
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2015

The Identification of Novel Mechanisms in
Neuronal Development and Degeneration
Angela Marie Jablonski
University of Pennsylvania, angela.m.jablonski@gmail.com

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Biology Commons, Molecular Biology Commons, and the Neuroscience and
Neurobiology Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1067
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Jablonski, Angela Marie, "The Identification of Novel Mechanisms in Neuronal Development and Degeneration" (2015). Publicly
Accessible Penn Dissertations. 1067.
http://repository.upenn.edu/edissertations/1067

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=repository.upenn.edu%2Fedissertations%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=repository.upenn.edu%2Fedissertations%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=repository.upenn.edu%2Fedissertations%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=repository.upenn.edu%2Fedissertations%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1067?utm_source=repository.upenn.edu%2Fedissertations%2F1067&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1067
mailto:libraryrepository@pobox.upenn.edu


The Identification of Novel Mechanisms in Neuronal Development and
Degeneration

Abstract
The goal of this dissertation is to further understand two key, broad processes which occur over the course of a
neuron's lifetime: its development and possible degeneration in disease. We identify novel components in
both of these processes and attempt to understand the functional significance as well as the mechanism each
component uses to exert its effects.

We begin with work done focusing on how the neuron's dendritic tree develops. The development of neurons
has two phases: (1) a first phase relying on a genetic program and (2) a second phase that uses synaptic
activity to guide the fine tuning of connections. We are primarily interested in understanding how neurons
develop within the motor system using cues from synaptic activity. One type of activity-dependent
development in the motor system is driven by AMPA receptors assembled with the GluA1 subunit using the
scaffolding protein, SAP97. In Chapter 2, we describe our finding that the small protein, CRIPT, functions in
the development of the neuron's dendritic tree within the motor system. We show that CRIPT is expressed
during the time in development when activity-dependent remodeling is occurring the in spinal cord.
Additionally, we show that CRIPT binds to the PDZ3 domain of SAP97 using its C-terminus. Finally, we
show that CRIPT is necessary for proper dendritic growth of the motor system and normal motor system
responses in vivo.

There are a number of diseases that specifically target motor neurons. One adult-onset disease is Amyotrophic
Lateral Sclerosis (ALS). Like many neurodegenerative diseases, it is a multifactorial disease and a contributing
factor is the lack of proper protein quality control and the formation of large protein aggregates within motor
neurons. In Chapter 3, we focus on how endoplasmic reticulum-associated degradation (ERAD) components
might affect mutant proteins in ALS and their toxicity. ERAD is responsible for maintaining the proper folding
of proteins that are to be trafficked to the cell surface or secreted from the cell. Although many proteins
associated with ALS are not ERAD substrates, a number of ERAD components have been found to interact
with ALS-causing mutant proteins and have been found to be mutated in forms of familial ALS. We identify
new modifiers within the ERAD pathway of the toxicity of two ALS-linked proteins, mutant TDP-43 and
mutant SOD1. We focus on the mechanism of one suppressor of ALS-linked proteotoxicity, the loss of
RAD-23. The levels of RAD23 are increased in ALS models and reducing RAD-23 levels can suppress
phenotypes in ALS models, as well as suppress motor neuron toxicity of the mutant proteins. We further show
that reduced RAD-23 is able to accelerate the turnover of mutant proteins associated with ALS. Finally, we
show that there is a mislocalization of RAD-23 protein and increased RAD-23 protein expression in post
mortem spinal cord tissue of ALS patients, suggesting that RAD-23 may be a new novel target in the treatment
of ALS.

Collectively, this work identifies and describes novel proteins and mechanisms involved in the development
and pathobiology of motor neurons.
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ABSTRACT 
 

THE IDENTIFICATION OF NOVEL MECHANISMS IN NEURONAL DEVELOPMENT 

AND DEGENERAITON 

 

Angela Marie Jablonski 

 

Dr. Robert Gordon Kalb, M.D. 

 

The goal of this dissertation is to further understand two key, broad processes 

which occur over the course of a neuron’s lifetime: its development and possible 

degeneration in disease. We identify novel components in both of these processes and 

attempt to understand the functional significance as well as the mechanism each 

component uses to exert its effects.  

We begin with work done focusing on how the neuron’s dendritic tree develops. 

The development of neurons has two phases: (1) a first phase relying on a genetic 

program and (2) a second phase that uses synaptic activity to guide the fine tuning of 

connections. We are primarily interested in understanding how neurons develop within 

the motor system using cues from synaptic activity. One type of activity-dependent 

development in the motor system is driven by AMPA receptors assembled with the 

GluA1 subunit using the scaffolding protein, SAP97. In Chapter 2, we describe our 

finding that the small protein, CRIPT, functions in the development of the neuron’s 

dendritic tree within the motor system. We show that CRIPT is expressed during the time 

in development when activity-dependent remodeling is occurring the in spinal cord. 

Additionally, we show that CRIPT binds to the PDZ3 domain of SAP97 using its C-
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terminus. Finally, we show that CRIPT is necessary for proper dendritic growth of the 

motor system and normal motor system responses in vivo.  

There are a number of diseases that specifically target motor neurons. One 

adult-onset disease is Amyotrophic Lateral Sclerosis (ALS). Like many 

neurodegenerative diseases, it is a multifactorial disease and a contributing factor is the 

lack of proper protein quality control and the formation of large protein aggregates within 

motor neurons. In Chapter 3, we focus on how endoplasmic reticulum-associated 

degradation (ERAD) components might affect mutant proteins in ALS and their toxicity. 

ERAD is responsible for maintaining the proper folding of proteins that are to be 

trafficked to the cell surface or secreted from the cell. Although many proteins 

associated with ALS are not ERAD substrates, a number of ERAD components have 

been found to interact with ALS-causing mutant proteins and have been found to be 

mutated in forms of familial ALS. We identify new modifiers within the ERAD pathway of 

the toxicity of two ALS-linked proteins, mutant TDP-43 and mutant SOD1. We focus on 

the mechanism of one suppressor of ALS-linked proteotoxicity, the loss of RAD-23. The 

levels of RAD23 are increased in ALS models and reducing RAD-23 levels can suppress 

phenotypes in ALS models, as well as suppress motor neuron toxicity of the mutant 

proteins. We further show that reduced RAD-23 is able to accelerate the turnover of 

mutant proteins associated with ALS. Finally, we show that there is a mislocalization of 

RAD-23 protein and increased RAD-23 protein expression in post mortem spinal cord 

tissue of ALS patients, suggesting that RAD-23 may be a new novel target in the 

treatment of ALS. 

Collectively, this work identifies and describes novel proteins and mechanisms 

involved in the development and pathobiology of motor neurons. 
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CHAPTER 1: INTRODUCTION 

 This thesis attempts to understand two major events in the life of the nervous 

system: the development of the nervous system and its possible degeneration, with a 

key emphases on the motor system. Here, I will outline the critical information needed to 

understand the progress made in these two areas.  

NEURONAL DEVELOPMENT  
 

The development of the nervous system is roughly divided into two parts: (1) an 

activity-independent phase outlined by a genetic program and (2) an activity-dependent 

phase. Together, these phases produce the adult nervous system with the correct 

connectivity and physiology to produce meaningful behavior. This work primarily focuses 

on the second phase and the role of activity-dependent development.  

ACTIVITY-DEPENDENT DEVELOPMENT 
 

Activity-dependent development during pre- and postnatal life is an important 

mechanism for the specification of synaptic phenotype and connectivity. Here, we will 

review some of the key experiments undertaken in the visual system that highlight the 

cell biological processes underlying activity-dependent development. These introductory 

remarks provide the context for thinking about the role of activity-dependent processes 

in motor system development. 

In the mammalian visual system, retinal ganglion cells (RGC) project to the 

lateral geniculate nucleus (LGN) of the thalamus. Thalamocortical (TC) connections from 

the LGN project to the visual cortex. In mature animals, right and left eye afferents are 
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segregated from each other in both the LGN and visual cortex (Katz and Shatz, 1996; 

Mooney et al., 1996). For example, in adult cats and primates, TC afferents projecting to 

layer four of the visual cortex are organized into discrete right and left eye patches, 

referred to as ocular dominance columns (OCD) (Shatz, 1996). This circuitry 

arrangement subserves high acuity vision (Butts et al., 2007).   

In their classic work, Hubel and Weisel showed that this pattern of visual cortex 

innervation is not present at birth, as right and left eye afferents demonstrate extensive 

overlap (Hubel et al., 1977). Most remarkably, they showed that the segregation of right 

and left eye afferents is driven by visual experience (Hubel et al., 1977). Monocular 

deprivation of one eye (by suturing the eyelid shut) during a discrete period in early 

postnatal life leads to a dramatic shift in TC innervation of the visual cortex (Hubel et al., 

1977). The afferents from the nondeprived eye innervate a larger territory of the visual 

cortex, while those from the deprived eye innervate a smaller territory (Hubel et al., 

1977). This experience-dependent shift in ocular dominance leaves a permanent imprint 

on visual system organization (Hubel et al., 1977).  

How does environmentally evoked synaptic activity lead to changes in synaptic 

strength and connectivity? Substantial evidence supports the view that synapses will 

undergo strengthening and stabilization when the activity of pre- and postsynaptic 

elements is coincident. This model of synaptic plasticity was originally suggested in 

theoretical work by Daniel Hebb and has been most rigorously tested in long-term 

potentiation (LTP) paradigms (Hebb, 1949). Many forms of LTP depend upon the 

activation of N-methyl-d-aspartate receptors (NMDA-Rs). NMDA-Rs are believed to be 

the coincidence detectors responsible for detecting the simultaneous activity of pre- and 
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postsynaptic elements (Seeburg et al., 1995). The ionic mechanism underlying this 

process has been linked to the voltage-dependent block of NMDA-Rs by Mg2+ (Shaywitz 

and Greenberg, 1999). Patterned afferent input, sufficient to remove the Mg2+ block, 

allows NMDA-Rs to conduct Ca2+ influx, which inactivates several protein kinases, 

including Ca2+/calmodulin-dependent protein kinase II (CamKII) (Seeburg et al., 1995). 

CamKII is necessary for the maintenance of LTP and phosphorylation of 2-amino-3-(3-

hydroxy-5-methyl-isoxazol-4-yl) propanoic acid receptor (AMPA-R) subunits to increase 

their conductance (Shaywitz and Greenberg, 1999). These and other calcium-activated 

processes drive the observed synaptic plasticity (Shaywtiz and Greenberg, 1999; Luthi 

et al., 2004).   

In the visual system, activity-dependent processes drive large-scale alterations in 

the architecture of axons and dendrites. How do activity-dependent changes in synapses 

control the growth and distribution of axons and dendrites? Vaughn proposed the 

synaptotropic hypothesis: dendritic branches are formed near active synapses and 

synapse stabilization consequently stabilizes dendrites (Vaughn, 1989). Original in vivo 

work from the Haas lab implicates beta-neurexin (NRX) and neuroligin-1 (NLG1) in this 

process, in which NMDA-R–dependent synapse maturation was required for persistent 

NRX-NLG1 function in dendritogenesis (Chen et al., 2010). Blocking synaptogenesis 

thereby blocks dendrite outgrowth stabilization. The linkage of synaptic plasticity to 

neurite architecture is a fundamental principle in developmental neuroscience and 

provides an explanation for earlier observations that the size and complexity of the 

dendrite tree controls the qualitative and quantitative nature of the afferent input 

(Oswald, 1989). In studies of rabbit ciliary ganglia, the number of ganglion cell primary 

dendrites is highly correlated with the number of innervating axons (Hume and Purves, 
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1981). This is not true of some of the cells in the neonate, where the initial set of inputs 

is confined to the cell body, allowing only one axon to survive (Hume and Purves, 1981).  

It is hypothesized that the complexity of some cells allows for a higher number of 

afferents to innervate the ganglion cell (Hume and Purves, 1981). Thus, a competition-

based model of synapse formation holds for dendrite growth. 

While many studies implicate AMPA-Rs in the control of dendrite growth, a 

consistent picture has yet to emerge. Blocking AMPAergic transmission in retinotectal 

neurons decreases synapse stabilization, and subsequent dendrite growth and 

stabilization (Haas et al., 2006). Conversely, Casticas et al. (2011) showed that 

enhanced conductance of Ca2+-permeable AMPA-Rs inhibited neurite outgrowth in 

dissociated chick retinal neurons (Casticas et al., 2001). Outside of the visual system, 

blockade of AMPA-Rs in chick motoneurons has also been seen to increase dendritic 

outgrowth in chick motoneurons, but only at certain time points in embryonic 

development (Ni and Maratin-Caraballo, 2010). It is unclear what role NMDA-Rs played 

in these processes because blocking AMPA-Rs will prevent NMDA-R activation. 

In the central nervous system (CNS), it is understood that activation of AMPA-Rs, 

sufficient to relieve the voltage-dependent magnesium block of NMDA-Rs, drives 

activity-dependent plasticity, synaptic stabilization, and patterned innervation (Peng et 

al., 2009). Less understood is the extent to which NMDA-R–independent mechanisms 

can drive activity-dependent developmental processes. Next, we describe work in the 

spinal cord showing how AMPA-Rs assembled with the GluA1 subunit can promote 

activity-dependent development by an NMDA-R–independent process. 
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GLUR1 AND SAP97 PROMOTE DENDRITE GROWTH 
 

Neonatal motor neurons express a very high level of GluA1 (both mRNA and 

protein). GluA1’s properties can be modified by alternative splicing and editing at the 

glutamine/arginine “Q/R” site. The GluA1 expressed during this developmental period 

contains the “flip” alternatively spliced exon and is unedited in the Q/R site (Jakowec et 

al., 1995a; Jakowec et al., 1995b). Previous work has shown that neonatal motor 

neurons express Ca2+ permeable AMPA receptors (as one would expect if they were 

enriched with GluA1(Q)) (Jakowec et al., 1995b). Taken together with the 

electrophysiological data, it suggests that many AMPA-R are assembled of GluA1 

homomers at this point in development in motor neurons. 

The unusually high level of GluA1 expression by neonatal motor neurons raises 

the possibility that AMPA receptors assembled with GluA1 play a special role in activity-

dependent motor system development. To examine this notion, we began by asking 

whether manipulation of GluA1 influenced spinal neuron dendritic architecture. Several 

approaches were taken. First, we found that knockdown of GluA1 expression inhibited 

dendrite growth. Conversely, overexpression of GluA1 in spinal neurons in vitro 

stimulated dendritic growth; this growth effect was blocked by the AMPA-R antagonist, 

CNQX (6-cyano-7-nitroquinoxaline-2, 3-dione) (Zhang et al., 2008). Second, we 

compared the effects of two types of overexpressed GluA1 in motor neurons in vivo. We 

used a version that robustly passes current (GluA1(Q)) and compared that with a version 

that passes very little current (GluA1(R)). Only overexpressed GluA1(Q) stimulated 

dendritic branching (Jeong et al., 2006). These results suggest: 1) that the activity of 

AMPA-R assembled with GluA1 is a crucial step for dendrite growth and 2) that this 

effect is Ca2+-dependent. Subsequent in vitro work indicates that the degree of calcium 
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permeability of AMPA-R assembled with GluA1 controls the dendritic growth process 

(Jeong et al., 2006).   

One interpretation of the above results is that overexpression of GluA1 enhances 

neuronal depolarization, thereby promoting NMDA-R mediated events. We think this is 

not true for a number of reasons. First, our in vivo observations were made in juvenile 

rodents at a time when motor neurons do not express NMDA-R (Steganga and Kalb, 

2001).  It is possible that prior in situ hybridization and immunohistological studies were 

insufficiently sensitive to detect NMDA-R in juvenile motor neurons. To address this 

possibility, we expressed GluA1(Q) in juvenile animals and simultaneously treated them 

with the NMDA-R antagonist, MK-801 (Inglils et al., 2002). We know that MK-801 was 

administered in an effective dose because LTP could not be evoked in these animals 

(Inglis et al., 2002). Nonetheless, MK-801 did not block the pro-dendrite growth actions 

of overexpressed GluA1(Q) (Inglis et al., 2002). Second, we undertook in vitro 

pharmacological studies. Administration of MK-801 did not block the dendrite growth 

promoting actions of GluA1(Q). In contrast, administration of the L-type calcium channel 

blocker, nifedipine, did block the GluA1(Q) effect (Kalb et al., 2013). Taken together, all 

of these results suggest that GluA1 is sufficient to promote dendrite growth in an NMDA-

R-independent manner. 

The work described above primarily focuses on the effects of GluA1 on dendrite 

architecture in vitro. What about in vivo? To address this question, studies of the GluA1-/- 

mouse have been informative (Zhang et al., 2008). Analysis of the dendritic tree 

revealed that motor neurons from GluA1-/- animals are smaller and less branched at P10 

and P23 (Zhang et al., 2008). This suggests that GluA1-/- motor neurons develop over a 

different trajectory than wild type (WT) motor neurons. How does this decrease in the 
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size and complexity of the motor neuron dendrite tree effect motor circuitry and behavior 

of the animal? To study the innervation of motor neurons within the segmental spinal 

cord, a recombinant Pseudorabies virus engineered to express green fluorescence 

protein (PRV-GFP) was employed. PRV-GFP labeling experiments revealed a distinct 

pattern of interneuronal connectivity in the spinal cord of GluA1-/- mice in comparison to 

WT mice. The greatest difference between genotypes was found in the number of 

contralaterally located interneurons, especially in Rexed’s lamina VIII (Zhang et al., 

2008). The stunted dendrite tree and change in interneuron connectivity correlate with a 

locomotor defect in the GluA1-/- animals. In comparison to WT counterparts, GluA1-/- 

mice showed poorer performance in grip strength, treadmill, and rotarod at P23 and 

adulthood (Zhang et al., 2008). This suggests that GluA1 is not only important for 

dendrite growth, but also for patterning segmental spinal cord circuitry and motor 

behavior. Furthermore, changes in development during the postnatal period lead to 

deficits throughout adulthood (Zhang et al., 2008).  

By what molecular mechanism does the activity of AMPA-R assembled with 

GluA1 control the morphology of motor neuron dendritic architecture? A series of 

experiments have indicated that the multi-domain scaffolding protein, synapse-

associated protein of 97 kDa molecular weight (SAP97), interacts with GluA1 and plays 

a key role in this process (Zhou et al., 2008). The C-terminal seven amino acids of 

GluA1 physically interact with the second PDZ domain of SAP97.   

 AMPA-R physiology and synaptic plasticity is entirely normal when the physical 

interaction between GluA1 and SAP97 is disrupted (Kim et al., 2005). This was 

demonstrated using mice in which the wild type allele of GluA1 was replaced by a 

version of GluA1 lacking the C-terminal seven amino acids of the protein known to bind 
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SAP97 (GluA1∆7 mice) (Kim et al., 2005). Contrary to expectations, GluA1 also traffics 

normally to the cell surface in these mice, suggesting GluA1 chaperones SAP97 to 

synapses – not the vice versa.  This was demonstrated further using biochemical and 

imaging methodologies (Kim et al., 2005). However, normal elaboration of motor neuron 

dendrites requires SAP97. This was demonstrated in vitro: knockdown of SAP97 

decreases the total size of the dendritic tree and prevents the pro-dendrite growth effect 

of GluA1 overexpression (Kim et al., 2005) This was further confirmed in vivo – a smaller 

dendritic tree was found in the GluA1∆7 mice (where SAP97 does not traffic to the cell 

surface) as well as in mice with a conditional deletion of SAP97 from motor neurons 

(Kim et al., 2005). Finally, co-overexpression of GluA1 and SAP97 in vitro has a 

synergistic pro-dendrite growth effect; this only depends on their co-localization at the 

plasma membrane, not their physical association (Kim et al., 2005). This was 

demonstrated using a membrane-targeted version of SAP97 in conjunction with 

GluA1∆7 or a membrane-targeted version of SAP97 with mutations in its PDZ2 domain 

that make it incapable of binding GluA1 (Kim et al., 2005).  

Together, these experiments suggest that the endogenous GluA1 and SAP97 

complex is the necessary platform upon which GluA1-containg AMPA-R activity is 

translated into a signal(s) that stimulates dendritic growth and branching in the spinal 

cord. 

How do GluA1 and SAP97 work together to promote dendrite growth? One 

hypothesis is that GluA1 and SAP97 help form the assembly of a multi-protein complex 

during GluA1-containing AMPA-R activity to activate downstream effectors capable or 

stimulating dendritic growth. At this time, the molecular mechanism by which SAP97 and 

GluA1 promote dendritic growth and branching is unknown. We do, however, have 
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evidence that the PDZ3 domain of SAP97 is crucial for these pro-growth effects by 

SAP97 and GluA1 (unpublished observations). Overexpression of SAP97 with a 

mutation in the PDZ3 domain no longer increases dendrite growth. Thus, it is logical to 

ask whether proteins that bind to the PDZ3 domain of SAP97 are part of the machinery 

to translate activity into growth. This is one current avenue for research and key 

downstream players in the GluA1-mediated process are beginning to be identified. One 

protein identified in this thesis work is CRIPT. 

CRIPT: A CANDIDATE EFFECTOR FOR GLUA1-DEPENDENT DENDRITE GROWTH 
 

 CRIPT (cysteine-rich-interactor-of-PDZ-three) was originally identified as a small 

12 kDa protein that was localized to excitatory synapses. It is believed to be a 

crosslinking proteins between proteins in the post-synaptic density (i.e. PSD-95) and 

microtubules because it could be co-immunoprecipitated with tubulin and PSD-95 

(Niethammer et al., 1998; Passafaro et al., 1999). It could also be co-immunoprecpitated 

with NR2B and Chapsyn-110 from synaptosomal preparations (Niethammer et al., 

1998). Furthermore, overexpression of CRIPT in heterologous cells was shown to cause 

a redistribution of PSD-95 to microtubules (Niethammer et al., 1998).  

 We chose to focus on CRIPT as a possible mediator of GluA1- and SAP97-

driven dendrite growth because it was found to selectively bind to the third PDZ domain 

(PDZ3) of PSD-95 previously. CRIPT contains a canonical PDZ-binding sequence at its 

terminus (-QTSV). Furthermore, CRIPT is conserved from mammals to plants (i.e. 

human and Arabidopsis thaliana CRIPT share 78% similarity in their amino acid 

sequences), suggesting an important functionality (Niethammer et al., 1998). CRIPT was 

also previously shown to be expressed throughout the rat nervous system in known sites 
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of plasticity, such as the hippocampus (Niethammer et al., 1998). Furthermore, it is likely 

that a protein involved in dendritic remodeling would interact with the cytoskeleton, such 

as microtubules, which CRIPT has been found to do (Niethammer et al., 1998). 

 Up until now, no definitive function of CRIPT has been established. For example, 

although interference of CRIPT’s interaction with PSD-95 disrupts PSD-95’s localization 

with microtubules (Passafaro et al., 1999), it had no effect on the clustering or number of 

NMDA-R. This work, therefore, proposes a novel function for CRIPT in the dendrite 

growth of spinal cord neurons. This work can be found in Chapter 2.  

MOTOR NEURON DISEASE: AMYOTROPHIC LATERAL SCLEROSIS 
 

 A number of neurodegenerative diseases are known to selectively target the 

upper motor neurons in the cortex and lower motor neurons in the brainstem and spinal 

cord. These diseases are known as motor neuron diseases (MND), but it is still not 

completely understood why these diseases target this subset of neurons. 

 The disease we focused on in this work is Amyotrophic Lateral Sclerosis (ALS), 

popularly referred to in the United States as Lou Gehrig’s disease. ALS is commonly 

classified into two subtypes: (1) familial (fALS) and (2) sporadic (sALS), depending 

respectively on if the disease is or is not caused by a single genetic and inherited 

mutation. Familial ALS accounts for roughly 5-10% of cases and has been linked to a 

number of gene mutations. The most prevalent of these is the C9ORF72 mutation, 

although new mutations continue to be found. The disease tends to present itself earlier 

than some other neurodegenerative diseases, anywhere between 50 to 75 years of age, 

and disease progression lasts for three years on average. The disease has a worldwide 

incidence of two in every 100,000 individuals and men tend to present more often with 
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the disease than women (1.2-1.5:1 ratio) (Cronin et al., 2007). The disease can 

sometimes be associated with non-motor systems in a form of frontotemporal dementia 

(FTD). Postmortem tissue from both ALS and FTD patients reveals the presence of 

protein aggregates, strongly supporting the existence of a pathophysiological continuum 

between these two disorders (Forman et al., 2004). In fact, it is estimated that 15% of 

FTD patients meet the criteria to be diagnosed with ALS (Ringholz et al., 2005). The 

prevalence of protein aggregates within motor neurons in both sporadic and familial ALS 

tissue also points to a lack of protein quality control in the disorder, which is a major 

focus of the work discussed in this dissertation.  

 Patients with ALS exhibit progressive neuromuscular weakness, atrophy, and 

eventual death. Most patients will die from respiratory failure. The biggest motivation for 

studying the disease is that it has no known cure. The only drug known to modify the 

course of ALS is Riluzole, a drug that is thought to act by reducing the burden of 

glutamate excitotoxicity, but only achieves a modest improvement in survival (Miller et al, 

2007). The lack of treatment is in part due to the multifactorial nature of the disease. 

Contributing pathogenic processes include glutamate excitotoxicity, protein misfolding, 

inflammation, oxidative stress, endoplasmic reticulum (ER) stress, mitochondrial 

dysfunction, impaired axonal transport, impaired endosomal trafficking, as well as 

dysregulated transcription and RNA processing (Ferraiuolo et al., 2011; Rothstein, 

2009).  

 Due to the lack of promising treatment, there is an urgent need for ALS research. 

One of the obstacles in studying the disease is that most of the cases are sporadic and 

most research done in the laboratory to model and study the disease utilizes genetic 

models.  
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GENETIC MODELS OF MOTOR NEURON DISEASE 
 

 In order to identify new modifiers of motor neuron disease, we utilized several 

models of motor neuron disease in the small genetically tractable nematode, 

Caenorhabditis elegans (C. elegans). Some of the mutations found in fALS include 

mutations in copper-zinc superoxide dismutase 1 (SOD1), TAR DNA-binding protein of 

43 kDa molecular weight (TDP-43), fused in sarcoma (FUS), vesicle-associated 

membrane protein-associated protein B (VAPB), ubiquilin-2 (UBQLN2), and many more 

(Ferraiuolo et al., 2011). Here, we focused on models based on mutations commonly 

found in familial forms of ALS, mutant SOD1 (G85R), which counts for 20% of fALS 

cases (or 2% of total cases) (Wang et al, 2009) and mutant TDP-43 (M337V) (Liachko et 

al., 2010). Mutations in TDP-43 account for roughly 5% of fALS cases (Kabashi et al., 

2008; Sreedharan et al., 2008; van Deerlin et al., 2008). It is important to note, however, 

that TDP-43 inclusions can be found in the tissue of both fALS and sALS patients 

(Baralle et al., 2013).  

 SOD1 was the first gene for which a causative mutation for ALS was found 

(Deng et al., 1993; Rosen et al., 1993). SOD1 is a ubiquitously-expressed cytosolic 

enzyme highly conserved across species involved in dismutating superoxide by binding 

cooper and zinc ions and this property suggests that SOD1 helps to prevent oxidative 

stress (Ratovitski et al., 1999). Other functions for SOD1 have recently been identified 

and include roles in metabolism (Reddi and Culotta, 2013), copper buffering (Wei et al., 

2001), the nitration of proteins (Beckman et al., 1993), and zinc homeostasis (Wei et al., 

2001). Over 100 different mutations have been identified in SOD1 in fALS, and research 

has demonstrated that mutant SOD1 induces disease through a toxic gain-of-function 

mechanism. Over 150 mutations in SOD1 have been associated with human ALS cases 



13 

 

and there appears to be no correlation between the level of SOD1 dismutase activity and 

severity of the disease (Ratovitski et al., 1999). In addition, SOD1-null animals lack any 

overt ALS symptoms (Flood et al., 1999; Fischer et al., 2012). Meanwhile, mutant 

(G85R) SOD1 transgenic mice have the same survival times on both wild type (two 

copies of the SOD1 gene) and SOD1-null backgrounds (Brujin et al., 1998). 

Furthermore, mutant SOD1 that is enzymatically inactive due to depletion of copper 

loading was shown to be still capable of causing motor neuron degeneration 

(Subramaniam et al., 2002).   

