
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Technical Reports (CIS) Department of Computer & Information Science 

1-1-2011 

Litmus Tests for Comparing Memory Consistency Models: How Litmus Tests for Comparing Memory Consistency Models: How 

Long Do They Need to Be? Long Do They Need to Be? 

Sela Mador-Haim 
University of Pennsylvania 

Rajeev Alur 
University of Pennsylvania, alur@cis.upenn.edu 

Milo Martin 
University of Pennsylvania, milom@cis.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/cis_reports 

Recommended Citation Recommended Citation 
Sela Mador-Haim, Rajeev Alur, and Milo Martin, "Litmus Tests for Comparing Memory Consistency 
Models: How Long Do They Need to Be?", . January 2011. 

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-11-04. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/948 
For more information, please contact repository@pobox.upenn.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kosmopolis

https://core.ac.uk/display/214173066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/948
mailto:repository@pobox.upenn.edu


Litmus Tests for Comparing Memory Consistency Models: How Long Do They Litmus Tests for Comparing Memory Consistency Models: How Long Do They 
Need to Be? Need to Be? 

Abstract Abstract 
Even though the general problem of comparing two memory models is infeasible, in this paper we show 
that checking the equivalence of two memory models becomes feasible when we consider a more 
restricted class of memory models. We define a class of memory models that is expressive enough to 
include most known hardware memory models, and we establish a bound of two threads and no more 
than six memory access instructions for contrasting litmus tests in this class of models. Thus, we can 
compare memory models in this class by checking a small number of litmus tests. We build a tool for 
comparing memory models based on this theorem and use the tool to explore and map the space of this 
class of models. 

Comments Comments 
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-11-04. 

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/948 

https://repository.upenn.edu/cis_reports/948


Litmus Tests for Comparing Memory Consistency Models:
How Long Do They Need to Be?∗

Sela Mador-Haim
University of Pennsylvania

Rajeev Alur
University of Pennsylvania

Milo M.K. Martin
University of Pennsylvania

ABSTRACT
Even though the general problem of comparing two memory
models is infeasible, in this paper we show that checking the
equivalence of two memory models becomes feasible when
we consider a more restricted class of memory models. We
define a class of memory models that is expressive enough to
include most known hardware memory models, and we es-
tablish a bound of two threads and no more than six memory
access instructions for contrasting litmus tests in this class
of models. Thus, we can compare memory models in this
class by checking a small number of litmus tests. We build
a tool for comparing memory models based on this theorem
and use the tool to explore and map the space of this class
of models.

1. INTRODUCTION
Well-defined memory consistency models are important

for reasoning about the correctness of hardware, parallel
software, and compiler optimizations. Developing and un-
derstanding formal specifications of hardware memory mod-
els is a challenge due to the subtle differences in allowed
reorderings. Architecture manuals include litmus tests that
can be used to differentiate between memory models, but do
not guarantee the completeness of those litmus tests.

Recent work [11] showed memory consistency models can
be contrasted by systematically enumerating litmus tests of
a bounded length. This technique, however, is not sufficient
to prove the equivalence of two models. Conventional wis-
dom is that contrasting litmus tests are typically short, but
a bound for litmus tests has not been established so far.
Without restricting our class of memory models, there is no
bound for the size of contrasting litmus tests. For example,
for any bound k, we can define two models that behaves dif-
ferently only for one specific test of size k+1. Therefore, we
need to consider a more restricted class of memory models.

This paper defines a class of memory models which is lim-
ited to show a bound, yet expressive enough to contain most
hardware memory models, including Sun’s SPARC [15], In-
tel’s x86 [8] and Alpha [13]. This class of memory models
is defined using a must-not-reorder function that specifies
which instructions in the program cannot be reordered. For
a given must-not-reorder function, we specify all possible or-
ders between memory operations using a “happens-before”

∗The authors acknowledge the support of NSF grants CCF-
0905464 and CCF-0644197, and of the Gigascale Systems
Research Center, one of six research centers funded under
the Focus Center Research Program (FCRP), a Semicon-
ductor Research Corporation entity.

partial order. We prove that for this class of models, short
litmus tests consisting of two threads and up to three mem-
ory access instructions (reads and writes) in each thread
are sufficient to contrast any two models in this class. Fur-
thermore, we show that the number of non-memory-access
operations is also bounded and depends on the choice of
predicates in the must-not-order function.

