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A Formal Analysis of Some Properties of Kerberos 5 Using MSR

Abstract

We give three formalizations of the Kerberos 5 authentication protocol in the Multi-Set Rewriting (MSR)
formalism. One is a high-level formalization containing just enough detail to prove authentication and
confidentiality properties of the protocol. A second formalization refines this by adding a variety of
protocol options; we similarly refine proofs of properties in the first formalization to prove properties of
the second formalization. Our third formalization adds timestamps to the first formalization but has not
been analyzed extensively. The various proofs make use of rank and corank functions, inspired by work of
Schneider in CSP, and provide examples of reasoning about real-world protocols in MSR.We also note
some potentially curious protocol behavior; given our positive results, this does not compromise the
security of the protocol.
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Abstract

We give three formalizations of the Kerberos 5 authentication protocol in the Multi-Set Rewriting (MSR) for-
malism. One is a high-level formalization containing just enough detail to prove authentication and confidentiality
properties of the protocol. A second formalization refines this by adding a variety of protocol options; we similarly
refine proofs of properties in the first formalization to prove properties of the second formalization. Our third for-
malization adds timestamps to the first formalization but has not been analyzed extensively. The various proofs make
use of rank and corank functions, inspired by work of Schneider in CSP, and provide examples of reasoning about
real-world protocols in MSR. We also note some potentially curious protocol behavior; given our positive results, this
does not compromise the security of the protocol.
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Introduction and Background

1 Introduction

Kerberos [13, 17, 16, 18] is a widely deployed protocol, designed to repeatedly authenticate a client to multiple
application servers based on a single login. The protocol uses various credentials (tickets), encrypted under a server’s
key and thus opaque to the client, to authenticate the client to the server; this allows the client to obtain additional
credentials or to request service from an application server. A formalization of Kerberos 4, the first publicly released
version of this protocol, was given in [5] and has since been extended and thoroughly analyzed using an inductive
approach [1, 2, 3, 4]. This analysis, through heavy reliance on the Isabelle theorem prover, yielded formal correctness
proofs for a fairly detailed specification, and also highlighted a few minor problems. A simple fragment of the latest
version, Kerberos 5, has been investigated using the state exploration tao[Mijr This approach proved effective

for finding an attack, which the authors of [14] note is unrealizable in a full implementation of Kerberos 5, but came
short of proving positive correctness results.

Here we report on a project whose goal is to use the Multi-Set Rewriting (MSR) framework to give a precise
specification of Kerberos 5 at various levels of detail, ranging from a minimal account, similar to that used in [14], to a
detailed formalization of every behavior encompassed by this complex suite [13, 16]. Our particular objectives include
giving a precise and unambiguous description of this protocol, making its operational assumptions explicit, stating the
properties it is supposed to satisfy, and proving that it satisfies these properties. This will complement the currently
spotty and often vague information in the literature. This project is also intended as a test-bed for MSR on a real-world
protocol: we are interested in how easy it is to write large specifications in MSR, in what ways this language can be
improved, and whether the insight gained with toy protocols scales up. In this work we have also started exploring
forms of reasoning that best take advantage of the linguistic features of MSR.

In this paper we provide three formalizations of Kerberos 5, which we call our A, B, and C level formalizations.
The B and C level formalizations add detail to the A level formalization but are not otherwise related. The A level
formalization omits most timestamps and all optional features, including only what we believe is needed to provide
authentication. Itis similar to the formalization of Kerberos 4 in[1, 2, 3], but without timestamps. This level of abstrac-
tion is a good starting point to utilize the proof techniques demonstrated within this paper, providing a formalization
which is not overly complicated (making proofs feasible), but which retains many properties of the full Kerberos 5
protocol. Our B level formalization adds some timestamps and temporal checks to our A level formalization, thus
closely paralleling the formalization of Kerberos 4 in [1, 2, 3]. We have not found any new and interesting properties
or anomalies related to the timestamps here; the two features of the B level which are not found in [1, 2, 3]—the
single option of mutual authentication and error messages—seemed like the most promising area to focus our efforts.
This leads to our C level formalization, which does not include temporal checks or most timestamps. It extends the A
level formalization by making mutual authentication optional and adding error messages, along with several low-level
aspects of the protocol, namely options, flags, and checksums, none of which has appeared in any previous study of
Kerberos. We have focused our investigations on the A and C level formalizations, with the abstraction of the for-
mer facilitating reasoning about the protocol and the detail of the latter providing an interesting step on the way to
formalizing the protocol in full detail.

We have proved confidentiality and authentication properties [11] for our A level formalization, and have extended
some of these proofs to our C level formalization; in each case, we use the notion of rank and corank functions,
inspired by [20]. While Kerberos specifically disclaims responsibility for preventing denial of service attacks, we have
noticed instances of other potentially curious protocol behavior. The first, which arises in both the A level and C level
formalizations, violates properties that were proved to hold for Kerberos 4 [1] and highlights the structural differences
between the messages in versions 4 and 5 of the protocol. The other three instances of curious behavior, seen only
in our C level formalization, take advantage of protocol options available at this level; the first and third of these are
related to the behavior also seen at the A level, while the second is completely unrelated. Our informal analysis of the
B level formalization did not reveal any new anomalies.

A shorter, preliminary report on this work appeared in [6]. This paper adds the B level formalization, analysis
of the C level Ticket-Granting Exchange and of the A level Client/Server Exchange, and some additional curious
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Figure 1: Expected message flow in Kerberos 5

protocol behavior. The A and C level formalizations have been updated in minor ways, as has our analysis of the A
level Ticket-Granting Exchange.

The rest of this paper is structured as follows. In Sections 2 and 3 we give an overview of the Kerberos 5 protocol
and the MSR formalism. Our A level, C level, and B level formalizations are given in Sections 4, 5, and 6, respectively.
In Section 7 we discuss the curious protocol behavior that we have noted; in Section 8 we define the rank and corank
functions we use in our analysis of the protocol, and in Section 9 use these classes of functions to prove confidentiality
and authentication properties of Kerberos 5. The appendices provide details not included in the text, including the full
proofs of protocol properties, MSR traces showing the anomalies discussed here, and a comparison of the network
messages formalized here with the full messages specified by [16]

2 Overview of the Kerberos 5 Protocol

The Kerberos 5 protocol allows a client to repeatedly authenticate herself to multiple servers while minimizing the use

of the long-term secret key(s) shared between the client and the Kerberos infrastructure. The client starts by obtaining a
long-term credential, whose use requires her long term (shared) key, and then uses this to obtain short-term credentials
for particular servers. Assume thatl&nt C wishes to authenticate herself to an applicatiener S. A standard run

of Kerberos 5 which accomplishes this consists of three successive phases; the expected message flow in these phases
is shown in Figure 1 and proceeds as follows.

e In the first phase sends &RB_AS_REQ message to thKerberos Authentication ServéiKAS) K requesting
a ticket granting ticketT’GT for use with a particulailicket Granting Serve(TGS) T. K is expected to
reply with akRB_AS_REP message consisting of the tickBG'T' and an encrypted component containing a fresh
authentication keyd Key to be shared betweefi and7’. T'GT containsAKey and is encrypted using the
secret keykr of T'; the accompanying message is encrypted uddersecret keyk. Each ofkc andkr is
shared between the named participant and a central key database from which it is accegsible by



e In the second phasé€; forwards TG T, along with anauthenticatorencrypted undeA K ey, to the TGS T' as
aKRB_TGS_REQ message; this requestsearvice tickefor use with theserver S. T'is expected to respond with
a KRB_TGS_REP message consisting of the service ticlfdt and an encrypted component containing a fresh
service keySKey to be shared betweefi andS. ST containsSKey and is encrypted undes’s secret key
ks, which is shared betwee$ and the central key database accessibl@ bthe information forC, including
SKey, is encrypted unded K ey.

e In the third phase( forwards ST and a new authenticator encrypted wil ey in a KRB_AP_REQ message
to S. If all credentials are valid, this application server will authentiodt@nd provide the service. The
acknowledgmerkRB_AP_REP message is optional.

A single ticket-granting ticket can be used to obtain several service tickets, possibly from several application servers,
while it is valid. Similarly, a single service ticket for the application setye&an be used for repeated service fr6m
before it expires. In both cases, a fresh authenticator is required for each use of the ticket.

Note that the message flow is generally similar to that in Kerberos 4. However, Kerberos 5 includes a multitude of
options, some of which we formalize in Section 5, not available in the previous version of the protocol. Additionally,
the structure of thiKkRBAS REPand KRBTGSREP messages changed between versions 4 and 5 of the protocol.

In version 4 the ticket-granting ticket is sent by the KAS as part of the message encrypted under the client’s secret
key ko, and the service ticket sent by the TGS is likewise encrypted under the sharedidkay In version 5, the
ticket-granting ticket and the service are sent without further encryption. This enables the cut and paste anomalies
which we describe in Section 7 and slightly weakens the properties which were proved for Kerberos 4.

As we formalize different aspects of Kerberos 5, we will modify Figure 1 to show how we represent these protocol
messages in MSR.

Finally, we note that the Kerberos 5 protocol has changed from its initial specification [13]; our work here is based
on version 10 [16] of the revisions to [13]. Among other things, this adds anonymous tickets (in whidleiilb's
name is replaced by a generic username) to the protocol. We discuss curious protocol behavior related to anonymous
tickets in Section 7.2; anonymous tickets may or may not be present in future revisions of Kerberos 5 [15], and have
been removed from the current version of the protocol description [18]. (The description of the protocol is an IETF
Internet Draft, each version of which has a six month lifetime.)

3 MSR

MSRoriginated as a simple logic-oriented language aimed at investigating the decidability of protocol analysis under a
variety of assumptions [9, 10]. It evolved into a precise, powerful, flexible, and still relatively simple framework for the
specification of complex cryptographic protocols, possibly structured as a collection of coordinated subprotocols [8];
its connections to other protocol analysis methods have been the subject of more recent work [7]. MSR uses strongly-
typed multiset rewriting rules over first-order atomic formulas to express protocol actions and relies on a form of
existential quantification to symbolically model the generation of fresh @agaiionces or session keys). It supports

an array of useful static checks that include type-checking and data access verification. It has so far been applied to
toy protocols such as Needham-Schroeder and Neumann-Stubblebine [8]; one of the aims of this project is to evaluate
it on a real-world protocol. We will introduce the syntax and operations of MSR as we go along.

3.1 Signature

In order to specify a protocol in MSR, the protocol entities need to be classified and appropriately (sub)typed. The
signature fragment in Figure 2 sets up the typing infrastructure in the case of Kerberos 5, with the ‘Types’ column
summarizing the types used in this work. Italicized typeg( ts for TGS or server, andtcs for ts or client) are
auxiliary and serve the purpose of making precise the definitiodskfandshK; a laxer definition could do without

them. The ‘Subtyping’ column expresses the subtyping relations satisfied by thesertypes’(means that is a

subsort ofr’), with indentation used as a visual aid to track dependencies. The declarations shown in black support
the A and B level formalizations (Sections 4 and 6) of this protocol, whilegythged-ouadditions are necessary for

the C level specification (Section 5).



Types Subtyping Names
(Messages) msg : type. m, X,Y
(Principals) principal : type. principal <: msg.

KAS : type. KAS <: principal. K

tcs : type tcs <: principal.

ts : type ts <. tcs.

TGS : type. TGS <: ts. T

server : type. server <: ts. S

client : type. client <: tcs. C
(Encryptiontypes) etype : type. etype <: msg. e
(Keys) key : etype — type.

dbK : etype — tecs — type. Ve : etype,A : tcs. dbK® A <: key®. k.

shK : etype — client — ts — type. Ve : etype,C : client, A : ts. shK® C' A <: key®. AKey

Ve : etype,C : client, A : ts. shK® C' A <: msg. SKey

(Nonces) nonce : type. nonce <: msg. n
(Timestamps) time : type. time <: msg. t.,.
(Options) Opt : type. Opt <: msg.

KOpt : type. KOpt <: Opt. KOpts

TOpt : type. TOpt <: Opt. TOpts

SOpt : type. SOpt <: Opt. SOpts
(Flags) Flag : type. Flag <: msg.

TFlag : type. TFlag <: Flag. TFlags

SFlag : type. SFlag <: Flag. SFlags

Figure 2: An MSR Signature for the A level afdlevel Specifications of Kerberos 5

Observe that shared keysK _ ) can be part of a message, but database kis (), i.e., keys shared between
tes principals and the key database, cannot. Notice also that the encryption types (needed in the C level specification)
parameterize the various keys.

Additional declarations are needed to populate these types. In order to do so, we declare actual clients, servers,
database keysstc Conventional names for various meta-syntactic entities are given in the rightmost column of
Figure 2. For example, clients will typically call€d. An underscore in a name will be appropriately instantiated in
the discussion: for exampléc will represent the database key of a cli€handtc g, Will stand for a timestamp
included byC' in a request t&.

The syntax of messages is shown in Figure 3. The first two declarations formalize concatenation and shared-key en-
cryption (with the encryption algorithm potentially depending on the encryption type). The third declaration captures
message digests as an implementation of cryptographic hashing; these are declared similarly to shared-key encryption.
We will generally keep the encryption type implicit unless we are specifically discussing it (as in Section 7.3).

(Pairing) _,_: Msg — msg — msg.
(Encryption) {_}- : etype — msg — key — msg.
(Messageligest) [.]-: etype — msg — key — msg.

Figure 3: Syntax for MSR messages.

3.2 States and roles

Intuitively, MSR represents the state of execution of a protocol as a mustiséground first-order formulas. Some
predicates are universal; in particulbliym) indicates that message is transiting through the network. Other predi-

cates are protocol-dependent and are classified as gifrapryor role state predicatesMemory predicates are used

to store information across several runs of a protocol, to pass data to subprotocols, and to invoke external modules.
The intruden stores intercepted information in the predicaté(m). We will encounter other memory predicates as

we go along. Role state predicates, usually writte@s.), allow sequentializing the actions of a principal.



Principals cause local transformations to this global stalby non-deterministically executingultiset rewriting
rulesof the formr = lhs — rhs, wherelhs is a finite multiset of facts and constraints. These constraints, which are
not facts, are used by principals &g, check system clocks or determine the validity of requests via external processes
not explicitly modelled here. Whenever the factdin are contained it and the constraints are all satisfied, rule
can replace these facts with those frehz. The actual definition is slightly more general in the sense that rules are
generally parametric anchs may specify the generation of fresh dageg(, nonces or session keys) before rewriting
the state.

The rules comprising a protocol or a subprotocol are collectedategparameterized by the principal executing
it. Rules in a role are threaded through using role state predicates declared inside the role.

Part Il
Formalizing Kerberos 5

4 A Level Formalization of Kerberos 5

Our A level formalization of Kerberos 5 has enough detail to prove authentication and confidentiality results (dis-
cussed in Section 9) but contains little else. The most notable omission is that of almost all timestamps; the sole one
included here prevents tl®&B_AP_REP message from being the encryption of an empty message. Bella and Paulson’s
thorough analysis of Kerberos 4 included consideration of timestamps. The primary differences between Kerberos 4
and Kerberos 5 do not involve timestamps; as we have focused on the unanalyzed details of Kerberos 5, we have
omitted timestamps from this formalization of the protocol. However, a natural extension of our work thus far would
be a formalization and analysis of Kerberos 5 which includes all (or most) of the timestamps and temporal checks used
in this protocol. We leave this for future work.

Figure 4 updates Figure 1 to show how the different protocol messages are represented in this formalization of
Kerberos 5.

4.1 The Authentication Service Exchange

Figure 5 shows thelient role for the Authentication Service Exchange. Wliénclient undertakes this role, she may
use rulen; ; to send &KRBAS REQmessage to ani : KAS requesting a ticket granting ticket for affy: TGS. In
this formalization, th&KRBAS_REQmessage contairs’s name,I’s name, and a freshly generateshce n;. When

C sends the request, she also stores the information from the reGu&st&ndn,) in a role state predicate.

C expects the response fraffito be composed of her name, an opaque message (intended to be the ticket granting
ticket), and another message encrypted under one of her database keys. This encrypted message is expected to contain
a key of typeshK C T to be shared betweeti and7" and used in the Ticket Granting Exchange, itbece n; from
C’s original request, an@”s name. If a message of this form appears on the networkses the role state predicate
L to ensure that theonce and the name of th&GS in this message match those in her original request), theray
read this message from the network and save the relevant information. She does this using,rulbich replaces
the factsN(C, X, {AKey,n1, T}, ) and L(C, T, ny) with the factAutho (X, T, AKey), a memory predicateC'
thus saves the (presumed) tickét the namél” of the TGS for whom the ticket was requested, and the Kdy ey to
be shared by’ andT'.

Figure 6 shows the role of the Kerberos Authentication Server for the Authentication Service Exchange. When-
ever a validKRBAS REQmessage appears on the network, &hy KAS may read that message from the network
and respond appropriately. The validity of tKRBAS REQmessage is determined by some external process (incor-
porating local policy) modelled by the constralitlidx (C,T,n1). K's response involves generating a fresh key
AKey : shK C T to be shared by thélient C and TGS T nhamed in thetKkRBAS REQmessage and then putting a
message, intended fdr, on the network. This network message contdifs name, the ticket granting ticket to be
included inC’s later request(s) t@’, and data foiC' encrypted under one of her database keys. The ticket granting
ticket contains the key to be shared betw&eandC' andC’s name, with these encrypted together using on&’sf



Client(C) KAS (K) TGS(T) Server(S)
KRB_AS_REQ
° [ ]
— Normal messages
. KRB_AS REP .
~+—> Application messages
KRB_TGS_REQ
° >~ e
KRB_TGS_REP
° L]
KRB_AP REQ
° >~ e
k
KRB_AP_REP
[ [ ]
*
Application messages
* [. [ ]
KRBAASREQ: C,T,n
KRB_AS_REP : C,{AKey, C}kT’ {AKey,n1, T}kc
KRBTGS REQ: {AKey,C}, {C} k., C: S n2
KRB.TGSREP: C,{SKey, C}ks, {SKey,n2, S}Akey
KRBAAPREQ:  {SKey,C}y ,{C,tc,sreqtsrey
KRBAAPREP :  {tC,sreq)sicey
Figure 4: Protocol messages in the abstract formalization
3L : client x TGS X nonce. v Ciclient
dnq : nonce
VT :TGS. a1.1
VK : KAS. . N(C,T,n1)
L(Cz T: TLl)
V...
Vkc : dbK C .
N X, {AK T
VAKey:shk T, (& AAKey,n1, T}y ) 1.2 Authe (X, T, AK ey)
. L(C,T,n1) —
VX : msg .
Vn1 : nonce

Figure 5: The client’s role in the A level Authentication Service Exchange.

VC : client

VT : TGS

Vn1 : nonce N(C,T,n1)

Vke : dbK C Validg (C,T,n1)
Vkr : dbK T

VAKey :shKCT.

VEK:KAS

JAKey : shK C' T

N(C,{AKey, C’}kT7
{AKey7 ni, T}kc)

Q2.1

Figure 6: The authentication server’s role in the A level Authentication Service Exchange.




database keys. The encrypted datadoare AK ey, thenonce from the request to whiclk” is responding, and”s
name.

4.2 The Ticket-Granting Exchange

3L : client(®) x server x TGS(T) x shK C T x nonce. VCsclient

VT : TGS . dns : nonce

VS : server . 3.1 N(X, {C} C, S, n3)
Autho (X, T, AKe ) AKeyr &2 12

VAKey : shK C'T. ( v) . Atho (X8 S K en)

VX :msg ’ L(C,S,T, AKey,n2)

V... .
N(C,Y,

gf/K;ijs shKCS. {SKey, n27S}AI(cy) ai? Servicec (Y, S, SKey)

% .. & L(C757T7AK€ZJ7”2)

no : nonce

Figure 7: The client’s role in the A level Ticket-Granting Exchange.

Figure 7 gives thelient role for the Ticket-Granting Exchange. liciient C' has successfully completed the Au-
thentication Service Exchange to get a ticket and keJfoiT GS (as evidenced by the predicatetho (X, T, AKey)),
she may use rules ; to send KRBTGS REQmessage t@'. (This predicate does not guarantee tNas a ticket for
T, only that it was received in the Authentication Service Exchange in the place for the ticket.) In firirg rl€
generates a frestonce and puts a message on the network containing the presumed Xigkat authenticator con-
sisting of her name encrypted undéfk ey, her name, the name of the sengfor whom she wants a service ticket,
and the freshly generatednce no. This rule preserves the predicatethc since tickets may be used multiple times
(until they expire, which is not modelled here) and also creates a role state prddighteh contains information(f,

S, T, AKey, andn,) related toC's KRBTGS REQmessage.

