coupling parameters associated with these fields are not constrained and

can be assumed to be sufficiently large. As a rule, it is these extra fields that induce the

potentially observable phenomena, such as bosonic or fermionic superconductivity [95]. In

smooth B-L MSSM heterotic compactifications, there are no additional fields. The break-

ing of U(1)B−L and electroweak symmetry is accomplished via radiative expectation values

for a right-handed sneutrino and Higgs fields respectively. As a consequence, the relevant

parameters in this theory are those of the MSSM and, hence, tightly constrained by phe-

nomenology. It follows that the existence and properties of cosmic strings in this context

are severely restricted.

In this chapter, we analyze cosmic strings in the B-L MSSM theory. We show

that such strings can indeed exist but are restricted to be BPS solutions at the critical

boundary between Type I and Type II superconductors. There is a stable minimum of the

scalar potential in which 1) B-L is broken by a VEV 〈ν3〉 of the third family right-handed
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sneutrino and 2) electroweak symmetry is broken by Higgs expectation values 〈H0〉, 〈H̄0〉.

At this minimum, all other scalar fields have positive squared masses. Some, however,

specifically right-handed charged sleptons and left-chiral squarks, have effective masses

〈m2〉 = m2 + c〈ν3〉2 with positive coefficient c, where m2 is the associated soft breaking

mass parameter. Three possibilites then arise. First, all m2 parameters might be positive,

making the potential energy at the origin of field space a minimum in all but the third fam-

ily sneutrino direction. Second, a charged right-handed slepton could have a negative m2

parameter, in addition to the right-handed sneutrino. Although the B-L/electroweak vac-

uum remains the minimum, this destabilizes the slepton direction in the core of the cosmic

string, potentially leading to a charge breaking condensate and bosonic superconductiv-

ity [96]. The third possibility is that the soft mass squared parameter for a squark becomes

negative, potentially leading to a charge and color breaking superconducting condensate.

We have shown in [80] that each of these types of vacua is possible for a given range of

initial soft parameters. From both the cosmological and phenomenological point of view, it

is of interest to see if bosonic supercondictivity can occur in B-L MSSM cosmic strings. To

explore this, we study a generic class of theories that arise in this context. Using a numeri-

cal analysis, a bound is derived that must be satisfied to allow the formation of a non-zero

condensate and, hence, bosonic superconductivity. This analysis is then applied to the

most straightforward B-L MSSM vacua and cosmic strings using simplifying assumptions.

We find that the right-handed sneutrino Yukawa parameter and the gB−L gauge coupling

are too small to permit this essential constraint to be satisfied. We conclude that at least

the simplest B-L MSSM cosmic strings do not exhibit bosonic superconductivity.

B-LMSSM cosmic strings may also exhibit superconductivity induced by fermionic
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zero-modes in the string core [97, 98, 96]. The fact that the gauged U(1)B−L extension

of the MSSM is rendered anomaly free by the inclusion of three families of right-handed

neutrino chiral multiplets plays an important role here. The cosmic string initially develops

as a non-zero n-fold winding of 〈ν3〉 around some line in space. This couples directly to

the left-chiral tauon ψE− and the chargino ψH+ , forming left-moving fermion zero-modes

on the string worldsheet. However, anomaly cancellation requires the appearance of right-

moving fermionic modes, whose identity in the B-L MSSM context is not self-evident. We

show that the third family left-handed sneutrino develops a small VEV 〈N3〉 following

the electroweak phase transition. This wraps the core of the cosmic string with winding

−n, opposite that that of 〈ν3〉. The right-chiral tauon ψe+ and chargino ψH− couple to

this field, inducing right-handed zero-modes which cancel all worldsheet anomalies. Thus,

there is potential fermionic superconductivity in the cosmic string. We conclude, how-

ever, that the electroweak phase transition will, in general, render these fermionic currents

unobservable [99, 100, 101].

4.2 The N = 1 Supersymmetric Theory

We consider an N = 1 supersymmetric theory with gauge group

G = SU(3)C × SU(2)L × U(1)Y × U(1)B−L (4.1)

and the associated vector superfields. The gauge parameters are denoted g3, g2, gY and

gB−L respectively. The matter spectrum consists of three families of quark/lepton chiral

superfields, each family with a right-handed neutrino. They transform under the gauge

162



group in the standard manner as

Qi = (3,2, 1/3, 1/3), ui = (3̄,1,−4/3,−1/3), di = (3̄,1, 2/3,−1/3) (4.2)

for the left and right-handed quarks and

Li = (1,2,−1,−1), νi = (1,1, 0, 1), ei = (1,1, 2, 1) (4.3)

for the left and right-handed leptons, where i = 1, 2, 3. In addition, the spectrum has one

pair of Higgs-Higgs conjugate chiral superfields transforming as

H = (1,2, 1, 0), H̄ = (1,2,−1, 0). (4.4)

When necessary, the left-handed SU(2)L doublets will be written as

Qi = (Ui, Di), Li = (Ni, Ei), H = (H+, H0), H̄ = (H̄0, H̄−). (4.5)

There are no other fields in the spectrum. The three right-handed neutrino chiral multiplets

render this U(1)B−L extension of the MSSM anomaly free.

The supersymmetric potential energy is given by the sum over the modulus

squared of the F and D-terms. The F -terms are determined from the superpotential

W = µHH̄ +
3∑
i=1

(
λu,iQiHui + λd,iQiH̄di + λν,iLiHνi + λe,iLiH̄ei

)
, (4.6)

where we assume a mass-diagonal basis for simplicity. An innocuous mixing term of the
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form LiH as well as the dangerous lepton and baryon number violating interactions

LiLjek, LiQjdk, uidjdk (4.7)

are disallowed by the U(1)B−L gauge symmetry. The SU(3)C and SU(2)L D-terms are of

standard form. The U(1)Y and U(1)B−L D-terms are

DY = gY φ
†
A (Y/2)AB φB (4.8)

and

DB−L = gB−Lφ
†
A (YB−L)AB φB (4.9)

respectively, where index A runs over all scalar fields φA. In the D-eliminated formalism,

any Fayet-Iliopoulos parameters can be consistently absorbed into the definition of the soft

supersymmetry breaking scalar masses. Hence, they do not appear in (4.8) and (4.9).

In addition to supersymmetric interactions, the potential energy also contains

explicit soft supersymmetry violating terms. This breaking can arise in either F -terms, D-

terms or both in the hidden sector. We will restrict our discussion to soft supersymmetry

breaking scalar interactions arising exclusively from F -terms. Their form is well-known

and, in the present context, given by [72, 102, 103, 104, 73]

Vsoft = V2s + V3s, (4.10)
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where V2s are scalar mass terms

V2s =
3∑
i=1

(m2
Qi |Qi|

2 +m2
ui |ui|

2 +m2
di
|di|2 +m2

Li |Li|
2 +m2

νi |νi|
2

+m2
ei |ei|

2 +m2
H |H|2 +m2

H̄ |H̄|
2)− (BHH̄ + hc) (4.11)

and V3s are the scalar cubic couplings

V3s =

3∑
i=1

(AuiQiHui +AdiQiH̄bi +AνiLiHν̃i +AeiLiH̄ei + hc). (4.12)

We choose the parameters in (4.11) and (4.12) to be flavor-diagonal.

4.3 The B-L/Electroweak Hierarchy

In [78, 79] a detailed one-loop renormalization group analysis of this theory was

carried out. In that analysis, tanβ was limited to 6.32 ≤ tanβ ≤ 40 and a specific range

of initial parameters near the gauge unification scale Mu ' 3 × 1016GeV was chosen so

as to allow a quasi-analytic solution of the RGEs. Here, we simply present the results.

Subject to realistic, but constrainted, assumptions about the soft breaking parameters, it

was shown that a hierarchy of radiative symmetry breaking takes place.

First, at an energy scale of ∼ TeV the third family right-handed sneutrino soft

mass parameter is negative; that is, m2
ν3
< 0. It follows that this sneutrino acquires a

vacuum expectation value (VEV)

〈ν3〉2 = −
m2
ν3

g2
B−L

. (4.13)
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Furthermore, evaluated at 〈ν3〉 all other scalars, including the Higgs fields, have vanishing

VEVs. Therefore, this is a stable vacuum which spontaneously breaks U(1)B−L while

preserving the remaining SU(3)C × SU(2)L × U(1)Y gauge symmetry. The Higgs effect

then leads to identical masses for the B-L vector boson and the radial real scalar δν3 given

by

MAB−L = mδν3 =
√

2gB−L〈ν3〉 . (4.14)

It is of interest to recall the expressions for the slepton/squark masses at this minimum of

the potential. They were found to be

〈m2
Li〉 = m2

Li − g
2
B−L〈ν3〉2

〈m2
ν1,2
〉 = m2

ν1,2
+ g2

B−L〈ν3〉2, 〈m2
ei〉 = m2

ei + g2
B−L〈ν3〉2 (4.15)

and

〈m2
Qi〉 = m2

Qi +
1

3
g2
B−L〈ν3〉2

〈m2
ui〉 = m2

ui −
1

3
g2
B−L〈ν3〉2, 〈m2

di
〉 = m2

di
− 1

3
g2
B−L〈ν3〉2 (4.16)

for i = 1, 2, 3. Note from the minus sign in the expressions for 〈m2
Li
〉 and 〈m2

ui〉, 〈m
2
di
〉 that

for this to be a stable vacuum the soft mass parameters m2
Li

and m2
ui , m

2
di

must always

be positive at the B-L scale. This was shown to be the case. However, the same is not

required for the m2
ν1,2

, m2
ei and m2

Qi
parameters. These can become negative at the B-L

scale as long as 〈m2
ν1,2
〉, 〈m2

ei〉 and 〈m2
Qi
〉 are positive. This has important implications for

bosonic superconductivity, as we will discuss in Section 5. For simplicity, we will always

take m2
ν1,2

to be positive at any scale, as was done in [78, 79].

166



Second, scale all parameters down to ∼ 102GeV . Here, one of the diagonalized

Higgs soft masses, indicated by a prime, becomes negative; that is, m2
H′ < 0. It follows

that the up and down neutral Higgs fields develop non-vanishing VEVs given by

〈H0〉2 = −
m2
H′

g2
Y + g2

2

, 〈H̄0〉 =
1

tanβ
〈H0〉 . (4.17)

Evaluated at 〈H0〉, 〈H̄0〉 and 〈ν3〉, all other VEVs vanish. Therefore, this is a stable

vacuum which, while continuing to break B-L symmetry at ∼ TeV , now spontaneously

breaks SU(2)L × U(1)Y to U(1)EM at the electroweak scale. This gives the Z and W±

vector bosons mass. Note that in our range of tanβ, 〈H̄0〉 � 〈H0〉. Hence, although

included in the numerical analysis, to simplify equations we will not display any 〈H̄0〉

contributions. For example, to leading order

MZ =
√

2(g2
Y + g2

2)1/2〈H0〉 . (4.18)

The expressions for the slepton/squark masses at this minimum are each modified by

additional terms proportional to the Higgs VEVs. By far the largest such contribution is

to the third family left- and right-handed up squark masses from their Yukawa interaction

in (4.6). Ignoring much smaller D-term corrections, these are given by

〈〈m2
U3
〉〉 = m2

U3
+

1

3
g2
B−L〈ν3〉2, 〈〈m2

u3
〉〉 = m2

u3
− 1

3
g2
B−L〈ν3〉2 (4.19)

where

m2
U3,u3

= m2
Q3,u3

+ |λu3 |2〈H0〉2 . (4.20)
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Comparing to (4.16), one sees that the mass parameters of U3 and u3 are modified by a

positive Higgs VEV contribution. For this to be a stable vacuum, m2
u3

must be positive

at the electroweak scale. On the other hand, as long as 〈〈m2
U3
〉〉 is positive one can have

m2
U3

< 0. This is consistent with the conclusions at the B-L scale. However, to leading

order

〈〈m2
D3
〉〉 = m2

Q3
+

1

3
g2
B−L〈ν3〉2 . (4.21)

It follows that if m2
Q3

< 0, the potential is most destabilized in the D3 direction. Note

that all other Higgs VEV contributions, either through F -terms or D-terms, are much

smaller. Hence, with the exception of the splitting of the U3 and D3 mass parameters, all

conclusions regarding soft masses reached at the B-L scale remain valid. For simplicity, we

will no longer notationally distinguish between soft mass parameters m2 and their Higgs

corrected values m2.