In addition to bounding the size of contrasting litmus
tests, we reduce the number of litmus tests further by consid-
ering instantiations of seven different templates, which are
sufficient for contrasting all memory models in this class.
This way, we reduce the number of litmus tests necessary
for equivalence checking of two memory models by several
orders of magnitude over naive enumeration.

Finally, we use this equivalence checking technique to ex-
plore this class of memory models. We select a set of pred-
icates that specifies the commonly used properties of mem-
ory models including different reordering choices for memory
access instructions, full fences, and data dependencies. We
show that for this class of memory models, consisting of 90
different models, there are eight pairs of equivalent models
and identify nine litmus tests that are sufficient for diffren-
tiating all memory models in this class.

The main contributions of this paper are:
A theorem that bounds the size of contrasting litmus

tests, which justifies the conventional wisdom regarding the
size of litmus tests.

A tool for comparing memory models, which works in
a reasonable time (seconds) and can show the equivalence
between memory models based on the theorem we proved.

Results of exploration of the space of memory models
in our class of models, using our tool, showing how differ-
ent choices in the specification affect the models and which
models are equivalent.

2. SPECIFYING MEMORY MODELS
This section defines the class of memory models studied

in this paper. We start with a general definition of memory
models as a set of allowed program executions. We provide
a definition for an expressive but limited class of memory
models, describe the predicates used for defining the models,
and show how different known memory models are defined
in our framework.

2.1 Program Executions
A parallel program P is a set of concurrently executed

threads, where each thread is a sequence of instructions.
In the context of memory models, we classify instructions



into two groups: memory access instructions, which are in-
structions that read and write to memory, and non-memory
access instructions, which include any other instruction in-
cluding memory fences, arithmetic operations and branches.

Memory consistency models define the possible behaviors
of a parallel program and constrain the values each read may
observe. A general way to define a memory model is as a
set of allowed program executions. Informally, a program
execution specifies the sequence of instructions that were
executed in each thread, annotated with the actual values
for all the involved registers.

In each step, a program executes an instruction with con-
crete values for all of the involved registers. An instance of
instruction i, annotated with the values for all the involved
registers, is called an instruction execution.

A thread may exhibit many different executions, because
an execution usually depends on the other threads. A thread
execution, αt is a sequence of instruction executions in the
order they are executed in thread t. In case an instruction
is executed more than once (due to a loop), there can be
several instruction executions that correspond to the same
instruction, so loops are unrolled.

As an example for thread executions, suppose a thread
t reads from memory to registers r1 and r2, computes the
result of r1 + r2, stores it to r3, and finally writes r3 to
memory. An execution αt of that thread could have any
value for r1 and r2, but each write would always be the sum
of r1 and r2.

The order of two instruction executions x and y with re-
spect to a given thread execution αt is called program order.
We use the notation x < y when x precedes y in αt. A
program execution, αP , associates a thread execution with
each thread in a program P . A memory model M is defined
as a set of allowed program executions. For two memory
models, M1 and M2, we say that M1 ⊆M2 if and only if for
every program execution αP , αP ∈M1 implies αP ∈M2. If
M1 ⊆M2 and M2 ⊆M1, the two models are equivalent.

2.2 The Class of Memory Models
The general problem of comparing two memory models,

in which each memory model is defined as a set of allowed
program executions, is infeasible. The size of contrasting
litmus tests is generally unbounded. Our approach is to
consider a class of memory models that is limited enough
to bound the size of contrasting litmus tests yet expressive
enough to include most existing hardware memory models.

The class of memory models we consider is a class of
relaxed memory models that allow reorderings of local in-
structions. The order in which memory access operations
(read and write) are performed does not have to be the same
as their program order, and the types of instructions that
can and cannot be reordered vary between different mem-
ory models. We allow a thread to read it’s own writes early,
but do not allow read other thread’s writes early [1]. Thus,
this class of memory models is expressive enough to include
most hardware memory models, including Sequential Con-
sistency (SC) [9], Sun’s SPARC [15] and Intel’s x86 [8], but
not non-store-atomic models like PowerPC [3].