C expects the response frdfto contain her name, and opaque message (intended to be the service ticket), and
additional data encrypted under the kéy ey which is shared betweefi andT. These data are a key to be shared
between”' and theserver S for whomC' has requested credentials, theace ne from C’s request td’, andS’s name.

If a message of this form appears on the netwafknay use rulevs » to process it; as in the Authentication Service
Exchange( uses the role state predicate to ensure that the prepet is included in the response she receives. This

rule consumes the network message and role state predicate and stores the (presumed) service ticket, server name, and
new shared key in the memory predicéte-vicec.

VC' : client . VT:TGS
VS : server . .
N({AKey,C}, 3SKey : shK C' S
VAKey :shK C T. P kT ay.
Ver dbk T . (Clake, C:Sn2) e N(C,{SKey,C};,
Vkg:dbK § . Validr(C, S n2) {SKey,n2,5} 4e,)

Vng : nonce

Figure 8: The ticket granting server’s role in the A level Ticket Granting Exchange.

Figure 8 contains th& GS role in the Ticket-Granting Exchange. When a v&{l@B TGS REQmessage appears
on the network, th& GS T' whose database key is used to encrypt the ticket in this message may process the request.
As in the Authentication Service Exchange, the validity of the request is checked by an external process which is
modelled here as the constralntlid,. T' may process a valid request message by firingdule, which consumes
the network message fact, generates a fresh key to be shared digdh&’ andserver S named in the request, and
puts a message intended foron the network. This message contaffifs name, a service ticket to be passed on to
S, and data folC' encrypted under the kej K ey which was included in the ticket-granting ticket and used’bto
encrypt the authenticator in tHERBTGSREQmessage. The service ticket is encrypted under orfgsoflatabase

10



keys and contains the freshly generated Kéyey andC’s hame. The data encrypted fOrare the freshly generated
key, thenonce from theKRBTGSREQrequest to whicl" is responding, and th&'s name.

4.3 The Client/Server Exchange

JL : client(©) x server(S) x shK C' S x time x msg. VCiclient

VS : server .

VSKey:shK C' S. Servicec(Y,S,SKey) as.1 N(Y’{C7 thSTeq}SKey)

Vte Sreq i time . Clocke (to sreq) N Servicec (Y, S, SKey)

VY 7ka‘Sg A’ ) L(C S7 SK@yvtC,Srch)
N({tC,ST'eq}S[{ey) a5 .2

V... L(C, 8, SKey, tersreq, V) o DoneMutc (S, SKey)

Figure 9: The client’s role in the A level Client/Server Exchange (with mutual authentication).

Figure 9 contains thelient role for the Client/Server Exchange. Once thient C' has obtained a (presumed)
service ticket and key for thesrver S via the Ticket-Granting Exchange (storing these in the memory predicate
Servicec), she may use the rule; ; to request service frorfi. In addition to the predicat8ervicec (Y, S, SKey),
which stores the data from the ticket-granting exchange, the left side of this rule also contains the cafstirt ¢, srcq)-
This is satisfied if and only i€’s local time iSt¢ greq : time. The firing of ruleas ; puts aKRBAP_REQmessage
on the network; this consists of the messag&om the Servicec predicate, presumed to be a service ticketSor
and an authenticator. The authenticato€fs hame and her current time encrypted together using theSkeéyy
which was stored witlY” in Servicec. This rule preserves th€ervice predicate for future reuse and also creates
a role state predicate containing information about the request. Although not explicitly shown in this formalization,
we assume that' requests mutual authentication from Heever S; our detailed formalization below allows far to
specify whether or na$ should respond.

C expectsS to respond by sending a message consistirtg:@f.., encrypted by the keg Key, shared byC and
S, which C used to encrypt the authenticator in KBBAP_REQmessage. If she sees a message of this form on the
network (and has sent the matching initial request as indicated by the role state préjlicatmay use ruleys » to
read thiskRBAP_REPmessage from the network. She then storess¢heer’'s name and the shared k& ey in
the DoneMutc memory predicate (indicating that the protocol has finished with mutual authentication used). The
DoneMutc predicate and ke§ K ey would be used by’ in additional interactions witly' (such as sending messages
related to network services provided BY after authentication has been completed; as this is outside of the Kerberos
protocol, we do not formalize it here.

V.S:server

VC' : client .
N({SKey,C}, .,
VSKey:shKC S. ({{C ' 4 }}'fs ) 6.1 N({tC\,Sreq}SKey)
Vtc sreq © time PO, Sreqf SKey — Mems(C, SKey,tc sreq)

Vs :dbK § . Valids(Ctc,sreq)

Figure 10: The end server’s role in the A level Client/Server Exchange (with mutual authentication).

Theserver’s role in this exchange is shown in Figure 10. If the network contains a ¥&BAP_REQmessage
intended forS (the ticket is encrypted using one of his database keys), then he may process it using rubes for
the other request messages, the validity ofKRBAP_REQmessage is determined by an external process which we
formalize as the constraiffalids(C,tc sreq)- This rule puts &KRBAP_REPmessage on the network; this consists
of the timestampc sr, from the request being processed encrypted by the sharefiKey included in the service
ticket. S also stores the relevant information about this request and his response, namééptisename, the shared
key, and the time of the request, in the memory prediddtens. This is analogous t¢"s predicateDoneM ut in
that this information may be used after authentication is completed but is not part of the protocol itself and thus not
used in our formalizations.
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4.4 A level intruder formalization

In this section, we present the rules specifying the Dolev-Yao intruder model for Kerberos 5.
We divide the actions available to the intruder into three categories:

e the fairly standard operations of interception/transmission of a network message, decomposition/composition of
a pair, and decryption/encryption of a message given a known key (Section 4.4.1);

¢ the often overlooked action of generating new data (Section 4.4.2);

e and the use of accessible data (Section 4.4.3).

4.4.1 Network, pairing and encryption rules

We present the following pairs of rules describing how the Dolev-Yao intruder can work with data on the network or
in her possession; the rules in each pair are symmetig; €ncryption and decryption) operations.

The intruder may intercept network messad®sI(), removing them from the network, and transmit messages she
knows (TRN):

(Vm:msg. N(m) —— I(m))I (Vm:msg. I(m) =% N(m))I

The intruder may decomposBP i C) and composeGMP) compound messages:

| |
(s . o) 25 () (v (G225 )
If the intruder knows a shared key, she may decrg® ) and encrypt §EC) messages using this key:

VC : client . V(' : client

VA:TS . I({m}k) sDC’ VA:TS . m) s

Vk:shK C A, 1(k) — Im) vkishk CA 1k b
VYm :msg . Vm : msg

If the intruder knows a database key, she may decHpt¢’) and encryptDEC’) messages using this key:
VA:TCS . ({m},) . ! VA:TCS . I(m) . !
Vk : dbK A. I(k7)n KOS (m) Vk:dbK A. Y 2 1({m},)
Vm :msg . VYm :msg .

Finally, the intruder may duplicatddPM andDPD) and delete DLM andDLD) any of the data (messages or
database keys) that she knows; the deletion rules can be safely omitted from the specification.

(Vm:msg. I(m) =% :Eg)>ll (Vm:msg. I(m) % -)II
(:?A::TO(I:SKA: (k) = :EZiD <§;€4A::T§bSKA: I(ka) = )

4.4.2 Data generation rules

In general, the intruder should be able to generate everything an honest principal can generate, often nonces and
session keys but nothing else. In the case of Kerberos, we must admit an exception to this rule: because principals
forward uninterpreted data, we must also allow the intruder to create garbage, modelled as objects of the generic type
msg.

The intruder may generate fresh nonde§), session keys{G’), and generic messagaedG) using the following
rules:

N

( S EIn:nonceI(n))I
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( NN Hm:msgl(m))I

The intruder is not allowed to generate any other kind of data—principal names of any kind (the introduction of new
agents happens out-of-band), long-term keys (they are distributed out-of-band), or timestamps (they are generated by
an external clock, not by any principal)—as that would open the door to countless false attacks. Ndt@ tihaes

not allow the generation of database keys (which are not subtypesgdf nor does it generate terms which may be

typed as anything other thansg. In particular, the messages freshly generateii&y are not the encryption of any

other messages; in Section 8, we restate this in terms of the rank functions defined there as Axiom 1.

4.4.3 Data access rules

The intruder is entitled to look up the same data that any other principal may; she may store these ddi@)in the
predicate for later use.
The intruder has access to the name of any princip@ht, server, TGS, or KAS):

(VA:principaI. i |(A))I

The intruder also has access to any defined timestamp. As timestamps are guessable, they are thus qualitatively
different from nonces here. We note that this may provide the intruder with more power than she would reasonably
have.

<Vt:time. LN I(t))I

The intruder is entitled to lookup any session key she owns. This is modelled by the following two slightly

asymmetric rules.
|
VA : TS . SAr
(Vk:shKlA. B '(k>>

. |
VC' : client . SAZ’
(Vk:shKCl. B '(k)>

It should be possible to prove that these rules are redundant since the intruder, like any other principal, is handed her
session keys by the KAS or the TGS; these rules could then be eliminated.
Finally, the intruder may access any of her long-term (database) keys:

(vh cdbK 1 - 2 |(/g))I

5 C Level Formalization of Kerberos 5

Our C level formalization is closer to the full Kerberos 5 specification than is our A level formalization in Section 4.
Figure 11 updates Figure 1 to show the protocol messages in the C level formalization, with those details not in the A
level formalization shown here igraytype.

In this formalization we extend the A level formalization by adding the message field which allolestato
request various options (includidgNONYMOURkets where implemented) fromTEGS as well as the message field
(of type etype) which the client uses to request particular encryption method(s); we note curious behavior involving
these details of the protocol in Section 7. We now include message digests as specified by Kerberos 5; one topic for
further work is their utility in defending against the anomalous behavior discussed in Section 7. Here we add the
message field (of typ8Opt) which allowsC to specify whether & RBAP_REPresponse front' is requested and
have also incorporated error messages. These will allow investigation of protocol runs which would not appear in the
previous analyses of Kerberos. Although we do not make use of it, we have also added the option fieldK&fptype
to parallel those of type§Opt andSOpt and various flag fields corresponding to the option fields already discussed.
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KRB_AS_REQ : KOpts,C,T,n1,e TGT = {TFlags,AKey, C}kT
KRB_AS_REP : C, TGT, {AKey,nl,TFlags,T};cC ST = {SFlags,SKey, C}ks
KRB_TGS_REQ : TGT,{C, MD, f(?'-T"'t'I}AKey’ TOpts,C, S,na, e MD = [TOpts, C, S, n2,€ , ey
KRB_TGS_REP : C,ST,{SKey,n2, SFlags,S}% k., MD' =1.. IsKey ‘
KRB_AP_REQ : SOpts,ST, {C, AwiD/,tc,qu}SKey ‘

KRB_AP_REP : {tc,sreqt s Key

KRB_ERROR—X : KRBERROR[—|tc Treq|tc,Sreq), t(x|7|S),errs ErrCode, C, (K|T|S)

Figure 11: Protocol messages in the C level formalization

The C level formalization allows the various servers to send error messages in response to requests. In order
to associate error messages with the corresponding requests, the authenticators/'sant 19 now include the
timestamps ¢ rr.q aNdtc sreq; We have not, however, added any temporal checks involving these timestamps. Note
that error messages are completely unencrypted and do not contain any information which was originally sent in
encrypted form. These can be generated at will by the intruder.

Figures 12—-19 give the non-intruder roles in the C level formalization.gFaigtext indicates detail which appears
here but not in the A level formalization. Figures 18 and 19 are entirely gray as these roles are used onlyliatien a
does not request mutual authentication frosera&er, a protocol option not included in the A level formalization. The
rule corresponding to rule; ; in the A level formalization is denoted by ;; alternative rules are indicated by priming
j (e.g, for error handling) ot (for the Client/Server Exchange without mutual authentication).

While fields specifying encryption type appear in several messages in this level, and should technically appear for
every encrypted message that occurs (following to Section 3), we explicitly include these only in the Authentication
Service Exchange rules (Section 5.1) unless we are discussing encryption types in particular (as in Section 7.3).

5.1 The Authentication Service Exchange

Figure 12 shows thdient role for the Authentication Service Exchange in our detailed formalization. Rulallows
theclient C to initiate the authentication process by sending a message€A® & . This extends Rule; ; by adding
fields for options £ Opts) and encryption typee] to both the request message placed on the network and the role
state predicaté.

Rule~; » parallels rulen; > and allowsC' to process the expected response filgmin addition to accounting for
KOpts ande from the original request, this rule also accepts and stores thelfiéldgs which describes the options
actually granted bys (which may or may not match those requested-l)y
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3L : client x KOptx TGS x nonce xetype. VC:client

VT : TGS

VK :KAS . s )
VK Opts : KOpt. _ N(K (){)L&C, T,n1,e)
Ve : etype L(C, KOpts,T,ny,e)

3nq : nonce

V...

Vkc :dbK O .

YaKey s oT. NG AR, na  Authc(X,TFlags,
1 msg . nl,Tf[u,gs,T}kc) . T, AKey)

Ve! : etype . L(C,KOpts,T,ny,e) i

Vn1 : nonce .

VT Flags : TFlag .

oo , - N (KRB*ERIEOR’ K errs Y AS Errorc (KRB_ERROR,
VErrorCode : msg. ErrorCode, C, K) o ‘e ErrorCode 1&)
Vi err @ time . L(C,KOpts,T,ni,e) Kerr B

Figure 12: The client’s role in the C level Authentication Service Exchange.

Finally, rule~; o allowsC to process generic error messages returned; this has no analogue in the A level formal-
ization. If C' has an AS request pending (as evidenced by the existence of the role state pigdicateshe sees an
error message on the network which includes her name, then she may read the error message from the network and
store the information contained in it in the memory predicdfeError (which is new in this formalization). We do
not currently use thel.S Error predicate beyond this, but it might be used to allow more extensive error processing
by theclient. Note that thenonce n; is not returned in the error message¢ithas multiple requests pending with a
KAS K, each with its owmonce, there is no way fo€' to associate the error message with the request that generated
the error.

Figure 13 shows the authentication server’s role in the detailed formalization of the Authentication Service Ex-
change. Ruley ; parallels rulexs 1, adding details which allow the processing of the requested opkiangts (the
options actually granted are describedliflags) and encryption type. The constrainl’alidy incorporates the
additional details Opts ande added to the request. We use constréietAuth Flags i to implementk’s granting
of options in the ticket-granting ticket; we allow these to depend on the requested options and the names of the princi-
pals who will share the key generated by this rule. Lik@idg, Set AuthFlags may depend on local policy and is
not explicitly described in the formalization. The constrafiat ETypes implementsk’s policies for selecting an
encryption type:’ for the data forC' (taking into account her requested encryption type(gind an encryption type
e’ for the ticket forT".

VC : client VIGKAS
VT : TGS
Vn1 : nonce .
Ve, e ¢! : etype ‘I\/I'([lxﬁl)pz;g) 7;, né;—? : JAKey :shK C'T
. e’ atra (KL Opts,C,1,n1,¢ Y2.1 i "

Vke @ dbK //C SetAuthFlagsy (KOpts, C,T,TFlags) — N(C,{TFlags,AKey,C}g .,
Vkr :dbK® T . SetETypesi (C,e, e, T,e") {AKey,n1,TFlags T} )
VAKey :shK C'T.
VK Opts : KOpt
VT'Flags : TFlag .

V... . N(KOpts,C,T,ni,e)

VErrorCode : msg. Invalidg (KOpts,C,T,n1,e) Y21/ N(l}f_RjB:E,RPEUR’ tl{,“”["l"

Vf,[(.,j,.r : time . (7/()(1.[{']\" (tl(\urr) 7 srrorC Od&' (/-' ' )

Figure 13: The authentication server’s role in the C level Authentication Service Exchange.

Rule~, 1/ allows theKAS K to send an error message in response to an invalid message request. The invalidity
of arequest is determined by the constrdimtalid i, which is not defined in the formalization but which is assumed
to hold when the request is invalid for the reason given by the error EoderCode. (If there are multiple reasons

15



why a request is invalid, we assume thiavalidx conforms to implementation-specific rules about which error code
to return.) Ruley, 1, also makes use of the constrafiifock i to generate a timestamp for the error message; as for
Clocke inrule as 1, this constraint is satisfied exactly when its argument matéfis$ocal time.

5.2 The Ticket-Granting Exchange

Figure 14 shows the C levelient role in the Ticket-Granting Exchange. Thient C' now includes a timestamp

tc,rreq IN her request to th@GS T', which she places on the network using regle;. She used Opts to specify

the options she would like set on the new ticket, possibly including the request faNn@NYMOUtcket if this

option has been implemented as in [16].also uses the keyl K ey which she shares witl’ to construct a keyed
checksumTOpts, C, S, na, e]AKey; following the protocol specification, the checksum is notincluded in the data (the
KRB-REQ-BODYpart of the message) over which the checksum is taken. The role state predicate has been expanded
from the A level version to store the additional information from her request in this formalization, ndi6elss,

tc Treq, ande.

3L : client(©) x TOptxserver X TGS(™) x shK C T x noncextime. VCsclient
VT : TGS
VS : server . 3na : nonce
VAKey :shK C'T. N(X, {C,[TOpts,C,S,n2,€] 40y
VX :msg . Authg(X,TFlags,T, AKey) V3.1 te Treq} axceys TOPES,C, S, ma, €)
Vio,Treq t time . Clocke(te,req) - Authe (X, TFlags, T, AK ey)
VT'Flags : TFlag . L(C, TOpts,S, T,
VT Opts : TOpt AKey,na, t¢: Treq, €)
Ve : etype ’ ' '
V... .

N(C,Y,

:il.{fnys' shK C'S. {SKey,n2, SFlags,S} , Key) Y3.2 Servicec (Y, SFlags,
o e L(C, TOpts,S, T, N S, SKey)

ng : nonce . AK L 0
VSFlags : SFlag . €Y, N2,1C,Treq, ©
v N<KRB7ERRUR~ Z(f,','l"r'sz(p ["[',f:l'rﬂ

g ’ ErrorCode,C,T) 3.9/ T e S
V]:Jrror(,,o.d,( : msg. L(C,TOpts, S, T, e TGSErrorc(T,tr err, ErrorCode)
Yir ery @ time

AKey,n2,tc Treq,€)
Figure 14: The client’s role in the C level Ticket-Granting Exchange.

Rule v3.o parallels ruleas s, adding theSFlags field in the expected response frdm (this indicates which
options were actually granted on the ticket created byand extending the memory predicéiervice to store this
information.

The client C' processes error messages fréhusing rulevys; o. As formalized here, the processing of these
messages consists only of reading them from the network, deleting the role state predicate associated with the original
request, and storing data about the error in the memory predid@elLrror. An extension of this formalization
might make further use of this predicate to allow a more nuanced respomsédogrror messages.

Figure 15 shows th&GS role in the Ticket-Granting Exchange. Rujg; allows theTGS T to process a valid
request in the C level formalization fromcéient C, including the new message fields discussed forctleat role.

We also add th&etServFlagsy constraint, which implements’s policies in granting options in response to those
requested by via theT'Opts field; here, we allow the granted options to depend upon the properties of the ticket-
granting ticket {'F'lags) as well as the principalS and.S who will share the new key generated by this rule. Another
constraint verifies the keyed checksum included in the request.

Rule~v,.1- allowsT to generate an error message in response to an invalid request for a service ticetdié,
constraint ensures that an appropriate error code is included in this message; nbiwedhat; has sufficient infor-
mation to determine whether the checksum included in the request message is corréckheconstraint is used,
as elsewhere, to obtain the local time.

16



VC : client . VT:TGS
VS : server .
VAKey :shK C'T.

Vkp : dbK T . N({TFlags,AKey,C},_,

Vkg : dbK S . {C.ck,te,Treqt axcey 3SKey : shK C S

Vnso : nonce . TOpts,C, S,na,e) V4.1 , )

VtC,’I‘I‘fﬁq : time . Valsz (TOplLS,C, S7 ng, e, t(f.T?‘(‘q) I N(C};;:{SFZ(L(/S;?FIjQy, CS}kS’
VT Opts: TOpt . SetServFlagsr(TOpts, TFlags,C,S,SFlags) {SKey, n2, ags, }AKey)
Ve : etype . ck=[TOpts,C,S,n2,e] , Key

VSFlags : SFlag . )

Vck : msg

VT Flags : TFlag .

N({TFlags, AKey, C}Aq— ’
o ' {C, ck, L(,'er'(‘q}A]{r«,y7
VErrorCode : msg. TOI?fs-, S, na, ‘,) : AE: N(ER%E??OP;:[’?'J%S‘F e
ViT,err : time Invalidy (TOpts, C, S, na, e
: e,tc, Treq, ck)
Clockp (tr,err)

Figure 15: The ticket granting server’s role in the C level Ticket Granting Exchange.