Finally, using the above results one can calculate the B-L/electroweak hierarchy.

It follows from (D.6) and (4.17) that

〈ν3〉
〈H0〉

=

√
g2
Y + g2

2

gB−L

|mν3 |
|mH′ |

. (4.22)

In the analysis of [78, 79], tanβ was limited to 6.32 ≤ tanβ ≤ 40 and there was a specific

range of initial parameters. For a generic choice in this range, it was found that

19.9 ≤ 〈ν3〉
〈H0〉

≤ 126 . (4.23)

This demonstrates that a stable vacuum exists with an phenomenologically viable B-

L/electroweak hierarchy. Within this range of parameters, m2
ν3

< 0. All other slep-
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ton/squark soft masses are positive with the exception of m2
Q3

, which is negative. Hence,

although the B-L/electroweak vacuum is a minumum, at the origin of field space the

potential is unstable in the D3 direction. This has interesting applications to bosonic

superconductivity and will be discussed in detail in Section 5.

Recently, this analysis has been expanded to a much larger initial parameter space

using a completely numerical calculation of the RGE’s. This will appear elsewhere. Suffice

it here to say that, over this entire extended range, masses m2
ν3

and m2
H′ are negative at

the electroweak scale and induce a viable hierarchy of

O(10) ≤ 〈ν3〉
〈H0〉

≤ O(102) . (4.24)

However, within this expanded context, the squark/slepton masses are considerably less

constrained. Specifically, each of the following combinations of soft scalar mass parameters

at the electroweak scale can now occur: 1) all positive, 2) all positive except for m2
e3 < 0,

3) all positive except for m2
Q3

< 0 and 4) combinations of these. We emphasize that in all

cases the B-L/electroweak vacuum is a stable absolute minimum of the potential and does

not break color or charge symmetry.

4.4 The B-L Cosmic String

We begin by analyzing the theory at the B-L breaking scale. The preceding

results show that this symmetry is radiatively broken by a VEV of the third right-handed

sneutrino. Furthermore, evaluated at this vacuum, all squark, slepton and Higgs mass

squares are positive. That is, this is a minimum of the potential energy and neither

electroweak symmetry nor color is spontaneously broken at this scale. The situation at the
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origin of field space is more complex. As discussed above, it is possible for one or both of

m2
e3 and m2

Q3
to be negative. However, to introduce the basic cosmic string solution, in

this section we analyze the theory assuming all soft mass parameters are positive.

Under this assumption, the relevant physics is described by

L = |Dν3µν3|2 −
1

4
FB−LµνF

µν
B−L − V (ν3) , (4.25)

where

Dν3µ = ∂µ − igB−LAB−Lµ (4.26)

and

V (ν3) = m2
ν3
|ν3|2 +

g2
B−L
2
|ν3|4 . (4.27)

The potential arises from two sources. The first term is the soft supersymmetry breaking

third sneutrino mass term in (4.11) at the B-L scale. The second term arises as the pure

third sneutrino part of the DB−L supersymmetric contribution in (4.9). Recall from the

preceding RGE analysis that m2
ν3

= −|m2
ν3
| at the B-L scale. Hence, this potential is

unstable at the origin and has a minimum at

〈ν3〉2 = −
m2
ν3

g2
B−L

. (4.28)

Using this, potential (4.27) can be rewritten as

V (ν3) =
g2
B−L
2

(|ν3|2 − 〈ν3〉2)2 . (4.29)

Note that the soft supersymmetry breaking ν3 mass term has been re-expressed as the
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Fayet-Iliopoulos component of an effective D-term. It follows from this that the Higgs

effect associated with (4.28) gives the AB−L vector boson and the radial real scalar δν3 an

identical mass

MAB−L = mδν3 =
√

2gB−L〈ν3〉 . (4.30)

The cosmic string solution to this theory is well-known [82]. Assuming a static

solution that is translationally invariant in the z-coordinate, the cylindrically symmetric

solution is of the form

ν3 = einθ〈ν3〉f(r) , AB−Lr = 0, AB−Lθ =
n

gB−Lr
α(r) . (4.31)

Here, integer n is the “winding number” of the string around the origin, which will always

be assumed non-zero. The functions f(r) and α(r) have the boundary conditions

f
r→∞−→ 1, f

r→0−→ 0 and α
r→∞−→ 1, α

r→0−→ 0 (4.32)

respectively. Before analyzing these functions further, it is important to note that there

are two characteristic lengths associated with any cosmic string solution. These are

rs = m−1
δν3

, rv = M−1
AB−L

. (4.33)

The explicit solutions for functions f(r) and α(r) will depend on the ratio

R =
r2
v

r2
s

. (4.34)
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In our case, we see from (4.30) that

rs = rv =
〈ν3〉−1

√
2gB−L

(4.35)

and, hence, R is at the critical point

R = 1 . (4.36)

This is a consequence of the softly broken supersymmetry of our theory, and will have

important implications when we study bosonic superconductivity. At the critical point,

the equations for f(r) and α(r) simplify to

f ′ =
nf

r
(1− α) ,

α′

r
=

1

|n|
〈ν3〉2(f2 − 1) (4.37)

where ′ is the derivative with respect to r. Explicit solutions, even to these simplified

equations, are not known, although their asymptotic expressions at small and large r

have been evaluated [82]. However, precise numerical solutions for f(r) and α(r) exist in

the literature, See, for example, [105]. We use both the asymptotic and numerical results

throughout this work. Another consequence of being at the critical point is that the energy

density of the cosmic string simplifies to the exact result

ρ = 2π〈ν3〉2 . (4.38)

Let us now consider the theory at the electroweak breaking scale. As discussed

in the previous section, the up and down neutral Higgs fields develop non-vanishing VEVs
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given by

〈H0〉2 = −
m2
H′

g2
Y + g2

2

, 〈H̄0〉 =
1

tanβ
〈H0〉 . (4.39)

Evaluated at 〈H0〉, 〈H̄0〉 and 〈ν3〉, all other VEVs vanish. Therefore, this is a stable

vacuum which breaks both B-L and electroweak symmetries with a viable hierarchy. Does

the electroweak phase transition effect the basic B-L cosmic string solution? Since both

Higgs field have vanishing B-L charge, ν3 is electroweak neutral and the Yukawa coupling

λν3 in (4.6) is of order 10−9, the Higgs VEV contribution to the dynamical equations for

ν3 is highly suppressed. Furthermore, it remains possible to choose initial parameters so

that all soft masses are positive, even at the electroweak scale. It follows that the form

of the cosmic string solution given in (4.31) does not change. Although the Higgs VEVs

are no longer zero, since these fields are B-L neutral there are no topologically non–trivial

solutions to the Higgs equations of motion [106]. Henceforth, we assume that the Higgs

fields are everywhere constants with the values given in (4.39).

4.5 Bosonic Superconductivity

Bosonic superconductivity can occur if a charged scalar field develops a non-

vanishing condensate in the core of the cosmic string [96]. In the phenomenological B-L

MSSM theory discussed in this work, there are a number of different ways that this could

occur, each intricately related to other particle physics phenomena. Clearly, the first

requirement for the existence of any such condensate is that a charged scalar mass squared

at the origin of field space, that is, a soft supersymmetry breaking mass parameter plus

small Higgs VEV corrections, becomes negative. As discussed in Section 3, there are several

distinct ways in which this can occur. In this section, we examine bosonic superconductivity
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within the core of the cosmic string in each of these scenarios. The entire analysis will be

carried out at the electroweak scale.

Case 1: All Soft Masses Positive

This is the case described in the previous section. Since all soft supersymmetry

breaking masses are positive, there can be no scalar condensates and, hence, no bosonic

superconductivity at the core of the cosmic string. However, such strings could exhibit

fermionic superconductivity. This will be discussed in Section 6.

Case 2: Negative Soft Slepton Mass

As discussed in Section 3, there is a region of initial parameter space such that,

at the electroweak scale, all soft masses are positive with the exception of m2
e3 < 0. This

is the simplest case potentially admitting a non-zero condensate and, hence, we analyze it

first. The relevant Lagrangian for discussing the vacuum of ν3 and e3 is given by

L = |Dν3µν3|2 −
1

4
FB−LµνF

µν
B−L + |De3µe3|2 −

1

4
FY µνF

µν
Y − V (ν3, e3) (4.40)

where

Dν3µ = ∂µ − igB−LAB−Lµ, De3µ = ∂µ − igB−LAB−Lµ − igYAY µ (4.41)

and

V (ν3, e3) = m2
ν3
|ν3|2 +m2

e3 |e3|2 +
g2
B−L
2

(|ν3|2 + |e3|2)2 +
g2
Y

2
|e3|4 . (4.42)

The first two terms in the potential are the soft supersymmetry breaking mass terms in

(4.11), while the third and fourth terms are supersymmetric and arise from the DB−L
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and DY in (4.9) and (4.8) respectively. Contributions to (4.42) from the relevant Yukawa

couplings in (4.6) are suppressed, since λν3 and λe3 are of order 10−9 and 10−2 respectively.

Hence, we ignore them. The RG analysis tells us that both m2
ν3
< 0,m2

e3 < 0 at the

electroweak scale. Hence, the potential is unstable at the origin of field space and has two

other local extrema at

〈ν3〉2 = −
m2
ν3

g2
B−L

, 〈e3〉 = 0 (4.43)

and

〈ν3〉 = 0, 〈e3〉2 = −
m2
e3

g2
B−L + g2

Y

(4.44)

respectively. Using these, potential (4.42) can be rewritten as

V (ν3, e3) =
g2
B−L
2

(|ν3|2 − 〈ν3〉2)2 + g2
B−L|ν3|2|e3|2

+
g2
B−L + g2

Y

2
(|e3|2 − 〈e3〉2)2 . (4.45)

Let us analyze these two extrema. Both have positive masses in their radial

directions. At the sneutrino vacuum (4.43), the mass squared in the e3 direction is given

by

m2
ee |〈ν3〉 = g2

B−L〈ν3〉2 − (g2
B−L + g2

Y )〈e3〉2 = |mν3 |2 − |me3 |2 , (4.46)

whereas at the stau vacuum (4.44), the mass squared in the ν3 direction is

m2
ν3
|〈e3〉 = g2

B−L〈e3〉2 − g2
B−L〈ν3〉2 = |me3 |2(1 +

g2
Y

g2
B−L

)−1 − |mν3 |2 . (4.47)

Note that either (4.46) or (4.47) can be positive, but not both. To be consistent with the

hierarchy solution, we want (4.43) to be a stable minimum. Hence, we demand m2
e3 |〈ν3〉 > 0
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or, equivalently, that

|mν3 |2 > |me3 |2 . (4.48)

It follows from the RG analysis in [80] that one can always find a subregion of the initial

parameter space so that this condition holds. We assume (4.48) for the remainder of this

subsection. It then follows from (4.47) that m2
ν3
|〈e3〉 < 0 and, hence, the stau extremum

(4.44) is a saddle point. As a consistency check, note that V |〈ν3〉 < V |〈e3〉 if and only if

g2
B−L〈ν3〉4 > (g2

B−L + g2
Y )〈e3〉4 (4.49)

or, equivalently,

|mν3 |2 > |me3 |2(1 +
g2
Y

g2
B−L

)−1/2 . (4.50)

This follows immediately from constraint (4.48). Finally, note that the potential descends

monotonically along a path C from the saddle point at (4.44) to the absolute minimum at

(4.43). Solving the ∂V
∂e3

= 0 equation, this curve is found to be

|e3|C = (〈e3〉2 − |ν3|2(1 +
g2
Y

g2
B−L

)−1)1/2 . (4.51)

Note that it begins at 〈e3〉 for ν3 = 0 and continues until it tangentially intersects the

e3 = 0 axis at |ν30| =
|me3 |
|mν3 |
〈ν3〉. From here, the path continues down this axis to the stable

minimum at (4.43).