These memory models are defined using a must-not-
reorder function F (x, y) → {True, False}. Intuitively, if
F (x, y) is true, the instructions x and y cannot be reordered
and must be executed in program order. Based on the choice
of F , we define which program executions are allowed, using

two relations between instruction executions in a program
execution αP : A read-from map 7→, mapping reads to
the writes they are reading from, and an happens-before
order ⇒, which represents the global order of execution of
instructions in the program.

Given a program execution αP and a local order function
F , a relation 7→ is a read-from relation between instruction
executions in αP , if:

If x 7→ y, then x is a write, y is a read, and the value read
by y is same as the value written by x.

If x 7→ y and z 7→ y, then x = z (only one write is mapped
to each read)

If x is a read and there is no write y such that y 7→ x,
then x reads the initial value

If x > y, then x 67→ y (cannot read from a future write in
the same thread)

Given a program execution αP , a local order function F
and a read-from map 7→, a happens before relation ⇒ is a
partial order between instruction executions in αP with the
following properties:

Program order If F (x, y) and y > x then x⇒ y
Write-write If x and y are both writes to the same ad-

dress, then either x⇒ y or y ⇒ x
Write-read If x 7→ y and x and y are from different

threads, then x⇒ y
Read-Write If x is a read and y is a write to the same

address such that y 67→ x, and there is no write z such that
z 7→ x and y ⇒ z, then x⇒ y.
Ignore local If x > y then x 6⇒ y
A program execution αP is allowed in F , if there for some

read-from relation 7→ for αP there is a happens-before rela-
tion ⇒ which is acyclic.

2.3 Must-not-reorder Function Predicates
The must-not-reorder function F we use in our class of

models is a quantifier-free positive boolean function, con-
structed from a set of predicates D on instruction execu-
tions. Predicates are either unary or binary, and are defined
for a program execution αP and instruction executions x, y
in αP . For example, some commonly used predicates are:
• Read(x), Write(x), F ence(x) - the instruction is a

read, a write or a fence
• DataDep(x, y), ControlDep(x, y) - data and control

dependence
• SameAddr(x, y) - both x and y access the same ad-

dress
Our analysis of memory models is not restricted to a spe-

cific D. However, we require that all predicates preserve
some symmetry, such that a read can be permuted with
any other read (and a write by any other write) under this
symmetry. As an example, the set of predicates listed here
preserve value, address and register symmetries, so any two
reads Read X → r1 and Read Y → r2 can be permuted.

2.4 Memory Model Examples
Using the must-not-order function, we can define differ-

ent hardware models. For example, SC do not allow any
reordering and therefore specified using FSC = False.

IBM370’s memory model allows reordering writes after
reads, except reads to the same address. FIBM370(x, y) =
(Write(x) ∧ Read(y) ∧ SameAddr(x, y)) ∨ (Write(x) ∧
Write(y)) ∨Read(x) ∨ Fence(x) ∨ Fence(y)

SPARC’s TSO allows reordering writes after reads, in-
cluding reads to the same address. In case a write is ordered



Test A

T1 T2
Write X ← 1 Write Y ← 2
Fence Read Y → r2
Read Y → r1 Read X → r3

Outcome: r1 = 0; r2 = 2; r3 = 0

T1

Write X 1

Fence

Read Y r1

T2

Write Y 2

Read Y r2

Read X r3

RF HB

Figure 1: A Litmus test for TSO

after a read to the same address, there is an effect of load
forwarding, where a load observes local writes before they
become visible to other threads. As seen in Figure 1, the
⇒ relation does not include write-read edges between writes
and reads in the same thread. There is no happens-before
edge from Write Y ← 2 to Read Y → r2 and thus ⇒ is
acyclic. FTSO(x, y) = (Write(x) ∧Write(y)) ∨ Read(x) ∨
Fence(x) ∨ Fence(y).