5.3 The Client/Server Exchange

Figure 16 shows thelient role for the Client/Server Exchange when thient C' would like mutual authentication

from theserver S. Rule~s.; parallels ruleas. 1, adding a few new details. Th&€Opts field allows C' to request
particular behavior on the part 6f and is now stored in the role state predicAteOne of the options controlled by

SOpts is mutual authentication (a reply froin response to a valid request fraf¥). If this option is requested, the
constraintM utual (SOpts) holds. We assume that this is the case here, and treat the other case separately below. The
network message generated @ynow also includes a keyed checksum. Since the contents of this are not specified
by [13], we leave this a§ . .]SKey here. If the properties of a checksum over a particular set of data are of interest,
this can be specified in the formalization.

3L : client(®) x SOptxserver(S) x shK C' S x time x msg. VOsclient
VS : server .
ztS Key: Shtﬁnf S Servicec (Y, SFlags,S, SKey) N(SOpts,Y, {C, .. | gcey tC.Sreat sey)
VY?S;;qg " Mutual(SOpts) E Servicec (Y, SFlags,S, SKey)
VSFlags : SFlag . CZOCkC(tC,Sreq) L(C, SOpts,S, SKey:tC,Sr'eqyy)
VSOpts : SOpt
N({tC Sreq} ) Y5.2
V... y SKey 192 D Mutco (S, SK
L(C,SOpts,S,SKey,tc,sreq, Y) — oneMuto (S, cy)
V... . N(KRB_ERROR, ¢ Syeq, N
VErrorCode : msg. ts.err, ErrorCode, C, S) i: APErrorc(S,ts, err, ErrorCode)
Vts err : time . L(C,SOpts,S,SKey,tc sreq, Y)

Figure 16: The client’s role in the C level Client/Server Exchange with mutual authentication.

Rule~s .o allows C to process a message whose form matches that of the expected responSetfienextends
rule as .- to treat the addition o6 Opts. Rule s o, allows C to process an error message fréin As with error
messages in the other exchanges, this deletes the relevant role state predicate and stores the currently unused error
information in a memory predicate (he#P Error).

Figure 17 shows theerver role for processing requests which require mutual authentication. If the network
message is a valid request, ®eever S uses ruleyg ; to process it. The network message now includesSthéags
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field in the ticket and other fields described under d¢hient’s role. As for theclient’s role, we use the constraint
Mutual to ensure that mutual authentication has been requested (the case where it is not is treated below). The
Validg constraint has been extended to the new fields of the mesSaajeo verifies the keyed checksum; as noted
above, the data over which this is taken is unspecified by both the protocol and our formalization.

. vV S:server
VC' : client .
VSKey:shk ' S. N(SOpts{SFlags,SKey,C}, _,
VtC Sreq * time . {C7 Ck'tC.S’req}SKey) N
’ ! t
Vkg : dbK S - Mutual(SOpts) '}’il) A}irs’?gq;%izyi )
Vek : msg . Validg(C, SOpts, SFlags,tc,sreq) AN »1C,Sreq
VSVOpts :SOpt . ck=].. ']S‘Kcy
VSFlags : SFlag .
N(SOpts, {SFlags,SKey, C}»]\tq ,
V... . {(/Vs ck, t(,'ASTuq}S lx"ezy)
VErrCode : msg Mutual(SOpts) Y6.1/ N(KRB_ERROR, tC, Sreq,
VEg o - tirﬁe " Inwalidg(C, SOpts, —_— ts,err, ErrCode, C, S)
e SFlags, SKey,tc, Sreq, ck)

CV]OCI’"H (tS,er‘T)
Figure 17: The end server’s role in the C level Client/Server Exchange with mutual authentication.

Rule~g.1- allows.S to respond to an invalid request appearing on the network. The invalidity is determined by the
Invalidg constraint; this includes the possibility of an incorrect checksiShuses theClockg constraint to obtain
the correct timestamp for the error message and places this message on the network.

5.4 The Client/Server Exchange without mutual authentication

The rules for the Client/Server Exchange when mutual authentication is not requested have the same level of detail as
the rules for requests involving mutual authentication. The differences are solely to complete the exchange after the
client’s message to theerver without having theclient wait for a response.

Figure 18 gives thelient role for the Client/Server Exchange when tiient C' does not request mutual authen-
tication. Rulevs ; differs from rulevs ; only in thatSOpts is not set for mutual authentication (thus satisfying the
NoMutual constraint) and’’s use of theDone NoMut predicate to store information about her request; as with the
DoneMut predicate, this formalization does not make further use of this datlbes keep the role state predicate in
order to tie the processing of error messages to the original request.

3L : client(©) x SOpt x server(S) x shK C' S x time X msg. v Cclient

VS : server .
VSKey :shK C S.
Vt(',s‘rcq : time
VY : msg .
VSFlags : SFlag .
VSOpts : SOpt

N(SOpts, Y, {C,].. ']3’[\"(‘1/’ ['0~9"'f111}SK(y)
Y571 Servicec (Y, SFlags, S, SKey,)
— L(C,SOpts, S,SKey,tc,sreq,Y)
DoneNoMutc (S, SKey)

Servicec (Y, SFlags, S, SKey)
NoMutual(SOpts)
(jlﬂ(’]i’(,‘(t(,‘_g,»(;q)

V... . N(KRB_ERROR, t( 5yeq, b
VErrorCode : msg. ts,err, ErrorCode, C, S) ’i'%/ X}E?’,(,)’oéy(o((;) £ err;
Vts err @ time . L(C,SOpts, S,SKey,tc,sreq: Y) T

Figure 18: The client’s role in the C level Client/Server Exchange without mutual authentication.
Figure 19 gives the correspondingrver role. As for theclient, the Mutual constraint is replaced by the

NoMutual constraint. When processing a valid request using file, the server S does not produce a network
message, but still creates the memory prediddten. Error messages are as in the mutual authentication case.
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V. S':server

VC' : client .

VSKey :shk ¢ S. N(SOpts, {SFlags, SKey,C}; _,

Vic,Sreq : time . {C.ck,tc, sreqt sKcey) e

Vkg : dbK S . NoMutual(SOpts) L} Memg(C,SKey,tc, sreq)
Vck : msg . Validg(C,SOpts, SFlags,tc,Sreq)

VSOpts : SOpt . ck=1.. Jsrey

VSFlags : SFlag .

N(SOpts, {SFlags, SKey, C}A‘s ,

V... . {("V? Ck>t(,7.Sr<;q}SI(Cy)
VErrCode : msg. N(’A'jlft/ll"'l(SOl’ts) Yo’ .1/ N(KRB,ERR‘[]R1 to,Sreqs ,
Invalidg (C, SOpts, — ts.err, ErrCode, C, S)

Vis,err : time

SFlags,SKey,tc, sreq: ck)
(’V[OCkS'(['S,(JI‘I‘)

Figure 19: The end server’s role in the C level Client/Server Exchange without mutual authentication.

5.5 C level intruder formalization

The admissible Dolev-Yao intruder actions are updated to reflect the added detail in the fritengdl roles and
additions to the syntax of the MSR specification.

The intruder rules for interception/transmission, decomposition/composition, and decryption/encryption with a
known key change only to the extent that we must take encryption types into account in the rules that involve crypto-
graphic primitives. The necessary extensions to the network, pairing, and encryption rules are as follows.

VC : client . VC : client
VA:TS . . VA:TS
Ve :etype . :E}Ef?)n}k) 25 1(m) Ve :etype . :EZ;) = 1({m}y)
Vk : shK® C A. Vk : shK® C A.
VYm : msg . VYm : msg
VA:TCS . ! VA:TCS !
Ve :etype . 1({m}}) ooc Ve :etype . I(m) oec .
VEk : dbK® A. (k) — Im) WkdbKe A (k) M)
VYm :msg . Vm : msg
VA :TCS I(ka) ! VA :TCS !
Ve:etype . I(ka) > I(k:A) Ve:etype . I(ka) =
Vk4 : dbK® A. A Vk4 : dbK® A.
We need to update the data generation K& as follows.
VC' : client. , :
VA:Ts . - = 3k :shKeC Alk)
Ve : etype .
The data access rules need to be updated as follows.
VA:TS . | /YO dlient . " e etvoe | !
Ve :etype . - 25 (k) Ve :etype . - Z& (k) <Vk ) dgﬁc I. LA I(k)>
Vk : shK® | A. Vk : shK® C'I. ' )

The C level intruder also makes use of rules which do not extend rules of the A level intruder. Here the intruder can
construct a message digest as long as she knows the proper key. However, there is no disassembling rule for message
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digests since (cryptographic) hashing does not permit recovering a message.

V(' : client l

VA : TS M) we

Ve :etype . W”j — I([m]$)
Yk : shK® C A. '

VYm : msg

The updates to the generation rules are limited to allowing the intruder to choose the encryption type of any session
key she may generate. None of the new data types introduced at this level of detail can be generated by the intruder (or
any other principal). Therefore there are no additional data generation rules beyond those we presented in Section 4.4.

Data access rules are subject to similar changes. However, we treat the new data types, encryption types, options
and flags, similarly to timestamps: each of them range over a limited number of legal values, each being public
knowledge. As for timestamps, these rules make encryption types, options and flags guessable.

(V(i:etype, N |<(‘:)>I
<Vo:0pt. 2 I(o)>I

(vf:Fag - = I(f))l

Observe that, by virtue of subtyping, the last two inference figures apply to each of the subSiptsaofiFlag.
Other information that was inaccessible in the A level specification of the intruder remains inaccessible.

6 B Level Protocol Formalization

Our B level formalization extends our A level formalization by adding different details than we use in our C level
formalization. Figure 20 updates Figure 1 to show the protocol messages in the B level formalization, with those
details not in the A level formalization shown heregiray type.

The primary new detail here is the addition of timestamps and other time data to the protocol messages. Asin our C
level formalization, we also make mutual authentication by the end server optional and add error messages (following
the full protocol specification, these are again unencrypted).

The MSR signature of the B level formalization is the same as for the A level formalization; the B level intruder
rules are unchanged from those for the A level.

6.1 The Authentication Service Exchange

Theclient’s actions in Authentication Service Exchange are formalized in Figure 21./RulallowsC to initiate the
Authentication Service Exchange with soite: KAS; this leaves the corresponding A level rute ;) unmodified.

Rule 3, 2 allowsC to process &RBAS_REPmessage naming her and including tle@ce she previously sent to
K. This formalization adds two time data to tiRBAS_REPmessage; these are discussed in connection Afith
rule B5.1. As in the A level formalizationC' uses thedutho predicate to save information about this exchange (here
also including the two time fields) for future use.

If C has an AS request pending, indicated by the role state prediceded an error message containing her
name appears on the network, then she may usejiuleto process the message. In doing Gostores the relevant
information in theAS Errorc memory predicate. Here an error message consists of the messageRB/mREOR),
time that the error occurred# .,), description of the errorKrrorCode), and the names of thdient and KAS
involved.

The role of theKAS in this exchange is shown in Figure 22. Ryle; allows K to process a valitkRBAS REQ
message. As in the A level formalization, the validity of this message is determined Bjull, external pro-
cess. If the request is valid{ reads the current time from his local clock via tG#ockg constraint, uses the
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Client KAS TGS Server

KRB_AS_REQ

° - e — Normal messages
A - » Optional messages
° < KRB_AS_REP ° — — » Error messages
®~ " " YRBERROR —AS __°® -~ Application messages
KRB_TGS_REQ
[ ] [ )
_ KRB_TGS_REP
L] )
@<« - — - - — - — - - = - - - - T~ === °
KRB_ERROR — TGS
KRB_AP_REQR
[ ) ]
* (KRB_AP_REP)
T °
@<« - — — - - — - - - - - - - - - o - - - - - - - — = = = = = == = == = = = = = °
* KRB_ERROR — AP
Application messages
* [o < > o
KRB_AS_REQ : C, T,
KRB_AS_REP : C7 {AKCy, C, UK, auth 3 7LI’\",é'n(l}kTy {AKC% ni, UK, auth, tl\’.fmr/«T}kc
KRB,TGSB.EQ : {AK@y, Ce tl&'.u uth s t]&",(*n r]}k;T 5 {C t(ﬂTerq}AKcy? C? S? n2
KRB_TGS_REP : C, {SK@y, C, tT auth, fT,r:nd}ksy {SK61/7 N2, tT auth, tT‘tiTLd?S}AKey
KRB_AP_REQ : I"IUTUAL?,{SK(ﬁy7 C,tr auth, fr,-‘(,,,,/}ks , {C., tc,STeq}SKey
KRB_AP_REP : {tc,sreqtskey

KRB_ERROR— (AS|TGS|AP) : KRBERROR[—|tc Treq|tc,sreq)s t(x|T|9),errs ErrCode, C, (K|T|S)

Figure 20: Kerberos 5 Messages in the B level Formalization

ATicket Exp constraint to determine an appropriate ticket expiration titge.£4), and sends &ERBAS_ REPmes-
sage which extends the A level version by adding these two time values.gRuldormalizesK’s response to an
invalid KRBAS_REQ(as determined by thénvalidy constraint); this error message also includés current local
time.

6.2 The Ticket-Granting Exchange

The client’s role in the Ticket-Granting Exchange is shown in Figure 23. Bylleextends rulevs ; so thatC' now
includes a timestamp (the value of her local clock) in the authenticator she sendslt6Shthe predicateduthc is
extended as discussed under rdle;, and the role state predicaienow stores the timestamp added in the B level.
Rule 33 2 updates rulevs - to store the two new time values in tKRB TGSREPmMessage in the predica$ervicec.

Rulesfs o, andgs o allow C to handle error messages that appear to relat&iRBRTGS REQmessage she has
sent (as evidenced by the role state predidgteThese cover errors due specifically to an expired Ticket-Granting
Ticket (83.o-) and generic errors¥ o+ ); in both cases the contents of the error message are storediGth&rrorc
predicate, although these data are not used elsewhere in this formalization.

The role of theTGS in this exchange is shown in Figure 24. This formalization adds the timetdata, the
expiration time of the service ticket obtained via the constiéifiicket Exp, andtr 4.,:h, the current time off’s local
clock obtained vieClockr. T also performs an explicit temporal check, given by the consttaint:, < tx end.
to ensure that the ticket-granting ticket has not expired; this check is not performed by the colsttaint which
does not have access to the local titpg,,.p,.

Rule 84.1- allowsT to respond to &RBTGSREQmessage which contains an expired ticket-granting ticket (in
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3L : client x TGS X nonce. VC:client

VI :TGS. B4 In1 : nonce
VK : KAS N N(C, T, n1)

| | L(07 Ty nl)
V...
Vke : dbK C
VAKey :shk CT. N(C,X,{AKey,ni,lx quth, 61 Autho(X,T, AKey,
VX msg . tK,enchT}kC) —_ t 2 tK e )
Vny : nonce . L(07 T7 nl) LK ,auth; UK, ,end
Ytk quth © time
Vth"‘,en,d : time
V... . N(KRB_ERROR, t i crr, By o ASErrorc(KRB_ERROR,
VErrorCode : msg. ErrorCode, C, K) . o S
Vig err : time . L(C,T,n1) LK erry ETTOTCode,

Figure 21: The client’s role in the B level Authentication Service Exchange.

VC' : client . VK :KAS
:Z; :.T]iice N(C7 T7 nl) HAKey :shK C'T
t Validg (C,T,ny) ) N(C, {AKey, C,

Vkc : dbK C Bo1

Vir : dbK T . CZOFkl&'(tK,alLth) N UK auths LR end o s

VAKey : shK C' T A?"’k(ftE‘t’;ff(C’ )T {fiK ey, ?}TK)H

VtK,cnd . time K,authy UK ,end K,end, Ko

VtK,quth : time

V... . N(C'7T7n1)

VErrorCode : msg. Invalidk (C,T,n1, ErrorCode) Bav N(KRB_ERROR, tx err,
. — ErrorCode,C, K)

ViK err : time . Clockk (tr,err)

Figure 22: The authentication server’s role in the B level Authentication Service Exchange.
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3L : client'® x server x TGS x shK C' T x timex nonce. v@iclent

:g :r—e?vir dns : nonce

VAKey :shK CT. Autho(X,T, AKey, B N(éf ) S{C; ’/)C‘-Trw}Axeyv
VX msg . t[(,rltA,L/ltf[\',('ll(/) 3.1 90, 102

Vto,rreq - time . Clockc (to,rreq) I Authce (X, T, AKey,

tI\"A(Lut/p f}\",end)

ti auth * ti
Vi, auth : time L(C,S,T,AKey, tc Treq,n2)

Vf[\')(,,”/ : time

V... .

VSKey :shK C S.

VY : msg N(C, Y, {SKey, n2, tr.aun, B30 Servicec(Y, S, SKey,
V’I’LQ . nonce L(Cfgt%dj[}(AKef) ) — tT.a uth fT.end)
vt'l',u'ul,/r, : time o Y e etz

Vtt eng : time

v... ’ N(KRB ERROR, ¢

VKRB_ERROR : msg. . e drea Bs.2/

VTKT_EXP : msg f’l‘.szr'l'7 TKT,EXP (jr T> o
o " L(C,S, T, AK ey, te rreq,n:
VT, err : time (€, , AK ey, tc,req,n2)

TGSErrorc(te,rreq, tr,err, TKT_EXP, T')

v N(KRB_ERROR, ¢ Treq,
tr.err, ErrorCode, C,T)

VErroCode : msg. L(C. 8, T, AK ey, te. mreg,ms) —

B3.20

TGSErrorc(te,rreq, tr,err, ErrorCode, T)

Figure 23: The client’s role in the B level Ticket-Granting Exchange.

which case the constraith .., > tx enq IS satisfied). Note that th&alidr constraint (which checks the validity
of every aspect of the request except that the ticket is not expired) is satisfied. Everything else is similar to the error
messages sent bl in the Authentication Service exchange. Rglg;» allows T to respond to KRBTGSREQ

message which is invalid for some other reason (as determined By.théid external process).

6.3 The Client/Server Exchange with mutual authentication

Theclient’s role in this exchange is shown in Figure 25. Rubgs andjs . extend the A level ruless ; andas > by
adding the time datér 4.,:n, andtr .4 to the predicatéervicec and by explicitly setting th&#!UTUALREQUIREDDIt
intheKRBAP_REQmessage. Recall that 5., was the only timestamp already included in the A level formalization.
Rulesgs o, and3s o are essentially the same as ruls, andgs o in the Ticket-Granting Exchange.

Theserver's role in this exchange is shown in Figure 26. Ralg, extends rulexvs ; to account for the time data
now in theKRBAP_REQmessage (including in the validity check biulids and the data saved i emyg); S also
ensures that the service ticket has not expired using the consttéuatss (t s now) 8NOES pow < t7,enq. NOte that ifS
accepts’’s request, he sends a confirmation message becaustii@ALREQUIREDbit was set in th&KRBAP_REQ
message.

RuleSg.1- parallels ruledy 1+ in the Ticket-Granting Exchange and allo@o send an error message in response to
aKRBAP_REQmessage which is valid except for an expired ticket (so that the constVaitiss (C, t1 quth, tc,Sreq)
andtg eqr > trena hold). Rulefs 1~ allows S to send the appropriate error message in respons&RBAP_REQ
message which is invalid for some other reason.

6.4 The Client/Server Exchange without mutual authentication

Theclient’s role in this exchange is shown in Figure 27. R@de; differs from ruless ; only in that theWUTUALNONREQUIRED
bit is set in theKRBAP_REQmessage (with a corresponding change in the information savefland the data for
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VC : client
VS : server .
VAKey : shK C'T. N(t{‘flK ey,TC, )
Vkr : dbK T Kauth, DR.end Sk 3SKey : shK C S
. {C7 tC,T?“i(I}AKey
Vks : dbK S . N(C,{SKey,C,
Vns : nonce C, 5, m2) Paa tr auth, U7 end )

. ValZdT(C7 57 na, tK,auth: tC,T'r'eq) — anti endlks
vtK,uuth : time . {SKeyv’rLQyt’T‘,aut}H
Vi time STicketExp(C, S,ts,end) . s} )

K,end - ClOCkT(tT,auth) T,end, AKey

VtT,auth : time
Vtr,end © time
VtCLTrcq : time

tT,aut/l < tl(,end

N({AKey,C
tK,aul,h,, tKA,(znd}k
V... C{Coteireq) T
YKRBERROR msg. C’, STT;E; AKey Bar N(KRBERROR:c,7req,
VIKT EXP : msg . 2] — tr.err, TKT_EXP, C, T))
Vi o - time Validr (C, S,n2, tk quth, tC,Treq)
’ ClOCkT(tTﬁm-r)
t'l',ezr'r 2 tK‘end
N({AKey,C
tK, auth, tK,end}k,,,
V... . AC, t(LTreq}AKp?ﬁ Baar N(KRBERROR: ¢, Treq,
VErrorCode : msg. C,s,n2) — tr.err, ErrorCode, C,T)
Invalidr (C, S, n2, ti auth, te,Treq, ETrorCode)
ClOCkT(tT‘,ETT)

Figure 24: The ticket granting server’s role in the B level Ticket-Granting Exchange.