SOD1 is believed to induce its toxic effects in a both cell autonomous and non-

cell autonomous manners (Ilieva et al., 2009). For example, expression of mutant SOD1 

in astrocytes is sufficient to induce motor neuron death (Marchetto et al., 2008) and 

overexpression of mutSOD1 (G85R) in the nervous system of C. elegans is sufficient to 

cause a profound locomotor deficit (Wang et al., 2009). Certain studies have also found 

that overexpression of wild type SOD1 at high levels can also induce neurodegenerative 

symptoms including mitochondrial damage in the axons within the spinal cord, axonal 

degeneration itself, and eventually a moderate loss of spinal motoneurons at 2 years of 

age (Jaarsma et al., 2000). This suggests that the concentration of SOD1 must normally 

be controlled to prevent its toxicity 

TDP-43 is a 414 amino acid protein encoded by the TARDP gene on 

chromosome 1. TDP-43 has been found to participate in many functions including 

transcription, mRNA processing, mRNA splicing, RNA transport, and stress granule 

formation (Ling et al., 2013). It has not been established yet whether loss or corruption of 

any of these functions has a link to TDP-43’s role in ALS. TDP-43 has two RNA binding 

domains, a glycine rich domain, and nuclear export and import signals. In pathological 
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models of ALS, TDP-43 is found in the cytoplasm, where it is often found as an insoluble 

species. These insoluble species of TDP-43 contain a hyperphosphorylated form of 

TDP-43 and a C-terminus cleaved fragment (Neumann et al., 2006). At least 40 

mutations in TDP-43 have been found in ALS and expression of different mutations in 

mutant TDP-43 (mutTDP-43) in the nervous system have had conflicting results on 

neuronal viability. For example, in one model, expressing mutant TDP-43 (Q331K) or 

mutant TDP-43 (M337V) in the mouse central nervous system showed large scale motor 

neuron degeneration (Arnold et al., 2013). Meanwhile, overexpressing other forms of 

mutant TDP-43 (G348C or A315T) displayed only mild neuronal loss (Swarup and 

Julien, 2011; Verbeeck et al., 2012). Recently, it has been found the expressing 

mutTDP-43 in astrocytes is sufficient to induce motor neuron death and ALS-like 

symptoms in rats (Tong et al., 2013). It is still unclear as to what the pathogenic effect of 

the mutant protein is and if it is a gain of function, loss of function, or both (Ling et al., 

2013). However, overexpression of wild type TDP-43 in mouse and C. elegans models 

has also been shown to be toxic. Therefore, like SOD1, it appears TDP-43 levels need 

to be controlled and lack of the autoregulation of TDP-43 expression levels can lead to 

neurodegeneration (Igaz et al., 2011). Therefore, it has been proposed that perhaps 

what the mutations in TDP-43 do is increase the stability and thereby the abundance of 

the protein, which itself is toxic. 

Both the mutTDP-43 and mutSOD1 models of ALS in C. elegans show severe 

locomotor deficits and the mutTDP-43 model also shows death of the GABAergic motor 

neurons (Wang et al., 2009; Liachko et al., 2010). Furthermore, both of these proteins 

have been shown to aggregate and form detergent insoluble proteins. Therefore, a high 

concentration of either SOD1 or TDP-43 appears to be toxic in itself. Therefore, one 
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common theme in both models is a lack of protein quality control. In addition, both 

models also show an increase in the ER unfolded protein response. Because ER stress 

and proteostasis have been a recurrent theme in ALS research (Matsus et al., 2013; 

Musaro, 2013), we chose to focus on the ER-resident process, ERAD (endoplasmic 

reticulum-associated degradation). ERAD and the unfolded protein response (UPR) are 

also known to be tightly linked; for example, ERAD requires an intact UPR and UPR 

induction leads to increased ERAD capacity (Travers et al., 2000).  

ENDOPLASMIC REICULUM-ASSOCIATED DEGRADATION AND ALS  
 

 ERAD (endoplasmic reticulum-associated degradation) is a conserved biological 

process used in the quality control of proteins that are destined to be trafficked to the cell 

surface or to be secreted from the cell. One cause of ER stress is the accumulation of 

misfolded proteins within the ER. In order to ensure this does not happen, ERAD is 

employed. This process can be roughly divided into a series of steps including: (1) 

recognition of the misfolded substrate; (2) retrotranslocation of the substrate from the ER 

lumen, (3) ubiquitination, and (4) degradation. If a lesion or misfolding is identified, that 

substrate is eventually targeted for ERAD after a number of opportunities to fold 

correctly by a number of recognition factors, such as YOS-9. From there, the protein is 

pumped out of the ER through the retrotranslocon channel, believed to mostly be 

comprised of DERLIN-1. This process requires energy and is driven by the AAA ATP-

ase pump, CDC-48 (also known as VCP). Once the substrate is pumped through the 

ER, it is ubiquitinated and destined for the proteasome. Ubiquitination requires a number 

of steps and the action of several classes of proteins, including an E1 ubiquitin-activating 

enzyme, an E2 ubiquitin-conjugating enzyme, and an E3 ubiquitin-ligase. A number of 

ubiquitin receptors, such as UFD-2, UFD-3, and RAD-23 interact with CDC-48. From 
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there, the substrate is shuttled to the proteasome where it is ultimately degraded 

(Vembar and Brodsky, 2008). 

 Both sporadic and familial ALS cases have been found to have an abnormal ER 

stress response (Ilieva et al., 2007; Atkin et al., 2008; Hetz et al., 2009; Ito et al., 2009).  

There have been a number of links made between ERAD and ALS in the past couple of 

decades. For example, the ERAD component, VCP, has recently been found to be 

mutated in forms of fALS (González-Pérez et al., 2012). In addition, ERAD components 

have been found to erroneously interact with non-ERAD ALS-causing proteins. For 

example, DERLIN-1, believed to be the major constituent of the retrotranslocon channel 

used to pump misfolded substrates from ER (Lilley and Ploegh, 2004; Ye et al., 2004), 

has been shown to interact with mutant SOD1 (Nishitoh et al., 2008). 

There have been conflicting studies regarding the role of ERAD and the UPR in 

ALS. In past work, mutSOD1 has been shown to accumulate within the ER and cause 

activation of the unfolded protein response (UPR) (Urushitani, et al., 2008). Inactivation 

of the PERK pathway within the UPR has been previously found to dramatically hasten 

the onset of disease in mutSOD1 (G85R) mice and mutSOD1 aggregation (Wang et al., 

2011). This suggested that the UPR might be important to reduce proteotoxic burden by 

inhibiting the synthesis of more protein and more mutSOD1 which would continue to 

accumulate and aggregate (Wang et al., 2011). Activation of ER stress and thereby the 

UPR could go on to inhibit future protein synthesis until the current load of misfolded 

proteins could be cleared from the cell.  

However, more recent research suggests that this might not be the case. For 

example, pharmacological reduction of ER stress was found to protect against TDP-43 
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neuronal toxicity in vivo in C. elegans (Vaccaro et al., 2013). This has also been 

translated into mammalian systems where XBP1-deficiency in the nervous system has 

been found to extend the lifespan of mutSOD1 mice (Hetz et al., 2009). Surprisingly, this 

appears to be a consequence of accelerated mutSOD1 turnover through accelerated 

autophagy (Matsus et al., 2009). Not only was this seen with knockdown of XBP1, but 

also by knockdown of a critical ERAD component, EDEM, in a cell culture system (Hetz 

et al., 2009). The major output of the ER stress response pathway is to inhibit further 

protein synthesis and this is regulated by phosphorylated-eIF2α. Recently, it was shown 

that inhibitors of phosphorylated-eIF2α could actually attenuate toxicity due to the 

aggregation of mutTDP-43 (Kim et al., 2014).   

Therefore, one possible way to reduce toxicity of mutant proteins linked to ALS 

might be to accelerate their clearance or the clearance of other misfolded proteins. It is 

not intuitive that this can be done by the reducing activation of the ER stress and UPR 

pathways. Up until now, clearance of these large protein aggregates from neurons has 

been challenging. Forced expression of ubiquitin-proteasome components has not been 

sufficient to clear misfolded proteins from the cell in several experiments. For example, 

overexpression of ubiquilin-1 bound to ubiquitinated forms of mutTDP-43 and actually 

recruited TDP-43 to detergent-resistant cytoplasmic aggregates and no evidence is 

present that these aggregates went on to be destroyed (Kim et al., 2009). Therefore, 

overexpressing UPS components do not simply act in the destruction of misfolded 

proteins, and may have other functions in the cell.  

 Taken together, all of these reports suggest that ERAD and the UPR has a 

significant influence on ALS, although the meaning of that influence is still unresolved. 

Although one might predict that blocking the output of ER stress and the functioning of 
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ERAD components should be detrimental in models of motor neuron disease, there are 

clear examples where this is not the case. This suggests that there is still much insight to 

be gained into how to target ERAD and the UPR in ALS and neurodegenerative disease. 

It also warrants our investigation into the contribution of the ERAD pathway in ALS. This 

is further discussed in Chapter 3. The studies we performed in Chapter 3 describe a loss 

of function approach, although much of what we know to date has come from 

overexpression and in vitro studies. This is one unique advantage to the work described 

in this dissertation.  

RAD-23: A MULTI-FUNCTIONAL PROTEIN  
 

 In this thesis work, we specifically focused on one suppressor that was identified 

in our candidate gene screen approach, RAD-23. It is noteworthy that the CDC-48 

interactors, UFD-2 and UFD-3 (Rumpf and Jentsch, 2006), were also identified as 

suppressors in our candidate gene approach in Chapter 3 and are known to interact with 

RAD-23 (Kim et al., 2004).  

RAD-23 is a medium-sized multifunctional protein containing 400 amino acids 

with no enzymatic activity. It contains two UBA domains, one UBL domain, and one XPC 

domain (Chen et al., 2001). It is conserved from mammals to yeast (where it has been 

most extensively studied). In mammals, there are two genes that are homologous to the 

yeast and C. elegans RAD-23. These mammalian orthologs include hR23A and hR23B 

and are highly similar to one another. RAD-23 is able to bind to the ubiquitin chain on 

substrates through its ubiquitin-associated domains (UBA) (Bertolaet et al., 2001; 

Wilkinson et al., 2001) and to the proteasome through its ubiquitin-like element domain 

(UBL) (Schauber et al., 1998). Therefore, RAD-23 is part of a larger class of putative 
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ubiquitin-proteasome adaptors in ubiquitin (Ub)-mediated proteolysis. Other proteins in 

this class include DSK2, DDI1, and UBIQUILIN. RAD-23 is also sometimes considered a 

scaffolding protein due to the large number of protein-protein interactions capable of 

each of its domains. RAD23’s function in the delivery of ubiquitinated substrates to the 

proteasome make it an essential component of ERAD, although RAD-23 has also been 

shown to interact with the protein glycanase, PNG-1, which deglycosylates substrates to 

help allow for their ultimate degradation (Kim et al., 2006; Habibi-Badabi et al., 2010). 

Unlike its substrates, it is also accepted that RAD-23 is a very stable protein that is not 

degraded by the canonical proteasomal pathway because it lacks any effective initiation 

region (Fishbain et al., 2011) and because its C-terminal UBA domain acts as cis-acting 

stabilization signal (Heinen et al., 2011).   

 Mice that are null for either hR23A or hR23B are viable, although the double 

knock-out mouse is embryonic lethal (Ng et al., 2003). As mentioned, RAD-23 has been 

previously shown to have an important role in protein turnover, although this role has 

been recently found to be more complex than initially anticipated. In some studies, loss 

of RAD-23 has been found to inhibit the turnover of a subset of proteins, such as 

glycoproteins (Chen et al., 2001). Meanwhile, other studies have found that RAD-23 

might act to stabilize other substrates, namely p53 (Brignone et al., 2003) and XPC-1 

(also known as RAD-4) (Ortolan et al., 2004). For example, hR23A and hR23B 

physically interact with XPC-1 and this interaction allows for stabilization of XPC-1 

following the detection of DNA damage (Ortolan et al., 2004). Initial studies into the 

function of RAD-23 in yeast suggested that RAD-23 inhibited the formation of Lys48-

linked polyubiquitin chains and this inhibition was counteracted by the ubiquitin chain-

elongation factor, UFD-2 (Ortolan, et al., 2000; Chen, et al., 2001; Raasi, et al., 2003; 
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Varadan, et al., 2005). Furthermore, studies suggest that RAD-23 binding to the ubiquitin 

chain acts to protect the ubiquitinated substrate from ubiquitin chain elongation and 

deubiquitination (Raasi et al., 2003). However, studies in yeast also suggested that 

RAD-23 could promote the binding of ubiquitinylated substrates to the proteasome 

(Chen et al., 2002). This controversy in the literature is still unresolved, although it 

suggests that RAD-23 may be both a facilitator and inhibitor of proteasomal degradation. 

This property of RAD-23 may provide efficient and selective proteasomal degradation 

within the proteome of the cell (Dantuma et al., 2009). Regardless, it is clear that RAD-

23 has opposing effects on different client substrates and there must be some logic or 

evolutionary advantage as to why some clients of RAD-23 are degraded and others are 

given stability. 

 Unlike many other ubiquitin receptors, RAD-23 also has a separate function in 

nucleotide excision repair (NER). DNA damage is repaired by two separate pathways 

within NER: 1) global genomic NER (GGR) and (2) transcription-coupled NER (TC-NER) 

(Zhang et al., 2009; Le May et al., 2010). Both GGR and TC-NER are similar, although 

TC-NER refers to an incidence where DNA damage is not recognized until the stalling of 

RNA polymerase II at the site of a lesion during transcription (Marteijn et al., 2014). NER 

is a process by which lesioned DNA is excised by a complex and removed so that it can 

be repaired, allowing cells to cope with damage of their genomic content caused by 

intrinsic and extrinsic factors. The distinguishing feature of NER is that it senses 

structural distortions in the double helix, rather than specific base modifications like other 

forms of DNA repair (Dip et al., 2004). For example, one extrinsic factor that NER 

protects against is damage caused by ultraviolet (UV) light which can inflict helix-

distorting DNA lesions in the genome (Madabhushi et al., 2014).  
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NER can be broadly separated into a series of steps: 1) lesion recognition; 2) 

unwinding of the DNA, 3) dual incision and excision of stretches of the damaged DNA; 

and 4) repair synthesis of the removed strand by DNA polymerase and ligation. RAD-

23’s role in NER is reliant upon its binding partner, XPC-1 (also known as RAD-4) where 

both proteins are responsible for the recognition of photolesions of DNA. XPC-1 and 

RAD-23 together bind damaged DNA and induces bending of the double helix so 

incision can take place and the lesioned DNA can be subsequently removed (Marteijn et 

al., 2014). 

Given the progress made in this work in establishing a link between RAD-23 and 

ALS, this work also highlights a sometimes overlooked, but intimate, link between the 

ubiquitin/proteasome system (UPS) and DNA repair. It also establishes a never before 

identified and novel role for RAD-23 in the stabilization of disease-causing mutant 

proteins.  

STATEMENT OF MOTIVATION AND HYPOTHESES 

 This thesis focuses on two separate processes affecting motor neurons: 

development and degeneration. In Chapter 2, we aim to identify how GluA1 and SAP97 

translate synaptic activity of GluA1-containing AMPA receptors into dendrite growth. Up 

until now, the mechanisms by which plasticity governed in non-NMDA receptor settings 

is grossly under studied. Furthermore, by understanding the molecular components that 

promote dendrite growth, we might gain insight into how to manipulate them to promote 

regeneration following damage. We hypothesized that the small protein, CRIPT, 

interacts with SAP97 to promote dendrite growth because of its C-terminal PDZ3-

interacting motif and known interaction with the microtubules of the cytoskeleton. 



22 

 

 In the Chapter 3, we aim to understand the involvement of ERAD components in 

genetic models of ALS. Given the state of the literature within regards to whether loss of 

components are beneficial or detrimental, we hoped to bring insight into this topic. We 

also hoped to identify new targets in the treatment of ALS. Given the documented 

increase of ER stress levels in ALS found in the literature and number of ERAD 

components found to be mutated in fALS, we hypothesized that there may be an 

overload of involvement by ERAD and UPR components in neurodegeneration. 

Therefore, we utilized a loss of function approach using mutated ERAD and UPR 

components to test that hypothesis. We successfully found that loss of several ERAD 

components could suppress toxicity of ALS-causing proteins and focused on the loss of 

one suppressor, RAD-23. We found that there are increased levels of RAD-23 in ALS 

and these levels inhibit the ubiquitination and clearance of misfolded proteins that cause 

ALS. Future work will be required to determine if these findings are ALS-specific or may 

apply to other neurodegenerative diseases associated with proteotoxicity.  
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CHAPTER 2: IDENTIFYING THE DOWNSTREAM MACHINERY OF GLUA1 AND 

SAP97 IN DENDRITE DEVELOPMENT 

SUMMARY 
 

The dendritic tree is a key determinant of how neuronal information is processed. 

In the motor system, the dendritic tree of spinal cord neurons undergoes dramatic 

remodeling in an activity-dependent manner during early postnatal life.  This leads to the 

proper segmental spinal cord connectivity that subserves normal locomotor behavior. 

This mechanism for establishing dendrite architecture in mammalian motor neurons 

relies on AMPA receptors assembled with the GluA1 subunit and is independent of 

NMDA receptors. The dendrite growth promoting activity of GluA1-containing AMPA 

receptors depends on its intracellular binding partner, SAP97, and SAP97’s PDZ3 

domain. We show here that CRIPT is a bona fide SAP97 PDZ3-domain binding partner 

and is necessary for the dendritic growth of mammalian spinal cord neurons. We further 

show that CRIPT has a well conserved ortholog in the nematode, Caenorhabditis 

elegans, and two loss of function alleles of CRIPT result in decreased branching of the 

well-studied PVD neuron in vivo. Loss-of-function cript in C. elegans leads to a functional 

consequence rendering cript mutants touch defective. Finally, we show that the 

mechanism by which CRIPT promotes dendritic growth is independent of synapse 

destabilization. Understanding the mechanisms that drive dendritic growth might be 

useful for enhancing recovery following insult to the central nervous system. 
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INTRODUCTION 
 

Activity-dependent development occurs throughout the neuroaxis, including the 

spinal cord during early postnatal life (Inglis et al., 2002; Haas et al., 2006; Ni and 

Martin-Caraballo, 2010).  During early postnatal life, motor neurons express a very high 

level of GluA1 and this coincides with the period of extensive dendrite growth and 

remodeling (Jakowec et al., 1995; Jeong et al., 2006). These alterations in dendritic 

architecture are confined to a critical period and occur independent of NMDA (N-methyl-

D-aspartic acid) receptors (Jakowec et al., 1995; Inglis et al., 2002; Jeong et al., 2006).   

Activity-dependent growth of the dendritic tree in spinal cord neurons is driven by 

the GluA1 subunit of AMPA (2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic 

acid) receptors and its intracellular binding partner, synapse associated protein of 97 

kDa (SAP97) (Zhang et al., 2008; Zhou et al., 2008). Animals lacking the GluA1 subunit 

or SAP97 in motor neurons have a stunted dendritic tree and suffer locomotor 

impairments that persist throughout life (Zhang et al., 2008; Zhou et al., 2008). All of the 

dendrite promoting actions of GluA1 are mediated by SAP97 (Zhou et al., 2008). 

Trafficking of SAP97 to the cell surface is dependent on the interaction of SAP97 with 

GluA1, but GluA1 is trafficked to the cell surface independently of GluA1’s interaction 

with SAP97 (Zhang et al., 2006). SAP97 is a scaffolding protein with several protein-

protein interacting modules, including SH3, L27, GUK, and 3 PDZ domains. Preliminary 

studies indicate that the PDZ3 domain of SAP97 is responsible for promoting dendritic 

growth (unpublished observations; Jablonski and Kalb, 2013).  

To understand the molecular mechanism by which GluA1 and SAP97 promote 

activity-dependent dendrite growth, we asked: 1) what proteins bind to the PDZ3 domain 
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of SAP97? and 2) are such proteins able to modify the architecture of the dendritic tree? 

Here we focus on cysteine-rich-interactor-of-PDZ-three (CRIPT), a 12 kDa protein that 

localizes to excitatory synapses and links proteins such as postsynaptic-density protein 

of molecular weight 95 kDa (PSD95) to microtubules (Niethammer et al., 1998; 

Passafaro et al., 1999). Given CRIPT’s described interaction to PSD95’s PDZ3 domain 

and its localization pattern, we investigated a potential role for CRIPT in GluA1 and 

SAP97-dependent dendrite growth. 
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MATERIALS AND METHODS 
 

Antibodies 

The following antibodies were used: immunoprecipitation of SAP97 (1:50; 

Thermo Pierce); immunoblotting and immunoprecipitation of CRIPT (1:500; Protein Tech 

Group); immunoprecipitation and immunoblotting of HA-tag (1:50 for IP and 1:1000 for 

IB; Convance); immunoblotting of SAP97 (1:1000; NeuroMab); immunoprecipitation and 

immunoblotting of the myc-tag (1:50 for IP and 1:1000 for IB; Cell Signaling); 

immunostaining of GFP (1:250; Sigma); immunostaining secondary antibody against 

GFP (1:500; Alexa Fluor 594). The following primary antibodies were used in 

quantitative inhibitory synapse studies: pre-synaptic marker GAD 65/67 (Rabbit anti-

glutamate decarboxylase 65 & 67, Millipore # AB1511), and postsynaptic marker Alpha1 

GABA-A receptor (Rabbit anti-Alpha1 GABA-A receptor, Clone N95/35 antibody 

NeuroMab #75-136). Secondary antibodies were Alexa Fluor 633 Goat Anti-Mouse IgG 

(H+L) (Invitrogen # A-21050) and Alexa Fluor 568 Goat Anti-Rabbit IgG (H+L) Antibody 

(Invitrogen # A-11011). GFP green fluorescence was sufficiently strong that 

enhancement with additional anti-GFP staining was unnecessary. 

Mixed spinal cultures 

Mixed spinal cord neuron cultures were prepared as previously described (Jeong 

et al., 2006). They were maintained in glia-conditioned medium supplemented with 

trophic factors (Alomone Labs at 1.0ng/mL): human neurotrophin-3, human 

neurotrophin-4, human brain-derived neurotrophic factor, human cardiotrophin-1, human 

glial-derived neurotrophic factor, and rat ciliary neurotrophic factor. One half of the 

medium was replaced three times per week.  
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Heterologous cells and transfection 

HEK293 cells were maintained in Dulbecco’s Modified Eagle’s medium (DMEM) 

(Invitrogen) supplemented with 10% fetal bovine serum (FBS), 1% penicillin, and 1% 

streptomycin. Cells were transfected (Lipofectamine 2000; Invitrogen) per 

manufacturer’s protocol when they were ∼75% confluent and maintained in DMEM with 

10% FBS until lysed 48 hours post transfection. 

Immunoprecipitation experiments 

For immunoprecipitation experiments, lysates were made in 1% NP-40 lysis 

buffer (25mM Tris-HCl pH 7.4, 150mM NaCl, 1mM EDTA, 1% NP-40, 5% glycerol; 

150μL per 60mm dish) supplemented with fresh protease inhibitor cocktail (Sigma). After 

2 washes in ice-cold 1X phosphate-buffered saline (PBS), cells were lysed in lysis 

buffer, sonicated (20% strength, 10 seconds), and centrifuged at 14,000 rpm for 10 

minutes (4˚C) to remove cellular debris. 5% of the lysate was saved for input, and the 

remaining lysate was used for immunoprecipitation. For immunoprecipitation, 

DynaBeads Protein G (Invitrogen) were pre-cleared in PBS/1% Tween and were bound 

to the antibodies (4 μg of antibody) (30’ at room temperature (RT)). Lysate was then 

added, incubated for 1 hour at RT, and the lysate and bead mixture was washed in lysis 

buffer. Proteins were then boiled in 1% BME and SDS loading buffer. Proteins were 

immunoblotted following standard western blotting technique using 4-12% Bis-Tris gels 

(Invitrogen).  

Surface plasmon resonance preparation 

The PDZ3 domain of SAP97 was amplified by PCR and the PCR product was 

ligated into the pGEX vector (GE) and transformed into BL21 strain. GST-fused PDZ3 



28 

 

was then extracted and purified from isopropyl β-D-1-thiogalactopyranoside (IPTG)-

induced E. coli cultures with glutathione sepharose 4B matrix (GE) and eluted with 10 

mM glutathione. Purified GST-PDZ3 fusion protein was further dialyzed to eliminate 

glutathione before plasmon resonance studies. 

Surface Plasmon Resonance (SPR) Measurements and Affinity Analysis of 

Sensorgrams.  

Association and dissociations reactions of peptides CHRK1 (C-terminal amino 

acids of CRIPT) or CHRK2 (C-terminal amino acids of CRIPT V101A) (as analytes) and 

recombinant GST fusion protein GST-PDZ3 and GST (as ligands) were performed using 

a Biacore3000 instrument.  Anti-GST antibody was immobilized on flow cell 3 and 4 

according to the manufacturer’s instructions. GST and GST-PDZ3 were then captured 

on flow cell 3 and flow cell 4 separately, where GST served for on-line reference 

subtraction.  Both the analytes and the ligands were dissolved in the HBS running buffer 

(0.01M Hepes, 0.15M NaCl, 3mM EDTA, 0.005% v/v Surfactant P20) and their 

concentrations were determined at UV280nm using extinction coefficients calculated 

from the amino acid composition. The ligands were bound as densities between 1200RU 

and 1700RU. The analytes of CHRK1 and CHRK2 in 45uL volume each with various 

concentrations (62.5nM, 250nM, 4µM, 8µM, 10.24µM and 12.8µM) were injected over 

both GST and GST-PDZ3 surfaces at flow rate of 30µL/min.  Dissociation time was 

monitored for 3min.  A 40 second pulse of glycine-HCl pH2.2 was applied to regenerate 

the GST surface. For GST-PDZ3 surface regeneration, an additional 40 s pulse of 

glycine-HCl was applied. Analysis of steady-state affinity was performed using 

BIAevaluation software selecting reference-subtracted curves with a 1:1 interaction 

model. Affinity constant Kd was derived from Req vs. C (response unit at equilibrium vs. 
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peptide concentration) plot with the steady-state affinity model fit. Data for GST capture 

was subtracted from GST-PDZ3 values.  

Neuronal transfection and neuron tracings  

At 5 days in vitro (DIV), mixed spinal cultures were transfected  (Lipofectamine 

2000; Invitrogen) with the overexpression plasmid or microRNA (miRNA) being tested in 

a 3:1 ratio with GFP to ensure all GFP-positive cells also expressed the desired 

construct. 5 days after transfection, cells were fixed in 4% paraformaldehyde (PFA) and 

immunostained with rabbit anti GFP antibody and secondary antibody. After 

immunostaining, the coverslip with the cells was mounted on the slide and viewed using 

fluorescent microscopy. Neuronal tracings were performed with the Neurolucida program 

(MicroBrightField) and analyzed with the Neuroexplorer program (MicroBrightField). As 

previously described (Zhang et al., 2008), the minimum inclusion criteria for this study 

were: dendrites radially distributed (>180°) and no more than one primary dendrite is 

truncated (less than three times the cell body diameter).  Quantitative descriptors of the 

dendrites were as follows: “1° dendrites,” the number of primary dendrites leaving the 

cell body, “branches, #”, the number of dendritic bifurcations, “length,” the sum of the 

lengths of all dendritic shafts from a single neuron divided by the number of primary 

dendrites, and “longest dendrite,” the length of the longest dendrite from the cell body to 

the most distal tip.  

miRNA RNAi design 

miRNA was transfected (Lipofectamine 2000; Invitrogen) to knock down the 

expression of CRIPT in mixed spinal cultures.  MiRNA was constructed by annealing two 

oligomers together of 21 base pairs homologous to the CRIPT sequence and adding 
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BspE1 and FseI restriction sites to the 5’ and 3’ ends respectively. Annealed oligomers 

were subsequently cloned into the p1006+ HSV vector using the BspEI and FseI 

restriction sites. MiRNA was designed against the rat CRIPT sequence corresponding to 

the ORF: 5’- CTCCACTTGCAGAATTT-3’. We generated an RNAi-resistant CRIPT 

cDNA containing three silent mutations in the miRNA target sequence of CRIPT by using 

the QuikChange Site-Directed Mutagenesis Kit (Agilent). The miRNA target sequence 

was mutated to: 5’-CTCTACCTGTAGAATTT-3’. Mutated nucleotides are underlined.  

