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Abstract 

In the chloroplasts of leaf mesophyll cells, β-amylase proteins (BAMs) are responsible 

for breaking down starch into maltose when the plant cannot undergo photosynthesis. BAM2, 

which was previously considered inactive, was recently shown to be active under stromal-like 

levels of salt and has optimal activity at 80mM KCl. In addition, BAM2 is active as a tetramer in 

vivo and displays sigmoidal kinetics due to a secondary binding site that is responsible for 

activating BAM2 when bound to starch. A hypothesized tetramer model was created using a 

homology model of a BAM2 monomer and the configuration of a crystallized sweet potato 

BAM5. This model was supported by mutations, made by other members of the lab, in specific 

interfaces, which disrupted tetramerization and activity. This model along with sequence 

alignments of BAM2 orthologs revealed a potential acidic domain, containing 2-fold more acidic 

residues than the catalytic domain and 10-fold more acidic residues than the chloroplast transit 

peptide. This acidic domain is adjacent to the N-terminal end of the catalytic domain and is just 

upstream from a short peptide of conserved residues (ERDF). Further, the acidic domain and 

ERDF peptide are located very close to the starch-binding groove, which is an area of the 

enzyme where two secondary binding sites face each other. Hypothesizing that this acidic 

domain and ERDF peptide could interact with KCl and the starch binding groove, we created 

two mutant BAM2 proteins—one lacking just the acidic domain (B2-NDel1), and one lacking 

both the acidic domain and the ERDF peptide (B2-NDel2). We hypothesized that by removing 

the acidic domain and the ERDF peptide, the enzyme would not require salt to function. When 
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the activity of these enzymes were compared to the activity of wild type BAM2, we found that 

neither of the mutants required salt to function, while BAM2 had negligible activity without KCl. 

Additionally, both of these mutants still functioned as a tetramer, even though the activity of B2-

NDel2 was about 5-fold lower than NDel1. Together, these data indicate that the acidic domain 

and ERDF peptide might be of importance to the salt dependency of BAM2. 
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Introduction 

 In the leaves of plants, starch is synthesized and stored in the chloroplast stroma when 

sunlight is available. At night, β-amylases (BAMs) are primarily responsible for hydrolyzing this 

starch to create maltose by breaking the penultimate α-1,4-glycosidic bond on the non-reducing 

ends of starch. Maltose is exported from the plastid and further metabolized for energy or 

biosynthesis (Weise et al., 2004). In the β-amylase gene family, two sub-families have been 

described based on intron positions and amino acid alignments (Figure 1) (Monroe et. al., 2017). 

In the first subfamily, a past homolog of both BAM1 and -3 is hypothesized to be the most 

ancestral, which eventually gave rise to BAM9, -1, and -3. Likewise, in the second subfamily, 

BAM2 is hypothesized to be the most ancestral, which subsequently gave rise to BAM4, -5, -6,    

-7, and -8 from gene duplication events (Monroe et al., 2017).  

Of the nine β-amylases in Arabidopsis thaliana, only BAM1, -2, -3, and -6 are 

catalytically active and found in the chloroplast stroma (Fulton et al., 2008; Valerio et al., 2011; 

Monroe et al., 2014; Monroe et al., 2017). BAM1 and -3 are thought to account for the majority 

of the starch degradation activity due to the accumulation of starch in bam1 and bam3 knock-out 

mutant plants and the low activity in leaf extracts from bam1 and bam3 plants (Fulton et al., 

2008; Monroe et al., 2014).  
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Figure 1. An analysis of BAM-like genes dating back to charaphyte algae. The black dots 
show the genes that are predicted to code for a catalytic enzyme, while grey dots show the 
genes that are predicted to code for a non-catalytic enzyme. White dots show genes that code 
for an enzyme with an N-terminal DNA binding domain. The nine BAM genes found in 
Arabidopsis are divided into two subfamilies, one deriving from a BAM similar to BAM1 and 
-3, and the other deriving from BAM2. (From Monroe et al., 2017). 
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 BAM4 and -9 are plastid localized, but do not have any observable catalytic activity 

(Fulton et al., 2008; Li et al., 2009; Monroe and Fedkenheuer, unpublished). Additionally, 

BAM5 is catalytically active, but is instead found in the cytosol of phloem cells and its function 

is currently unknown (Laby et al., 2001; Monroe et al., 2014). BAM7 and -8 are both 

transcription factors found in the nucleus (Reinhold et al., 2011; Soyk et al., 2014).  