L : client!®) x server™ x shK C' S x time x msgxmsg.

VS : server .

) N(MUTUALREQUIRED
:gi[ff’r?s.gShK ¢ S: Servicec (Y, S, SKey, t1,auth, tT,cnd) B5.1 Y, {C’ to,sreatsicey)
Vic,sreq : time . Clockc(tc,sreq) . Servicec(Y, S, SKey, 1, auth, U1 end)

L(Cy S7 SKey? tc,s’fﬂb Ya

VE,qutn : time MUTUALREQUIRED

Vtr,end © time

N({tcysTELI}SKey)
V... L(C,S,SKey,tc,sreq, Y, ﬂiﬁ DoneMutc(S, SKey)
MUTUALREQUIRED
V... .
N (KRBERRORIL/C,STMU tS,é'N‘:
:?;BEEXEROR & TKTEXP,C, S) Po APErrorc(tc,sreq, ts,err, TKT_EXP, S)
) '. msg L(Cv S7 SK6y7tC-S7'€C11Y)
Vis,err @ time '
N(KRBERRORt ¢, sreq, ts,err,
:ET-’TOT’CO(JP e ’ ErrorCode,C, S) ﬁz/ APErrorc(tc,sreq, ts,err, ErrorCode, S)
e Mg L(C,S,SKey,tc,sreq, Y)

Figure 25: The client’s role in the B level Client/Server Exchange with mutual authentication.
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VT:TGS

VC':client



V(' : client V S:server
VSKey : shK C . N(MUTUALREQUIRED

{SKeya Cv [T,uuth-, [/T.und}ks 5

Vic,sreq : time p N({tc,sreq}sicey)
Vks : dbK S (,lf,;tff’"eq}f“y) Bo.1 Mems(C, SKey, tc,sreq.
Vit S.auth : time g S5, now tT auth, tT,enc

Shut! Valzd5(07 [T,auth-, [/C.Sr'eq) Toautho T /1)

VtT‘zLuth : time

i ts.auth < tT,end
vt'[‘,f:nrl : time ,autn ,ena

N(MUTUALREQUIRED

V... . {SKey, C,tr auth, T .end i s,

VKRBERROR msg.  {C, tc,sreq}sicey) Bo.1/ N(KRBERROR!C: $req,
VTKTEXP : msg . Valids(C,tr auth,to,sreq) — ts,err, TKT_EXP, C, S)
Vts,err : time . Clocks(ts,err)

tS,m'r 2 2fT.cn d

N(MUTUALREQUIRED

{SKey, C,tr quth, T, end kg,

{O, t(’,‘,Sv'e:q}S[x"ey)
Invalids(C, t1,auth, tc,sreq, ErrorCode)
Clocks(ts,err)

v

o . Be.1 N(KRBERROR:¢, sreq,
VErrorCode : msg.

— ts,err, ErrorCode, C, S)

Figure 26: The end server’s role in the B level Client/Server Authentication Exchange with mutual authentication.

further communication witt' (which is not modelled in this formalization) are stored in flene NoMuto predi-
cate. There is no analogue of rife , because&” does not require a response fréinRulesfs: or andFs: o sSimply
update rulesds o ands .o to account for the change froMUTUALREQUIREDXO MUTUALNONREQUIRED.

Theserver’s role in this exchange is shown in Figure 28. Rgle; is rule 3.1 with the (here undesired) response
from S omitted. Rules3s ;- andSg 1+ are the same as rulgl ;- and g 1 except that they handle bad requests in
which theMUTUALNONREQUIRELbIt is set.
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3L : client®) x server™® x shK C' S x time x

VS : server

VY : msg

v

Vig,err @ time

v

VSKey :shKC S.

Vtc,sreq : time

VKRBERROR msg.
VTKT_EXP : msg

VErrorCode : msg.

msg X msg.

Servicec (Y, S, SKey
tT,auth7 tT,end)
Cloc/{?c(tc,smq)

N(KRBERRORt ¢, sreq, ts,err,

Bs .1

TKT_EXP, C, S) Bs .2/
L(C,S,SKey,tc,sreq, Y, —

MUTUALNONREQUIRED
N(KRBERROR: ¢, sreq, tS,err)

ErrorCode, C,S) B 21
L(C,S,SKey,tc,sreq, Y, —

MUTUALNONREQUIRED

VC':client

N(MUTUALNONREQUIRED
Ya {C: tC,Sreq}SKey)
Servicec(Y, S, SKey
tT,n.uthytT,end)
L(C,S,SKey, tc,sreq, Y
MUTUALNONREQUIRED
DoneNoMutc (S, SKey)

APErrorc(te,sreq, ts,errs
TKT_EXP, S)

APErrorc(,tc,sreq, ts,err,
ErrorCode, S)

Figure 27: The client’s role in the B level Client/Server Exchange without mutual authentication.

VC' : client .
VSKey :shK C S.
Vtc,sreq : time
Vks : dbK S
Vts,quth : time
VtT,auth : time
Vtr,end © time

v

VKRBERROR msg.

VEXP_ERR : msg
Vts,err : time

v

VErrorCode : msg.

N(MUTUALNONREQUIRED
{SKey, C,tr quths tT.endig
{07 tCaSTEQ}SKey)

Clockg (tS,auth)

ValidS(C, tT,auth, tC,S’Teq)

tS,n,uth < tT,end

N(MUTUALNONREQUIRED
{SKey, C,tr authste,end}rgs
{C, tC,Sreq}SKey)

V(llids(c, tT,auth7 tC,Sreq)

Clocks(ts,err)

ts.err 2 tT end

N(MUTUALNONREQUIRED
{SKey, C, tT,auth: tt,end}ks ’

{07 tC,Sreq}SKey)
Invalids(C, tr,quth, to,sreq, ErrorCode)

Clocks(ts,err)

BG/.I Mems(C7 SKey,tC,S’req?
i tT,aut}u tT,end)

/86’.1’ N(KRBERRORtC,Srcq, tS,e'r'ry
— TKT-EXP, C, S)

ﬂS'.l” N(KRBERRO,RtC,Sreq, tS,ET’I‘7
— ErrorCode)

V. S:server

Figure 28: The end server’s role in the B level Client/Server Exchange without mutual authentication.
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Part Ill
Analyzing Kerberos 5

7 Anomalous Protocol Behavior

In this section we describe some anomalous protocol behavior that we have noted as we have analyzed Kerberos 5.
This does not pose a fundamental threat to the security of the protocol—in Section 9 we prove that Kerberos 5 enjoys
a number of confidentiality and authentication properties—so the traces described in this section may be viewed as
‘interesting curiosities.

We believe that the attack found by Mitchell, Mitchell, and Stern [14] against a simplified version of Kerberos 5
does not appear in our formalization because in their encodingfRRTGSREP message fronT" to C' did not
includeS encrypted undeA K ey.

7.1 Ticket anomaly

The primary structural difference between versions 4 and 5 of Kerberos is the manner the KAS and the TGS transmit
the ticket-granting and service tickets. In Kerberos 4, the client receives these tickets as part of the data encrypted
under either her long termi§K) key or a session key that she knows. We saw that version 5 sends the tickets as a
separate component without additional encryption. Thus it is possible for the intruder to take advantage of this new
message structure to tamper with the unprotected ticket (although she is unable to cause serious problems by doing so).
Figure 29 updates figure 4 to illustrate the message flow in one such scenario. An MSR trace realizing this anomaly
in our A level formalization is given in Appendix C.1.

Client(C) Intruder(l) KAS (K) TGS(T) Server(S)

C,T,n1

C,{AKey, C}kT’ {AKey, 7"1’T}k(~
° .

¢, X, {AKey ni, T}k(
°

X, {C}AKey7cv S,?'LQ

{AKey, C}kT’ {C}AKey’ C, S, no

[ ]
C:{SKeyVC}ksz{SKeyvn2:S}AKgy

{SKey: C}ks’ {07 tC,Sreq}SKey

. > °
{tC,S'r'elI}SKey

Figure 29: A level message flow in the ticket anomaly.

HereC sends heKRBAS_ REQmessage as usual, but the intruder intercept&KRBAS_REPmessage froni.
She replaces the ticket with a generic mess&gand stores the ticket in her memoxy;cannot detect this because
she expects to be unable to read the contents of the ticket. Wheas to send &KRBTGSREQmessage t@’ (using
the meaninglesX instead of the ticket)| intercepts this message and repladésvith the original ticket fromk
and forwards the result (a well-form&RBTGSREQmessage) ta@". T replies with a ticket fotS, and the protocol
continues as though the intruder had taken no action.
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As a result of the actions of the intruddr, has granted a service ticket € even thoughC' has never sent a
valid KRBTGSREQmessage (she dodink that she has, however). Moreover, barring additional interference by
the intruder, subsequent requests by the client using the “ticketi her possession will fail for reasons unknown
to the her. This anomaly does not appear to provide an attack against keys, but it does give a counterexample to the
direct translation of a property of Kerberos 4: when Theorem 6.22 of [1] is translated to our A level formalization of
Kerberos 5, it becomes the following.

Violated Property 1. For C' : client, T' : TGS, AKey : shK C T, kr : dbK T', and S : server, if {C} ., and
{AKey,C},  have appeared on the network (possibly encrypted), lashaes not have access K ey, then for
somen; : nonce, C put the messagpd Key, C};, ,{C} 4., C; S, n2 On the network.

As our example shows, this property does not hold in our A level formalization of Kerberos 5; it does not hold
in our C level formalization either. It was possible for it to hold in Kerberos 4 because the message in that protocol
sent fromK to C' was the equivalent of (after omitting timestamgs)K ey, ', TGT}, ., whereT'GT is the ticket-
granting ticket. This includes the ticket f@r in the encryption undet : dbK C, unlike theKRB_AS_REP message
C,TGT,{AKey,n1,T},., preventing the intruder from replacing it with any other message before it reathes
For the same reasons, Kerberos 5 does not have the following property, the translation to our A level formalization of
another theorem proved for Kerberos 4 in [2].

Violated Property 2. For C : client, T : TGS, Y : msg, AKey : shK C T, ny : nonce, k¢ : dbK C, andkr : dbK T,
if C,Y,{AKey,n1, T}, appears on the network aridloes not have accesste, thenY = {AKey,C}, andT
put the messag€, {AKey,C},, ,{AKey,ny,t},  onthe network.

Note that the intruder may do the same thing with KRBTGSREP message (instead of tH€RBAS REP
message as just described), replacing the tickeffaith an arbitrary message and then reversing the switch when
C sends sKRBAP_REQmessage t&. This scenario shows that the translation of Theorem 6.23 of [1] fails for
Kerberos 5, as does a corresponding theorem in [2].

The amount of practical concern raised by the ticket anomaly seems slight; here the intruder and client together
function as the client is intended to [19]. Even with this anomaly, we are still able to prove in Section 9 that the tickets
and authenticators originated with the proper principals.

The ticket anomaly can also be realized in the C level formalization. It is not prevented by the checksum(sent by
in the KRBTGS REQmessage, which is taken over tiBRB-REQ-BODYpart of the message and thus does not cover
the ticket (in the C level formalization, this checksum is taken over just the fleddjst s, C, S, ns, €). The anomaly
appears to be fixed if the ticket-granting ticket (or wiatinks is this ticket) is also included in the above checksum,
although this remains to be proved.

7.2 Anonymous ticket switch anomaly

Another anomaly involving the cutting and pasting of tickets makes use of the anonymous ticket option formalized
in our C level formalization. We make no assumptions about the application specific cheokseersls in the
KRBAP_REQmessages other than that they agree with the local policy akther S. Figure 30 shows the message
flow for this anomaly (the ‘anonymous ticket switch anomaly’).

This scenario begins with a normal AS exchange, after whittas a ticket-granting for use withTeGS, the name
T of the TGS, and the corresponding session k&l ey. C desires two tickets, oneON-ANONYMOUshd the other
ANONYMOUSrom 7" for a single servef and sends the approprisdf&RB TGSREQmessages t&'. 1" responds with
the NON-ANONYMOUrvice ticketST; containing keyA Key; and theANONYMOUSErvice ticketST; containing
the key AK ey, (along with the appropriate other components of these messdget®rcepts both messages, swaps
the tickets, and forwards the resulting messages an, twho then has incorrect beliefs about which (opaque) ticket
contains her identity. She then sengiswo requests for service without mutual authentication, one using each of
these tickets, which the intruder intercepisforwards both of these messages to the sefvafter replacing the
authenticator encrypted with K ey, with the authenticator encrypted withiey;. The server can open the ticket
in each of these messages, but only the key inNB&-ANONYMOUsRrvice ticketST; will open the accompanying
authenticator.S thus accepts thlON-ANONYMOUBquest and generates an error message (not included here; in the
C level formalization, error messages are sent only if the ticket and authenticator match) in response to the malformed
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Client (C) KAS (K) Intruder(l) TGS(T) Server(S)

KOpts,C,T,n,e

° °
C,TGT,{AKey,n, T]*‘lags,T};;c
[ ]

'I‘Grr,[‘7 {C ]\/[Dl 5 t(7.T7‘0ql }AKey’ TO])T,S((?),C, S, ni, e

) > e
TGT’ {C MDg, tC~T"'5‘I’2}AKey7 TOPI?S(USE]{%C’ S’ no, e
’ [ ]
C,ST1,{SKey1,n1, SFlags(C),S} sy
o °
C,STa, {SKeyz,na, SFlags(USER),S} xcoy
o~ L]

C,STs,{SKeyi,n1, SFIa,gs((L').S};KEy
. <

.
C,8T1,{SKeya,n2, SFlags(USER),S5} k.,
- L]

SOpts1,8To,{C, MD; /7tC,Sreq 1 }SKey1

SOpts2,8T1, {USER, MD2' tc,Sreqq }SKey2

SOpts1,8T2,{C, MD1' tc,sreq1 Y sKey,

[ ] [
SOpts2,STq, {C, MD; /thvsTeQ1}SKey1
[ ] > o
KRB_ERROR_AP(STh,USER)
[ B ]
KRB_ERROR_AP(ST5, C)
[ ] L]

Figure 30: C level message flow in the anonymous ticket switch anomaly.
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request. The generic username from &MONYMOUSKcket is placed in this error messagemay intercept this
(unencrypted) message and replace the generic nametgthame, forwarding the result 0. C then processes
this message and, seeing her name, may believe thatditANONYMOUBquest was rejected and HEMONYMOUS
request was accepted. This situation is undesirable siroglieves she has completed ARONYMOUSkchange with
S and that she has not completed any exchange in which her identity has been received by

This anomaly violates properties proved by Bella and Paulson in [1, 2] for Kerberos 4, which are analogues for
the Client/Server Authentication Exchange of Violated Properties 1 and 2 in Section 7.1. This anomaly seems to be
avoided if the checksums in tiéRBAP_REQmessages are taken over the service ticket (so thatthe S would
be aware of any ticket switches), although we have yet to prove that such a change would prevent this anomaly. The
checksum in th&RBAP_REQmessage is left as ‘application specific’ by the current protocol specification [18].

As in the case of the ticket anomaly, it is unclear whether the ticket switch anomaly is of practical concern. It does,
however, point out some of the interactions between different parts of the protocol, namaNahyMOUSptions
and the structural change in messages made between versions 4 and 5 of the protocol. Even if something is known to
have gone wrong, thdient cannot pinpoint when it went wrong; unlike,g, compilers, error messages in Kerberos
do not precisely identify the first point at which the trace deviated from the expected protocol run. Herentigets
an error message from terver, even though the intruder first interfered in the protocol during the Ticket-Granting
Exchange.

7.3 Encryption type anomaly

We assume that' loses her long term (database) Keyassociated with a particular encryption metlho&he realizes

this, but before reporting the loss of this key (or possibly as she tries to make use of a service in order to do this) she
sends &KRBAS REQmessage td(. C naturally specifies a different encryption methetiith key k(.) in order to

avoid a response using the lost key. Since this is sent in the tleam, modify the request to force a response using

the compromised kel (including the construction of a new checksum using the lost key if necessangy then
intercept and use the credentials frdiis response. Thubmay not only masquerade &susing the lost key, but

may also do this based upon any attempt thahakes to work around the known key loss. The message flow for this
anomaly is shown in Figure 31.

Client(C) Intruder(1) KAS (K) TGS(T)
KOpts,C,T,ny,e
[ ] [ ]
KOpts,C,T,ny,e
[ [ ]
C,TGT,{AKey,n1, TFl(zgs.T}zc
° °
TGT, {C, MD, t(jv_T,.f,q}AKey, TOpts,C, S, na,e”
[ [ ]
C,ST,{SKey,na, SF‘Iug/&S}‘AKW
. .
KRB_AS_REQ : KOpts,C,T,n1,e TGT = {T'Flags,AKey, C}kT
KRB_AS_REP : C,TGT,{AKey,n1,TFlags T} ST = {SFlags.SKey,C},,
KRB_TGS_REQ : TGT, {C, MD, f(ﬁTT”l}AKeyv TOpts,C, S, no, e’ MD = [TOpts, C, S,na, 6N]AKm/
KRB.TGSLREP:  C,ST, {SKey,na, SF/ugs,S};f;(ey *
KRB_ERROR—X : KRBERROR[—|tc, 7reqltc,sreq], t(k|T|8),err, ErrCode, C, (K|T|S)

Figure 31: Message flow for encryption type anomaly

Note that this anomaly is not fixed by the checksum @aan send with th&kRBAS REQmessage (which we do
not include in our formalizations, but is described in [16] as optional), keyed wdtiKaC', as the following scenario
shows. C putsC, T, n, €', [C, T, n, '], on the network and intervenes, replacing it with, 7', n, e, [C, T', n, €], .

’
C
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(which1 can do, since the hash is public and she knbw&nde). Then the action continues as above, Wigfaining
knowledge ofA Key.

A lost long term key is quite serious, as it allows the intruder to obtain and use credentials in the name of the client
whose key has been compromised. Raeburn [19] has noted that when this happens the key database must be updated
to prevent the lost key from being used. We have not yet formalized the database update mechanism(s); the effect of a
compromised key on these is unclear.

7.4 Ticket replay anomaly

We now look at another anomaly whose effects resemble those of the anonymous ticket switch anomaly; the actions
of the intruder are different, but again make use of the ability to cut tickets out of messages. The intruder uses a replay
to unpack the timestamp encrypted in the authenticator by inducing the server to return it in an (unencrypted) error
message. She could also guess this timestamp using rule TA, but we see here that she does not need this rule (which
may be unreasonably strong) in order for this anomaly to be realized. Figure 32 shows the message flow for this
anomaly, which proceeds as follows.

Client(C) KAS (K) TGS(T) Intruder(l) Server(S)

KOpts,C,T,nq,e

° > o
C,TGT,{AKey,n1, TF[(:,gs.T}ZC
° °

TGT, {C, MD,tc 1, (i(l}AKegﬁ TOpts,C, S, na, e

. .
C,ST,{SKey,na, ,S'Flags.S}j;‘Key

.~ .

TGT,{C, MD’, téﬁ’.'l'wq}AKey’ TOpts',C,S,ny, e

. .

C,ST’,{SKey',n}, SFla.(/s/,S}‘AKey

SOpts, ST, {C, A’]D”'t}SKey
. - > o
SOpts' ST/, {C, ]\JD’,t’}SKEy/
[ > e

SOpts,ST,{C, MD”,t}SKey
> o

°
SOpts,ST, {C, ]\'[D//‘t}SKey
° > o

KRBERROR, L, ¢, REPLAY, C, §

KRBERROR, tg crr, ErrCode, C, S

Figure 32: Message flow in the ticket replay anomaly

A client initiates and completes the Authentication Service Exchange with an authentication server, obtaining a
ticket granting ticketl’'GT for a TGS T. She then use$'GT to make two requests for service tickets for a single
server, requesting different options for these two service tickets.

T receives these two requests, and grants two different service tigketnd ST’ with associated session keys
SKey and SKey'; we assume that the options actually granted’bgre different for these two tickets. Recall that
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T sends a copy of the granted options along with the new session key (both encrypted under the session key shared
by the client andl"), so the client associates the different granted options with these different keys. The client then
sends two requests to the server, one withand an authenticator encrypted us\f ey and containing a timestamp

t and other withST’, SKey’ andt’, respectively. We assume that in both requests, the client does not request mutual
authentication from the server, so she expects a response only in case of an error.

The intruder intercepts these requests. She duplicates the request coridinisify ey, andt and forwards these
to the server, who accepts the first and rejects the second because of the replayed authenticator. This prompts an error
message, containing from the server, which the intruder may intercept, modify, and send to the client. The intruder
does not send the second request, contaififiy SKey’, andt’, to the server.

