
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 2004

A Formal Analysis of Some Properties of Kerberos 5 Using MSR A Formal Analysis of Some Properties of Kerberos 5 Using MSR

Frederick Butler
University of Pennsylvania

Iliano Cervesato
ITT Industries, Inc.

Aaron D. Jaggard
Tulane University

Andre Scedrov
University of Pennsylvania, scedrov@math.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Frederick Butler, Iliano Cervesato, Aaron D. Jaggard, and Andre Scedrov, "A Formal Analysis of Some
Properties of Kerberos 5 Using MSR", . January 2004.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-04-04

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/892
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kosmopolis

https://core.ac.uk/display/214172722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F892&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/892
mailto:repository@pobox.upenn.edu

A Formal Analysis of Some Properties of Kerberos 5 Using MSR A Formal Analysis of Some Properties of Kerberos 5 Using MSR

Abstract Abstract
We give three formalizations of the Kerberos 5 authentication protocol in the Multi-Set Rewriting (MSR)
formalism. One is a high-level formalization containing just enough detail to prove authentication and
confidentiality properties of the protocol. A second formalization refines this by adding a variety of
protocol options; we similarly refine proofs of properties in the first formalization to prove properties of
the second formalization. Our third formalization adds timestamps to the first formalization but has not
been analyzed extensively. The various proofs make use of rank and corank functions, inspired by work of
Schneider in CSP, and provide examples of reasoning about real-world protocols in MSR.We also note
some potentially curious protocol behavior; given our positive results, this does not compromise the
security of the protocol.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-04-04

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/892

https://repository.upenn.edu/cis_reports/892

A Formal Analysis of Some Properties of Kerberos 5 Using MSR∗

University of Pennsylvania Department of Computer & Information Science Technical Report MS-CIS-04-04

Frederick Butler† Iliano Cervesato‡ Aaron D. Jaggard†¶ Andre Scedrov¶♦

Department of Mathematics
University of Pennsylvania

Philadelphia, PA USA
{fbutler@math,scedrov@saul.cis}.upenn.edu

ITT Industries, Inc.
Advanced Engineering & Sciences

2560 Huntington Avenue
Alexandria, VA 22303
iliano@itd.nrl.navy.mil

Department of Mathematics
Tulane University

New Orleans, LA USA
adj@math.tulane.edu

April 21, 2004

Abstract

We give three formalizations of the Kerberos 5 authentication protocol in the Multi-Set Rewriting (MSR) for-
malism. One is a high-level formalization containing just enough detail to prove authentication and confidentiality
properties of the protocol. A second formalization refines this by adding a variety of protocol options; we similarly
refine proofs of properties in the first formalization to prove properties of the second formalization. Our third for-
malization adds timestamps to the first formalization but has not been analyzed extensively. The various proofs make
use of rank and corank functions, inspired by work of Schneider in CSP, and provide examples of reasoning about
real-world protocols in MSR. We also note some potentially curious protocol behavior; given our positive results, this
does not compromise the security of the protocol.

∗†Partially supported by ONR Grant N00014-01-1-0431.‡Partially supported by NRL under contract N00173-00-C-2086.¶Partially supported
by the DoD University Research Initiative (URI) program administered by the Office of Naval Research under Grant N00014-01-1-0795.�Partially
supported by NSF Grant CCR-0098096. A short version of this appeared inS. Schneider, ed.,15th IEEE Computer Security Foundations Workshop,
Cape Breton, Nova Scotia, Canada, June 2002, IEEE Computer Society Press, 2002. Most of this work was carried out and the initial draft of this
report was written while Jaggard was at the Department of Mathematics, University of Pennsylvania.

Contents

I Introduction and Background 4

1 Introduction 4

2 Overview of the Kerberos 5 Protocol 5

3 MSR 6
3.1 Signature .6
3.2 States and roles .7

II Formalizing Kerberos 5 8

4 A Level Formalization of Kerberos 5 8
4.1 The Authentication Service Exchange .8
4.2 The Ticket-Granting Exchange .10
4.3 The Client/Server Exchange .11
4.4 A level intruder formalization .12

4.4.1 Network, pairing and encryption rules .12
4.4.2 Data generation rules .12
4.4.3 Data access rules .13

5 C Level Formalization of Kerberos 5 13
5.1 The Authentication Service Exchange .14
5.2 The Ticket-Granting Exchange .16
5.3 The Client/Server Exchange .17
5.4 The Client/Server Exchange without mutual authentication .18
5.5 C level intruder formalization .19

6 B Level Protocol Formalization 20
6.1 The Authentication Service Exchange .20
6.2 The Ticket-Granting Exchange .21
6.3 The Client/Server Exchange with mutual authentication .23
6.4 The Client/Server Exchange without mutual authentication .23

III Analyzing Kerberos 5 27

7 Anomalous Protocol Behavior 27
7.1 Ticket anomaly .27
7.2 Anonymous ticket switch anomaly .28
7.3 Encryption type anomaly .30
7.4 Ticket replay anomaly .31
7.5 Possible replays .32

8 Rank and Corank Functions 32
8.1 Rank .33
8.2 Corank .34

2

9 Properties of Kerberos 5 36
9.1 The Ticket-Granting Exchange .37

9.1.1 Confidentiality ofAKey . 37
9.1.2 Authentication of ticket-granting ticket and authenticator .38

9.2 The Client/Server Exchange .38
9.2.1 Confidentiality ofSKey . 38
9.2.2 Authentication ofST and authenticator .39

IV Conclusions and References 40

10 Conclusions and Future Work 40
10.1 Conclusions .40
10.2 Future work .40

V Appendices 42

A Proofs of Protocol Properties 42
A.1 The Ticket-Granting Exchange .42

A.1.1 Confidentiality ofAKey . 42
A.1.2 Authentication ofTGT and authenticator .43

A.2 The Client/Server Exchange .44
A.2.1 Confidentiality ofSKey . 44
A.2.2 Authentication ofST and authenticator .45

B Lemmas for Authentication Properties 45
B.1 General lemmas .45

B.1.1 Lemmas for A level analysis .45
B.1.2 Lemmas for C level analysis .46

B.2 Lemmas for Ticket-Granting Exchange .46
B.2.1 Lemmas for Theorem 3 .46
B.2.2 Lemmas for Theorem 4 .47
B.2.3 Lemmas for Theorem 5 .47
B.2.4 Lemmas for Theorem 6 .48

B.3 Lemmas for Client/Server Exchange .49
B.3.1 Lemmas for Theorem 7 .49
B.3.2 Lemmas for Theorem 9 .50

C Anomalous Traces 52
C.1 A level trace of ticket anomaly .52
C.2 C level trace of encryption type anomaly .53

D Message Fields 54

3

Part I

Introduction and Background

1 Introduction

Kerberos [13, 17, 16, 18] is a widely deployed protocol, designed to repeatedly authenticate a client to multiple
application servers based on a single login. The protocol uses various credentials (tickets), encrypted under a server’s
key and thus opaque to the client, to authenticate the client to the server; this allows the client to obtain additional
credentials or to request service from an application server. A formalization of Kerberos 4, the first publicly released
version of this protocol, was given in [5] and has since been extended and thoroughly analyzed using an inductive
approach [1, 2, 3, 4]. This analysis, through heavy reliance on the Isabelle theorem prover, yielded formal correctness
proofs for a fairly detailed specification, and also highlighted a few minor problems. A simple fragment of the latest
version, Kerberos 5, has been investigated using the state exploration tool Murϕ [14]. This approach proved effective
for finding an attack, which the authors of [14] note is unrealizable in a full implementation of Kerberos 5, but came
short of proving positive correctness results.

Here we report on a project whose goal is to use the Multi-Set Rewriting (MSR) framework to give a precise
specification of Kerberos 5 at various levels of detail, ranging from a minimal account, similar to that used in [14], to a
detailed formalization of every behavior encompassed by this complex suite [13, 16]. Our particular objectives include
giving a precise and unambiguous description of this protocol, making its operational assumptions explicit, stating the
properties it is supposed to satisfy, and proving that it satisfies these properties. This will complement the currently
spotty and often vague information in the literature. This project is also intended as a test-bed for MSR on a real-world
protocol: we are interested in how easy it is to write large specifications in MSR, in what ways this language can be
improved, and whether the insight gained with toy protocols scales up. In this work we have also started exploring
forms of reasoning that best take advantage of the linguistic features of MSR.

In this paper we provide three formalizations of Kerberos 5, which we call our A, B, and C level formalizations.
The B and C level formalizations add detail to the A level formalization but are not otherwise related. The A level
formalization omits most timestamps and all optional features, including only what we believe is needed to provide
authentication. It is similar to the formalization of Kerberos 4 in [1, 2, 3], but without timestamps. This level of abstrac-
tion is a good starting point to utilize the proof techniques demonstrated within this paper, providing a formalization
which is not overly complicated (making proofs feasible), but which retains many properties of the full Kerberos 5
protocol. Our B level formalization adds some timestamps and temporal checks to our A level formalization, thus
closely paralleling the formalization of Kerberos 4 in [1, 2, 3]. We have not found any new and interesting properties
or anomalies related to the timestamps here; the two features of the B level which are not found in [1, 2, 3]—the
single option of mutual authentication and error messages—seemed like the most promising area to focus our efforts.
This leads to our C level formalization, which does not include temporal checks or most timestamps. It extends the A
level formalization by making mutual authentication optional and adding error messages, along with several low-level
aspects of the protocol, namely options, flags, and checksums, none of which has appeared in any previous study of
Kerberos. We have focused our investigations on the A and C level formalizations, with the abstraction of the for-
mer facilitating reasoning about the protocol and the detail of the latter providing an interesting step on the way to
formalizing the protocol in full detail.

We have proved confidentiality and authentication properties [11] for our A level formalization, and have extended
some of these proofs to our C level formalization; in each case, we use the notion of rank and corank functions,
inspired by [20]. While Kerberos specifically disclaims responsibility for preventing denial of service attacks, we have
noticed instances of other potentially curious protocol behavior. The first, which arises in both the A level and C level
formalizations, violates properties that were proved to hold for Kerberos 4 [1] and highlights the structural differences
between the messages in versions 4 and 5 of the protocol. The other three instances of curious behavior, seen only
in our C level formalization, take advantage of protocol options available at this level; the first and third of these are
related to the behavior also seen at the A level, while the second is completely unrelated. Our informal analysis of the
B level formalization did not reveal any new anomalies.

A shorter, preliminary report on this work appeared in [6]. This paper adds the B level formalization, analysis
of the C level Ticket-Granting Exchange and of the A level Client/Server Exchange, and some additional curious

4

Client (C) KAS (K) TGS(T) Server(S)

• •-KRB AS REQ

• •¾ KRB AS REP

• •-KRB TGS REQ

• •¾ KRB TGS REP

• •-KRB AP REQ

• •¾ KRB AP REP

• •-Application messages¾∗

∗

∗

- Normal messages

-� Application messages

Figure 1: Expected message flow in Kerberos 5

protocol behavior. The A and C level formalizations have been updated in minor ways, as has our analysis of the A
level Ticket-Granting Exchange.

The rest of this paper is structured as follows. In Sections 2 and 3 we give an overview of the Kerberos 5 protocol
and the MSR formalism. Our A level, C level, and B level formalizations are given in Sections 4, 5, and 6, respectively.
In Section 7 we discuss the curious protocol behavior that we have noted; in Section 8 we define the rank and corank
functions we use in our analysis of the protocol, and in Section 9 use these classes of functions to prove confidentiality
and authentication properties of Kerberos 5. The appendices provide details not included in the text, including the full
proofs of protocol properties, MSR traces showing the anomalies discussed here, and a comparison of the network
messages formalized here with the full messages specified by [16]

2 Overview of the Kerberos 5 Protocol

The Kerberos 5 protocol allows a client to repeatedly authenticate herself to multiple servers while minimizing the use
of the long-term secret key(s) shared between the client and the Kerberos infrastructure. The client starts by obtaining a
long-term credential, whose use requires her long term (shared) key, and then uses this to obtain short-term credentials
for particular servers. Assume that aclient C wishes to authenticate herself to an applicationserver S. A standard run
of Kerberos 5 which accomplishes this consists of three successive phases; the expected message flow in these phases
is shown in Figure 1 and proceeds as follows.

• In the first phase,C sends aKRB AS REQ message to theKerberos Authentication Server(KAS) K requesting
a ticket granting ticketTGT for use with a particularTicket Granting Server(TGS) T . K is expected to
reply with aKRB AS REP message consisting of the ticketTGT and an encrypted component containing a fresh
authentication keyAKey to be shared betweenC andT . TGT containsAKey and is encrypted using the
secret keykT of T ; the accompanying message is encrypted underC ’s secret keykC . Each ofkC andkT is
shared between the named participant and a central key database from which it is accessible byK.

5

• In the second phase,C forwardsTGT , along with anauthenticatorencrypted underAKey, to theTGS T as
a KRB TGS REQ message; this requests aservice ticketfor use with theserver S. T is expected to respond with
a KRB TGS REP message consisting of the service ticketST and an encrypted component containing a fresh
service keySKey to be shared betweenC andS. ST containsSKey and is encrypted underS’s secret key
kS , which is shared betweenS and the central key database accessible byT ; the information forC, including
SKey, is encrypted underAKey.

• In the third phase,C forwardsST and a new authenticator encrypted withSKey in a KRB AP REQ message
to S. If all credentials are valid, this application server will authenticateC and provide the service. The
acknowledgmentKRB AP REP message is optional.

A single ticket-granting ticket can be used to obtain several service tickets, possibly from several application servers,
while it is valid. Similarly, a single service ticket for the application serverS can be used for repeated service fromS
before it expires. In both cases, a fresh authenticator is required for each use of the ticket.

Note that the message flow is generally similar to that in Kerberos 4. However, Kerberos 5 includes a multitude of
options, some of which we formalize in Section 5, not available in the previous version of the protocol. Additionally,
the structure of theKRBAS REPandKRBTGSREPmessages changed between versions 4 and 5 of the protocol.
In version 4 the ticket-granting ticket is sent by the KAS as part of the message encrypted under the client’s secret
key kC , and the service ticket sent by the TGS is likewise encrypted under the shared keyAKey. In version 5, the
ticket-granting ticket and the service are sent without further encryption. This enables the cut and paste anomalies
which we describe in Section 7 and slightly weakens the properties which were proved for Kerberos 4.

As we formalize different aspects of Kerberos 5, we will modify Figure 1 to show how we represent these protocol
messages in MSR.

Finally, we note that the Kerberos 5 protocol has changed from its initial specification [13]; our work here is based
on version 10 [16] of the revisions to [13]. Among other things, this adds anonymous tickets (in which theclient’s
name is replaced by a generic username) to the protocol. We discuss curious protocol behavior related to anonymous
tickets in Section 7.2; anonymous tickets may or may not be present in future revisions of Kerberos 5 [15], and have
been removed from the current version of the protocol description [18]. (The description of the protocol is an IETF
Internet Draft, each version of which has a six month lifetime.)

3 MSR

MSRoriginated as a simple logic-oriented language aimed at investigating the decidability of protocol analysis under a
variety of assumptions [9, 10]. It evolved into a precise, powerful, flexible, and still relatively simple framework for the
specification of complex cryptographic protocols, possibly structured as a collection of coordinated subprotocols [8];
its connections to other protocol analysis methods have been the subject of more recent work [7]. MSR uses strongly-
typed multiset rewriting rules over first-order atomic formulas to express protocol actions and relies on a form of
existential quantification to symbolically model the generation of fresh data (e.g., nonces or session keys). It supports
an array of useful static checks that include type-checking and data access verification. It has so far been applied to
toy protocols such as Needham-Schroeder and Neumann-Stubblebine [8]; one of the aims of this project is to evaluate
it on a real-world protocol. We will introduce the syntax and operations of MSR as we go along.

3.1 Signature

In order to specify a protocol in MSR, the protocol entities need to be classified and appropriately (sub)typed. The
signature fragment in Figure 2 sets up the typing infrastructure in the case of Kerberos 5, with the ‘Types’ column
summarizing the types used in this work. Italicized types (e.g., ts for TGS or server, andtcs for ts or client) are
auxiliary and serve the purpose of making precise the definitions ofdbK andshK; a laxer definition could do without
them. The ‘Subtyping’ column expresses the subtyping relations satisfied by these types (τ <: τ ′ means thatτ is a
subsort ofτ ′), with indentation used as a visual aid to track dependencies. The declarations shown in black support
the A and B level formalizations (Sections 4 and 6) of this protocol, while thegrayed-outadditions are necessary for
the C level specification (Section 5).

6

Types Subtyping Names

(Messages) msg : type. m, X, Y

(Principals) principal : type. principal <: msg.
KAS : type. KAS <: principal. K
tcs : type tcs <: principal.
ts : type ts <: tcs.
TGS : type. TGS <: ts. T
server : type. server <: ts. S
client : type. client <: tcs. C

(Encryptiontypes) etype : type. etype <: msg. e

(Keys) key : etype → type.
dbK : etype → tcs → type. ∀e : etype,A : tcs. dbKe A <: keye. k
shK : etype → client → ts → type. ∀e : etype,C : client, A : ts. shKe C A <: keye. AKey

∀e : etype,C : client, A : ts. shKe C A <: msg. SKey

(Nonces) nonce : type. nonce <: msg. n

(Timestamps) time : type. time <: msg. t ,

(Options) Opt : type. Opt <: msg.
KOpt : type. KOpt <: Opt. KOpts
TOpt : type. TOpt <: Opt. TOpts
SOpt : type. SOpt <: Opt. SOpts

(Flags) Flag : type. Flag <: msg.
TFlag : type. TFlag <: Flag. TF lags
SFlag : type. SFlag <: Flag. SF lags

Figure 2: An MSR Signature for the A level andC levelSpecifications of Kerberos 5

Observe that shared keys (shK) can be part of a message, but database keys (dbK), i.e., keys shared between
tcs principals and the key database, cannot. Notice also that the encryption types (needed in the C level specification)
parameterize the various keys.

Additional declarations are needed to populate these types. In order to do so, we declare actual clients, servers,
database keys,etc. Conventional names for various meta-syntactic entities are given in the rightmost column of
Figure 2. For example, clients will typically calledC. An underscore in a name will be appropriately instantiated in
the discussion: for example,kC will represent the database key of a clientC andtC,Sreq will stand for a timestamp
included byC in a request toS.

The syntax of messages is shown in Figure 3. The first two declarations formalize concatenation and shared-key en-
cryption (with the encryption algorithm potentially depending on the encryption type). The third declaration captures
message digests as an implementation of cryptographic hashing; these are declared similarly to shared-key encryption.
We will generally keep the encryption type implicit unless we are specifically discussing it (as in Section 7.3).

(Pairing) , : msg → msg → msg.
(Encryption) { } : etype → msg → key → msg.
(Messagedigest) [] : etype → msg → key → msg.

Figure 3: Syntax for MSR messages.

3.2 States and roles

Intuitively, MSR represents the state of execution of a protocol as a multisetS of ground first-order formulas. Some
predicates are universal; in particular,N(m) indicates that messagem is transiting through the network. Other predi-
cates are protocol-dependent and are classified as eithermemoryor role state predicates. Memory predicates are used
to store information across several runs of a protocol, to pass data to subprotocols, and to invoke external modules.
The intruderI stores intercepted informationm in the predicateI(m). We will encounter other memory predicates as
we go along. Role state predicates, usually written asL(. . .), allow sequentializing the actions of a principal.

7

Principals cause local transformations to this global stateS by non-deterministically executingmultiset rewriting
rulesof the formr = lhs −→ rhs, wherelhs is a finite multiset of facts and constraints. These constraints, which are
not facts, are used by principals to,e.g., check system clocks or determine the validity of requests via external processes
not explicitly modelled here. Whenever the facts inlhs are contained inS and the constraints are all satisfied, ruler
can replace these facts with those fromrhs. The actual definition is slightly more general in the sense that rules are
generally parametric andrhs may specify the generation of fresh data (e.g., nonces or session keys) before rewriting
the state.

The rules comprising a protocol or a subprotocol are collected in arole parameterized by the principal executing
it. Rules in a role are threaded through using role state predicates declared inside the role.