 By identifying and understanding the roles of each β-amylase and how they effect the 

growth of a plant, we open the door to better understanding the entire pathway of starch 

degradation. In a time where genetically modified crops are becoming more necessary in the goal 

to feed our growing population, an increased understanding of β-amylases and related enzymes 

is required to create crops that grow faster or contain more starch, depending on the needs of a 

certain population. Additionally, β-amylases are commonly used in the production of glucose 

syrups and other foods (Silano et al., 2017). By identifying new BAMs, which can be regulated 

in different ways, companies utilizing BAMs as a production mechanism may find new, cheaper, 

and more efficient ways of making their product.  

While the functions of the enzymes found in the Arabidopsis β-amylase family differ, the 

qualities of most of the catalytic enzymes are similar. BAM1, -3 and -5 all function as 

monomers, display hyperbolic kinetics, and do not seem to have any requirements for activity 

other than substrate and a pH of approximately 6 (Monroe et al., 2017). However, BAM2, which 

was shown to be catalytically active in a recent paper from our lab, has several unique qualities 

(Monroe et al., 2017). Previous papers concluded that BAM2 was essentially inactive, due to the 
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extremely low activity in comparison to BAM1 and -3 (Fulton et al., 2008; Li et al., 2009). 

However, after comparing active site residues and considering the fact that BAM5, a derivative 

of BAM2, is catalytically active, we predicted that BAM2 should be active (Monroe et al., 2017). 

This led to the discovery that BAM2 has a requirement for KCl, with the optimal activity at 80 

mM KCl (Monroe et al., 2017). Further, the ionic strength of the stroma is consistently at the 

level required for activation, so it is likely that BAM2 is active at all times in vivo. Previous in 

vitro studies concluding that BAM2 was inactive did not include salt when measuring the 

activity of the enzyme.  

Salts are common regulatory effectors of enzymes. Specifically, the dissociated anions 

and cations will often interact with charged side-chains as well as the protein backbone, 

changing the function of an enzyme (Okur et al., 2017). Additionally, K+ can affect enzymes in 

two ways: it can interact with the substrate directly (Type I interaction), or it can indirectly 

change the structure of the active site of the enzyme (Type II interaction) (Di Cera et al., 2005). 

BAM2 is believed to interact with K+ as a Type II interaction due to data showing BAM2 has 

activity with a variety of monovalent cations (Monroe et al., 2017).  

In addition to this salt requirement, ΒΑΜ2 displays sigmoidal kinetics, with a Hill 

Coefficient greater than three (Monroe et al., 2017). Currently, it is hypothesized that the 

allostery observed in the kinetics of BAM2 is due to a secondary binding site (SBS) for starch 

(Monroe et al., 2017). This SBS is thought to bind non-catalytically to starch affecting the 

conformation of the enzyme and turning on the active site, making starch a homotropic effector. 
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To test this hypothesis, two conserved glycine residues in the SBS were changed in order to 

prevent substrate binding by introducing methionines with bulky, uncharged side chains. These 

mutations decreased BAM2’s activity by up to 95% (Monroe et al., 2017). Finally, using Multi-

Angle Light Scattering we discovered that BAM2 functions as a tetramer and is the only known 

Arabidopsis β-amylase to do so (Monroe et al., 2017).  

Knowing that BAM2 functions as a tetramer, but without any resolved crystal structure 

for BAM2, Dr. Chris Berndsen (JMU Dept. of Chemistry and Biochemistry) created a 

hypothesized tetramer model. To do this, he created a monomeric BAM2 homology model using 

I-TASSER and a resolved crystal structure from a soybean β-amylase5. Then, using YASARA, 

he placed four monomers in the same orientations as the four subunits in a previously 

crystallized sweet potato β-amylase. Although this sweet potato BAM is a monomer in its native 

state, it crystallized as a tetramer (Cheong et al., 1995). Dr. Berndsen then allowed the model to 

find the most stable conformation on YASARA (Figure 2). Using this hypothesized tetramer 

model, mutations were made in each of the two resulting interfaces to test the validity of the 

model. When mutations were made in the hypothesized interface A, which binds two monomers 

together, the resulting protein was monomeric and inactive (Pope, 2017). When mutations were 

made in the hypothesized interface B, which binds two dimers together, the resulting protein 

dimer had similar activity to the wild-type enzyme (Pope, 2017). Using these biochemical data as 

a guide, the homology model was further modified to better explain the results from these 
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mutations. Because the biochemical data supported the tetramer model, we used this model to 

help formulate additional hypotheses about the structure of BAM2. 