As a result, the client receives an error message containing the timeskamipo response to her request contain-
ing ST', SKey', andt’. She might assume that her first request was rejected while her second was accepted, while
the reverse is actually true. This is potentially worrisome because the options on the tickets are different; in the case of
anonymous tickets, the client might erroneously assume that her identity has not been seen by the server (if the error
is tied to a non-anonymous ticket).

As for the ticket switch anomaly, it is unclear whether this anomaly is of practical concern. It does highlight the
interactions between the ticket options and other traces; for the anonymous ticket option, these may be particularly
undesirable. We also note that since our formalizations do not include explicit checks for replayed authenticators, this
anomaly may not be realizable in these formalizations.

7.5 Possible replays

The abstraction of the A level formalization, in particular the omission of nonce and timestamp checks, precludes the
detection of replayed messages. KRBAS REQ KRBTGSREQ andKRBAP_REQmessages may be intercepted
by the intruder, copied, and then forwarded to the intended server with the intruder maintaining a copy. The intruder
may then, at a later time, replay the copied messages. If the original messages were accepted by the server then the
replays may be as well, in which case the servers would generate fresh credentials based upon the replayed requests.
These possible replays differ from the ticket replay anomaly in that they would be used to force the creation of fresh
credentials.

In order to prevent replayed authenticatdr&Ses andservers should save the included timestamps for the length
of the allowable clock skew. For the Client-Server Exchange, Version 10 of the protocol revisions (Section 3.2.3
of [16]) makes the following note.

Unless the application server provides its own suitable means to protect against replay (for example,
a challenge-response sequence initiated by the server after authentication, or use of a server-generated
encryption subkey), the server must utilize a replay cache to remember any authenticator presented within
the allowable clock skew.

Jeffrey [12] has observed that this may place an unreasonable burden on application servers, and that (at least some
of) these servers do not in practice make use of a replay cache.

8 Rank and Corank Functions

We now define the two classes of functions—rank and corank—which we use to prove results about our MSR for-
malizations of the Kerberos 5 protocol. These are inspired by work of Schneider [20] in CSP; related ideas have been
discussed in the context of strand spaces [21]. Rank functions are generally used to prove results about data origin
authentication, while corank functions are used to prove confidentiality results. Intuitively, the former class captures
the amount of work done to produce a certain message, while the latter class captures the amount of work needed to
extract a certain (hopefully secret) message. We shall see that because the abilities to encrypt and extract messages are
not perfectly symmetric, these classes of functions differ in important ways.

In order to use these types of functions in the MSR formalization of a protocol, we need to define their values on
facts. Just as facts are built up from atomic terms in the language of the protocol, we inductively define rank and corank
functions starting with their values on atomic terms and then defining the effects on these values of the operations used
to build non-atomic terms. The extension of these definitions from terms to facts requires some care in the case of
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corank functions; we note some general principles which appear to be applicable to this process and then use these to
define this class of functions for our formalizations of Kerberos 5.

8.1 Rank

The k-rank relative tomy is intended to capture the amount of work done using thekkéy encrypt exactly the
messagen,. We start with the definition of rank for terms. Letbe akey, ¢, t1,t5 terms, andny amsg. Then we
define thek-rank oft relative tomg, denoted by (t; mg), by

0, t is an atomic term
pr(mi;me) + 1, t={mi},, pr(mi;me) >0
0, t ={mi},, pr(mi;mo) =0, mq # my
1, t={mo},
Pr(m1;mg), t={mi},, k' #k
pi(tmo) = /);K.Eml;mgg +1, t= [{mli? pr(mi;mg) >0 @
0, t = [mi]y, pr(mi;mg) =0, m1 #mg
1, t = [mol,
pr(my;mg), t=[mi), K #Ek
max{pi(ti;mo), pr(t2;mo)}, t=t1,t2

If ¢ is atomic, then no work has been done to encrypt the messagmd we set the rank equal ¢o If ¢ is exactly

the messagém, }, we set the rank equal tb Encrypting any message of positikerank with the keyk increases

the rank byl as additional work has been done usingwhile encryption withx’ # k has no effect ork-rank.

Keyed checksums have the same effects, as these also represent cryptographic work doneTusengnk of the
concatenation of two messages equals the larger of the ranks of the constituent messages. We will be concerned
primarily with whether or not thé-rank relative tan, of a message equalsi.e., whether or no{my}, is contained

within the message.

The extension of rank from terms to facts is straightforward; intuitively, the number of nested encryptinaps of
using k£ which must have occurred to produce a certain predicate equals the maximum number of such encryptions
which were needed to produce one of the arguments of the predicate. Formallg, Key,my andm of typemsg, and
t, t; terms, andP any predicate in the protocol signature, we defineitliank of a factF' relative tomg (pr (F'; mo))

by

pi(P(ts. . t5);mo) = max. pr(ti; mo)- (2)

In particular, we have
pr(N(m);mo) = pr(m;mo) 3)
pr(1(t);imo) = pr(t;mo). (4)

For a multisetA of finitely many distinct facts, we define therank of A relative tom, by
pr(Aimo) = max py(F; mo) (5)

if A0, and letpy(0;mg) = 0.
Given a rule
Fl,...,Fi — Elxl...EIanl,...,Gj,

we say that this rule increases (preserves, weakly decredsgs;-rank relative tan, if
pr({F1, ..., Fitymo) < pr({G1, ..., Gj}smo)

(=, >, etc). If, in an MSR trace thé&-rank of a multiseil; ; is greater (less than) the previous multidét, then the
rule used to obtaid/;, ; must increase (decrease), possibly weakly, reldtivank; it is clear that the converse does
not hold in general.
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Any reasonable formulation of the intruder should be such that the intruder cannot do cryptographic work using
the keyk (as measured by relativerank) without possessing the kéy Formally, we expect the intruder rules to
satisfy the following property.

Property 1. If an intruder rule R can increasek-rank relative tom,, then the left hand side @t containsl(k).

As expected, this property is true for our formalizations of the Dolev-Yao intruder. Before proving this, we state the
assumption made in Section 4.4.2 about the intruder¥(eas an axiom involving rank functions.

Axiom 1. If a multiset)M;, is obtained from a multiset/; by an application of rul&IG and|(X) is the unique fact
in M;1 \ M; (i.e., X : msg is the message freshly generated by the intruder usitg, then for every: : key and
mg : msg, pr(X;mg) = 0.

We may now prove that Property 1 in the formalizations of Kerberos 5 that we have analyzed.

Lemma 1. Property 1 holds in our A level formalization of Kerberos 5, i.e., for &nykey andm, : msg, any A level
intruder rule which increasek-rank relative tom, contains the fack(k) on its left hand side.

Proof. Inspection of A level intruder rules shows that of the network, pairing, and encryption rulesSiB6tyand
DEC’ could increase relativie-rank. If either of these rules increadgsrank relative tang, then the key: mentioned

by each of these rules must eqigl Among the data generation rul@4( is the only one the relativie-rank of whose
right hand side is not obviously equal@pbut this holds by Axiom 1. Finally, the right hand side of each data access
rule isl(t) for some atomic term, so none of these can increase relakivank. O

Lemma 2. Property 1 holds in our C level formalization of Kerberos 5, i.e., for &nykey andmy : msg, any C level
intruder rule which increasek-rank relative tom, containsl(k) on its left hand side.

Proof. The addition of encryption types does not change the arguments given in the proof of Lemma 1. Among the
rules specific to our C level formalizatioRA, OA, andFA create atomic messages (with relativeank equal ta).

If an application ofMD increaseg-rank relative tong, then the key used by the must bewe see that the left hand

side of this rule then contains the fd¢t). O

Our approach to data origin authentication is outlined by the following theorem, which might be viewed as a loose
analogue of Schneider’s rank function theorem for our rank functions (recall that it is our corank functions which more
closely parallel Schneider’s rank functions).

Theorem 1. If pi(F;mg) = 0 for every factF” in the initial state of a trace and no intruder rule can incredseank
relative tom, then the existence of a fagt with pi(F;mg) > 0 in some non-initial state of the trace implies that
some honest principal fired a rule which produced a fact built up ffomg },, or [myg],..

Proof. If no intruder rule can increagerank relative tomy, some honest participant must have fired a rule which
increased this rank froml to some positive value. A fact of positiverank relative tomg must contain (as an
argument to the predicate) a term of posithseank relative tang. By induction on the structure of terms, this term
must be built up from at least one of the two terfws, },, and[mo],. O

We then authenticate the origin ffg },. (assuming this was not present at the beginning of the trace) by ensuring the
confidentiality of, invoking Property 1, and then determining which honest principal(s) could cfeatk, .

8.2 Corank

The E-corank relative ton is intended to capture the minimum amount of work, using keys from the se¢eded
to obtain the atomic messag®,. As for rank, we start by inductively defining corank on terms and then extending
the definition to facts.
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Let E be a set of keysng an atomic term of typensg, andt, ¢1, andt, terms. Then we define thé-corank oft
relative tomy, denoted by (¢; mg), as

pe(t;mo) =

OQ?

0,

pE(mi;mo) + 1,
pE(mi;mo),

%7

min{pg(ti1;mo), pr(t2;mo)},

t is atomic,t # myg
t is atomic,t = mg
t={mi},, ke FE
t={mi},, k¢ E

t = [mi],, kanykey
t=t1,to

(6)

If ¢ is atomic then no work using keys frofi is required to obtaimn if ¢ = mg, while no amount of such work can
extractmg from ¢ # mg. The number of decryptions using keys frdfimeeded to obtaim, from {m}, is the same
as orl more than the number needed to obtaif from m, depending on whethér¢ FE or k € E. Since we assume
that message digestion is one-way, no amount of decryption can extseficom [m],, regardless of whether or not
k € E; this appears in gray since message digests appear in the signature of our C level protocol formalization but not
our A level formalization. A message, can be extracted from the concatenation of two terms by extracting it from
one of these two terms (since we are assumingithaits atomic), whence the final case.

The extension of the definition of corank from terms to facts requires more care than the parallel extension of rank.
For a memory predicat® with j arguments, a natural first definition of tiiecorank of P(ty, . .., t;) relative tomg
would bemin; <;<; pr(t;; mo). However, we wish to have principals store messages in predicates without necessarily
compromising the confidentiality of these messa@eg,(an honest principal storing an unencrypted session key in
memory does not correspond to the intruder knowing this key). If a certain argument to a prétigdteever be
placed on the network, we will ignore the term it contains when determinindstoerank of P. We thus modify
the initial definition given above to instead take the minimum to be over thémewhich ¢; might be placed on the
network (to state this imprecisely). We leave a general approach to this problem for future work; for the moment, we
use this intuition to guide our extension of corank to facts as follows.

Let £ be a set okeys, m( an atomic term of typensg, m of typemsg, andt, ¢; be terms. Then, fof any role state
predicate and considering all predicates which appear in our formalizations of Kerberos §rgwithipe indicating
things present only in our C level formalization), we may defineAheorank of a factF’ relative tom, as follows.

m;my)

(
(t: mo)
(
(

>

PE( (m ;™Mo

>

pr(Authc(my, ma, ms, my); my;mo)

I
>
S S R )

mhmo)

Il
>
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pr(Lms, ..
pE(DoneMutc(my, ma

, My )5

|
8 88 8 28 88

pe(DoneNoMutc(my, ms);
pE(Mems(ml,mg,m3 ;Mo
ASErrorc(my, ma, mg, my); mg

mq

\_/\_/\_/\/\_/\_/\/\/\va

)
)
)
)
)
0) =
0)
)
)
)
)

E(
pe(TGSErrorc(my, ma, ms);
p

g(APErrorc(my, ma,ms); mg

For a multisetA of facts, we define th&'-corank of A relative tomg by
pE(A;mg) = min pE(F;mo) (7

if A0, andletpr(D;mg) =

We identify the confidentiality ofn, with the factl(m,) being prohibited from appearing in a trace. As an
immediate consequence of the definition of the corank of facts, we see that corank relatjyvis tirectly connected
to the confidentiality ofng as follows.
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Lemma 3. Letmyg : msg be atomic. If there is any séf of keys such that no faét with g (F; mg) = 0 appears in
a trace, then that trace does not conta{m,).

Proof. For every set of keys,pg(l(mo); mo) = pr(mo; mo) = 0. O

We expect that in any reasonable intruder formulation, if an intruder decreases the amount of decryption with keys
in the setE needed to learn a message, then she either knows some key protecting that message or she creates that
message herself. We formalize this as the following property.

Property 2. If an intruder rule R can decreasé’-corank relative tamg, wherel does not have access#ta, simply
by virtue of the type afi, then the left hand side @ containsl(k) for somek € E or R freshly generates:y.

As expected, this holds for both of our formalizations of the Dolev-Yao intruder.

Lemma 4. Property 2 holds for our A level formalization, i.e.yify is not aprincipal name time, or key of one of the
typesdbK I, shK | A for A : TS, or shK C' | for C' : client, then any A level intruder rule which decreagéscorank
relative tom, either containd(k) in its left hand side for some € E or freshly generates:.

Proof. The only network, pairing, and encryption rules which can decrease relative corafiR@feand DDC’; if
one of these rules does indeed decrdasmrank, then the kel mentioned in each rule must belong to the Betf
any data generation rule decreagesorank relative tong, by inspection we see that its right hand side must freshly
generaten,. The right hand side of each data access ruléjdor a termt whose type is assumed not to be the type
of myq, so the lemma is trivially true for these rules. O

Lemma 5. Property 2 holds for our C level formalization, i.e. yify is not aprincipal nametime, etype, Flag, Opt,
or key of one of the typetbK |, shK | A for A : TS, or shK C'| for C' : client, then any C level intruder rule which
decreased’-corank relative tang either containd(k) in its left hand side for somke € E or freshly generates.

Proof. The addition of encryption types does not change any of the arguments used to prove the A level version
(Lemma 4). The new ruldID cannot decrease relative corank (the right hand sidigri$ for non-atomicm). The
new data access rules are covered by the data types listed in the statement of the lemma. O

We prove confidentiality using the following result; like Theorem 1, this may be viewed as some type of analogue
of Schneider’s rank function theorem.

Theorem 2. If pg(F';mo) > 0 for every fact in the initial state of a trace, no intruder rule can decreBseorank
relative tomg, and no honest principal creates a fa€twith o (F’; mg) = 0, thenm, is secret throughout the trace.

Proof. We identify the secrecy afiy throughout a trace with the MSR fal§tn,) never appearing in trace. Because
pe(l(mog); mg) = 0 for every setE of keys, if the conditions of the theorem are satisfied,is secret throughout the
trace in question. O

We may thus show that, is confidential by finding some sét of keys, each of which is confidential (which may
require additional corank arguments) and which satisfies the conditions of this theorem.

9 Properties of Kerberos 5

In our work to date, we have established two types of properties for Kerberos 5. Since Kerberos is intended to provide
authentication, it is important to see what sort of authentication properties the protocol has. In proving authentication
properties of the protocol, we have also established confidentiality properties for various session keys which are
established during a protocol run. These properties are important in their own right, since some of the session keys
may be used in future communications between protocol participants.

We have established confidentiality and authentication properties connected to both the Ticket Granting Exchange
and the Client/Server Exchange. Since these exchanges have similar structure, it is not surprising that the properties are
expressed and indeed proved in very similar ways. Table 1 shows the parallel relationships between the properties that
we have established thus far. The confidentiality properties discussed here state that an intruder never learns certain
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Confidentiality | Authentication

TG Exchange Property 3 Property 4

C/S Exchange Property 5 Property 6

Table 1: Properties established for Kerberos 5

information. The authentication properties that we have establishedataeorigin authenticatiorproperties [11].

These show that if certain messages are ever seen on the network, then they must have been originally sent by a
specified protocol participant. Throughout this work, we assume the presence of a Dolev-Yao intruder. Additionally,
we do not intentionally leak keys to this intruder as was done in [1, 2, 3]

The properties related to the Ticket Granting Exchange have been established in both our A and C level formaliza-
tions. Properties 3 and 4 for our A level formalization were included, albeit in somewhat different form, in [6]. Their
extension to our C level formalization is a new result here. Properties 5 and 6, for the Client/Server Exchange, have so
far been proved only for the A level formalization; these results are also new since [6].

The precise statements and proofs of these properties are related in much the same way that the formalizations
themselves are related—removing some information from the detailed version gives the more abstract version. As
a result, we expect that we will soon be able to extend the properties of the Client/Server Exchange to our C level
formalization. In this section we outline the proofs of the theorems stated gsirygext to indicate those parts of
the outline which are specific to the C level version of the property. The full proofs, which involve numerous minor
lemmas about individual MSR rules, are given in Appendix A

9.1 The Ticket-Granting Exchange

We start with the properties that we have established for the Ticket Granting Exchange. As this exchange is closer to
the beginning of the standard protocol run, these properties are slightly simpler than for the Client/Server Exchange
below.

Because the communications betweendient and TGS use the shared key generated by K#& which created
the ticket granting ticket, we want to ensure that this key remains confidential. In this exchange, the ticket granting
server produces credentials (a service ticket) in response to a request which contains a ticket granting ticket and an
authenticator. We thus also wish to authenticate the origin of these objects; in the case of the authenticator, which is
encrypted using the key shared betwéeandT', we make use of the confidentiality result for this exchange.

9.1.1 Confidentiality of AKey

The first property that we have established for Kerberos 5 is the confidentiality of the session key generated by the
Authentication Servei,e., that the intruder does not learn this key. This parallels Theorem 6.18 of [1] for Kerberos 4.

Property 3. If the intruder does not know the long term secret kéysadndk7) used to encrypt the session k& ey
generated by the authentication sen/€rfor use byC' andT’, then the intruder cannot leard K ey.

We formalize this property for our A and C level formalizations as the following two theorems.

Theorem 3. For C : client, T : TGS, C,T # |, ke : dbKC, kr : dbKT, AKey : shKCT, andn : nonce, if the initial
state of a finite trace does not contd{t) or |(k7) and somex : KAS fires ruleas 1, freshly generatingl K ey and
creating the facN(C, {AKey, C}, ,{AKey,n, T}, ), then no state of the trace contains the fietKey).

Theorem 4. For C : client, T : TGS, C,T # |, k¢ : dbK C, kp : dbK T, AKey : shK C T, T Flags : TFlag, and
n : nonce, if the initial state of a finite trace does not contd{tt) or |(kr) and soméyx : KAS fires rulev 1, freshly
generatingA K ey and creating the fadi(C, {T'['lags, AKey,C},, ,{AKey,n, T Flags,T}, ), then no state of the
trace contains the fadf AKey).
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Proof. (Sketch)We show that no fact whodg:¢, k1 }-corank equal§ relative toA K ey ever appears in the trace. (We

use this set of keys because one of them encrjgtey whenever it is transmitted over the networkl) decreases

this corank when it freshly generatdd< ey, but not belowl; no KAS may otherwise decrease this corank. dent,

TGS, orserver can ever decrease this corank, nor can the intruder. As this relative corank in question must have been
infinite for every fact in the trace befoi€ freshly generated K ey, no fact whos€ k¢, kr }-corank equal$ relative

to AKey can every appear in the trace. O

9.1.2 Authentication of ticket-granting ticket and authenticator

The second property of Kerberos 5 is data origin authentication of the ticket and authenticator used in the client’s
request to the ticket granting server.

Property 4. If the intruder does not know the long term key used to encrypt a ticket-granting ticket and this ticket did
not exist at the beginning of the trace, then if th@S processes a request, ostensibly from a cli@ntontaining the
ticket-granting ticket and the session ké&¥y ey, then some Authentication Server created the sessior k&yy for

C to use with theT GS and also generated this ticket-granting ticket. Furthermore, if the intruder does not know the
long term key that the authentication server used to séA@y to C, then the authenticator was created @y

We formalize this property for our abstract and detailed formalizations as the following two theorems.

Theorem 5. For C : client, T : TGS, C,T # |, S : server, AKey : shK C T, kr : dbK T, andn : nonce, if
the beginning state of a finite trace does not contéky-) or any factF with py..(F; AKey,C) > 0, and at some
point in the traceT’ fires rulea, 1, consuming the fadi({AKey, C}, . {C} 4., C, S;n), then somek : KAS
previously fired rulen, 1, freshly generatingd K ey and producing the fack(C, {AKey,C},. ,{AKey,n',T},,)
for somen’ : nonce, and ¥’ : dbK C. Furthermore, ifl(k") did not appear in the initial state of the trace,
then after K fired rule as; and beforeT fired rule ay 1, C fired rule a3 1, creating the facﬂ\l(X,{C’}AKey,
C, S’ n") forsomeX : msg, S’ : server, andn’ : nonce.