Membrane protein preparations 

Cells were washed twice using ice-cold PBS and suspended in hypotonic lysis 

buffer (10 mM KCl, 1.5 mM MgCl2, and 10 mM Tris-Cl, pH 7.4; 1.5 mL/60 mm plate). 

After incubation on ice for 10 minutes, cell lysis was finalized using a homogenizer 

(Dounce). The cell lysate was centrifuged at 2000 × g for 2 min to remove nuclei and 

cellular debris and the supernatant was centrifuged a second time at 100,000 × g for 30 

min at 4°C to pellet cell membranes. The supernatant was saved as the ‘cytoplasmic’ 

fraction and the pellet (‘membrane’ fraction) was resuspended in RIPA buffer (50mM 

Tris-HCl pH 7.5, 150mM NaCl, 1mM EDTA, 1mM EGTA, 1% NP-40, 1% sodium 

deoxycholate) supplemented fresh with protease inhibitor cocktail (Sigma). Lysates were 

boiled for 5 minutes in 1% BME and loading buffer prior to standard western blotting 

technique using 4-12% Bis-Tris gels (Invitrogen).  

Yeast-two-hybrid 

The flanked PDZ3 domain of SAP97 was amplified by PCR and cloned into the 

yeast bait phagemid pBD-GAL4. Full-length CRIPT was engineered into the yeast prey 

phagemid pAD-UAS. YRG-2 yeast were transformed (Clontech) according to the 
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manufacturer’s instructions with phagemids or appropriate empty vector controls and 

grown under restrictive conditions (SD media lacking leucine, tryptophan, and/or 

histidine) and single colonies were subsequently streaked onto restrictive plates. The 

plasmid, pGBT9, was used as a positive control.  

Quantitative analysis of excitatory and inhibitory synapses by imaging 

Cultures were prepared as described above, fixed at DIV21 with 4% PFA in 5% 

sucrose for 15 minutes, blocked with 5% FBS in minimal essential media (MEM), and 

primary antibodies for pre- and postsynaptic markers were applied together in 5% FBS 

in MEM overnight at 4ºC. The next day, after washing 3 times in PBS, secondary 

antibodies were separately applied in PBS (one hour for each, then washed with PBS) at 

RT. Cover slips were dried and placed on slides with Fluorogel (Electron Microscopy 

Sciences). In the same experiment, 3-4 cover slips were stained for inhibitory synapses 

and the same numbers of cover slips were stained for excitatory synapses. 

The methods for quantitative synaptic analysis have been described (Hughes et 

al., 2010a; Hughes et al., 2010b). Briefly, imaging data was collected from 20-30 

randomly selected neurons (from 3-5 independent experiments) using an Olympus 

confocal microscope and all images were acquired at the same non-saturating laser 

power settings, photomultipler voltage, gain and offset. Fluorescence was captured 

serially with an oil immersion 60X (1.4 numerical aperture) objective using lasers for 

green (488 Multi-line Argon Laser), red (559 Diode Laser) and far red (635 Diode Laser). 

The number and area of individual clusters were determined using interactive software 

(MetaMorph, Molecular Devices, Downingtown, PA; or custom-written ImageJ macros). 

Clusters with pixel overlap of pre- and postsynaptic markers were considered co-

localized and thus synaptic (Krivosheya et al., 2008). 
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C. elegans maintenance 

All C. elegans strains were maintained using standard methodology (Brenner, 

1974). Animals were maintained at 20˚C on nematode growth medium (NGM) agar 

plates with live OP50 bacteria. Two strains used in this study containing deletions within 

the C. elegans ortholog of CRIPT, tm427 and tm430, were received from National 

Bioresource Project in Japan and backcrossed three generations to ancestral N2 before 

being crossed into the PPVD::GFP line (received from David M. Miller). We also utilized 

the mec-4 (tu253) and mec-3 (CB1338) strains which were received from the 

Caenorhabditis Genetics Center (CGC). The mec-4 (tu253) strain was backcrossed 3 

generations to ancestral N2 before being analyzed and crossed into the tm430 strain.  

C. elegans rescue cloning and lines 

 Human CRIPT (hCRIPT) cDNA was amplified using PCR. Gateway cloning 

(Invitrogen) was employed and the BP reaction was used to construct the pDonR221-

hCRIPT (pEntry hCRIPT) construct. The LR reaction was then performed using the 

following constructs for the 1st, 2nd, and 3rd positions respectively: unc-119 promoter, 

pEntry hCRIPT, and the unc-54 3’UTR alongside the pCFJ150 destination plasmid for C. 

elegans expression. Sanger sequencing was used to confirm the correctness of the final 

construct, Punc-119::hCRIPT::unc-54 3’UTR (Pneuron::hCRIPT) to drive expression of 

hCRIPT in the C. elegans nervous system when expressed. To create transgenic 

extrachromasomal arrays, Pneuron::hCRIPT was injected at a final concentration of 

50ng/μL alongside a co-injection marker pCFJ150 (Pmyo-2::mCherry) at a final 

concentration of 5ng/μL which labeled the body wall muscle red. The final DNA 

concentration of the injection mix was 100ng/μL using a sonicated LacZ construct to 
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bring up the total DNA concentration. At least 3 independent transgenic lines were 

created for each and all were tested in corresponding assays.  

C. elegans imaging 

All lines were synchronized before imaging to visualize the PVD neuron using 

GFP. Briefly, young adult hermaphrodites were allowed to lay eggs for 4-6 hours. At the 

L4 stage, worms were synchronized by the presence of the clear vulva. At the young 

adult stage (1 day post L4) worms were processed for imaging. Briefly, worms were 

immobilized using levamisole (10mM; Sigma) on fresh 4% agar pads and imaged using 

confocal microscopy. Z-stacks were taken and merged, and the compressed image was 

analyzed by counting the number of dendrites present on the PVD neuron dendritic tree 

(Smith, 2010; Smith, 2013) from the cell body to the posterior end of the animal. Analyst 

was blind to group during analysis.   

Statistics 

Statistical analysis was performed using GraphPad Prism Version 6.00 for 

Windows, GraphPad Software, La Jolla, CA, USA (www.graphpad.com). Unpaired t-test 

was used for all two-group comparisons. For data containing more than three groups, a 

one-way ANOVA with Dunnett’s multiple comparisons test was used. For survival 

analysis, a log-rank (Mantel-Cox) test was used. The threshold for significance was 

always set to p < 0.05. For data concerning dendritic drawings, a Shapiro–Wilk test was 

run to test normality of the data. If the data were normally distributed, the data were 

analyzed with one-way ANOVA. Post-hoc analysis was performed with Tukey test. If the 

data did not distribute normally, a non-parametric Kruskal-Wallis test was used to 
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analyze data. Post-hoc analysis was performed with Dunn's test. The threshold for 

significance was set at p < 0.05 for all tests. 
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RESULTS 

CRIPT interacts with SAP97’s PDZ3 domain 

Preliminary studies to be discussed elsewhere identified the PDZ3 domain of 

SAP97 as important for the pro-dendrite-growth activity of SAP97.  Since CRIPT binds to 

the PDZ3 domain of PSD-95 (Niethammer et al., 1998), a close relative of SAP97, we 

tested CRIPT binding to the PDZ3 domain of SAP97. Three sets of experiments were 

performed in a heterologous expression system (HEK293 cells). First, we established 

that full-length (FL) CRIPT and FL SAP97 co-immunoprecipitate together when the 

proteins are overexpressed in HEK293 cells (Figure 1A). To ask if the PDZ3 domain of 

SAP97 mediated this interaction, we attempted to co-immunoprecipitate CRIPT with 

versions of FL SAP97 containing ligand-binding-disabling mutations in the PDZ2 or 

PDZ3 domain. We found that mutations in PDZ3 (H469A, R470A), but not in PDZ2 

(K323A, K326A), disrupted binding of CRIPT to SAP97 in the co-immunoprecipitation 

experiment (Figure 1B). Next, we attempted to co-immunoprecipitate FL SAP97 with WT 

FL CRIPT or a point-mutant FL version (CRIPT V101A) of the PDZ3-binding motif of 

CRIPT (-QTSV), previously shown to be incompetent in binding PSD-95 (Passafaro et 

al., 1999). We found that the CRIPT V101A mutation completely abolished CRIPT’s 

binding to SAP97 (Figure 1C). Taken together, these data suggest that CRIPT requires 

a functional PDZ3 domain to interact with SAP97 and this interaction relies on CRIPT’s 

canonical PDZ-interaction motif on its C-terminus. 

We complemented these observations with two further approaches. First, in a 

yeast-two-hybrid (Y2H) assay, we found that full-length CRIPT interacts with the flanked 

PDZ3 domain of SAP97. FL CRIPT neither interacted with an empty bait vector, nor did 

the SAP97 PDZ3 domain interact with an empty prey vector (Figure 1D).  Finally, 
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surface plasmon resonance (SPR) studies (SPR) demonstrated that a peptide 

corresponding to the C-terminal 18 amino acids of CRIPT bound to the PDZ3 domain of 

SAP97 with a Kd of 6.57µM, while a mutant version of this peptide containing the V101A 

mutation did not bind the PDZ3 domain of SAP97 (Figure 1E).  

One limitation of the experiments thus far is that they were only indicative of an 

interaction in overexpression and non-physiological settings. Furthermore, an interaction 

may be detected in non-neuronal settings, but we were primarily interested in if the 

proteins interacted within the nervous system. Therefore, we attempted to co-

immunoprecipitate SAP97 and CRIPT from mixed spinal cord cultures to determine if 

there is an endogenous interaction. We were successful in co-immunoprecipitating 

CRIPT and SAP97 in this experiment using endogenous proteins from mixed spinal cord 

cultures (Figure 1G).  

To ask if CRIPT was expressed during the first two weeks of postnatal life in the 

mouse, when activity-dependent remodeling of the dendrite tree occurs in spinal cord 

neurons, we looked for expression of the proposed “GluA1/SAP97/CRIPT” complex in 

the spinal cord, cortex, and hippocampus of young mice. We found that CRIPT, SAP97, 

and GluA1 were expressed in the spinal cord prepared from mouse at P7 (Figure 1E). In 

sum, these studies show that native CRIPT is a bona fide binding partner of the PDZ3 

domain of SAP97 and merits further investigation as a candidate molecule that acts to 

promote dendrite growth. 

CRIPT is necessary for proper dendrite growth 

To determine if CRIPT can influence dendrite growth, we knocked down CRIPT 

in spinal cord neurons in vitro and quantitatively analyzed dendritic architecture.  We 
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were able to decrease the abundance of CRIPT protein in spinal cord neurons by 

infecting mixed spinal cord cultures with a recombinant herpes simplex virus to express 

the CRIPT miRNA in neurons (Figure 2A). We next compared the dendritic tree of three 

experimental groups: 1) GFP alone, 2) GFP + scrambled miRNA and 3) GFP + CRIPT 

miRNA. We made camera lucida drawings of the dendritic tree and assessed the effect 

of CRIPT knockdown by comparing the dendrite parameters among the groups of 

neurons. Parameters tested included: the soma size; the number of primary dendrites; 

the number of branches; the total length of the dendritic tree, the average dendrite 

length; and the length of the longest dendrite. The scrambled miRNA had no effect on 

any of these parameters compared to the GFP control. Meanwhile, we found that miRNA 

knockdown of CRIPT led to a ~30% reduction in the total number of dendrite compared 

to GFP alone (p < 0.05) or scrambled miRNA (p < 0.01) treated neurons (Figure 2B). In 

addition, we found that knockdown of CRIPT also led to a ~20% decrease in the total 

size of the dendritic tree compared to GFP alone (p < 0.0001) or the scrambled miRNA 

(p < 0.05). To confirm the effect of CRIPT knockdown was in fact due to the reduced 

levels of CRIPT, we created an RNAi-resistant CRIPT cDNA (CRIPTres) by introducing 

silent mutations in the target sequence of the miRNA on CRIPT. By Western blot, we 

confirmed that CRIPTres was resistant to knockdown by the CRIPT miRNA, compared to 

the wild type version of CRIPT (CRIPTwt) in HEK293 cells (Figure 2C). We next 

transfected spinal cord neurons with either the scrambled miRNA, the CRIPT miRNA, or 

the CRIPT miRNA with the CRIPTres construct and again quantified the same dendritic 

parameters. We again found that knockdown of CRIPT reduced the total number of 

branches (p < 0.05), as well as the total size (p < 0.001), of the dendritic tree compared 

to the scrambled miRNA (Figure 2D).  Meanwhile, the dendritic tree of neurons co-

transfected with the CRIPTres construct showed no difference in any of the dendritic 
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parameters tested compared to the scrambled miRNA, but did have a greater number of 

branches (p < 0.001) and overall tree size (p < 0.05) compared to the CRIPT miRNA 

group alone. In sum, these data suggest that CRIPT is necessary for the proper growth 

of the dendritic tree.  

CRIPT is not sufficient to induce growth of the dendritic tree 

We next asked if increasing CRIPT expression influenced dendrite architecture. 

To study this, we overexpressed two different versions of CRIPT in spinal cord neurons: 

wild type (WT) CRIPT or a version that is palmitoylated at the N-terminus of CRIPT to 

allow CRIPT to traffic to the cell surface. This palmitoylated version of CRIPT (pal-

CRIPT) allowed us to surpass a possible limited number of SAP97 PDZ3 binding sites at 

the cell surface where CRIPT may be needed to influence dendritic architecture. 

Furthermore, studies to be described elsewhere found that SAP97’s localization to the 

cell surface, but not SAP97’s interaction with GluA1, is required for overexpression of 

SAP97 to increase dendrite growth. Subcellular fractionation followed by Western blot 

confirmed that palmitoylated CRIPT prefers membranes, whereas CRIPT without the 

palmitoylation sequence does not (Figure 3A) Spinal cord neurons were transfected with 

GFP, WT CRIPT, or pal-CRIPT and the same parameters of the dendritic tree were 

studied as described above. We found that there was no difference in dendritic 

architecture of control neurons versus neurons overexpressing WT or pal-CRIPT.  Taken 

together, these overexpression studies indicate that CRIPT is not sufficient to enhance 

dendrite growth on its own, even when CRIPT is shuttled to membranes (Figure 3B).  

CRIPT functions downstream of SAP97 in promoting dendrite growth 
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 Extensive work has previously shown that SAP97 promotes dendritic growth of 

motor neurons in vitro and in vivo (Zhang et al., 2008; Zhou et al., 2008). We show here 

that CRIPT binds to SAP97 in vitro and in vivo and also promotes dendritic growth of 

spinal cord neurons. Therefore, we determined if CRIPT was downstream of the 

promotion of dendritic growth of spinal cord neurons by SAP97. To do this, spinal cord 

neurons were transfected with GFP or SAP97 in the presence of the scrambled or 

CRIPT miRNA. In the presence of the scrambled miRNA, overexpression of SAP97 led 

to a ~30% increase in the total length and branch number of the dendritic tree compared 

to transfection with GFP alone (p < 0.05). This promotion of dendritic growth by 

overexpression of SAP97 was entirely blocked when CRIPT was knocked down in 

neurons (Figure 4).  

Knockdown of CRIPT causes a homeostatic increase in synapse number 

CRIPT was previously shown to be enriched at the sites of excitatory synapses 

and to allow for proper clustering of proteins in the postsynaptic density (Niethammer et 

al., 2008; Passafaro et al., 2009). Therefore, we asked if knockdown of CRIPT caused 

any change in the amount of excitatory or inhibitory synapses. We quantified synapses 

using validated imaging analysis approaches (Krivosheya et al., 2008; Hughes et al., 

2010a; Hughes et al., 2010b). Neurons were transfected with either a scrambled miRNA 

or CRIPT miRNA, as well as the GFP reporter, and subsequently stained for excitatory 

synapses (using antibodies to synaptophysin and PSD-95) or inhibitory synapses (using 

antibodies to GAD 65/67 and the Alpha1 GABA-A receptor). Co-localized pre- and 

postsynaptic puncta with pixel overlap were considered to be synapses. We found that 

knockdown of CRIPT resulted in a significant (p < 0.05) 3-fold increase in the number of 

excitatory (Figure 5A) and inhibitory synapses (5C). Meanwhile, there was no change in 
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the size of synapses among groups (Figures 5B, 5D). This suggests that the neuron may 

compensate for the decreased dendritic arbor to balance activity by increasing both 

excitatory and inhibitory input.  

CRIPT’s function in dendritic growth is not activity-dependent 

 Much of postnatal development is driven by activity-dependent events. Because 

knockdown of CRIPT increased synapse number and was found here to promote 

SAP97-dependent dendritic growth, we wondered if this form of dendritic growth was 

activity-dependent. To test this, we chronically treated cultures for 72 hours with high K+ 

to stimulate synaptic activity of neurons in vitro in the presence of the scrambled or 

CRIPT miRNA. We found that again knockdown of CRIPT caused a ~25% reduction (p < 

0.05) in dendrite branch number compared to a scrambled miRNA when cultures were 

only treated with vehicle. However, in the presence of high K+, the effect of CRIPT 

knockdown was blocked (Figure 6). This suggests that CRIPT’s function in dendrite 

growth is in a pathway independent from synaptic activity.  

CRIPT promotes dendritic growth in vivo 

To address whether or not CRIPT functions in dendritic growth in vivo as well, we 

utilized the small nematode, Caenorhabditis elegans (C. elegans). We used C. elegans 

with a transgene expressing GFP under the control of a promoter allowing for expression 

in the PVD mechanosensory neuron of the animal (Smith, 2010; Smith 2013). The C. 

elegans genome encodes a protein, C36B1.14, which retains 41% amino acid identity 

compared to the human CRIPT protein. We compared the branch number of wild type 

(N2 Bristol strain) animals to those with two different loss-of-function (LOF) alleles 

(tm430 and tm427) of CRIPT. Both of these alleles contain large ~400bp deletions near 
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the C-terminal region of the protein, which would also contain CRIPT’s PDZ-interaction 

motif. We found that both independent alleles caused a decrease in the branch number 

of secondary and tertiary dendrites of the PVD mechanosensory neuron (Figure 7A-7B). 

Along with the previously described in vitro data, this suggests that CRIPT also has an 

important role for dendritic growth and development in vivo.  The tm430 allele 

specifically caused a significant ~25% reduction in the branch number of secondary 

(p<0.05) and tertiary dendrites (p<0.05) (Figure 7C-7D).   

 To determine if the dendrite growth defect of the cript mutants was relevant to 

our mammalian studies, we overexpressed human CRIPT under the control of a nervous 

system specific promoter (Pneuron::hCRIPT) in cript (tm430) mutants where the PVD 

neuron is labeled with GFP and quantified dendrite number. We found that 

overexpression of the human ortholog of CRIPT in the nervous system was sufficient to 

rescue the decrease in secondary and tertiary branches in the cript (tm430) mutants 

compared back to wild type. This was also sufficient to rescue the defect in two other 

independently generated lines (data not shown). This suggests that C36B1.14 is 

homologous to the mammalian CRIPT and was evolutionarily conserved to retain an 

important function in dendrite growth from the nematode to mammals. 

Loss of cript causes a mechanosensory defect in vivo 

C. elegans utilize two neurons, MEC-4 and PVD, to respond to harsh touch. 

Therefore, the PVD neuron in C. elegans is responsible for response to harsh touch in 

mec-4 (tu253) mutants, rendering any response to harsh touch completely reliant on the 

PVD neuron (Liu et al., 2011). For example, it was previously shown that DMA-1 

promotes dendritic growth of the PVD neuron and, therefore, in dma-1; mec-4 double 
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mutants, there is a reduced response to harsh touch (Liu et al., 2011). However, the 

harsh touch response pathway is entirely reliant on the MEC-3 neuron and, therefore, 

mec-3 mutants exhibit a touch defect on its own. We tested if the reduced dendritic 

arbors of the PVD neuron seen in cript mutants caused a mechanosensory deficit to the 

animal. We utilized the harsh touch response assay (Way and Chalfie, 1989) to ask if 

the reduced dendritic branching of the cript mutant caused a touch defect in cript; mec-4 

double mutants. In this assay, we compared the touch response of wild type animals as 

a negative control, mec-3 (CB1338) animals as a positive control, cript (tm430) single 

mutants, mec-4 (tu253) mutants, and finally the cript (tm430); mec-4 (tu253) double 

mutants. Using a one-way ANOVA amongst all of the groups (F(4,10)=11.93; p = 0.0008), 

we confirmed that the mec-3 (tu253) mutants were ~40% defective to light touch (p < 

0.05), whereas less than 10% of wild type animals display a lack of response to light 

touch. Meanwhile, cript; mec-4 double animals displayed a large and significant (p < 

0.01) defect to light touch in approximately ~50% of animals compared to wild type 

animals. This was not observed in cript or mec-4 single mutants which only had a defect 

to touch in roughly 20% of animals and was not significant compared to wild type (Figure 

8A). This suggests that the lack of dendrite branching observed in cript mutants has a 

functional and mechanical consequence.   

 To test if it was the PVD dendrite defect caused by the loss of cript responsible 

for the touch defect, we again overexpressed Pneuron::hCRIPT in the cript (tm430); mec-4 

(tu253) animals. We found that overexpression of human CRIPT in the nervous system 

was sufficient to partially rescue the touch defect of the cript (tm430); mec-4 (tu253) 

animals. Approximately 50-60 percent of cript (tm430); mec-4 (tu253) animals showed a 

touch defect, and this was reduced to 20-30% when hCRIPT was overexpressed in the 
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nervous system (p < 0.01). This effect was found in all 4 independently generated 

extrachromasomal array lines when non-transgenic animals were compared to their 

transgenic counterparts at the young adult stage (L4 + 1 day old) (Figure 8B).  
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DISCUSSION 
 

Using multiple techniques, we show that CRIPT is a bona fide binding partner of 

the pro-dendrite growth domain of SAP97, PDZ3. CRIPT has previously been shown to 

bridge microtubules to other proteins in the postsynaptic density, such as PSD-95 and 

SAP102 (Passafaro, et al., 1999).  These observations point to the existence of a 

hetero-oligomeric protein complex at or near the postsynaptic density. The present work 

is the first to link CRIPT to a biological process. CRIPT is necessary, but not sufficient, 

for dendrite growth of spinal cord neurons. We furthermore are importantly able to 

rescue to the reduced dendritic branching and growth in knockdown of CRIPT using the 

RNAi-resistant CRIPT cDNA. This is noteworthy because many other MAGUK and 

postsynaptic density proteins have redundant roles (Elias, et al., 2007). We suggest that 

a multi-protein molecular “machine” – composed of GluA1, SAP-97, and CRIPT – work 

together to promote dendrite growth. 

While overexpression of SAP-97 stimulates dendrite growth (Zhou et al, 2008), 

here we show that overexpression of CRIPT has no effect on the dendrite tree. These 

observations raise the possibility that the assembly of a multi-protein complex of correct 

stoichiometry is required for promotion of dendrite growth. In this formulation, CRIPT 

must associate with other SAP97 binding partners, presumably at the postsynaptic 

density, to effect changes in dendrites. An alternative possibility is that the PDZ3 domain 

of SAP97 is already saturated with endogenous CRIPT and thus exogenously provided 

CRIPT cannot localize to the postsynaptic density to stimulate dendrite growth. This 

seems less likely since forced localization of CRIPT to the plasma membrane, by 

addition of a palmitoylation sequence, did not confer dendrite growth promoting action. 

We are currently using a directed candidate gene approach with more than 25 known 
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SAP-97 binding partners to identify the missing factor(s) which SAP-97 utilizes in 

addition to CRIPT to promote dendrite growth. 

It is likely that assembly of GluA1 and SAP97 uses CRIPT to promote dendritic 

growth via CRIPT’s interaction with the cytoskeleton. Previously, blocking interactions to 

CRIPT’s PDZ3 domain had no effect on the number of synapses or NMDA receptors 

(Passafaro et al., 1999). However, changes in the cytoskeleton have been previously 

shown to have large effects on the dendritic tree and overall plasticity of neuron 

architecture (Urbanska et al., 2012) and actin polymerization has been shown necessary 

for growth cone filopodia (Yamada et al., 2013).  

Regardless of the mechanism of how CRIPT is able to promote dendritic growth, 

we here show that loss of CRIPT results in decreased dendritic growth both in vitro and 

in vivo in two well-used models. In addition, we show that defects of dendritic growth 

cause a mechanosensory deficit in vivo suggesting that proper dendritic growth during 

development is a critical step for proper motor movement in adulthood. This could be 

partially rescued by overexpressing the human ortholog of CRIPT in neurons alone. 

These data utilizing mammalian spinal neurons and the nematode further suggest that 

the mechanism of CRIPT action is conserved from the nematode to mammals. Our 

results suggest, however, that the mechanism by which CRIPT promotes dendritic 

growth is not via the hypothesized model of synapse stabilization. Instead, our data 

suggest the opposite. These data are in accordance with a number of model of 

homeotstatic synaptic plasticity (Pozo and Godo, 2010). In this case, the neuron may be 

upregulating the number of synapses given the small dendritic tree to hold connections 

and incoming activity constant. This would suggest that synapse formation can also 

happen downstream of how dendritic architecture is set. This mechanism would allow 
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the neuron to offset the possibility of any excessive excitation or inhibition in the case of 

an increase in the dendritic tree.  

Understanding how activity-dependent development of the dendritic tree is 

promoted may aid efforts to promote recovery following injury to the central nervous 

system. Repetitive activation of motor circuits has been shown to improve rehabilitation 

in patients following motor injury (Spooren, et al., 2008). This is consistent with our 

findings that activity promotes dendritic remodeling and this leads to the development of 

normal locomotor behavior (Inglis, et al., 2002; Zhang, et al., 2008; Zhou, et al., 2008). 
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FIGURE LEGENDS 
 

Figure 2.1. CRIPT is bona fide PDZ3 and SAP97 interacting protein. (A) Full-length 

(FL) myc-tagged SAP97 co-immunoprecipitates with FL HA-tagged CRIPT when they 

are overexpressed in HEK293 cells. Neither protein immunoprecipitates when a negative 

control IgG antibody is used in place of HA antibody. (B) Overexpressed HA-tagged 

CRIPT co-immunoprecipitates with SAP97 containing a mutation in the PDZ2 domain, 

(K323A, K326A), but mutation of the PDZ3 domain (H469A, R470A) disrupts this 

interaction. (C) Overexpression of myc-tagged full-length SAP97 and full-length WT 

CRIPT or full-length CRIPT V101A in HEK293 cells and immunoprecipitation of myc tag 

on SAP97. Mutating the PDZ3-interaction motif of CRIPT (CRIPT V101A) abolishes the 

interaction between SAP97 and CRIPT. (D) Full-length CRIPT interacts with the PDZ3 

domain of SAP97 in a yeast-two-hybrid assay. (E) Surface plasmon resonance shows a 

specific, saturable interaction between the 18 C-terminal amino acids of CRIPT and the 

PDZ3 domain of SAP97 (Kd of 6.57µM), but no interaction when the CRIPT V101A 

mutation is present. (F) Endogenous CRIPT and endogenous SAP97 co-

immunoprecipitate together in lysates prepared from mixed spinal cultures at DIV14. 

Western blot immunoblotting for endogenous SAP97 and CRIPT of input lysate and 

immunoprecipitations using a negative control IgG and CRIPT IgG. Blot was incubated 

with SAP97 and CRIPT antibody at the same time. (G) CRIPT, SAP97, and GluA1 are 

co-expressed in mouse spinal cord at P7 during the period dendritic remodeling occurs. 

Figure 2.2.  CRIPT is necessary for the dendritic growth of spinal cord neurons.  

(A) Infection of HSV-CRIPT miRNA into mixed spinal cord culture is capable of knocking 

down CRIPT in neurons compared to a scrambled miRNA. (B) Knockdown of CRIPT 

results in a significant decrease in a decrease in the number of branches (p = 0.0018; F 
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= 6.892) and total length (p = 0.0023; F = 6.956) of the dendritic tree according to a one-

way ANOVA. *Differs from +GFP group, p < 0.05; †Differs from +scrambled miRNA 

group, p < 0.05. (C) Representative Western blot of knockdown using CRIPT miRNA. 

Wild type (WT) CRIPT (CRIPTWT) is knocked down by CRIPT miRNA compared to 

scrambled miRNA. RNAi-resistant CRIPT (CRIPTres) is not knocked down by CRIPT 

miRNA compared to scrambled miRNA (D) Co-transfection of RNAi-resistant CRIPT is 

sufficient to prevent decrease in the number of branches and total length of the dendritic 

tree by CRIPT miRNA. ∆Data shown as mean ± SEM; *Differs from +GFP group, p < 

0.05; †Differs from +CRIPT miRNA group, p < 0.05. 