This study focused on the salt requirement of BAM2. We identified an N-terminal 

domain containing a higher percentage of acidic residues in comparison to the catalytic domain 

of the enzyme, which we hypothesized might be involved in the sensitivity of BAM2 to salt. This 

acidic N-terminal domain was only found in BAM2 and not in the other Arabidopsis β-amylases. 

To determine the role of this domain, we created mutant BAM2 enzymes lacking this acidic N-

terminus. By observing the activity of these mutant enzymes under varying conditions in 

comparison to the wild-type BAM2, we were able to observe possible interactions of the acidic 

domain with salt.  
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Figure 2. A tetramer model of BAM2 from Arabidopsis. This structure shows two interfaces 
that might play a role in tetramerization. Interface A binds two monomers together to form a 
dimer, and interface B binds two of those dimers together (Based on a figure from Pope, 2018).   
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Materials and Methods 

Production and Purification of Recombinant Proteins 

According to Monroe et al. (2017), which described the cloning of the BAM2 gene, a 

cDNA clone of the BAM2 gene was isolated from mRNA from an Arabidopsis plant. The 

primers used to isolate the gene in a polymerase chain reaction (PCR) were 5’-GGGAATTCAT-

GGCGATTAGGTTGAATCATAGTG-3’ and 5’-ATGGATCCATCTCGGGGTTGGTCTCTT-

GTGT-3’. The product of this PCR was then cloned into pMOSBlue (GE Life Sciences) and 

subsequently digested using BamHI and SalI. The resulting DNA was then ligated into a 

pETDuet-1 vector, which attached an N-terminal 6-His tag to the resulting protein. This plasmid 

was then sequenced to verify that it matched the BAM2 reference sequence NM_116273.5. 

The resulting plasmid was then transformed into BL21+ E. coli. These cells were then 

grown at 37°C in a total volume of 500 mL of Luria-Bertani broth and 100 mg/mL carbenicillin 

until it reached an optical density of 0.5 at 600 nm. A final concentration of 1 mM isopropylthio-

β-galactosidase was added in order to initiate translation of the BAM2 gene, and the flasks were 

shaken at 20°C overnight. After growth, the cells were centrifuged at 6,000 xg for 5 minutes, 

frozen at -20°C for 24 hours, and resuspended in 30 mL of buffer containing 50 mM NaH2PO4 

pH 8, 10 mM imidazole, and 0.3 mM NaCl. This mixture was then sonicated on ice at 50 amps 

for bursts of 5 seconds, with 20 seconds breaks in between the bursts, repeated 18 times, and 

then centrifuged again at 9,072 xg for 15 minutes at 4°C. The resulting pelleted cell debris was 



 

15 
 

 

 

discarded and the protein-containing supernatant was bound to nickel-nitrilotriacetic acid agarose 

His-Bind resin (QIAGEN) and gently shaken for 1.5 hours at 4°C. The resulting slurry was 

centrifuged at 1,150 xg for 5 minutes at 4°C. The beads were then transferred to a 5mL column 

(Agilent) and washed with wash buffer containing 50 mM NaH2PO4 pH 8, 40 mM imidazole, 

and 0.3 mM NaCl at a volume of 20x the bead volume. Once the wash buffer had completely run 

through the column, the protein was eluted by adding 10x the bead volume of elution buffer 

containing 50 mM NaH2PO4 pH 8, 200 mM imidazole, and 0.3 mM NaCl. The eluate was 

dialyzed for a minimum of 6 hours against 20 mM MOPS pH 7.0, 0.2 M NaCl, and 0.5 mM 

TCEP, replenishing the buffer after 3 hours. The diazylate was then transferred into a 5 mL 

concentrating column (Agilent) and centrifuged at 3,500 xg for 15 minutes at 4°C, mixed, and 

centrifuged again at 3,000 xg for 10 minutes at 4°C or until the volume of the diazylate reached 

250 µL. The concentrated protein was then transferred to a new 1.5 mL tube and centrifuged at 

3,200 xg for 5 minutes and then aliquoted into new tubes in 25 µL aliquots. The Bio-Rad Assay 

Kit was used to determine the concentration of the resulting protein and compared to a BSA 

standard. 