Part II

Formalizing Kerberos 5

4 A Level Formalization of Kerberos 5

Our A level formalization of Kerberos 5 has enough detail to prove authentication and confidentiality results (dis-
cussed in Section 9) but contains little else. The most notable omission is that of almost all timestamps; the sole one
included here prevents theKRB AP REP message from being the encryption of an empty message. Bella and Paulson’s
thorough analysis of Kerberos 4 included consideration of timestamps. The primary differences between Kerberos 4
and Kerberos 5 do not involve timestamps; as we have focused on the unanalyzed details of Kerberos 5, we have
omitted timestamps from this formalization of the protocol. However, a natural extension of our work thus far would
be a formalization and analysis of Kerberos 5 which includes all (or most) of the timestamps and temporal checks used
in this protocol. We leave this for future work.

Figure 4 updates Figure 1 to show how the different protocol messages are represented in this formalization of
Kerberos 5.

4.1 The Authentication Service Exchange

Figure 5 shows theclient role for the Authentication Service Exchange. WhenC : client undertakes this role, she may
use ruleα1.1 to send aKRBAS REQmessage to anyK : KAS requesting a ticket granting ticket for anyT : TGS. In
this formalization, theKRBAS REQmessage containsC ’s name,T ’s name, and a freshly generatednonce n1. When
C sends the request, she also stores the information from the request (C, T , andn1) in a role state predicateL.

C expects the response fromK to be composed of her name, an opaque message (intended to be the ticket granting
ticket), and another message encrypted under one of her database keys. This encrypted message is expected to contain
a key of typeshK C T to be shared betweenC andT and used in the Ticket Granting Exchange, thenonce n1 from
C ’s original request, andT ’s name. If a message of this form appears on the network (C uses the role state predicate
L to ensure that thenonce and the name of theTGS in this message match those in her original request), thenC may
read this message from the network and save the relevant information. She does this using ruleα1.2, which replaces
the factsN(C, X, {AKey, n1, T}kC

) andL(C, T, n1) with the factAuthC(X,T,AKey), a memory predicate.C
thus saves the (presumed) ticketX, the nameT of theTGS for whom the ticket was requested, and the keyAKey to
be shared byC andT .

Figure 6 shows the role of the Kerberos Authentication Server for the Authentication Service Exchange. When-
ever a validKRBAS REQmessage appears on the network, anyK : KAS may read that message from the network
and respond appropriately. The validity of theKRBAS REQmessage is determined by some external process (incor-
porating local policy) modelled by the constraintV alidK(C, T, n1). K ’s response involves generating a fresh key
AKey : shK C T to be shared by theclient C andTGS T named in theKRBAS REQmessage and then putting a
message, intended forC, on the network. This network message containsC ’s name, the ticket granting ticket to be
included inC ’s later request(s) toT , and data forC encrypted under one of her database keys. The ticket granting
ticket contains the key to be shared betweenT andC andC ’s name, with these encrypted together using one ofT ’s

8

Client (C) KAS (K) TGS(T) Server(S)

• •-KRB AS REQ

• •¾ KRB AS REP

• •-KRB TGS REQ

• •¾ KRB TGS REP

• •-KRB AP REQ

• •¾ KRB AP REP

• •-Application messages¾∗

∗

∗

KRB AS REQ : C, T, n1

KRB AS REP : C, {AKey, C}kT
, {AKey, n1, T}kC

KRB TGS REQ : {AKey, C}kT
, {C}AKey, C, S, n2

KRB TGS REP : C, {SKey, C}kS
, {SKey, n2, S}AKey

KRB AP REQ : {SKey, C}kS
, {C, tC,Sreq}SKey

KRB AP REP : {tC,Sreq}SKey

- Normal messages

-� Application messages

Figure 4: Protocol messages in the abstract formalization

0BBBBBBBBBBBBBBBB@

∃L : client× TGS× nonce.

∀T : TGS .
∀K : KAS.

α1.1

−→
∃n1 : nonce

N(C, T, n1)
L(C, T, n1)

∀. . . .
∀kC : dbK C .
∀AKey : shK C T.
∀X : msg .
∀n1 : nonce .

N(C, X, {AKey, n1, T}kC
)

L(C, T, n1)

α1.2

−→ AuthC(X, T, AKey)

1CCCCCCCCCCCCCCCCA

∀C:client

Figure 5: The client’s role in the A level Authentication Service Exchange.

0BBBBBBB@
∀C : client .
∀T : TGS .
∀n1 : nonce .
∀kC : dbK C .
∀kT : dbK T .
∀AKey : shK C T.

N(C, T, n1)
V alidK(C, T, n1)

α2.1

−→

∃AKey : shK C T

N(C, {AKey, C}kT
,

{AKey, n1, T}kC
)

1CCCCCCCA
∀K:KAS

Figure 6: The authentication server’s role in the A level Authentication Service Exchange.

9

database keys. The encrypted data forC areAKey, thenonce from the request to whichK is responding, andT ’s
name.

4.2 The Ticket-Granting Exchange

0BBBBBBBBBBBBBBBBBB@

∃L : client(C) × server × TGS(T) × shK C T × nonce.

∀T : TGS .
∀S : server .
∀AKey : shK C T .
∀X : msg .

AuthC(X, T, AKey)
α3.1

−→

∃n2 : nonce

N(X, {C}AKey, C, S, n2)

AuthC(X, T, AKey)
L(C, S, T, AKey, n2)

∀. . . .
∀SKey : shK C S.
∀Y : msg .
∀n2 : nonce .

N(C, Y,
{SKey, n2, S}AKey)

L(C, S, T, AKey, n2)

α3.2

−→ ServiceC(Y, S, SKey)

1CCCCCCCCCCCCCCCCCCA

∀C:client

Figure 7: The client’s role in the A level Ticket-Granting Exchange.

Figure 7 gives theclient role for the Ticket-Granting Exchange. If aclient C has successfully completed the Au-
thentication Service Exchange to get a ticket and key forT : TGS (as evidenced by the predicateAuthC(X, T, AKey)),
she may use ruleα3.1 to send aKRBTGSREQmessage toT . (This predicate does not guarantee thatX is a ticket for
T , only that it was received in the Authentication Service Exchange in the place for the ticket.) In firing ruleα3.1, C
generates a freshnonce and puts a message on the network containing the presumed ticketX, an authenticator con-
sisting of her name encrypted underAKey, her name, the name of the serverS for whom she wants a service ticket,
and the freshly generatednonce n2. This rule preserves the predicateAuthC since tickets may be used multiple times
(until they expire, which is not modelled here) and also creates a role state predicateL which contains information (C,
S, T , AKey, andn2) related toC ’s KRBTGSREQmessage.

C expects the response fromT to contain her name, and opaque message (intended to be the service ticket), and
additional data encrypted under the keyAKey which is shared betweenC andT . These data are a key to be shared
betweenC and theserver S for whomC has requested credentials, thenonce n2 from C ’s request toT , andS’s name.
If a message of this form appears on the network,C may use ruleα3.2 to process it; as in the Authentication Service
Exchange,C uses the role state predicate to ensure that the propernonce is included in the response she receives. This
rule consumes the network message and role state predicate and stores the (presumed) service ticket, server name, and
new shared key in the memory predicateServiceC .0BBBBBBB@

∀C : client .
∀S : server .
∀AKey : shK C T .
∀kT : dbK T .
∀kS : dbK S .
∀n2 : nonce .

N({AKey, C}kT
,

{C}AKey, C, S, n2)

V alidT (C, S, n2)

α4.1

−→

∃SKey : shK C S

N(C, {SKey, C}kS
,

{SKey, n2, S}AKey)

1CCCCCCCA
∀T :TGS

Figure 8: The ticket granting server’s role in the A level Ticket Granting Exchange.

Figure 8 contains theTGS role in the Ticket-Granting Exchange. When a validKRBTGSREQmessage appears
on the network, theTGS T whose database key is used to encrypt the ticket in this message may process the request.
As in the Authentication Service Exchange, the validity of the request is checked by an external process which is
modelled here as the constraintV alidT . T may process a valid request message by firing ruleα4.1, which consumes
the network message fact, generates a fresh key to be shared by theclient C andserver S named in the request, and
puts a message intended forC on the network. This message containsC ’s name, a service ticket to be passed on to
S, and data forC encrypted under the keyAKey which was included in the ticket-granting ticket and used byC to
encrypt the authenticator in theKRBTGSREQmessage. The service ticket is encrypted under one ofS’s database

10

keys and contains the freshly generated keySKey andC ’s name. The data encrypted forC are the freshly generated
key, thenonce from theKRBTGSREQrequest to whichT is responding, and theS’s name.

4.3 The Client/Server Exchange

0BBBBBBBBBBBBBB@

∃L : client(C) × server(S) × shK C S × time×msg.

∀S : server .
∀SKey : shK C S.
∀tC,Sreq : time .
∀Y : msg .

ServiceC(Y, S, SKey)
ClockC(tC,Sreq)

α5.1

−→
N(Y, {C, tC,Sreq}SKey)

ServiceC(Y, S, SKey)
L(C, S, SKey, tC,Sreq, Y)

∀. . .. N({tC,Sreq}SKey)

L(C, S, SKey, tC,Sreq, Y)

α5.2

−→ DoneMutC(S, SKey)

1CCCCCCCCCCCCCCA

∀C:client

Figure 9: The client’s role in the A level Client/Server Exchange (with mutual authentication).

Figure 9 contains theclient role for the Client/Server Exchange. Once theclient C has obtained a (presumed)
service ticket and key for theserver S via the Ticket-Granting Exchange (storing these in the memory predicate
ServiceC), she may use the ruleα5.1 to request service fromS. In addition to the predicateServiceC(Y, S, SKey),
which stores the data from the ticket-granting exchange, the left side of this rule also contains the constraintClockC(tC,Sreq).
This is satisfied if and only ifC ’s local time istC,Sreq : time. The firing of ruleα5.1 puts aKRBAP REQmessage
on the network; this consists of the messageY from theServiceC predicate, presumed to be a service ticket forS,
and an authenticator. The authenticator isC ’s name and her current time encrypted together using the keySKey
which was stored withY in ServiceC . This rule preserves theServiceC predicate for future reuse and also creates
a role state predicate containing information about the request. Although not explicitly shown in this formalization,
we assume thatC requests mutual authentication from theserver S; our detailed formalization below allows forC to
specify whether or notS should respond.

C expectsS to respond by sending a message consisting oftC,Sreq encrypted by the keySKey, shared byC and
S, whichC used to encrypt the authenticator in theKRBAP REQmessage. If she sees a message of this form on the
network (and has sent the matching initial request as indicated by the role state predicateL), C may use ruleα5.2 to
read thisKRBAP REPmessage from the network. She then stores theserver’s name and the shared keySKey in
theDoneMutC memory predicate (indicating that the protocol has finished with mutual authentication used). The
DoneMutC predicate and keySKey would be used byC in additional interactions withS (such as sending messages
related to network services provided byS) after authentication has been completed; as this is outside of the Kerberos
protocol, we do not formalize it here.0BBB@

∀C : client .
∀SKey : shK C S.
∀tC,Sreq : time .
∀kS : dbK S .

N({SKey, C}kS
,

{C, tC,Sreq}SKey)

V alidS(C, tC,Sreq)

α6.1

−→
N({tC,Sreq}SKey)

MemS(C, SKey, tC,Sreq)

1CCCA
∀S:server

Figure 10: The end server’s role in the A level Client/Server Exchange (with mutual authentication).

The server’s role in this exchange is shown in Figure 10. If the network contains a validKRBAP REQmessage
intended forS (the ticket is encrypted using one of his database keys), then he may process it using ruleα6.1. As for
the other request messages, the validity of theKRBAP REQmessage is determined by an external process which we
formalize as the constraintV alidS(C, tC,Sreq). This rule puts aKRBAP REPmessage on the network; this consists
of the timestamptC,Sreq from the request being processed encrypted by the shared keySKey included in the service
ticket. S also stores the relevant information about this request and his response, namely theclient’s name, the shared
key, and the time of the request, in the memory predicateMemS . This is analogous toC ’s predicateDoneMut in
that this information may be used after authentication is completed but is not part of the protocol itself and thus not
used in our formalizations.

11

4.4 A level intruder formalization

In this section, we present the rules specifying the Dolev-Yao intruder model for Kerberos 5.
We divide the actions available to the intruder into three categories:

• the fairly standard operations of interception/transmission of a network message, decomposition/composition of
a pair, and decryption/encryption of a message given a known key (Section 4.4.1);

• the often overlooked action of generating new data (Section 4.4.2);

• and the use of accessible data (Section 4.4.3).

4.4.1 Network, pairing and encryption rules

We present the following pairs of rules describing how the Dolev-Yao intruder can work with data on the network or
in her possession; the rules in each pair are symmetric (e.g., encryption and decryption) operations.

The intruder may intercept network messages (INT), removing them from the network, and transmit messages she
knows (TRN):

(
∀m : msg. N(m) INT−→ I(m)

)I (
∀m : msg. I(m) TRN−→ N(m)

)I

The intruder may decompose (DMC) and compose (CMP) compound messages:

(
∀m1, m2 : msg. I(m1,m2)

DMC−→ I(m1)
I(m2)

)I (
∀m1,m2 : msg.

I(m1)
I(m2)

CMP−→ I(m1,m2)
)I

If the intruder knows a shared key, she may decrypt (SDC′) and encrypt (SEC′) messages using this key:




∀C : client .
∀A : TS .
∀k : shK C A.
∀m : msg .

I({m}k)
I(k)

SDC’−→ I(m)




I 


∀C : client .
∀A : TS .
∀k : shK C A.
∀m : msg .

I(m)
I(k)

SEC’−→ I({m}k)




I

If the intruder knows a database key, she may decrypt (DDC′) and encrypt (DEC′) messages using this key:



∀A : TCS .
∀k : dbK A.
∀m : msg .

I({m}k)
I(k)

DDC’−→ I(m)




I 

∀A : TCS .
∀k : dbK A.
∀m : msg .

I(m)
I(k)

DEC’−→ I({m}k)




I

Finally, the intruder may duplicate (DPM andDPD) and delete (DLM andDLD) any of the data (messages or
database keys) that she knows; the deletion rules can be safely omitted from the specification.

(
∀m : msg. I(m) DPM−→ I(m)

I(m)

)I (
∀m : msg. I(m) DLM−→ ·

)I

(∀A : TCS .
∀kA : dbK A.

I(kA) DPD−→ I(kA)
I(kA)

)I (∀A : TCS .
∀kA : dbK A.

I(kA) DLD−→ ·
)I

4.4.2 Data generation rules

In general, the intruder should be able to generate everything an honest principal can generate, often nonces and
session keys but nothing else. In the case of Kerberos, we must admit an exception to this rule: because principals
forward uninterpreted data, we must also allow the intruder to create garbage, modelled as objects of the generic type
msg.

The intruder may generate fresh nonces (NG), session keys (KG′), and generic messages (MG) using the following
rules: (

· NG−→ ∃n : nonce I(n)
)I

12

(∀C : client.
∀A : TS .

· KG’−→ ∃k : shK C A I(k)
)I

(
· MG−→ ∃m : msg I(m)

)I

The intruder is not allowed to generate any other kind of data—principal names of any kind (the introduction of new
agents happens out-of-band), long-term keys (they are distributed out-of-band), or timestamps (they are generated by
an external clock, not by any principal)—as that would open the door to countless false attacks. Note thatMG does
not allow the generation of database keys (which are not subtypes ofmsg), nor does it generate terms which may be
typed as anything other thanmsg. In particular, the messages freshly generated byMG are not the encryption of any
other messages; in Section 8, we restate this in terms of the rank functions defined there as Axiom 1.

4.4.3 Data access rules

The intruder is entitled to look up the same data that any other principal may; she may store these data in theI()
predicate for later use.

The intruder has access to the name of any principal (client, server, TGS, or KAS):

(
∀A : principal. · PA−→ I(A)

)I

The intruder also has access to any defined timestamp. As timestamps are guessable, they are thus qualitatively
different from nonces here. We note that this may provide the intruder with more power than she would reasonably
have. (

∀t : time. · TA−→ I(t)
)I

The intruder is entitled to lookup any session key she owns. This is modelled by the following two slightly
asymmetric rules. (∀A : TS .

∀k : shK I A.
· SA1’−→ I(k)

)I

(∀C : client .
∀k : shK C I.

· SA2’−→ I(k)
)I

It should be possible to prove that these rules are redundant since the intruder, like any other principal, is handed her
session keys by the KAS or the TGS; these rules could then be eliminated.

Finally, the intruder may access any of her long-term (database) keys:

(
∀k : dbK I. · DA’−→ I(k)

)I

5 C Level Formalization of Kerberos 5

Our C level formalization is closer to the full Kerberos 5 specification than is our A level formalization in Section 4.
Figure 11 updates Figure 1 to show the protocol messages in the C level formalization, with those details not in the A
level formalization shown here ingraytype.

In this formalization we extend the A level formalization by adding the message field which allows aclient to
request various options (includingANONYMOUStickets where implemented) from aTGS as well as the message field
(of typeetype) which the client uses to request particular encryption method(s); we note curious behavior involving
these details of the protocol in Section 7. We now include message digests as specified by Kerberos 5; one topic for
further work is their utility in defending against the anomalous behavior discussed in Section 7. Here we add the
message field (of typeSOpt) which allowsC to specify whether aKRBAP REPresponse fromS is requested and
have also incorporated error messages. These will allow investigation of protocol runs which would not appear in the
previous analyses of Kerberos. Although we do not make use of it, we have also added the option field of typeKOpt
to parallel those of typesTOpt andSOpt and various flag fields corresponding to the option fields already discussed.

13

Client (C) KAS (K) TGS(T) Server(S)

• •-KRB AS REQ

• •¾ KRB AS REP

• •¾
KRB ERROR− AS

• •-KRB TGS REQ

• •¾ KRB TGS REP

• •¾
KRB ERROR− TGS

• •-KRB AP REQ

• •¾ [KRB AP REP]

• •¾
KRB ERROR− AP

• •-Application messages�∗

∗

∗

KRB AS REQ : KOpts,C, T, n1, e
KRB AS REP : C, TGT, {AKey, n1, TF lags,T}e

kC

KRB TGS REQ : TGT, {C,MD , tC,Treq}AKey , TOpts,C, S, n2, e

KRB TGS REP : C, ST, {SKey, n2, SF lags,S}e
AKey

KRB AP REQ : SOpts,ST, {C,MD ′,tC,Sreq}SKey

KRB AP REP : {tC,Sreq}SKey

KRB ERROR−X : KRBERROR, [−|tC,Treq|tC,Sreq], t(K|T |S),err, ErrCode, C, (K|T |S)

TGT = {TF lags,AKey, C}kT

ST = {SF lags,SKey, C}kS

MD = [TOpts, C, S, n2, e]AKey

MD ′ = [. . .]SKey

- Normal messages
- Error messages
-� Application messages

Figure 11: Protocol messages in the C level formalization

The C level formalization allows the various servers to send error messages in response to requests. In order
to associate error messages with the corresponding requests, the authenticators sent toT and S now include the
timestampstC,Treq andtC,Sreq; we have not, however, added any temporal checks involving these timestamps. Note
that error messages are completely unencrypted and do not contain any information which was originally sent in
encrypted form. These can be generated at will by the intruder.

Figures 12–19 give the non-intruder roles in the C level formalization. Thegraytext indicates detail which appears
here but not in the A level formalization. Figures 18 and 19 are entirely gray as these roles are used only when aclient
does not request mutual authentication from aserver, a protocol option not included in the A level formalization. The
rule corresponding to ruleαi.j in the A level formalization is denoted byγi.j ; alternative rules are indicated by priming
j (e.g., for error handling) ori (for the Client/Server Exchange without mutual authentication).

While fields specifying encryption type appear in several messages in this level, and should technically appear for
every encrypted message that occurs (following to Section 3), we explicitly include these only in the Authentication
Service Exchange rules (Section 5.1) unless we are discussing encryption types in particular (as in Section 7.3).

5.1 The Authentication Service Exchange

Figure 12 shows theclient role for the Authentication Service Exchange in our detailed formalization. Ruleγ1.1 allows
theclient C to initiate the authentication process by sending a message to aKAS K. This extends Ruleα1.1 by adding
fields for options (KOpts) and encryption type (e) to both the request message placed on the network and the role
state predicateL.

Ruleγ1.2 parallels ruleα1.2 and allowsC to process the expected response fromK. In addition to accounting for
KOpts ande from the original request, this rule also accepts and stores the fieldTF lags which describes the options
actually granted byK (which may or may not match those requested byC).

14

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

∃L : client× KOpt×TGS× nonce×etype.

∀T : TGS .
∀K : KAS .
∀KOpts : KOpt.
∀e : etype .