Finally, SPARC’s RMO allows reordering everything
except fences, dependent instructions and read/write in-
structions after a write to the same address. FRMO(x, y) =
(Write(y) ∧ SameAddr(x, y)) ∨ Fence(x) ∨ Fence(y) ∨
DataDep(x, y) ∨ ControlDep(x, y).

3. SMALL LITMUS TEST THEOREM
Given two memory model specifications, we want to find

whether they are equal or different. We show that for the
family of memory models defined in Section 2.2, we only
need litmus tests with a bounded size. We find the bound
for these tests in terms of the number of memory accesses
in the test and number of threads.

Theorem 1. For every two memory models, M1 and M2,
that are defined via a must-not-reorder function, if M2 6⊆
M1, then there is a test P and an execution αP with two
threads and up to six memory access operations, such that
αP 6∈M1, αP ∈M2.

3.1 Conflict Cycle
Given two memory models M1 and M2, if M2 6⊆ M1,

there is a test P and execution αP such that αP ∈ M2 and
αP 6∈ M1. In this case, there is a read-from map 7→ and an
happens-before relation ⇒2 for αP and M2, such that ⇒2

is acyclic, and for every read-from map (including 7→) and
⇒1 for αP and M1, ⇒1 is cyclic.

Given ⇒1, an happens-before relation for M1, αP , 7→, let
C be the set of instruction executions in the smallest cycle
in ⇒. We construct the following execution, αP ′ , based on
the instructions in C:

1. If x ∈ C then x ∈ αP ′ .

2. If x is a write, y is a read and x⇒1 y, the value read
by y in αP ′ is the value written by x

3. If x is a read, y is a write and x⇒1 y, the value read
by x in αP ′ is the initial value.

4. If x, y are write instructions and x ⇒1 y, we add a
new read instruction z at the end of the thread of x,
reading the value written by y.

Lemma 1. αP ′ is in M2 but not in M1

Proof: ⇒2, the happens-before relation for M2 is acyclic,
and therefore the instructions in C do not form a cycle in
⇒2. There are two instructions x, y ∈ C, such that x⇒1 y,
x 6⇒2 y and there is no other instruction before x connected
to any instruction after y in the graph of ⇒2 (there is no
bypass edge). We call this edge between x and y a critical
edge. The only source of difference between ⇒1 and ⇒2 is
the difference in the local order function, and therefore x
and y belong to the same thread.

The only edges αP ′ adds to C are due to the added read
operations. These operations have incoming edges but no
outgoing edges and therefore can not form a cycle. Hence,
αP ′ has an acyclic happens-before relation in M2.

For any happens-before relation⇒P ′ for αP ′ and M1 and
any x, y in C, if x ⇒1 y is a program order edge, then
x ⇒P ′ y as well, because the local order function stay the
same. If x is a write and y is a read, then x⇒P ′ y because
y still reads the value written by x. If x is a read and y is
a write, then x⇒P ′ y because x reads the initial value and
all writes precede it. If x and y are both writes, x⇒P ′ y as
well, because the added read in x’s thread sees the value of
y, which is possible only if y precedes x. All the edges in the
cycle of ⇒1 are preserved in ⇒P ′ , and therefore it is cyclic.

3.2 Constructing Minimal Test
A segment is a sequence of instructions, connected by

program-order edges, that starts with a memory access op-
eration (read or write), ends with a memory access, and
has no other memory access in between them. We can clas-
sify the segments according to the type of memory accesses:
read-read, read-write, write-read, and write-write.

A segment that contains a critical edge is a critical seg-
ment. We can now show that for each type of critical seg-
ment, we can construct a litmus test with only two threads
and up to six memory access operations, as illustrated in the
diagrams in Figure 2:

Case 1 The critical segment is read-write. Use this seg-
ment at thread T1. Add an identical segment for T2,
changing the address of the read to match the write
in T1, and the write to match the read in T1. Total
number of memory access operations: four.

Case 2 The critical segment is a write-write. Use this seg-
ment for thread T1, duplicate it for thread T2, switch-
ing addresses. Add a read at the end of T1, reading
the value of the first write in T2, and a read at the end
of T2, reading the value of the first write in T1. Total
number of memory access operations: six.