To create the first of the N-terminal deletion mutants lacking the acidic domain (B2-

NDel1), we introduced a BamHI site between the acidic domain and the catalytic domain. The 

primers used for PCR were 5’-TGATGAAGAAATTGTGCAGGATCCAGAGCGTGATT-

TTGCTGGC-3’ and 3’-GCCAGCAAAATCACGCTCTGGATCCTGCACAATTTCTTCATCA-

5’. Then, to create the second N-terminal deletion mutant lacking both the acidic domain and the 
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ERDF sequence (B2-NDel2), the primers used for PCR were 5’-TCGAAGAGCGTGATTTTG-

CGGATCCAGCGTGTGTTCCTGTATAT-3’ and 3’-ATATACAGGAACACACGCTGGATC-

CGCAAAATCACGCTCTTCGA-5’. The protocol for the PCR to isolate the entire plasmid was 

as follows: 95°C for 5 minutes; cycle of 95°C for 30 seconds, 60°C for 30 seconds, and 72°C for 

4 minutes, repeated 20 times; followed by 72°C for 10 minutes. The resulting DNA was then 

digested with BamHI for 4 hours at 37°C, and then DpnI for 1.5 hours at 37°C. After digestion, 

this DNA did not contain the DNA coding for the acidic domain, and was subsequently ligated 

using the Rapid DNA Ligation Kit from Roche Diagnostics for a total of 5 minutes. The 

resulting plasmid was transformed into DH5α E. coli cells, grown overnight, and miniprepped to 

isolate the DNA. The DNA was sequenced to ensure the BAM2 gene was cut as desired, and the 

plasmid was transformed into BL21+ cells and the proteins were expressed and purified as per 

the protocol used for wild-type BAM2. 

 

Enzyme Activity Assays 

Purified BAM enzymes were assayed for activity using the Somogyi-Nelson method of 

measuring reducing sugars (Nelson, 1944). First, the enzyme was diluted in buffer containing   

50 mM MOPS pH, 7.0, and 1 mg/mL BSA or porcine gelatin. The total reaction volume was        

0.5 mL, which contained 50 mM MES, pH 6.0, variable concentrations of KCl and either 80 

mg/mL or 100 mg/mL soluble starch (Arcos Organics). Reactions proceeded at 25°C for 20 
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minutes and were stopped by placing reactions in boiling water for 3 minutes. Each reaction 

product was then diluted to 2.5 mL with diH2O and vortexed. From that, 0.5 mL was transferred 

to a new, clean tube. The reducing sugar content of this 0.5 mL diluted product was analyzed as 

per the instructions in Nelson (1944). The final product was then pipetted into a well in a 96-well 

plate and read using a spectrophotometer at a wavelength of 660 nm. The optical density of each 

of the samples was then compared to maltose standards in order to determine how many moles of 

maltose were produced in each sample. The corresponding Vmax, KM, and Hill Coefficients were 

generated using Microsoft Excel Solver (Gadagkar and Call, 2015). 

 

SEC-MALS 

 The molecular weight of the proteins was determined using Size Exclusion 

Chromatography Multi Angle Light Scattering using an HPLC (High Performance Liquid 

Chromatography). Purified proteins were diluted to approximately 1.5 mg/mL and the molecular 

weights and extinction coefficients were calculated using ExPASy 

(https://web.expasy.org/protparam/). To prepare the column, a 10% methanol solution that was 

sterilized with a 0.2 µm filter was run through the 4.6 x 300 mm column for 12 hours at 0.1 

mL/min. The column had a pore size of 300 Å and a particle size of 5 µm. Then, diH2O was run 

through the column for another 12 hours at 0.1 mL/min. Then, we ran our buffer containing 10 

mM MOPS pH 7.0, and either 250 mM or 10 mM KCl, depending on the experiment. This 
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buffer was first run at 0.1 mL/min for the first 12 hours, and finally at 0.5 mL/min for the next 3 

hours. A total of 20 µL of sample was injected a minimum of three times per sample. The 

absorbance was measured at a wavelength of 280 nm and 212 nm with an Agilent G1315B 