Theorem 6. For C' : client, T': TGS, C,T # 1,5 : server, AKey : shKCT, kp : dbKT, T'Flags : TFlag, ck : msg,
terreq - time, TOpts - TOpt, e : etype, andn : nonce, if the beginning state of a finite trace does not contéin-)
or any factF with py..(F; T Flags,AKey, C) > 0, and at some point in the tracfires rulev, ;, consuming the fact
N({7'Flags,AKey,C},, ,{C,ck, 'L'C"«waq}AKey’ TOpts,C, S, n,e), then someds : KAS previously fired ruley 1,
freshly generatingd K'ey and producing the fadkl(C, {7 Flags,AKey,C},, ,{AKey,n/, TFlag.s,T};;’,) for some

n' : nonce, ¢’ : etype, andk’ : dbK®’ C. Furthermore, ifi(k") did not appear in the initial state of the trace, then after
K fired ruleyz 1 and beforel fired ruley,.1, C fired rulevs 1, creating the facN (X, {C, [TOpts’, O, 8", n" €"] 1.,
teTreq} arceys 1'Opts’,C, 8", n" ¢") for someX : msg, TOpts" : TOpt, " : etype, S : server, andn’ : nonce.

Proof. (Sketch) We first considertr-rank relative to7'/lags, AKey,C. No client, server, or TGS can increase
this rank, and cannot increase it without knowingr. SomekK : KAS must have increased this rank; we see that
rule ay, ; was fired byK and the other claims of the first part of the theorem follow.

The assumption thdt{x’) is not in the initial state of the trace allows us to apply Property 6, which shows that
| does not learm Key. Thusl cannot increasel K ey-rank relative toC, [1'Opts’, C, 5", n" "] 4., tc 7req- NO
KAS, TGS, or server will do so, andC' is the onlyclient who will; inspection of theclient rules shows that she must
do so in the manner claimed. O

9.2 The Client/Server Exchange

We now move to properties of the Client/Server Exchange; as this exchange parallels the Ticket Granting Exchange,
its properties parallel the properties we have proved for that exchange. These properties build on those stated above
and may be viewed as the main positive results that we have obtained thus far.

9.2.1 Confidentiality of SKey

The first property for the Client/Server Exchange gives conditions under which the session key shared by the client
and server is not known to the intruder. This parallels Theorem 6.19 of [1] for Kerberos 4.
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Property 5. If the intruder knows neither the long term secret key used & to encrypt the service ticket con-
taining a new session keyK ey for a client to use with a server nor the session key used by the client to request the
service ticket, then the intruder cannot least ey.

We formalize this property for our abstract formalization as the following theorem. We have not yet proved Property 5
for our detailed formalization, but expect to do so soon.

Theorem 7. For C : client, T : TGS, S : server, kr : dbK T', kg : dbK S, SKey : shK C' S, AKey : shK C T, and

n : nonce, if T fires ruleay 1, consuming the fadi({AKey, C},, . {C} o, C, S;n), freshly generating Key,
and creating the facN(C, {SKey, C}, ., {SKey,n, S}AKey), and if the initial state of the trace does not contain
I(ks) and no state of the trace contail{sA K ey), then no state of the trace contail{$ Key).

Proof. (SketchyVe show that no fact with AK ey, kg }-corank relative t&6 K ey equal to0 appears in the trace. The
only way that aTGS can decrease this corank is througis rule firing as in the theorem statement; the resulting
multiset has{ AK ey, ks }-corank relative ta5 K ey equal tol, and this corank was infinite for every previous state in
the trace. Nd<AS, client, or server decreases this corank. The intruder cannot freshly genggte or decrease this
corank through other means, finishing the proof. O

We may explicitly give conditions guaranteeing th@i Key) doe not appear in the trace in order to obtain the
following corollary.

Corollary 8. For C : client, T': TGS, S : server, k7 : dbK T', kg : dbK S, SKey : shK C S, AKey : shK C T, and

n : nonce, if T" fires ruleay 1, consuming the fadi({AKey, C},, ., {C} s, C; S,n), freshly generatings K ey,
and creating the facN(C, {SKey, C}, ., {SKey,n, S} 4x.,), and if the initial state of the trace did not contain
[(kT), I(ks), I(kc) for everyke : dbK C, or any factF' with py,. (F; AKey, C), then no state of the trace contains
[(SKey).

9.2.2 Authentication of ST and authenticator

The second property for the Client/Server Exchange is our main result for this exchange and captures authentication
of theclient C to theserver S, again in the form of data origin authentication. It states conditions which guarantee
that if S receives a certain message (consisting of a service ticket and an authenticator), apparentlg'stdrbthe

service ticket originated with son¥ : TGS and the authenticator originated with The assumptions needed for the
theorem to hold are that the ticket did not already exist at the beginning of the trace, and that the irtaggenot

have access to the long term key of teever S or the key shared betweé&nhand theT GS T who generated the ticket.

Property 6. If the intruder does not know the long term key used to encrypt a service ticketlienaC to present

to aserver S and this ticket did not exist at the beginning of the trace, théhgfocesses a request, ostensibly fréin
containing this service ticket and the session K&yey, then some Ticket Granting Server generated the session key
SKey for C to use withS and also created the service ticket. Furthermore, if the intruder never learns the session
key which the Ticket Granting Server used to encB/fitey when sending the service ticket@ thenC created the
authenticator.

We formalize this property for our abstract formalization as the following theorem. We have not yet proved Property 6
for our detailed formalization, but expect to do so soon.

Theorem 9. For C' : client, S : server, kg : dbK §, SKey : shK C S, andtc sreq : time, if the beginning
state of a finite trace does not contdifks) or any factF" with p,. (F'; SKey,C) > 0, and at some point in the
trace S fires ruleag ; consuming the fadd({SKey,C}, ,{C, tc’s,«eq}SKey), then somd” : TGS previously fired
rule ay 1, freshly generating K'ey and producing the fadll(C, {SKey, C}, ., {SKey,n, S},) for somen : nonce
andk : shK C'T. Furthermore, if the fack(k) has not yet appeared in the trace, then afféfired rule«, ; and before
S fired the ruleag 1, C fired ruleas ; to create the facN(Y, {C, tcysmq}SKey) for someY : msg.

Proof. (Sketch)We first consideks-rank relative taS Key, C; this was0 for all facts in the initial state of the trace
andS’s rule firing consumes a fact of positivig-rank relative toSKey, C. No client, KAS, or server can increase
this rank, nor can the intruder. The onlGS that could do so i§” and in the manner claimed.
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S's rule firing also consumes a fact of positi¥é ey-rank relative ta”, t ¢ sr.q; this rank must have been increased
during the protocol trace becauSé ey was freshly generated during the trace. We may invoke Property 3 to show
thatl could not increase this rank; by inspection, we see tha A8, TGS, or server could either. The onlylient
who could do so wa€’, and she must have done so in the manner claimed. O

We may explicitly add hypotheses which will guarantee i} does not appear in the trace; this gives us the
following corollary.

Corollary 10. For C' : client, S : server, kg : dbK S, SKey : shK C' S, andtc greq : time, if the beginning
state of a finite trace does not contdifks) or any factF with p,. (F; SKey,C) > 0, and at some point in the
trace S fires ruleag 1 consuming the fadi({SKey, C},. ., {C,tc sreq}siey,)s then somd’ : TGS previously fired
rule oy 1, freshly generatingg Key and producing the fadll(C, {SKey, C}, ., {SKey,n, S}, ) for somen : nonce
andk : shK C T'. Furthermore, if the initial state of the trace did not contafi) for any k¢ : dbK C, or, for any
kp : dbK T', and ifT" # |, I(ky) or any factF' with py.(F; k,C') > 0, then afterT fired rule as.; and beforeS fired
the ruleag 1, C fired ruleas ; to create the facN(Y, {C, tQSTeq}SKey) for someY” : msg.

Part IV
Conclusions and References

10 Conclusions and Future Work

10.1 Conclusions

In this paper, we gave three formalizations of Kerberos 5 in the Multi-Set Rewriting (MSR) framework. The A level
formalization included just enough detail to prove authentication and confidentiality results for the protocol; due to
structural changes in the messages from Kerberos 4, these properties were slightly weaker than those proved for that
version of the protocol[1, 2, 3, 4]. The C level formalization was closer to the full protocol as given in [13, 16], adding
error messages, checksums, and a number of options to the A level formalization. Many of these details are new to
version 5 of Kerberos. We extended our analysis of the A level case to the C level, observing that the structure of the
proofs is preserved in doing this and again proving authentication and confidentiality properties of the protocol. The

B level formalization extended the A level in a different direction by adding timestamps and temporal checks. We did
not extensively analyze this formalization as these details are not significantly changed from Kerberos 4.

We noted four possible instances of curious protocol behavior, although none of these compromises the security
of the protocol. Three of these arose because tickets are not bound to the rest of the messages containing them (as
they were in Kerberos 4); one of these three was seen in both the A and C levels, while the other two made use of the
options in the C level formalization. The fourth anomaly was related to the encryption type option which was included
in the C level. It appeared that some of these anomalies may be prevented though the use of cryptographic checksums
beyond those specified in the protocol, but we have not yet formally proved this. We did not notice any new anomalies
in our informal analysis of the B level formalization.

The proofs of protocol properties made use of rank and corank functions, inspired by the work of Schneider [20].
Our analysis gave insight into approaches to reasoning about the MSR specifications of protocols. Throughout this
work, MSR proved to be an adequate language for formalizing and analyzing a real-world protocol.

10.2 Future work

We close with an outline of logical extensions of the work described in this paper.

Kerberos 5 is a complex protocol suite, with numerous details remaining to be formalized and analyzed. One
natural continuation of this work is the formalization and analysis of the common refinement of our B and C level
formalizations; this might be further extended to include even more timestamps and temporal checks, explicit consid-
eration of all options specified in [18] (in particular renewable and postdatable tickets), and the formalization of the
other available subprotocols (such as for client-server communication after authentication has been achieved).
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We have seen parallels between the analyses of the A and C level formalizations. The relationships between
different formalizations of Kerberos 5 and the corresponding relationships between their security properties (and the
proofs of these properties) should be investigated in a precise manner. Analysis including timestamps should be done,
either using the B level formalization or some refinement of it; additional work may be merited on anomalous behavior
in more detailed formalizations, how it might be prevented (including through modification of existing checksums in
the protocol), and whether such preventative measures would be worth implementing.
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Part V
Appendices

A Proofs of Protocol Properties

The structure of this appendix parallels the structure of Section 9, where the theorems proved here are originally stated.

A.1 The Ticket-Granting Exchange
A.1.1 Confidentiality of AKey

Theorem 3. For C : client, T : TGS, C,T # |, k¢ : dbKC, kr : dbKT, AKey : shKCT, andn : nonce, if the initial
state of a finite trace does not contd{t) or |(k) and somey : KAS fires ruleas 1, freshly generatingl K ey and
creating the facN(C, {AKey, C},, ,{AKey,n, T}, ), then no state of the trace contains the fet K'ey).

Proof. We claim that no fact witH k¢, kr }-corank relative tod K ey equal to0 appears in the trace.

By Lemma 8, if anyKAS fires a rule which decreasésq, kr}-corank relative tad Key, then that rule freshly
generatesi K'ey and, if the newly created fact in the resulting multiseN{€”, {AK ey, C}, ,{AKey,n, T}, ), the
{k¢, kr}-corank relative tod K ey of this multiset equal$. By Lemma 9, no previous multiset in the trace contained a
fact with finite { k¢, k7 }-corank relative tod K ey, nor can anyKAS later fire a rule which decreasék¢, k1 }-corank
relative toAKey.

By Lemmas 10, 11, and 12, rtient, TGS, or server decrease$kc, k7 }-corank relative tod Key.

By hypothesis and Lemma 6, the fatts-) andl(kr) never appear in the trace under consideration. By hypothe-
sis, K freshly generated K ey, so by Lemma 9 cannot freshly generatéKey. Thus, by Lemma 13,does not fire
any rule which decreasdé¢, kr }-corank relative tod K ey.

As a result, no fact of k¢, kr }-coranko relative toAK ey, in particularl(AKey), occurs in any multiset of the
trace. O
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Theorem 4. For C : client, T : TGS, C, T # |, k¢ : dbK C, kr : dbK T, AKey : shK C T, T Flags : TFlag, and
n : nonce, if the initial state of a finite trace does not contd{tt) or |(k7) and soméyx : KAS fires rulev 1, freshly
generatingA K ey and creating the fadll(C, {7'Flags, AKey,C},, ,{AKey,n, T FlagsT}, ), then no state of the
trace contains the fad{ AKey).

Proof. We claim that no fact witH k¢, k }-corank relative tod K ey equal to0 appears in the trace.

By Lemma 14, if anyKAS fires a rule which decreasésq, kr }-corank relative tod K ey, then that rule freshly
generatesAKey and, if the newly created fact in the resulting multiseNi&”, {AKey,C},, , {AKey,n, T}, ),
the {k¢, kr}-corank relative toA Key of this multiset equald. By Lemma 15, no previous multiset in the trace
contained a fact with finit§ k-, k7 }-corank relative toA K ey, nor can anyKAS later fire a rule which decreases
{k¢, kr}-corank relative tcA K ey.

By Lemmas 16, 17, and 18, mtient, TGS, or server decrease$kc, k7 }-corank relative tod Key.

By hypothesis and Lemma 7, the fabtts-) andl(kr) never appear in the trace under consideration. By hypothe-
sis, K freshly generated K ey, so by Lemma 1% cannot freshly generatéKey. Thus, by Lemma 19,does not fire
any rule which decreasdé ¢, kr }-corank relative tod K ey.

As a result, no fact of k¢, kr }-coranko relative to AK ey, in particularl( AK ey), occurs in any multiset of the
trace. O

A.1.2 Authentication of TGT and authenticator

Theorem 5. For C : client, T : TGS, C,T # |, S : server, AKey : shK C T, kr : dbK T, andn : nonce, if
the beginning state of a finite trace does not contékn-) or any factF with py,.(F; AKey,C) > 0, and at some
point in the traceT” fires ruleay 1, consuming the fadil({AKey, C} . {C} 4k.,» C, S, n), then somek : KAS
previously fired rulen, 1, freshly generatingd K'ey and producing the fack(C, {AKey,C}, ,{AKey,n', T},.)
for somen’ : nonce, and k¥’ : dbK C. Furthermore, ifl(k¥’) did not appear in the initial state of the trace,
then after K fired rule as; and beforeT fired rule ay.1, C fired rule a3 1, creating the factN(X7{C}AKey,
C,S',n') for someX : msg, S’ : server, andn’ : nonce.

Proof. T's firing of rule oy, consumesN({AKey,C}, , {C}AKey,C’, S,ny), a fact of kr-rank 1 relative to
AKey, C. As the initial state of the trace did not contain any fRavith py,.(F'; AKey, C) > 0, some rule must have
been fired which increaséd--rank relative toA K ey, C.

By Lemmas 20, 21, and 22, rbient, server, or TGS can fire a rule which increaség-rank relative tcA K ey, C'.
By Lemmas 6 and 23, if the intruder fires a rule which incredsgsank relative toAKey, C then the initial
state of the trace contairis-, a contradiction. Thus somE : KAS must have fired a rule which increasgd-
rank relative toAKey,C. By Lemma 24, the firing of that rule freshly generatddey and created the fact
N(C,{AKey,C}, ,{AKey,n,T},,) for somen : nonce andk’ : dbK C.

T's firing of rule a4 ; consumes a fact ol Key-rank 1 relative toC. Becaused K ey was freshly generated by
some rule fired in the trace, by Lemma 25 no fact in the initial state of the trace had pddifivg-rank relative taC’
thus some protocol participant must have fired a rule which increased this rank.

As I(k") was not in the initial state of the trace, the conditions of Theorem 3 are satisfied (by hypothesis and the
first part of the theorem) and no state of the trace contéit& ey). By Lemma 23] cannot fire a rule which increases
AKey-rank relative toC. By Lemmas 26-28, n&AS, TGS, or server can fire a rule which increasesK ey-rank
relative toC. SomeC’ : client must have fired a rule which increasdd ey-rank relative toC; by Lemma 29, this
was( firing rule a3 1 and creating the fadt(X, {C} 4 x.,, C, S",n’) for someX : msg, S’ : server, andn’ : nonce.
Finally, Lemma 25 implies thak™s firing of rule a1 (freshly generatingl Key) preceded”’s firing of ruleaz ;. O

Theorem 6. For C' : client, T : TGS, C,T #1,S : server, AKey : shKC T, kr : dbK T, T'Flags : TFlag, ck : msg,

te rreq - time, TOpts : TOpt, e : etype, andn : nonce, if the beginning state of a finite trace does not contéin-)

or any factF' with py,.(F'; T Flags,AKey,C) > 0, and at some point in the tracfires rule, ;, consuming the fact
N({T Flags,AKey,C};, ,{C,ck,tc rreq} ageyr I'Opts,C, S,n, ¢), then somel : KAS previously fired ruley. 1,
freshly generatingd K ey and producing the fadll(C, {7 Flags,AKey,C},, ,{AKey,n', TFlags,T};:,) for some
n’ : nonce, ¢ : etype, andk’ : dbK® C. Furthermore, ifi(k') did not appear in the initial state of the trace, then after
K fired ruleyz 1 and beforel fired ruley,.1, C fired rulevs 1, creating the facN (X, {C, [TOpts’, €, 5", n” €"] 1.,
z‘,(;vT,\Cq}AKey, TOpts',C, 8", n" e") for someX : msg, TOpts’ : TOpt, ¢ : etype, S’ : server, andn’ : nonce.
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Proof. Ts firing of rule~,.1 consumedN ({7 Flags, AKey, C}y. ,{C, ck,tc Treq} agceys TOPLs,C, S, m, ¢), afact of
kp-rankl relative tol Flags, AK ey, C. As the initial state of the trace did not contain any fBatith py..(F'; T Flags,
AKey, C) > 0, some rule must have been fired which incredsedank relative tdl' Flags, AK ey, C.

By Lemmas 30, 31, and 32, rtient, server, or TGS can fire a rule which increaség--rank relative tal' Flags,
AKey,C. By Lemmas 7 and 33, if the intruder fires a rule which increagesank relative tol' Flags, AK ey, C then
the initial state of the trace contaihg, a contradiction. Thus somi : KAS must have fired a rule which increased
kr-rank relative tol'Flags, AK ey, C. By Lemma 34, the firing of that rule freshly generaté# ey and created the
factN(C, {T'Flags, AKey, C}, ,{AKey,n1, TFlags, T}Zlc) for somen; : nonce, ¢’ : etype, andkc : dbK® C.

T’s firing of rule v4.; consumes a fact ol K ey-rank1 relative toC, ck, tc 7req fOr someck : msg andtc rreq -
time. Becaused K ey was freshly generated by some rule fired in the trace, by Lemma 35 no fact in the initial state
of the trace had positivel K ey-rank relative toC, ck, tc rr.q; thus some protocol participant must have fired a rule
which increased this rank.

As (k') was not in the initial state of the trace, the conditions of Theorem 4 are satisfied (by hypothesis and the first
part of the theorem) and no state of the trace contidin&’ey). By Lemma 33/ cannot fire a rule which increases
AKey-rank relative toC, ck, tc rreq- By Lemmas 36-38, n&AS, TGS, or server can fire a rule which increases
AKey-rank relative toC, ck, tc rreq- SOmeC” : client must have fired a rule which increasdd(ey-rank relative
to C; by Lemma 39, this wag’ firing rule v;1 and creating the fadi(X, {C, ck’,tc Treq} axce, TOPEs', C, S,
ny,e”) with ek’ = [TOpts', C, S',n5, €] s .., fOr someX : msg, TOpts’ : TOpt, S : server, nj : nonce, and
e’ : etype. Finally, Lemma 35 implies thak's firing of rule - ; (freshly generatingd K ey) preceded’’s firing of
rule~s.. O

A.2 The Client/Server Exchange
A.2.1 Confidentiality of SKey

Theorem 7. For C : client, T': TGS, S : server, kr : dbK T', kg : dbK S, SKey : shK C' S, AKey : shK C T, and

n : nonce, if T fires ruleay 1, consuming the fadi({AKey, C},, ., {C} s, C; S,n), freshly generatings K ey,
and creating the facN(C, {SKey,C},_, {SKey,n, S} 4., ), and if the initial state of the trace does not contain
I(ks) and no state of the trace contail{sA K ey), then no state of the trace contail{$ Key).

Proof. We claim that no fact wit{ AKey, kg }-corank relative t&6 K ey equal to0 appears in the trace.

By Lemma 40, if anyT GS fires a rule which decreaséd K ey, ks }-corank relative t& K ey, then that rule freshly
generatess Key and, if the newly created fact in the resulting multiseNig”, {SKey, C}, ., {SKey,n, S} arce,)s
the { AK ey, kg }-corank relative taS K ey of this multiset equald. By Lemma 9, no previous multiset in the trace
contained a fact with finitd AK ey, ks }-corank relative to6 K ey, nor can anyT GS later fire a rule which decreases
{AKey, kg}-corank relative te6 Key.