γ1.1

−→
∃n1 : nonce

N(KOpts,C, T, n1, e)
L(C, KOpts,T, n1, e)

∀. . . .
∀kC : dbK C .
∀AKey : shK C T.
∀X : msg .
∀e′ : etype .
∀n1 : nonce .
∀TF lags : TFlag .

N(C, X, {AKey,

n1, TF lags,T}e′
kC

)

L(C, KOpts,T, n1, e)

γ1.2

−→
AuthC(X, TF lags,

T, AKey)

∀. . . .
∀ErrorCode : msg.
∀tK,err : time .

N(KRB ERROR, tK,err,
ErrorCode, C, K)

L(C, KOpts, T, n1, e)

γ1.2′
−→

ASErrorC(KRB ERROR,
tK,err, ErrorCode, K)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

∀C:client

Figure 12: The client’s role in the C level Authentication Service Exchange.

Finally, ruleγ1.2′ allowsC to process generic error messages returned; this has no analogue in the A level formal-
ization. If C has an AS request pending (as evidenced by the existence of the role state predicateL) and she sees an
error message on the network which includes her name, then she may read the error message from the network and
store the information contained in it in the memory predicateASError (which is new in this formalization). We do
not currently use theASError predicate beyond this, but it might be used to allow more extensive error processing
by theclient. Note that thenonce n1 is not returned in the error message; ifC has multiple requests pending with a
KAS K, each with its ownnonce, there is no way forC to associate the error message with the request that generated
the error.

Figure 13 shows the authentication server’s role in the detailed formalization of the Authentication Service Ex-
change. Ruleγ2.1 parallels ruleα2.1, adding details which allow the processing of the requested optionsKOpts (the
options actually granted are described inTF lags) and encryption typee. The constraintV alidK incorporates the
additional detailsKOpts ande added to the request. We use constraintSetAuthF lagsK to implementK ’s granting
of options in the ticket-granting ticket; we allow these to depend on the requested options and the names of the princi-
pals who will share the key generated by this rule. LikeV alidK , SetAuthF lags may depend on local policy and is
not explicitly described in the formalization. The constraintSetETypesK implementsK ’s policies for selecting an
encryption typee′ for the data forC (taking into account her requested encryption type(s)e) and an encryption type
e′′ for the ticket forT .0BBBBBBBBBBBBBBBBBBBB@

∀C : client .
∀T : TGS .
∀n1 : nonce .
∀e, e′, e′′ : etype .

∀kC : dbKe′ C .

∀kT : dbKe′′ T .
∀AKey : shK C T .
∀KOpts : KOpt .
∀TF lags : TFlag .

N(KOpts,C, T, n1, e)
V alidK(KOpts,C, T, n1, e)
SetAuthF lagsK(KOpts, C, T, TF lags)
SetETypesK(C, e, e′, T, e′′)

γ2.1

−→

∃AKey : shK C T

N(C, {TF lags,AKey, C}e′′
kT

,

{AKey, n1, TF lags,T}e′
kC

)

∀. . . .
∀ErrorCode : msg.
∀tK,err : time .

N(KOpts, C, T, n1, e)
InvalidK(KOpts, C, T, n1, e)
ClockK(tK,err)

γ2.1′
−→

N(KRB ERROR, tK,err,
ErrorCode, C, K)

1CCCCCCCCCCCCCCCCCCCCA

∀K:KAS

Figure 13: The authentication server’s role in the C level Authentication Service Exchange.

Ruleγ2.1′ allows theKAS K to send an error message in response to an invalid message request. The invalidity
of a request is determined by the constraintInvalidK , which is not defined in the formalization but which is assumed
to hold when the request is invalid for the reason given by the error codeErrorCode. (If there are multiple reasons

15

why a request is invalid, we assume thatInvalidK conforms to implementation-specific rules about which error code
to return.) Ruleγ2.1′ also makes use of the constraintClockK to generate a timestamp for the error message; as for
ClockC in ruleα5.1, this constraint is satisfied exactly when its argument matchesK ’s local time.

5.2 The Ticket-Granting Exchange

Figure 14 shows the C levelclient role in the Ticket-Granting Exchange. Theclient C now includes a timestamp
tC,Treq in her request to theTGS T , which she places on the network using ruleγ3.1. She usesTOpts to specify
the options she would like set on the new ticket, possibly including the request for anANONYMOUSticket if this
option has been implemented as in [16].C also uses the keyAKey which she shares withT to construct a keyed
checksum[TOpts, C, S, n2, e]AKey; following the protocol specification, the checksum is not included in the data (the
KRB-REQ-BODYpart of the message) over which the checksum is taken. The role state predicate has been expanded
from the A level version to store the additional information from her request in this formalization, namelyTOpts,
tC,Treq, ande.

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

∃L : client(C) × TOpt×server × TGS(T) × shK C T × nonce×time.

∀T : TGS .
∀S : server .
∀AKey : shK C T.
∀X : msg .
∀tC,Treq : time .
∀TF lags : TFlag .
∀TOpts : TOpt .
∀e : etype .

AuthC(X, TF lags,T, AKey)
ClockC(tC,Treq)

γ3.1

−→

∃n2 : nonce

N(X, {C, [TOpts, C, S, n2, e]AKey,

tC,Treq}AKey, TOpts,C, S, n2, e)

AuthC(X, TF lags,T, AKey)
L(C, TOpts,S, T,

AKey, n2, tC,Treq, e)

∀. . . .
∀SKey : shK C S.
∀Y : msg .
∀n2 : nonce .
∀SF lags : SFlag .

N(C, Y,
{SKey, n2, SF lags,S}AKey)

L(C, TOpts,S, T,
AKey, n2, tC,Treq, e)

γ3.2

−→
ServiceC(Y, SF lags,

S, SKey)

∀. . . .
∀ErrorCode : msg.
∀tT,err : time .

N(KRB ERROR, tC,Treq, tT,err,
ErrorCode, C, T)

L(C, TOpts, S, T,
AKey, n2, tC,Treq, e)

γ3.2′
−→ TGSErrorC(T, tT,err, ErrorCode)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

∀C:client

Figure 14: The client’s role in the C level Ticket-Granting Exchange.

Rule γ3.2 parallels ruleα3.2, adding theSF lags field in the expected response fromT (this indicates which
options were actually granted on the ticket created byT) and extending the memory predicateService to store this
information.

The client C processes error messages fromT using ruleγ3.2′ . As formalized here, the processing of these
messages consists only of reading them from the network, deleting the role state predicate associated with the original
request, and storing data about the error in the memory predicateTGSError. An extension of this formalization
might make further use of this predicate to allow a more nuanced response byC to error messages.

Figure 15 shows theTGS role in the Ticket-Granting Exchange. Ruleγ4.1 allows theTGS T to process a valid
request in the C level formalization from aclient C, including the new message fields discussed for theclient role.
We also add theSetServF lagsT constraint, which implementsT ’s policies in granting options in response to those
requested byC via theTOpts field; here, we allow the granted options to depend upon the properties of the ticket-
granting ticket (TF lags) as well as the principalsC andS who will share the new key generated by this rule. Another
constraint verifies the keyed checksum included in the request.

Ruleγ4.1′ allowsT to generate an error message in response to an invalid request for a service ticket. TheInvalidT

constraint ensures that an appropriate error code is included in this message; note thatInvalidT has sufficient infor-
mation to determine whether the checksum included in the request message is correct. TheClockT constraint is used,
as elsewhere, to obtain the local time.

16

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

∀C : client .
∀S : server .
∀AKey : shK C T .
∀kT : dbK T .
∀kS : dbK S .
∀n2 : nonce .
∀tC,Treq : time .
∀TOpts : TOpt .
∀e : etype .
∀SF lags : SFlag .
∀ck : msg .
∀TF lags : TFlag .

N({TF lags,AKey, C}kT
,

{C, ck, tC,Treq}AKey,

TOpts,C, S, n2, e)
V alidT (TOpts,C, S, n2, e, tC,Treq)
SetServF lagsT (TOpts, TF lags, C, S, SF lags)
ck = [TOpts, C, S, n2, e]AKey

γ4.1

−→

∃SKey : shK C S

N(C, {SF lags,SKey, C}kS
,

{SKey, n2, SF lags,S}AKey)

∀. . . .
∀ErrorCode : msg.
∀tT,err : time .

N({TF lags, AKey, C}kT
,

{C, ck, tC,Treq}AKey,

TOpts, C, S, n2, e)
InvalidT (TOpts, C, S, n2,

e, tC,Treq , ck)
ClockT (tT,err)

γ4.1′
−→

N(KRB ERROR, tC,Treq, tT,err,
ErrorCode, C, T)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

∀T :TGS

Figure 15: The ticket granting server’s role in the C level Ticket Granting Exchange.

5.3 The Client/Server Exchange

Figure 16 shows theclient role for the Client/Server Exchange when theclient C would like mutual authentication
from the server S. Rule γ5.1 parallels ruleα5.1, adding a few new details. TheSOpts field allowsC to request
particular behavior on the part ofS and is now stored in the role state predicateL. One of the options controlled by
SOpts is mutual authentication (a reply fromS in response to a valid request fromC). If this option is requested, the
constraintMutual(SOpts) holds. We assume that this is the case here, and treat the other case separately below. The
network message generated byC now also includes a keyed checksum. Since the contents of this are not specified
by [13], we leave this as[. . .]SKey here. If the properties of a checksum over a particular set of data are of interest,
this can be specified in the formalization.

0BBBBBBBBBBBBBBBBBBBBBBBB@

∃L : client(C) × SOpt×server(S) × shK C S × time×msg.

∀S : server .
∀SKey : shK C S.
∀tC,Sreq : time .
∀Y : msg .
∀SF lags : SFlag .
∀SOpts : SOpt .

ServiceC(Y, SF lags,S, SKey)
Mutual(SOpts)
ClockC(tC,Sreq)

γ5.1

−→
N(SOpts,Y, {C, [. . .]SKey,tC,Sreq}SKey)

ServiceC(Y, SF lags,S, SKey)
L(C, SOpts,S, SKey, tC,Sreq, Y)

∀. . .. N({tC,Sreq}SKey)

L(C, SOpts,S, SKey, tC,Sreq, Y)

γ5.2

−→ DoneMutC(S, SKey)

∀. . . .
∀ErrorCode : msg.
∀tS,err : time .

N(KRB ERROR, tC,Sreq,
tS,err, ErrorCode, C, S)

L(C, SOpts, S, SKey, tC,Sreq, Y)

γ5.2′
−→ APErrorC(S, tS,err, ErrorCode)

1CCCCCCCCCCCCCCCCCCCCCCCCA

∀C:client

Figure 16: The client’s role in the C level Client/Server Exchange with mutual authentication.

Ruleγ5.2 allowsC to process a message whose form matches that of the expected response fromS; this extends
rule α5.2 to treat the addition ofSOpts. Rule γ5.2′ allows C to process an error message fromS. As with error
messages in the other exchanges, this deletes the relevant role state predicate and stores the currently unused error
information in a memory predicate (hereAPError).

Figure 17 shows theserver role for processing requests which require mutual authentication. If the network
message is a valid request, theserver S uses ruleγ6.1 to process it. The network message now includes theSF lags

17

field in the ticket and other fields described under theclient’s role. As for theclient’s role, we use the constraint
Mutual to ensure that mutual authentication has been requested (the case where it is not is treated below). The
V alidS constraint has been extended to the new fields of the message.S also verifies the keyed checksum; as noted
above, the data over which this is taken is unspecified by both the protocol and our formalization.0BBBBBBBBBBBBBBBBBBBBBB@

∀C : client .
∀SKey : shK C S.
∀tC,Sreq : time .
∀kS : dbK S .
∀ck : msg .
∀SOpts : SOpt .
∀SF lags : SFlag .

N(SOpts,{SF lags,SKey, C}kS
,

{C, ck,tC,Sreq}SKey)

Mutual(SOpts)
V alidS(C, SOpts, SF lags,tC,Sreq)
ck = [. . .]SKey

γ6.1

−→
N({tC,Sreq}SKey)

MemS(C, SKey, tC,Sreq)

∀. . . .
∀ErrCode : msg.
∀tS,err : time .

N(SOpts, {SF lags, SKey, C}kS
,

{C, ck, tC,Sreq}SKey)

Mutual(SOpts)
InvalidS(C, SOpts,

SF lags, SKey, tC,Sreq, ck)
ClockS(tS,err)

γ6.1′
−→

N(KRB ERROR, tC,Sreq,
tS,err, ErrCode, C, S)

1CCCCCCCCCCCCCCCCCCCCCCA

∀S:server

Figure 17: The end server’s role in the C level Client/Server Exchange with mutual authentication.

Ruleγ6.1′ allowsS to respond to an invalid request appearing on the network. The invalidity is determined by the
InvalidS constraint; this includes the possibility of an incorrect checksum.S uses theClockS constraint to obtain
the correct timestamp for the error message and places this message on the network.

5.4 The Client/Server Exchange without mutual authentication

The rules for the Client/Server Exchange when mutual authentication is not requested have the same level of detail as
the rules for requests involving mutual authentication. The differences are solely to complete the exchange after the
client’s message to theserver without having theclient wait for a response.

Figure 18 gives theclient role for the Client/Server Exchange when theclient C does not request mutual authen-
tication. Ruleγ5′.1 differs from ruleγ5.1 only in thatSOpts is not set for mutual authentication (thus satisfying the
NoMutual constraint) andC ’s use of theDoneNoMut predicate to store information about her request; as with the
DoneMut predicate, this formalization does not make further use of this data.C does keep the role state predicate in
order to tie the processing of error messages to the original request.

0BBBBBBBBBBBBBBBBBBB@

∃L : client(C) × SOpt× server(S) × shK C S × time×msg.

∀S : server .
∀SKey : shK C S.
∀tC,Sreq : time .
∀Y : msg .
∀SF lags : SFlag .
∀SOpts : SOpt .

ServiceC(Y, SF lags, S, SKey)
NoMutual(SOpts)
ClockC(tC,Sreq)

γ5′.1
−→

N(SOpts, Y, {C, [. . .]SKey, tC,Sreq}SKey)

ServiceC(Y, SF lags, S, SKey,)
L(C, SOpts, S, SKey, tC,Sreq, Y)
DoneNoMutC(S, SKey)

∀. . . .
∀ErrorCode : msg.
∀tS,err : time .

N(KRB ERROR, tC,Sreq,
tS,err, ErrorCode, C, S)

L(C, SOpts, S, SKey, tC,Sreq, Y)

γ5′.2′
−→

APErrorC(S, tS,err,
ErrorCode)

1CCCCCCCCCCCCCCCCCCCA

∀C:client

Figure 18: The client’s role in the C level Client/Server Exchange without mutual authentication.

Figure 19 gives the correspondingserver role. As for theclient, the Mutual constraint is replaced by the
NoMutual constraint. When processing a valid request using ruleγ6′.1, the server S does not produce a network
message, but still creates the memory predicateMem. Error messages are as in the mutual authentication case.

18

0BBBBBBBBBBBBBBBBBBBBBB@

∀C : client .
∀SKey : shK C S.
∀tC,Sreq : time .
∀kS : dbK S .
∀ck : msg .
∀SOpts : SOpt .
∀SF lags : SFlag .

N(SOpts, {SF lags, SKey, C}kS
,

{C, ck, tC,Sreq}SKey)

NoMutual(SOpts)
V alidS(C, SOpts, SF lags, tC,Sreq)
ck = [. . .]SKey

γ6′.1
−→ MemS(C, SKey, tC,Sreq)

∀. . . .
∀ErrCode : msg.
∀tS,err : time .

N(SOpts, {SF lags, SKey, C}kS
,

{C, ck, tC,Sreq}SKey)

NoMutual(SOpts)
InvalidS(C, SOpts,

SF lags, SKey, tC,Sreq, ck)
ClockS(tS,err)

γ6′.1′
−→

N(KRB ERROR, tC,Sreq,
tS,err, ErrCode, C, S)

1CCCCCCCCCCCCCCCCCCCCCCA

∀S:server

Figure 19: The end server’s role in the C level Client/Server Exchange without mutual authentication.

5.5 C level intruder formalization

The admissible Dolev-Yao intruder actions are updated to reflect the added detail in the C levelprincipal roles and
additions to the syntax of the MSR specification.

The intruder rules for interception/transmission, decomposition/composition, and decryption/encryption with a
known key change only to the extent that we must take encryption types into account in the rules that involve crypto-
graphic primitives. The necessary extensions to the network, pairing, and encryption rules are as follows.




∀C : client .
∀A : TS .
∀e : etype .
∀k : shKe C A.
∀m : msg .

I({m}e
k)

I(k)
SDC’−→ I(m)




I 


∀C : client .
∀A : TS .
∀e : etype .
∀k : shKe C A.
∀m : msg .

I(m)
I(k)

SEC’−→ I({m}e
k)




I




∀A : TCS .
∀e : etype .
∀k : dbKe A.
∀m : msg .

I({m}e
k)

I(k)
DDC’−→ I(m)




I 


∀A : TCS .
∀e : etype .
∀k : dbKe A.
∀m : msg .

I(m)
I(k)

DEC’−→ I({m}e
k)




I



∀A : TCS .
∀e : etype .
∀kA : dbKe A.

I(kA) DPD−→ I(kA)
I(kA)




I 

∀A : TCS .
∀e : etype .
∀kA : dbKe A.

I(kA) DLD−→ ·



I

We need to update the data generation ruleKG’ as follows.



∀C : client.
∀A : TS .
∀e : etype .

· KG’−→ ∃k : shKe C A I(k)




I

The data access rules need to be updated as follows.



∀A : TS .
∀e : etype .
∀k : shKe I A.

· SA1’−→ I(k)




I 

∀C : client .
∀e : etype .
∀k : shKe C I.

· SA2’−→ I(k)




I (∀e : etype .
∀k : dbKe I.

· DA’−→ I(k)
)I

The C level intruder also makes use of rules which do not extend rules of the A level intruder. Here the intruder can
construct a message digest as long as she knows the proper key. However, there is no disassembling rule for message

19

digests since (cryptographic) hashing does not permit recovering a message.




∀C : client .
∀A : TS .
∀e : etype .
∀k : shKe C A.
∀m : msg .

I(m)
I(k)

MD−→ I([m]ek)




I

The updates to the generation rules are limited to allowing the intruder to choose the encryption type of any session
key she may generate. None of the new data types introduced at this level of detail can be generated by the intruder (or
any other principal). Therefore there are no additional data generation rules beyond those we presented in Section 4.4.

Data access rules are subject to similar changes. However, we treat the new data types, encryption types, options
and flags, similarly to timestamps: each of them range over a limited number of legal values, each being public
knowledge. As for timestamps, these rules make encryption types, options and flags guessable.

(
∀e : etype. · EA−→ I(e)

)I

(
∀o : Opt. · OA−→ I(o)

)I

(
∀f : Flag. · FA−→ I(f)

)I

Observe that, by virtue of subtyping, the last two inference figures apply to each of the subsorts ofOpt andFlag.
Other information that was inaccessible in the A level specification of the intruder remains inaccessible.

6 B Level Protocol Formalization

Our B level formalization extends our A level formalization by adding different details than we use in our C level
formalization. Figure 20 updates Figure 1 to show the protocol messages in the B level formalization, with those
details not in the A level formalization shown here ingraytype.

The primary new detail here is the addition of timestamps and other time data to the protocol messages. As in our C
level formalization, we also make mutual authentication by the end server optional and add error messages (following
the full protocol specification, these are again unencrypted).

The MSR signature of the B level formalization is the same as for the A level formalization; the B level intruder
rules are unchanged from those for the A level.

6.1 The Authentication Service Exchange

Theclient’s actions in Authentication Service Exchange are formalized in Figure 21. Ruleβ1.1 allowsC to initiate the
Authentication Service Exchange with someK : KAS; this leaves the corresponding A level rule (α1.1) unmodified.

Ruleβ1.2 allowsC to process aKRBAS REPmessage naming her and including thenonce she previously sent to
K. This formalization adds two time data to theKRBAS REPmessage; these are discussed in connection withK ’s
ruleβ2.1. As in the A level formalization,C uses theAuthC predicate to save information about this exchange (here
also including the two time fields) for future use.

If C has an AS request pending, indicated by the role state predicateL, and an error message containing her
name appears on the network, then she may use ruleβ1.2′ to process the message. In doing so,C stores the relevant
information in theASErrorC memory predicate. Here an error message consists of the message type (KRB ERROR),
time that the error occurred (tK,err), description of the error (ErrorCode), and the names of theclient andKAS
involved.