Figure 2.3. CRIPT is not sufficient to promote dendritic growth of spinal cord 

neurons. (A) pal-myc-CRIPT prefers the membrane fraction, but CRIPT without the 

palmitoylation sequence prefers the cytoplasmic fraction. (B) Overexpression of WT 

CRIPT or pal-myc CRIPT at the cell surface has no effect on the size or complexity of 

the dendritic tree.  

Figure 2.4. CRIPT functions downstream of SAP97 in promoting dendrite growth. 

Knockdown of CRIPT prevents growth and branching caused by SAP97 overexpression 

in mixed spinal cord neurons. *Differs from +GFP group, p < 0.05; †Differs from +SAP97 

+ +scrambled miRNA group, p < 0.05. 

Figure 2.5.  CRIPT knockdown increases the number of excitatory and inhibitory 

synapses, but does not change synapse size. (A) Knockdown of CRIPT increases 

the number of excitatory synapses (*p<0.05, Student’s t-test). (B) Knockdown of CRIPT 

has no effect on the size of excitatory synapses. (C) CRIPT knockdown increases the 

number of inhibitory synapses (****p < 0.0001; Student’s t-test) compared to a 
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scrambled miRNA. (D) CRIPT knockdown has no effect on the size of inhibitory 

synapses. (n=20 per group). 

Figure 2.6.  CRIPT’s function in dendritic growth is independent from synaptic 

activity. High K+ is capable of promoting dendritic growth and branching in the presence 

of CRIPT miRNA. *Differs from +scrambled miRNA group + vehicle, p < 0.05; †Differs 

from +scrambled miRNA + high K+ group, p < 0.05; !Differs from CRIPT miRNA group, p 

< 0.05. 

Figure 2.7.  Loss of cript (tm430) decreases dendrite branch number in vivo. (A) 

Representative full body image of PVD neuron labeled with GFP in a N2 Bristol strain 

(wild type; “wt”) young adult (L4 stage + 1 day old). (B) Schematic of PVD neuron and its 

primary (1˚), secondary (2˚), and tertiary (3˚) branches used for quantification. (C) 

Representative images of the PVD neuron labeled with GFP of indicated genotypes in 

the tail region used for quantification at the young adult stage (L4 stage + 1 day old). (D) 

Quantification of the number of primary (1˚), secondary (2˚), and tertiary (3˚) branches in 

indicated strains (n ≥ 10 per genotype). Analyst was blinded to genotype during 

quantification. We found that cript (tm430) mutants have a significant decrease in 

secondary (**p < 0.01; post hoc test following one-way ANOVA) (F(3,37) = 6.781; p = 

0.0009). and tertiary (**p < 0.01; post hoc test following one-way ANOVA) (F(3,37) = 

6.365; p = 0.0014). branch number. This was completely rescued by overexpression of 

the human ortholog of CRIPT in the nervous system using the unc-119 promoter (Pneuron) 

which also increased the number of primary dendrites compared to N2 (WT) (*p < 0.05; 

post hoc test following one-way ANOVA) (F(3,37) = 3.569; p = 0.0232).  
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Figure 2.8.  Loss of cript results in a mechanosensory defect in vivo in young 

adults. (A) WT (N2 Bristol strain), cript (tm430), mec-3 (CB1338), and cript (tm430); 

mec-4 (tu253) animals were scored for their response to harsh touch. Average of 3 

independent experiments is shown. Experiments were all completed with analyst blinded 

to genotype. We found that cript (tm430); mec-4 (tu253) animals show a synthetic touch 

defect (**p <0.01 according to a post hoc test following a one-way ANOVA). We also 

confirmed that mec-3 (CB1338) animals are touch defective compared to wild type (N2) 

(***p < 0.005 according to a post hoc test following a one-way ANOVA) (F(4,10) = 11.93; p 

= 0.0008). (B) Touch defect is suppressed in cript (tm430); mec-4 (tu253) animals by 

overexpression of the human ortholog of CRIPT in the nervous system using the unc-

119 promoter (Pneuron) in four independent extrachromasomal array lines (**p <0.01 

according to a post hoc test following a one-way ANOVA when compared to non-

transgenic counterparts). One strain (line 1) fully rescued the touch defect when 

compared to wild type (N2) in a post hoc test following a one-way ANOVA (F(8,18) = 

26.45; p < 0.0001).  
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Figure 2.1. CRIPT is bona fide PDZ3 and SAP97 interacting protein. 
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Figure 2.2.  CRIPT is necessary for the dendritic growth of spinal cord neurons.   
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Figure 2.3. CRIPT is not sufficient to promote dendritic growth of spinal cord 

neurons.  
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Figure 2.4. CRIPT functions downstream of SAP97 in promoting dendrite growth. 
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Figure 2.5.  CRIPT knockdown increases the number of excitatory and inhibitory 

synapses, but does not change synapse size.  
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Figure 2.6.  CRIPT’s function in dendritic growth is independent from synaptic 

activity. 
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Figure 2.7.  Loss of cript decrease dendrite branch number in vivo. 
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Figure 2.8.  Loss of cript results in a mechanosensory defect in vivo in young 

adults. 
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CHAPTER 3: LOSS OF RAD-23 PROTECTS AGAINST MODELS OF MOTOR 

NEURON DISEASE BY ENHANCING MUTANT PROTEIN DEGRADATION 

 

SUMMARY 
 

Misfolded proteins accumulate and aggregate in neurodegenerative disease. The 

existence of these deposits reflects a derangement in the protein homeostasis 

machinery. Using a candidate gene screen, we report that loss of RAD-23 protects 

against the toxicity of proteins known to aggregate in ALS. Loss of RAD-23 suppresses 

the locomotor deficit of C. elegans engineered to express mutTDP-43 or mutSOD1 and 

also protects against aging and proteotoxic insults. Knockdown of RAD-23 is further 

neuroprotective against the toxicity of SOD1 and TDP-43 expression in mammalian 

neurons. Biochemical investigation indicates that RAD-23 modifies mutTDP-43 and 

mutSOD1 abundance, solubility, and turnover by altering the ubiquitination status of the 

substrate and accelerating its flux through the proteasome and autophagy pathways. In 

human ALS spinal cord, we find that RAD-23 abundance is increased and mislocalized 

within motor neurons. We propose a novel pathophysiological function for RAD-23 in the 

stabilization of disease proteins associated with neurodegeneration. 
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INTRODUCTION 
 

  ALS (Amyotrophic Lateral Sclerosis) is a multifactorial, adult onset motor neuron 

disease that causes death of the upper and lower motor neurons leading to muscle 

denervation and eventual paralysis. Approximately ninety percent of cases of ALS are 

sporadic and the remaining cases are caused by single gene mutations (Rothstein, 

2009). The pathophysiology of ALS has been linked to oxidative stress, excitotoxicity, 

impaired protein homeostasis, and defects in RNA biology (Ling et al., 2013).  

The earliest events seen in the rodent ALS models include the accumulation of 

misfolded proteins, ER (endoplasmic reticulum) stress, and activation of the unfolded 

protein response (UPR) (Kikuchi et al., 2006; Saxena et al., 2009; Walker et al., 2013). 

Exacerbated ER stress has also been found in forms of sporadic ALS (Atkin et al., 

2008). One way cells deal with ER stress, linked to the accumulation of misfolded 

proteins in the ER lumen, is by ERAD (ER-associated degradation). In this process, 

terminally misfolded ER lumen proteins are cleared from the ER through a multi-step 

process for degradation by the 26S proteasome (Vembar and Brodsky, 2008). Positive 

and negative regulators of this process are known to exist (Rumpf et al., 2006) and 

several components of the ERAD pathway have been identified as being mutated in 

forms of familial ALS (Johnson et al., 2010; Deng et al., 2011).  

We hypothesized that components of ERAD might be modifiers of ALS. To test 

this, we undertook a candidate gene forward genetics approach (Table 1) to determine 

the effect of loss-of-function (LOF) alleles (mutants) of ERAD components in C. elegans 

models of ALS, modeled by expression of mutant (M337V) TDP-43 (mutTDP-43) in the 

nervous system. These animals show a strong locomotor deficit (Liachko et al., 2010). 
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Among the modifiers (Figure 2B), we found that a LOF mutation of rad-23 suppressed 

the locomotor deficit of mutTDP-43.  

RAD-23 has two known functions: (1) it can bind ubiquitinated substrates and the 

proteasome to aid in clearance of certain substrates (Chen and Madura, 2002) and (2) it 

assists in nucleotide excision repair (NER) initiation to correct distorted double helices 

resulting from DNA damage (Dantuma et al., 2009; Bergink et al., 2012). We show that 

loss of rad-23 has a beneficial effect in C. elegans and mammalian models of ALS. This 

effect is linked to improved protein homoeostasis and clearance of ALS-causing proteins 

by loss of RAD-23. 

The pathophysiological relevance of our work to human disease is suggested by 

changes in RAD-23 abundance and cellular distribution in ALS spinal cord samples. We 

propose that native RAD-23 acts as an “anti-chaperone” to stabilize and prevent the 

turnover of misfolding-prone proteins that cause ALS. These data raise the possibility 

that targeted reduction of RAD-23 could have therapeutic utility in ALS. 
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MATERIALS AND METHODS 
 

Antibodies 

The following antibodies were used in this study:  hR23A (Abcam ab55725), 

hR23B (Abcam ab88053), TDP-43 (Abcam ab57105 for IB; ThermoPierce PA5-17011 

for IP), myc (Cell Signaling 2276), hSOD1 (Abcam ab52950), V5 (EMD Millipore 

ab3792), GFP (Sigma G1546), beta-actin (Sigma A2066), ubiquitin (Dako Z0458), 

SMI32 (Invitrogen), biotinylated goat anti-mouse IgG (Vector BA-9200), and anti-mouse 

and anti-rabbit AlexaFluor antibodies (Invitrogen). Goat anti-TDP-43 antibody was 

developed in the Petrucelli laboratory.  

C. elegans strains 

All animals were grown on Nematode Growth Media (NGM) plates and seeded 

with Escherichia coli (E. coli) OP50 and maintained at 20°C (Brenner, 1974). The 

following C. elegans strains were obtained from the C. elegans Genetic Center and 

National Bioresource Project for the Nematode: the N2 Bristol strain, rad-23 (tm3690 

and tm2595), ufd-3 (tm2915), cdc-48.1 (tm544), cdc-48.2 (tm659), ubxn-4 (tm3247), 

ubql-1 (tm1574). All strains were backcrossed to ancestral N2 as indicated in Table S3. 

The hSOD-expressing lines Psnb-1::WT SOD1-YFP and Psnb-1::G85R SOD1-YFP and 

hTDP-43-expressing lines Psnb-1::WT TDP-43 and Psnb-1::TDP-43 (M337V) were 

generated as described previously (Wang et al., 2009 and Liachko et al., 2010 

respectively). Compound mutant strains, consisting of the mutation/allele and the TDP-

43 or SOD1 transgene were confirmed by fluorescence and the PCR using primers for 

the allele (see Table 2). The G85R; sid-1 (pk3321); Punc-119::SID-1 worm was created as 

previously described (Calixto et al., 2010; Lim et al., 2012). The RAD-23 rescue lines 
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were created using Gateway Cloning (Invitrogen). Briefly, RAD-23 genomic DNA was 

amplified from DNA isolated from WT C. elegans and cloned into the pDonR221 entry 

vector. The LR reaction was then performed with Punc-119 (nervous system expression) 

(first position), the RAD-23 entry clone (second position), and unc-54 3’UTR entry clone 

(third position). The resulting vector was confirmed by Sanger sequencing and injected 

into the gonads of either mutTDP-43 or mutTDP-43; rad-23 (tm3690) animals until 3 

stable lines were created. The RAD-23 expression construct was co-injected with a 

Punc1119::GFP co-injection marker. A list of all strains used in this study can be found in 

Table 3. All animals were grown on Nematode Growth Media (NGM) plates and seeded 

with Escherichia coli (E. coli) OP50. All animals were maintained at 20°C (Brenner, 

1974).  

Locomotor assays 

C. elegans locomotor assays were performed as a swimming assay in a drop of 

M9 buffer (22mM KH2PO4, 42mM Na2HPO4, 86mM NaCl) on the surface of an agar 

plate. For each assay, 15 to 25 worms were allowed to lay eggs for 4 hours. Behavior 

was blindly recorded at the young adult stage (24 hours after L4) for 30 seconds on a 

video camera attached to a Zeiss Steml SV11 dissecting scope. Five replicates 

containing 7-10 animals per group were tested. Videos were tracked analyzed using the 

Parallel WormTracker (http://wormsense.stanford.edu/tracker; Miriam Goodman; 

Stanford University, Palo Alto, CA) script on MATLAB (MathWorks) to determine the 

average speed (millimeters (mm) per second). Each experiment was completed three 

independent times on different days. One representative experiment is shown unless 

otherwise indicated.  
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RNAi knockdown in C. elegans 

Each RNAi (RNA Interference) colony was grown overnight in Luria broth (LB) 

containing ampicillin (50µg/mL), and 200uL was seeded onto NGM plates containing 

isopropylthiogalactoside (IPTG) (1mM) to induce dsRNA expression. The RNAi clone for 

rad-23 was generated as described previously in the Ahringer library (Fraser et al., 

2000), and its correctness was confirmed by sequencing. For locomotor experiments, 

staged L4 animals were placed on RNAi plates overnight. On the next day, young adult 

C. elegans were transferred to a fresh RNAi plate and allowed to lay eggs for 4-6 hours. 

Progeny were subsequently tested at the young adult (L4+1 day) stage for locomotor 

activity as described above. For RNAi experiments, the average of three independent 

experiments is shown.  

Tunicamycin lifespan assay 

Wild type (WT) (N2 Bristol strain) or rad-23 (tm3690) C. elegans were allowed to 

lay eggs on NGM plates for 4-6 hours (“egg dropping”). At the young adult stage, 100 

animals were placed on NGM plates supplemented with either vehicle (DMSO) or 

tunicamycin (Sigma T7765; 5µg/mL). NGM plates were all seeded with OP50 and the 

final concentration of DMSO in the plates did not exceed 0.2%. Animals were transferred 

to a fresh plate every day and scored for survival by response to light touch. Bagging 

worms or worms with a vulva explosion phenotype were excluded from the analysis. All 

assays were completed blind to genotype. 

Heat shock lifespan assay 
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For heat shock assay, wild type (WT; N2 Bristol strain) or rad-23 (tm3690) 

animals were allowed to lay eggs on NGM plates for 4-6 hours. At the L4 stage, ~50 

animals per group were transferred to a fresh plate. At the young adult (L4+1 day) stage, 

NGM plates were fully submerged into a water bath in a plastic bag at 34°C.  Plates 

were removed briefly every hour so that animals could be scored for survival by 

response to a light touch. Bagging worms or worms with a vulva explosion phenotype 

were excluded from the analysis. All analyses were performed blind to genotype. 

Biomechanical profiling software 

We used a MATLAB-based image analysis program to quantify the biomechanics 

C. elegans swimming behavior as previously described (Sznitman et al., 2010; Krajacic 

et al., 2012).  Wild type (WT; N2 Bristol strain) or rad-23 (tm3690) animals were allowed 

to lay eggs for 4-6 hours. Worms were staged at the L4 stage based on the transparency 

of the vulva mark. At L4 and for 5 days post L4, recordings were taken (≥10/group at 

each time point). Briefly, one to three animals were transferred into a 50μL drop of M9 

buffer in the recording chamber and, after 2 minutes of acclimation, were covered with a 

cover slip. Recordings of 4-15 seconds of a single animal in the chamber were obtained 

using standard bright-field microscopy at 26 frames per second. For each recording of a 

single animal, worm curvature was captured and plotted over time. Worm speed, force, 

and power calculation were performed in MATLAB (MathWorks) (Schnitzman et al., 

2010; Krajacic et al., 2012). All analyses were performed blind to genotype.  

UV sensitivity assay 

  UV survival experiments were performed as previously described (Lans et al., 

2010). For each genotype, 16-25 C. elegans young adults were irradiated at the 
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indicated UV-B dose and, following 24 hrs of recovery, transferred to 4-5 NGM plates to 

lay eggs for a 2-3 hour period. Survival of progeny was later assessed. 

Fluorescence recovery after photobleaching (FRAP) assay  

Animals were immobilized with 10 mM levamisole and examined with a Leica 

DMI3000 B confocal microscope. Experiments were performed as described in Wang et 

al., 2010.  

Recombinant Herpes Simplex Virus (HSV) constructs 

hR23A and hR23B miRNA was designed against the target sequences, 5’- 

CCAGAACATGCGGCAAGTGAT-3’ and 5’- TGGTAACTGAGATCATGTCAA -3’, 

respectively. Primers were annealed and cloned into the p1006(+) vector backbone 

using the BspE1 and FseI restriction sites. The p1006(+) amplicon plasmids were then 

used to generate recombinant herpes simplex virus (HSV) as described previously 

(Neve et al., 1997). The titer of virus used in these experiments was -3-5x107 plaque-

forming units/mL.   

Cell culture 

Mixed spinal cord neuron cultures were prepared as described previously 

(Mojsilovic-Petrovic et al., 2006). Briefly, an astrocyte feeder layer was prepared from 

the cortex of newborn Sprague Dawley rat pups (postnatal day 2 (P2)) and grown to 

~80% confluency. Subsequently, dissociated embryonic day 15 (E15) spinal cord 

neurons were added. One to two days later, AraC (5mM) (catalog #C6645; Sigma) was 

added for 24 hours to arrest astrocyte proliferation. Cultures were maintained in glia-

conditioned medium supplemented with the following trophic factors (1.0ng/mL each): 
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human neurotrophin-3, human neurotrophin-4, human brain-derived neurotrophic factor, 

and rat ciliary neurotrophic factor (Alomone Labs). Half of the culture medium was 

replaced on a biweekly basis.  

HEK293 (Human Embryonic Kidney 293) cells were grown in Dulbecco’s 

modified eagle’s medium (DMEM) (Invitrogen) supplemented with 10% FBS (Sigma) and 

1% Pen-Strep (Sigma). Wild type (WT), hR23A-/-, and hR23B-/- mouse embryonic 

fibroblasts (MEFs) were maintained in DMEM with GlutaMax and high glutamine 

(Invitrogen) supplemented with 10% FBS (Sigma) and 1% Pen-Strep (Sigma). MEFs 

were created as previously described in Okuda et al., 2004. 

Transfections 

 Cells were transfected using Lipofectamine 2000 (Invitrogen) in antibiotic-free 

medium once cells reached ~75% confluency. Media was replaced after 24 hours. 

Experiments were carried out 48 hours post transfection unless otherwise indicated. 

Cychloheximide assays 

When cells were 75% confluent, the HEK293 cells were co-transfected 

(Lipofectamine 2000; Invitrogen) with indicated TDP-43 or SOD1 expression constructs 

and a control or RAD-23 (hR23A or hR23B) miRNA using Lipofectamine 2000 

(Invitrogen) in antibiotic-free media. MEFs were transfected (Lipofectamine 2000; 

Invitrogen) with TDP-43 expression construct and LacZ or respective hR23A or hR23B 

cDNA if indicated. After 24 hours, cells were re-plated in standard media at equal 

densities in duplicate or triplicate as needed. 24 hours later, the media was removed and 

replaced with standard media and cycloheximide (CHX; Sigma; final concentration of 

100µg/mL) or vehicle (DMSO (Sigma)).  At subsequent time points, cells were washed 
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twice in ice-cold PBS supplemented with cycloheximide (50µg/mL) and lysed in 

radioimmunoprecipitation (RIPA) buffer (1% NP-40, 0.1% SDS, 50mM Tris-HCl pH7.4, 

150mM NaCl, 0.5% sodium deoxycholate, 1mM EDTA). All buffers used in this study 

were supplemented with complete protease inhibitor cocktail (Roche). Samples were 

then processed for Western blot. Samples were then processed for Western blot. In 

certain experiments, vehicle (DMSO), MG-132 (5µM), epoxomicin (100nM), or 3-

methyladenine (3-MA) (10mM) (all from Sigma) was added thirty minutes following the 

addition of CHX. 

RNA isolation and mRNA measurements 

RNA RNA was extracted from untransfected and transfected HEK293 cells using 

the RNeasy Mini Kit (Qiagen). Total RNAs from C elegans were purified using TRIzol 

reagent (Invitrogen) followed by DNase I (Promega) digestion. One microgram (μg) of 

DNase-treated RNA was reverse transcribed using iScript cDNA synthesis kit (Bio-Rad) 

followed by the manufacturer protocol. The cDNAs were subjected to real-time qPCR in 

a total volume of 25 μl, containing 1x Power SYBR Green Master Mix (Life 

Technologies) and 200 nM primer. The qPCR reaction were amplified and analyzed in 

triplicate using StepOne™ RealTime PCR system (Life Technologies). To enable 

normalization of the input target cDNA added to each well, the endogenous controls, 

alpha tubulin (tba-1) for C. elegans experiments and beta actin for HEK293 cell 

experiments were amplified simultaneously in a separate reaction well but under 

identical thermal cycling condition. Amplification data were analyzed and relative 

quantification data were obtained using the StepOne™ software v2.2.2.  All experiments 

were repeated three independent times. Primers for amplification of target mRNA were 

as follows: hTDP-43: 5’-ATGGAAAACAACCGAACAGG-3’ and 5’-



69 

 

AAAGCCAAACCCCTTTGAAT-3’; beta-actin: 5’-CTCTTCCAGCCTTCCTTCCT-3’ and 

5’-AGCACTGTGTTGGCGTACAG-3’; tba-1: 5’-AAGATGCCGCCAACAACTAC-3’ and 5’-

CCTCCTCCGAATGAATGAAA-‘3.  

Soluble versus insoluble preparations 

For all soluble/insoluble preparations, cells were lysed in RIPA buffer and 

sonicated (20% strength, 10sec). Lysates was then briefly centrifuged to remove cellular 

debris (5,000xg, 10’, 4°C). Supernatant was then centrifuged (100,000xg, 30’, 4°C) and 

the supernatant was considered the ‘soluble’ fraction. The pellet was washed in RIPA 

buffer and re-centrifuged (100,000xg, 30’, 4°C). Supernatant was discarded. The pellet 

was resuspended in urea buffer (8M urea; 4% CHAPS; 50mM dithiothreitol (DTT); 40mM 

Tris pH 8.0; 2.5mM EDTA) and considered the ‘insoluble’ fraction. Samples were then 

processed for Western blot.  

Sequential soluble and insoluble preparation from C. elegans 

 Sequential soluble and insoluble preparations were performed as previously 

described in Liachko et al., 2010. The total protein fraction was collected by 

homogenizing worms in RAB high salt buffer. The packed worm pellet was resuspended 

twice in low-salt buffer (LS) (10mM Tris, 5mM EDTA, 10% sucrose, pH 7.5) and was 

completely lysed by sonication. The homogenate was centrifuged at 25,000xg for 30 min 

and the supernatant was considered the LS fraction. The LS pellet extracted with 

nonionic detergent-containing buffer (TX) (10mM Tris, 5mM EDTA, 1% Triton X-100, 

10% sucrose, pH 7.5) and centrifuged for 20’ at 180,000xg. The supernatant was 

considered the TX fraction. The pellet was extracted with ionic detergent-containing 

buffer (SARK) (10mM Tris, 5mM EDTA, 1% Sarkosyl, 10% sucrose, pH 7.5) and 
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centrifuged at 180,000xg for 20min. The supernatant was considered the SARK fraction. 

The final detergent-resistant pellet was resuspended in UREA (30mM Tris, 7M Urea, 2M 

Thiourea, 4% CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate), 

pH 7.5). All buffers contained complete protease inhibitor cocktail (Roche) and 0.5mM 

PMSF (phenylmethylsulfonylfluoride).  

RAD-23 expression manipulation and TDP-43 abundance  

HEK293 cells were co-transfected as outlined above in a 3:1 ratio of miRNA to 

TDP-43 expression construct. After 48 hours, cells were lysed in RIPA buffer and 

samples were processed for Western blot. For RNAi rescue experiment, 2μg of LacZ or 

appropriate hR23A or hR23B RNAi-resistant cDNA was co-transfected. To generate 

RNAi-resistant cDNA, three silent mutations were introduced into the miRNA target 

sequence using the QuikChange Lightning Multi-Site Mutagenesis kit (Agilent) per 

manufacturer protocol. Mutations introduced into hR23A or hR23B target sequence are 

outlined here (nucleotide mutations introduced are underlined): for hR23A: 5’-

CCAAAATATGCGCCAGGTGAT-3’; for hR23B: 5’-TGGTGACCGAAATCATGTCAA-3’. 

Mutated cDNAs were sequenced for correctness prior to use.  

Mouse strains 

   Male heterozygote G93A mutSOD1 mice on the congenic C57BL/6 background 

(Strain 004435; Jackson Laboratory) were backcrossed with C57BL/6 mice. Non-

transgenic (non-Tg) littermates served as control mice. Only male G93A mutSOD1 mice 

and control littermates were used for experimentation. Mice were fed a standard diet 

(Purina 5010) and were housed on a 12 h light/dark cycle. Genotypes were determined 

by PCR using tail snip DNA. Primer sequences were: 5’-cgcgactaacaatcaaagtga-3’; 5’-
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catgagccctaatccatctga-3’; 5’-gtaggtggaaattctagcatcatcc-3’; and 5’-

ctaggccacagaattgaaagatct-3’. All animals were treated in strict accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals and were 

approved by the Children's Hospital of Philadelphia Institutional Animal Care and Use 

Committee. 

Ubiquitination Assays 

 Vehicle (DMSO) or MG-132 (5µM) was added twelve hours before cell lysis. 

Cells were lysed in RIPA buffer supplemented with 50mM N-ethylmaleimide to inhibit 

deubiquitinase activity and myc-TDP-43 was immunoprecipitated where relevant using 

the Immunoprecipitation Kit (Thermo) per manufacturer protocol. Samples were then 

processed for Western blot. 

Immunohistochemistry 

Patient tissue was deparaffinized. Endogenous peroxidase was blocked with 3% 

hydrogen peroxide in methanol for 30 minutes. Sections were washed in water and 

immersed in 0.1M Tris buffer (pH 7.6) and 0.1M Tris/2% FBS (fetal bovine serum) for 5 

minutes each. Sections were incubated with α-hR23A and α-hR23B mouse antibody 

(Abcam). After washing with 0.1M Tris buffer (pH 7.6) and 0.1M Tris/2% FBS, sections 

were incubated with biotinylated goat anti-mouse IgG (1:200; Vector Laboratories) for 30 

minutes at room temperature. After washing with 0.1M Tris buffer (pH 7.6) and 0.1M 

Tris/2% FBS, sections were then incubated with Vectastain ABC (Vector Laboratories) 

for 45 minutes. After washing with 0.1% PBST followed by 0.1M Tris (pH 7.5) and 0.3M 

NaCl. Peroxidase activity was then detected with DAB (Dako). Slides were then 

dehydrated in ascending series of ethanol and coverslipped. 
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Meso Scale Discovery (MSD) assay 

First, the carbon surface wells on a 96-well MSD assay plate were coated with a 

rabbit anti-V5 or goat anti-TDP-43 capture antibody diluted 1:500 in Tris-buffered saline 

(TBS). Following an overnight incubation at 4˚C, wells were washed once with TBS 

containing 0.2% Tween 20 (TBST), and blocking buffer (3% non-fat milk in TBST) was 

added to wells for 2 hours at room temperature to prevent non-specific binding. The 

plate was then washed four times, and lysate from hR23A/pcDNA transfected cells 

(background control wells), or cells transfected to overexpress hR23A/WT TDP-43 and 

hR23A/mutTDP-43 were added to wells, in triplicate, at a final concentration of 15 

µg/well. The plate was incubated at room temp for 2 hours to allow capture of TDP-43 by 

anti-V5 or hR23A by the anti-TDP-43 antibody coated onto wells. Following washes to 

remove unbound proteins, wells were treated with specific primary antibody to detect 

captured protein (V5 or TDP-43) and secondary antibody (goat or rabbit polyclonal) 

labeled with an electrochemiluminescent compound, the SULFO-TAG (Meso Scale 

Discovery, 2 µg/ml), in blocking buffer. Plates were washed after a 2 hour incubation 

period, and a MSD Read Buffer that provides the appropriate chemical environment for 

electochemiluminescence was added to wells prior to loading plates into the MSD Sector 

Imager 2400. Inside the instrument, a voltage was applied to the plate electrodes 

causing the SULFO-TAG bound to the electrode surface to emit light. The intensity of 

emitted light at 620nm was measured to provide a quantitative measurement of the 

amount of binding in each well. The binding signal was calculated by subtracting the 

average background signal from wells treated with lysate from control transfected cells, 

from the average signal from wells treated with lysate from cells expressing the different 

TDP-43 products. 
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Statistics 

Statistical analysis was performed using GraphPad Prism Version 6.00 for 

Windows, GraphPad Software, La Jolla, CA, USA (www.graphpad.com). Unpaired t-test 

was used for all two-group comparisons. For data containing more than three groups, a 

one-way ANOVA with Dunnett’s multiple comparisons test was used. For survival 

analysis, a log-rank (Mantel-Cox) test was used. The threshold for significance was 

always set to p < 0.05. 
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RESULTS 

Loss of ERAD components modify ALS phenotypes in C. elegans 

We asked whether mutant loss-of-function (LOF) versions of ERAD or UPR 

genes (Table 1) suppressed or enhanced the proteotoxic insults relevant to 

neurodegenerative disease. We used C. elegans, engineered to express wild type (WT) 

or mutSOD1 (Wang et al., 2009) and WT or mutTDP-43 (Liachko et al., 2010) in the 

nervous system. As previously reported, these ALS models display a severe locomotor 

deficit and swim at roughly ~10% the speed of wild type (WT) (N2 Bristol) animals 

(Figure 1A) (Lim et al., 2012). To identify modifiers of mutTDP-43, ERAD mutants were 

placed on the mutTDP-43 background and the effect on locomotion was determined. 