Diode Array detector. To collect the samples, we used miniDAWN-TREOS (Wyatt 571 

Technologies) and analyzed them with ASTRA version 6.1.5.22. 
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Results 

To gain further insight into why BAM2 requires KCl to function, we aligned sequences 

from 24 BAM2 orthologs in other land plants (Figure 3). Each sequence contained a chloroplast 

transit peptide, which was not conserved, and a catalytic domain, which showed areas of high 

conservation. However, unlike other BAMs, the 30 residues between the chloroplast transit 

peptide and the catalytic domain appeared to contain a high percentage of acidic residues (Figure 

3). While the positions of these residues are not conserved, the high percentage of acidic residues 

of the acidic domain in comparison to the catalytic domain is conserved among BAM2 orthologs 

from all of the major groups of land plants dating back to green alga (Klebsormidium), which is 

the likely the last universal common ancestor of all land plants (Figure 3). Additionally, right 

after this observed “acidic domain”, a highly conserved four-residue peptide is found, containing 

a glutamic acid, arginine, aspartic acid, and a phenylalanine. This peptide is not found in other 

catalytically active BAMs (Monroe, unpublished).  We refer to this sequence as the “ERDF” 

sequence. In the homology model, this acidic domain and ERDF sequence can be seen in 

interface A of the tetrameric model (Figure 4). 
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To quantify the percentage of acidic and basic residues in the target peptide, the acidic 

domain, and the catalytic domain, we aligned 14 BAM2 proteins from other eudicots (Figure 5). 

Because each protein had a different length transit peptide, we considered the 30 residues 

upstream from the catalytic domain as the acidic domain. While each domain has a similar 

proportion of basic residues, the acidic domain has about 2-fold more acidic residues than the 

catalytic domain, and about 10-fold more acidic residues than the chloroplast transit peptide. 

The pH of the chloroplast stroma is approximately 8 during the day resulting from 

protons being pumped into the thylakoid lumen, and then drops to about 7 during the night 

(Werdan et al., 1975). Therefore, it is likely that most of these acidic residues, which have a pKa 

of approximately 4, will be negatively charged. To test this, we estimated the pKa’s of each 

acidic residue from the model and found that none had an unusually high pKa near the              

N-terminus (cospi.iiserpune.ac.in/depth/htdocs/index.html). Under this assumption, we 

hypothesized that the negatively charged residues in the acidic domain might interact with the 

positively charged K+ from the salt. Interestingly, on the tetramer model this acidic domain is 

located near the starch-binding groove. Therefore, it was hypothesized that this seemingly 

flexible acidic domain might be interfering with starch binding, preventing BAM2 from being 

activated when lacking salt. By this logic, when salt is added, the positively charged cation could 

bind to the acidic domain, thus allowing starch to bind to the starch-binding groove. To test this 

hypothesis we created two mutant BAM2 enzymes lacking the acidic domain. To do this, we 

inserted a BamHI restriction enzyme site between the acidic domain and the catalytic domain, 
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just before the perfectly conserved ERDF sequence (Figure 6). Additionally, we created a mutant 

enzyme containing a BamHI site directly after the same ERDF sequence to determine if this 

highly conserved and highly negative peptide played an additional role in activation. Once those 

sites were confirmed in each mutant, we subjected the respective plasmid to BamHI digestion to 

create mutants lacking the acidic domain, and both the acidic domain and the perfectly conserved 

ERDF sequence. These two mutant BAM2 enzymes are referred to as B2-NDel1 and B2-NDel2, 

respectively. 
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Figure 5. Analysis of acidic and basic residues in BAM2 orthologs from 14 eudicots. A. 
Proportion of acidic (D, E) and basic (H, K, R) residues in the chloroplast transit peptides, 
acidic domains and catalytic domains, means +/- standard deviation, n=14. B. Charged 
residues (acidic=red, basic=blue) in the acidic domains only.  These sequences were not 
aligned.  Species used for both A and B were Arabidopsis thaliana, Beta vulgaris, Citrus 
clementina, Ipomoea nil, Jatropha curcas, Lactuca sativa, Manihot esculenta, Populus 
trichocarpa, Prunus persica, Quercus suber, Ricinus communis, Spinacia oleracea, 
Theobroma cacao, and Vitis vinifera. 
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Figure 6. A diagram showing the domains of each enzyme used to analyze the 
dependence of BAM2 activity on salt. Wild type BAM2 contains the acidic domain, the 
conserved ERDF sequence, and the catalytic domain. B2-NDel1 contains the conserved 
ERDF sequence and the catalytic domain, and B2-NDel2 contains only the catalytic domain. 
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 To purify these enzymes, each mutated gene generated from the BAM2 gene isolated in a 

pET-DUET plasmid which contained both an upstream IPTG sensitive promoter and a 

carbenicillin resistance gene. Proteins were purified as described in the methods section, and 

analyzed using an SDS-PAGE gel to ensure each protein was at least 90% pure (Figure 7).  