The role of theKAS in this exchange is shown in Figure 22. Ruleβ2.1 allowsK to process a validKRBAS REQ
message. As in the A level formalization, the validity of this message is determined by theV alidK external pro-
cess. If the request is valid,K reads the current time from his local clock via theClockK constraint, uses the

20

Client KAS TGS Server

• •-KRB AS REQ

• •¾ KRB AS REP

• •¾
KRB ERROR− AS

• •-KRB TGS REQ

• •¾ KRB TGS REP

• •¾
KRB ERROR− TGS

• •-KRB AP REQ

• •...¾ (KRB AP REP)

• •¾
KRB ERROR− AP

• •-Application messages�∗

∗

∗

KRB AS REQ : C, T, n1

KRB AS REP : C, {AKey, C, tK,auth, tK,end}kT
, {AKey, n1, tK,auth, tK,end,T}kC

KRB TGS REQ : {AKey, C, tK,auth, tK,end}kT
, {C, tC,Treq}AKey, C, S, n2

KRB TGS REP : C, {SKey, C, tT,auth, tT,end}kS
, {SKey, n2, tT,auth, tT,end,S}AKey

KRB AP REQ : MUTUAL?,{SKey, C, tT,auth, tT,end}kS
, {C, tC,Sreq}SKey

KRB AP REP : {tC,Sreq}SKey

KRB ERROR−(AS|TGS|AP) : KRBERROR, [−|tC,Treq|tC,Sreq], t(K|T |S),err, ErrCode, C, (K|T |S)

- Normal messages
. . . .- Optional messages

- Error messages
-� Application messages

Figure 20: Kerberos 5 Messages in the B level Formalization

ATicketExp constraint to determine an appropriate ticket expiration time (tK,end), and sends aKRBAS REPmes-
sage which extends the A level version by adding these two time values. Ruleβ2.1′ formalizesK ’s response to an
invalid KRBAS REQ(as determined by theInvalidK constraint); this error message also includesK ’s current local
time.

6.2 The Ticket-Granting Exchange

The client’s role in the Ticket-Granting Exchange is shown in Figure 23. Ruleβ3.1 extends ruleα3.1 so thatC now
includes a timestamp (the value of her local clock) in the authenticator she sends to theTGS; the predicateAuthC is
extended as discussed under ruleβ1.2, and the role state predicateL now stores the timestamp added in the B level.
Ruleβ3.2 updates ruleα3.2 to store the two new time values in theKRBTGSREPmessage in the predicateServiceC .

Rulesβ3.2′ andβ3.2′′ allow C to handle error messages that appear to relate to aKRBTGSREQmessage she has
sent (as evidenced by the role state predicateL). These cover errors due specifically to an expired Ticket-Granting
Ticket (β3.2′) and generic errors (β3.2′′); in both cases the contents of the error message are stored in theTGSErrorC

predicate, although these data are not used elsewhere in this formalization.
The role of theTGS in this exchange is shown in Figure 24. This formalization adds the time datatT,end, the

expiration time of the service ticket obtained via the constraintSTicketExp, andtT,auth, the current time onT ’s local
clock obtained viaClockT . T also performs an explicit temporal check, given by the constrainttT,auth < tK,end,
to ensure that the ticket-granting ticket has not expired; this check is not performed by the constraintV alidT , which
does not have access to the local timetT,auth.

Ruleβ4.1′ allowsT to respond to aKRBTGSREQmessage which contains an expired ticket-granting ticket (in

21

0BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

∃L : client× TGS× nonce.

∀T : TGS .
∀K : KAS.

β1.1

−→
∃n1 : nonce
N(C, T, n1)
L(C, T, n1)

∀. . . .
∀kC : dbK C .
∀AKey : shK C T.
∀X : msg .
∀n1 : nonce .
∀tK,auth : time .
∀tK,end : time .

N(C, X, {AKey, n1, tK,auth,
tK,end, T}kC

)
L(C, T, n1)

β1.2

−→
AuthC(X, T, AKey,

tK,auth, tK,end)

∀. . . .
∀ErrorCode : msg.
∀tK,err : time .

N(KRB ERROR, tK,err,
ErrorCode, C, K)

L(C, T, n1)

β1.2′

−→
ASErrorC(KRB ERROR,

tK,err, ErrorCode, K)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

∀C:client

Figure 21: The client’s role in the B level Authentication Service Exchange.

0BBBBBBBBBBBBBBBBBB@

∀C : client .
∀T : TGS .
∀n1 : nonce .
∀kC : dbK C .
∀kT : dbK T .
∀AKey : shK C T .
∀tK,end : time .
∀tK,auth : time .

N(C, T, n1)
V alidK(C, T, n1)
ClockK(tK,auth)
ATicketExp(C, T,

tK,auth, tK,end)

β2.1

−→

∃AKey : shK C T
N(C, {AKey, C,

tK,auth, tK,end}kT
,

{AKey, n1, tK,auth,
tK,end,T}KC

)

∀. . . .
∀ErrorCode : msg.
∀tK,err : time .

N(C, T, n1)
InvalidK(C, T, n1, ErrorCode)
ClockK(tK,err)

β2.1′

−→
N(KRB ERROR, tK,err,

ErrorCode, C, K)

1CCCCCCCCCCCCCCCCCCA

∀K:KAS

Figure 22: The authentication server’s role in the B level Authentication Service Exchange.

22

0BBB@

∃L : client(C) × server × TGS(T) × shK C T × time×nonce.

∀T : TGS .
∀S : server .
∀AKey : shK C T .
∀X : msg .
∀tC,Treq : time .
∀tK,auth : time .
∀tK,end : time .

AuthC(X, T, AKey,
tK,auth, tK,end)

ClockC(tC,Treq)

β3.1

−→

∃n2 : nonce
N(X, {C, tC,Treq}AKey,

C, S, n2)
AuthC(X, T, AKey,

tK,auth, tK,end)
L(C, S, T, AKey, tC,Treq, n2)

∀. . . .
∀SKey : shK C S.
∀Y : msg .
∀n2 : nonce .
∀tT,auth : time .
∀tt,end : time .

N(C, Y, {SKey, n2, tT,auth,
tT,end,S}AKey)

L(C, S, T, AKey, tC,Treq,n2)

β3.2

−→
ServiceC(Y, S, SKey,

tT,auth, tT,end)

∀. . . .
∀KRB ERROR : msg.
∀TKT EXP : msg .
∀tT,err : time .

N(KRB ERROR, tC,Treq,
tT,err, TKT EXP, C, T)

L(C, S, T, AKey, tC,Treq,n2)

β3.2′

−→ TGSErrorC(tC,Treq, tT,err, TKT EXP, T)

∀. . . .
∀ErroCode : msg.

N(KRB ERROR, tC,Treq,
tT,err, ErrorCode, C, T)

L(C, S, T, AKey, tC,Treq,n2)

β3.2′′

−→ TGSErrorC(tC,Treq, tT,err, ErrorCode, T)

1CCCA

∀C:client

Figure 23: The client’s role in the B level Ticket-Granting Exchange.

which case the constrainttT,err ≥ tK,end is satisfied). Note that theV alidT constraint (which checks the validity
of every aspect of the request except that the ticket is not expired) is satisfied. Everything else is similar to the error
messages sent byK in the Authentication Service exchange. Ruleβ4.1′′ allows T to respond to aKRBTGSREQ
message which is invalid for some other reason (as determined by theInvalidT external process).

6.3 The Client/Server Exchange with mutual authentication

Theclient’s role in this exchange is shown in Figure 25. Rulesβ5.1 andβ5.2 extend the A level rulesα5.1 andα5.2 by
adding the time datatT,auth andtT,end to the predicateServiceC and by explicitly setting theMUTUALREQUIREDbit
in theKRBAP REQmessage. Recall thattC,Sreq was the only timestamp already included in the A level formalization.
Rulesβ5.2′ andβ5.2′′ are essentially the same as rulesβ3.2′ andβ3.2′′ in the Ticket-Granting Exchange.

Theserver’s role in this exchange is shown in Figure 26. Ruleβ6.1 extends ruleα6.1 to account for the time data
now in theKRBAP REQmessage (including in the validity check byV alidS and the data saved inMemS); S also
ensures that the service ticket has not expired using the constraintsClockS(tS,now) andtS,now < tT,end. Note that ifS
acceptsC ’s request, he sends a confirmation message because theMUTUALREQUIREDbit was set in theKRBAP REQ
message.

Ruleβ6.1′ parallels ruleβ4.1′ in the Ticket-Granting Exchange and allowsS to send an error message in response to
aKRBAP REQmessage which is valid except for an expired ticket (so that the constraintsV alidS(C, tT,auth, tC,Sreq)
andtS,err ≥ tT,end hold). Ruleβ6.1′′ allowsS to send the appropriate error message in response to aKRBAP REQ
message which is invalid for some other reason.

6.4 The Client/Server Exchange without mutual authentication

Theclient’s role in this exchange is shown in Figure 27. Ruleβ5′.1 differs from ruleβ5.1 only in that theMUTUALNONREQUIRED

bit is set in theKRBAP REQmessage (with a corresponding change in the information saved inL) and the data for

23

0BBB@

∀C : client .
∀S : server .
∀AKey : shK C T .
∀kT : dbK T .
∀kS : dbK S .
∀n2 : nonce .
∀tK,auth : time .
∀tK,end : time .
∀tT,auth : time .
∀tT,end : time .
∀tC,Treq : time .

N({AKey, C,
tK,auth, tK,end}kT

,
{C, tC,Treq}AKey

C, S, n2)
V alidT (C, S, n2, tK,auth, tC,Treq)
STicketExp(C, S, tS,end)
ClockT (tT,auth)
tT,auth < tK,end

β4.1

−→

∃SKey : shK C S
N(C, {SKey, C,

tT,auth, tT,end}kS
,

{SKey, n2, tT,auth,
tT,end,S}AKey)

∀. . . .
∀KRBERROR: msg.
∀TKT EXP : msg .
∀tT,err : time .

N({AKey, C
tK,auth, tK,end}kT

{C, tC,Treq}AKey,
C, S, n2)

V alidT (C, S, n2, tK,auth, tC,Treq)
ClockT (tT,err)
tT,err ≥ tK,end

β4.1′

−→
N(KRBERROR, tC,Treq,

tT,err, TKT EXP, C, T)

∀. . . .
∀ErrorCode : msg.

N({AKey, C
tK,auth, tK,end}kT

{C, tC,Treq}AKey,
C, s, n2)

InvalidT (C, S, n2, tK,auth, tC,Treq, ErrorCode)
ClockT (tT,err)

β4.1′′

−→
N(KRBERROR, tC,Treq,

tT,err, ErrorCode, C, T)

1CCCA

∀T :TGS

Figure 24: The ticket granting server’s role in the B level Ticket-Granting Exchange.

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

∃L : client(C) × server(S) × shK C S × time×msg×msg.

∀S : server .
∀SKey : shK C S.
∀Y : msg .
∀tC,Sreq : time .
∀tT,auth : time .
∀tT,end : time .

ServiceC(Y, S, SKey, tT,auth, tT,end)
ClockC(tC,Sreq)

β5.1

−→

N(MUTUALREQUIRED,
Y, {C, tC,Sreq}SKey)

ServiceC(Y, S, SKey, tT,auth, tT,end)
L(C, S, SKey, tC,Sreq, Y ,

MUTUALREQUIRED)

∀. . ..
N({tC,Sreq}SKey)
L(C, S, SKey, tC,Sreq, Y ,

MUTUALREQUIRED)

β5.2

−→ DoneMutC(S, SKey)

∀. . . .
∀KRBERROR: msg.
∀TKT EXP : msg .
∀tS,err : time .

N(KRBERROR, tC,Sreq, tS,err,
TKT EXP, C, S)

L(C, S, SKey, tC,Sreq, Y)

β5.2′

−→ APErrorC(tC,Sreq, tS,err, TKT EXP, S)

∀. . . .
∀ErrorCode : msg.

N(KRBERROR, tC,Sreq, tS,err,
ErrorCode, C, S)

L(C, S, SKey, tC,Sreq, Y)

β5.2′′

−→ APErrorC(tC,Sreq, tS,err, ErrorCode, S)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

∀C:client

Figure 25: The client’s role in the B level Client/Server Exchange with mutual authentication.

24

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

∀C : client .
∀SKey : shK C S.
∀tC,Sreq : time .
∀kS : dbK S .
∀tS,auth : time .
∀tT,auth : time .
∀tT,end : time .

N(MUTUALREQUIRED
{SKey, C, tT,auth, tT,end}kS

,
{C, tC,Sreq}SKey)

ClockS(tS,now)
V alidS(C, tT,auth, tC,Sreq)
tS,auth < tT,end

β6.1

−→
N({tC,Sreq}SKey)
MemS(C, SKey, tC,Sreq,

tT,auth, tT,end)

∀. . . .
∀KRBERROR: msg.
∀TKT EXP : msg .
∀tS,err : time .

N(MUTUALREQUIRED,
{SKey, C, tT,auth, tT,end}kS

,
{C, tC,Sreq}SKey)

V alidS(C, tT,auth, tC,Sreq)
ClockS(tS,err)
tS,err ≥ tT,end

β6.1′

−→
N(KRBERROR, tC,Sreq,

tS,err, TKT EXP, C, S)

∀. . . .
∀ErrorCode : msg.

N(MUTUALREQUIRED,
{SKey, C, tT,auth, tT,end}kS

,
{C, tC,Sreq}SKey)

InvalidS(C, tT,auth, tC,Sreq, ErrorCode)
ClockS(tS,err)

β6.1′′

−→
N(KRBERROR, tC,Sreq,

tS,err, ErrorCode, C, S)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

∀S:server

Figure 26: The end server’s role in the B level Client/Server Authentication Exchange with mutual authentication.

further communication withS (which is not modelled in this formalization) are stored in theDoneNoMutC predi-
cate. There is no analogue of ruleβ5.2 becauseC does not require a response fromS. Rulesβ5′.2′ andβ5′.2′′ simply
update rulesβ5.2′ andβ5.2′′ to account for the change fromMUTUALREQUIREDto MUTUALNONREQUIRED.

Theserver’s role in this exchange is shown in Figure 28. Ruleβ6′.1 is ruleβ6.1 with the (here undesired) response
from S omitted. Rulesβ6′.1′ andβ6′.1′′ are the same as rulesβ6.1′ andβ6.1′′ except that they handle bad requests in
which theMUTUALNONREQUIREDbit is set.

25

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

∃L : client(C) × server(S) × shK C S × time×msg ×msg.

∀S : server .
∀SKey : shK C S.
∀Y : msg .
∀tC,Sreq : time .

ServiceC(Y, S, SKey
tT,auth, tT,end)

ClockC(tC,Sreq)

β5′.1
−→

N(MUTUALNONREQUIRED,
Y, {C, tC,Sreq}SKey)

ServiceC(Y, S, SKey
tT,auth, tT,end)

L(C, S, SKey, tC,Sreq, Y
MUTUALNONREQUIRED)

DoneNoMutC(S, SKey)

∀. . . .
∀KRBERROR: msg.
∀TKT EXP : msg .
∀tS,err : time .

N(KRBERROR, tC,Sreq, tS,err,
TKT EXP, C, S)

L(C, S, SKey, tC,Sreq, Y,
MUTUALNONREQUIRED)

β5′.2′

−→
APErrorC(tC,Sreq, tS,err,
TKT EXP, S)

∀. . . .
∀ErrorCode : msg.

N(KRBERROR, tC,Sreq, tS,err,
ErrorCode, C, S)

L(C, S, SKey, tC,Sreq, Y,
MUTUALNONREQUIRED)

β5′.2′′

−→
APErrorC(, tC,Sreq, tS,err,

ErrorCode, S)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

∀C:client

Figure 27: The client’s role in the B level Client/Server Exchange without mutual authentication.

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

∀C : client .
∀SKey : shK C S.
∀tC,Sreq : time .
∀kS : dbK S .
∀tS,auth : time .
∀tT,auth : time .
∀tT,end : time .

N(MUTUALNONREQUIRED
{SKey, C, tT,auth, tT,end}kS

,
{C, tC,Sreq}SKey)

ClockS(tS,auth)
V alidS(C, tT,auth, tC,Sreq)
tS,auth < tT,end

β6′.1
−→

MemS(C, SKey, tC,Sreq,
tT,auth, tT,end)

∀. . . .
∀KRBERROR: msg.
∀EXP ERR : msg .
∀tS,err : time .

N(MUTUALNONREQUIRED,
{SKey, C, tT,auth, tt,end}kS

,
{C, tC,Sreq}SKey)

V alidS(C, tT,auth, tC,Sreq)
ClockS(tS,err)
tS,err ≥ tT,end

β6′.1′

−→
N(KRBERROR, tC,Sreq, tS,err,
TKT EXP, C, S)

∀. . . .
∀ErrorCode : msg.

N(MUTUALNONREQUIRED,
{SKey, C, tT,auth, tt,end}kS

,
{C, tC,Sreq}SKey)

InvalidS(C, tT,auth, tC,Sreq, ErrorCode)
ClockS(tS,err)

β6′.1′′

−→
N(KRBERROR, tC,Sreq, tS,err,

ErrorCode)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

∀S:server

Figure 28: The end server’s role in the B level Client/Server Exchange without mutual authentication.

26

Part III

Analyzing Kerberos 5

7 Anomalous Protocol Behavior

In this section we describe some anomalous protocol behavior that we have noted as we have analyzed Kerberos 5.
This does not pose a fundamental threat to the security of the protocol—in Section 9 we prove that Kerberos 5 enjoys
a number of confidentiality and authentication properties—so the traces described in this section may be viewed as
‘interesting curiosities.’

We believe that the attack found by Mitchell, Mitchell, and Stern [14] against a simplified version of Kerberos 5
does not appear in our formalization because in their encoding theKRBTGSREPmessage fromT to C did not
includeS encrypted underAKey.

7.1 Ticket anomaly

The primary structural difference between versions 4 and 5 of Kerberos is the manner the KAS and the TGS transmit
the ticket-granting and service tickets. In Kerberos 4, the client receives these tickets as part of the data encrypted
under either her long term (dbK) key or a session key that she knows. We saw that version 5 sends the tickets as a
separate component without additional encryption. Thus it is possible for the intruder to take advantage of this new
message structure to tamper with the unprotected ticket (although she is unable to cause serious problems by doing so).
Figure 29 updates figure 4 to illustrate the message flow in one such scenario. An MSR trace realizing this anomaly
in our A level formalization is given in Appendix C.1.

Client (C) Intruder(I) KAS (K) TGS(T) Server(S)

• •-C, T, n1

• •¾
C, {AKey, C}kT

, {AKey, n1, T}kC

•• ¾
C, X, {AKey, n1, T}kC

• •-
X, {C}AKey, C, S, n2

• •-
{AKey, C}kT

, {C}AKey, C, S, n2

• •¾
C, {SKey, C}kS

, {SKey, n2, S}AKey

• •-
{SKey, C}kS

, {C, tC,Sreq}SKey

• •¾
{tC,Sreq}SKey

Figure 29: A level message flow in the ticket anomaly.

HereC sends herKRBAS REQmessage as usual, but the intruder intercepts theKRBAS REPmessage fromK.
She replaces the ticket with a generic messageX and stores the ticket in her memory;C cannot detect this because
she expects to be unable to read the contents of the ticket. WhenC tries to send aKRBTGSREQmessage toT (using
the meaninglessX instead of the ticket),I intercepts this message and replacesX with the original ticket fromK
and forwards the result (a well-formedKRBTGSREQmessage) toT . T replies with a ticket forS, and the protocol
continues as though the intruder had taken no action.

27

As a result of the actions of the intruder,T has granted a service ticket toC even thoughC has never sent a
valid KRBTGSREQmessage (she doesthink that she has, however). Moreover, barring additional interference by
the intruder, subsequent requests by the client using the “ticket”X in her possession will fail for reasons unknown
to the her. This anomaly does not appear to provide an attack against keys, but it does give a counterexample to the
direct translation of a property of Kerberos 4: when Theorem 6.22 of [1] is translated to our A level formalization of
Kerberos 5, it becomes the following.

Violated Property 1. For C : client, T : TGS, AKey : shK C T , kT : dbK T , andS : server, if {C}AKey and
{AKey, C}kT

have appeared on the network (possibly encrypted), andI does not have access toAKey, then for
somen2 : nonce, C put the message{AKey, C}kT

, {C}AKey, C, S, n2 on the network.