Case 3 The critical segment is a read-read. Because there
are no inter-thread read-read edges in ⇒, there must
be either a write-write segment or both a write-read
segment W1, ...R1 and a read-write segment R2, ...W2
in the cycle. In the later case, according to the sym-
metry requirement in Section 2.3, there is a symmet-
ric segment R2′, ...W2′ such that R2′ = R1. There-
fore, we merge both segments into a write-write seg-
ment: W1, ...R1, ...W2′. Use the read-read segment
for thread T1 and the write-write segment for thread
T2. Total number of memory access operations: four
to five.



Read x

Write y

Read y

Write X

Case 1

T2

Write X

Read y

Write y

Read x

Case 4

Write X

Write y

Write Z

Write W

Read Z Read X

Case 2

Read x

Read y Write X

Write y

T1 T2T1 T2 T1 T2

Case 3

Write X

Read x

Write y

Read y

Write X

Read x

T1 T2

Case 5

Seg A
(critical)

Copy of
Seg A Seg A

(critical)
Copy of
Seg A

Seg A Copy of
Seg A Seg A

(critical)

Seg B
Seg A
(critical)

Seg B

Copy of
Seg B

T1

Figure 2: Litmus test templates by critical segment

Case 4 The critical segment is a write-read to different ad-
dresses. Use this segment as T1, duplicate it for T2,
change the read in T2 to match the address of the write
in T1 and vice versa. Each read gets the initial value.
Total number of memory access operations: four.

Case 5 Like Case 4, but write and read are both to the
same address. If there is a segment with a write and
then a read to the same address, there cannot be a
memory-access read-write edge involving this read be-
cause according to our definition of a minimal cycle,
the read should receive the initial value, which is im-
possible in this case. So we conclude there is another
read-read or read-write segment in the same thread.

1. If there is a read-read segment to two different ad-
dresses, merge it after the critical segment (com-
bined segment have 3 operations), and continue
as in Case 4. Total number of memory access
operations: six.

2. If there is a read-write segment, merge it after the
critical segment, resulting in a write-write seg-
ment. Copy the read-write segment to T2, con-
nect the end of T1 with T2 using a write-read edge,
and connect the end of T2 with the beginning of
T1 (adding a read at the end of T2 as previously
discussed). Total number of memory access oper-
ations: six.

3.3 Local Segments
Theorem 1 bounds the number of threads and the number

of memory access operations (reads and writes) required in a
litmus test. However, additional instructions such as fences,
arithmetic operations or branches affect the dependency re-
lations between memory access instructions and therefore
may be required. The required number of non-memory ac-
cess instructions depends on the specific choice of predicates
in D.

For example, consider a hypothetical model with n special
fence instructions f1, ...fn and the predicate special(x, y)
which is true if either: (1) x is a memory access instruction
and y = f1, (2) x = fn and y is a memory access. Or, (3)
x = fi and y = fi+1. Consider F1(x, y) = SameAddr(x, y)∨
special(x, y) and F2(x, y) = SameAddr(x, y). Any litmus
test contrasting F1 and F2 should include a local segment of
n+2 instructions such as Read X, f1, ...fn,Write y. There-
fore, the minimal number of non-memory access instructions
in a local segment depends on the choice of predicates and
the instruction set.

The length of local segments is bounded by the number
of equivalence classes of instructions according to our choice

of predicates. Given a set of predicates D, two instruction x
and y are equivalent with respect to D, x =D y if for every
predicate d ∈ D and every instruction z, d(x, z) = d(y, z)
and d(z, x) = d(z, y). Consider the memory model with
a must-not-order function F1, and a segment i1, ...in in a
minimal conflict cycle for this model. Because it is a seg-
ment in a cycle, for every two adjacent instructions ij , ij+1,
F1(ij , ij+1) is true. Suppose two instructions in the segment
are equivalent ij =D ik (1 < j < k < n), then F1(ij , ik+1)
is also true and therefore we can reduce the segment to
i1, ..ij , ik+1, ..in, in contradiction to the minimality of the
cycles. We conclude that a local segment cannot contain two
equivalent non-memory-access instructions, and therefore its
length is bounded by the number of equivalence classes for
these instructions.