We conclude that at the electroweak scale the absolute minimum of potential

(4.42) occurs at the sneutrino vacuum given in (4.43). The sneutrino scalar can develop a

non-zero winding around some point in three-space, leading to a cosmic string. Away from
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the core, this will still be described by the simple cosmic string solution in the previous

section. Recall, however, that non-zero winding forces the function f(r) and, hence, ν3 to

vanish at r = 0. This was not an issue for the simple cosmic string, since it was assumed

that all squark/slepton masses were positive at the origin of field space. In the present

scenario, however, the mass squared of e3,

m2
e3 |ν3 = m2

e3 + g2
B−Lν3

2 , (4.52)

becomes negative as ν3 approaches the origin of field space. This potentially destabilizes

the e3 field in the core of the string, producing a scalar condensate. Whether or not this

can occur is dependent on the relative magnitudes of the spatial gradient and the potential

energy, which tend to stabilize and destabilize e3 respectively. To analyze this, one can

look at small fluctuations of e3 around zero in the background of the simple ν3 cosmic

string solution in Section 4. The equation of motion for e3 is given, to linear order, by

(∂µ∂
µ + 2igB−LAB−Lθ∂θ − g2

B−LAB−LµA
µ
B−L)e3

+(g2
B−L|ν3|2 − (g2

B−L + g2
Y )〈e3〉2)e3 = 0 , (4.53)

where ν3 and AB−Lµ were defined in (4.31). Using the ansatz

e3 = eiωte30(r) , (4.54)

equation (4.53) simplifies to

(− ∂2

∂r2
− 1

r

∂

∂r
)e30 + V̂ e30 = ω2e30 (4.55)
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where

V̂ (r) = g2
B−L〈ν3〉2f(r)2 − (g2

B−L + g2
Y )〈e3〉2 + n2α(r)2

r2
. (4.56)

Note that we have chosen e30 in (4.54) to be a function of radial coordinate r only and,

hence, not to wind around the origin. If this two-dimensional Sturm-Liouville equation has

at least one negative eigenvalue, the corresponding ω becomes imaginary. This destabilizes

e3, implying the existence of an e3 condensate in the core of the cosmic string.

Case 3: Negative Soft Squark Mass

As discussed in Section 3, there is a region of initial parameter space such that,

at the electroweak scale, all soft masses are positive with the exception of m2
Q3

< 0. The

electroweak phase transition breaks the left-handed SU(2)L doublet Q3 into its up- and

down- quark components U3 and D3 respectively. The leading order contribution of the

Higgs VEVs to their mass splits the degeneracy between these two fields, destabilizing the

potential most strongly in the D3 direction. For this reason, the relevant Lagrangian for

analyzing this vacuum can be restricted to

L = |Dν3µν3|2 −
1

4
FB−LµνF

µν
B−L + |DD3µD3|2 −

1

4
FY µνF

µν
Y

−1

4
FSU(2)µνF

µν
SU(2) −

1

4
FSU(3)µνF

µν
SU(3) − V (ν3, D3) (4.57)

where

Dν3µ = ∂µ − igB−LAB−Lµ , (4.58)

DD3µ = ∂µ − i
gB−L

3
AB−Lµ − i

gY
6
AY µ − ig2ASU(2)µ − ig3ASU(3)µ
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and

V (ν3, D3) = m2
ν3
|ν3|2 +m2

D3
|D3|2 +

g2
B−L
2

(|ν3|2 +
1

3
|D3|2)2 (4.59)

+
1

2
(
g2
Y

36
+
g2

2

4
+
g2

3

3
)|D3|4 .

The first two terms in the potential are the soft supersymmetry breaking mass terms in

(4.11), while the remaining terms are supersymmetric and arise from the DB−L, DY in

(4.9),(4.8) and DSU(2)L , DSU(3)C respectively. Using λd3 ' 5×10−2, the hierarchy given in

(4.24) and assuming |mD3 | is of order |mν3 |, terms proportional to the Higgs VEVs are small

and are ignored in (4.59). For simplicity, we henceforth drop the small g2
B−L/9 + g2

Y /36

piece of the D-term contribution. The RG analysis tells us that both m2
ν3
< 0,m2

D3
< 0 at

the electroweak scale. Hence, the potential is unstable at the origin of field space and has

two other local extrema at

〈ν3〉2 = −
m2
ν3

g2
B−L

, 〈D3〉 = 0 , (4.60)

and

〈ν3〉 = 0, 〈D3〉2 = −
m2
D3

g2
2/4 + g2

3/3
(4.61)

respectively. Using these, potential (4.59) can be rewritten as

V (ν3, D3) =
g2
B−L
2

(|ν3|2 − 〈ν3〉2)2 +
g2
B−L
3
|ν3|2|D3|2

+
g2

2/4 + g2
3/3

2
(|D3|2 − 〈D3〉2)2 . (4.62)

Let us analyze these two extrema. Both have positive masses in their radial
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directions. At the sneutrino vacuum (4.60), the mass squared in the D3 direction is given

by

m2
D3
|〈ν3〉 =

g2
B−L
3
〈ν3〉2 − (

g2
2

4
+
g2

3

3
)〈D3〉2 =

|mν3 |2

3
− |mD3 |2 , (4.63)

whereas at the stau vacuum (4.61), the mass squared in the ν3 direction is

m2
ν3
|〈D3〉 =

g2
B−L
3
〈D3〉2 − g2

B−L〈ν3〉2 = |mD3 |2(
g2
B−L

3g2
2/4 + g2

3

)− |mν3 |2 . (4.64)

Note that either (4.63) or (4.64) can be positive, but not both. To be consistent with the

hierarchy solution, we want (4.60) to be a stable minimum. Hence, we demand m2
D3
|〈ν3〉 > 0

or, equivalently, that

|mν3 |2 > 3|mD3 |2 . (4.65)

The RG analysis in [79] shows that one can always find a region of the initial parameter

space so that this condition holds. We assume (4.65) for the remainder of this subsection.

It then follows from (4.64) that m2
ν3
|〈D3〉 < 0 and, hence, the stau extremum (4.61) is a

saddle point. As a consistency check, note that V |〈ν3〉 < V |〈D3〉 if and only if

g2
B−L〈ν3〉4 > (

g2
2

4
+
g2

3

3
)〈D3〉4 (4.66)

or, equivalently,

|mν3 |2 > |mD3 |2(
g2
B−L

3g2
2/4 + g2

3

)1/2 . (4.67)

This follows immediately from constraint (4.65).

We conclude that at the electroweak scale the absolute minimum of potential

(4.59) occurs at the sneutrino vacuum given in (4.60). The sneutrino scalar can develop
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a non-zero winding around some point in three-space, leading to a cosmic string. This is

described, away from the core, by the simple cosmic string solution in the previous section.

Recall, however, that non-zero winding forces the the function f(r) and, hence, ν3 to vanish

at r = 0. In the present scenario, the mass squared of D3,

m2
D3
|ν3 = m2

D3
+
g2
B−L
3

ν3
2 , (4.68)

becomes negative as ν3 approaches the origin of field space. This potentially destabilizes

the D3 field in the core of the string, producing a scalar condensate. To analyze this, one

can look at small fluctuations of D3 around zero in the background of the simple ν3 cosmic

string solution. The equation of motion for D3 is given, to linear order, by

(∂µ∂
µ + 2i

gB−L
3

AB−Lθ∂θ −
g2
B−L
9

AB−LµA
µ
B−L)D3

+(
g2
B−L
3
|ν3|2 − (

g2
2

4
+
g2

3

3
)〈D3〉2)D3 = 0 , (4.69)

where ν3 and AB−Lµ were defined in (4.31). Using the ansatz

D3 = eiωtD30(r) , (4.70)

equation (4.69) simplifies to

(− ∂2

∂r2
− 1

r

∂

∂r
)D30 + V̂D30 = ω2D30 (4.71)

where

V̂ (r) =
g2
B−L
3
〈ν3〉2f(r)2 − (

g2
2

4
+
g2

3

3
)〈D3〉2 +

n2

9

α(r)2

r2
. (4.72)
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Note that we have chosen D30 in (4.70) to be a function of radial coordinate r only and,

hence, not to wind around the origin. If this two-dimensional Sturm-Liouville equation has

at least one negative eigenvalue, the corresponding ω becomes imaginary. This destabilizes

D3, implying the existence of an D3 condensate in the core of the cosmic string.

Numerical Analysis of Boson Condensates

Let us analyze the formation of a scalar condensate in a more general setting.

Consider a U(1)× Ũ(1) gauge theory with two complex scalar fields φ and σ charged under

the gauge group as qφ = 0, q̃φ 6= 0 and qσ 6= 0, q̃σ 6= 0 respectively. U(1) and Ũ(1) are

motivated by UY and UB−L in the previous sections. Similarly, scalar φ corresponds to

the right-handed sneutrino ν3. A condensate can potentially form in the σ field. Unlike

previous analyses in the literature, here, in addition to the usual U(1) charge of σ, q̃σ is

also non-vanishing. This is motivated by the fact that all squarks and sleptons in the B-L

MSSM theory carry non-vanishing B-L charge. After finding the necessary conditions for

a condensate to form, we will apply the results to the specific cases discussed above.

The Lagrangian density for this generic theory is given by

L = |D̃µφ|2 −
1

4
F̃µνF̃

µν + |Dµσ|2 −
1

4
FµνF

µν − V (φ, σ) (4.73)

where

D̃µ = ∂µ − iq̃φg̃Ãµ, Dµ = ∂µ − iqσgAµ − iq̃σ g̃Ãµ (4.74)

and

V (φ, σ) =
λφ
4

(|φ|2 − η2
φ)2 + β|φ|2|σ|2 +

λσ
4

(|σ|2 − η2
σ)2 . (4.75)
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The coefficients λφ,λσ and β are chosen to be positive. Potential (4.75) has an extremum

at 〈φ〉 = ηφ, 〈σ〉 = 0. If one chooses the coefficients so that the effective σ mass squared at

this extremum is positive, that is,

m2
σ|ηφ = βη2

φ −
λσησ

2
> 0 , (4.76)

then 〈φ〉 = ηφ, 〈σ〉 = 0 is a local minimum. This vacuum spontaneously breaks the Ũ(1)

symmetry and admits a cosmic string solution in φ of the form discussed in Section 4.

Potential (4.75) has a second extremum at 〈φ〉 = 0, 〈σ〉 = ησ. This may or may not be

a local minimum of the potential depending on the choice of parameters. In all cases,

however, one can constrain the cosmic string vacuum to be deeper than the σ extremum

by choosing

λφη
4
φ > λφη

4
φ , (4.77)

which we do henceforth.

As discussed in Section 4, there is a Ũ(1) cosmic string solution of the associated

φ and Ãµ equations of motion given by

φ = einθηφf(r) , Ãr = 0, Ãθ =
n

q̃φg̃r
α(r) (4.78)

where integer n is the “winding number” of the string around the origin. The functions f(r)

and α(r) have the boundary conditions given in (4.32). In the theory we are considering,

the effective mass squared of σ at arbitrary φ is

m2
σ|φ = β|φ|2 − λση

2
σ

2
. (4.79)
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This becomes negative as φ approaches the origin of field space, potentially destabilizing

the σ field in the core of the string and producing a scalar condensate. Such a condensate

would break both Ũ(1) and U(1) symmetry. Whether or not this can occur is dependent

on the relative magnitudes of the spatial gradient and the potential energy, which tend to

stabilize and destabilize σ respectively. To analyze this, one can look at small fluctuations

of σ around zero in the background of the simple φ cosmic string solution. The equation

of motion for σ is given, to linear order, by

(∂µ∂
µ + 2iq̃σ g̃Ãθ∂θ − q̃2

σ g̃
2ÃµÃ

µ)σ

+(β|φ|2 − λση
2
σ

2
)σ = 0 , (4.80)

where φ and Ãµ were defined in (4.78). Using the ansatz

σ = eiωtσ0(r) , (4.81)

equation (4.80) simplifies to

(− ∂2

∂r2
− 1

r

∂

∂r
)σ0 + V̂ σ0 = ω2σ0 (4.82)

where

V̂ (r) = βη2
φf(r)2 − λση

2
σ

2
+ n2(

q̃2
σ

q̃2
φ

)
α(r)2

r2
. (4.83)

Note that we have chosen σ0 in (4.81) to be a function of radial coordinate r only and,

hence, not to wind around the origin. We want to emphasize the term in (4.83) proportional

to α2/r2. This appears precisely because the σ field has non-vanishing charge under Ũ(1)
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as well as under U(1), a situation not previously discussed in the literature. However, for

the reasons mentioned above, it must be included in the analysis of this work.