As our example shows, this property does not hold in our A level formalization of Kerberos 5; it does not hold
in our C level formalization either. It was possible for it to hold in Kerberos 4 because the message in that protocol
sent fromK to C was the equivalent of (after omitting timestamps){AKey, T,TGT}kC

, whereTGT is the ticket-
granting ticket. This includes the ticket forT in the encryption underkC : dbK C, unlike theKRB AS REP message
C,TGT , {AKey, n1, T}kC

, preventing the intruder from replacing it with any other message before it reachesC.
For the same reasons, Kerberos 5 does not have the following property, the translation to our A level formalization of
another theorem proved for Kerberos 4 in [2].

Violated Property 2. For C : client, T : TGS, Y : msg, AKey : shK C T , n1 : nonce, kC : dbK C, andkT : dbK T ,
if C, Y, {AKey, n1, T}kC

appears on the network andI does not have access tokC , thenY = {AKey,C}kT
andT

put the messageC, {AKey,C}kT
, {AKey, n1, t}kC

on the network.

Note that the intruder may do the same thing with theKRBTGSREP message (instead of theKRBAS REP
message as just described), replacing the ticket forS with an arbitrary message and then reversing the switch when
C sends aKRBAP REQmessage toS. This scenario shows that the translation of Theorem 6.23 of [1] fails for
Kerberos 5, as does a corresponding theorem in [2].

The amount of practical concern raised by the ticket anomaly seems slight; here the intruder and client together
function as the client is intended to [19]. Even with this anomaly, we are still able to prove in Section 9 that the tickets
and authenticators originated with the proper principals.

The ticket anomaly can also be realized in the C level formalization. It is not prevented by the checksum sent byC
in theKRBTGSREQmessage, which is taken over theKRB-REQ-BODYpart of the message and thus does not cover
the ticket (in the C level formalization, this checksum is taken over just the fieldsTOpts, C, S, n2, e). The anomaly
appears to be fixed if the ticket-granting ticket (or whatC thinks is this ticket) is also included in the above checksum,
although this remains to be proved.

7.2 Anonymous ticket switch anomaly

Another anomaly involving the cutting and pasting of tickets makes use of the anonymous ticket option formalized
in our C level formalization. We make no assumptions about the application specific checksumsC sends in the
KRBAP REQmessages other than that they agree with the local policy of theserver S. Figure 30 shows the message
flow for this anomaly (the ‘anonymous ticket switch anomaly’).

This scenario begins with a normal AS exchange, after whichC has a ticket-granting for use with aTGS, the name
T of theTGS, and the corresponding session keyAKey. C desires two tickets, oneNON-ANONYMOUSand the other
ANONYMOUS, from T for a single serverS and sends the appropriateKRBTGSREQmessages toT . T responds with
the NON-ANONYMOUSservice ticketST1 containing keyAKey1 and theANONYMOUSservice ticketST2 containing
the keyAKey2 (along with the appropriate other components of these messages).I intercepts both messages, swaps
the tickets, and forwards the resulting messages on toC, who then has incorrect beliefs about which (opaque) ticket
contains her identity. She then sendsS two requests for service without mutual authentication, one using each of
these tickets, which the intruder intercepts.I forwards both of these messages to the serverS after replacing the
authenticator encrypted withSKey2 with the authenticator encrypted withSKey1. The server can open the ticket
in each of these messages, but only the key in theNON-ANONYMOUSservice ticketST1 will open the accompanying
authenticator.S thus accepts theNON-ANONYMOUSrequest and generates an error message (not included here; in the
C level formalization, error messages are sent only if the ticket and authenticator match) in response to the malformed

28

Client (C) Intruder(I)KAS (K) TGS(T) Server(S)

• •-KOpts,C, T, n, e

• •¾
C, TGT, {AKey, n, TF lags,T}e

kC

• •-
TGT, {C,MD1 , tC,Treq1

}AKey, TOpts(C),C, S, n1, e

• •-
TGT, {C,MD2 , tC,Treq2

}AKey, TOpts(USER),C, S, n2, e

• •¾
C, ST1, {SKey1, n1, SF lags(C),S}e

AKey

• •¾
C, ST2, {SKey2, n2, SF lags(USER),S}e

AKey

• •¾
C, ST2, {SKey1, n1, SF lags(C),S}e

AKey

• •¾
C, ST1, {SKey2, n2, SF lags(USER),S}e

AKey

• •-
SOpts1,ST2, {C,MD1

′,tC,Sreq1
}SKey1

• •-
SOpts2,ST1, {USER,MD2

′,tC,Sreq2}SKey2

• •-
SOpts1,ST2, {C,MD1

′,tC,Sreq1
}SKey1

• •-
SOpts2,ST1, {C,MD1

′,tC,Sreq1
}SKey1

• •¾ KRB ERROR AP(ST2, USER)

• •¾ KRB ERROR AP(ST2, C)

Figure 30: C level message flow in the anonymous ticket switch anomaly.

29

request. The generic username from theANONYMOUSticket is placed in this error message;I may intercept this
(unencrypted) message and replace the generic name withC ’s name, forwarding the result toC. C then processes
this message and, seeing her name, may believe that herNON-ANONYMOUSrequest was rejected and herANONYMOUS

request was accepted. This situation is undesirable sinceC believes she has completed anANONYMOUSexchange with
S and that she has not completed any exchange in which her identity has been received byS.

This anomaly violates properties proved by Bella and Paulson in [1, 2] for Kerberos 4, which are analogues for
the Client/Server Authentication Exchange of Violated Properties 1 and 2 in Section 7.1. This anomaly seems to be
avoided if the checksums in theKRBAP REQmessages are taken over the service ticket (so that theserver S would
be aware of any ticket switches), although we have yet to prove that such a change would prevent this anomaly. The
checksum in theKRBAP REQmessage is left as ‘application specific’ by the current protocol specification [18].

As in the case of the ticket anomaly, it is unclear whether the ticket switch anomaly is of practical concern. It does,
however, point out some of the interactions between different parts of the protocol, namely theANONYMOUSoptions
and the structural change in messages made between versions 4 and 5 of the protocol. Even if something is known to
have gone wrong, theclient cannot pinpoint when it went wrong; unlike,e.g., compilers, error messages in Kerberos
do not precisely identify the first point at which the trace deviated from the expected protocol run. Here theclient gets
an error message from theserver, even though the intruder first interfered in the protocol during the Ticket-Granting
Exchange.

7.3 Encryption type anomaly

We assume thatC loses her long term (database) keykC associated with a particular encryption methode. She realizes
this, but before reporting the loss of this key (or possibly as she tries to make use of a service in order to do this) she
sends aKRBAS REQmessage toK. C naturally specifies a different encryption method (e′ with keyk′C) in order to
avoid a response using the lost key. Since this is sent in the clear,I can modify the request to force a response using
the compromised keykC (including the construction of a new checksum using the lost key if necessary).I may then
intercept and use the credentials fromK ’s response. ThusI may not only masquerade asC using the lost key, but
may also do this based upon any attempt thatC makes to work around the known key loss. The message flow for this
anomaly is shown in Figure 31.

Client (C) Intruder(I) KAS (K) TGS(T)

• •-KOpts,C, T, n1, e′

• •-KOpts,C, T, n1, e

• •¾
C, TGT, {AKey, n1, TF lags,T}e

kC

• •-
TGT, {C,MD , tC,Treq}AKey, TOpts,C, S, n2, e′′

• •¾
C, ST, {SKey, n2, SF lags,S}e′′′

AKey

KRB AS REQ : KOpts,C, T, n1, e
KRB AS REP : C, TGT, {AKey, n1, TF lags,T}e

kC

KRB TGS REQ : TGT, {C,MD , tC,Treq}AKey, TOpts,C, S, n2, e′′

KRB TGS REP : C, ST, {SKey, n2, SF lags,S}e′′
AKey

KRB ERROR−X : KRBERROR, [−|tC,Treq|tC,Sreq], t(K|T |S),err, ErrCode, C, (K|T |S)

TGT = {TF lags,AKey, C}kT

ST = {SF lags,SKey, C}kS

MD = [TOpts, C, S, n2, e′′]AKey

Figure 31: Message flow for encryption type anomaly

Note that this anomaly is not fixed by the checksum thatC can send with theKRBAS REQmessage (which we do
not include in our formalizations, but is described in [16] as optional), keyed with adbK C, as the following scenario
shows.C putsC, T, n, e′, [C, T, n, e′]e

′
k′C

on the network andI intervenes, replacing it withC, T, n, e, [C, T, n, e]ekC

30

(which I can do, since the hash is public and she knowskC ande). Then the action continues as above, withI gaining
knowledge ofAKey.

A lost long term key is quite serious, as it allows the intruder to obtain and use credentials in the name of the client
whose key has been compromised. Raeburn [19] has noted that when this happens the key database must be updated
to prevent the lost key from being used. We have not yet formalized the database update mechanism(s); the effect of a
compromised key on these is unclear.

7.4 Ticket replay anomaly

We now look at another anomaly whose effects resemble those of the anonymous ticket switch anomaly; the actions
of the intruder are different, but again make use of the ability to cut tickets out of messages. The intruder uses a replay
to unpack the timestamp encrypted in the authenticator by inducing the server to return it in an (unencrypted) error
message. She could also guess this timestamp using rule TA, but we see here that she does not need this rule (which
may be unreasonably strong) in order for this anomaly to be realized. Figure 32 shows the message flow for this
anomaly, which proceeds as follows.

Client (C) Intruder(I)KAS (K) TGS(T) Server(S)

• •-KOpts,C, T, n1, e

• •¾
C, TGT, {AKey, n1, TF lags,T}e

kC

• •-
TGT, {C,MD , tC,Treq}AKey, TOpts,C, S, n2, e

• •-
TGT, {C,MD ′, t′C,Treq}AKey, TOpts′,C, S, n′2, e
• •¾

C, ST, {SKey, n2, SF lags,S}e
AKey

• •¾
C, ST′, {SKey′, n′2, SF lags′,S}e

AKey

• •-
SOpts,ST, {C,MD ′′,t}SKey

• •-
SOpts′,ST′, {C,MD ′,t′}

SKey′

• •-
SOpts,ST, {C,MD ′′,t}SKey

• •-
SOpts,ST, {C,MD ′′,t}SKey

• •¾KRBERROR, t, tS,err, REPLAY, C, S

• •¾ KRBERROR, t, tS,err, ErrCode, C, S

Figure 32: Message flow in the ticket replay anomaly

A client initiates and completes the Authentication Service Exchange with an authentication server, obtaining a
ticket granting ticketTGT for a TGS T . She then usesTGT to make two requests for service tickets for a single
server, requesting different options for these two service tickets.

T receives these two requests, and grants two different service ticketsST andST ′ with associated session keys
SKey andSKey′; we assume that the options actually granted byT are different for these two tickets. Recall that

31

T sends a copy of the granted options along with the new session key (both encrypted under the session key shared
by the client andT), so the client associates the different granted options with these different keys. The client then
sends two requests to the server, one withST and an authenticator encrypted usingSKey and containing a timestamp
t and other withST ′, SKey′ andt′, respectively. We assume that in both requests, the client does not request mutual
authentication from the server, so she expects a response only in case of an error.

The intruder intercepts these requests. She duplicates the request containingST , SKey, andt and forwards these
to the server, who accepts the first and rejects the second because of the replayed authenticator. This prompts an error
message, containingt, from the server, which the intruder may intercept, modify, and send to the client. The intruder
does not send the second request, containingST ′, SKey′, andt′, to the server.

As a result, the client receives an error message containing the timestampt but no response to her request contain-
ing ST ′, SKey′, andt′. She might assume that her first request was rejected while her second was accepted, while
the reverse is actually true. This is potentially worrisome because the options on the tickets are different; in the case of
anonymous tickets, the client might erroneously assume that her identity has not been seen by the server (if the error
is tied to a non-anonymous ticket).

As for the ticket switch anomaly, it is unclear whether this anomaly is of practical concern. It does highlight the
interactions between the ticket options and other traces; for the anonymous ticket option, these may be particularly
undesirable. We also note that since our formalizations do not include explicit checks for replayed authenticators, this
anomaly may not be realizable in these formalizations.

7.5 Possible replays

The abstraction of the A level formalization, in particular the omission of nonce and timestamp checks, precludes the
detection of replayed messages. TheKRBAS REQ, KRBTGSREQ, andKRBAP REQmessages may be intercepted
by the intruder, copied, and then forwarded to the intended server with the intruder maintaining a copy. The intruder
may then, at a later time, replay the copied messages. If the original messages were accepted by the server then the
replays may be as well, in which case the servers would generate fresh credentials based upon the replayed requests.
These possible replays differ from the ticket replay anomaly in that they would be used to force the creation of fresh
credentials.

In order to prevent replayed authenticators,TGSes andservers should save the included timestamps for the length
of the allowable clock skew. For the Client-Server Exchange, Version 10 of the protocol revisions (Section 3.2.3
of [16]) makes the following note.

Unless the application server provides its own suitable means to protect against replay (for example,
a challenge-response sequence initiated by the server after authentication, or use of a server-generated
encryption subkey), the server must utilize a replay cache to remember any authenticator presented within
the allowable clock skew.

Jeffrey [12] has observed that this may place an unreasonable burden on application servers, and that (at least some
of) these servers do not in practice make use of a replay cache.

8 Rank and Corank Functions

We now define the two classes of functions—rank and corank—which we use to prove results about our MSR for-
malizations of the Kerberos 5 protocol. These are inspired by work of Schneider [20] in CSP; related ideas have been
discussed in the context of strand spaces [21]. Rank functions are generally used to prove results about data origin
authentication, while corank functions are used to prove confidentiality results. Intuitively, the former class captures
the amount of work done to produce a certain message, while the latter class captures the amount of work needed to
extract a certain (hopefully secret) message. We shall see that because the abilities to encrypt and extract messages are
not perfectly symmetric, these classes of functions differ in important ways.

In order to use these types of functions in the MSR formalization of a protocol, we need to define their values on
facts. Just as facts are built up from atomic terms in the language of the protocol, we inductively define rank and corank
functions starting with their values on atomic terms and then defining the effects on these values of the operations used
to build non-atomic terms. The extension of these definitions from terms to facts requires some care in the case of

32

corank functions; we note some general principles which appear to be applicable to this process and then use these to
define this class of functions for our formalizations of Kerberos 5.

8.1 Rank

The k-rank relative tom0 is intended to capture the amount of work done using the keyk to encrypt exactly the
messagem0. We start with the definition of rank for terms. Letk be akey, t, t1, t2 terms, andm0 a msg. Then we
define thek-rank oft relative tom0, denoted byρk(t; m0), by

ρk(t;m0) =





0, t is an atomic term

ρk(m1; m0) + 1, t = {m1}k, ρk(m1;m0) > 0
0, t = {m1}k, ρk(m1;m0) = 0, m1 6= m0

1, t = {m0}k

ρk(m1; m0), t = {m1}k′ , k′ 6= k

ρk(m1; m0) + 1, t = [m1]k, ρk(m1; m0) > 0
0, t = [m1]k, ρk(m1; m0) = 0, m1 6= m0

1, t = [m0]k
ρk(m1; m0), t = [m1]k′ , k′ 6= k

max{ρk(t1;m0), ρk(t2; m0)}, t = t1, t2

. (1)

If t is atomic, then no work has been done to encrypt the messagem0 and we set the rank equal to0. If t is exactly
the message{m0}k we set the rank equal to1. Encrypting any message of positivek-rank with the keyk increases
the rank by1 as additional work has been done usingk, while encryption withk′ 6= k has no effect onk-rank.
Keyed checksums have the same effects, as these also represent cryptographic work done usingk. The rank of the
concatenation of two messages equals the larger of the ranks of the constituent messages. We will be concerned
primarily with whether or not thek-rank relative tom0 of a message equals0, i.e., whether or not{m0}k is contained
within the message.

The extension of rank from terms to facts is straightforward; intuitively, the number of nested encryptions ofm0

usingk which must have occurred to produce a certain predicate equals the maximum number of such encryptions
which were needed to produce one of the arguments of the predicate. Formally, fork a key,m0 andm of typemsg, and
t, ti terms, andP any predicate in the protocol signature, we define thek-rank of a factF relative tom0 (ρk(F ; m0))
by

ρk(P (t1, . . . , tj); m0) = max
1≤i≤j

ρk(ti;m0). (2)

In particular, we have

ρk(N(m); m0) = ρk(m;m0) (3)

ρk(I(t); m0) = ρk(t; m0). (4)

For a multisetA of finitely many distinct facts, we define thek-rank ofA relative tom0 by

ρk(A;m0) = max
F∈A

ρk(F ;m0) (5)

if A 6= ∅, and letρk(∅; m0) = 0.
Given a rule

F1, . . . , Fi → ∃x1 . . . ∃xnG1, . . . , Gj ,

we say that this rule increases (preserves, weakly decreases,etc.) k-rank relative tom0 if

ρk({F1, . . . , Fi};m0) < ρk({G1, . . . , Gj}; m0)

(=,≥, etc.). If, in an MSR trace thek-rank of a multisetMi+1 is greater (less than) the previous multisetMi, then the
rule used to obtainMi+1 must increase (decrease), possibly weakly, relativek-rank; it is clear that the converse does
not hold in general.

33

Any reasonable formulation of the intruder should be such that the intruder cannot do cryptographic work using
the keyk (as measured by relativek-rank) without possessing the keyk. Formally, we expect the intruder rules to
satisfy the following property.

Property 1. If an intruder ruleR can increasek-rank relative tom0, then the left hand side ofR containsI(k).

As expected, this property is true for our formalizations of the Dolev-Yao intruder. Before proving this, we state the
assumption made in Section 4.4.2 about the intruder ruleMG as an axiom involving rank functions.

Axiom 1. If a multisetMi+1 is obtained from a multisetMi by an application of ruleMG andI(X) is the unique fact
in Mi+1 \Mi (i.e.,X : msg is the message freshly generated by the intruder usingMG), then for everyk : key and
m0 : msg, ρk(X;m0) = 0.

We may now prove that Property 1 in the formalizations of Kerberos 5 that we have analyzed.

Lemma 1. Property 1 holds in our A level formalization of Kerberos 5, i.e., for anyk : key andm0 : msg, any A level
intruder rule which increasesk-rank relative tom0 contains the factI(k) on its left hand side.

Proof. Inspection of A level intruder rules shows that of the network, pairing, and encryption rules, onlySEC′ and
DEC′ could increase relativek-rank. If either of these rules increasesk0-rank relative tom0, then the keyk mentioned
by each of these rules must equalk0. Among the data generation rules,MG is the only one the relativek-rank of whose
right hand side is not obviously equal to0, but this holds by Axiom 1. Finally, the right hand side of each data access
rule isI(t) for some atomic termt, so none of these can increase relativek-rank.

Lemma 2. Property 1 holds in our C level formalization of Kerberos 5, i.e., for anyk : key andm0 : msg, any C level
intruder rule which increasesk-rank relative tom0 containsI(k) on its left hand side.

Proof. The addition of encryption types does not change the arguments given in the proof of Lemma 1. Among the
rules specific to our C level formalization,EA, OA, andFA create atomic messages (with relativek-rank equal to0).
If an application ofMD increasesk-rank relative tom0, then the key used by the must bek; we see that the left hand
side of this rule then contains the factI(k).

Our approach to data origin authentication is outlined by the following theorem, which might be viewed as a loose
analogue of Schneider’s rank function theorem for our rank functions (recall that it is our corank functions which more
closely parallel Schneider’s rank functions).

Theorem 1. If ρk(F ; m0) = 0 for every factF in the initial state of a trace and no intruder rule can increasek-rank
relative tom0 then the existence of a factF with ρk(F ; m0) > 0 in some non-initial state of the trace implies that
some honest principal fired a rule which produced a fact built up from{m0}k or [m0]k.

Proof. If no intruder rule can increasek-rank relative tom0, some honest participant must have fired a rule which
increased this rank from0 to some positive value. A fact of positivek-rank relative tom0 must contain (as an
argument to the predicate) a term of positivek-rank relative tom0. By induction on the structure of terms, this term
must be built up from at least one of the two terms{m0}k and[m0]k.

We then authenticate the origin of{m0}k (assuming this was not present at the beginning of the trace) by ensuring the
confidentiality ofk, invoking Property 1, and then determining which honest principal(s) could create{m0}k.

8.2 Corank

TheE-corank relative tom0 is intended to capture the minimum amount of work, using keys from the setE, needed
to obtain the atomic messagem0. As for rank, we start by inductively defining corank on terms and then extending
the definition to facts.