3.4 Reducing the Number of Litmus Tests
A consequence of the proof of Theorem 1 in Section 3.2

is that not only we can bound the size of the litmus tests
to two threads and six instructions, we can further reduce
the number of litmus tests by exploring the cases described
in the proof of Theorem 1. There are five different cases
listed in the proof, and two of the cases (Case 3 and Case
5) are split into two sub-cases, which amounts to a total of
seven templates. We can therefore compare memory models
by instantiating these seven templates with all possible local
segments.

Two segments s1, s2 are equivalent with respect to D if
they are of the same length and for every pair of instructions
in s1, every predicate in D would have the same value as for
a pair of instructions in the same position in s2. Corollary
1 gives a bound for the number of tests as a function of the
number of distinct segments of each type.

Corollary 1. Suppose the number of distinct local seg-
ments of each type given by NWW , NWR, NRW , and NRR.
The total number of required tests is given by NRW +NWW +
NRR(NWW +NWR ×NRW ) +NWR(1 +NRR +NRW )

As discussed in Section 3.3, it is sufficient to know
the set of predicates to bound the number of local
segments. For example, suppose the predicates are:
Read(x), Write(x), F ence(x), SameAddr(x, y) and
DataDep(x, y). For read-write segments, we need to
consider segments with only independent read and write,
with dependent read and write, and a segment with a
fence between the read and the write. For each of these
three cases, we need to consider read and write to the
same address and to different addresses, so NRW = 6
and similarly NRR = 6. For write-read and write write
segments we do not need to consider dependencies (writes



Test L1

T1 T2
Write X ← 1 Read Y → r1
Write Y ← 1 Fence

Read X → r2
Outcome:
r1 = 1; r2 = 0

Test L2

T1 T2
Write X ← 1 Read X → r1
Write X ← 2 Read X → r2

Outcome:
r1 = 2; r2 = 0

Test L3

T1 T2
Write X ← 1 Read Y → r1
Fence Read X → r2
Write Y ← 2

Outcome:
r1 = 2; r2 = 0

Test L4

T1 T2
Write X ← 1 Read Y → r1
Fence t1 = r1-r1+X
Write Y ← 2 Read [t1]→ r2

Outcome:
r1 = 2; r2 = 0

Test L5

T1 T2
Read X → r1 Read Y → r2
Write Y ← 1 Write X ← 1

Outcome:
r1 = 1; r2 = 1

Test L6

T1 T2
Read X → r1 Read Y → r2
t1 = r1-r1+1 t2 = r2-r2+1
Write Y ← t1 Write X ← t2

Outcome:
r1 = 1; r2 = 1

Test L7

T1 T2
Write X ← 1 Write Y ← 1
Read Y → r1 Read X → r2

Outcome:
r1 = 0; r2 = 0

Test L8

T1 T2
Write X ← 1 Write Y ← 1
Read X → r1 Read Y → r3
t1 = r1-r1+Y t2 = r3-r3+X
Read [t1]→ r2 Read [t2]→ r4

Outcome:
r1 = 1; r2 = 0; r3 = 1; r4 = 0

Test L9

T1 T2
Write X ← 1 Read Y → r2
Read X → r1 t2 = r2-r2+2
t1 = r1-r1+1 Write X → t2
Write Y ← [t1] Read X → r3

Outcome:
r1 = 1; r2 = 1; r3 = 1

Figure 3: Contrasting litmus tests

do not generate dependencies), so NWR = NWW = 4.
According to Corrolary 1, we need a total of 230 tests to
contrast memory models expressible with these predicates.
Similarly, without data dependencies, we need 124 tests.

A naive enumeration of all tests within the bounds of The-
orem 1 results in approximately million tests even without
dependencies. Earlier work [11] describes optimizations that
reduce the number of tests to several thousands. This pa-
per improves upon earlier work by more than an order of
magnitude.

4. EXPERIMENTAL RESULTS

4.1 Implementation
We implemented a tool for contrasting memory model

specifications via systematic exploration of litmus tests. We
use the method described in Section 3.4 to reduce the num-
ber of tests according to the set of predicates used in the
specification. The memory models are specified using a
must-not-reorder function and the axioms in Section 2.2.
We use the SAT solver mini-sat [7] to test if a litmus test is
admissible for a given memory model.