By Lemmas 41, 42, and 43, #OAS, client, or server decrease$AK ey, ks }-corank relative to6 Key.

By hypothesis, the fad{ AK ey) never appears in the trace under consideration; by hypothesis and Lemma 6, the
fact(ks) never appears in this trace. Asfreshly generate§ Key, by Lemma 9l cannot freshly generatgK ey.
Thus, by Lemma 13,does not fire any rule which decreagesK ey, ks }-corank relative to6 K ey.

As a result, no fact of AK ey, kg }-corank0 relative toSKey, in particularl(SKey), occurs in any multiset of
the trace. O

Corollary 8. For C : client, T': TGS, S : server, k7 : dbK T', kg : dbK S, SKey : shK C S, AKey : shK C T, and

n : nonce, if T fires ruleay 1, consuming the fadi({AKey, C},, . {C} ofc,, C, S;n), freshly generatingd Key,
and creating the facN(C, {SKey, C}, ., {SKey,n, S} 4x.,), and if the initial state of the trace did not contain
(k7). I(ks), I(kc) for everyke : dbK C, or any factF' with py.,. (F; AKey, C), then no state of the trace contains
[(SKey).

Proof. We simply need to show thatA Key) never appears in the trace; we may then apply Theorem 7 to see that
I(SKey) does not appear in any state of the trace. By Theorem 5, we see that/Son€AS fired ruleas ; as
specified by that theorem. By hypothesis, for eviery dbK C, I(k’) does not appear in the trace, including its initial
state. Applying Theorem 3, we see thal K ey) does not appear in the trace. O
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A.2.2 Authentication of ST and authenticator

Theorem 9. For C' : client, S : server, kg : dbK §, SKey : shK C S, andtc sreq : time, if the beginning
state of a finite trace does not contdifks) or any factF' with p,. (F'; SKey,C) > 0, and at some point in the
trace S fires ruleag ; consuming the fadti({SKey, C}ks, {C, tc’s,«eq}SKey), then somd" : TGS previously fired
rule ay 1, freshly generating K'ey and producing the fadll(C, {SKey, C}, ., {SKey,n, S},) for somen : nonce
andk : shK C'T. Furthermore, if the fack(k) has not yet appeared in the trace, then affefired rule«, ; and before
S fired the ruleag 1, C fired ruleas ; to create the facN(Y, {C, tcysmq}SKGy) for someY” : msg.

Proof. S'sfiring of rule a1 consumed({SKey, C}; , {C,tc sreq} skey ), @ fact ofks-rankl relative toSKey, C.
As the initial state of the trace did not contain any facwith py . (F; SKey, C') > 0, some rule must have been fired
which increaseds-rank relative taSKey, C.

By Lemmas 44, 45, and 46, rmtient, KAS, or server can fire a rule which increaség-rank relative taS K ey, C'.

By Lemmas 6 and 23, if the intruder fires a rule which incredsegank relative taS K ey, C then the initial state of
the trace containgg, a contradiction. Thus soniE : TGS must have fired a rule which increaskg-rank relative
to SKey,C. By Lemma 47, this rule was, ; and7’s firing of it consumed some fadt({k,C}, ,{C},,C, S, n),
freshly generated K ey, and created the fadl(C, {SKey, C},. ., {SKey,n’, S}, ) for somek : shKCT, kr : dbKT,
andn,n’ : nonce.

S's firing of rule a1 consumes a fact & K ey-rank1 relative toC, ¢ sr.q. Becauses K ey was freshly generated
by some rule fired in the trace, by Lemma 25 no fact in the initial state of the trace had pSditiugrank relative to
C, te,sreq; thus some protocol participant must have fired a rule which increased this rank.

As I(k) has not appeared in the trace, the conditions of Theorem 7 are satisfied (by hypothesis and the first part
of the theorem) and no state of the trace contif¢(ey). By Lemma 23] cannot have fired a rule which increases
SKey-rank relative toC, t¢ sreq- By Lemmas 48-50, nKAS, TGS, or server can fire a rule which increasés< ey-
rank relative toC, tc sreq- Thus someC” : client must have fired a rule which increas@d(ey-rank relative to
C,tc sreq; Dy Lemma 51, this waé'’ firing rule a5 1 and creating the fa®i(Y, {C, tcﬁ,‘eq}SKCy) for someY : msg.
Finally, Lemma 25 implies that’s firing of rule a4 1 (freshly generating Key) preceded”"’s firing of ruleas ;. O

Corollary 10. For C' : client, S : server, kg : dbK S, SKey : shK C' S, andtc greq : time, if the beginning
state of a finite trace does not contdifks) or any factF' with p,. (F; SKey,C) > 0, and at some point in the
trace S fires ruleag.; consuming the fadi({SKey, C}, ,{C,tc,sreq}sxey)s then somé’ : TGS previously fired
rule a4 1, freshly generating K'ey and producing the fadl(C, {SKey, C}, ., {SKey,n, S},) for somen : nonce
andk : shK C T. Furthermore, if the initial state of the trace did not contdfk) for any k¢ : dbK C, or, for any
kr : dbK T, and if T' # |, |(kr) or any factF" with py.. (F; k,C) > 0, then afterT fired rule s, and beforeS fired
the ruleag 1, C fired ruleas ; to create the facN(Y, {C, tQSNq}SKey) for someY” : msg.

Proof. We simply need to guarantee théat) has not yet appeared in the trace; we may then apply Theorem 9 to get
the claimed result.

As T's firing of rule a4 ; produced the facN(C, {SKey,C}, ,{SKey,n,S},) for somen : nonce andk :
shK C T, it must have consumed a fact of the foMrﬁ{k,C}k,T7 {C},,C,S,n) for somek’. : dbK T'. We may
thus apply Theorem 5 to see that somiie : KAS fired rule as 1, freshly generating: and producing the fact
N(C, {k,O}k,T,{k,n’,T}k&) for somen’ : nonce andk; : dbK C. By hypothesis, neithel(k;,) nor I(k7.) ap-
peared in the initial state of the trace, so we may apply Theorem 3 to sdé€ithaever appears in the trace. [

B Lemmas for Authentication Properties

B.1 General lemmas
B.1.1 Lemmas for A level analysis

Lemma 6. For everyprincipal P # | and everyk : dbK P, if I(k) is in a state ther(k) was in the initial state of the
trace.

Proof. If I(k) appears on the right hand side of a rule fardbK P, then eithel(k) appears on the left hand side of
the rule ODPD) or P = | (DA). O
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B.1.2 Lemmas for C level analysis

Lemma 7. For everyprincipal P # | and everyk : dbK P, if I(k) is in a state ther(k) was in the initial state of the
trace.

Proof. If I(k) appears on the right hand side of any ruledoretype andk : dbK® P then eithel (k) appears on the
left hand side of the ruledPD) or P = | (DA"). O

B.2 Lemmas for Ticket-Granting Exchange
B.2.1 Lemmas for Theorem 3

Lemma 8. For everyT : TGS, C : client, k : shK C' T, setE of keys, andy : KAS, if K fires an A level rule which
decreasedv-corank relative tok, then the rule is rulevs ; and its firing freshly generatgs Furthermore, the only
factin the resulting multiset which is not in the previous multisék(€', {k, C'},, , {k,n, T}, ) for somekc : dbK C,
kr : dbK T, andn : nonce, and the{ k¢, kr }-corank relative tak of the resulting multiset equals

Proof. The only A level rule that an honesf : KAS may fire isas. 1. The onlyk : shK C T relative to which this
rule may decrease sonie-corank is the key freshly generated by this rule. For séme dbK C, kr : dbK T', and

n : nonce this rule firing produces the fa&t(C, {k,C},, ., {k,n, T}, ), which has{kc, kr}-corank of1 relative to

k. This is the only fact on the right-hand side of rulg;, and thus the only fact in the multiset resulting from this rule
firing that was not in the previous multiset of the trace. kAis freshly generated by this rule firing, by Lemma 9 no
fact appearing earlier in the trace had finfie-, k1 }-corank relative td:, so the{kc, k}-corank relative td: of the
multiset resulting from this rule firing equals th&q, k7 }-corank relative td: of the new network fact. O

Lemma 9. For everymy : msg and setFE of keys, if a factF’ such thatpg(F'; mg) < oo occurs in a multiset of a
trace, then no rule fired later in the trace freshly generates

Proof. If pr(F;mg) < oo, then at least one of the arguments to the predicate forfingust be a term built up from
mg using symmetric encryption and concatenation. By the definition of freshnesg.iéf freshly generated by some
rule firing, no fact in any multiset earlier in the trace may be built up fram O

Lemma 10. For everyC, C’ : client, T : TGS, setFE of keys, andk : shK C T, no A level rule that”’ fires decreases
E-corank relative tak.

Proof. Inspection of rulesy; 1, a2, ag.1, az.2, as.1, andas s. O

Lemma 11. For everyC : client, T, T : TGS, setE of keys, andk : shK C T', no A level rule thafl” fires decreases
E-corank relative tak.

Proof. Inspection of ruleyy ;. O

Lemma 12. For everyC' : client, T : TGS, setE of keys, k : shK C' T, andS : server, no A level rule thatS fires
decreased’-corank relative tak.

Proof. Inspection of ruleyg ;. O

Lemma 13. For any nonempty set of keys,C : client, T : TGS, C,T # |, keyk’ : shK C' T, and A level intruder
rule R, if R decreased’-corank relative tok’ then the left hand side @® includesl(k) for somek € E or R freshly
generated’.

Proof. Inspection of A level intruder rules. O
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B.2.2 Lemmas for Theorem 4

Lemma 14. For everyl : TGS, C : client, k : shK C' T, setE of keys, and¥ : KAS, if K fires a C level rule which
decreasedv-corank relative tok, then the rule is ruley; ; and its firing freshly generatels. Furthermore, the only
fact in the resulting multiset which is not in the previous multiset (€, {7 F'lags, k,C},. , {k,n, T Flags T}, )
for somek¢ : dbK C, kr : dbK T, T Flags : TFlag, andn : nonce, and the{k¢, kr }-corank relative tok of the
resulting multiset equals.

Proof. The only C level rules that an hondst: KAS may fire arey, ; and~s 1-; the latter cannot decreag&tcorank
relative to anykey. The onlyk : shK C T relative to whichy, ; may decrease some-corank is the key freshly
generated by this rule. For some : dbK C, k7 : dbK T, T'Flags : TFlag, andn : nonce this rule firing produces

the factN(C, {7 Flags .k, C},.., {k,n, TFIags.T}kC), which has{kc, kr }-corank ofl relative tok. This is the only

fact on the right-hand side of rutg 1, and thus the only fact in the multiset resulting from this rule firing that was not
in the previous multiset of the trace. Ags freshly generated by this rule firing, by Lemma 15 no fact appearing earlier
in the trace had finit¢kc, kr }-corank relative td, so the{kq, kr }-corank relative td: of the multiset resulting from

this rule firing equals thék¢, k1 }-corank relative td: of the new network fact. O

Lemma 15. For everymg : msg and setE of keys, if a factF’ such thatpg (F'; mg) < oo occurs in a multiset of a
trace, then no rule fired later in the trace freshly generates

Proof. If pr(F;mg) < oo, then at least one of the arguments to the predicate forfingust be a term built up from
mg using symmetric encryption and concatenation. By the definition of freshnesg,iéf freshly generated by some
rule firing, no fact in any multiset earlier in the trace may be built up from O

Lemma 16. For everyC, C’ : client, T : TGS, setFE of keys, andk : shK C'T', no C level rule that”’ fires decreases
E-corank relative tak.

Proof. Inspection of rulesy; 1, yi.2, ¥1.2/, 3.1+ 3.2+ ¥3.2/» V5.1, V5.2, V5.2/5 V7.1, @anchys: or. O

Lemma 17. For everyC : client, T, T" : TGS, setFE of keys, andk : shK C' T, no C level rule thafl” fires decreases
E-corank relative tak.

Proof. Inspection of rulesy,; and~,.1-. 0

Lemma 18. For everyC' : client, T' : TGS, setFE of keys, k : shK C' T, and S : server, no C level rule thatS fires
decreased’-corank relative tak.

Proof. Inspection of ruless.1, v6.1/» Yer.1, andyer 1. O

Lemma 19. For any nonempty set of keys,C' : client, T : TGS, C,T # |, keyk’ : shK C T, and C level intruder
rule R, if R decreasedv-corank relative tak’ then the left hand side @t includesl(k) for somek € E or R freshly
generates:’.

Proof. Inspection of C level intruder rules. O

B.2.3 Lemmas for Theorem 5

Lemma 20. For everyT' : TGS, k : dbK T', nonemptyn, : msg, and A level ruleR which may be fired by’ : client,
R does not increasg-rank relative tomy.

Proof. Inspection of rulesv; 1, a2, @3.1, a3.2, as5.1, andas . O

Lemma 21. For everyT : TGS, k : dbK T', nonemptyn, : msg, and A level ruleR which may be fired by : server,
R does not increasg-rank relative tomy.

Proof. Inspection of ruleyg ;. O

Lemma 22. For everyT' : TGS k : dbK T', nonemptyng : msg and A level ruleR which may be fired by : TGS, R
does not increasg-rank relative tom.
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Proof. Inspection of rulex, ;. O

Lemma 23. For any keyk, messageng, and A level intruder ruleR, if R increases:-rank relative tomg, then the
left hand side of? includesl (k).

Proof. Inspection of A level intruder rules (and Axiom 1 in the cas&/iF). O

Lemma 24. For C : client, T : TGS, k; : shK C T, andk, : dbK T, if K : KAS fires an A level rule which increases
ko-rank relative tok;, C, then that rule firing freshly generatés and creates the fadt(C, {k1,C'},,, {k1,n, T}, )
for somen : nonce andks : dbK C.

Proof. Inspection of rulexs ;. O

Lemma 25. For everym, : msg and keyk, if a fact F’ occurs in a trace an@y (F'; mo) > 0, then no A level rule fired
later in the trace freshly generatés

Proof. If k is freshly generated, théndoes not appear in any previous multiset of the trace. AnyKawtth positive
k-rank relative to some:y must have as some argument a term constructed using encryption by O

Lemma 26. For C : client, T' : TGS, k : shK C' T, mg : msg, and K : KAS, K cannot fire an A level rule which
increases:-rank relative tom.

Proof. Inspection of rulexs ;. O

Lemma 27. For C : client, T,T’ : TGS, k : shK C T, mg : msg, and K : KAS, if T fires an A level rule which
increasesg:-rank relative tomg, thenmgy = kcg,n, S for somes : server, kcg : shK C'S, andn : nonce.

Proof. Inspection of rulex, ;. O

Lemma 28. For C : client, T' : TGS, k : shK C' T, mg : msg, and S : server, S cannot fire an A level rule which
increasesk-rank relative tomy.

Proof. Inspection of rulevg ;. O

Lemma 29. For C,C" : client, T : TGS, k : shK C T, andmg : msg, if C’ fires a A level ruleR which increases
k-rank relative tomg, thenC’ = C, mg = C, R is a3,; and creates the fadtl(X, {C}AKWC, S, n9) for some
X : msg, TOpts : TOpt, S : server, andns : nonce.

Proof. Rulesa; 1, a2, a3.9, as.1, andas o can never increaserank relative tang for k : shK C' T.

Rule as 1, fired by C’, produces the fad¥l( X, {C’}AKey, C’, S, n9) for someX : msg, S : server, ny : nonce,
AKey : shK C T, andT : TGS. This hasAKey-rank of 1 relative toC. The only other term which might have
positive A K ey-rank relative to someng is X, but this contributes to the relative rank of the left side as well. [
B.2.4 Lemmas for Theorem 6

Lemma 30. For everyT : TGS, k : dbK T', nonemptyn, : msg, and C level ruleR which may be fired by’ : client,
R does not increasg-rank relative tom.

Proof. Inspection of rulesy; 1, y1.2, y1.2/, 3.1, 3.2+ V3.2, V5.1, V5.2, V5.2/5 V5/.1, @ndys: or. O]

Lemma 31. For everyT : TGS, k : dbK T', nonemptyn, : msg, and C level ruleR which may be fired by : server,
R does not increasg-rank relative tomy.

Proof. Inspection of rulesyg.1, v6.1/, Ver.1, andyg: 1. O

Lemma 32. For everyT : TGS k : dbK T', nonemptyn, : msg and C level ruleR which may be fired by : TGS,
R does not increasg-rank relative tom.

Proof. Inspection of rulesy,; and~,.1-. O
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Lemma 33. For any keyk, messagen,, and C level intruder ruleR, if R increases:-rank relative tomg, then the
left hand side of? includesl (k).

Proof. Inspection of C level intruder rules. O

Lemma 34. For C : client, T : TGS, ky : shK C T, ky : dbK T, andT' Flags : TFlag, if K : KAS fires a C level
rule which increaseg,-rank relative toT' Flags, k1, C, then that rule firing freshly generatés and creates the fact
N(C,{TFlags, k1, C},,,{k1,n, TFlags, T}, ) for somen : nonce andks : dbK C.

Proof. Inspection of rules, ; and~s.1-. N

Lemma 35. For everym, : msg and keyk, if a fact F' occurs in a trace angy (F'; mg) > 0, then no C level rule fired
later in the trace freshly generatés

Proof. If k is freshly generated, thendoes not appear in any previous multiset of the trace. O

Lemma 36. For C : client, T : TGS, k : shK C' T, mgo : msg, and K : KAS, K cannot fire a C level rule which
increasesc-rank relative tom.

Proof. Inspection of rulesy, ; and~s. 1. O

Lemma 37. For C : client, T,T" : TGS, k : shK C T, mg : msg, and K : KAS, if T fires a C level rule which
increasesk-rank relative tomg thenmg = kcg,n, SFlags, S for someS : server, kog : shK C' S, n : nonce, and
SFlags : SFlag.

Proof. Inspection of rulesy,; and~, 1. O

Lemma 38. For C : client, T' : TGS, k : shK C T, mg : msg, and S : server, S cannot fire a C level rule which
increases:-rank relative tomy.

Proof. Inspection of rulesg.1, v6.1/, Yer.1, andyg: 1. O

Lemma 39. For C,C" : client, T : TGS, k : shK C' T, andmy : msg, if C’ fires a C level ruleR which increases
k-rank relative tomy, thenC’ = C, my is eitherTOpts’, C, S', ny, e or C, [TOpts', C, S’ ny, €"] g g oys tC Treqs R
isv3.1 and creates the fadl (X, {C, [TOpts, C, S, na, e}AKey, tC,Treq}AKey> TOpts, C, S, ns, e) for someX : msg,
TOpts : TOpt, S : server, no : nonce, ande : etype.

Proof. Rulesyi.1, V1.2, Y1.2/» ¥3.2: V3.2 V5.1, V5.2, V5.27» V5.1, @aNdys, o, can never increaserank relative tang for
k:shKCT.

Rulevs 1, fired byC”, produces the fadl (X, {C", [TOpts, C", S, n2, €] s ey to, Treq f Arcey» L OPEs, C', S, na, €)
for someX : msg, T'Opts : TOpt, S : server, ny : nonce, e : etype, AKey : shK C'T, T : TGS, andtc rreq : time.
This hasA K ey-rank of1 relative to each of the message@pts, C’, S, na, e andC’, [TOpts, C’, S, na, e]AKey, tC Treq-
The only other term which might have positidé( ey-rank relative to somen is X, but this contributes to the relative
rank of the left side as well. O

B.3 Lemmas for Client/Server Exchange
B.3.1 Lemmas for Theorem 7

Lemma 40. For everyC : client, S : server, k : shK C' S, setFE of keys, andl’ : TGS, if T fires an A level rule
which decrease#’-corank relative tok, then the rule is rulexs ; and its firing freshly generates. Furthermore,
the only fact in the resulting multiset which is not in the previous multiggtds {k, C'}, ., {k,n, S}AKey) for some
ks : dbK S, AKey : shK C'T, andn : nonce, and the{AKey, kg }-corank relative tok of the resulting multiset
equalsl.
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Proof. The only A level rule that an hone%t : TGS may fire isay 1. The onlyk : shK C S relative to which this
rule may decrease soniecorank is the key freshly generated by this rule. For ségmedbK S, AKey : shK C' T,
andn : nonce, this rule firing produces the fabt(C, {k, C'}, ., {k,n, S} s ¢, ), Which has{AK ey, ks }-corank ofl
relative tok. This is the only fact on the right-hand side of rulg ;, and thus the only fact in the multiset resulting
from this rule firing that was not in the previous multiset of the tracek Asfreshly generated by this rule firing, by
Lemma 9 no fact appearing earlier in the trace had finit& ey, ks }-corank relative td:, so the{ AK ey, kg }-corank
relative tok of the multiset resulting from this rule firing equals thd Key, ks }-corank relative tat of the new
network fact. O

Lemma 41. For everyK : KAS, C : client, S : server, setF of keys, andk : shK C' S, no A level rule thatk fires
decreasegdr-corank relative tok.