34

Let E be a set of keys,m0 an atomic term of typemsg, andt, t1, andt2 terms. Then we define theE-corank oft
relative tom0, denoted bŷρE(t; m0), as

ρ̂E(t; m0) =





∞, t is atomic,t 6= m0

0, t is atomic,t = m0

ρ̂E(m1; m0) + 1, t = {m1}k, k ∈ E

ρ̂E(m1; m0), t = {m1}k, k /∈ E

∞, t = [m1]k, k anykey

min{ρ̂E(t1; m0), ρ̂E(t2; m0)}, t = t1, t2

(6)

If t is atomic then no work using keys fromE is required to obtainm0 if t = m0, while no amount of such work can
extractm0 from t 6= m0. The number of decryptions using keys fromE needed to obtainm0 from {m}k is the same
as or1 more than the number needed to obtainm0 from m, depending on whetherk /∈ E or k ∈ E. Since we assume
that message digestion is one-way, no amount of decryption can extractm0 from [m]k, regardless of whether or not
k ∈ E; this appears in gray since message digests appear in the signature of our C level protocol formalization but not
our A level formalization. A messagem0 can be extracted from the concatenation of two terms by extracting it from
one of these two terms (since we are assuming thatm0 is atomic), whence the final case.

The extension of the definition of corank from terms to facts requires more care than the parallel extension of rank.
For a memory predicateP with j arguments, a natural first definition of theE-corank ofP (t1, . . . , tj) relative tom0

would bemin1≤i≤j ρ̂E(ti; m0). However, we wish to have principals store messages in predicates without necessarily
compromising the confidentiality of these messages (e.g., an honest principal storing an unencrypted session key in
memory does not correspond to the intruder knowing this key). If a certain argument to a predicateP will never be
placed on the network, we will ignore the term it contains when determining theE-corank ofP . We thus modify
the initial definition given above to instead take the minimum to be over thosei for which ti might be placed on the
network (to state this imprecisely). We leave a general approach to this problem for future work; for the moment, we
use this intuition to guide our extension of corank to facts as follows.

Let E be a set ofkeys,m0 an atomic term of typemsg, m of typemsg, andt, ti be terms. Then, forL any role state
predicate and considering all predicates which appear in our formalizations of Kerberos 5 (withgray type indicating
things present only in our C level formalization), we may define theE-corank of a factF relative tom0 as follows.

ρ̂E(N(m); m0) = ρ̂E(m;m0)
ρ̂E(I(t); m0) = ρ̂E(t;m0)

ρ̂E(AuthC(m1,m2,m3,m4); m0) = ρ̂E(m1; m0)
ρ̂E(ServiceC(m1,m2,m3,m4); m0) = ρ̂E(m1; m0)

ρ̂E(L(m1, . . . , mj); m0) = ∞
ρ̂E(DoneMutC(m1,m2); m0) = ∞

ρ̂E(DoneNoMutC(m1,m2); m0) = ∞
ρ̂E(MemS(m1,m2,m3); m0) = ∞

ρ̂E(ASErrorC(m1,m2,m3,m4); m0) = ∞
ρ̂E(TGSErrorC(m1,m2,m3); m0) = ∞
ρ̂E(APErrorC(m1,m2,m3); m0) = ∞

For a multisetA of facts, we define theE-corank ofA relative tom0 by

ρ̂E(A; m0) = min
F∈A

ρ̂E(F ;m0) (7)

if A 6= ∅, and letρ̂E(∅;m0) = ∞.
We identify the confidentiality ofm0 with the fact I(m0) being prohibited from appearing in a trace. As an

immediate consequence of the definition of the corank of facts, we see that corank relative tom0 is directly connected
to the confidentiality ofm0 as follows.

35

Lemma 3. Letm0 : msg be atomic. If there is any setE of keys such that no factF with ρ̂E(F ; m0) = 0 appears in
a trace, then that trace does not containI(m0).

Proof. For every setE of keys,ρ̂E(I(m0); m0) = ρ̂E(m0;m0) = 0.

We expect that in any reasonable intruder formulation, if an intruder decreases the amount of decryption with keys
in the setE needed to learn a message, then she either knows some key protecting that message or she creates that
message herself. We formalize this as the following property.

Property 2. If an intruder ruleR can decreaseE-corank relative tom0, whereI does not have access tom0 simply
by virtue of the type ofm0, then the left hand side ofR containsI(k) for somek ∈ E or R freshly generatesm0.

As expected, this holds for both of our formalizations of the Dolev-Yao intruder.

Lemma 4. Property 2 holds for our A level formalization, i.e., ifm0 is not aprincipal name,time, or key of one of the
typesdbK I, shK I A for A : TS, or shK C I for C : client, then any A level intruder rule which decreasesE-corank
relative tom0 either containsI(k) in its left hand side for somek ∈ E or freshly generatesm0.

Proof. The only network, pairing, and encryption rules which can decrease relative corank areSDC′ andDDC′; if
one of these rules does indeed decreaseE-corank, then the keyk mentioned in each rule must belong to the setE. If
any data generation rule decreasesE-corank relative tom0, by inspection we see that its right hand side must freshly
generatem0. The right hand side of each data access rule isI(t) for a termt whose type is assumed not to be the type
of m0, so the lemma is trivially true for these rules.

Lemma 5. Property 2 holds for our C level formalization, i.e., ifm0 is not aprincipal name,time, etype, Flag, Opt,
or key of one of the typesdbK I, shK I A for A : TS, or shK C I for C : client, then any C level intruder rule which
decreasesE-corank relative tom0 either containsI(k) in its left hand side for somek ∈ E or freshly generatesm0.

Proof. The addition of encryption types does not change any of the arguments used to prove the A level version
(Lemma 4). The new ruleMD cannot decrease relative corank (the right hand side isI(m) for non-atomicm). The
new data access rules are covered by the data types listed in the statement of the lemma.

We prove confidentiality using the following result; like Theorem 1, this may be viewed as some type of analogue
of Schneider’s rank function theorem.

Theorem 2. If ρ̂E(F ;m0) > 0 for every fact in the initial state of a trace, no intruder rule can decreaseE-corank
relative tom0, and no honest principal creates a factF with ρ̂E(F ; m0) = 0, thenm0 is secret throughout the trace.

Proof. We identify the secrecy ofm0 throughout a trace with the MSR factI(m0) never appearing in trace. Because
ρ̂E(I(m0); m0) = 0 for every setE of keys, if the conditions of the theorem are satisfied,m0 is secret throughout the
trace in question.

We may thus show thatm0 is confidential by finding some setE of keys, each of which is confidential (which may
require additional corank arguments) and which satisfies the conditions of this theorem.

9 Properties of Kerberos 5

In our work to date, we have established two types of properties for Kerberos 5. Since Kerberos is intended to provide
authentication, it is important to see what sort of authentication properties the protocol has. In proving authentication
properties of the protocol, we have also established confidentiality properties for various session keys which are
established during a protocol run. These properties are important in their own right, since some of the session keys
may be used in future communications between protocol participants.

We have established confidentiality and authentication properties connected to both the Ticket Granting Exchange
and the Client/Server Exchange. Since these exchanges have similar structure, it is not surprising that the properties are
expressed and indeed proved in very similar ways. Table 1 shows the parallel relationships between the properties that
we have established thus far. The confidentiality properties discussed here state that an intruder never learns certain

36

Confidentiality Authentication

TG Exchange Property 3 Property 4

C/S Exchange Property 5 Property 6

Table 1: Properties established for Kerberos 5

information. The authentication properties that we have established aredata origin authenticationproperties [11].
These show that if certain messages are ever seen on the network, then they must have been originally sent by a
specified protocol participant. Throughout this work, we assume the presence of a Dolev-Yao intruder. Additionally,
we do not intentionally leak keys to this intruder as was done in [1, 2, 3]

The properties related to the Ticket Granting Exchange have been established in both our A and C level formaliza-
tions. Properties 3 and 4 for our A level formalization were included, albeit in somewhat different form, in [6]. Their
extension to our C level formalization is a new result here. Properties 5 and 6, for the Client/Server Exchange, have so
far been proved only for the A level formalization; these results are also new since [6].

The precise statements and proofs of these properties are related in much the same way that the formalizations
themselves are related—removing some information from the detailed version gives the more abstract version. As
a result, we expect that we will soon be able to extend the properties of the Client/Server Exchange to our C level
formalization. In this section we outline the proofs of the theorems stated usinggray text to indicate those parts of
the outline which are specific to the C level version of the property. The full proofs, which involve numerous minor
lemmas about individual MSR rules, are given in Appendix A

9.1 The Ticket-Granting Exchange

We start with the properties that we have established for the Ticket Granting Exchange. As this exchange is closer to
the beginning of the standard protocol run, these properties are slightly simpler than for the Client/Server Exchange
below.

Because the communications between theclient andTGS use the shared key generated by theKAS which created
the ticket granting ticket, we want to ensure that this key remains confidential. In this exchange, the ticket granting
server produces credentials (a service ticket) in response to a request which contains a ticket granting ticket and an
authenticator. We thus also wish to authenticate the origin of these objects; in the case of the authenticator, which is
encrypted using the key shared betweenC andT , we make use of the confidentiality result for this exchange.

9.1.1 Confidentiality ofAKey

The first property that we have established for Kerberos 5 is the confidentiality of the session key generated by the
Authentication Server,i.e., that the intruder does not learn this key. This parallels Theorem 6.18 of [1] for Kerberos 4.

Property 3. If the intruder does not know the long term secret keys (kC andkT) used to encrypt the session keyAKey
generated by the authentication serverK for use byC andT , then the intruder cannot learnAKey.

We formalize this property for our A and C level formalizations as the following two theorems.

Theorem 3. For C : client, T : TGS, C, T 6= I, kC : dbKC, kT : dbKT , AKey : shKCT , andn : nonce, if the initial
state of a finite trace does not containI(kC) or I(kT) and someK : KAS fires ruleα2.1, freshly generatingAKey and
creating the factN(C, {AKey, C}kT

, {AKey, n, T}kC
), then no state of the trace contains the factI(AKey).

Theorem 4. For C : client, T : TGS, C, T 6= I, kC : dbK C, kT : dbK T , AKey : shK C T , TF lags : TFlag, and
n : nonce, if the initial state of a finite trace does not containI(kC) or I(kT) and someK : KAS fires ruleγ2.1, freshly
generatingAKey and creating the factN(C, {TF lags,AKey, C}kT

, {AKey, n, TF lags,T}kC
), then no state of the

trace contains the factI(AKey).

37

Proof. (Sketch)We show that no fact whose{kC , kT }-corank equals0 relative toAKey ever appears in the trace. (We
use this set of keys because one of them encryptsAKey whenever it is transmitted over the network.)K decreases
this corank when it freshly generatesAKey, but not below1; noKAS may otherwise decrease this corank. Noclient,
TGS, or server can ever decrease this corank, nor can the intruder. As this relative corank in question must have been
infinite for every fact in the trace beforeK freshly generatedAKey, no fact whose{kC , kT }-corank equals0 relative
to AKey can every appear in the trace.

9.1.2 Authentication of ticket-granting ticket and authenticator

The second property of Kerberos 5 is data origin authentication of the ticket and authenticator used in the client’s
request to the ticket granting server.

Property 4. If the intruder does not know the long term key used to encrypt a ticket-granting ticket and this ticket did
not exist at the beginning of the trace, then if theTGS processes a request, ostensibly from a clientC, containing the
ticket-granting ticket and the session keyAKey, then some Authentication Server created the session keyAKey for
C to use with theTGS and also generated this ticket-granting ticket. Furthermore, if the intruder does not know the
long term key that the authentication server used to sendAKey to C, then the authenticator was created byC.

We formalize this property for our abstract and detailed formalizations as the following two theorems.

Theorem 5. For C : client, T : TGS, C, T 6= I, S : server, AKey : shK C T , kT : dbK T , andn : nonce, if
the beginning state of a finite trace does not containI(kT) or any factF with ρkT

(F ;AKey, C) > 0, and at some
point in the traceT fires ruleα4.1, consuming the factN({AKey, C}kT

, {C}AKey, C, S, n), then someK : KAS
previously fired ruleα2.1, freshly generatingAKey and producing the factN(C, {AKey, C}kT

, {AKey, n′, T}k′)
for somen′ : nonce, and k′ : dbK C. Furthermore, if I(k′) did not appear in the initial state of the trace,
then afterK fired rule α2.1 and beforeT fired rule α4.1, C fired rule α3.1, creating the factN(X, {C}AKey,
C, S′, n′′) for someX : msg, S′ : server, andn′′ : nonce.

Theorem 6. For C : client, T : TGS, C, T 6= I, S : server, AKey : shK C T , kT : dbK T , TF lags : TFlag, ck : msg,
tC,Treq : time, TOpts : TOpt, e : etype, andn : nonce, if the beginning state of a finite trace does not containI(kT)
or any factF with ρkT (F ; TF lags,AKey,C) > 0, and at some point in the traceT fires ruleγ4.1, consuming the fact
N({TF lags,AKey, C}kT

, {C, ck, tC,Treq}AKey, TOpts,C, S, n, e), then someK : KAS previously fired ruleγ2.1,

freshly generatingAKey and producing the factN(C, {TF lags,AKey, C}kT
, {AKey, n′, TF lags,T}e′

k′) for some

n′ : nonce, e′ : etype, andk′ : dbKe′ C. Furthermore, ifI(k′) did not appear in the initial state of the trace, then after
K fired ruleγ2.1 and beforeT fired ruleγ4.1, C fired ruleγ3.1, creating the factN(X, {C, [TOpts′, C, S′, n′′, e′′]AKey,
tC,Treq}AKey, TOpts′,C, S′, n′′, e′′) for someX : msg, TOpts′ : TOpt, e′′ : etype, S′ : server, andn′′ : nonce.

Proof. (Sketch) We first considerkT -rank relative toTF lags,AKey, C. No client, server, or TGS can increase
this rank, andI cannot increase it without knowingkT . SomeK : KAS must have increased this rank; we see that
ruleαγ2.1 was fired byK and the other claims of the first part of the theorem follow.

The assumption thatI(k′) is not in the initial state of the trace allows us to apply Property 6, which shows that
I does not learnAKey. ThusI cannot increaseAKey-rank relative toC, [TOpts′, C, S′, n′′, e′′]AKey, tC,Treq. No
KAS, TGS, or server will do so, andC is the onlyclient who will; inspection of theclient rules shows that she must
do so in the manner claimed.

9.2 The Client/Server Exchange

We now move to properties of the Client/Server Exchange; as this exchange parallels the Ticket Granting Exchange,
its properties parallel the properties we have proved for that exchange. These properties build on those stated above
and may be viewed as the main positive results that we have obtained thus far.

9.2.1 Confidentiality ofSKey

The first property for the Client/Server Exchange gives conditions under which the session key shared by the client
and server is not known to the intruder. This parallels Theorem 6.19 of [1] for Kerberos 4.

38

Property 5. If the intruder knows neither the long term secret key used by aTGS to encrypt the service ticket con-
taining a new session keySKey for a client to use with a server nor the session key used by the client to request the
service ticket, then the intruder cannot learnSKey.

We formalize this property for our abstract formalization as the following theorem. We have not yet proved Property 5
for our detailed formalization, but expect to do so soon.

Theorem 7. For C : client, T : TGS, S : server, kT : dbK T , kS : dbK S, SKey : shK C S, AKey : shK C T , and
n : nonce, if T fires ruleα4.1, consuming the factN({AKey,C}kT

, {C}AKey, C, S, n), freshly generatingSKey,
and creating the factN(C, {SKey, C}kS

, {SKey, n, S}AKey), and if the initial state of the trace does not contain
I(kS) and no state of the trace containsI(AKey), then no state of the trace containsI(SKey).

Proof. (Sketch)We show that no fact with{AKey, kS}-corank relative toSKey equal to0 appears in the trace. The
only way that aTGS can decrease this corank is throughT ’s rule firing as in the theorem statement; the resulting
multiset has{AKey, kS}-corank relative toSKey equal to1, and this corank was infinite for every previous state in
the trace. NoKAS, client, or server decreases this corank. The intruder cannot freshly generateSKey or decrease this
corank through other means, finishing the proof.

We may explicitly give conditions guaranteeing thatI(AKey) doe not appear in the trace in order to obtain the
following corollary.

Corollary 8. For C : client, T : TGS, S : server, kT : dbK T , kS : dbK S, SKey : shK C S, AKey : shK C T , and
n : nonce, if T fires ruleα4.1, consuming the factN({AKey,C}kT

, {C}AKey, C, S, n), freshly generatingSKey,
and creating the factN(C, {SKey, C}kS

, {SKey, n, S}AKey), and if the initial state of the trace did not contain
I(kT), I(kS), I(kC) for everykC : dbK C, or any factF with ρkT (F ; AKey,C), then no state of the trace contains
I(SKey).

9.2.2 Authentication ofST and authenticator

The second property for the Client/Server Exchange is our main result for this exchange and captures authentication
of the client C to theserver S, again in the form of data origin authentication. It states conditions which guarantee
that if S receives a certain message (consisting of a service ticket and an authenticator), apparently sent byC, then the
service ticket originated with someT : TGS and the authenticator originated withC. The assumptions needed for the
theorem to hold are that the ticket did not already exist at the beginning of the trace, and that the intruderI does not
have access to the long term key of theserver S or the key shared betweenC and theTGS T who generated the ticket.

Property 6. If the intruder does not know the long term key used to encrypt a service ticket for aclient C to present
to a server S and this ticket did not exist at the beginning of the trace, then ifS processes a request, ostensibly fromC,
containing this service ticket and the session keySKey, then some Ticket Granting Server generated the session key
SKey for C to use withS and also created the service ticket. Furthermore, if the intruder never learns the session
key which the Ticket Granting Server used to encryptSKey when sending the service ticket toC, thenC created the
authenticator.

We formalize this property for our abstract formalization as the following theorem. We have not yet proved Property 6
for our detailed formalization, but expect to do so soon.

Theorem 9. For C : client, S : server, kS : dbK S, SKey : shK C S, and tC,Sreq : time, if the beginning
state of a finite trace does not containI(kS) or any factF with ρkS

(F ;SKey, C) > 0, and at some point in the
traceS fires ruleα6.1 consuming the factN({SKey, C}kS

, {C, tC,Sreq}SKey), then someT : TGS previously fired
rule α4.1, freshly generatingSKey and producing the factN(C, {SKey, C}kS

, {SKey, n, S}k) for somen : nonce
andk : shK C T . Furthermore, if the factI(k) has not yet appeared in the trace, then afterT fired ruleα4.1 and before
S fired the ruleα6.1, C fired ruleα5.1 to create the factN(Y, {C, tC,Sreq}SKey) for someY : msg.

Proof. (Sketch)We first considerkS-rank relative toSKey, C; this was0 for all facts in the initial state of the trace
andS’s rule firing consumes a fact of positivekS-rank relative toSKey, C. No client, KAS, or server can increase
this rank, nor can the intruder. The onlyTGS that could do so isT and in the manner claimed.

39

S’s rule firing also consumes a fact of positiveSKey-rank relative toC, tC,Sreq; this rank must have been increased
during the protocol trace becauseSKey was freshly generated during the trace. We may invoke Property 3 to show
that I could not increase this rank; by inspection, we see that noKAS, TGS, or server could either. The onlyclient
who could do so wasC, and she must have done so in the manner claimed.

We may explicitly add hypotheses which will guarantee thatI(k) does not appear in the trace; this gives us the
following corollary.

Corollary 10. For C : client, S : server, kS : dbK S, SKey : shK C S, and tC,Sreq : time, if the beginning
state of a finite trace does not containI(kS) or any factF with ρkS

(F ;SKey, C) > 0, and at some point in the
traceS fires ruleα6.1 consuming the factN({SKey, C}kS

, {C, tC,Sreq}SKey), then someT : TGS previously fired
rule α4.1, freshly generatingSKey and producing the factN(C, {SKey, C}kS

, {SKey, n, S}k) for somen : nonce
andk : shK C T . Furthermore, if the initial state of the trace did not containI(kC) for anykC : dbK C, or, for any
kT : dbK T , and ifT 6= I, I(kT) or any factF with ρkT

(F ; k, C) > 0, then afterT fired ruleα4.1 and beforeS fired
the ruleα6.1, C fired ruleα5.1 to create the factN(Y, {C, tC,Sreq}SKey) for someY : msg.