4.2 Exploring the Space of Memory Models
Using this tool, we performed an exhaustive explo-

ration of all memory models that are expressible using
the framework described in Section 2.2, with the pred-
icates: Read(x), Write(x), Fence(x), SameAddr(x, y)
and DataDep(x, y). This set of predicates is sufficient
to describe most common properties of memory models,

M1010
M1110
RMO

M4010
M4110

L1

M1410

L7 M1040

L5

M1011
M1111

L2

M4410

L7

M4040
M4140

L5

M4011
M4111

L2L1

M1440

L5

M1411

L2

M4440

L5

M4411

L2

M1140

L9

M1041

L2

L7

M4041
M4141

L2

L1L7

M1141

L2

L1

M1441

L2

M4441

L2

L1L7

L5

M1014

L3

L7 L5

M4014

L3L1 L5

M1414

L3

L5

M4414

L3

L9

M1044
PSO

L3

L7

M4044
TSO,x86

L3

L1L7

M1144

L3

L1

M1444

L3

M4444
SC

L3

L1

M1114

L8 L5

M4114

L8L5 L1L7 L5

L7

M4144
IBM370

L5L1 L5

L5

L1 L8

L8 L1L7

L7L1

Figure 4: Relation between explored models (with-
out data dependencies)

including data dependencies. Models expressible in this
framework include IBM370, Intel’s x86 Sparc’s TSO,
PSO and variants of RMO and Alpha (for a complete
specification of RMO and Alpha, we need to add control
dependencies, which were not implemented but are sup-
ported by our framework). As discussed in Section 3.4, it
is sufficient to check 230 litmus tests to contrast all models
when using the above set of predicates.

Based in the selected predicates, there are five possible
choices for each of the four pairs of memory operations
(write-write, write-read, read-write and read-read). The
options to allow reordering are:

0. Always
1. Accesses to different addresses
2. There are no data dependencies
3. Different addresses and no data dependencies
4. Never
Some of the above options can be eliminated for some of

the instruction pairs. Reordering read-write and write-write
with the same address can violate single-thread consistency
and therefore we do not consider them. Additionally, there
is no need to consider dependencies for write-read and write-
write. After eliminating these cases, there are two available
choices for write-write, there choices for write-read and read-
write and all five choices are available for read-read, which
result in 90 possible memory models.

Using our tool, we compared these 90 models with each
other. The tool tested whether each model is equivalent or
strictly stronger than the other models, and which litmus
tests can be used to contrast each pair of models. The
comparison of each pair of models was done in a few seconds,
and a pairwise comparison of all 90 models completed in 20
minutes.

Out of the 90 different models, eight pairs of models are
equivalent. All equivalent pairs of models are models that



differ only with the choice of whether to allow reordering of
writes with later reads to the same address. Furthermore, a
set of nine different litmus tests is sufficient to contrast any
two non-equivalent memory models in this space. Figure 3
shows the set of nine litmus tests. The relationships between
the explored models is shown in Figure 4. The direction of
the arrows is from weaker to stronger models, and the labels
on the edges are the litmus tests that distinguish between
the models. Due to space considerations, the graph in Figure
4 does not include models with data dependencies.

A further analysis of this minimal set of litmus tests shows
that tests L1 to L7 in Figure 3 correspond directly to the
choices in model enumeration. For example, test L5 checks if
a read can be reordered after an independent write to a dif-
ferent address, and test L6 checks if a read can be reordered
after a dependent write to the same address (ignoring data
dependencies). The assignment t1 = r1 − r1 + 1 is a stan-
dard trick for generating data dependencies between r1 and
the write that uses t1. One exception in the case of reorder-
ing writes after later reads to the same address. As shown
in Case 5 of the proof of Theorem 1, when the critical seg-
ment is a write-read segment to the same address, we need
either a read-read or a write-read segment following it to
close a cycle. This leads to litmus tests L8 and L9 in Figure
3. Test L8 is used in models where reads to a different ad-
dress cannot be reordered. By adding dependencies between
the reads, it can also be used for models that do not allow
reordering dependent reads. Similarly, Test L9 is used for
models that do not allow reordering reads with later writes.
However, in models that allow reordering both read-write
and dependent read-read, neither Test L8 nor Test L9 can
be used. Thus, write-read reordering to the same address
cannot be detected. These models are the eight pairs of
equivalent models found by our experiments.