None of the ERAD mutants on their own showed any change compared to WT animals 

in a swimming assay at the young adult stage (L4 stage + 1 day) tested (data not 

shown). 

Of the modifiers found using this approach (Figure 1B), we chose to focus on 

RAD-23 for multiple reasons. First, based on RAD-23’s role as a shuttle between 

ubiquitinated substrates and the proteasome (Schauber et al., 1998), we anticipated that 

loss of rad-23 would worsen the mutTDP-43 phenotype and this is the opposite of what 

we found. Second, RAD-23 has an additional role in NER and NER defects have been 

linked to neurodegeneration (Jaarsma et al., 2011; Madabhushi, et al., 2014). Third, rad-

23 mutants showed the strongest suppression among the modifiers. Finally, the other 

identified suppressors of mutTDP-43 appeared to do so through independent pathways 

(Figure 1C-1D). The other identified suppressors, loss of ufd-2 (Figure 1C) and loss of 
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ufd-3 (Figure 1D), both resulted in an additive suppression of the locomotor deficit when 

placed on the mutTDP-43 background with loss of rad-23.  

Loss of rad-23 suppresses two models of ALS  

  In addition to the first rad-23 mutant used (tm3690), we found that a second 

mutant of rad-23 (tm2595) (Figure 2A) also showed a two-fold suppression of the 

locomotion deficit caused by mutTDP-43 (Figures 2B-2C) and mutSOD1 (Figures 2D-

2E) (p < 0.05). The mutations used are deletions in different portions of RAD-23. In 

addition, neither rad-23 mutant affected the locomotion of transgenic worms expressing 

wtSOD1 or wtTDP-43. Rad-23 mutants alone were identical to WT in the swimming 

assay (Figure 2F).  

To understand whether it was loss of rad-23 in the nervous system or other 

tissue suppressing the locomotor deficit, we used RNAi and rescue approaches. We 

found that mutSOD1 fed rad-23 RNAi showed no suppression of the locomotor deficit 

(Figure 2G). In contrast, mutSOD1 animals fed rad-23 RNAi where the RNAi effect is 

reduced in peripheral tissues and boosted in the nervous system (mutSOD; sid-1; 

Pneuron::SID-1) showed a ~2-fold suppression of the mutSOD1 locomotor deficit (p < 

0.01) (Calixto et al., 2010) (Figure 2G). These data suggest that loss of rad-23 in the 

nervous system protects against mutSOD1.  

Outcrossing the rad-23 (tm3690) allele rescued mutTDP-43 toxicity, suggesting 

the suppression in the rad-23 background is not due to loss of expression of the 

mutTDP-43 transgene (Figure 2H). We also generated several lines overexpressing the 

genomic C. elegans RAD-23 locus under the control of a nervous system-specific 

promoter. We found that overexpression of RAD-23 in the nervous system rescued the 
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beneficial effect of loss of rad-23 in mutTDP-43; rad-23 animals (Figure 2I), but 

overexpression of RAD-23 in the nervous system of mutTDP-43 alone had no effect on 

the average speed of mutTDP-43 (Figure 2J). In sum, these data indicate that loss of 

rad-23 acts in a cell autonomous manner within the nervous system to suppress 

mutTDP-43 and mutSOD1 toxicity.  

It has been previously described that mutTDP-43 leads to neurodegeneration of 

the GABAergic motor neurons in C. elegans causing motor neuron death, broadening of 

the axons, and gaps in the ventral nerve cord (Liachko et al., 2009). We examined 

GABAergic motor neurons in WT, mutTDP-43, and mutTDP-43; rad-23 animals and 

found that loss of rad-23 reduced the number of animals that displayed broadening of 

axons in the mutTDP-43 background (Figure 3A) and also reduced the number of gaps 

in the ventral nervous cord in the mutTDP-43 background (Figure 3B). In sum, we found 

that loss of rad-23 suppressed the degeneration of GABAergic neurons caused by 

mutTDP-43 (Figure 3C). Thus, loss of rad-23 suppresses both the locomotor deficit and 

neurodegenerative phenotype associated with mutTDP-43. 

To date, the tissue expression pattern of C. elegans RAD-23 has not been 

defined. To address this, we created a worm expressing a RAD-23::GFP translational 

fusion expressed under the control of the endogenous RAD-23 genomic locus. We found 

RAD-23 expression throughout the animal at the young adult (L4 +1 day) stage (Figures 

4A-4C), including neuronal cell bodies and processes (Figure 4D) and the nerve cord 

(Figure 4F). 

Loss of rad-23 protects against proteotoxicity at the cost of DNA damage 
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Because loss of rad-23 protected against two ALS-associated proteins, we 

wondered if loss of rad-23 had broader beneficial actions. Because neurodegeneration is 

often age-related, we looked at age-related decline in motor function in C. elegans using 

multi-dimensional biomechanical profiling software (Krajacic et al., 2012). The average 

speeds of WT and rad-23 mutants were identical at the L4 and young adult stage. 

However, rad-23 mutants showed increased average speeds compared to WT in later 

ages at 4 (p < 0.05) and 5 days (p < 0.05) post L4 (Figure 5A).  Loss of rad-23 also 

resulted in increased force (Figure 5B), and power (Figure 5C) compared to WT at these 

ages (p < 0.05). Moreover, rad-23 had a more coordinated biomechanical profile than 

WT at 5 days post L4 (Figure 5D).   

ALS and other forms of neurodegeneration show increased levels of ER stress 

and attenuation of ER stress has been shown to be beneficial (Vaccaro et al., 2013; 

Walker et al., 2013; Thompson et al., 2014). We investigated if loss of rad-23 attenuated 

C. elegans’ response to ER stress, induced by tunicamycin. The lifespans of WT and 

rad-23 mutants exposed to vehicle are identical; in contrast, rad-23 mutants show an 

extension of their lifespan by 22.2% compared to WT when grown on tunicamcyin (p < 

0.0001) (Figure 5E). In a second stress assay, we found that loss of rad-23 conferred a 

~25% extension of lifespan at high heat (34˚C) (p < 0.0001) (Figure 5F). 

Because rad-23 was originally identified in yeast by having increased sensitivity 

to UV irradiation (Prakash et al., 1993), we examined UV sensitivity in loss of rad-23 

backgrounds (Lans et al., 2010). There was no difference in UV sensitivity between WT 

and animals overexpressing SOD1 or TDP-43. We confirmed both rad-23 mutants 

(tm2595 and tm3690) showed a hypersensitivity to UV stress compared to WT (p < 

0.0001). This result substantiates that the rad-23 mutants used in this study are very 
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likely null for rad-23. Interestingly, overexpressing either SOD1 or TDP-43 in the loss of 

rad-23 backgrounds causes a synthetic hypersensitivity on a UV sensitivity assay 

compared to loss of rad-23 alone (p < 0.0001) (Figure 5G). These data suggest that loss 

of rad-23 confers a specific resistance to proteotoxic insults and age-related decline, but 

a deficit in DNA damage repair.   

Loss of rad-23 does not protect against mutTDP-43 toxicity via several known 

genetic pathways  

Given the link to DNA damage, we used C. elegans genetics to determine if 

genes known to function with rad-23 in the NER pathway could modify the mutTDP-43 

and mutSOD1 phenotypes. Strains harboring mutations in various NER components 

neither showed a baseline difference compared to WT in the swimming assay (data not 

shown) nor suppressed the mutTDP-43 phenotype (Figure 6A-6C). This suggests that 

loss of rad-23 does not protect against mutTDP-43 via the NER pathway.  

We also examined mutants in molecular components known to associate with 

RAD-23 in ERAD. PNG-1 physically and genetically interacts with RAD-23 in yeast and 

C. elegans (Habibi-Babadi, et al., 2010). We found no suppression of mutTDP-43 toxicity 

by png-1 (cy9) (Figure 6D). UFD-3 mutants in yeast have reduced bulk ubiquitin levels 

(Johnson et al, 1995) and can antagonize UFD-2 (Rumpf et al., 2006), an interactor of 

RAD-23 (Kim et al., 2004) and CDC-48 (Bohm et al., 2011). We found that ufd-2 

(tm1380) and ufd-3 (tm2915), but not cdc-48.1 (tm544) or cdc-48.2 (tm659), suppressed 

the locomotor deficit of mutTDP-43 (Figure 1B). We could not study the effect of loss of 

cdc-48.1 and cdc-48.2 together because loss of both genes results in a larval lethality. 

We therefore tested if suppression of mutTDP-43 by rad-23, ufd-2, and ufd-3 was by the 
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same pathway. When either ufd-2 or ufd-3 was placed on the mutTDP-43; rad-23 

background, there was an additive suppression of the mutTDP-43 locomotor deficit. This 

observation suggests that the beneficial effect of loss of rad-23 is not through a linear 

pathway with ufd-2 or ufd-3 (Figure 1C-1D).  

Knockdown of RAD-23 in mammalian motor neurons protects against toxicity 

caused by TDP-43, SOD1, and ER stress  

Mammals contain 2 orthologs of the nematode RAD-23 which retain 40% amino 

acid identity, hR23A and hR23B. We investigated if knockdown of hR23A or hR23B 

protected against TDP-43 and SOD1 toxicity in mammalian motor neurons. We created 

miRNAs targeting endogenous hR23A and found specific knockdown of hR23A, but not 

hR23B or a co-transfected GFP plasmid (Figure 7A, 7B 7E). A specific hR23B miRNA 

was also generated (Figure 7C-7E). We engineered a herpes simplex virus (HSV) to 

express the designed miRNAs targeting hR23A and hR23B. Because HSV is a 

neurotropic virus, it will not knockdown hR23A or hR23B in glia. We found that hR23A 

and hR23B knockdown led to specific target knockdown in rat mixed spinal cord cultures 

(Figure 7F). 

When recombinant HSV engineered to express wtSOD1 or wtTDP-43 is infected 

into mixed spinal cord cultures, there was a ~25% decrease in five day motor neuron 

survival. In contrast, when neurons were infected with a HSV engineered to express 

mutSOD1 or mutTDP-43, there was a ~50% decrease in five day motor neuron survival. 

We found that knockdown of hR23A protected against wt and mutSOD1 toxicity (p < 

0.01, p < 0.001 respectively) (Figure 7G, Figure 7I), as well as wt and mutTDP-43 

toxicity (p < 0.01, p < 0.01 respectively) (Figure 7H). We found that knockdown of hR23B 
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also protected against the toxicity of wtSOD1 (p < 0.005), mutSOD1 (p < 0.001), wtTDP-

43 (p < 0.005), and mutTDP-43 (p < 0.001) toxicity (Figure 7G-7I). Thus, reducing the 

amount of endogenous hR23A or hR23B in mammalian spinal cord neurons protects 

against SOD- and TDP-43-induced motor neuron death.  

To determine if knockdown of RAD-23 orthologs in mammalian neurons 

protected against ER stress, mixed spinal cord neurons were infected with HSV to 

express either a hR23A, hR23B, or control miRNA along with either LacZ to mimic a 

“non-ALS” condition or mutSOD1 to mimic an “ALS” condition. 24 hours later, neurons 

were treated with vehicle or tunicamycin (2.5 μg/mL) to induce ER stress. Motor neuron 

survival was assessed 48 hours later (Figure 7J). Under +LacZ conditions, we found that 

tunicamycin reduced motor neuron survival by ~40% compared to vehicle. This was 

suppressed entirely by hR23A (p < 0.01) and hR23B (p < 0.05) knockdown, although 

hR23A and hR23B knockdown had no effect on motor neuron survival on their own. In 

addition, under the mutSOD1 condition, we found that hR23A (p < 0.05) and hR23B (p < 

0.01) knockdown reduced toxicity of mutSOD1. Tunicamycin exacerbated toxicity of 

mutSOD1 by ~10%, and this was suppressed by reducing hR23A (p < 0.001) and 

hR23B (p < 0.005). In sum, reducing RAD-23 abundance renders motor neurons 

resistant to invoked ER stress.  

hR23A expression is increased in the spinal cord of mutSOD1 mice  

Given that reduced RAD-23 expression protected against the toxicity of two ALS 

models, we examined the abundance of hR23A and hR23B in the mouse ALS 

(mutSOD1 (G93A)) model compared to controls. At a pre-symptomatic time point (P60), 

we found no difference in hR23A or hR23B expression in the brain and spinal cord of 



81 

 

mutSOD1 mice compared to age- and sex-matched controls. At symptomatic and end-

stage time points, we found a ~50% increase in hR23A (Figure 8A-8B) expression in the 

spinal cord of the mutSOD1 mice at P90 (p < 0.05) and P120 (p < 0.01). There was no 

change in hR23B expression in the spinal cord at P90 (p = 0.8419) or P120 (p = 0.3592) 

(Figure 8C-8D). We did not find any change in hR23A (p = 0.1208) or hR23B (p = 

0.4032) expression in the total brain lysate at P120 from the same animals. We 

confirmed that there is an increase in p-eIF2α, a marker of ER stress, at P60 in the 

spinal cord of mutSOD1 mice (p < 0.05), as previously reported (Nagata et al., 2007; 

Wang et al., 2011) (Figure 8E-8F). Therefore, hR23A expression is increased in an ALS 

mouse model at time points associated with disease, and suggests this increase occurs 

after the onset of ER stress. 

Loss of RAD-23 accelerates the degradation of mutTDP-43 and mutSOD1 

 To identify the mechanism by which loss of rad-23 confers protection against 

proteotoxicity, we examined the steady state levels of mutTDP-43 following 

overexpression and knockdown of RAD-23 in HEK293 cells. Co-transfection of the 

mutTDP-43 expression construct with a hR23A or hR23B expression construct led to a 

small increase in mutTDP-43 abundance (Figure 9A-9B). In contrast, when endogenous 

hR23A or hR23B was knocked down by co-transfection of the hR23A, hR23B, or control 

miRNA with the mutTDP-43 expression construct, we found a ~90% reduction (p < 

0.005) in the total amount of mutTDP-43 protein (Figure 9A-9B). We found no change in 

human TDP-43 mRNA levels after RAD-23 knockdown, compared to a control miRNA 

(Figure 9C), suggesting the changes in protein abundance are unlikely to be linked to 

transcription. 
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We examined the rate of TDP-43 and SOD1 degradation with or without 

knockdown of hR23A or hR23B. TDP-43 has been reported to have a half-life of ~50 

hours and ALS-linked mutations in TDP-43 result in a more stable protein than WT (Ling 

et al., 2010; Austin et al., 2014; Barmada et al., 2014). HEK293 cells were transfected 

with the plasmid expressing TDP-43 or SOD1 along with a hR23A, hR23B, or control 

miRNA. 48 hours later, new protein synthesis was inhibited by the addition of 

cycloheximide (CHX) and lysates were probed for TDP-43 or SOD1 at time intervals 

thereafter. We found that knockdown of hR23A led to an accelerated loss of mutTDP-43 

(Figure 9D-9E; p < 0.05) and mutSOD1 (Figure 9F-9G; p < 0.01) after 180 minutes of 

CHX; knockdown of hR23A or hR23B had no effect on the degradation of wtTDP-43 or 

wtSOD1 (data not shown). There was roughly 30% less mutTDP-43 and mutSOD1 

protein remaining in hR23A knockdown compared to controls and a further ~40-50% (p 

< 0.05) reduction after 270 minutes (Figure 9H-9I).  

In order to confirm that it is reduced RAD-23 levels which accelerate mutTDP-43 

turnover, we utilized a line of RAD-23-null mouse embryonic fibroblasts (MEFs) (Okuda 

et al., 2004). We compared mutTDP-43 degradation during CHX treatment in hR23A-/- 

and hR23B-/- MEFs to WT MEFs. After inhibiting protein synthesis for 180 minutes, we 

found a ~40% greater reduction in mutTDP43 abundance in hR23A- and hR23B-null 

MEFs versus WT MEFs (Figure 9J). Restoring RAD-23 expression in the RAD-23-null 

MEFs blocked the accelerated degradation of RAD-23 (Figure 9K).   

In contrast to the observed results for mutTDP-43 and mutSOD1, we found that 

knockdown of hR23A and hR23B inhibited the degradation of CPY*, a canonical yeast 

ERAD substrate, after CHX (Figure 9L). This suggests the inhibition of ALS-linked 

protein clearance by RAD-23 is specific, and does not apply to all substrates.  
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We employed the same experimental paradigm in primary neurons from mixed 

spinal cord cultures and showed that knockdown of hR23A or hR23B accelerated the 

degradation of mutSOD1 (Figure 10A). To confirm that effects of RAD-23 knockdown on 

mutTDP-43 abundance were RAD-23 specific, we showed that we could rescue the 

reduced mutTDP-43 abundance in RAD-23 knockdown conditions by co-transfecting a 

RNAi-resistant RAD-23 cDNA (hR23Ares or hR23Bres) to restore RAD-23 in the HEK293 

cells (Figure 10B-10D). Knockdown of hR23A or hR23B reduced mutTDP-43 abundance 

if cells were transfected with a LacZ control, but co-transfection with the RNAi-resistant 

RAD-23 cDNA prevented mutTDP-43 removal. These data show that the reduction of 

mutTDP-43 is RAD-23-dependent and reduced RAD-23 leads to accelerated mutTDP-

43 and mutSOD-1 turnover in multiple cell lines, including primary neurons.  

Loss of RAD-23 increases flux through the proteasome and autophagy by 

increasing polyubiquitination  

 RAD-23 is known to interact with ubiquitinated substrates and the proteasome 

(Chen et al., 2002) and we found that hR23A associates with mutTDP-43 (Figure 10E). 

RAD-23 overexpression can inhibit proteasomal degradation by inhibiting ubiquitination 

(Ortolan et al., 2000; Raasi and Pickart, 2003), although the use of overexpression 

paradigms may lead to non-physiological activities. To determine if RAD-23 inhibits the 

turnover of mutTDP-43 through the proteasome and/or autophagy pathways in our loss 

of RAD-23 setting, we utilized several pharmacological inhibitors of the proteasome, the 

ubiquitin/proteasome system (UPS) more broadly, and autophagy. Briefly, HEK293 cells 

were transfected with the mutTDP-43 construct and the hR23A, hR23B, or control 

miRNA. Drugs targeting the UPS or autophagy pathways were added thirty minutes after 

CHX (Figure 10F). Lysates were collected at 0 and 270 minutes of CHX and the amount 



84 

 

of mutTDP-43 remaining was determined. We found that inhibition of the proteasome by 

MG-132, the UPS by epoxomicin “epox”, and autophagy by 3-MA blocked the 

accelerated turnover by RAD-23 knockdown (Figure 10F-10G). In the vehicle (DMSO) 

condition, hR23A knockdown (p < 0.05) and hR23B knockdown (p < 0.01) reduced the 

amount of mutTDP-43 remaining after 270 minutes of CHX by ~50% compared to 

control. These data suggest that the enhanced clearance of mutTDP-43 by reducing 

RAD-23 is mediated by the UPS and autophagy. This is in accordance with recent work 

showing that mutTDP-43 is degraded by both the UPS and autophagy (Scotter et al., 

2014).  

We reasoned that the lack of discrimination between the UPS and autophagy 

pathways might be because reduced RAD-23 is affecting the process in a step upstream 

from degradation, such as ubiquitination. We examined total ubiquitinated protein in 

hR23A- and hR23B-null MEFs and found no difference from WT MEFs. However, there 

was increased flux of ubiquitinated substrates through the proteasome in hR23A- and 

hR23B-null MEFs (Figure 10H) because inhibiting the proteasome with MG-132 led to a 

higher accumulation of non-degraded ubiquitinated substrates. We determined the 

ubiquitination status of mutTDP-43 following RAD-23 knockdown in HEK293 cells and 

found an increase in the ubiquitination of mutTDP-43 (Figure 10I). We also examined 

ubiquitination of mutTDP-43 -/+ MG-132 to estimate flux of the ubiquitinated substrates 

through the proteasome. We found that the MG-132 induction ratio of polyubiquitinated 

TDP-43 was increased following RAD-23 knockdown by ~50% compared to WT (Figure 

10J-10K). This suggests that the increased level of polyubiquitinated mutTDP-43 

correlates with increased flux through the proteasome. In sum, these data suggest that 
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hR23A and hR23B normally inhibit the ubiquitination of mutTDP-43 and hinder its 

proteasomal degradation.  

Loss of rad-23 decreases mutTDP-43 and mutSOD1 insolubility 

Since TDP-43 inclusions are made up of insoluble TDP-43 aggregates, we 

investigated the effect of reducing RAD-23 on TDP-43 solubility in vivo and in vitro. In C. 

elegans, we found that loss of rad-23 resulted in a decrease of total insoluble TDP-43 

(Figure 11A). We detected a decrease in phospho-TDP-43 levels in C. elegans in the 

loss of rad-23 background (Figure 11B) and phospho-TDP-43 has been implicated as 

the toxic species in ALS (Neumann et al., 2009). We overexpressed hR23A or hR23B in 

HEK293 cells and looked at the effect on mutTDP-43 solubility compared to a LacZ 

transfection control. We found that overexpression of hR23A increased the insolubility of 

mutTDP-43 (Figure 11C). We measured hTDP43 mRNA abundance in hTDP43-

expressing C. elegans in WT and loss of rad-23 backgrounds. We found a significant 

increase in hTDP-43 mRNA compared to WT in the loss of rad-23 background (Figure 

11D). These data are consistent with the known negative autoregulation of TDP-43 on 

its mRNA (Avendando-Vasquez et al., 2012; Polymenidou et al., 2011).  

To test our hypothesis that the other suppressors identified in our candidate gene 

approach were via independent pathways, we examined the ability of loss of ufd-2 

(tm1380) to reduce mutTDP-43 abundance on its own and with loss of rad-23. We found 

that loss of ufd-2 (tm1380) also reduced mutTDP-43 protein abundance and the 

abundance of phosphorylated mutTDP-43 in C. elegans, although the effect was smaller 

than loss of rad-23 (tm3690). Meanwhile, when loss of ufd-2 and loss of rad-23 are both 

placed on the mutTDP-43 background, loss of ufd-2 (tm1380) and rad-23 (tm3690) 
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together caused an even greater effect (Figure 11E) than when either gene is mutated 

on its own.  

The correctly folded conformation of a protein is in equilibrium with multiple 

misfolded conformations, and these later species are prone to aggregate into oligomers 

and higher order structures. The dwell time of misfolded conformations is a function of 

the free energy barriers between states and generally increases as aggregates form 

(Fawzi et al., 2008). This can be probed by examining the fluorescence recovery time 

after photobleaching (FRAP) of fluorescently tagged misfolding-prone proteins. 

Misfolded proteins become less mobile within cells and have a slower recovery time 

following photobleaching (Wang et al., 2009; Scotter et al., 2014). We examined the 

ability of mutSOD1 tagged with YFP in the C. elegans nervous system to recover 

following photobleaching in WT and loss of rad-23 backgrounds in vivo. Loss of rad-23 

allowed for increased recovery of YFP-tagged mutSOD1 over WT (Figure 11F-11G; p < 

0.05). These data indicate that loss of rad-23 leads to an increase in the pool of readily 

exchangeable and mobile mutSOD1. In sum, loss of rad-23 leads to a decrease of 

soluble and insoluble species, as well as a reduction in the toxic phosphorylated TDP-43 

species.  

hR23A and hR23B are aberrantly expressed in human ALS spinal cord  

Changes in the abundance of RAD-23 could have pathophysiological relevance 

to human ALS. A single nucleotide polymorphism (SNP) was found to be correlated with 

changes in hR23A expression (Myers et al., 2007) and the same SNP was found to be 

associated with sporadic ALS (Cronin et al., 2007). In addition, a microarray study found 

that hR23A expression was increased in postmortem fALS spinal cord tissue compared 
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to controls (Dangond et al., 2004). To directly implicate our findings to the human 

condition, we compared hR23A and hR23B expression and localization in the spinal 

cords of sALS and fALS cases with spinal cords from non-neurodegenerative disease 

controls.  

We found several alterations in the expression pattern of hR23A and hR23B in 

ALS tissue (Figure 12A-12C; Tables 4-5). hR23A and hR23B accumulated in deposits 

within the cytoplasm of motor neurons in both sALS and fALS cases (Figure 12B). In 

addition, hR23A and hR23B tended to accumulate in the nucleus more robustly in ALS 

cases than controls (Figure 12B). We also found substantially greater protein abundance 

of hR23A (p < 0.05) and hR23B (p < 0.01) in ALS spinal cord tissue (Figure 12C) 

compared to controls. Taken together, these data indicate that there is a mislocalization 

and accumulation of RAD-23 in human ALS pathology. 
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DISCUSSION 

We show that reducing RAD-23 abundance protects against the toxicity of two 

misfolding-prone proteins that cause ALS. Mechanistically, this is linked to increased 

mobility, accelerated degradation, and reduced steady-state levels of the toxic proteins 

(Figure 12D). This is likely to be directly relevant to the human condition because we 

detect of increased levels of RAD23 in postmortem ALS spinal cord samples and RAD-

23 is mislocalized in ALS motor neurons. Elevated RAD-23 levels lead to the 

accumulation of misfolded conformers by inhibiting their polyubiquitination and 

preventing their clearance through protein degradation pathways. These observations 

highlight the role of native proteins that modify the ubiquitination status of toxic proteins 

in human neurodegenerative disease. 

RAD-23 was originally identified in yeast in a screen for genes that influence 

sensitivity to UV irradiation (Watkins et al., 1993). Subsequent work demonstrated that 

RAD-23 plays a critical role in protein homeostasis (Schauber et al., 1998). A unified 

picture of RAD-23 function in protein turnover has not emerged, however, due to: 1) the 

diversity of platforms employed to interrogate its function (purified proteasomes, yeast, 

mammalian cells including MEFs), 2) the variety of studied substrates (i.e. reporters 

such as ubiquitin fusion degradation substrates and various physiological clients), and 3) 

the recognition that the biological function of RAD-23 is exquisitely controlled by its 

expression level and the stoichiometry with other proteins in the UPS (Verma et al., 

2004) (Table 6). Even when controlling for these factors, it is clear that endogenous 

RAD-23 accelerates the degradation of some substrates and stabilizes the abundance of 

other substrates. The features that distinguish these substrates is unknown.  
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The domain structure of RAD-23 implies a mechanism for its operation as a 

“shuttle factor.” The RAD-23 ubiquitin-associated domain (UBA) binds to ubiquitin chains 

of client proteins (Chen et al., 2001; Wilkinson et al., 2001; Chen and Madura, 2002) and 

brings them to the proteasome via the interaction of the RAD-23 ubiquitin-like domain 

(UBL) and RPN-10, a subunit of the 19S cap of the proteasome (Schauber et al., 1998; 

van Laar et al., 2002). In parallel with this activity, RAD-23 also acts as a protein 

stabilization factor by binding polyubiquitin chains of specific lengths and blocking further 

chain elongation and/or remodeling, events required for efficient client degradation 

(Raasi and Pickart, 2003). RAD-23 was shown to stabilize the NER factor, RAD-4, in 

yeast and mammals by inhibiting its ubiquitination (Lommel et al., 2002; Ng et al., 2003) 

and RAD-23 can also prevent the clearance of other disease-related proteins (Blount et 

al., 2014).  