Part IV

Conclusions and References

10 Conclusions and Future Work

10.1 Conclusions

In this paper, we gave three formalizations of Kerberos 5 in the Multi-Set Rewriting (MSR) framework. The A level
formalization included just enough detail to prove authentication and confidentiality results for the protocol; due to
structural changes in the messages from Kerberos 4, these properties were slightly weaker than those proved for that
version of the protocol[1, 2, 3, 4]. The C level formalization was closer to the full protocol as given in [13, 16], adding
error messages, checksums, and a number of options to the A level formalization. Many of these details are new to
version 5 of Kerberos. We extended our analysis of the A level case to the C level, observing that the structure of the
proofs is preserved in doing this and again proving authentication and confidentiality properties of the protocol. The
B level formalization extended the A level in a different direction by adding timestamps and temporal checks. We did
not extensively analyze this formalization as these details are not significantly changed from Kerberos 4.

We noted four possible instances of curious protocol behavior, although none of these compromises the security
of the protocol. Three of these arose because tickets are not bound to the rest of the messages containing them (as
they were in Kerberos 4); one of these three was seen in both the A and C levels, while the other two made use of the
options in the C level formalization. The fourth anomaly was related to the encryption type option which was included
in the C level. It appeared that some of these anomalies may be prevented though the use of cryptographic checksums
beyond those specified in the protocol, but we have not yet formally proved this. We did not notice any new anomalies
in our informal analysis of the B level formalization.

The proofs of protocol properties made use of rank and corank functions, inspired by the work of Schneider [20].
Our analysis gave insight into approaches to reasoning about the MSR specifications of protocols. Throughout this
work, MSR proved to be an adequate language for formalizing and analyzing a real-world protocol.

10.2 Future work

We close with an outline of logical extensions of the work described in this paper.
Kerberos 5 is a complex protocol suite, with numerous details remaining to be formalized and analyzed. One

natural continuation of this work is the formalization and analysis of the common refinement of our B and C level
formalizations; this might be further extended to include even more timestamps and temporal checks, explicit consid-
eration of all options specified in [18] (in particular renewable and postdatable tickets), and the formalization of the
other available subprotocols (such as for client-server communication after authentication has been achieved).

40

We have seen parallels between the analyses of the A and C level formalizations. The relationships between
different formalizations of Kerberos 5 and the corresponding relationships between their security properties (and the
proofs of these properties) should be investigated in a precise manner. Analysis including timestamps should be done,
either using the B level formalization or some refinement of it; additional work may be merited on anomalous behavior
in more detailed formalizations, how it might be prevented (including through modification of existing checksums in
the protocol), and whether such preventative measures would be worth implementing.

Acknowledgments

We are grateful to Alan Jeffrey, John Mitchell, Clifford Neuman, and Ken Raeburn for a number of helpful comments
on the shorter version of this work.

References

[1] G. Bella,Inductive Verification of Cryptographic Protocols, Ph.D. thesis, University of Cambridge, March 2000,
<http://www.cl.cam.ac.uk/˜gb221/papers/bella14.ps.gz> .

[2] G. Bella and L. C. Paulson,Using Isabelle to Prove Properties of the Kerberos Authentication System, Proc. of
DIMACS’97, Workshop on Design and Formal Verification of Security Protocols (CD-ROM) (H. Orman and
C. Meadows, eds.), 1997,<http://www.cl.cam.ac.uk/˜gb221/papers/bella4.ps.gz> .

[3] , Kerberos Version IV: Inductive Analysis of the Secrecy Goals, Proc. of ESORICS ’98, Fifth European
Symposium on Research in Computer Science, Lecture Notes in Computer Science, no. 1485, Springer-Verlag,
1998,<http://www.cl.cam.ac.uk/˜gb221/papers/bella6.ps.gz> , pp. 361–375.

[4] , Mechanising BAN Kerberos by the Inductive Method, Proc. of CAV98 – Tenth International Conference
on Computer Aided Verification, 1998,<http://www.cl.cam.ac.uk/˜gb221/papers/bella5.ps.gz> .

[5] G. Bella and E. Riccobene,Formal Analysis of the Kerberos Authentication System, J. Universal Comp. Sci.3
(1997), no. 12, 1337–1381.

[6] F. Butler, I. Cervesato, A. D. Jaggard, and A. Scedrov,An Analysis of Some Properties of Kerberos 5 Using MSR,
Proceedings of the 15th Computer Security Foundations Workshop, 2002.

[7] I. Cervesato,The Logical Meeting Point of Multiset Rewriting and Process Algebra, Unpublished manuscript.
Available at<http://theory.stanford.edu/˜iliano/forthcoming> .

[8] , Typed MSR: Syntax and Examples, Proc. of the First International Workshop on Mathematical Methods,
Models and Architectures for Computer Network Security — MMM’01, Springer-Verlag, 2001, St. Petersburg,
Russia, 21–23 May 2001.

[9] I. Cervesato, N. A. Durgin, P.D. Lincoln, J.C. Mitchell, and A. Scedrov,A Meta-notation for Protocol Analysis,
Proc. of the Twelfth IEEE Computer Security Foundations Workshop, 1999, pp. 55–69.

[10] N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov,Multiset Rewriting and the Complexity of
Bounded Security Protocols, Journal of Computer Security, To appear. Preliminary version available at
<ftp://ftp.cis.upenn.edu/pub/papers/scedrov/msr+long.[pdf,ps,ps.gz]> .

[11] D. Gollmann,Authentication–Myths and Misconceptions, Progress in Computer Science and Applied Logic20
(2001), 203–225.

[12] A. Jeffrey, Personal communication.

[13] J. Kohl and C. Neuman,The Kerberos Network Authentication Service (V5), September 1993, Network Working
Group Request for Comments: 1510.<ftp://ftp.isi.edu/in-notes/rfc1510.txt> .

41

[14] J. C. Mitchell, M. Mitchell, and U. Stern,Automated Analysis of Cryptographic Protocols Using Murϕ, Proc. of
the IEEE Symposium on Security and Privacy, IEEE Computer Society Press, 1997, pp. 141–153.

[15] C. Neuman, June 2002, Personal communication.

[16] C. Neuman, J. Kohl, T. Ts’o, Ken Raeburn, and Tom Yu,The Kerberos Network Au-
thentication Service (V5), November 20 2001, Internet draft, expires 20 May 2002.
<http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-revisions-10.txt> .

[17] C. Neuman and T. Ts’o,Kerberos: An Authentication Service for Computer Networks, IEEE Communications
32 (1994), no. 9, 33–38.

[18] C. Neuman, T. Yu, S. Hartman, and K. Raeburn,The Kerberos Network Authen-
tication Service (V5), February 15 2004, Internet draft, expires 15 August 2004.
<http://www.ietf.org/internet-drafts/draft-ietf-krb-wg-kerberos-clarifications-05.txt> .

[19] K. Raeburn, June 2002, Personal communication.

[20] S. Schneider,Verifying Authentication Protocols in CSP, IEEE Transactions on Software Engineering24 (1998),
no. 9, 741–758.

[21] F. J. Thayer F́abrega, J. Herzog, and J. D. Guttman,Honest ideals on strand spaces, Proceedings, 1998 Computer
Security Foundations Workshop, 1998.

Part V

Appendices

A Proofs of Protocol Properties

The structure of this appendix parallels the structure of Section 9, where the theorems proved here are originally stated.

A.1 The Ticket-Granting Exchange

A.1.1 Confidentiality of AKey

Theorem 3. For C : client, T : TGS, C, T 6= I, kC : dbKC, kT : dbKT , AKey : shKCT , andn : nonce, if the initial
state of a finite trace does not containI(kC) or I(kT) and someK : KAS fires ruleα2.1, freshly generatingAKey and
creating the factN(C, {AKey, C}kT

, {AKey, n, T}kC
), then no state of the trace contains the factI(AKey).

Proof. We claim that no fact with{kC , kT }-corank relative toAKey equal to0 appears in the trace.
By Lemma 8, if anyKAS fires a rule which decreases{kC , kT }-corank relative toAKey, then that rule freshly

generatesAKey and, if the newly created fact in the resulting multiset isN(C, {AKey, C}kT
, {AKey, n, T}kC

), the
{kC , kT }-corank relative toAKey of this multiset equals1. By Lemma 9, no previous multiset in the trace contained a
fact with finite{kC , kT }-corank relative toAKey, nor can anyKAS later fire a rule which decreases{kC , kT }-corank
relative toAKey.

By Lemmas 10, 11, and 12, noclient, TGS, or server decreases{kC , kT }-corank relative toAKey.
By hypothesis and Lemma 6, the factsI(kC) andI(kT) never appear in the trace under consideration. By hypothe-

sis,K freshly generatesAKey, so by Lemma 9I cannot freshly generateAKey. Thus, by Lemma 13,I does not fire
any rule which decreases{kC , kT }-corank relative toAKey.

As a result, no fact of{kC , kT }-corank0 relative toAKey, in particularI(AKey), occurs in any multiset of the
trace.

42

Theorem 4. For C : client, T : TGS, C, T 6= I, kC : dbK C, kT : dbK T , AKey : shK C T , TF lags : TFlag, and
n : nonce, if the initial state of a finite trace does not containI(kC) or I(kT) and someK : KAS fires ruleγ2.1, freshly
generatingAKey and creating the factN(C, {TF lags,AKey, C}kT

, {AKey, n, TF lags,T}kC
), then no state of the

trace contains the factI(AKey).

Proof. We claim that no fact with{kC , kT }-corank relative toAKey equal to0 appears in the trace.
By Lemma 14, if anyKAS fires a rule which decreases{kC , kT }-corank relative toAKey, then that rule freshly

generatesAKey and, if the newly created fact in the resulting multiset isN(C, {AKey, C}kT
, {AKey, n, T}kC

),
the {kC , kT }-corank relative toAKey of this multiset equals1. By Lemma 15, no previous multiset in the trace
contained a fact with finite{kC , kT }-corank relative toAKey, nor can anyKAS later fire a rule which decreases
{kC , kT }-corank relative toAKey.

By Lemmas 16, 17, and 18, noclient, TGS, or server decreases{kC , kT }-corank relative toAKey.
By hypothesis and Lemma 7, the factsI(kC) andI(kT) never appear in the trace under consideration. By hypothe-

sis,K freshly generatesAKey, so by Lemma 15I cannot freshly generateAKey. Thus, by Lemma 19,I does not fire
any rule which decreases{kC , kT }-corank relative toAKey.

As a result, no fact of{kC , kT }-corank0 relative toAKey, in particularI(AKey), occurs in any multiset of the
trace.

A.1.2 Authentication of TGT and authenticator

Theorem 5. For C : client, T : TGS, C, T 6= I, S : server, AKey : shK C T , kT : dbK T , andn : nonce, if
the beginning state of a finite trace does not containI(kT) or any factF with ρkT (F ;AKey, C) > 0, and at some
point in the traceT fires ruleα4.1, consuming the factN({AKey, C}kT

, {C}AKey, C, S, n), then someK : KAS
previously fired ruleα2.1, freshly generatingAKey and producing the factN(C, {AKey, C}kT

, {AKey, n′, T}k′)
for somen′ : nonce, and k′ : dbK C. Furthermore, if I(k′) did not appear in the initial state of the trace,
then afterK fired rule α2.1 and beforeT fired rule α4.1, C fired rule α3.1, creating the factN(X, {C}AKey,
C, S′, n′′) for someX : msg, S′ : server, andn′′ : nonce.

Proof. T ’s firing of rule α4.1 consumesN({AKey,C}kT
, {C}AKey, C, S, n2), a fact of kT -rank 1 relative to

AKey, C. As the initial state of the trace did not contain any factF with ρkT
(F ; AKey,C) > 0, some rule must have

been fired which increasedkT -rank relative toAKey, C.
By Lemmas 20, 21, and 22, noclient, server, or TGS can fire a rule which increaseskT -rank relative toAKey, C.

By Lemmas 6 and 23, if the intruder fires a rule which increaseskT -rank relative toAKey, C then the initial
state of the trace containskT , a contradiction. Thus someK : KAS must have fired a rule which increasedkT -
rank relative toAKey, C. By Lemma 24, the firing of that rule freshly generatedAKey and created the fact
N(C, {AKey, C}kT

, {AKey, n, T}k′) for somen : nonce andk′ : dbK C.
T ’s firing of rule α4.1 consumes a fact ofAKey-rank1 relative toC. BecauseAKey was freshly generated by

some rule fired in the trace, by Lemma 25 no fact in the initial state of the trace had positiveAKey-rank relative toC;
thus some protocol participant must have fired a rule which increased this rank.

As I(k′) was not in the initial state of the trace, the conditions of Theorem 3 are satisfied (by hypothesis and the
first part of the theorem) and no state of the trace containsI(AKey). By Lemma 23,I cannot fire a rule which increases
AKey-rank relative toC. By Lemmas 26–28, noKAS, TGS, or server can fire a rule which increasesAKey-rank
relative toC. SomeC ′ : client must have fired a rule which increasedAKey-rank relative toC; by Lemma 29, this
wasC firing ruleα3.1 and creating the factN(X, {C}AKey, C, S′, n′) for someX : msg, S′ : server, andn′ : nonce.
Finally, Lemma 25 implies thatK ’s firing of ruleα2.1 (freshly generatingAKey) precededC ’s firing of ruleα3.1.

Theorem 6. For C : client, T : TGS, C, T 6= I, S : server, AKey : shK C T , kT : dbK T , TF lags : TFlag, ck : msg,
tC,Treq : time, TOpts : TOpt, e : etype, andn : nonce, if the beginning state of a finite trace does not containI(kT)
or any factF with ρkT

(F ; TF lags,AKey,C) > 0, and at some point in the traceT fires ruleγ4.1, consuming the fact
N({TF lags,AKey, C}kT

, {C, ck, tC,Treq}AKey, TOpts,C, S, n, e), then someK : KAS previously fired ruleγ2.1,

freshly generatingAKey and producing the factN(C, {TF lags,AKey, C}kT
, {AKey, n′, TF lags,T}e′

k′) for some

n′ : nonce, e′ : etype, andk′ : dbKe′ C. Furthermore, ifI(k′) did not appear in the initial state of the trace, then after
K fired ruleγ2.1 and beforeT fired ruleγ4.1, C fired ruleγ3.1, creating the factN(X, {C, [TOpts′, C, S′, n′′, e′′]AKey,
tC,Treq}AKey, TOpts′,C, S′, n′′, e′′) for someX : msg, TOpts′ : TOpt, e′′ : etype, S′ : server, andn′′ : nonce.

43

Proof. T ’s firing of ruleγ4.1 consumesN({TF lags,AKey, C}kT
, {C, ck, tC,Treq}AKey, TOpts,C, S, n, e), a fact of

kT -rank1 relative toTF lags, AKey, C. As the initial state of the trace did not contain any factF with ρkT
(F ;TF lags,

AKey, C) > 0, some rule must have been fired which increasedkT -rank relative toTF lags, AKey, C.
By Lemmas 30, 31, and 32, noclient, server, or TGS can fire a rule which increaseskT -rank relative toTF lags,

AKey, C. By Lemmas 7 and 33, if the intruder fires a rule which increaseskT -rank relative toTF lags, AKey, C then
the initial state of the trace containskT , a contradiction. Thus someK : KAS must have fired a rule which increased
kT -rank relative toTF lags,AKey,C. By Lemma 34, the firing of that rule freshly generatedAKey and created the
factN(C, {TF lags, AKey, C}kT

, {AKey, n1, TF lags, T}e′
kC

) for somen1 : nonce, e′ : etype, andkC : dbKe′ C.
T ’s firing of rule γ4.1 consumes a fact ofAKey-rank1 relative toC, ck, tC,Treq for someck : msg andtC,Treq :

time. BecauseAKey was freshly generated by some rule fired in the trace, by Lemma 35 no fact in the initial state
of the trace had positiveAKey-rank relative toC, ck, tC,Treq; thus some protocol participant must have fired a rule
which increased this rank.

As I(k′) was not in the initial state of the trace, the conditions of Theorem 4 are satisfied (by hypothesis and the first
part of the theorem) and no state of the trace containsI(AKey). By Lemma 33,I cannot fire a rule which increases
AKey-rank relative toC, ck, tC,Treq. By Lemmas 36–38, noKAS, TGS, or server can fire a rule which increases
AKey-rank relative toC, ck, tC,Treq. SomeC ′ : client must have fired a rule which increasedAKey-rank relative
to C; by Lemma 39, this wasC firing rule γ3.1 and creating the factN(X, {C, ck′, tC,Treq}AKey, TOpts′, C, S′,
n′2, e

′′) with ck′ = [TOpts′, C, S′, n′2, e
′′]AKey, for someX : msg, TOpts′ : TOpt, S′ : server, n′2 : nonce, and

e′′ : etype. Finally, Lemma 35 implies thatK ’s firing of rule γ2.1 (freshly generatingAKey) precededC ’s firing of
ruleγ3.1.

A.2 The Client/Server Exchange

A.2.1 Confidentiality of SKey

Theorem 7. For C : client, T : TGS, S : server, kT : dbK T , kS : dbK S, SKey : shK C S, AKey : shK C T , and
n : nonce, if T fires ruleα4.1, consuming the factN({AKey,C}kT

, {C}AKey, C, S, n), freshly generatingSKey,
and creating the factN(C, {SKey, C}kS

, {SKey, n, S}AKey), and if the initial state of the trace does not contain
I(kS) and no state of the trace containsI(AKey), then no state of the trace containsI(SKey).

Proof. We claim that no fact with{AKey, kS}-corank relative toSKey equal to0 appears in the trace.
By Lemma 40, if anyTGS fires a rule which decreases{AKey, kS}-corank relative toSKey, then that rule freshly

generatesSKey and, if the newly created fact in the resulting multiset isN(C, {SKey, C}kS
, {SKey, n, S}AKey),

the{AKey, kS}-corank relative toSKey of this multiset equals1. By Lemma 9, no previous multiset in the trace
contained a fact with finite{AKey, kS}-corank relative toSKey, nor can anyTGS later fire a rule which decreases
{AKey, kS}-corank relative toSKey.

By Lemmas 41, 42, and 43, noKAS, client, or server decreases{AKey, kS}-corank relative toSKey.
By hypothesis, the factI(AKey) never appears in the trace under consideration; by hypothesis and Lemma 6, the

fact I(kS) never appears in this trace. AsT freshly generatesSKey, by Lemma 9I cannot freshly generateSKey.
Thus, by Lemma 13,I does not fire any rule which decreases{AKey, kS}-corank relative toSKey.

As a result, no fact of{AKey, kS}-corank0 relative toSKey, in particularI(SKey), occurs in any multiset of
the trace.

Corollary 8. For C : client, T : TGS, S : server, kT : dbK T , kS : dbK S, SKey : shK C S, AKey : shK C T , and
n : nonce, if T fires ruleα4.1, consuming the factN({AKey,C}kT

, {C}AKey, C, S, n), freshly generatingSKey,
and creating the factN(C, {SKey, C}kS

, {SKey, n, S}AKey), and if the initial state of the trace did not contain
I(kT), I(kS), I(kC) for everykC : dbK C, or any factF with ρkT

(F ; AKey,C), then no state of the trace contains
I(SKey).

Proof. We simply need to show thatI(AKey) never appears in the trace; we may then apply Theorem 7 to see that
I(SKey) does not appear in any state of the trace. By Theorem 5, we see that someK : KAS fired ruleα2.1 as
specified by that theorem. By hypothesis, for everyk′ : dbK C, I(k′) does not appear in the trace, including its initial
state. Applying Theorem 3, we see thatI(AKey) does not appear in the trace.

44

A.2.2 Authentication of ST and authenticator

Theorem 9. For C : client, S : server, kS : dbK S, SKey : shK C S, and tC,Sreq : time, if the beginning
state of a finite trace does not containI(kS) or any factF with ρkS

(F ;SKey, C) > 0, and at some point in the
traceS fires ruleα6.1 consuming the factN({SKey, C}kS

, {C, tC,Sreq}SKey), then someT : TGS previously fired
rule α4.1, freshly generatingSKey and producing the factN(C, {SKey, C}kS

, {SKey, n, S}k) for somen : nonce
andk : shK C T . Furthermore, if the factI(k) has not yet appeared in the trace, then afterT fired ruleα4.1 and before
S fired the ruleα6.1, C fired ruleα5.1 to create the factN(Y, {C, tC,Sreq}SKey) for someY : msg.

Proof. S’s firing of ruleα6.1 consumesN({SKey, C}kS
, {C, tC,Sreq}SKey), a fact ofkS-rank1 relative toSKey,C.