5. RELATED WORK
There has been a considerable amount of work on defin-

ing frameworks for specifying memory consistency models [1,
2, 4, 5, 12, 14, 16]. The concept of happens-before partial
order between events was introduced by Lamport [10] and
then by Adve [2] in the context of memory consistency mod-
els. Burckhardt and Musuvathi [6] provide a definition for
SPRAC’s TSO using a happens-before relation. Alglave et
al. [4] define a framework for specifying hardware memory
consistency models using a happens-before relation. Our
class of memory models is similar to the one described by
Alglave et al. Mador-Haim et al. [11] describes a technique
for contrasting memory models via automatic generation of
litmus tests up to a certain bound, but they do not identify
a bound for those litmus tests.

6. CONCLUSIONS
In this paper we showed that even though the general

problem of comparing two memory model specifications is
infeasible, checking the equivalence of two memory models
becomes feasible when we consider a more restricted class
of memory models. We defined a class that is limited yet
expressive enough to include most known hardware memory
models, and we established a bound of two threads and six
memory accesses for contrasting litmus tests in this class of
models. Thus, we can compare memory models in this class
by testing a small number of litmus tests.

Furthermore, we analyzed a subset of this class that
includes most common memory model features, including
instruction reordering, fences and data dependencies, and
showed that a set of nine litmus tests is sufficient to contrast
models in this subset.

References
[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory

consistency models: A tutorial. IEEE Computer, 29:66–76,
1996.

[2] Sarita V. Adve and Mark D. Hill. Weak ordering - a new def-
inition. In In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 2–14, 1990.

[3] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O.
Myreen, Susmit Sarkar, Peter Sewell, and Francesco Zappa
Nardelli. The semantics of power and ARM multiprocessor
machine code. In DAMP, 2009.

[4] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter
Sewell. Fences in weak memory models. In CAV, 2010.

[5] Arvind and Jan-Willem Maessen. Memory model = instruc-
tion reordering + store atomicity. SIGARCH Comput. Ar-
chit. News, 34(2):29–40, 2006.

[6] Sebastian Burckhardt and Madanlal Musuvathi. Effective
program verification for relaxed memory models. In CAV,
pages 107–120, 2008.

[7] Niklas Een and Niklas Sorensson. Minisat - a SAT solver
with conflict-clause minimization. In SAT, 2005.

[8] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual, March 2010.

[9] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess program. IEEE Transactions
on Computers, 28(9):690–691, 1979.

[10] Leslie Lamport. Time, clocks, and the ordering of events in
a distributed system. Commun. ACM, 21:558–565, 1978.

[11] Sela Mador-Haim, Rajeev Alur, and Milo Martin. Generat-
ing litmus tests for contrasting memory consistency models.
In CAV, 2010.

[12] Vijay A. Saraswat, Radha Jagadeesan, Maged Michael, and
Christoph von Praun. A theory of memory models. In
PPoPP, pages 161–172, 2007.

[13] Richard L. Sites. Alpha Architecture Reference Manual.
Prentice Hall PTR, 1992.

[14] Robert C. Steinke and Gary J. Nutt. A unified theory of
shared memory consistency. J. ACM, 51(5):800–849, 2004.

[15] David L. Weaver and Tom Germond. The SPARC Architec-
ture Manual Version 9. Prentice Hall PTR, 1994.

[16] Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and
Konrad Slind. Nemos: A framework for axiomatic and ex-
ecutable specifications of memory consistency models. Par-
allel and Distributed Processing Symposium, International,
1:31b, 2004.


	Litmus Tests for Comparing Memory Consistency Models: How Long Do They Need to Be?
	Recommended Citation

	Litmus Tests for Comparing Memory Consistency Models: How Long Do They Need to Be?
	Abstract
	Comments

	tmp.1295470054.pdf.sa9T9