Overexpression of RAD-23 can inhibit ubiquitin chain elongation (Ortolan et al., 

2000; Ortolan et al., 2004). We find increased steady-state levels of ubiquitinated 

mutTDP-43 in RAD-23 knockdown cells and this is associated with enhanced flux 

through the UPS. This agrees with studies following the degradation of the reporter 

substrate UbV96-V-βgal in yeast lacking rad-23 (Rao and Sastry, 2002). In addition, we 

find that ubiquitinated mutTDP-43 is also a target of the autophagic pathway and this is 

in line with work using other aggregation-prone proteins (Lu et al., 2014). We 

hypothesize that endogenous RAD-23 binds to a select population of ubiquitinated 

substrates and impedes their degradation by controlling the remodeling of ubiquitin 

chains. In the absence of RAD-23, ubiquitin chain maturation is unleashed and substrate 

flux is enhanced (Lambertson et al., 1999; Verma et al., 2004).  
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Past work has also identified RAD-23 proteins as forming inclusions in a handful 

of neurodegenerative diseases, including Huntington’s disease, Parkinson’s disease, 

and several forms of ataxia (Bergink et al., 2006). Taken together, interventions which 

reduce the abundance of RAD-23 or its association with specific substrates are 

predicted to be therapeutic for diseases caused by the accumulation of misfolded 

proteins.  
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TABLE LEGENDS 
 

Table 3.1. Mammalian ERAD genes and their predicted orthologs in C. elegans. 

There are ~25 ERAD genes predicted to be conserved in C. elegans. Of these, viable 

mutants are available in many and were used in a candidate gene approach to identify 

novel modifiers of mutTDP-43 toxicity in C. elegans. Components in bold have no 

available mutants.  

Table 3.2. List of primers used in genotyping C. elegans strains. A table of all of the 

primers used in genotyping the C. elegans strains used in this study. Further information 

available upon request.  

Table 3.3. A list of the C. elegans strains used in this study. A table of all of the C. 

elegans strains used in their study and their corresponding information.  

Table 3.4. Description of human ALS cases used for staining and expression 

analysis. The 12 ALS cases from which postmortem spinal cord tissue was taken 

following autopsy. UE: upper extremities; LE: lower extremities; sALS = sporadic ALS; 

fALS = familial ALS (i.e. positive family history). ALS cases in Figure 12C were loaded in 

Western blot in this order: JH79, JH82, JH74, JH74, JH83.  

Table 3.5. Description of control cases used for staining and expression analysis. 

The 9 control cases from which postmortem spinal cord tissue was taken following 

autopsy. Control Case #1 in Figure 12A was 78 and Control Case #2 in Figure 12 A was 

23. Control cases in Figure 12C were loaded in Western blot in this order: 6, 23, 67, 31, 

26.  
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Table 3.6. RAD-23 has opposing roles on substrate stabilization. Table summarizing 

past findings on RAD-23 manipulation and substrate turnover. 
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FIGURE LEGENDS 
 

Figure 3.1. Locomotor defects of C. elegans models of ALS and their modification 

by the loss of ERAD and UPS genes. (A) Pronounced defects in locomotion were seen 

in the animals overexpressing mutSOD1, wtTDP-43, and mutTDP-43 in the nervous 

system in comparison with N2 (WT) (F(4,20) = 36.75, p < 0.0001) (*p < 0.05; ****p < 0.001, 

Dunnett’s multiple comparison test). (B) Locomotion of mutTDP-43 animals in the 

background of mutant ERAD and UPS alleles. Average speed of animals of indicated 

genotypes in a 30 second forced swimming assay in M9. Both suppressors and 

enhancers were found. No change: there was no significant change in the locomotor 

deficit of that background (p > 0.05, Student’s t-test); Enhancer: there was a significant 

decrease in the average speed of the animals (p < 0.05, Student’s t-test). Suppressor: 

there was a significant increase in the average locomotor speed of those animals (p < 

0.05, Student’s t-test). Note: cdc-48.1 (tm544); cdc-48.2 (tm659) mutants are synthetic 

lethal and therefore the effect of both mutants together cannot be tested in this study. 

(C) Loss of rad-23 and ufd-2 suppress mutTDP-43 toxicity via independent pathways. 

Average speed of animals of indicated genotypes in a 30 second forced swimming 

assay in M9. A one-way ANOVA reveals group differences in the average speed of 

mutTDP-43, mutTDP-43; rad-23 (tm3690), mutTDP-43; ufd-2 (tm1380), and mutTDP-43; 

rad-23 (tm3690); ufd-2 (tm1380) (F(3,16) = 13.41; p = 0.0001). *p < 0.05, ****p < 0.001. 

(D) Loss of rad-23 and ufd-3 suppress mutTDP-43 toxicity via independent pathways. 

Average speed of animals of indicated genotypes in a 30 second forced swimming 

assay in M9. A one-way ANOVA reveals group differences in the average speed of 

mutTDP-43, mutTDP-43; rad-23 (tm3690), mutTDP-43; ufd-3 (tm2915), and mutTDP-43; 
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rad-23 (tm3690); ufd-3 (tm2915) (F(3,16) = 60.55; p < 0.0001). *p < 0.05, ** p < 0.01; ****p 

< 0.001.  

Figure 3.2. Loss of rad-23 in C. elegans protects against models of ALS via an 

effect in the nervous system. (A) Schematic of C. elegans RAD-23 gene with 

predicted protein shown. Lines represent areas with insertions and/or deletions in the 

used mutants. (C-D) Loss of rad-23 (tm2595) (C) or (tm3690) (D) causes a two-fold 

suppression in the locomotor deficit of mutTDP-43, but has no effect on wtTDP-43 (p = 

0.108 for tm2595 and p = 0.473 for tm3690). (E-F) Loss of rad-23 (tm2595) (E) or 

(tm3690) (F) leads to a two-fold suppression in the locomotor deficit of mutSOD1 

animals, but has no effect on the wtSOD1 animals (p = 0.615 for tm2595 and p = 0.274 

for tm3690). (F) Neither rad-23 allele is different from WT speed in the swimming assay. 

(F(2,12)=0.006579; p = 0.9934) (G) mutSOD1 fed rad-23 RNAi for two generations shows 

no change (p = 0.7748), but mutSOD1; sid-1; Pneuron::SID-1 animals show a significant 

improvement. (H) Outcrossing the rad-23 (tm3690) allele from mutTDP-43; tm3690 

leads to a rescue of the mutTDP-43 locomotor deficit. (I) Overexpression of RAD-23 in 

the nervous system of mutTDP-43; rad-23 (tm3690) is sufficient to rescue the mutTDP-

43 locomotor deficit. (J) There is no change in the average locomotor speed of the 

mutTDP43 animals when RAD-23 is overexpressed in the nervous system (F(5,24)=1.112; 

p = 0.3801). *p<0.05, **p<0.01, ***p<0.005, Student’s t-test.  

Figure 3.3. Loss of rad-23 in C. elegans protects against neurodegeneration 

following expression of mutTDP-43 in vivo. We generated animals with GABAergic 

motor neurons labeled with GFP using Punc-25::GFP in WT (N2; “control”), mutTDP-43, 

and mutTDP-43; rad-23 (tm3690) backgrounds. (A) Loss of rad-23 reduces the 

percentage of C. elegans with mutTDP-43 that display broadening of axons. (B) 
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mutTDP-43 causes an increase in the number of gaps within the ventral nerve cord of 

animals compared to control (***p < 0.005, Dunnett’s multiple comparison test following 

one-way ANOVA). Loss of rad-23 reduces the number of ventral nerve cord gaps in the 

mutTDP-43 animals to WT. There is no significant difference in the number of gaps in 

mutTDP-43; rad-23 animals compared to controls. (C) Representative images of WT, 

mutTDP-43, and mutTDP-43; rad-23 (tm3690) animals labeled with Punc-25::GFP.  

Figure 3.4. RAD-23 protein is expressed throughout the worm, including the worm 

nervous system. (A-C) A RAD-23 protein translational fusion with GFP driven by the 

endogenous rad-23 promoter (PRAD-23::RAD-23::GFP) is expressed throughout the worm 

in young adult animals. (D) RAD-23 protein is expressed in the cell body and processes 

of a mechanosensory neuron (arrowhead), (E) vulva of the worm, (F) nerve cord 

(arrowhead), and (G) the head.  

Figure 3.5. Loss of RAD-23 in C. elegans protects against aging decline and 

proteotoxicity. (A-D) Biomechanical profiling of N2 (WT) and rad-23 (tm3690) animals 

(n ≥ 10/group). There is no difference between WT and rad-23 (tm3690) in speed (A), 

force (B), and power (C) at L4 through 3 days post L4. At 4 and 5 days post L4, rad-23 

animals perform better in speed (A), force (B), and power (C) measurements than WT. 

(D) Rad-23 animals show a more coordinated biomechanical profile at 5 days post L4 

than WT. (E) The lifespan of rad-23 animals is extended by 22.2% compared to WT on 

tunicamycin (p < 0.0001), but the lifespans of WT and rad-23 are identical on vehicle (p 

= 0.646). (F) Rad-23 animals show a ~25% lifespan extension during heat stress 

compared to WT (p < 0.0001). (G) There are no group differences in survival among WT, 

wtTDP-43, mutTDP-43, wtSOD1, and mutSOD1 with increasing doses of UV 

(F(4,15)=0.1285; p = 0.9697). There are group differences among WT, rad-23 (tm2595 
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and tm3690), and mutTDP-43 and mutSOD1 in the rad-23 (tm3690) background 

(F(6,21)=2.961, p < 0.05). As predicted, loss of rad-23 (tm2595 and tm3690) causes a 

hypersensitivity to UV stress compared to wild type animals (p < 0.001). mutTDP-43 and 

mutSOD1 in the loss of rad-23 background show a synthetic hypersensitivity to UV 

stress  (p < 0.001). *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001; Student’s t-test.  

Figure 3.6. Loss of rad-23 does not suppress the C. elegans mutTDP-43 locomotor 

deficit via known pathways. Loss of (A), xpa-1 (A), or ercc-1 (B), or csb-1 (C), or png-1 

(D) do not protect against the locomotor deficit caused by mutTDP-43 in the swimming 

assay (p > 0.05, Student’s t-test). Experiments were all completed three times on 

independent days. One representative experiment is shown. Description of alleles: 

ok698 - 913bp deletion; tm2073 - 804bp deletion; ok2335 - 1620bp deletion; and cy9 - 

single nucleotide polymorphism.  

Figure 3.7. Knockdown of RAD-23 orthologs in mammalian motor neurons 

protects against toxicity of mutSOD1 or mutTDP-43. (A-E) hR23A or hR23B miRNA 

knocks down endogenous target in HEK293 cells (n=3/group), but does not knock down 

the expression of a co-transfected GFP plasmid. *p < 0.05, **p<0.01. (F) HSV infection 

of miRNA to hR23A or hR23B in mixed spinal cord cultures leads to specific knock down 

of target protein compared to control. (G) Infection of mixed spinal cord cultures with 

LacZ or a hR23A, hR23B, or control miRNA has no effect on survival (F(3,12)=0.8132, p = 

0.3166). Knockdown of hR23A or hR23B protects against motor neuron death caused by 

wtSOD1 (F(3,12)=17.39, p = 0.0001) and mutSOD1 (F(3,12)=54.64, p < 0.0001). (H) 

Infection of mixed spinal cord cultures with LacZ or a scrambled, hR23A, or hR23B 

miRNA has no effect on motor neuron survival (F(3,12)= 0.8875, p = 0.2100). Knockdown 

of hR23A or hR23B protects against motor neuron death caused by wtTDP-43 
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(F(3,12)=16.66, p = 0.0001) and mutTDP-43 (F(3,12)= = 48.07; p < 0.0001). **p < 0.01, *** p 

< 0.005, ****p < 0.001. (I) Representative brightfield images of mixed spinal cord cultures 

infected as indicated stained for a SMI-32 motor neuron marker. Co-infection of 

mutSOD1 cultures with HSV-miRNA to hR23A or hR23B increases motor neuron 

survival. (J) Knockdown of hR23A or hR23B protects against motor neuron death 

caused by mutSOD1 (F(2,6)=13.99, p = 0.0055), but has no effect on survival in motor 

neurons infected with LacZ (F(2,6)=4.745, p = 0.0581) in cultures treated with vehicle. 

Knockdown of hR23B protects cultures infected with HSV-LacZ (F(2,6)=11.82, p = 0.0083) 

or HSV-mutSOD1 (F(2,6)=101.9, p < 0.0001) from toxicity of ER stress caused by 

tunicamycin. 

Figure 3.8. hR23A expression is increased in the spinal cord of mutSOD1 mice at 

P90 and P120. (A-B) Representative Western blot (A) and quantification (n=3-5/group) 

(B) of hR23A expression in the spinal cord and brain of age-matched males. hR23A 

expression is increased in the spinal cord of mutSOD1 mice compared to WT (C57Bl6) 

at P90 and P120, but not at P60. (C-D) Representative Western blot (C) and 

quantification (n=3-5/group) (D) of hR23B expression in the spinal cord and brain of age-

matched males. There is no change in hR23B expression in the spinal cord or brain at 

P60, P90, or P120. (E-F) (E) Representative Western blot and (F) quantification of 

phosphorylated eIF2α (p-eIF2α) expression in the spinal cord and brain of age-matched 

animals (n=4/group). There is an increase in phosphorylated eIF2α (p-eIF2α) expression 

in the spinal cord at P60 in G93A mice, but not in the brain. *p < 0.05, **p < 0.01, 

Student’s t-test.  

Figure 3.9. Manipulations of RAD-23 expression change TDP-43 and SOD1 

abundance and solubility.  (A-B) Representative Western blot (A) and quantification 
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(B) of the amount of total mutTDP-43 following overexpression or knockdown of hR23A 

or hR23B. There is a ~90% decrease (p < 0.005) in the abundance of mutTDP-43 

following knockdown of hR23A or hR23B.  (C) There is no change in the amount of 

hTDP-43 mRNA normalized to actin in HEK293 cells following hR23A or hR23B 

knockdown (n=3/group). hTDP-43 mRNA from untransfected cells was subtracted from 

all values. (D) Representative Western blot of mutTDP-43 expression for the indicated 

time points following cycloheximide (CHX) treatment with either a control or hR23A 

miRNA. (F(2,8)=0.1380; p = 0.8732) (E) Quantification (n=4 independent experiments) of 

% of starting mutTDP-43 remaining. (F) Representative Western blot of mutSOD1 

expression for the indicated time points following CHX with either a control or hR23A 

miRNA. (G) Quantification (n=3 independent experiments) of % of starting mutSOD1 

remaining. (H-I) Knockdown of hR23A further reduces % of starting mutTDP-43 

remaining after 270 minutes of CHX (n=3 independent experiments). (*p < 0.5) (H) 

Representative Western blot and (I) quantification of mutTDP-43 remaining after 270 

minutes of CHX in the presence of the indicated miRNA. (J) Amount of mutTDP-43 

remaining is reduced after 180 minutes of CHX in hR23A- and hR23B-null mouse 

embryonic fibroblasts (MEFs) compared to WT. (K) WT or hR23B-null (hR23B-/-) were 

co-transfected with mutTDP-43 construct and LacZ or full length (FL) hR23B construct. 

Media was changed 24 hours later and cells were re-plated at equal densities another 

24 hours later. Cycloheximide was then added 24 hours after re-plating for indicated 

periods of time. Samples were processed for Western blot and probed with myc and 

actin antibodies. (L) Representative Western blot of CPY*-GFP expression for the 

indicated time points following CHX treatment with indicated miRNA *p<0.05, **p<0.01, 

Student’s t-test.  
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Figure 3.10. Loss of RAD-23 accelerates turnover through the proteasome and 

autophagy by increasing ubiquitination. (A) Representative Western blot of mutSOD1 

turnover rate in neurons at 0’ and 180’ of cycloheximide (CHX). Mixed spinal cord culture 

neurons were infected with HSV to express mutSOD1 and hR23A, hR23B, or control 

miRNA. (B-D) Co-transfection of RNAi-resistant hR23A and hR32B cDNAs prevents 

reduced mutTDP-43 in hR23A and hR23B knockdown conditions. (B) Western blot 

image; hR23A miRNA knocks down endogenous hR23A compared to control miRNA, 

but does not knock down RNAi-resistant hR23A (hR23Ares) cDNA. (C) Western blot 

image; hR23B miRNA knocks down endogenous hR23B compared to control miRNA, 

but does not knock down RNAi-resistant hR23B (hR23Bres) cDNA. (D) Co-transfection of 

a hR23A or hR23B miRNA dramatically decreases total mutTDP-43 protein compared to 

control. This is blocked by co-transfection with hR23Ares or hR23Bres cDNA. (E) Meso 

Scale Discovery (MSD) assays to determine the binding of hR23A and TDP-43 in 

transfected HEK293 cells. All samples were normalized to hR23A/pcDNA binding signal 

lysates. Anti-V5 was used as a capture antibody for the binding of TDP-43 from 

transfected cell lysates and anti-TDP-43 was used to capture binding of hR23A from 

transfected cell lysates. Western blot analysis of protein expression levels in transfected 

cell lysates is also depicted. *p < 0.05, **p < 0.01, Student’s t-test.  (F) HEK293 cells 

were transfected with mutTDP-43 and hR23A, hR23B, or control miRNA. CHX was 

added for 4.5 hours and indicated drug was added 30’ after CHX. Representative 

Western blots for indicated experiments are shown. (G) Quantification of Western blots. 

Treatment with MG-132, epoxomicin (“epox”), and 3-MA blocked the turnover of mut-

TDP43 by ~25%. (n=5 independent experiments for +scrambled miRNA; n=3 

independent experiments for +hR23A miRNA; n=3 independent experiments for +hR23B 

miRNA). (F(8,20)=3.156; p = .0176) *p < 0.05; **p < 0.01. (H) Total polyubiquitinated 
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(polyUb) substrate load in indicated MEF lines following –MG-132 (DMSO) or +MG-132 

treatment for 12 hours. MG-132 Induction Ratio: +MG-132/-MG-132 (all normalized to 

actin). (I) Representative Western blot of polyUb-mutTDP-43 following 

immunoprecipitation (IP) of myc-mutTDP-43. (J) Input showing total polyUb-load in 

HEK293 cells transfected with mutTDP-43 and indicated miRNA. Cells were treated with 

DMSO (-MG-132) or MG-132 (+MG-132) 12 hours before cell lysis as indicated. Myc-

mutTDP-43 was immunoprecipitated and immunoblotted for ubiquitin and myc. (K) 

Quantification (n=3 independent experiments) of Western blots shown in panel I. Data 

was normalized to average control miRNA condition. There is an increase in 

ubiquitinated mutTDP-43 and its flux through the proteasome following RAD-23 

knockdown.  

Figure 3.11. Loss of rad-23 reduces TDP-43 and SOD1 insolubility. (A) 

Representative Western blot of hTDP-43 protein abundance following a sequential 

detergent extraction of C. elegans overexpressing mutTDP-43 in WT or rad-23 

backgrounds. Loss of rad-23 causes a shift of TDP-43 to a more soluble (TX) fraction 

over insoluble (SARK, UREA) fractions. (B) There is a decrease of phospho-TDP-43 in 

the loss of rad-23 background in soluble and insoluble fractions in C. elegans. (C) 

Representative Western blot showing there is in an increase in the abundance of 

insoluble mutTDP-43 in HEK293 cells following co-transfection with the hR23A cDNA. 

(D) qPCR (n=3/group) measuring hTDP-43 mRNA abundance normalized to tba-1 in 

indicated strains. # = undetected, **p < 0.01. (E) rad-23 (tm3690) and ufd-2 (tm1380) 

cause an additive effect on reduced mutTDP-43 and phosophorylated-TDP43 

abundance in C. elegans. (F-G) FRAP on mutSOD1-YFP aggregates within the C. 

elegans nervous system. MutSOD1-YFP has a higher rebound with loss of rad-23 
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(tm3690). (F) Representative images of FRAP assay. (G) Quantification of FRAP 

(n=14/group). Data are normalized to starting fluorescence intensity. *p < 0.05.  

Figure 3.12. hR23A and hR23B are aberrantly expressed in human ALS tissue. (A-

B) There is mislocalization of hR23A and hR23B in motor neurons of the spinal cord in 

ALS cases. (A) Representative images of motor neurons within the gray matter of spinal 

cord from control and ALS cases. Insets within ALS Case #2 depict granular cytoplasmic 

and nuclear staining often found in ALS cases. (B) Distribution of hR23A and hR23B 

cytoplasm and nuclear staining found in control (n=9) and ALS cases (n=12). (C) There 

is an increase in hR23A and hR23B protein expression in ALS (n=5) spinal cord sections 

compared to controls (n=5) (**p < 0.01, Student’s t-test). (E) Proposed model. Loss of 

rad-23 destabilizes aggregates allowing for them to become more soluble and more 

easily degraded.  
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Table 3.1. Mammalian ERAD genes and their predicted orthologs in C. elegans. 
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Table 3.2. List of primers used in genotyping C. elegans strains.  
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Table 3.3. A list of the C. elegans strains used in this study.  

Strain Name Backcrossed? Co-Injection 
Marker 

Description 

RK65 5x N/A tm3690 

RK66 5x N/A tm2595 

RK67 N/A N/A mutTDP-43 (M337V); 
RK65 (tm3690) 

RK68 N/A N/A mutTDP-43 (M337V); 
RK66 (tm2595) 

RK69 N/A N/A wtTDP-43; RK65 
(tm3690) 

RK70 N/A N/A wtTDP-43; RK66 
(tm2595) 

RK71 N/A N/A mutSOD (G85R); 
RK65 (tm3690) 

RK72 N/A N/A mutSOD (G85R); 
RK66 (tm2595) 

RK73 N/A N/A wtSOD; RK65 
(tm3690) 

RK74 N/A N/A wtSOD; RK65 
(tm3690) 

RK75 N/A N/A mutTDP-43 (M337V); 
png-1 (cy9) 

RK76 N/A N/A mutTDP-43 (M337V); 
xpa-1 (ok698) 

RK77 N/A N/A mutTDP-43 (M337V); 
csb-1 (tm2073) 

RK78 N/A N/A mutTDP-43 (M337V); 
ercc-1 (ok2335) 

RK79(rkEx1) N/A None PRAD23::RAD23::GFP 

(fosmid injected at 

 5ng/μL) 
RK80 5x N/A tm2909 

RK81 5x N/A tm1574 

RK82 5x N/A tm2915 

RK84 5x N/A tm544 
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RK85 5x N/A tm3247 

RK86 N/A N/A mutTDP-43 (M337V); 
RK81 (tm1574) 

RK87 N/A N/A mutSOD (G85R); 
RK81 (tm1574) 

RK88 N/A N/A mutTDP-43 (M337V); 
RK82 (tm2915) 

RK91 N/A N/A mutTDP-43 (M337V); 
RK84 (tm544) 

RK92 N/A N/A mutTDP-43 (M337V); 
RK85 (tm3247) 

OG695(drEx230) N/A Punc-119::GFP 

(injected at 

 100ng/μL) 

mutTDP-43 (M337V); 
Punc-

119::RAD23::unc54 
3’UTR – LINE1 

(construct injected at 
30ng/μL) 

OG696(drEx231) N/A Punc-119::GFP 

(injected at 

 100ng/μL) 

mutTDP-43 (M337V); 
Punc-119::RAD23:: 
unc54 3’UTR  – 
LINE2 (construct 

injected at 30ng/μL) 

OG697(drEx232) N/A Punc-119::GFP 

(injected at 

 100ng/μL) 

mutTDP-43 (M337V); 
Punc-119::RAD23:: 
unc54 3’UTR  – 
LINE3 (construct 

injected at 30ng/μL) 

OG692(drEx227) N/A Punc-119::GFP 

(injected at 

 100ng/μL) 

mutTDP-43 (M337V); 
rad23 (tm3690); Punc-

119::RAD23:: unc54 
3’UTR  – LINE1 

(construct injected at 
30ng/μL) 

OG693(drEx228) N/A Punc-119::GFP 

(injected at 

 100ng/μL) 

mutTDP-43 (M337V); 
rad23 (tm3690); Punc-

119::RAD23:: unc54 
3’UTR  – LINE2 

(construct injected at 
30ng/μL) 

OG694(drEx229) N/A Punc-119::GFP 

(injected at 

 100ng/μL) 

mutTDP-43 (M337V); 
rad23 (tm3690); Punc-

119::RAD23:: unc54 
3’UTR  – LINE3 

(injected at30ng/μL) 
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Figure 3.1. Locomotor defects of C. elegans models of ALS and their modification 

by the loss of ERAD and UPS genes.  
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Figure 3.2. Loss of rad-23 in C. elegans protects against models of ALS via an 

effect in the nervous system. 

 

 

 



108 

 

Figure 3.3. Loss of rad-23 in C. elegans protects against neurodegeneration 

following expression of mutTDP-43 in vivo.  
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Figure 3.4. RAD-23 protein is expressed throughout the worm, including the worm 

nervous system. 

 

 

 

 

 

 

 

 

 

 



110 

 

Figure 3.5. Loss of RAD-23 in C. elegans protects against aging decline and 

proteotoxicity. 
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Figure 3.6. Loss of rad-23 does not suppress the C. elegans mutTDP-43 locomotor 

deficit via known pathways. 
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Figure 3.7. Knockdown of RAD-23 orthologs in mammalian motor neurons 

protects against toxicity of mutSOD1 or mutTDP-43. 
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Figure 3.8. hR23A expression is increased in the spinal cord of mutSOD1 mice at 

P90 and P120. 
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Figure 3.9. Manipulations of RAD-23 expression change TDP-43 and SOD1 

abundance and solubility. 
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Figure 3.10. Loss of RAD-23 accelerates turnover through the proteasome and 

autophagy by increasing ubiquitination.  
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Figure 3.11. Loss of rad-23 reduces TDP-43 and SOD1 insolubility. 
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Figure 3.12. hR23A and hR23B are aberrantly expressed in human ALS tissue.  
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Table 3.4. Description of human ALS cases used for staining and expression 

analysis.  
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Table 3.5. Description of control cases used for staining and expression analysis.  
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Table 3.6. RAD-23 has opposing roles on substrate stabilization.  
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CHAPTER 4: GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 
 

 In this thesis work, I have attempted to further understand how neurons, primarily 

within the context of the motor system, develop and later die in the case of 

neurodegenerative disease. In Chapter 2, I identify a novel interaction between SAP97 

and CRIPT and present evidence that CRIPT is a component in a complex that mediates 

activity-dependent dendrite growth by GluA1-containing AMPA-R. In Chapter 3, I change 

the focus of my work to ALS and identify novel modifiers of ALS. I focus on RAD-23 and 

describe experiments which contribute towards an improved understanding of how 

reduced RAD23 mitigates the toxicity of ALS-linked proteins and their overall 

abundance. Below, I will describe the major implications for this work and discuss the 

remaining questions for future work.  

ACTIVITY-DEPENDENT DEVELOPMENT 
 

Much research in the field of activity-dependent development has concentrated 

on the NMDA subtype of glutamate receptors, although previous work (Ingls et al., 2002; 

Jeong et al., 2006) indicates that NMDA-R–independent forms of activity-dependent 

development exist. The mechanism by which AMPA-R assembled with GluA1 promote 

dendrite growth and branching in the spinal cord is one key example of a form of 

plasticity that is NMDA-R independent. It is known that GluA1 uses SAP97 to exert its 

pro-dendrite growth effects (Zhang et al., 2008); however, until the work described in 

Chapter 2, the downstream effectors of SAP97 have remained unknown. We have now 

identified CRIPT as a key component in this process.  