If this two-dimensional Sturm-Liouville equation has at least one negative eigen-

value, the corresponding ω becomes imaginary. This destabilizes σ, implying the existence

of a σ condensate in the core of the cosmic string. Note that if the condensate was not

charged under Ũ(1), then the last term in (4.83) would not appear and potential V̂ (r)

would be monotonic. As was discussed in [96], for sufficiently small m2
σ|ηφ a condensate

will always form under these conditions. However, σ is charged under Ũ(1) and, hence, the

α2/r2 term in (4.83) must be included. Since this term is positive and provides a repellent

force for large r, it may prevent a bound state from forming. For the remainder of this

section, we will discuss the results of a numerical solution to the Sturm-Liouville equation

(4.82) with potential (4.83). The details of this solution are presented in the Appendix.

The α2/r2 term is smallest and, hence, the least disruptive to the formation of a

condensate for winding number n = 1. Therefore, we carry out the analysis for the singly

wound cosmic string. Motivated by the softly broken supersymmetric B-L MSSM theory,

the calculation will be further restricted in two ways. First, take q̃2
σ = q̃2

φ. Second, we

constrain the parameters to the critical coupling point where

λφ
2g̃2

= 1 . (4.84)

It follows that the functions f(r) and α(r) simplify to solutions of (4.37). These equations

can be solved numerically [105], and we input them into our analysis of the Sturm-Liouville
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equation. Finally, simplification can be achieved if we take

βη2
φ =

λση
2
σ

2
, (4.85)

thus setting m2
σ at the cosmic string vacuum, given in (4.76), to zero. Potential V̂ (r) then

becomes

V̂ (r) = βη2
φ(f(r)2 − 1) +

α(r)2

r2
. (4.86)

Should a negative energy bound state exist for some choice of β, the condensate will persist

if we continuously deform m2
σ|ηφ away from zero to a small positive value.

In units where ηφ is one, the Sturm-Liouville equation (4.82) with potential (4.86)

depends on the single parameter β. Explicit solutions of this equation for several values

of β are shown in Figure 1. For each of these values, a negative energy eigenvalue and

normalizable bound state wavefunction exists and are shown in the Figure. As discussed

in the Appendix, we find that a negative energy eigenvalue will exist for any

β > βcritical ' 0.42 . (4.87)

Hence, for sufficiently large β satisfying (4.87), that is, for sufficiently deep potential, the

σ field is destabilized and a non-vanishing σ condensate will form. However, for β less

than βcritical the eigenvalue becomes positive and the wavefunction oscillatory, signaling a

meta-stable solution. Hence, for β < 0.42 the potential is not sufficiently deep and a σ

condensate will not form. These results can immediately be applied to the B-L MSSM

theory with a negative soft right-handed slepton mass m2
e3 < 0 described in Case 2 above.

Identifying φ = ν3, σ = e3 and comparing (4.74),(4.75) to (4.41),(4.45) using (4.43),(4.44),
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Figure 4.1: Negative energy ground state solutions of the slepton stability equation
for β = 0.8 and β = 0.5 respectively. The energy eigenvalues ω2

0 are
shown as red lines, with the associated normalizable wave functions σ0

depicted in blue. Note the positive “bump” in potential V̂ due to the
α2/r2 term.

we find that

β = g2
B−L, λφ = 2g2

B−L, λσ = 2(g2
B−L + g2

Y ),

η2
φ = −

m2
ν3

g2
B−L

, η2
σ = −

m2
e3

g2
B−L + g2

Y

. (4.88)

In particular, evaluated at the electroweak scale

β = g2
B−L ' 0.1075 < 0.42 (4.89)

187



suggesting the absense of a bosonic e3 condensate in the core of the cosmic string.

The formalism applicable to the B-L MSSM theory with a negative soft left-

handed squark mass squared requires a change in the relative charges of φ and σ. Instead

of taking q̃2
σ = q̃2

φ as we did previously, now choose q̃2
φ = 9q̃2

σ. For n = 1 winding number

at the critical point and vanishing m2
σ|ηφ , the Sturm-Liouville equation determining the σ

condensate is (4.82) with potential (4.83) now given by

V̂ (r) = βη2
φ(f(r)2 − 1) +

α(r)2

9r2
. (4.90)

A numerical analysis completely analogous to the one used above, leads to the conclusion

that a non-vanishing σ condensate will occur for

β > βcritical ' 0.14 . (4.91)

Note that this is smaller than the previous bound given in (4.87). This is consistent with

expectations since the destabilizing α2/r2 term is now smaller by a factor of 9. For β less

than βcritical, however, the eigenvalue becomes positive and the wavefunction oscillatory,

signaling a meta-stable solution. Hence, for β < 0.14 the potential is not sufficiently deep

and a σ condensate will not form. By construction, these results can immediately be

applied to the B-L MSSM theory with a negative soft left-handed squark mass m2
D3

< 0

described in Case 3 above. Identifying φ = ν3, σ = D3 and comparing (4.74),(4.75) to
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(4.58),(4.62) using (4.60),(4.61), we find that

β =
g2
B−L
3

, λφ = 2g2
B−L, λσ = 2(

g2
2

4
+
g2

3

3
),

η2
φ = −

m2
ν3

g2
B−L

, η2
σ = −

m2
D3

g2
2/4 + g2

3/3
. (4.92)

In particular, evaluated at the electroweak scale

β =
g2
B−L
3
' 0.0358 < 0.14 (4.93)

suggesting the absense of a bosonic D3 condensate in the core of the cosmic string.

4.6 Fermionic Superconductivity

A second possible signature of cosmic strings is superconductivity arising, not

from boson condensates but, rather, from zero-modes of charged fermions [96]. The relevant

fermions are those with bilinear couplings to a scalar field that 1) has a non-vanishing VEV

at radial infinity and 2) which winds non-trivially around the center of the string. Exactly

which fermions, if any, develop zero-modes is dependent on the theory under consideration

and on the explicit cosmic string background [107, 96, 101]. In the B-L MSSM theory

described in this thesis, the structure and properties of potential zero-modes is very specific.

The cosmic string background described in Section 4 is constructed from the right-

handed sneutrino, which has non-vanished VEV at radial infinity and non-zero winding n

around the origin. We begin, therefore, by considering the fermions which couple to it. In

the B-L MSSM theory, the coupling of the right-handed sneutrino ν3 to charged fermions

189



is completely specified by the superpotential

W = · · ·+ λν3L3Hν3 , (4.94)

where λν3 is the third family neutrino Yukawa coupling of order 10−9. It follows that the

relevant physics is described by

L = iψ̄LE−3
σ̄µDEµψLE−3

+ iψ̄LH+ σ̄µ∂µψLH+

−λν3(ψLE−3
ψLH+ν3 + hc) + . . . , (4.95)

where DEµ = ∂µ + igB−LAB−Lµ. The associated equations of motion are

iσ̄µDEµψLE−3
− λν3ψ̄LH+ν∗3 = 0 ,

iσµ∂µψ̄LH+ − λν3ψLE−3
ν3 = 0 . (4.96)

We want to solve these in the background of the cosmic string defined by the transverse

functions ν3 and AB−Lµ in (4.31). Therefore, first consider solutions of (4.96) that are in-

dependent of time and the z-coordinate. Denoting these transverse fermions by βLE−3
(x, y)

and βLH+(x, y), equations (4.96) become

iσ̄iDiβLE−3
− λν3 β̄LH+ν∗3 = 0,

iσi∂iβ̄LH+ − λν3βLE−3
ν3 = 0 (4.97)

where DEµ = ∂µ+igB−LAB−Lµ and i = 1, 2. It follows from the index of the corresponding

Dirac operator that (4.97) has |n| linearly independent pairs of normalizable zero-modes [98,
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101]. These modes are eigenstates of the σ3 operator,

σ3β =
n

|n|
β . (4.98)

Thus, for a given n the zero-modes have the same chirality and each is described by a

complex scalar function. Specifically, in cylindrical coordinates the solutions are [98, 101]

βLE−3
(r, θ) = U l

LE−3
(r)ei(l−

n
2

+ 1
2

)θ ,

β̄LH+(r, θ) = U l
LH+

3
(r)ei(l+

n
2
− 1

2
)θ (4.99)

where −n
2 + 1

2 ≤ l ≤
n
2 −

1
2 . The radial functions can be explicitly evaluated asymptotically.

As r → 0, one finds

U l
LE−3

(r) ∼ r−l+
n
2
− 1

2 ,

U l
LH+

3
(r) ∼ rl+

n
2
− 1

2 (4.100)

whereas for r →∞

U l
LE−3

(r), U l
LH+

3
(r) ∼ e−λν3<ν3>r . (4.101)

Due to the exponential decay, the range of the fermionic solutions is of order

rf ∼
1

λν3〈ν3〉
. (4.102)

Note from (4.35) that for our specific theory the radius of the cosmic string is rs = rv ∼
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1
gB−L〈ν3〉 and, hence,

rf
rs
∼ gB−L

λν3

' 109 . (4.103)

That is, the radial zero-mode solutions are 109 times wider than the vortex core. This

indicates the extremely diffuse nature of the fermionic solutions in the B-L MSSM theory.

Any normalizable solution with general boundary conditions is a linear combination of

these zero-modes. We refer the reader to [98, 101, 107] for a detailed derivation of these

properties.

Now consider full four-dimensional solutions of (4.96) of the form

ψLE−3
= βLE−3

(x, y)α(z, t) , (4.104)

ψ̄LH+ = β̄LH+(x, y)α(z, t)∗ . (4.105)

Since βLE−3
(x, y) and β̄LH+(x, y) satisfy the transverse Dirac equations (4.97), it follows

from (4.96) and (4.98) that

( ∂
∂t
− n

|n|
∂

∂z

)
α(z, t) = 0 . (4.106)

Without loss of generality, we henceforth assume that the winding number is positive.

Then (4.106) implies that α(z, t) = f(z + t). Thus, an n > 0 winding of the ν3 scalar in

the B-L cosmic string solution (4.31) induces left-moving fermionic currents in the cosmic

string composed of ψLE−3
and ψLH+ .

Anomaly cancellation on the string worldsheet [96] requires that there be chiral

fermions which couple to a scalar which winds oppositely to ν3. Since the theory is super-

symmetric, this cannot be the conjugate field ν∗3 . Furthermore, since the Higgs fields are
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neutral under B-L transformations, they cannot have topologically stable winding around

the string core even though they have non-vanishing VEVs. Note, however, that if the

left-handed sneutrino NE3 gets an expectation value, then it follows from the equations of

motion that this must wind oppositely to ν3. Any chiral fermions coupling to the wound

solution NE3 will then generate right-moving currents on the cosmic string, canceling the

anomaly. Does N3 have a non-zero expectation value? The answer is affirmative, as we

now show.

The neutral scalar fields in the B-L MSSM theory are the H0, H̄0 components of

the Higgs fields and the left- and right-handed sneutrinos Ni, νi for i = 1, 2, 3. Since ν3 is

the only right-handed sneutrino to get a non-zero expectation value, we need only consider

the third family. The potential energy of these neutral fields is found to be

V0 = VF + VB−L + VY + VSU(2) + Vsoft (4.107)

where

VF =
∑
m

|Fm|2 = λ2
ν3

(|ν3|2|H0|2 + |ν3|2|N3|2 + |N3|2|H0|2) (4.108)

+ µ2(|H0|2 + |H̄0|2)− λν3(µν3N3H̄
0 + hc) ,

VB−L =
1

2
D2
B−L =

g2
B−L
2

((|ν3|2 − |N3|2)2 , (4.109)

VY =
1

2
D2
Y =

g2
Y

2
(|H0|2 − |H̄0|2 − |N3|2)2 , (4.110)

VSU(2) =
1

2
D2
SU(2) =

g2
2

2
(−|H0|2 + |H̄0|2 + |N3|2)2 , (4.111)
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Vsoft = m2
N3
|N3|2 +m2

ν3
|ν3|2 +m2

H |H0|2 +m2
H̄ |H̄

0|2 (4.112)

− (BH0H̄0 + hc) + (Aν3ν3N3H
0 + hc) .