 Once enzymes were purified, the activity of each enzyme was analyzed at varying levels 

of KCl using the Somogyi-Nelson method of measuring reducing sugars. First, when activity 

was measured at increasing concentrations of KCl, wild type BAM2 displayed a sigmoidal-like 

curve, while B2-NDel1 was unaffected (Figure 8). Additionally, both B2-NDel1 and B2-NDel2 

were unaffected by salt when comparing activity at 5 mM KCl and 100 mM KCl (Figure 9)  

 Finally, to determine whether the removal of the acidic domain affected tetramerization, 

we used SEC-MALS to measure the molecular weight of both wild type BAM2 and B2-NDel1. 

BAM2 had an average molecular weight of 214.9 ± 9.1 kDaltons (n=3), and B2-NDel1 had an 

average molecular weight of 221.7 ± 16.3 kDaltons (n=3) (Figure 10). B2-NDel2 was not 

purified enough to utilize SEC-MALS. 
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Figure 7. An SDS-PAGE gel analyzing the purity of wild type BAM2, B2-NDel1, and 
B2-NDel2. Lane 1 contains the marker, lane 2 contains 0.6 µg of wild-type BAM2, lane 3 
contains 0.6 µg of B2-NDel1, and lane 4 contains 0.1 µg of B2-NDel2.  
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Figure 8. Activity of B2-WT and B2-NDel1 with increasing concentrations of KCl. Activity of 
wild-type BAM2 is shown in green and activity of B2-NDel1 is shown in red. The activities were 
plotted relative to the highest activity of each enzyme. 
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Figure 9. Activity of B2-NDel1, B2-NDel2 with high and low concentrations of 
KCl. 80 mM KCl was used to show activity at high KCl, and 5 mM KCl was used to 
show activity at low KCl. Error bars represent the standard deviation above and below 
the average (n=3). 
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  Figure 10. SEC-MALS data of BAM2-WT and BAM2-NDel1. The primary Y 
axis represents the relative Reyleigh ratio of light scattering, the secondary Y-axis 
represents the molecular weight of the protein in Daltons, and the X-axis represents 
the time the sample eluted from the column. BAM2-WT is in green, and BAM2-
NDel1 is in purple. The averaged molecular weights of each protein is in the 
corresponding color in the top left of the figure. 

BAM2-WT=	214.9 ± 9.1	kDa	

BAM2-NDel1=	221.7 ± 16.3 kDa	
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Discussion 

 β-amylase2 in Arabidopsis is an evolutionarily conserved BAM that was widely believed 

to be inactive (Fulton et al., 2008; Li et al., 2009). Recently, BAM2 was shown to be 

catalytically active in the presence of high ionic strength, and is likely activated by KCl in vivo 

(Monroe et al., 2017). This insight into the requirements for activity allowed us to discover that 

BAM2 also displays sigmoidal kinetics due to a secondary binding site, and that BAM2 is 

tetrameric in its native state. While the secondary binding site and tetramerization had been 

previously described in Monroe et al. (2017) and Pope (2017), respectively, the salt dependence 

had not been further analyzed.  

 As previously reported in the Senior Honors Thesis of Lauren Pope, using a tetrameric 

model of BAM2, we predicted two specific interfaces that are responsible for tetramerization, 

interface A and B. Interface A binds two monomers together to create a functional dimer, and 

interface B binds two dimers together to create a functional tetramer. To test these interfaces, 

Pope (2017) mutated perfectly conserved residues in BAM2 that were not conserved in BAM5. 