In the past, one challenge in identifying the functions of many membrane 

associated guanylate kinases (MAGUK) proteins, such as PSD-95 or SAP97, has been 
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their redundant functions in relation to synaptic plasticity (Schluter, 2006; Howard et al., 

2010). This refers to the fact that members of the MAGUK family can compensate for 

loss of another MAGUK protein. This makes the form of NMDA-R-independent dendrite 

growth focused on in this thesis unique. For example, other MAGUK family members in 

the SAP97 conditional knockout do not compensate for the pro-growth effects of SAP97 

on the dendrite tree (Zhang et al., 2008; Zhou et al., 2008). This suggests that this 

property of SAP97 is unique, and raises the possibility that proteins in the postsynaptic 

density involved in this process are unique as well. Furthermore, we know show that the 

pro-dendrite growth properties of CRIPT cannot be compensated for by other MAGUK 

family members because knockdown of CRIPT shortens and simplifies the dendritic tree 

of spinal cord neurons. In addition to being the first work to identify a downstream 

effector of SAP97, this work is also is the first to identify a function for CRIPT since its 

description in the late 1990’s. This suggests that SAP97, CRIPT, and presumably other 

proteins in this complex are unique from many other proteins found in the synaptic 

density.  

What can be gained by understanding the components and mechanisms used by 

AMPA-R to guide the growth of the dendritic tree? Understanding how dendrite growth is 

promoted during early postnatal life can provide insight into how one may intervene later 

in life to promote recovery following CNS insult. Part of the evidence supporting this idea 

lies in the fact that, following spinal cord injury, repetitive activation of specific neuronal 

pathways can result in a significant improvement in motor behavior via the increase in 

AMPA-ergic transmission, resulting in the stabilization of dendrites and synapses 

(Engesser-Cesar, 2005; Spooren et al., 2008). If we can better understand the 

mechanism underlying this phenomenon, we might be able to restore the features 

unique to early postnatal life, allowing for dendrite growth in patients following injury. 
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Understanding the components in this process can also help us to further understand 

developmental disorders. Mutations in CRIPT have been correlated with primordial 

dwarfism (Shaheen et al., 2014). Mutations in SAP97 have also been correlated with 

schizophrenia (Uezato et al., 2012). Therefore, understanding functions for these 

proteins can help us to understand their importance in disease.  

THE IDENTIFICATION OF OTHER MEDIATORS OF GLUA1-MEDIATED DENDRITE 

GROWTH  

 In this work, we identified CRIPT as a mediator of GluA1- and SAP97-dependent 

dendrite growth. However, there are a number of issues that need to be resolved. 

Although knockdown of CRIPT in vitro and in vivo reduced the number of dendrite 

branches, overexpression of CRIPT had no effect. There are a number of explanations 

for this: (1) the number of SAP97 PDZ3-binding sites are saturated and, therefore, 

overexpressing CRIPT alone has no effect and (2) there are other components needed 

in the correct stoichiometry to allow for overexpression of CRIPT to promote dendrite 

growth.  

 In order to address the first possibility of saturated SAP97, one could 

overexpress SAP97 and CRIPT and ask whether or not there is a synthetic increase in 

dendrite branching. Furthermore, although we overexpressed palmitoylated (cell surface 

targeted) CRIPT, it is possible that it still needs an interaction with SAP97 or other 

mediators to have a pro-dendrite growth effect.  

In order to address the possibility of other needed components of the 

GluA1/SAP97 complex, other SAP97 PDZ3 binding partners need to be identified. To do 

this, we created herpes simplex virus (HSV) expressing myc-tagged wild type and PDZ3 
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mutant SAP97 (see Appendix 1). These viruses were successfully infected into neuronal 

cultures and co-immunoprecipitated. We verified that we could immunoprecipitate 

SAP97 using the myc-tag as well. In the future, we hope to use these viruses to identify 

other specific SAP97 PDZ3-binding partners in a neuronal setting using Coomassie-

stained gels and mass spectrometry. By understanding the other mediators that might 

play a part in GluA1-mediated dendrite growth, the mechanism might be more clearly 

elucidated. We ultimately hope to be able to identify other components of this pathway in 

an in vivo model. In Chapter 2, we showed that cript mutants in C. elegans have an 

abnormal dendrite tree compared to wild type counterparts in vivo. Because of the ease 

of culturing C. elegans and the ease at which many mutants are readily available, this 

represents another useful avenue for identifying other proteins in the 

GluA1/SAP97/CRIPT complex to promote the correct patterning of dendrite growth.  For 

example, one could use an RNAi-feeding screen in C. elegans to look for genes that 

disrupt dendrite growth of the PVD neuron when knocked down.  

UNRESOLVED QUESTIONS REGARDING CRIPT’S ROLE IN DENDRITE GROWTH  

 The work presented in Chapter 2 also has a number of limitations and there are a 

fair number of questions remaining to be answered. First and foremost, we still have not 

shown that CRIPT is actually downstream of GluA1, although we present strong 

evidence that CRIPT is downstream of SAP97. The key experiment needed to address 

this concern would be to overexpress GluA1 and observe an increase in dendrite 

growth. One could then determine if knockdown of CRIPT blocks the pro-dendrite growth 

actions of GluA1.  

 The next remaining question is if the pro-dendrite growth property of CRIPT is 

activity-dependent. We have found no evidence that the interaction between CRIPT and 
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SAP97 is influenced by synaptic activity (data not shown), although we have evidence 

that the interaction between GluA1 and SAP97 is influenced by synaptic activity (see 

Appendix 1). In Appendix 1, we show that increasing synaptic activity increases the 

amount of GluA1 bound to SAP97. Furthermore, blocking AMPA-R using CNQX 

decreases the amount of GluA1 bound to SAP97. However, in Chapter 2, we show that 

the knockdown of CRIPT does not block the observed increase in dendrite growth 

caused by increased synaptic activity stimulated by high potassium. Therefore, it 

appears that the activity dependence of the pro-dendrite growth actions of CRIPT are 

upstream and are possibly at the step of the interaction between GluA1 and SAP97. It 

would be important to know if the pool of SAP97 interacting with CRIPT is also bound to 

GluA1 to test this hypothesis. If this was true, then one would expect SAP97 bound to 

GluA1 to also be bound to CRIPT, whereas the pool of SAP97 unbound to CRIPT would 

also not be bound to GLuA1. It is also possible that other proteins are able to 

compensate for CRIPT in its absence following the stimulation of synaptic activity.  

THE IMPORTANCE OF ERAD COMPONENTS IN ALS 
 

 In Chapter 3, we show that the loss of various ERAD components are able to 

modify models of motor neuron disease (mutTDP-43 and mutSOD) in C. elegans. In the 

past decade, several genes have been identified as mutated in cases of fALS and 

frontotemporal dementia (FTD). As discussed earlier, many of these genes are in the 

ERAD pathway and include ubiquilin-2 (Deng et al., 2011) and VCP (González-Pérez et 

al., 2012). Evidence for the involvement of ALS in ERAD is also found in experimental 

data. Despite not being an ERAD substrate, ALS-linked mutant SOD1 has been found to 

enter the secretory pathway where it can interact with another ERAD component, 

DERLIN-1 (Nishitoh et al., 2008). It is through this interaction that mutant SOD1 is able 
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to inhibit the correct processing and degradation of other ERAD substrates. This 

suggests that ERAD might contribute to the symptoms and neurodegeneration found in 

ALS. It also suggests that ERAD can also be affected in ALS even if no mutation in an 

ERAD component is present.  

 ER stress is an essential mechanism that upregulates the amount of 

ubiquitination enzymes in an Ire1-mediated fashion to allow for the clearance of 

misfolded proteins by the proteasome and by ERAD itself (Hampton, 2003). Intuitively, 

this should lead to the clearance of ERAD substrates and other substrates by the 

proteasome. However, it has been reported that increasing the abundance of 

ubiquitination enzymes in vitro can stabilize ERAD substrates (Lenk et al., 2002). In 

opposition to this, ER stress pharmacologically evoked by tunicamycin has also been 

found to stabilize components of ERAD and increase the degradation of other ERAD 

substrates (Shen et al., 2007).  These conflicting reports suggest that we do not yet have 

a complete understanding of the involvement of ER stress and ERAD during periods of 

cellular stress. We especially do not have a complete understanding as to why certain 

substrates are stabilized while others are degraded more readily. 

 When we began the work described in Chapter 3, we initially predicted that the 

loss of ERAD components would be harmful to models of proteotoxicity and/or motor 

neuron disease. However, we found that there were several ERAD components whose 

loss actually suppressed the toxicity associated with misfolded proteins known to cause 

ALS. This contradicts some previous work that showed that overexpression of two 

ERAD components, Hrd1 and EDEM, suppressed a model of late onset retinal 

degeneration in flies (Kang and Ryoo, 2009). Furthermore, reduced Hrd1 expression has 

been found in the brains of Alzheimer’s disease patients and reduced Hrd1 levels have 
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been found to lead to amyloid precursor protein (APP) accumulation (Kaneko et al., 

2010). Forced expression of Hrd1 was also found to enhance the degradation and 

suppress the toxicity of polyglutmatine-expanded huntingtin (Yang et al., 2007). 

Overexpression of other ERAD component has also been found to reduce the toxicity of 

ALS-linked proteins. Overexpression of DERLIN-1 was previously found to ameliorate 

ER stress by reducing SOD-1 accumulation (Mori et al., 2011).  

Meanwhile, our findings are in alignment with some studies showing that a 

deficiency in certain ERAD and ER stress response pathway components can be 

neuroprotective. For example, XBP1 deficiency was found to protect against mutSOD by 

increasing autophagy (Hetz et al., 2009). Furthermore, although overexpression of Hrd1 

did increase the clearance of huntingtin, this was found to be independent of some 

ERAD components while requiring others (Yang et al., 2007). This would suggest that, 

although all ERAD components are in the same pathway, they do not all function in the 

same direction or on the same set of substrates.  

In Chapter 3, we describe our work and summarize other findings which suggest 

that RAD-23 is one protein to act in this manner. RAD-23 can stabilize, promote, or have 

no effect on the turnover on different substrates, although the factors which determine 

this selectivity remain unknown. Our findings further suggest that an initial hypothesis 

that a loss of ERAD components would simply act to enhance disease models and 

exacerbate proteotoxicity is too simple. Finally, our findings suggest that there may be 

an overload of the contribution of ERAD and ER stress components in 

neurodegeneration. This may contribute to the toxicity associated with the misfolded 

proteins in disease. This would suggest that other ERAD components should be 
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investigated in future work to identify other modifiers of ALS-linked proteins. It is possible 

that other proteins may act in a similar manner as RAD-23.  

TARGETING RAD-23 IN NEURODEGENERATIVE DISEASE 
 

 In Chapter 3, we describe a novel role for RAD-23 in the stabilization of disease-

causing proteins. We show that reduced RAD-23 protects against the phenotypes, 

neurodegeneration, and toxicity associated with ALS-linked mutant proteins in vivo and 

in vitro. This represents a novel insight into how to attenuate toxicity caused by mutant 

proteins associated with the disease. It is widely accepted that reducing the level of 

proteins associated with disease reduces their pathology in animals. This work is among 

the first to show that targeting stabilizers of these disease-linked proteins can prevent 

the toxicity of the mutant proteins. Furthermore, we found a mislocalization of RAD-23 in 

postmortem ALS tissue compared to controls suggesting that these stabilizers like RAD-

23 appear to have their own pathology in disease. This suggests that both extrinsic and 

intrinsic factors of disease-linked proteins contribute to disease, specifically 

neurodegeneration. 

One benefit of a targeted knockdown approach of RAD-23 in ALS is that we 

found that loss of either hR23A or hR23B could exert neuroprotective effects. Thus, 

although the RAD-23 proteins have critical functions in protein degradation and 

nucleotide excision repair, it is possible that hR23A or hR23B might compensate for one 

another in these critical functions. It is important to note, however, that non-overlapping 

functions for hR23A and hR23B do exist. Most notably, hR23B was previously found to 

have a stronger interaction with the proteasome (Chen and Madura, 2006). Still, the fact 

that both hR23A- and hR23B-null mice are viable suggests that reducing RAD-23 levels 
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might be a promising target in the treatment for ALS. This suggest that it might be 

possible to target hR23A or hR23B levels in disease without affecting the essential 

functions of RAD-23, although one might be concerned about conferring genomic 

instability if RAD-23 is entirely lost. It is worth noting, however, that although the loss of 

most nucleotide excision repair (NER) components causes a decrease in survival in 

yeast, rad-23 mutants exhibit only a higher degree of UV sensitivity (Watkins et al., 

1993). This would suggest that RAD-23 plays a more regulatory role in NER. This 

strengthens our argument that RAD-23 may be able to be safely manipulated in the 

treatment of ALS and neurodegenerative disease. However, in order to safely mitigate 

concerns regarding off-target effects when manipulating RAD-23 levels in disease, one 

would first have to answer the question: how much reduction in RAD-23 is sufficient to 

be protective against mutSOD1 or mutTDP-43 without having negative consequences 

on UV hypersensitivity? 

 All of this assumes that our work on RAD-23 can be actually translated to 

humans. Is this the case? We reported in Chapter 3 that there is a mislocalization of 

hR23A and hR23B proteins in the postmortem tissue of ALS patients when compared to 

controls. Although the significance of these changes remain to be seen, we believe that 

this suggests that this work on RAD-23 can be significant for human disease. Although 

initially surprised that reduced RAD-23 protected against toxicity associated with two 

ALS-linked proteins, RAD-23 has been identified previously in SNP studies using ALS 

patient data, although the significance of this finding has been unknown until now. For 

example, a previous eQTL linkage analysis correlated an intergenic SNP (rs17724552) 

with changes in RAD-23 expression (p < 1x10-3) (Myers et al., 2007). More interestingly, 

that same SNP was associated with sporadic ALS in an Irish cohort compared to 
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controls (Cronin et al., 2008). Furthermore, in alignment with our finding that hR23A 

expression was increased in the spinal cord of mutSOD1 mice, hR23A mRNA 

expression was found to be increased in the gray matter of spinal cords of fALS patients 

compared to controls (Dagond et al., 2004). This is consistent with our findings that both 

hR23A and hR23B protein expression is significantly increased in human post mortem 

ALS spinal cord tissue compared to controls. Taken together, this suggests that this 

work is the first to identify RAD-23 as having a pathophysiological relevance to human 

ALS and, furthermore, the first to identify the mechanism by which RAD-23 may 

contribute to the disease.  

This leads to another question. Can RAD-23 also be important in other 

neurodegenerative diseases outside of ALS? Recently, other work has identified RAD-

23 as a stabilizer of ataxin-3. Polyglutamine repeat expansion in ataxin-3 causes 

neurodegenerations in the most common form of dominant ataxia, spinocerebellar ataxia 

type 3 (SCA3) (Blount et al., 2014). This suggests that this work might apply to other 

diseases outside of ALS, and may be applicable to other aggregation-prone proteins 

outside of neurodegeneration. It was shown that RAD-23 could bind ataxin-3 through 

ataxin-3’s UbS2 domain and that RAD-23 presumably stabilized ataxin-3 through this 

interaction. Most relevant to this work, it was shown that reducing rad-23 in flies 

suppressed degeneration by ataxin-3 in eyes. (Blount et al., 2014). This is very similar to 

the work we have done in Chapter 3 and suggests that what we have found may be 

applied to other non-ALS neurodegenerative diseases. This is consistent with the fact 

that RAD-23 mislocalization has been found in post-mortem tissue from patients 

exhibiting other forms of neurodegeneration, including Huntington’s disease, Parkinson’s 

disease, and other forms ataxia, including SCA3 (Bergink et al., 2006). Therefore, one 
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major question that this work has produced is: can loss of RAD-23 be beneficial in other 

forms of neurodegeneration or is it disease-specific? Future work using other models of 

proteotoxicity will need to be done to address this question.  

HOW REDUCED RAD-23 ACCELERATES MUTANT PROTEIN TURNOVER AND 

MITIGATES TOXICITY 

 In Chapter 3, we show that reduced RAD-23 levels protect against toxicity 

associated with proteins linked to ALS. This appears to be related to reducing the 

burden and abundance of the tested mutant proteins which are known to cause ALS. We 

also show that the accelerated turnover of mutTDP-43 by reducing RAD-23 is through 

both the ubiquitin-proteasome system and autophagy since drugs blocking these 

pathways block the effect of RAD-23 knockdown. This suggests that RAD-23 can 

prevent some of its substrates from being degraded by the proteasome and autophagy. 

Past work found that overexpression of the ubiquitin-like protein, PLIC-2 (ubiquilin-2), 

could inhibit G protein-coupled receptor endocytosis and this required its ubiquitin-like 

domain, a ligand for ubiquitin-interacting motifs (UIMs) (N’Diaye et al., 2008). In addition 

to this, more recent evidence has shown that RAD-23 can inhibit the degradation of 

ataxin-3 and this is mediated by the ubiquitin-binding site on ataxin-3 (Blount et al., 

2014). All of this suggests that the ubiquitin-binding domain of RAD-23 might somehow 

be responsible for this inhibition of mutant protein clearance. Future work will be required 

to address this question. In this work, we were able to examine the ubiquitination status 

of mutTDP-43 in control and reduced RAD-23 conditions. In Chapter 3, we found that 

reduced RAD-23 increased the amount of poly-ubiquitination of mutTDP-43. In addition, 

reducing RAD-23 levels increased the flux of poly-ubiquitinated mutTDP-43 through the 

proteasome. It is also worth recalling that the other identified suppressors of mutTDP-43 
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in our candidate approach presented in Chapter 3 were ubiquitination components. This 

further suggests that ubiquitination may be a key step in determining the turnover and 

toxicity of proteins associated with ALS.  

 This most recent finding is consistent with past work showing that in an increase 

in the polyubiquitination status of a protein can lead to reduced aggregates and mitigate 

toxicity. For example, recent work showed that overexpression of parkin increased 

polyubiquitination in flies, but also reduced protein aggregation and increased the 

longevity of flies (Rana et al., 2013). It is also difficult to ignore that all of the suppressors 

found in our directed candidate screen in Chapter 3 are believed to have some 

interaction with CDC-48 (also known as p97 or VCP) and have some role on 

ubiquitination status. Interestingly, worms with mutations in cdc-48.1 and atx-3 (the 

worm ortholog of ataxin-3) previously showed a 50% extended lifespan through the 

insulin-like-growth-factor 1 (IGF-1) signaling pathway and the deubiquitination activity of 

wild type ATX-3 (Kuhlbrodt et al., 2011). Therefore, aside from accelerating the turnover 

of mutant proteins, it is possible that RAD-23 may edit the ubiquitination status of 

substrates to promote stress resistance and protection. Future work is warranted to 

understand if this is the case.  

 In Chapter 3, we also present evidence suggestive of a physical association 

between hR23A and mutTDP-43. It has been previously found that ubiquitin-binding 

proteins can interact with their substrates via the UBA domain (Chen et al., 2002). It is 

uncertain whether or not hR23A and mutTDP-43 interact via hR23A’s UBA domain or 

whether or not this interaction may be through the ubiquitin chain. Therefore, future work 

is required to ask if hR23A inhibits the degradation and/or polyubiquitination of mutTDP-

43 through a physical interaction or thorough a separate mechanism. This could be 
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accomplished by mapping the interaction between hR23A and mutTDP-43. One could 

then attempt to block this interaction to ask if blocking the interaction has the same result 

as knockdown of RAD-23.  

 Another key question remaining from this work is what species of mutTDP-43 

RAD-23 is acting to stabilize. Although we show that reduced RAD-23 acts to decrease 

the steady state of ALS-linked proteins and accelerate their turnover, it is still unclear if 

RAD-23 is specifically acting on correctly folded mutTDP-43 or misfolded mutTDP-43. In 

addition, is RAD-23 acting on monomeric species or larger oligomeric species of 

aggregated protein? These questions will need to be addressed to further understand 

how RAD-23 is acting to inhibit the ubiquitination of mutTDP-43 and its clearance from 

the cell. 

LOSS OF RAD-23 AS A PROTECTOR AGAINST PROTEOTOXICITY 

 In Chapter 3, we present data that rad-23 animals perform better than wild type 

when exposed to a variety of proteotoxic stressors, as well as aging. These results are 

compelling evidence that loss of rad-23 might be protective against other late age-onset 

diseases related to proteotoxicity, versus being ALS-specific. However, a number of 

follow-up experiments remain.  

 For example, we show that rad-23 animals have enhanced locomotor activity at 4 

and 5 days post L4 in C. elegans. Unfortunately, we never tested whether or not this 

effect persisted at later ages. This would be a key experiment to do to determine 

whether or not loss of rad-23 could protect against aging-related decline. This is 

especially important since we did not detect a significant extension of lifespan in rad-23 

animals.  
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 Another weakness of this work is that it primarily focused on the contribution the 

UPR and ERAD. It is possible that other stress response pathways are responsible for 

mediating the mechanism by which loss of rad-23 confers a resistance to proteotoxic 

stressors. In this light, a RNAi feeding strategy in C. elegans would also be useful in 

determining whether or not another pathway, such as the heat shock response (HSR) 

pathway, might be responsible. Another possible way to determine this would be to 

place rad-23 animals on reporter backgrounds to measure activation of pathways such 

as ER stress, mitochondrial stress, or the heat shock response. The involvement of 

these pathways in rad-23 animals could also be determined by measuring the mRNA 

levels of the pathway components using qPCR and comparing their expression to levels 

in wild type animals.  

 In Chapter 3, we also report a ~25% extension of survival for C. elegans that are 

deficient in rad-23 compared to controls when exposed to high heat. Although this is a 

reasonable extension of survival, it is somewhat weak compared to other animals known 

to be resistant to similar stressors, such as daf-2 animals (Boccitto et al., 2012). This 

begs to question what underlying pathways might be mediating the effect of loss of rad-

23. One way to determine this would be to utilize an RNAi-feeding strategy or genetic 

screen in C. elegans. One could look for genes that are capable of blocking the 

resistance to high heat in rad-23 animals when knocked down or mutated. These 

suggested experiments would shed light on possible downstream effectors of RAD-23. 

In addition, one could ask if other NER genes, and thereby the NER pathway, are 

involved in mediating resistance to proteotoxicity in reduced RAD-23 settings. 
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A LINK BETWEEN NUCLEOTIDIE EXCISION REPAIR AND NEURODEGENERATIVE 

DISEASE 

 Recently, there has been a number of links made between DNA damage and 

neurodegeneration (Madabhushi et al., 2014). More relevant to this work is the number 

of recent links that have been made between DNA damage and the protein quality 

control system. Work has investigated how DNA instability in the germ line might affect 

somatic tissues. Surprisingly, exogenous and endogenous triggers of DNA damage were 

found to induce a stress response in the somatic tissues of C. elegans. This response 

protected the animals from a number of stressors, including heat stress and oxidative 

stress. This was found to be mediated by the MAP/ERK pathway (Ermolaeva et al., 

2013). 

 DNA damage has also been closely linked to ALS. FUS is an RNA-binding 

protein that is similar to TDP-43 in that cytoplasmic accumulations of FUS are also found 

in ALS. Interestingly, FUS RNA targets are enriched for genes in the DNA damage 

response pathway (Zhou et al., 2014). Furthermore, the induction of DNA damage in 

neurons was found to lead to the cytoplasmic accumulation of FUS (Deng et al., 2014).   

 Up until this point, DNA damage has been primarily studied within proliferating 

cells, especially in regards to cancer (Madabhushi et al., 2014). However, the work 

presented in this thesis suggests that DNA damage is grossly understudied within the 

nervous system. This is perhaps due to the fact that neurons are post-mitotic and 

thereby have a different requirement of the DNA damage repair pathways. Regardless, 

there are a number of neurodevelopmental diseases that feature mutations in DNA 

repair markers. This highlights the importance of DNA damage repair components within 

the nervous system (Madabhushi et al., 2014). In addition, as neurons age and cannot 
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be replaced, they inherently will accumulate DNA mutations. This may be why we 

observe an increase in RAD-23 expression in ALS tissue compared to controls. It would 

be insightful to determine if there is an increase in the DNA mutation rate within neurons 

in neurodegenerative disease settings compared to controls. The increase in RAD-23 

expression in response to DNA damage in disease or aged individuals might also 

explain why RAD-23 can then take on a “gain of function” mechanism to prevent the 

clearance of misfolded proteins.  

 Future work is still needed to determine whether or not nucleotide excision repair 

or DNA damage contributes to the protection against toxicity observed in reduced RAD-

23 conditions. Our findings in Chapter 3 are suggestive of an indirect relationship 

between protein quality control and DNA damage repair, although stronger evidence for 

this is still required in our work and in the literature in general. Thus far, we have not 

been able to identify any nucleotide excision repair factors that also suppress mutTDP-

43 toxicity in C. elegans. However, the studies presented in this work are not an 

exhaustive search. In addition to this, future work is required to determine what stress 

response pathways are enhanced in loss of rad-23 animals. 

There is evidence that persistent transcription-blocking DNA damage can 

activate oxidative stress-responses and also downregulate insulin-like signaling (ILS) in 

mice (Fensgard et al., 2010). Previous work in the lab (Boccitto et al., 2012) found that 

reducing DAF-2 signaling (the ILS signaling pathway in C. elegans) could protect against 

mutSOD1 toxicity in C. elegans. Moreover, we observe in Chapter 3 that RAD-23 

becomese nuclear in ALS postmortem tissue compared to controls. Recently, it was 

found that silencing the hR23A gene prevented the nuclear translocation of apoptosis-

initiation-factor (AIF), which occurs during the initiation of cell death (Sudhakar and 
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Chow, 2014). It will be interesting to learn in future work whether or not NER or blocking 

the nuclear translocation of hR23A or hR23B observed in ALS-associated conditions 

contributes to the protection against toxicity by loss of RAD-23 in motor neurons. 

FINAL REMARKS 
 

 In sum, this work identifies new components and mechanisms that affect how our 

motor neurons develop and degenerate in disease. We hope that this new information 

can help to further inform the treatment of devastating and debilitating developmental 

and degenerative diseases. Aside from giving new insight into how these processes 

work, we also believe it reiterates the importance for further work in these fields. For 

example, a lot of recent work has begun to tease apart a possible relationship between 

DNA damage and neurodegeneration which may have been understudied thus far 

outside of the cancer field. In addition, this work provides new hope that we can uncover 

functions for orphan proteins like CRIPT, as well as new functions for proteins like RAD-

23.  
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APPENDIX 1: OTHER COMPONENTS IN THE GLUA1/SAP97/CRIPT COMPLEX TO 

PROMOTE DENDRITE GROWTH 

SUMMARY 
 

 In this Chapter 2 of this thesis, we report that CRIPT (cysteine-rich-interactor-of-

PDZ-three) is necessary, but not sufficient to promote dendrite growth. We hypothesize 

that this effect is via the GluA1 subunit of AMPA receptors and its intracellular 

scaffolding protein, SAP97 (synapse-associated-protein-of-97 kDa molecular weight). 

One explanation for why we found that overexpression of CRIPT is insufficient to 

promote dendrite growth is that there are other components of this multi-protein complex 

necessary in the correct to stoichiometry to promote dendrite growth. Therefore, we 

have developed a tool to identify these other binding partners that utilizes a neuronal 

infection and mass spectrometry approach. This tool can be employed to identify other 

PDZ3 binding partners of SAP97 that might help to promote dendrite growth.  

INTRODUCTION 
 

 During the first few weeks of postnatal life, synaptically-evoked activity helps to 

refine the connections and properties of the nervous system which were initially guided 

by a genetics program. One type of activity-dependent development is driven by NMDA-

R and plasticity. A second type of activity-dependent development is driven solely by 

AMPA-R comprised of the GluA1 subunit and we have evidence that this is entirely 

independent of NMDA-R. We also believe that GluA1 exerts its effects using the 

scaffolding protein, SAP97. 

This appendix presents new evidence that GluA1 and SAP97 physically interact 

in an activity-dependent manner and this complements past work showing that GluA1 
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uses SAP97 to translate synaptic activity into dendritic growth. We are also interested in 

identifying the downstream effectors of SAP97 used to promote dendrite growth via 

GluA1. We have found that SAP97’s pro-dendrite growth properties relies on its PDZ3 

domain. We have previously identified CRIPT (cysteine-rich-interactor of PDZ three) as 

one of the SAP97 binding partners that can promote dendrite growth in Chapter 2 of this 

work. However, we found that CRIPT was necessary, but not sufficient, to promote 

dendrite growth. Therefore, we hypothesized that there are other SAP97 PDZ3-binding 

partners needed to promote dendrite growth. Here, in Appendix 1, we describe the 

development of a tool that can be used to identify these other binding partners. 