Let us solve for the expectation values for each neutral scalar subject to the hierarchy

condition

〈N3〉 � 〈H0〉, 〈H̄0〉 � 〈ν3〉 . (4.113)

The ∂V0/∂ν3 = 0 and ∂V0/∂H
0 = 0, ∂V0/∂H̄

0 = 0 equations lead to the non-zero ex-

pectation values for 〈ν3〉 and 〈H0〉 , 〈H̄0〉 presented in (D.6) and (4.17) respectively. The

∂V0/∂N3 = 0 equation then gives

〈N3〉 =
(λν3µ〈H̄0〉 −Aν3〈H0〉)〈ν3〉

m2
N3
− g2

B−L〈ν3〉2
. (4.114)

Therefore, following the electroweak phase transition the left-handed sneutrino acquires

a very small expectation value. For example, assuming µ ∼ 〈H0〉, Aν3 ∼ λν3〈H0〉 and

m2
N3
− g2

B−L〈ν3〉2 ∼ g2
B−L〈ν3〉2, it follows that

〈N3〉 ∼ (10−10 − 10−12)〈ν3〉 (4.115)

for the B-L/electroweak hierarchy given in (4.24). That is, 〈N3〉 is on the order of the

neutrino masses. This is sufficient, however, to provide the right-moving fermionic zero-

modes on the cosmic string required by anomaly cancellation. Note that the vanishing

of 〈ν3〉 at the center of the cosmic string will set 〈N3〉 = 0, consistent with a non-trivial

winding of N3.

To see how these arise, note that the coupling of the left-handed sneutrino N3 to
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charged fermions is specified by the superpotential

W = · · ·+ λe3L3H̄e3 , (4.116)

where λe3 is the third family τ Yukawa coupling of order 5× 10−2. The relevant physics is

then described by

L = iψ̄Le+3
σ̄µDeµψLe+3

+ iψ̄LH− σ̄
µ∂µψLH−

−λe3(ψLe+3
ψLH−N3 + hc) + . . . , (4.117)

where Deµ = ∂µ − igB−LAB−Lµ. It follows from the above analysis that with respect to

the cosmic string defined by ν3, AB−Lµ in (4.31) and the associated background N3, there

will be |n| linearly independent pairs βLe+3
(x, y), βLH−(x, y) of transverse normalizable

fermion zero-modes. These modes are eigenstates of σ3 and have a structure similar to

(4.99). However, whereas the solutions in (4.99) and their σ3 eigenvalue are indexed by n,

the winding of ν3, these zero-modes are indexed by −n, the winding of N3. The small r

behaviour remains similar to that in (4.100). Now, however, as r →∞

U l
Le+3

(r), U l
LH−3

(r) ∼ e−λe3<N3>r (4.118)

and, hence, the range of these fermionic solutions is of order

rF ∼
1

λe3〈N3〉
. (4.119)
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It follows from this, (4.102) and (4.115) that

rF ∼ (103 − 105)rf . (4.120)

Therefore, these radial zero-mode solutions are even more diffuse around the cosmic string

core. The full four-dimensional solutions are again of the form ψL = βL(x, y)α(z, t). Now,

however, the function α satisfies

( ∂
∂t

+
∂

∂z

)
α(z, t) = 0 , (4.121)

implying that α(z, t) = f(z−t). Thus, the n < 0 winding of the N3 scalar in the background

of (4.31) induces right-moving fermionic currents in the cosmic string composed of ψLe+3

and ψLH− .

Having found both the left- and right-moving charged fermionic modes of a B-L

MSSM cosmic string, we want to analyze whether they can lead to cosmologically observ-

able phenomenon and, specifically, to superconductivity. As can be seen from the above

discussion, the electroweak phase transition is necessary to produce the right-moving modes

to cancel the anomaly. However, the superpotential term in (4.116) will then generate, in

addition to the fermion coupling to N3 discussed above, a Yukawa mass λe3ψLE−3
〈H̄0〉ψLe+3

for the tauon. In addition, a non-zero µ-term µHH̄ is required in the superpotential to

make Higgsinos massive. Specifically, a mass term of the form µψH+ψH− will appear. Both

masses are much larger than neutrino masses and, as a result, the zero-modes of the previous

discussion will be lifted; generically, turning into massive bound states [99, 100, 101, 108]

with mass mτ = 1.776 GeV and mHiggsino ∼ µ respectively. For an applied electric field
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in the string frame satisfying E � 2πm2, massive bound states cannot form persistent

currents. Their maximum electric current is given by [99]

Jmax ≈
E

2π3/2m
. (4.122)

Note that Jmax is directly proportional to the applied field. As soon as E = 0, this

charged fermionic current will relax to zero. The maximal such currents generated in a

B-L MSSM cosmic string by tauon bound states, for example, would be of order 106-

107A. For E � 2πm2, it is possible to obtain currents in this setting which are close to

superconducting. However, for that to happen one needs to be in the regime

B(v/c) ≥ 103
(
m/1eV

)2
Gauss , (4.123)

where v is the transverse string velocity. Hence, for a superconducting current of tauons,

the required magnetic field would be at least of order 1021 Gauss, far larger than any

observed cosmological B field. Thus, fermionic currents of the B-L MSSM cosmic string

are unlikely to have any observable cosmological effects.

Appendix: Numerical Analysis of the Stability Equation

In this Appendix, we present a numerical procedure for determining the existence

of negative eigenvalue, normalizable solutions of the stability equation

(− ∂2

∂r2
− 1

r

∂

∂r
)σ0 + V̂ σ0 = ω2σ0 , (4.124)
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where

V̂ (r) = βη2
φf(r)2 − λση

2
σ

2
+ n2(

q̃2
σ

q̃2
φ

)
α(r)2

r2
. (4.125)

Although applicable in general, we specify our algorithm for the simplest case discussed

in the text where n = 1, q̃2
σ = q̃2

φ and m2
σ = 0, resulting in (4.85). Potential (D.2) then

simplifies to

V̂ (r) = β(f(r)2 − 1) +
α(r)2

r2
, (4.126)

where we have set ηφ = 1 and, hence, the radial coordinate r and parameter β are dimen-

sionless. Note that V̂ depends only on the single parameter β. Furthermore, impose the

critical coupling constraint
λφ
2g̃2 = 1, thus simplifying the functions f(r) and α(r) to be

solutions of (4.37). These equations have been solved numerically in the literature [105]

and we input their solutions directly into our analysis of the stability equation.

To prove the existence of a boson condensate for a fixed value of parameter β in

(D.3), it suffices to find a negative energy ground state solution to (D.1). Hence, one can

impose the boundary conditions

σ0

∣∣∣
r=0

= 1 , ∂rσ0

∣∣∣
r=0

= 0 . (4.127)

In addition, to ensure that σ0(r) is normalizable constrain

σ0

∣∣∣
r→∞

= 0 . (4.128)

Note that if a bound state exists, its eigenvalue can never be more negative than the depth
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of the potential energy. Hence, the possible range of values for ω2 is limited to

− β < ω2 < 0. (4.129)

For each such ω2, there is a solution σ0 which satisfies (D.1) with boundary conditions (D.4).

Generically, however, this solution will not be normalizable. To see this, note that for large

r the solution to (D.1) must be of the form

σ0(r)
r→∞−→ C1r

−1/2e−|ω|r + C2r
−1/2e|ω|r, (4.130)

where C1 and C2 are continuous functions of ω2. If for a chosen value of ω2 C2 is non-

vanishing, then σ0 diverges at large r and the renormabiliability constraint (D.5) is not

satisfied. Note that C2 6= 0 can be either positive of negative. If positive, σ0
r→∞−→ +∞, that

is, the wavefunction “flips up” at large r. On the other hand, if C2 is negative, σ0
r→∞−→ −∞

and the wavefunction “flips down”. It is only if C2 exactly vanishes for a specific value ω2
0

in (D.6), that constraint (D.5) is satisfied and the wavefunction normalizable.

Two scenarios are then possible. First, if when ω2 is varied over the entire range

(D.6) C2 is always greater than, or always less than, zero, then the wavefunction is never

normalizable and a negative eigenvalue ground state does not exist for this choice of pa-

rameter β. Second, if when ω2 is varied over range (D.6) C2 changes sign, then there must

be an ω2
0 for which

C(ω2
0) = 0 , (4.131)

since C2 is a continuous function of ω2. Hence, for this choice of β a normalizable ground

state solution for σ0 exists with negative energy ω2
0. These results give us an explicit
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algorithm for computing the existence, or non-existence, of a boson condensate. This is:

1. Choose a fixed value for parameter β.

2. Vary ω2 over the range (D.6).

3. For each value of ω2, numerically solve (D.1),(D.3) for the ground state wavefunction

σ0 satisfying boundary conditions (D.4). We do this by implementing the Runge-

Kutta method on Mathematica.

4. Plot σ0 versus r for all values of ω2.

5. If all these curves “flip up” or “flip down”, then there is no negative energy ground

state. However, if these curves “flip up” for small values of ω2 but “flip down” for

larger values, then a ground state with negative energy ω2
0 does exist.

6. To compute ω2
0 and the associated normalizable wavefunction, we numerically identify

the interval which contains ω2
0. We then iterate this procedure until we obtain the

ground state energy and wavefunction to the desired precision, thus approximating

the solution to the stability equation.

To make this concrete, in Figure D.1 we carry out this algorithm explicitly for parameter

β = 0.8. Observe that σ0 “flips up” for small ω2, but “flips down” for larger values of ω2.

This signals the existence of a negative energy ground state occurring in between, when

σ0
r→∞−→ 0. The numerical value of ω2

0 = −0.1421 and the normalizable wavefunction are

both indicated in the Figure. Note that

|ω2
0|
β

= 0.1776 , (4.132)
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that is, the bound state energy is 17.76 % of the depth of the potential.

Let us now carry out this computation for smaller values of β. The results for

β = 0.5 are shown in Figure D.2. Again, note that σ0 “flips up” for small ω2, but “flips

down” for larger values of ω2. This signals the existence of a negative energy ground state

occurring in between, when σ0
r→∞−→ 0. The numerical value of ω2

0 = −0.0231 and the

normalizable wavefunction are both indicated in the Figure. In this case,

|ω2
0|
β

= 0.0462 , (4.133)

that is, the bound state energy is 4.62 % of the depth of the potential. Note that the

percentage size of the eigenvalue relative to the depth of the potential has substantially

decreased over the β = 0.8 case above. This indicates that for some value of β not too

much smaller than 0.5 a negative energy ground state might cease to exist. To explore

this further, we apply our algorithm to a range of values of parameter β. The ground

state energy for each β, as well as their fractional depth with respect to the potential, are

shown in Table D.1. Note that as β approaches ∼ 0.42, ω2
0 → 0 and is a rapidly decreasing

percentage of the potential depth. Indeed, we find that for

β < βcritical ' 0.42 , (4.134)

there is no negative energy bound state solution to (D.1),(D.3). Two concrete examples

of this are β = 0.35 and β = 0.1. Our numerical results for these parameters are shown

in Figure D.3 and Figure D.4 respectively. For both cases we see that, unlike the previous

examples, σ0 always “flips up ” for all values of ω2 satisfying (D.6). It follows that in
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β |ω0|2 |ω0|2/β

1 0.2404 0.2404

0.8 0.1421 0.1776

0.7 0.0977 0.1396

0.5 0.0231 0.0462

0.45 0.0094 0.0209

0.42 0.0027 0.0064

Table 4.1: The ground state energy corresponding to different values of β. Note that
as the potential becomes more shallow, the ground state energy decreases
relative to the depth of the potential.

each case there is no negative energy ground state solution to the stability equation. To

conclude: we have shown numerically that the stability equation (D.1) with potential (D.3)

admits a negative energy ground state normalizable solution if and only if

β > βcritical ' 0.42 . (4.135)

As discussed in the text, a similar analysis must be carried out with the charges

chosen to be q̃2
φ = 9q̃2

σ. This changes potential (D.3) to

V̂ (r) = β(f(r)2 − 1) +
α(r)2

9r2
. (4.136)

The numerical analysis of this case gives the same qualitative results, so we won’t present

it here. Suffice it to say that, due to the weaker repulsion term in the potential, the critical

value for β is lowered. Specifically, we find that the stability equation (D.1) with potential
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Figure 4.2: Family of σ0 solutions for the initial value problem with β = 0.8 and ω2

varying from -0.12 to -0.156. Note that the asymptotic behaviour of the
wavefunction changes sign. The ground state occurs at ω2

0 = −0.1421
and its associated normalizable ground state is indicated in red.
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Figure 4.3: Family of σ0 solutions for the initial value problem with β = 0.5 and ω2

varying from -0.003 to -0.036. Note the changing sign in the asymptotic
behaviour of the wavefunction. The ground state occurs at ω2

0 = −0.0231
and the associated normalizable ground state is indicated in red.
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Figure 4.4: Family of σ0 solutions for the initial value problem with β = 0.35 over
the entire allowed range of ω2. Note that the asymptotic values of the
wavefunctions are always positive, diverging to +∞. This corresponds
to the stability equation admitting no negative energy ground state.
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Figure 4.5: Family of σ0 solutions for the initial value problem with β = 0.1 over
the entire allowed range of ω2. Note that the asymptotic values of the
wavefunctions are always positive, diverging to +∞. This corresponds
to the stability equation admitting no negative energy ground state.
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(D.13) will admit a negative energy normalizable ground state if and only if

β > βcritical ' 0.14 . (4.137)
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Chapter 5

Summary

Let us summarize the results from Chapter 2 and Chapter 3. We implemented

Donaldson’s algorithm to compute the Calabi-Yau metric on complete intersections and

their quotients. The method consists of the following steps:

1. Specify the degree of the approximation k.

2. Generate Np points {pi}
Np
i=1 on Ξ so that Np is sufficiently larger than N2

k .