As expected, the residues identified as a possible interface in the homology model appeared to be 

supported in the data obtained from the mutagenized proteins. After these data were obtained, the 

tetramer model was adjusted to better match the data collected. Because of this, the tetramer 

model was supported and was used to analyze the structure of BAM2. 
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Using sequence alignments of BAM2 orthologs, we found a domain on the N-terminus of 

the protein that was enriched in acidic residues in comparison to the catalytic domain and the 

chloroplast transit peptide. Additionally, a short, perfectly conserved sequence made up of a 

glutamic acid, arginine, aspartic acid, and phenylalanine (ERDF) was found directly adjacent to 

the C-terminal end of the hypothesized acidic domain that was not conserved in other active 

BAMs (Monroe, unpublished). Because of their close proximity to the starch-binding site, both 

the acidic domain and the ERDF sequence were hypothesized to interact with starch binding to 

the SBS and thus activation of the enzyme. Two mutants were made—one lacking the acidic 

domain and containing the ERDF sequence (B2-NDel1), and one lacking both the acidic domain 

and the ERDF sequence (B2-NDel2). Using activity assays to analyze the activity of each of the 

B2-NDel mutants, we found that while wild-type BAM2 requires KCl to function, both of the 

B2-NDel mutants have similar activity with and without KCl, indicating that the acidic domain 

might play a role in the salt requirement of BAM2 (Figure 9). Additionally, preliminary data 

using MALS shows that removing the acidic domain did not disrupt tetramerization of B2-

NDel1 (Figure 10). 

In the homology model of BAM2, this acidic domain has minimal secondary structure, 

suggesting that it might have greater flexibility than other parts of the enzyme. It is possible that 

this flexible, negatively charged sequence could bind to a positive area of the enzyme not yet 

observed by our lab. If this is the case, the addition of salt could alter the position of the acidic 

domain, allowing for starch to bind to the SBS leading to the activation of the enzyme. In this 
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scenario, if this acidic domain is then removed, the enzyme would essentially be “locked” in the 

same active state that it would be if salt was continuously present. Interestingly, the salt curve of 

wild-type BAM2 is sigmoidal. If K+ binds to multiple negative residues on the N-terminus, and 

there is a specific threshold of residues that must be bound to activate the enzyme, as the 

concentration of salt increases, the activity of BAM2 might increase sigmoidally. 

While the tetramer model is supported by the mutations created in the tetramer interfaces, 

homology models are often not able to predict the structure of termini due to the variability of 

terminus length in homologs. Therefore, the acidic domain might actually form a more complex 

structure that we cannot observe at this time. We are currently working on obtaining a crystal 

structure of BAM2, which will likely help us to form more accurate hypotheses. 

Focusing specifically on B2-NDel2, which has much lower activity than both wild-type 

BAM2 and B2-NDel1, we can also hypothesize that the ERDF sequence plays an important role 

in activation of the enzyme. Due to the close proximity of the ERDF sequence to the acidic 

domain, and to the starch binding groove, it is not unreasonable to think that a necessary 

interaction could be taking place between the ERDF sequence and the starch binding groove, 

therefore impacting starch binding and thus the activity of the enzyme when the ERDF sequence 

is removed. While it is certainly possible, it is unlikely that two unique characteristics of BAM2, 

the salt requirement and the sigmoidal kinetics, would have impactful structures directly next to 

each other and have no interaction.  
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To further investigate the role of the acidic domain and the ERDF peptide in BAM2, it 

would be beneficial to obtain a resolved crystal structure of both the wild-type enzyme and the 

two B2-NDel mutants. Additionally, by mutating the acidic residues on the acidic domain to 

uncharged residues and testing the activity of this enzyme with different concentrations of salt, 

we can further test the hypothesis that the negatively charged residues might be interacting with 

salt.  

In summary, the tetramer model has been supported through data obtained from several 

mutagenized proteins, and is therefore beneficial when hypothesizing potential structural 

characteristics of BAM2. Using this model and BAM2 ortholog sequence alignments, we 

identified two areas of interest near the N-terminus—an acidic domain and a four amino acid 

sequence that is highly conserved in BAM2 orthologs. From data collected using proteins 

lacking the acidic domain, we hypothesize that an approximately 30 residue sequence interacts 

with the cation of stromal salts, specifically K+. Additionally, using a mutated BAM2 protein 

lacking both the acidic domain and the ERDF sequence, we have reason to believe that the 

ERDF sequence plays a significant role in the activation of BAM2. These data help to 

differentiate BAM2 as one of the more unique BAMs in Arabidopsis, and therefore is worthy or 

further investigation. 
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