Proof. Inspection of rulexs ;. O

Lemma 42. For everyC, C’ : client, S : server, setE of keys, andk : shK C' S, no A level rule that’ fires decreases
E-corank relative tak.

Proof. Inspection of rulesv; 1, a2, @3.1, as.2, as5.1, andas . O

Lemma 43. For everyC': client, setE of keys, S, .5’ : server, andk : shK C' S, no A level rule thatS’ fires decreases
E-corank relative tak.

Proof. Inspection of ruleyg ;. O

B.3.2 Lemmas for Theorem 9

Lemma 44. For everysS : server, k : dbK S, nonemptyn, : msg, no A level rule that” : client fires increaseg-rank
relative tomy.

Proof. Inspection of rulesv; 1, a2, @3.1, as.2, as5.1, andas . O

Lemma 45. For everyS : server, k : dbK S, nonemptyn, : msg, no A level rule that< : KAS fires increaseg-rank
relative tom.

Proof. Inspection of rulevs ;. O

Lemma 46. For everyS : server, k : dbK S, nonemptymg : msg, no A level rule thatS’ : server fires increases
k-rank relative tom.

Proof. Inspection of ruleyg ;. O

Lemma47. For C : client, S : server, k1 : shKC'S, ks : dbK .S, andT : TGS, if T fires an A level rule which increases
ko-rank relative tok;, C, then that rule isvy 1, and its firing consumes the fadt{4s, C'},_,{C},,, C, S,n), freshly
generates;, and creates the fadi(C, {k1,C}, , {ki,n’, S},,) for someks : shK C' T', k : dbK T, andn,n’ :

nonce.

Proof. Ruleay ; is the only A level rule that an hone§GS may fire; the rest of the lemma follows by inspection of
this rule. O

Lemma 48. For C : client, S : server, k : shK C'S, mqg : msg, and K : KAS, K cannot fire an A level rule which
increasesk-rank relative tom.

Proof. Inspection of rulevs ;. O

Lemma 49. For C : client, S : server, k : shK C'S, mg : msg, andT : TGS, T cannot fire an A level rule which
increasesk-rank relative tom.

Proof. Inspection of rulevy ;. O
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Lemma 50. For C : client, S, 5" : server, k : shK C S, andmyg : msg, if S’ fires an A level rule which increases
k-rank relative tomg thenS’ = S andmg = t for somet : time.

Proof. Inspection of rulevg ;. O

Lemma 51. For C,C" : client, S : server, k : shK C' S, andmyg : msg, if C’ fires an A level rule which increases
k-rank relative tomg, thenC’ = C, mq = C,t for somet : time, the rule isas 1, and its firing creates the fact
N(Y,{C,t},) for someY : msg.

Proof. Rulesa; 1, a1.2, as3.1, as.2, andas o can never increaserank relative to anyng for k : shK C' S.

Ruleas 1, fired byC”, produces the fadt (Y, {C’, ¢}, ) for someY : msg, ¢ : time, S’ : server, andk’ : shKC’S".
As Y also appears on the left hand side of this rule, whose firing incréasssk relative tomg, it must be that the
k-rank of {C’, t},, relative tom, is greater than th&-rank relative tam, of the left hand side of this rule. This term
has positivek-rank relative tomy if and only if mg = C’, ¢t andk = k’; considering the type of = £/, we see that
C=C"andS =25 O
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C Anomalous Traces

In this appendix we give detailed traces for some of the anomalies discussed in Section 7. These include discussion of
the MSR rules which are fired in each trace; the message flows are as shown in Section 7.

C.1 Aleveltrace of ticket anomaly

C,ai1 N(C,T,n1)

— L(C,T,n1)

K, a9 1 N(Cv{AKeyv C}k y

Hetm) ML) = {AKeyn,TY,)
JX : msg
L(C.T,m) e e | NCX (AKeym T}, )
IRAS ) . e -
e I({AKey, C}kT)

L(C,T,n) |

I(CvX7 {AKEyvnlyT}kC) N(07X7{AK€yvnl7T}kc)

I({AKey,C},,,)

N(C, X, {AKey,n1, T}, ) C,a1.2

I({AKey, C}kT) Authe(X,n1,T, AKey)

L(C,T,n1) —
Cu N(X, {C} 4oy Cs Sima2)
I({AKey,C}, ) Authe (X, ny1, T, AKey) e L(C, 8,T,ns)

Authc(X,n1,T, AKey)

Authc(X,n1,T, AKey)

L(C, S, T,n2) N(X, {C} Age,s Cs Sin2) 1(X, {C} 4 ey C. Sim2)

({AKey, CYy, ) —
Autho(X,n1,T, AKey) |(X7{C}AKey707 S, n2) | N({AKey, C}kT’
L(C, S, T, ny) I({AKey,C},,) — {C} aeys C- Sm2)

Authc(X,n1,T, AKey) N({AKey, C}kT7
L(C, S, T, n2) {CY Arey C:Sim2)
|(C,X,{AK€y,C}kT) Valzd(C, S, TLQ)

T, 4.1 N(C’ {SKey7 C}ks’
— {SK€y7n27S}AK5y)

Figure 33: Producing anomalous behavior in the abstract formalization.

Figure 33 shows a sequence of rule firings which realize the ticket anomaly of Section 7.1. Arrows indicate the
firing of rules, with the labels above each arrow indicatinggtiecipal firing the rule and the rule being fired. In each
row, the rule being used rewrites the facts in the second column as those in the fourth; the facts in the first column
remain untouched by the rule in question.

C sends a request for credentialsRousing the rulen; ;. K sees the network messageT, n,; and replies
using ruleas 1, sending the network message TG T, { AKey,ny, T},  whereTGT = {AKey, C}, is the ticket
granting ticket. The intruddmeads this message from the network using M€ and creates a new messayeising
MG. | then creates (usinDMC, DMC, CMP, CMP the messag€’, X, {AKey,n1,T},_, i.e, K's message with
the ticket TGT for T replaced by the freshly generated mess&gend puts it on the network usingRN. C' now
sees the network messageX, {AKey,nq, T}kc, which is of the form she expects (she does not expect to be able
to read the ticket, and so cannot tell that it has been replaced)byshe thus completes the Authentication Service
Exchange by firing rulev; o, storingX, nq, T', and AKey in the memory predicatduthc.

Believing she has obtained credentials TarC' now initiates the Ticket Granting Exchange with She uses
the Authc memory predicate to fire rules; and send the network messa@e{C}AKey,S, ns. When| sees
this message on the network he removes the message from the nekiN@dk Ehe then generates a new message
TGT,{C} sk, S, n2 by replacingX with the original ticket7GT (DMC, CMP). | then puts this message onto
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the network TRN). Finally, 7" sees the network messa@e&: 7', {C'} 4 k., S, n2 and uses this to fire the rute, 1,
grantingC’s apparent request for credentials for use vfith

C.2 Clevel trace of encryption type anomaly

Here we give a trace which realizes the encryption type anomaly sketched in Section 7.3. Red@lktiats
that the keykc : dbK® C has been compromised and attempts to request a ticket-granting ticketsfrorKAS
using some other database ke : dbK® C. C thus fires ruley; 1, putting the messag& Opts, C,T,n1, e’ on
the network.| already has possession if ande as indicated by the predicatég) andl(e). Using rulesINT,
DMC, CMP, andTRN, she intercept§’s message and constructs the mesdag®ts, C, T, ny, e and then put this
message on the network sees this altered request as a legitiméRB AS REQmessage and fires ruig 1, placing
C, X,{AKey,n1,TFlags,T}; . on the network, wher&l is the ticket granting ticke{7' Flags, AKey,C},, . for
C to present tdl'. | intercepts this message usifgT and then obtaingl Key usingDMC, SDC’, andDMC; an
additional application oDMC allows her to obtain the ticket-granting ticket. At this poihhas the ticket-granting
ticket and the session ke¥K ey needed to use it, so she may impersorate the TGS 7T'.

I(kc) Civia N(KOpts,C,T,n1,e’)
I(e) — L(C,KOpts, T,n1,e’)
I, INT

N(KOpts,C, T,n1,e') I(KOpts,C,T,n1,e")

—

\(KOpts, C, T,ny,¢') I,DMC I(KOpts,C, T,n1)

— I(e")
I(KOpts,C,T,n1) I,CMP \(KOpts,C, T, ny,e)
|(6) —
I(KOpts,C,T,n1,e) I’fN N(KOpts,C,T,n1,e)
N(KOpts,C,T,n1,e)
Validx (KOpts,C,T,n1, ) K, v2.1 N(C,{T'Flags, AKey,C}%,.,
SetAuthFlagsk (KOpts, C,T, TFlags) — {AKey,m-,TFlagsyT}Zc)

SetETypesk (C,e,e, T,e'")

. I,INT  |(C,{TFlags, AKey, C}¢ .
N(C,{TFlags, AKey, C}},,.,{AKey,n1, TFlags, T} ) ( {/iKey 79L1 TFlau;s j}ﬂli:.z )
> g ’ g C

" I,DM s, AKey, C}¢
(C,{TFlags, AKey, C}},,.,{AKey,n1,TFlags,T}} ) ’ ¢ \(C, {TFlags, AKey, C}i,.)

— I({AKey,n1,TFlags, T};,)
I({AKey,n1, TFlags, T}y ) 1,SDC’ )
I(ke) . I(AKey,n1,TFlags,T)
I(AKey,n1,TFlags,T) L D_A){C I(AKey)

Figure 34: Encryption Type Anomaly
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D Message Fields

This appendix consists of tables describing the correspondence between the message structures defined in [16] and the
network messages in our formalizations of Kerberos 5. Each table lists the field narygsegmiter type ) as
given in Section 5 of [16], with subfields indented to indicate the level of nesting, and the corresponding names used
for the fields included in our formalizations. For those fields with subfields, the entry for the field shows the included
subfields as well as any encryption that is used; this provides some overlap with the entries for the subfields.

The KRBAS REQmessage type is a message of ty{eB KDCREQ which is defined in Section 5.4.1 of [16].
The fields of this message are listed in Table 2.

Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted)KRBAS_REQ | (omitted)KRBAS_REQ | (omitted) KRBAS_ REQ
padata (omitted) (omitted) (omitted)
reg-body C,T,n C,T,n KOpts,C, T ,n1,e
kdc-options (omitted) (omitted) KOpts
chame C C C
sname T T T
from (omitted) (omitted) (omitted)
till (omitted) (omitted) (omitted)
rtime (omitted) (omitted) (omitted)
nonce n1 ni ni
etype (omitted) (omitted) e
addresses (omitted) (omitted) (omitted)
enc-authorization-data (omitted) (omitted) (omitted)
additional-tickets (omitted) (omitted) (omitted)

Table 2: Fields in th&KRBAS_REQmessage.

The KRBAS_ REPmessage type is a message of t{ff#BKDCREP, which is defined in Section 5.4.2 of [16].

Note that the structure of thicket  field is defined in Section 5.3.1 of [16]. The fields of this message are listed in
Table 3.

The KRBTGSREQmessage type is a message of tigB KDCREQ which is defined in Section 5.4.1 of [16].
The fields of this message are listed in Table 4.

As noted in the description gladata under Section 5.4.1 of [16], “[rlequests for additional tickllRB TGS REQ
must contain padata of PATGSREQ’ The description oPA-DATAIN Section 5.2.7 of [16] seems to suggest that,
at least in this message, the checksum should be present and keyed. Section 5.2.7.1 of [16] notes that “[t]he checksum
in the authenticator (which must be collision-proof) is to be computed ové¢ilie& REQ-BOD¥ncoding.” Thus we
take thecksum field to be a keyed checksum over ttegj-body field. It is important to note that this field does not
include theticket , so the checksum will not be able to detect tampering with the ticket.

The padata field contains the authentication header, which is of tiflRRBAP_REQ(as noted in the second
paragraph under section 3.3 and the first paragraph of 5.5.1 in [16]). The subfields of this message type are listed
directly as subfields gfadata . These include thdécket , whose constituent subfields are not listed (see Table 3)
since it is unreadable by the client, and the freshly construatekenticator , whose subfields are listed. A
full description of authenticators is given in section 5.3.2 of [16]. Tksum field of the authenticator “contains
a checksum of the application data that accompanieKRRBAP_REQ (under the description ofksum in 5.3.2
of [16]), i.e,, that accompanies the authentication header.

The KRBTGSREPmMessage type is a message of ty{B KDCRER, which is defined in Section 5.4.2 of [16],
and as such parallels the structure of KiRBAS REPmessage given above. The fields of this message are listed in
Table 3. We do not show the effects of an anonymous ticket (in whicAM@NYMOUtag in theticket  is set);
this would change thename from C to a genericlient name.

The fields of theKRBAP_REQmessage are shown in Table 6. This message has the same structure as the authen-
tication header of th&kRBTGSREQmessage above. Thksum field in the authenticator is described as optional
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Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted)KRBAS_REP | (omitted)KRBAS REP (omitted)KRBAS_REP
padata (omitted) (omitted) (omitted)
crealm (omitted) (omitted) (omitted)
chame C C C
ticket {AKey,C},.. {AKey, C,tk auth, LK end } iy {TFlags, AKey,C},,..
tkt-vno (omitted) 5 (omitted) 5 (omitted) 5
realm (omitted) (omitted) (omitted)
sname (omitted) (omitted) (omitted)
enc-part {AKey,C}kT {AKey, C, tK,am,h,tK@nd}kT {TFlags, AKey, C}kT
flags (omitted) (omitted) TFlags
key AKey AKey AKey
crealm (omitted) (omitted) (omitted)
cname C C C
transited (omitted) (omitted) (omitted)
authtime (omitted) tK,auth (omitted)
starttime (omitted) (omitted) (omitted)
endtime (omitted) tK end (omitted)
renew-till (omitted) (omitted) (omitted)
caddr (omitted) (omitted) (omitted)
authorization-data (omitted) (omitted) (omitted)
enc-part {AKey,n1, T}y, {AKey,n1, trauths trcend, T, | {AKey,n1, TFlags, T}y,
key AKey AKey AKey
last-req (omitted) (omitted) (omitted)
nonce ny ni ni
key-expiration (omitted) (omitted) (omitted)
flags (omitted) (omitted) TFlags
authtime (omitted) LK, auth (omitted)
starttime (omitted) (omitted) (omitted)
endtime (omitted) LK end (omitted)
renew-till (omitted) (omitted) (omitted)
srealm (omitted) (omitted) (omitted)
sname T T T
caddr (omitted) (omitted) (omitted)

Table 3: Included fields for thKkRBAS REPmessage.
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Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted)KRBTGSREQ | (omitted)KRBTGSREQ | (omitted) KRBTGSREQ
padata {AKey,C},.. {AKey, C, {TFlags, AKey,C}y,,.
{C}AKey tK,aUt’HtK,f"’”d}kT {07 [req_bOdy ]AKey7
{C, tC,T'req}AKey tC,TTeq}AK&y
pvno (omitted) (omitted) (omitted)
msg-type (omitted) (omitted) (omitted)
ap-options (omitted) (omitted) (omitted)
ticket {AKey,C}y.,. {AKey, C, {TFlags, AKey,C},.
LK, auth, LK, end J ke
authenticator {CY AKey {C,teTreq} Arcey {C, [reg-body ] afey,
tC’,T’req}AKey
authenticator-vno (omitted) (omitted) (omitted)
crealm (omitted) (omitted) (omitted)
cname C C C
cksum (omitted) (omitted) H (reg-body )
cusec (omitted) (omitted) (omitted)
ctime (omitted)tc, req L Treq to, Treq
subkey (omitted) (omitted) (omitted)
seq-number (omitted) (omitted) (omitted)
authorization-data (omitted) (omitted) (omitted)
reg-body C, S, na C, S, ns TOpts,C, S,na, e
kdc-options (omitted) (omitted) TOpts
chame C C C
sname S S S
from (omitted) (omitted) (omitted)
till (omitted) (omitted) (omitted)
rtime (omitted) (omitted) (omitted)
nonce ne ne no
etype (omitted) (omitted) e
addresses (omitted) (omitted) (omitted)
enc-authorization-data (omitted) (omitted) (omitted)
additional-tickets (omitted) (omitted) (omitted)
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Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted) KRBTGSREP | (omitted) KRBTGSREP (omitted) KRBTGSREP
padata (omitted) (omitted) (omitted)
crealm (omitted) (omitted) (omitted)
chame C C C
ticket {SKey,C}, {SKey,C,tr auth, tT,end 11 {SFlags, SKey,C},
tkt-vno (omitted) (omitted) (omitted)
realm (omitted) (omitted) (omitted)
sname (omitted) (omitted) (omitted)
enc-part {SKey,C}, {SKey,C,tr,quth, tT,end } i {SFlags, SKey,C},.
flags (omitted) (omitted) SFlags
key SKey SKey SKey
crealm (omitted) (omitted) (omitted)
cname C C C
transited (omitted) (omitted) (omitted)
authtime (omitted) L1, auth (omitted)
starttime (omitted) (omitted) (omitted)
endtime (omitted) L7 end (omitted)
renew-till (omitted) (omitted) (omitted)
caddr (omitted) (omitted) (omitted)
authorization-data (omitted) (omitted) (omitted)
enc-part {SKey,n2,S} srey {SKey,n2,tr auth, tT.end, S} axey | {SKey,n2, SFlags, S} are,
key SKey SKey SKey
last-req (omitted) (omitted) (omitted)
nonce na na na
key-expiration (omitted) (omitted) (omitted)
flags (omitted) (omitted) SFlags
authtime (omitted) tr auth (omitted)
starttime (omitted) (omitted) (omitted)
endtime (omitted) tr end (omitted)
renew-till (omitted) (omitted) (omitted)
srealm (omitted) (omitted) (omitted)
sname S S S
caddr (omitted) (omitted) (omitted)

Table 5: Included fields for th€RB TGS REPmessage.
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and application specific in the first paragraph under Section 3.2.2 of [16].

Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted)KRBAP_.REQ | (omitted)KRBAP-REQ (omitted)KRBAP_REQ
ap-options (omitted) (omitted) SOpts
reserved (omitted) (omitted) (omitted)0|1
use-session-key (omitted) (omitted) (omitted)0|1
mutual-required (omitted) 01 01
reserved (omitted) (omitted) (omitted)0] ... [2%7 — 1
ticket {SKey, C}, {SKey, C,tr,auth, tT,end t {SFlags, SKey,C},
aUthenticator {07 tcysT‘EQ}SKEy {07 tC;ST'e(I}SKEy {07 HSKey7 tC,S"'efI}SKey
authenticator-vno (omitted) (omitted) (omitted)
crealm (omitted) (omitted) (omitted)
chame C C C
cksum (omitted) (omitted) H(---)
cusec (omitted) (omitted) (omitted)
Ctime tC,Sr'eq tC,S'r'eq tC,Sr'eq
subkey (omitted) (omitted) (omitted)
seg-number (omitted) (omitted) (omitted)
authorization-data (omitted) (omitted) (omitted)

The structure of thi&kRBAP_REPmessage, whicld sends ta” when mutual authentication has been requested,

is shown in Table 7.

Table 6: Fields in th&KkRBAP_REQmessage.

Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted)KRBAP_REP | (omitted)KRBAP_.REP | (omitted)KRBAP_REP
enc-part {tc.srea}sicey {to.sreatsicey {tc.sreatsiey
ctime tC,Srcq tC,Sch tC,STeq
cusec (omitted) (omitted) (omitted)
subkey (omitted) (omitted) (omitted)
seg-number (omitted) (omitted) (omitted)

Finally, the structure of th&RBERRORMessages is shown in Table 8. Error messages are not implemented in

the A level formalization.

Table 7: Fields in th&KRBAP_REPmessage.
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Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted) KRBERROR KRBERROR KRBERROR
Ctime (OmlttEd)_ - |tC,T'r'eq‘tC,S7‘eq - - ‘tC,T'Peq“C,ST'eq I |tC,Tr'eq‘tC,S'req
cusec (omitted) (omitted) (omitted)
stime (omitted)t(x|7|s),err L(x|T|S),err LK |T|S),err
susec (omitted) (omitted) (omitted)
error-code (omitted) ErrorCode ErrorCode ErrorCode
crealm (omitted) (omitted) (omitted)
chame (omitted)C (omitted)C (omitted)C'
realm (omitted) (omitted) (omitted)
sname (omitted) K'|T'|.S K|T|S K|T|S
e-text (omitted) (omitted) (omitted)
e-data (omitted) (omitted) (omitted)

Table 8: Fields in th&RB ERRmessage.
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