3. For each point pi, compute its weight wi = dA(pi)/(Ω ∧ Ω̄).

4. If dealing with a quotient calculate a basis {sα}Nk−1
α=0 for the quotient eq. (3.36) at

degree k.

5. Evaluate the integrand of the T-operator at each point.

6. Choose an initial invertible, hermitian matrix for hγδ̄. Perform the numerical inte-

gration

T (h)αβ̄ =
Nk∑Np
j=1wj

Np∑
i=1

sα(pi) sβ(pi)wi∑
γδ̄ h

γδ̄ sγ(pi) sδ(pi)
. (5.1)
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7. Set the new hαβ̄ to be hαβ̄ =
(
Tαβ̄

)−1
.

8. Return to 6 and repeat until hαβ̄ converges close to its fixed point. In practice, this

procedure is insensitive to the initial choice of hαβ̄ and fewer than 10 iterations suffice.

The algorithm relies on three main inputs: degree k, number of points Np and the

restriction of sections of the ambient projective space to the Calabi-Yau at hand. The key

feature of the implementation of Donaldson’s algorithm in this work is the incorporation

of the Invariant Theory in this procedure. In particular, using Hironaka decomposition

allowed us to effectively compute invariant coordinate rings of Calabi-Yau manifolds, which

admit fixed point free finite group action. Due to this modification we were able to compute

Calabi-Yau metrics for quotients of quintic and Schoen manifolds.

We formulated and implemented an algorithm for computing the spectrum of the

Laplacian on the aforementioned set of Calabi-Yau manifolds. We used Weyl’s formula to

demonstrate the convergence of our algorithm, which is in agreement with the theoretic

prediction. We worked out the appropriate group theory to demonstrate perfect agreement

of the degeneracies of the spectrum computed using the numerics with the theory. The

spectral information from the Calabi-Yau manifold provided us with the necessary input

to study the massive Kaluza-Klein modes and their contribution to the static gravitational

potential in four-dimensions. We computed this potential explicitly for the Fermat quintic

and showed its radial dependence. In addition, we give geometrical interpretation of the

first non-trivial eigenvalue.

Let us reiterate that the numerical methods described in this work provide a

powerful toolbox for studying string phenomenology. It would be desirable to take further

steps in this direction and improve our numerical methods for solving Hermitian Yang-Mills
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equation, and eventually compute the constants of nature from the first principles. Signifi-

cant work has been done recently on applications of balanced metrics in solving Hermitian

Yang-Mills equations and studying stable vector bundle connections [25, 109]. However,

there is still a lot to be accomplished in computing the Yukawa and gauge couplings.
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Appendix A

Primary Invariants

In this appendix, we check that the invariants in eq. (3.79) can be chosen to be

the primary invariants, that is, form a “homogeneous system of parameters”. In fact, the

following criteria are equivalent, see [39] Proposition 2.3:

• {θ1, θ2, θ3, θ4, θ5} are a homogeneous system of parameters (h.s.o.p.).

• dim
(
C[z0, z1, z2, z3, z4]

/
〈θ1, θ2, θ3, θ4, θ5〉

)
= 0

• The only common solution to θi = 0, i = 1, . . . , 5 is z0 = z1 = z2 = z3 = z4 = 0.

Using Singular [40], we can test the dimension criterion easily:

SINGULAR /

A Computer Algebra System for Polynomial Computations / version 3-0-1

0<

by: G.-M. Greuel, G. Pfister, H. Schoenemann \ October 2005

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring r=0,(z0,z1,z2,z3,z4),dp;

> poly t1=z0*z1*z2*z3*z4;

209



> poly t2=z0^3*z1*z4+z0*z1^3*z2+z0*z3*z4^3+z1*z2^3*z3+z2*z3^3*z4;

> poly t3=z0^5+z1^5+z2^5+z3^5+z4^5;

> poly t4=z0^10+z1^10+z2^10+z3^10+z4^10;

> poly t5=z0^8*z2*z3+z0*z1*z3^8+z0*z2^8*z4+z1^8*z3*z4+z1*z2*z4^8;

> ideal i=t1,t2,t3,t4,t5;

> dim(std(i));

0

Hence, eq. (3.79) is indeed a h.s.o.p.

210



Appendix B

Spectrum of the Laplacian on

Projective Space

In this Appendix, we compute the lowest eigenvalue of the Laplace operator on P3

using the rescaled Fubini-Study Kähler potential. To do this, go to the coordinate patch

where z0 = 1 and use z1, z2, z3 as local coordinates. We find that

gı̄j =
3
√

6π
(
1 + |z1|2 + |z2|2 + |z3|2

)



1 + |z1|2 z2z̄1 z3z̄1

z1z̄2 1 + |z2|2 z3z̄2

z1z̄3 z2z̄3 1 + |z3|2


,

det
(
gī
)

=
6(

1 + |z1|2 + |z2|2 + |z3|2
)4
π3

(B.1)
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and, hence,

∆ = 2
1

det(g)

(
∂ ı̄g

ı̄j det(g)∂i + ∂jg
ı̄j det(g)∂ ̄

)
. (B.2)

One can now compute the eigenvalue corresponding to the eigenfunction φ1,1 in eq. (3.23).

We find that

∆φ1,1 = 2
1

det(g)

(
∂ ı̄g

ı̄j det(g)∂i + ∂jg
ı̄j det(g)∂ ̄

) z̄1

1 + |z1|2 + |z2|2 + |z3|2

=

(
16π
3
√

6

)
z̄1

1 + |z1|2 + |z2|2 + |z3|2
.

(B.3)

Hence, φ1,1 is indeed an eigenfunction of ∆ with eigenvalue

λ1 =
16π
3
√

6
=

4π
3
√

6
· 1 · (1 + 3). (B.4)

Hence, the numerical coefficient in eq. (3.14) is indeed the correct one for our volume

normalization VolK(P3) = 1.

B.1 Semidirect Products

Let G and N be two groups, and let

ψ : G→ Aut(N) (B.5)

be a map from G to the automorphisms of N . The semi-direct product

G ψnN =
{

(n, g)
∣∣∣ n ∈ N, g ∈ G} (B.6)
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is defined to be the group consisting of pairs (n, g) with the group action

(n1, g1) · (n2, g2) =
(
n1 · ψ(g1)(n2), g1 · g2

)
. (B.7)

Usually, one just writes G n N with the map ψ implied but not explicitly named. Note

that G is a subgroup and N is a normal subgroup of the semidirect product.

For example, consider the semidirect product with G = S5 and N = (Z5)4 used

in 3.3.3. These two groups are acting on five homogeneous via permutations1 and phase

rotations

(
(n1, n2, n3, n4), [z0, z1, z2, z3, z4]

)
7→
[
z0, z1e

2πin1
5 , z2e

2πin2
5 , z3e

2πin3
5 , z4e

2πin4
5
]
, (B.8)

respectively. The two group actions do not commute, and, therefore, the total symmetry

group is not simply the product S5 × (Z5)4. The “non-commutativity” between S5 and

(Z5)4 is encoded in a map

ψ : S5 → Aut
(

(Z5)4
)
, σ 7→

(
~n 7→ σ−1 ◦ ~n ◦ σ

)
. (B.9)

To be completely explicit, note that the permutation group S5 is generated by the cyclic

permutation c and a transposition t, acting as

t :
[
z0, z1, z2, z3, z4

]
7→
[
z0, z1, z2, z4, z3

]
,

c :
[
z0, z1, z2, z3, z4

]
7→
[
z1, z2, z3, z4, z0

]
.

(B.10)

1S5 is, by definition, the group of permutations of five objects.
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The generators 〈c, t〉 = S5 act, via ψ, on (Z5)4 as

ψ(t) : (Z5)4 → (Z5)4, (n1, n2, n3, n4) 7→ (n1, n2, n4, n3)

ψ(c) : (Z5)4 → (Z5)4, (n1, n2, n3, n4) 7→ (−n4, n1 − n4, n2 − n4, n3 − n4)

(B.11)

It is straightforward, if tedious, to show that ψ is a group homomorphism and that the

total symmetry group generated by S5 and (Z5)4 is, in fact, the semidirect product

S5 ψn (Z5)4. (B.12)

By the usual abuse of notation, we always drop the subscript ψ in the main part of this

thesis work.
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Appendix C

Notes on Donaldson’s Algorithm

on Quotients

For explicitness, let us consider the same setup as in 3.4.1, that is, Q̃ ⊂ P4 is

a Z5 × Z5 symmetric quintic and we want to compute the metric on the quotient Q =

Q̃
/

(Z5 × Z5). To fix notation, let us denote the two generators for the character ring of

the group by

χ1(g1) = e2πi/5, χ1(g2) = 1,

χ2(g1) = 1, χ2(g2) = e2πi/5.

(C.1)

We consider homogeneous polynomials in degrees kh ∈ 5Z, so there is a linear Z5×Z5 group

action. In eq. (3.78) we determined the invariant polynomials. Now, let us slightly gener-

alize this result and determine “covariant polynomials” transforming as some character χ

of the group,

p ◦ g(z) = χ(g)p(z) g ∈ Z5 × Z5. (C.2)
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These again form a linear space of χ-covariant polynomials, which we denote as

C[z0, z1, z2, z3, z4]χkh =
{
p(z)

∣∣∣p ◦ g(z) = χ(g)p(z)
}
. (C.3)

Note that the covariant polynomials do not form a ring, but rather a module over the

invariant ring. Nevertheless, by a slight generalization of the Hironaka decomposition, we

can express the covariants as a direct sum

C[z0, z1, z2, z3, z4]χkh =
100⊕
i=1

ηχi C[θ1, θ2, θ3, θ4, θ5]kh−deg(ηχi ), (C.4)

where the θ1, . . . , θ5 ∈ C[z0, z1, z2, z3, z4]Z5×Z5 can be taken to be the primary invariants

of the original Hironaka decomposition eq. (3.78) and the “secondary covariants” ηχ1 , . . . ,

ηχ100 are certain χ-covariant polynomials that need to be computed [110]. For example, we

find

ηχ1
1 = z4

0z1 + z4
1z2 + z4

2z3 + z4
3z4 + z4

4z0,

ηχ1
2 = z0z

3
1z3 + z1z

3
2z4 + z2z

3
3z0 + z3z

3
4z1 + z4z

3
0z2, . . .

(C.5)

and

ηχ2
1 = z5

0 + e
2πi
5 z5

1 + e2 2πi
5 z5

2 + e3 2πi
5 z5

3 + e4 2πi
5 z5

4 ,

ηχ2
2 = z0z

3
1z2 + e

2πi
5 z1z

3
2z3 + e2 2πi

5 z2z
3
3z4 + e3 2πi

5 z3z
3
4z0 + e4 2πi

5 z4z
3
0z1, . . . .

(C.6)
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Note that we always take the defining quintic polynomial Q̃(z) to be completely1 invariant,

see eq. (3.72). Restricting everything to the hypersurface Q̃(z) = 0, we get homogeneous

polynomials on the Calabi-Yau threefold. We pick bases {sχα} for the χ-covariant polyno-

mials, that is,

χ = 1 : span
{
s1
α

}
= C[z0, z1, z2, z3, z4]Z5×Z5

kh

/〈
Q̃(z)

〉
,

χ 6= 1 : span
{
sχα
}

=
(
C[z0, z1, z2, z3, z4]kh

/〈
Q̃(z)

〉)χ
= C[z0, z1, z2, z3, z4]χkh .