In sum, this work shows that GluA1 and SAP97 interact in an activity-dependent 

manner to promote dendrite growth. This further suggests that SAP97’s binding partners 

are critical to promote dendrite growth. Furthermore, we have developed a new tool to 

help identify new SAP97 PDZ3-binding partners in neurons. 
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MATERIALS AND METHODS 
 

Cloning 

SAP97 (wild type and the PDZ3 mutant harboring the H469A and R470A 

mutations) was amplified from an expression plasmid and a myc-tag was added to the 

N-terminus utilizing the In Fusion cloning strategy (ClonTech). These constructs were 

then cloned into the pRPUC vector using the KpnI and EcoRI cloning sites. This plasmid 

was then used to construct a neuron-specific herpes simplex virus (HSV) for infection 

into neurons. 

HEK293 Transfections 

HEK293 cells were maintained in DMEM (Invitrogen) containing 10% FBS 

(Sigma) and 1% Pen/Strep antibiotic (Sigma). When cells reached 75% confluency, cells 

were transfected with the PRPUC SAP97 expression constructs. Cells remained at 37˚C 

for 48 hours to allow for expression before being lysed.  

Activity-dependent co-immunoprecipitations 

For activity-dependent experiments, mixed spinal cord cultures were chronically 

treated with 5uM CNQX (72 hr) or 35mM KCl (48 hr) versus the vehicle (DMSO) control. 

After the indicated time period, cells were lysed in equal volumes 1% NP-40 lysis buffer 

(25 mM Tris HCl pH7.4, 150 mM NaCl, 1 mM EDTA, 1% NP40, 5% glycerol). 

Dynabeads (Invitrogen) were washed 3 times in 1x PBS supplemented with 0.1% Tween 

to pre-clear the beads before they were conjugated to SAP97 antibody (4ug, Thermo 

PA1-741; 30 min, room temperature). Cell lysates were then added and incubated for 1 



141 

 

hr at room temperature and then washed three times in 1% NP-40 lysis buffer. 5% of the 

starting material was saved for input. Samples were then boiled for 5 minutes in SDS 

sample buffer supplemented with 1% BME before being subjected to immunoblotting 

(mouse anti-SAP97 (Neuro Mab, UC Davis), rabbit anti GluR1 (EMD Millipore), and 

rabbit anti actin (Sigma) using SDS-Page. 

Immunoprecipitation for mass spectrometry 

Cells were lysed in 1% Trition-X 100 lysis buffer and sonicated. Lysates were 

then spun down at 14,000 rpm for 10 minutes at 4˚C to remove cellular debris. 5% of 

input was saved for input and verification of expression of the myc-tagged SAP97 

constructs. Immunoprecipitation was done by standard DynaBeads (Invitrogen) protocol. 

Briefly, 50μL DynaBeads slurry mixture was washed three times in PBS containing 0.1% 

Tween-20 three times before being incubated with 4μg myc-tag (Cell Signaling) antibody 

for 30 minutes at room temperature. 95% of the lysate was then incubated with the 

antibody-bead mixture for 1 hour at room temperature. Lysate was removed and saved 

for checking immunoprecipitation efficacy. Beads were then washed three times in PBS 

and 40μL SDS-loading buffer with 1% BME was added. Beads were boiled for 5minutes 

and 95˚C before being processed for Western blot and Coomassie.  

Coomassie and mass spectrometry 

5% of input and 5% of immunoprecipitation material was used for Western blot, 

and the rest was run on a 4-12% SDS-Page gel (Invitrogen). Gel was then stained using 

Coomassie R-250 dye (Bio-Rad) and the stained SDS-Page gel was washed per 

manufacturer protocol. Gel was developed and bands believed to be SAP97 were cut 
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out by Children’s Hospital of Philadelphia (CHOP) Protein Core to confirm correct 

immunoprecipitation of SAP97.  
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RESULTS 
 

SAP97 and GluA1 interact in an activity-dependent manner 

 Previous work has shown that SAP97 binds to the C-terminal amino acids of 

GluA1 through its PDZ2 domain. Until now, it was not clear how synaptic activity by 

GluA1-containing AMPA-R might drive dendrite growth. We hypothesized that the 

physical interaction between GluA1 and SAP97 might drive dendrite growth in an 

activity-dependent manner. To test this, mixed spinal cord cultures were chronically 

treated with either an AMPA-R antagonist, CNQX, for 72 hours or a vehicle (DMSO) for 

the same time period . SAP97 was then immunoprecipitated and samples were probed 

for SAP97 and GluA1. We found that roughly half the amount of GluA1 co-

immunoprecipitated with SAP97 in the CNQX-cultures compared to vehicle (DMSO) 

treated cultures (*p < 0.05) (Figure 1A). To test whether activity affected the interaction 

in a bi-directional manner, we used high potassium to stimulate the cultures. After 48 

hours of chronic high potassium, stimulated or control (vehicle/DMSO) cultures were 

lysed and again endogenous SAP97 was immunoprecipitated. We found that there was 

roughly twice the amount of GluA1 that co-immunoprecipitated with SAP97 in stimulated 

cultures compared to control (*p < 0.05) (Figure 1B). Taken together, this work suggests 

that synaptic activity influences the amount of interaction between GluA1 and SAP97 in 

a bi-directional manner.  

Tool to identify SAP97 PDZ3-interactors 

 In Chapter 2, we show that CRIPT interacts with the pro-dendrite growth PDZ3 

domain of SAP97 and the PDZ3 domain of SAP97 is necessary for the pro-dendrite 

growth effects of SAP97. However, overexpression of CRIPT had no effect of dendrite 
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growth and data suggested that the interaction between SAP97 and CRIPT was not 

activity-dependent (data not shown). This is unlike the interaction between SAP97 and 

GluA1. This leads us to reason that other components of this complex besides CRIPT 

are required for forced expression of CRIPT to exert a pro-dendrite growth effect. There 

are ~25 likely SAP97 binding partners which may bind to the PDZ3 domain of SAP97, 

but it is unknown whether these interactions would occur in neurons or mediate dendrite 

growth. Therefore, to pursue other proteins in this complex, we wanted to create a tool 

that could identify new SAP97 PDZ3-binding partners in neurons. To do this, we created 

a neurotropic herpes simplex virus (HSV) expressing myc-tagged wild type (wt) and 

mutant (mut) SAP97 (PDZ3mut) that could be infected into neurons in either a wild type 

or loss of SAP97 background. This version of SAP97 could be immunoprecipitated 

successfully. A Coomassie-stained gel of the immunoprecipitate identified possible 

binding partners in HEK293 cells (Figure 2). This suggests that this tool could be used in 

neurons and a proteomics approach could be employed to identify SAP97 binding 

partners in neurons, as well as specific PDZ3 binding partners.  
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DISCUSSION 
 

 This work hopes to gain further insight into how SAP97, GluA1, and CRIPT 

mediate dendrite growth.  

Up until this point, the mechanism of how GluA1 and SAP97 mediate dendrite 

growth has remained unclear and this work is the first to show that the interaction 

between these two proteins is mediated by activity. Previous work in the lab has shown 

that the interaction between GluA1 and SAP97 is necessary for SAP97 to correctly traffic 

to the cell surface (Zhou et al., 2008; Zhang et al., 2008). Furthermore, the interaction 

between SAP97 and GluA1 is necessary for SAP97’s pro-dendrite growth effects (Zhang 

et al., 2008; unpublished observations). This work would suggest that excitatory activity 

at synapses strengthens the interaction between GluA1 and SAP97, allowing for more 

SAP97 to traffic to the cell surface and promote dendrite growth. There are a number of 

ways to test this hypothesis including asking whether or not blocking AMPA-R activity 

using CNQX or stimulating activity with high potassium brings less or more SAP97 

respectively to the cell surface via surface biotinylation studies. Therefore, further 

experimentation is needed to come to this final conclusion.  

 Next, we hoped to identify new SAP97 binding partners that might also be part of 

the GluA1/SAP97/CRIPT pro-dendrite growth complex. Given the number of likely 

SAP97 binding partners, we wanted a higher throughput approach to achieve this. 

Therefore, we were also successful in creating a tool for future work to uncover other 

downstream effectors in the proposed “GluA1/SAP97/CRIPT” complex to promote 

dendrite growth.  
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 Taken together, these new tools and insights can help us to understand not only 

the components that drive AMPA-R activity-dependent development, but also the 

molecular mechanisms.  
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FIGURE LEGENDS 
 

Figure A1.1. Association of GluA1 with SAP97 is activity-dependent. (A) Spinal cord 

cultures were exposed to the AMPA-R antagonist CNQX for 72 hours and then lysates 

were immunoprecipitated (IP’ed) for SAP97 and immunoblotted for GluA1 or SAP97. 

Less GluA1 was present in the SAP97 immunoprecipitated in CNQX-treated neurons in 

comparison with vehicle treated neurons. Input levels of GluA1, SAP97 and actin were 

similar among the groups. Below Western blot images is the quantification of 

immunoblots denoted as fold-change over vehicle; paired ratio t-test: *p < 0.05 

according to Student’s t-test. (B) Spinal cord cultures were exposed to high potassium 

("High K+") for three days and then lysates were IP'ed for SAP97 and immunoblotted for 

GluA1 or SAP97. A longer and a shorter exposure for signal acquisition was obtained 

and shown. More GluA1 was present in the SAP97 immunoprecipitated in High K+ 

treated neurons in comparison with vehicle treated neurons. Input levels of GluA1, 

SAP97 and actin were similar among the groups. Below Western blot images is the 

quantification of immunoblots denoted as fold-change over vehicle; paired ratio t-test: *p 

< 0.05 according to Student’s t-test. 

Figure A1.2. Successful tool development to identify new SAP97 PDZ3 domain 

binding partners in neurons. (A) Representative Coomassie of myc-tagged 

immunoprecipitations following infection with herpes simplex virus (HSV) expressing 

LacZ [1], myc-tagged wild type (wt) SAP97 [2], or myc-tagged mutant PDZ3 mutant 

SAP97 (PDZ3mut) [3]. We cut out the bands we identified on the Coomassie gel and 

confirmed that they were SAP97 using mass spectrometry.(B) Representative Western 

blot (immunoblot for myc) of HEK293 cells infected with herpes simplex virus (HSV) 

expressing LacZ, wild type (wt) SAP97, or mutSAP97 (PDZ3mut). Representative 
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Coomassie of lysates following myc immunoprecipitation. #SAP97 band; *protein co-

immunoprecipitated with myc-tagged wild type (wt) or mutSAP97 (PDZ3mut); **protein 

co-immunoprecipitated selectively with myc-tagged wild type (wt) SAP97, but not the 

PDZ3 mutant SAP97. 
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Figure A1.1. Association of GluA1 with SAP97 is activity-dependent.  
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Figure A1.2. Successful tool development to identify new SAP97 PDZ3 domain 

binding partners in neurons.  
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APPENDIX 2: OTHER MODIFIERS OF MOTOR NEURON DISEASE MODELS 

 

SUMMARY 
 

Amyotrophic Lateral Sclerosis (ALS) is a multifactorial adult-onset disease that 

attacks the upper motor neurons of the cortex and lower motor neurons of the spinal 

cord. Observed pathology includes (but is not limited to): (1) changes in protein quality 

control; (2) heightened unfolded protein response (UPR) and endoplasmic reticulum 

(ER) stress; and (3) changes in metabolism. Therefore, we utilized the small nematode, 

Caenorhabditis elegans (C. elegans), and mixed spinal cord cultures to investigate what 

(if any) modifiers of ALS-related proteins might exist in these pathways outside of the 

main focus of this dissertation (endoplasmic reticulum-associated degradation, or 

ERAD). 

INTRODUCTION 
 

 This appendix presents work done to identify other modifiers of motor neuron 

disease models in C. elegans and in mixed spinal cord culture.  

First, because RAD-23 may exert its effects on mutTDP-43 through altering 

mutTDP-43’s ubiquitination status, we are interested in exploring the status of 

ubiquitination in models of motor neuron disease, as well in in rad-23 mutants. In this 

work, we show that there is an accumulation of normally destroyed ubiquitinated GFP in 

the wild type TDP-43 (wtTDP-43) and mutant (M337V) TDP-43 (mutTDP-43) models of 

ALS in C. elegans. This was predicted because past evidence suggests that the 

accumulation of misfolded proteins prevents the ubiquitin-proteasome system from 

degrading normally processed substrates. We examine the effect that reduced rad-23 
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and ufd-3, two suppressors found in our genetic screen described in Chapter 3, have on 

this accumulation of ubiquitinated GFP (UbV-GFP). Interestingly, knockdown of rad-23 

or ufd-3 by RNAi had opposing effects, further validating our belief that that the 

involvement of ERAD components in models of motor neuron disease is much more 

complex than initially anticipated.  

This leads to our next finding presented in Appendix 2 which aimed to ask if 

constitutive ER stress could protect against models of motor neuron disease. C. elegans 

were engineered to express a constitutively spliced form of XBP1 (“XBP1s”) in their 

nervous system both as a single copy and multiple copies (“extrachromasomal array”). 

We found that, as opposed to protecting against ER stress, constitutively spliced XBP1 

actually enhanced toxicity caused by pharmacologically evoked ER stress using 

tunicamycin. This prevented us from being able to ask if this form of constitutively 

spliced XBP1 could protect against models of motor neuron disease in C. elegans.  

 We also report in Chapter 3 that reduced RAD-23 protects C. elegans from 

mutTDP-43 toxicity in a cell-autonomous manner. It is important to note that not all of the 

modifiers of mutTDP-43 and mutSOD toxicity in C. elegans acted in this manner. For 

example, we also present evidence here that ubql-1 enhances mutSOD toxicity in C. 

elegans via a possible non-cell-autonomous manner. In relation to the work completed 

on RAD-23 in Chapter 3, we report that pharmacological stabilization of a RAD-23 

substrate, p53, is able to protect against mutSOD1 toxicity in mixed spinal cord cultures. 

Finally, we also examined the effect of constitutively “on” HIF1α in the mutSOD 

model of motor neuron disease. HIF1α belongs to a class of transcription factors that are 

readily destroyed but become stabilized in certain environments, such as those where 
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there is a deprivation of oxygen. Up until recently, the hypoxia response pathway has not 

been well studied in the context of ALS. In addition, there have been conflicting results 

concerning the expression of HIF1α and its targets in ALS mouse models (Sato et al., 

2012). For example, some studies have found that there is an increase in HIF1α and its 

targets in the transgenic SOD1 ALS mouse model (Sato et al., 2012). Meanwhile, other 

studies have suggested that there may be a lack of induction of HIF1α targets, 

specifically VEGF, which contributes to motor neuron degeneration (Cleveland and 

Rothstein, 2001). We report that a constitutively “on” version of HIF1α protects against 

the locomotor deficit associated with mutSOD in C. elegans supporting the idea that 

there may instead be a lack of activation of HIF1α targets or HIF1α itself.  
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MATERIALS AND METHODS 

Caenorhabditis elegans (C. elegans) strains and maintenance 

Psur-5::UbV-GFP animals were made as described previously and were a gift from 

Thorsten Hoppe (Segref et al., 2011).  

Quantification of GFP Fluorescence Signal in C. elegans  

Animals were synchronized to the L4 stage by egg dropping from gravid 

hermaphrodites. 25 young adult (L4 + 1 day old) animals were placed in 50μL of M9 

buffer in a 96-well plate. 3 wells (75 animals total) were each measured and averaged 

per condition. Fluorescence intensity was then measured using a 96-well fluorescent 

plate scanner.  

Locomotor assays 

C. elegans locomotor assays were performed as a swimming assay done in a 

drop of M9 on the surface of an agar plate. For each assay, 15 to 25 worms were 

allowed to lay eggs for 4 hours. Once larvae reached the L4 stage, locomotor behavior 

was blindly recorded on a video camera attached to a Zeiss Steml SV11 dissecting 

scope and tracked using the Parallel Worm Tracker program 

(http://wormsense.stanford.edu/tracker; Miriam Goodman; Stanford University, Palo Alto, 

CA). Behavior was also recorded at a young adult stage (24 hours after L4). For each 

experiment, five trials containing 7-10 animals per group were completed, and at least 

three independent experiments were performed for each locomotor assay on different 

days. To analyze the swimming behavior, animal tracks were analyzed on MATLAB 

(MathWorks) to determine the average speed (millimeters (mm) per second). All 

experiments were performed blind to genotype. Each locomotor assay was performed at 
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least three independent times on different days. One representative experiment in 

shown.  

Motor neuron survival assays with tenovin-1  

Mixed spinal cord neuron cultures were prepared as described previously (Jeong 

et al., 2006; Mojsilovic-Petrovic et al., 2006). Briefly, an astrocyte feeder layer was 

prepared from the cortex of newborn Sprague Dawley rat pups (postnatal day 2 (P2)) 

and grown to ~80% confluency. Subsequently, dissociated embryonic day 15 (E15) 

spinal cord neurons were added. One to two days later, AraC (5mM) (catalog #C6645; 

Sigma) was added for 24 hours to arrest astrocyte proliferation. Cultures were 

maintained in glia-conditioned medium supplemented with the following trophic factors 

(1.0ng/mL each): human neurotrophin-3, human neurotrophin-4, human brain-derived 

neurotrophic factor, and rat ciliary neurotrophic factor (Alomone Labs). Half of the culture 

medium was replaced on a biweekly basis.  

For motor neuron toxicity assays with tenovin-1, cultures were pre-treated with 

1.6μM tenovin-1 at DIV13. The next day, HSV-mutSOD1 (G85R) virus was added to the 

media at 1μL per mL. Fresh drug was added when the media was changed three times 

per week. At DIV19, cultures were fixed in freshly prepared 4% PFA and stained with 

SMI-32 antibody (Convance). Slides were then developed using standard HRP protocol.  

Motor neurons were then counted blindly. Briefly, motor neurons were counted in three 

fields of view per slide and the average was taken. The experiment was repeated two 

independent times and the representative experiment is shown. 

RNAi knockdown in C. elegans 
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Each RNAi (RNA Interference) colony was grown overnight in Luria broth 

containing ampicillin (50 µg/mL), and 200uL was seeded onto NGM plates containing 

isopropylthiogalactoside (1mM) to induce dsRNA expression. The RNAi clone for rad-23 

was generated as described previously in the Ahringer library (Fraser et al., 2000). For 

locomotor experiments, L4 animals were placed on RNAi plates overnight. On the next 

day, young adult animals were transferred to a fresh RNAi plate and allowed to lay eggs 

for 4-6 hours. Progeny were subsequently tested at the young adult (L4 + 1 day) stage 

for locomotor activity. All assays were performed blind to genotype. Average of three 

independent experiments is shown.  

Tunicamycin lifespan assay 

For the tunicamycin lifespan assay, worms were allowed to lay eggs on NGM 

plates for 4-6 hours. At the young adult stage (L4+1 day), 100 worms were placed on 

either a NGM plate supplemented with either vehicle (DMSO) or tunicamycin (Sigma 

T7765; 5µg/mL). NGM plates were all seeded with OP50 and the final concentration of 

DMSO in the plates did not exceed 0.2%. Worms were transferred to a fresh plate every 

day and scored for survival by response to light touch. Bagging worms or worms with a 

vulva explosion phenotype were excluded from the analysis. All assays were completed 

blind to genotype. 
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RESULTS 
 

Overexpression of mutTDP-43 in the nervous system causes a non-cell 

autonomous increase in ubiquitinated GFP 

         To investigate the imbalance of protein quality control in a model of motor neuron 

disease, we placed transgenic mutTDP-43 animals on the background of worms 

expressing ubiquitinated GFP under control of the ubiquitous sur-5 promoter. Under wild 

type conditions at young ages, this GFP molecule is degraded due to the presence of 

the ubiquitin tag. However, when we placed this on the wtTDP-43 or mutTDP-43 

background, we observed a significant increase in the accumulation of GFP (p < 0.05) in 

non-neuronal tissues, although exogenous human TDP-43 expression is limited to the 

nervous system due to the snb-1 promoter (Figure 1A-B). These results suggest there is 

an accumulation of normally degraded ubiquitinated substrates in the presence of 

overexpressed mutTDP-43 which is non-cell autonomous. This is resonant with an 

emerging theme of imbalanced protein quality control of the proteome in 

neurodegeneration. 

  

Loss of ufd-3, but not rad-23, reduces UbV-GFP in the mutTDP-43 background 

     We asked if any of the suppressors or enhancers identified in the directed 

genetic screen presented in Chapter 3 might also modify the burden of non-degraded 

UbV-GFP. We observed that only knockdown of ufd-3 suppressed the accumulation of 

UbV-GFP in the mutTDP-43 background (Figure 2A-B). 

Constitutive activation of ER stress enhances toxicity to tunicamycin 
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 Given the recent hypothesis that there may be too much activation of ER stress 

in neurodegeneration, we wanted to ask if constitutive activation of the ER stress 

pathway by the effector XBP1 (constitutively spliced XBP1, “XBP1s”) could modify 

models of motor neuron disease. We created C. elegans that overexpressed or 

expressed a single copy of “XBP1s” under the control of a nervous specific promoter 

(PUNC-119). We then asked if this protected animals against ER stress pharmacologically 

induced by the drug, tunicamycin. We found that ~40% of wild type animals were dead 

after one week on tunicamycin-containing NGM (nematode growth medium) plates, 

compared to roughly ~90% of the animals that either overexpressed or expressed only a 

single copy of “XBP1s” (Figure 3A). Furthermore, the animals with a constitutively 

spliced “XBP1s” also showed lower average speeds compared to control animals in a 30 

second forced swimming assay, although this change was not significant (p > 0.05) 

(Figure 3B).  

Stabilization of p53 protects motor neurons against death caused by mutSOD1 

 RAD-23 has been shown to have conflicting the roles on the turnover of a 

number of proteins. In Chapter 3, we present evidence that RAD-23 inhibits the turnover 

of ALS-linked proteins and thereby exacerbate their toxicity. p53 has been linked to 

neurodegenerative disease in a number of settings (Lanni et al., 2012) and is one RAD-

23 substrate (Brignone et al., 2003). Furthermore, loss of ufd-2 identified in our directed 

genetic screen for suppressors of mutTDP-43 also has a role in p53 stabilization (Jiou 

Wang, personal communication). Therefore, we wanted to ask if the stabilization of p53 

could also suppress the toxicity of mutated proteins in neurodegeneration. To do this, we 

pre-treated cultures with tenovin-1, a known p53 stabilizing drug, and asked if it 

suppressed toxicity caused but mutSOD. We found that treatment of tenovin-1 had no 
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effect on motor neuron survival at low to medium concentrations, but was toxic at higher 

concentrations (data not shown). We therefore used a medium concentration of tenovin-

1 (1.6μM) to ask if it protected against toxicity of mutSOD in motor neuron survival. We 

found that mutSOD1 reduced motor neuron survival was reduced by ~50%, however 

mutSOD toxicity was reduced by ~45% (p < 0.0001) in cultures that were treated with 

tenovin-1 (Figure 4).   

Some suppressors and enhancers operate in a non-cell autonomous manner 

    Because rad-23 and ubql-1 are similar genes with opposite effects on the 

mutSOD phenotype, we wanted to further investigate how loss of ubql-1 might enhance 

the mutSOD locomotor deficit. To do this, we took advantage again of the resistance of 

the C. elegans nervous system to RNAi. When we fed ubql-1 RNAi to mutSOD worms, 

we found an enhancement of the locomotor deficit (p < 0.05) (Figure 5A). However, 

G85R; sid-1; Punc-119::SID-1 animals fed ubql-1 RNAi for two generations showed no 

effect on the locomotor deficit (p > 0.05) (Figure 5B). These results suggest that ubql-

1 might enhance the mutSOD1 locomotor deficit in a non-cell autonomous manner, 

although we found in Chapter 3 of this work that loss of rad-23 operated a cell 

autonomous manner within the nervous system 

Constitutively “on” HIF1α suppresses the mutSOD locomotor deficit 

 Although C. elegans with ubiquitously expressed “on” HIF1α showed a locomotor 

deficit compared to wild type animals in a forced swimming assay (p < 0.05) (Figure 6A), 

we observed that animals with “on” HIF1α only in the nervous system suppressed the 

mutSOD locomotor deficit two fold (p < 0.05) (Figure 6B). 

 



160 

 

 

FIGURE LEGENDS 
 

Figure A2.1. Overexpression of wild type (wt-) and mutant (mut-) TDP-43 (M337V) 

in the nervous system causes an accumulation of normally degraded 

ubiquitinated substrates in a non-cell autonomous manner. mutTDP-43 worms were 

placed on the background of the ubiquitous sur-5 promoter expressing a ubiquitinated 

GFP (UbV-GFP). (A) Representative images of the UbV-GFP lines in wild type, 

wtTDP43, and mutTDP-43 animals at the young adult stage. Arrowheads point out 

accumulation of GFP primarily in the intestine and pharynx. (B) Mean GFP fluorescence 

of 25 animals per well (n=3) containing 50μL of M9 buffer. *p < 0.05 according to 

Student’s t-test. (“M337V”: mutTDP-43) 

Figure A2.2. Knockdown of ufd-3, but not rad-23, in C. elegans reduces 

ubiquitinated GFP abundance. (A) Representative images of young adult (L4+1day) C. 

elegans fed indicated RNAi for the previous two generations. (B) Mean GFP 

fluorescence of 25 animals per well containing 50μL of M9 buffer. 

Figure A2.3. Expression of constitutively spliced XBP1 in the nervous system 

enhances toxicity of ER stress. (A) C. elegans containing an extrachromasomal array 

or single copy of Punc-119::XBP1s::mCherry show enhanced toxicity to tunicamycin. 

Lifespan assay of C. elegans placed on NGM plates containing 5μg/mL tunicamycin 

beginning at 1 day of adulthood. (B) Average speed of young adult (L4+1 day) animals 

in a 30 second forced swimming assay in M9. C. elegans containing an 

extrachromasomal array or a single copy of Punc-119::XBP1s::mCherry show reduced 

average speeds, although this is not significant.  
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Figure A2.4. Stabilization of p53 by treatment with tenovin-1 protects motor 

neurons from toxicity caused by mutSOD1 (G85R). (A-D) Representative images of 

motor neurons stained with SMI-32 following indicated treatment. (E) % of motor 

neurons (of control) remaining following indicated treatment. One-way ANOVA revealed 

group differences (F(3,12)=9.867; p = 0.0015). There is a significant (p < 0.0001; Tukey’s 

post hoc test) protection of motor neurons from mutSOD toxicity in the tenovin-1 

treatment group.  

Figure A2.5. Only ubiquitous knockdown of ubql-1 enhances the mutSOD 

locomotor deficit. (A) Feeding ubql-1 RNAi to mutSOD1 animals suppresses the 

locomotor deficit (p = 0.005 according to Student’s t-test. (B) Feeding ubql-1 RNAi to 

mutSOD1 animals where the RNAi effect is limited to the nervous system has no effect 

on the locomotor deficit.  

Figure A2.6. Constitutively ‘on’ HIF1α in the nervous system alone protects 

against mutSOD toxicity in C. elegans. (A) Average speed of C. elegans (wild type, 

constitutively ‘on’ HIF1α in all tissues, constitutively ‘off’ HIF1α in all tissues) in a 30 

second forced swimming assay in M9 buffer. Animals with constitutively ‘on’ HIF1α in all 

tissues show decreased average speed compared to wild type animals. (B) 

Constitutively ‘on’ HIF1α in the nervous system alone protects against mutSOD toxicity 

in C. elegans as measured by the average speed in 30 second forced swim assay. *p < 

0.05 according to Student’s t-test. 
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Figure A2.1. Overexpression of wild type (wt-) and mutant (mut-) TDP-43 (M337V) 

in the nervous system causes an accumulation of normally degraded 

ubiquitinated substrates in a non-cell autonomous manner. 
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Figure A2.2. Knockdown of ufd-3, but not rad-23, in C. elegans reduces 

ubiquitinated GFP abundance in mutTDP-43 background.  
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Figure A2.3. Expression of constitutively spliced XBP1 in the nervous system 

enhances toxicity of ER stress.  

 

 

 

 

 

 

 

 

 

 

 



165 

 

Figure A2.4. Stabilization of p53 by treatment with tenovin-1 protects motor 

neurons from toxicity caused by mutSOD1 (G85R). 
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Figure A2.5. Only ubiquitous knockdown of ubql-1 enhances the mutSOD 

locomotor deficit.  
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Figure A2.6. Constitutively ‘on’ HIF1α in the nervous sytem alone protects against 

mutSOD toxicity in C. elegans. 
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