(C.7)

We now turn towards computing the metric on the quotient Q or, equivalently,

computing the Z5×Z5-invariant metric on the covering space Q̃ by a variant of Donaldson’s

algorithm. For this, we pick the ansatz

K(z, z̄) =
1

π

χ4
1χ

4
2∑

χ=χ0
1χ

0
2

∑
αβ̄

hχαβ̄sχαs
χ
β (C.8)

for the Calabi-Yau metric. One can think of h as a block-diagonal matrix with blocks

labelled by the characters χ. The T -operator is likewise block-diagonal, and therefore one

obtains a balanced metric as the fixed point of the iteration

hχαβ̄n −→ hχαβ̄n+1 = T
(
hχαβ̄n

)−1
. (C.9)

Note that this fixed point is the same2 as what one would obtain from Donaldson’s al-

gorithm on the covering space Q̃ (without using any symmetry). Only now the basis of

1If Q̃(z) were a χ-covariant polynomial, it would still define a Z5×Z5 invariant Calabi-Yau hypersurface.
Everything in this chapter would generalize straightforwardly, so we ignore this possibility to simplify
notation.

2And different from the fixed point where one restricts to only the invariant sections. The latter is just
the χ = 1 block.
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sections is such that the impact of the Z5 × Z5 symmetry is clearly visible: h is block-

diagonal with blocks labelled by the characters χ.

As usual, the balanced metrics are better and better approximations to the Calabi-

Yau metric as one increases the degree kh. We find that this method of computing the

Calabi-Yau metric on the quotient Q is the most effective.
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Appendix D

Numerical Analysis of the Stability

Equation

In this Appendix, we present a numerical procedure for determining the existence

of negative eigenvalue, normalizable solutions of the stability equation

(− ∂2

∂r2
− 1

r

∂

∂r
)σ0 + V̂ σ0 = ω2σ0 , (D.1)

where

V̂ (r) = βη2
φf(r)2 − λση

2
σ

2
+ n2(

q̃2
σ

q̃2
φ

)
α(r)2

r2
. (D.2)

Although applicable in general, we specify our algorithm for the simplest case discussed

in the text where n = 1, q̃2
σ = q̃2

φ and m2
σ = 0, resulting in (4.85). Potential (D.2) then

simplifies to

V̂ (r) = β(f(r)2 − 1) +
α(r)2

r2
, (D.3)
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where we have set ηφ = 1 and, hence, the radial coordinate r and parameter β are dimen-

sionless. Note that V̂ depends only on the single parameter β. Furthermore, impose the

critical coupling constraint
λφ
2g̃2 = 1, thus simplifying the functions f(r) and α(r) to be

solutions of (4.37). These equations have been solved numerically in the literature [105]

and we input their solutions directly into our analysis of the stability equation.

To prove the existence of a boson condensate for a fixed value of parameter β in

(D.3), it suffices to find a negative energy ground state solution to (D.1). Hence, one can

impose the boundary conditions

σ0

∣∣∣
r=0

= 1 , ∂rσ0

∣∣∣
r=0

= 0 . (D.4)

In addition, to ensure that σ0(r) is normalizable constrain

σ0

∣∣∣
r→∞

= 0 . (D.5)

Note that if a bound state exists, its eigenvalue can never be more negative than the depth

of the potential energy. Hence, the possible range of values for ω2 is limited to

− β < ω2 < 0. (D.6)

For each such ω2, there is a solution σ0 which satisfies (D.1) with boundary conditions (D.4).

Generically, however, this solution will not be normalizable. To see this, note that for large

r the solution to (D.1) must be of the form

σ0(r)
r→∞−→ C1r

−1/2e−|ω|r + C2r
−1/2e|ω|r, (D.7)
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where C1 and C2 are continuous functions of ω2. If for a chosen value of ω2 C2 is non-

vanishing, then σ0 diverges at large r and the renormabiliability constraint (D.5) is not

satisfied. Note that C2 6= 0 can be either positive of negative. If positive, σ0
r→∞−→ +∞, that

is, the wavefunction “flips up” at large r. On the other hand, if C2 is negative, σ0
r→∞−→ −∞

and the wavefunction “flips down”. It is only if C2 exactly vanishes for a specific value ω2
0

in (D.6), that constraint (D.5) is satisfied and the wavefunction normalizable.

Two scenarios are then possible. First, if when ω2 is varied over the entire range

(D.6) C2 is always greater than, or always less than, zero, then the wavefunction is never

normalizable and a negative eigenvalue ground state does not exist for this choice of pa-

rameter β. Second, if when ω2 is varied over range (D.6) C2 changes sign, then there must

be an ω2
0 for which

C(ω2
0) = 0 , (D.8)

since C2 is a continuous function of ω2. Hence, for this choice of β a normalizable ground

state solution for σ0 exists with negative energy ω2
0. These results give us an explicit

algorithm for computing the existence, or non-existence, of a boson condensate. This is:

1. Choose a fixed value for parameter β.

2. Vary ω2 over the range (D.6).

3. For each value of ω2, numerically solve (D.1),(D.3) for the ground state wavefunction

σ0 satisfying boundary conditions (D.4). We do this by implementing the Runge-

Kutta method on Mathematica.

4. Plot σ0 versus r for all values of ω2.

5. If all these curves “flip up” or “flip down”, then there is no negative energy ground
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state. However, if these curves “flip up” for small values of ω2 but “flip down” for

larger values, then a ground state with negative energy ω2
0 does exist.

6. To compute ω2
0 and the associated normalizable wavefunction, we numerically identify

the interval which contains ω2
0. We then iterate this procedure until we obtain the

ground state energy and wavefunction to the desired precision, thus approximating

the solution to the stability equation.

To make this concrete, in Figure D.1 we carry out this algorithm explicitly for parameter

β = 0.8. Observe that σ0 “flips up” for small ω2, but “flips down” for larger values of ω2.

This signals the existence of a negative energy ground state occurring in between, when

σ0
r→∞−→ 0. The numerical value of ω2

0 = −0.1421 and the normalizable wavefunction are

both indicated in the Figure. Note that

|ω2
0|
β

= 0.1776 , (D.9)

that is, the bound state energy is 17.76 % of the depth of the potential.

Let us now carry out this computation for smaller values of β. The results for

β = 0.5 are shown in Figure D.2. Again, note that σ0 “flips up” for small ω2, but “flips

down” for larger values of ω2. This signals the existence of a negative energy ground state

occurring in between, when σ0
r→∞−→ 0. The numerical value of ω2

0 = −0.0231 and the

normalizable wavefunction are both indicated in the Figure. In this case,

|ω2
0|
β

= 0.0462 , (D.10)

that is, the bound state energy is 4.62 % of the depth of the potential. Note that the
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percentage size of the eigenvalue relative to the depth of the potential has substantially

decreased over the β = 0.8 case above. This indicates that for some value of β not too

much smaller than 0.5 a negative energy ground state might cease to exist. To explore

this further, we apply our algorithm to a range of values of parameter β. The ground

state energy for each β, as well as their fractional depth with respect to the potential, are

shown in Table D.1. Note that as β approaches ∼ 0.42, ω2
0 → 0 and is a rapidly decreasing

percentage of the potential depth. Indeed, we find that for

β < βcritical ' 0.42 , (D.11)

there is no negative energy bound state solution to (D.1),(D.3). Two concrete examples

of this are β = 0.35 and β = 0.1. Our numerical results for these parameters are shown

in Figure D.3 and Figure D.4 respectively. For both cases we see that, unlike the previous

examples, σ0 always “flips up ” for all values of ω2 satisfying (D.6). It follows that in

each case there is no negative energy ground state solution to the stability equation. To

conclude: we have shown numerically that the stability equation (D.1) with potential (D.3)

admits a negative energy ground state normalizable solution if and only if

β > βcritical ' 0.42 . (D.12)

As discussed in the text, a similar analysis must be carried out with the charges

chosen to be q̃2
φ = 9q̃2

σ. This changes potential (D.3) to

V̂ (r) = β(f(r)2 − 1) +
α(r)2

9r2
. (D.13)
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Figure D.1: Family of σ0 solutions for the initial value problem with β = 0.8 and ω2

varying from -0.12 to -0.156. Note that the asymptotic behaviour of the
wavefunction changes sign. The ground state occurs at ω2

0 = −0.1421
and its associated normalizable ground state is indicated in red.
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Figure D.2: Family of σ0 solutions for the initial value problem with β = 0.5
and ω2 varying from -0.003 to -0.036. Note the changing sign in the
asymptotic behaviour of the wavefunction. The ground state occurs at
ω2

0 = −0.0231 and the associated normalizable ground state is indicated
in red.
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Figure D.3: Family of σ0 solutions for the initial value problem with β = 0.35 over
the entire allowed range of ω2. Note that the asymptotic values of the
wavefunctions are always positive, diverging to +∞. This corresponds
to the stability equation admitting no negative energy ground state.
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Figure D.4: Family of σ0 solutions for the initial value problem with β = 0.1 over
the entire allowed range of ω2. Note that the asymptotic values of the
wavefunctions are always positive, diverging to +∞. This corresponds
to the stability equation admitting no negative energy ground state.
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β |ω0|2 |ω0|2/β

1 0.2404 0.2404

0.8 0.1421 0.1776

0.7 0.0977 0.1396

0.5 0.0231 0.0462

0.45 0.0094 0.0209

0.42 0.0027 0.0064

Table D.1: The ground state energy corresponding to different values of β. Note that
as the potential becomes more shallow, the ground state energy decreases
relative to the depth of the potential.

The numerical analysis of this case gives the same qualitative results, so we won’t present

it here. Suffice it to say that, due to the weaker repulsion term in the potential, the critical

value for β is lowered. Specifically, we find that the stability equation (D.1) with potential

(D.13) will admit a negative energy normalizable ground state if and only if

β > βcritical ' 0.14 . (D.14)
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[52] K. Gatermann and F. Guyard, “Gröbner bases, invariant theory and equivariant

232

http://arXiv.org/abs/hep-th/0703182
http://arXiv.org/abs/arXiv:0704.0449 [hep-th]
http://arXiv.org/abs/hep-th/0703134
http://arXiv.org/abs/hep-th/0512205
http://arXiv.org/abs/arXiv:0706.3134 [hep-th]
http://arXiv.org/abs/hep-th/0701063


dynamics,” J. Symbolic Comput. 28 (1999), no. 1-2, 275–302. Polynomial

elimination—algorithms and applications.

[53] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’

Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA,

third ed., 1999.

[54] V. Braun, T. Brelidze, M. R. Douglas, and B. A. Ovrut, “Calabi-Yau Metrics for

Quotients and Complete Intersections,” arXiv:0712.3563 [hep-th].

[55] C. Iuliu-Lazaroiu, D. McNamee, and C. Saemann, “Generalized Berezin

quantization, Bergman metrics and fuzzy Laplacians,” JHEP 09 (2008) 059,

0804.4555.

[56] A. Ikeda and Y. Taniguchi, “Spectra and eigenforms of the Laplacian on Sn and

Pn(C),” Osaka J. Math. 15 (1978), no. 3, 515–546.

[57] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,

V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,

R. L. Graham, and T. S. Woodall, “Open MPI: Goals, Concept, and Design of a

Next Generation MPI Implementation,” in Proceedings, 11th European PVM/MPI

Users’ Group Meeting, pp. 97–104. Budapest, Hungary, September, 2004.

[58] A. Kehagias and K. Sfetsos, “Deviations from the 1/r2 Newton law due to extra

dimensions,” Phys. Lett. B472 (2000) 39–44, hep-ph/9905417.

[59] B. A. Ovrut, “A heterotic standard model,” AIP Conf. Proc. 805 (2006) 236–239.

233

http://arXiv.org/abs/arXiv:0712.3563 [hep-th]
http://arXiv.org/abs/0804.4555
http://arXiv.org/abs/hep-ph/9905417


[60] T. Kaluza, “On the Problem of Unity in Physics,” Sitzungsber. Preuss. Akad. Wiss.

Berlin (Math. Phys. ) 1921 (1921) 966–972.

[61] O. Klein, “Quantum theory and five-dimensional theory of relativity,” Z. Phys. 37

(1926) 895–906.

[62] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “Phenomenology, astrophysics

and cosmology of theories with sub-millimeter dimensions and TeV scale quantum

gravity,” Phys. Rev. D59 (1999) 086004, hep-ph/9807344.

[63] F. Leblond, “Geometry of large extra dimensions versus graviton emission,” Phys.

Rev. D64 (2001) 045016, hep-ph/0104273.

[64] J. Q. Zhong and H. C. Yang, “On the estimate of the first eigenvalue of a compact

Riemannian manifold,” Sci. Sinica Ser. A 27 (1984), no. 12, 1265–1273.

[65] S. Y. Cheng, “Eigenvalue comparison theorems and its geometric applications,”

Math. Z. 143 (1975), no. 3, 289–297.

[66] E. Witten, “Strong Coupling Expansion Of Calabi-Yau Compactification,” Nucl.

Phys. B471 (1996) 135–158, hep-th/9602070.

[67] A. [67], B. A. Ovrut, and D. Waldram, “On the four-dimensional effective action of

strongly coupled heterotic string theory,” Nucl. Phys. B532 (1998) 43–82,

hep-th/9710208.

[68] R. Donagi, A. Lukas, B. A. Ovrut, and D. Waldram, “Holomorphic vector bundles

and non-perturbative vacua in M- theory,” JHEP 06 (1999) 034, hep-th/9901009.

234

http://arXiv.org/abs/hep-ph/9807344
http://arXiv.org/abs/hep-ph/0104273
http://arXiv.org/abs/hep-th/9602070
http://arXiv.org/abs/hep-th/9710208
http://arXiv.org/abs/hep-th/9901009


[69] A. [69], B. A. Ovrut, K. S. Stelle, and D. Waldram, “Heterotic M-theory in five

dimensions,” Nucl. Phys. B552 (1999) 246–290, hep-th/9806051.

[70] L. B. Anderson, Y.-H. He, and A. Lukas, “Monad Bundles in Heterotic String

Compactifications,” JHEP 07 (2008) 104, 0805.2875.

[71] L. B. Anderson, J. Gray, Y.-H. He, and A. Lukas, “Exploring Positive Monad

Bundles And A New Heterotic Standard Model,” JHEP 02 (2010) 054, 0911.1569.

[72] L. Girardello and M. T. Grisaru, “Soft Breaking of Supersymmetry,” Nucl. Phys.

B194 (1982) 65.

[73] H. P. Nilles, M. Olechowski, and M. Yamaguchi, “Supersymmetry breaking and soft

terms in M-theory,” Phys. Lett. B415 (1997) 24–30, hep-th/9707143.

[74] G. R. Farrar and P. Fayet, “Phenomenology of the Production, Decay, and

Detection of New Hadronic States Associated with Supersymmetry,” Phys. Lett.

B76 (1978) 575–579.

[75] L. E. Ibanez and G. G. Ross, “Discrete gauge symmetries and the origin of baryon

and lepton number conservation in supersymmetric versions of the standard

model,” Nucl. Phys. B368 (1992) 3–37.

[76] S. Dimopoulos and H. Georgi, “Softly Broken Supersymmetry and SU(5),” Nucl.

Phys. B193 (1981) 150.

[77] R. Donagi, B. A. Ovrut, T. Pantev, and R. Reinbacher, “SU(4) instantons on

Calabi-Yau threefolds with Z(2) x Z(2) fundamental group,” JHEP 01 (2004) 022,

hep-th/0307273.

235

http://arXiv.org/abs/hep-th/9806051
http://arXiv.org/abs/0805.2875
http://arXiv.org/abs/0911.1569
http://arXiv.org/abs/hep-th/9707143
http://arXiv.org/abs/hep-th/0307273


[78] M. Ambroso and B. Ovrut, “The B-L/Electroweak Hierarchy in Heterotic String

and M- Theory,” JHEP 10 (2009) 011, 0904.4509.

[79] M. Ambroso and B. A. Ovrut, “The B-L/Electroweak Hierarchy in Smooth

Heterotic Compactifications,” Int. J. Mod. Phys. A25 (2010) 2631–2677,

0910.1129.

[80] M. Ambroso and B. A. Ovrut, “The Mass Spectra, Hierarchy and Cosmology of

B-L MSSM Heterotic Compactifications,” 1005.5392.

[81] A. A. Abrikosov, “On the Magnetic properties of superconductors of the second

group,” Sov. Phys. JETP 5 (1957) 1174–1182.

[82] H. B. Nielsen and P. Olesen, “VORTEX-LINE MODELS FOR DUAL STRINGS,”

Nucl. Phys. B61 (1973) 45–61.

[83] E. M. Chudnovsky, G. B. Field, D. N. Spergel, and A. Vilenkin,

“SUPERCONDUCTING COSMIC STRINGS,” Phys. Rev. D34 (1986) 944–950.

[84] A. Vilenkin and T. Vachaspati, “Electromagnetic Radiation from Superconducting

Cosmic Strings,” Phys. Rev. Lett. 58 (1987) 1041–1044.

[85] F. Ferrer and T. Vachaspati, “Light superconducting strings in the Galaxy,” Int. J.

Mod. Phys. D16 (2008) 2399–2405, astro-ph/0608168.

[86] M. R. DePies and C. J. Hogan, “Harmonic Gravitational Wave Spectra of Cosmic

String Loops in the Galaxy,” 0904.1052.

[87] D. Battefeld, T. Battefeld, D. H. Wesley, and M. Wyman, “Magnetogenesis from

Cosmic String Loops,” JCAP 0802 (2008) 001, 0708.2901.

236

http://arXiv.org/abs/0904.4509
http://arXiv.org/abs/0910.1129
http://arXiv.org/abs/1005.5392
http://arXiv.org/abs/astro-ph/0608168
http://arXiv.org/abs/0904.1052
http://arXiv.org/abs/0708.2901


[88] A. E. Everett, “COSMIC STRINGS IN UNIFIED GAUGE THEORIES,” Phys.

Rev. D24 (1981) 858.

[89] T. W. B. Kibble, “PHASE TRANSITIONS IN THE EARLY UNIVERSE,” Acta

Phys. Polon. B13 (1982) 723.

[90] A. Vilenkin and Q. Shafi, “DENSITY FLUCTUATIONS FROM STRINGS AND

GALAXY FORMATION,” Phys. Rev. Lett. 51 (1983) 1716.

[91] D. I. Olive and N. Turok, “Z-2 VORTEX STRINGS IN GRAND UNIFIED

THEORIES,” Phys. Lett. B117 (1982) 193.

[92] G. Lazarides, C. Panagiotakopoulos, and Q. Shafi, “PHENOMENOLOGY AND

COSMOLOGY WITH SUPERSTRINGS,” Phys. Rev. Lett. 56 (1986) 432.

[93] S. C. Davis, A.-C. Davis, and M. Trodden, “N = 1 supersymmetric cosmic strings,”

Phys. Lett. B405 (1997) 257–264, hep-ph/9702360.

[94] M. Trodden, “Supersymmetric strings and fermionic zero modes,” hep-ph/9710318.

[95] R. H. Brandenberger, B. Carter, A.-C. Davis, and M. Trodden, “Cosmic vortons

and particle physics constraints,” Phys. Rev. D54 (1996) 6059–6071,

hep-ph/9605382.

[96] E. Witten, “Superconducting Strings,” Nucl. Phys. B249 (1985) 557–592.

[97] J. E. Kiskis, “Fermions in a Pseudoparticle Field,” Phys. Rev. D15 (1977) 2329.

[98] R. Jackiw and P. Rossi, “Zero Modes of the Vortex - Fermion System,” Nucl. Phys.

B190 (1981) 681.

237

http://arXiv.org/abs/hep-ph/9702360
http://arXiv.org/abs/hep-ph/9710318
http://arXiv.org/abs/hep-ph/9605382


[99] C. T. Hill and L. M. Widrow, “Superconducting Cosmic Strings with Massive

Fermions,” Phys. Lett. B189 (1987) 17.

[100] M. Hindmarsh, “SUPERCONDUCTING COSMIC STRINGS WITH COUPLED

ZERO MODES,” Phys. Lett. B200 (1988) 429.

[101] S. C. Davis, A.-C. Davis, and W. B. Perkins, “Cosmic string zero modes and

multiple phase transitions,” Phys. Lett. B408 (1997) 81–90, hep-ph/9705464.

[102] L. E. Ibanez and G. G. Ross, “Supersymmetric Higgs and radiative electroweak

breaking,” Comptes Rendus Physique 8 (2007) 1013–1028, hep-ph/0702046.

[103] A. Lukas, B. A. Ovrut, and D. Waldram, “Five-branes and supersymmetry

breaking in M-theory,” JHEP 04 (1999) 009, hep-th/9901017.

[104] A. Brignole, L. E. Ibanez, and C. Munoz, “Towards a theory of soft terms for the

supersymmetric Standard Model,” Nucl. Phys. B422 (1994) 125–171,

hep-ph/9308271.

[105] A. Vilenkin and P. Shellard, Cosmic Strings and Other Topological Defects.

Cambridge University Press, Cambridge, 2000. Cambridge monographs on

mathematical physics.

[106] M. B. Hindmarsh and T. W. B. Kibble, “Cosmic strings,” Rept. Prog. Phys. 58

(1995) 477–562, hep-ph/9411342.

[107] E. J. Weinberg, “Index Calculations for the Fermion-Vortex System,” Phys. Rev.

D24 (1981) 2669.

238

http://arXiv.org/abs/hep-ph/9705464
http://arXiv.org/abs/hep-ph/0702046
http://arXiv.org/abs/hep-th/9901017
http://arXiv.org/abs/hep-ph/9308271
http://arXiv.org/abs/hep-ph/9411342


[108] R. L. Davis, “FERMION MASSES ON THE VORTEX WORLD SHEET,” Phys.

Rev. D36 (1987) 2267–2272.

[109] L. B. Anderson, V. Braun, R. L. Karp, and B. A. Ovrut, “Numerical Hermitian

Yang-Mills Connections and Vector Bundle Stability in Heterotic Theories,” JHEP

06 (2010) 107, 1004.4399.

[110] V. L. G.-M. Greuel and H. Schönemann., “Singular::Plural 2.1,” A Computer

Algebra System for Noncommutative Polynomial Algebras, Centre for Computer

Algebra, University of Kaiserslautern, 2003.

http://www.singular.uni-kl.de/plural.

239

http://arXiv.org/abs/1004.4399

	University of Pennsylvania
	ScholarlyCommons
	Fall 12-22-2010

	Balanced Metrics and Phenomenological Aspects of Heterotic Compactifications
	Tamaz Brelidze
	Recommended Citation

	Balanced Metrics and Phenomenological Aspects of Heterotic Compactifications
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories


	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivation
	The 10-dimensional effective heterotic action and supersymmetry
	Calabi-Yau three-folds
	Solutions of Hermition Yang Mills Equations

	Introduction
	The Quintic
	Parametrizing Metrics
	Donaldson's Algorithm
	Integrating over the Calabi-Yau threefold
	Results

	Group Actions and Invariants
	Quotients and Covering Spaces
	Poincaré and Molien
	Hironaka Decomposition

	Four-Generation Quotient of Quintics
	Four Generation Models
	Sections on the Quotient
	Invariant Polynomials
	Invariant Sections on the Quintic
	Results

	Schoen Threefolds
	As Complete Intersections
	Line Bundles and Sections
	The Calabi-Yau Volume Form
	Generating Points
	Results

	The Z3 x Z3 Manifold
	A Symmetric Schoen Threefold
	Invariant Polynomials
	Quotient Ring
	Results


	Solving the Laplace Equation
	Solving the Laplace Equation
	The Spectrum of Delta on P3
	Analytic Results
	Numerical Results
	Asymptotic Behaviour

	 Quintic Calabi-Yau Threefolds
	Non-Symmetric Quintic
	Fermat Quintic
	Symmetry Considerations
	Donaldson's Method

	Z5xZ5 Quotients of Quintics
	Z5xZ5 Symmetric Quintics and their Metrics
	The Laplacian on the Quotient
	Quotient of the Fermat Quintic
	Group Theory and the Quotient Eigenmodes
	Varying the Complex Structure
	Branching Rules
	Another Family

	The Heterotic Standard Model Manifold
	The Spectrum of the Laplacian on X

	The Sound of Space-Time
	Kaluza-Klein Modes of the Graviton
	Spectral Gap