As the initial state of the trace did not contain any factF with ρkS
(F ; SKey, C) > 0, some rule must have been fired

which increasedkS-rank relative toSKey, C.
By Lemmas 44, 45, and 46, noclient, KAS, or server can fire a rule which increaseskS-rank relative toSKey,C.

By Lemmas 6 and 23, if the intruder fires a rule which increaseskS-rank relative toSKey, C then the initial state of
the trace containskS , a contradiction. Thus someT : TGS must have fired a rule which increasedkS-rank relative
to SKey, C. By Lemma 47, this rule wasα4.1 andT ’s firing of it consumed some factN({k, C}kT

, {C}k, C, S, n),
freshly generatedSKey, and created the factN(C, {SKey,C}kS

, {SKey, n′, S}k) for somek : shKCT , kT : dbKT ,
andn, n′ : nonce.

S’s firing of ruleα6.1 consumes a fact ofSKey-rank1 relative toC, tC,Sreq. BecauseSKey was freshly generated
by some rule fired in the trace, by Lemma 25 no fact in the initial state of the trace had positiveSKey-rank relative to
C, tC,Sreq; thus some protocol participant must have fired a rule which increased this rank.

As I(k) has not appeared in the trace, the conditions of Theorem 7 are satisfied (by hypothesis and the first part
of the theorem) and no state of the trace containsI(SKey). By Lemma 23,I cannot have fired a rule which increases
SKey-rank relative toC, tC,Sreq. By Lemmas 48–50, noKAS, TGS, or server can fire a rule which increasesSKey-
rank relative toC, tC,Sreq. Thus someC ′ : client must have fired a rule which increasedSKey-rank relative to
C, tC,Sreq; by Lemma 51, this wasC firing ruleα5.1 and creating the factN(Y, {C, tC,Sreq}SKey) for someY : msg.
Finally, Lemma 25 implies thatT ’s firing of ruleα4.1 (freshly generatingSKey) precededC ’s firing of ruleα5.1.

Corollary 10. For C : client, S : server, kS : dbK S, SKey : shK C S, and tC,Sreq : time, if the beginning
state of a finite trace does not containI(kS) or any factF with ρkS

(F ;SKey, C) > 0, and at some point in the
traceS fires ruleα6.1 consuming the factN({SKey, C}kS

, {C, tC,Sreq}SKey), then someT : TGS previously fired
rule α4.1, freshly generatingSKey and producing the factN(C, {SKey, C}kS

, {SKey, n, S}k) for somen : nonce
andk : shK C T . Furthermore, if the initial state of the trace did not containI(kC) for anykC : dbK C, or, for any
kT : dbK T , and ifT 6= I, I(kT) or any factF with ρkT (F ; k, C) > 0, then afterT fired ruleα4.1 and beforeS fired
the ruleα6.1, C fired ruleα5.1 to create the factN(Y, {C, tC,Sreq}SKey) for someY : msg.

Proof. We simply need to guarantee thatI(k) has not yet appeared in the trace; we may then apply Theorem 9 to get
the claimed result.

As T ’s firing of rule α4.1 produced the factN(C, {SKey,C}kS
, {SKey, n, S}k) for somen : nonce andk :

shK C T , it must have consumed a fact of the formN({k,C}k′T
, {C}k, C, S, n) for somek′T : dbK T . We may

thus apply Theorem 5 to see that someK : KAS fired rule α2.1, freshly generatingk and producing the fact
N(C, {k, C}k′T

, {k, n′, T}k′C
) for somen′ : nonce andk′C : dbK C. By hypothesis, neitherI(k′C) nor I(k′T) ap-

peared in the initial state of the trace, so we may apply Theorem 3 to see thatI(k) never appears in the trace.

B Lemmas for Authentication Properties

B.1 General lemmas

B.1.1 Lemmas for A level analysis

Lemma 6. For everyprincipal P 6= I and everyk : dbK P , if I(k) is in a state thenI(k) was in the initial state of the
trace.

Proof. If I(k) appears on the right hand side of a rule fork : dbK P , then eitherI(k) appears on the left hand side of
the rule (DPD) or P = I (DA’).

45

B.1.2 Lemmas for C level analysis

Lemma 7. For everyprincipal P 6= I and everyk : dbK P , if I(k) is in a state thenI(k) was in the initial state of the
trace.

Proof. If I(k) appears on the right hand side of any rule fore : etype andk : dbKe P then eitherI(k) appears on the
left hand side of the rule (DPD) or P = I (DA’).

B.2 Lemmas for Ticket-Granting Exchange

B.2.1 Lemmas for Theorem 3

Lemma 8. For everyT : TGS, C : client, k : shK C T , setE of keys, andK : KAS, if K fires an A level rule which
decreasesE-corank relative tok, then the rule is ruleα2.1 and its firing freshly generatesk. Furthermore, the only
fact in the resulting multiset which is not in the previous multiset isN(C, {k, C}kT

, {k, n, T}kC
) for somekC : dbKC,

kT : dbK T , andn : nonce, and the{kC , kT }-corank relative tok of the resulting multiset equals1.

Proof. The only A level rule that an honestK : KAS may fire isα2.1. The onlyk : shK C T relative to which this
rule may decrease someE-corank is the key freshly generated by this rule. For somekC : dbK C, kT : dbK T , and
n : nonce this rule firing produces the factN(C, {k, C}kT

, {k, n, T}kC
), which has{kC , kT }-corank of1 relative to

k. This is the only fact on the right-hand side of ruleα2.1, and thus the only fact in the multiset resulting from this rule
firing that was not in the previous multiset of the trace. Ask is freshly generated by this rule firing, by Lemma 9 no
fact appearing earlier in the trace had finite{kC , kT }-corank relative tok, so the{kC , kT }-corank relative tok of the
multiset resulting from this rule firing equals the{kC , kT }-corank relative tok of the new network fact.

Lemma 9. For everym0 : msg and setE of keys, if a factF such thatρ̂E(F ;m0) < ∞ occurs in a multiset of a
trace, then no rule fired later in the trace freshly generatesm0.

Proof. If ρ̂E(F ; m0) < ∞, then at least one of the arguments to the predicate formingF must be a term built up from
m0 using symmetric encryption and concatenation. By the definition of freshness, ifm0 is freshly generated by some
rule firing, no fact in any multiset earlier in the trace may be built up fromm0.

Lemma 10. For everyC, C ′ : client, T : TGS, setE of keys, andk : shK C T , no A level rule thatC ′ fires decreases
E-corank relative tok.

Proof. Inspection of rulesα1.1, α1.2, α3.1, α3.2, α5.1, andα5.2.

Lemma 11. For everyC : client, T, T ′ : TGS, setE of keys, andk : shK C T , no A level rule thatT ′ fires decreases
E-corank relative tok.

Proof. Inspection of ruleα4.1.

Lemma 12. For everyC : client, T : TGS, setE of keys, k : shK C T , andS : server, no A level rule thatS fires
decreasesE-corank relative tok.

Proof. Inspection of ruleα6.1.

Lemma 13. For any nonempty setE of keys,C : client, T : TGS, C, T 6= I, keyk′ : shK C T , and A level intruder
rule R, if R decreasesE-corank relative tok′ then the left hand side ofR includesI(k) for somek ∈ E or R freshly
generatesk′.

Proof. Inspection of A level intruder rules.

46

B.2.2 Lemmas for Theorem 4

Lemma 14. For everyT : TGS, C : client, k : shK C T , setE of keys, andK : KAS, if K fires a C level rule which
decreasesE-corank relative tok, then the rule is ruleγ2.1 and its firing freshly generatesk. Furthermore, the only
fact in the resulting multiset which is not in the previous multiset isN(C, {TF lags, k, C}kT

, {k, n, TF lags,T}kC
)

for somekC : dbK C, kT : dbK T , TF lags : TFlag, andn : nonce, and the{kC , kT }-corank relative tok of the
resulting multiset equals1.

Proof. The only C level rules that an honestK : KAS may fire areγ2.1 andγ2.1′ ; the latter cannot decreaseE-corank
relative to anykey. The onlyk : shK C T relative to whichγ2.1 may decrease someE-corank is the key freshly
generated by this rule. For somekC : dbK C, kT : dbK T , TF lags : TFlag, andn : nonce this rule firing produces
the factN(C, {TF lags,k, C}kT

, {k, n, TF lags,T}kC
), which has{kC , kT }-corank of1 relative tok. This is the only

fact on the right-hand side of ruleγ2.1, and thus the only fact in the multiset resulting from this rule firing that was not
in the previous multiset of the trace. Ask is freshly generated by this rule firing, by Lemma 15 no fact appearing earlier
in the trace had finite{kC , kT }-corank relative tok, so the{kC , kT }-corank relative tok of the multiset resulting from
this rule firing equals the{kC , kT }-corank relative tok of the new network fact.

Lemma 15. For everym0 : msg and setE of keys, if a factF such thatρ̂E(F ; m0) < ∞ occurs in a multiset of a
trace, then no rule fired later in the trace freshly generatesm0.

Proof. If ρ̂E(F ; m0) < ∞, then at least one of the arguments to the predicate formingF must be a term built up from
m0 using symmetric encryption and concatenation. By the definition of freshness, ifm0 is freshly generated by some
rule firing, no fact in any multiset earlier in the trace may be built up fromm0.

Lemma 16. For everyC, C ′ : client, T : TGS, setE of keys, andk : shK C T , no C level rule thatC ′ fires decreases
E-corank relative tok.

Proof. Inspection of rulesγ1.1, γ1.2, γ1.2′ , γ3.1, γ3.2, γ3.2′ , γ5.1, γ5.2, γ5.2′ , γ5′.1, andγ5′.2′ .

Lemma 17. For everyC : client, T, T ′ : TGS, setE of keys, andk : shK C T , no C level rule thatT ′ fires decreases
E-corank relative tok.

Proof. Inspection of rulesγ4.1 andγ4.1′ .

Lemma 18. For everyC : client, T : TGS, setE of keys, k : shK C T , andS : server, no C level rule thatS fires
decreasesE-corank relative tok.

Proof. Inspection of rulesγ6.1, γ6.1′ , γ6′.1, andγ6′.1′ .

Lemma 19. For any nonempty setE of keys,C : client, T : TGS, C, T 6= I, keyk′ : shK C T , and C level intruder
rule R, if R decreasesE-corank relative tok′ then the left hand side ofR includesI(k) for somek ∈ E or R freshly
generatesk′.

Proof. Inspection of C level intruder rules.

B.2.3 Lemmas for Theorem 5

Lemma 20. For everyT : TGS, k : dbK T , nonemptym0 : msg, and A level ruleR which may be fired byC : client,
R does not increasek-rank relative tom0.

Proof. Inspection of rulesα1.1, α1.2, α3.1, α3.2, α5.1, andα5.2.

Lemma 21. For everyT : TGS, k : dbK T , nonemptym0 : msg, and A level ruleR which may be fired byS : server,
R does not increasek-rank relative tom0.

Proof. Inspection of ruleα6.1.

Lemma 22. For everyT : TGS k : dbK T , nonemptym0 : msg and A level ruleR which may be fired byT : TGS, R
does not increasek-rank relative tom0.

47

Proof. Inspection of ruleα4.1.

Lemma 23. For any keyk, messagem0, and A level intruder ruleR, if R increasesk-rank relative tom0, then the
left hand side ofR includesI(k).

Proof. Inspection of A level intruder rules (and Axiom 1 in the case ofMG).

Lemma 24. For C : client, T : TGS, k1 : shK C T , andk2 : dbK T , if K : KAS fires an A level rule which increases
k2-rank relative tok1, C, then that rule firing freshly generatesk1 and creates the factN(C, {k1, C}k2

, {k1, n, T}k3
)

for somen : nonce andk3 : dbK C.

Proof. Inspection of ruleα2.1.

Lemma 25. For everym0 : msg and keyk, if a factF occurs in a trace andρk(F ; m0) > 0, then no A level rule fired
later in the trace freshly generatesk.

Proof. If k is freshly generated, thenk does not appear in any previous multiset of the trace. Any factF with positive
k-rank relative to somem0 must have as some argument a term constructed using encryption byk.

Lemma 26. For C : client, T : TGS, k : shK C T , m0 : msg, andK : KAS, K cannot fire an A level rule which
increasesk-rank relative tom0.

Proof. Inspection of ruleα2.1.

Lemma 27. For C : client, T, T ′ : TGS, k : shK C T , m0 : msg, andK : KAS, if T ′ fires an A level rule which
increasesk-rank relative tom0, thenm0 = kCS , n, S for someS : server, kCS : shK C S, andn : nonce.

Proof. Inspection of ruleα4.1.

Lemma 28. For C : client, T : TGS, k : shK C T , m0 : msg, andS : server, S cannot fire an A level rule which
increasesk-rank relative tom0.

Proof. Inspection of ruleα6.1.

Lemma 29. For C, C ′ : client, T : TGS, k : shK C T , andm0 : msg, if C ′ fires a A level ruleR which increases
k-rank relative tom0, thenC ′ = C, m0 = C, R is α3.1 and creates the factN(X, {C}AKey, C, S, n2) for some
X : msg, TOpts : TOpt, S : server, andn2 : nonce.

Proof. Rulesα1.1, α1.2, α3.2, α5.1, andα5.2 can never increasek-rank relative tom0 for k : shK C T .
Ruleα3.1, fired byC ′, produces the factN(X, {C ′}AKey, C ′, S, n2) for someX : msg, S : server, n2 : nonce,

AKey : shK C T , andT : TGS. This hasAKey-rank of 1 relative toC. The only other term which might have
positiveAKey-rank relative to somem0 is X, but this contributes to the relative rank of the left side as well.

B.2.4 Lemmas for Theorem 6

Lemma 30. For everyT : TGS, k : dbK T , nonemptym0 : msg, and C level ruleR which may be fired byC : client,
R does not increasek-rank relative tom0.

Proof. Inspection of rulesγ1.1, γ1.2, γ1.2′ , γ3.1, γ3.2, γ3.2′ , γ5.1, γ5.2, γ5.2′ , γ5′.1, andγ5′.2′ .

Lemma 31. For everyT : TGS, k : dbK T , nonemptym0 : msg, and C level ruleR which may be fired byS : server,
R does not increasek-rank relative tom0.

Proof. Inspection of rulesγ6.1, γ6.1′ , γ6′.1, andγ6′.1′ .

Lemma 32. For everyT : TGS k : dbK T , nonemptym0 : msg and C level ruleR which may be fired byT : TGS,
R does not increasek-rank relative tom0.

Proof. Inspection of rulesγ4.1 andγ4.1′ .

48

Lemma 33. For any keyk, messagem0, and C level intruder ruleR, if R increasesk-rank relative tom0, then the
left hand side ofR includesI(k).

Proof. Inspection of C level intruder rules.

Lemma 34. For C : client, T : TGS, k1 : shK C T , k2 : dbK T , andTF lags : TFlag, if K : KAS fires a C level
rule which increasesk2-rank relative toTF lags, k1, C, then that rule firing freshly generatesk1 and creates the fact
N(C, {TF lags, k1, C}k2

, {k1, n, TF lags, T}k3
) for somen : nonce andk3 : dbK C.

Proof. Inspection of rulesγ2.1 andγ2.1′ .

Lemma 35. For everym0 : msg and keyk, if a factF occurs in a trace andρk(F ; m0) > 0, then no C level rule fired
later in the trace freshly generatesk.

Proof. If k is freshly generated, thenk does not appear in any previous multiset of the trace.

Lemma 36. For C : client, T : TGS, k : shK C T , m0 : msg, andK : KAS, K cannot fire a C level rule which
increasesk-rank relative tom0.

Proof. Inspection of rulesγ2.1 andγ2.1′ .

Lemma 37. For C : client, T, T ′ : TGS, k : shK C T , m0 : msg, andK : KAS, if T ′ fires a C level rule which
increasesk-rank relative tom0 thenm0 = kCS , n, SF lags, S for someS : server, kCS : shK C S, n : nonce, and
SF lags : SFlag.

Proof. Inspection of rulesγ4.1 andγ4.1′ .

Lemma 38. For C : client, T : TGS, k : shK C T , m0 : msg, andS : server, S cannot fire a C level rule which
increasesk-rank relative tom0.

Proof. Inspection of rulesγ6.1, γ6.1′ , γ6′.1, andγ6′.1′ .

Lemma 39. For C,C ′ : client, T : TGS, k : shK C T , andm0 : msg, if C ′ fires a C level ruleR which increases
k-rank relative tom0, thenC ′ = C, m0 is eitherTOpts′, C, S′, n′2, e

′′ or C, [TOpts′, C, S′, n′2, e
′′]AKey, tC,Treq, R

is γ3.1 and creates the factN(X, {C, [TOpts, C, S, n2, e]AKey, tC,Treq}AKey, TOpts, C, S, n2, e) for someX : msg,
TOpts : TOpt, S : server, n2 : nonce, ande : etype.

Proof. Rulesγ1.1, γ1.2, γ1.2′ , γ3.2, γ3.2′ , γ5.1, γ5.2, γ5.2′ , γ5′.1, andγ5′.2′ can never increasek-rank relative tom0 for
k : shK C T .

Ruleγ3.1, fired byC ′, produces the factN(X, {C ′, [TOpts, C ′, S, n2, e]AKey, tC,Treq}AKey, TOpts, C ′, S, n2, e)
for someX : msg, TOpts : TOpt, S : server, n2 : nonce, e : etype, AKey : shK C T , T : TGS, andtC,Treq : time.
This hasAKey-rank of1 relative to each of the messagesTOpts, C ′, S, n2, e andC ′, [TOpts, C ′, S, n2, e]AKey, tC,Treq.
The only other term which might have positiveAKey-rank relative to somem0 isX, but this contributes to the relative
rank of the left side as well.

B.3 Lemmas for Client/Server Exchange

B.3.1 Lemmas for Theorem 7

Lemma 40. For everyC : client, S : server, k : shK C S, setE of keys, andT : TGS, if T fires an A level rule
which decreasesE-corank relative tok, then the rule is ruleα4.1 and its firing freshly generatesk. Furthermore,
the only fact in the resulting multiset which is not in the previous multiset isN(C, {k, C}kS

, {k, n, S}AKey) for some
kS : dbK S, AKey : shK C T , andn : nonce, and the{AKey, kS}-corank relative tok of the resulting multiset
equals1.

49

Proof. The only A level rule that an honestT : TGS may fire isα4.1. The onlyk : shK C S relative to which this
rule may decrease someE-corank is the key freshly generated by this rule. For somekS : dbK S, AKey : shK C T ,
andn : nonce, this rule firing produces the factN(C, {k,C}kS

, {k, n, S}AKey), which has{AKey, kS}-corank of1
relative tok. This is the only fact on the right-hand side of ruleα4.1, and thus the only fact in the multiset resulting
from this rule firing that was not in the previous multiset of the trace. Ask is freshly generated by this rule firing, by
Lemma 9 no fact appearing earlier in the trace had finite{AKey, kS}-corank relative tok, so the{AKey, kS}-corank
relative tok of the multiset resulting from this rule firing equals the{AKey, kS}-corank relative tok of the new
network fact.

Lemma 41. For everyK : KAS, C : client, S : server, setE of keys, andk : shK C S, no A level rule thatK fires
decreasesE-corank relative tok.

Proof. Inspection of ruleα2.1.

Lemma 42. For everyC,C ′ : client, S : server, setE of keys, andk : shK C S, no A level rule thatC ′ fires decreases
E-corank relative tok.

Proof. Inspection of rulesα1.1, α1.2, α3.1, α3.2, α5.1, andα5.2.

Lemma 43. For everyC : client, setE of keys,S, S′ : server, andk : shK C S, no A level rule thatS′ fires decreases
E-corank relative tok.

Proof. Inspection of ruleα6.1.

B.3.2 Lemmas for Theorem 9

Lemma 44. For everyS : server, k : dbK S, nonemptym0 : msg, no A level rule thatC : client fires increasesk-rank
relative tom0.

Proof. Inspection of rulesα1.1, α1.2, α3.1, α3.2, α5.1, andα5.2.

Lemma 45. For everyS : server, k : dbK S, nonemptym0 : msg, no A level rule thatK : KAS fires increasesk-rank
relative tom0.

Proof. Inspection of ruleα2.1.

Lemma 46. For everyS : server, k : dbK S, nonemptym0 : msg, no A level rule thatS′ : server fires increases
k-rank relative tom0.

Proof. Inspection of ruleα6.1.

Lemma 47. For C : client, S : server, k1 : shKCS, k2 : dbKS, andT : TGS, if T fires an A level rule which increases
k2-rank relative tok1, C, then that rule isα4.1, and its firing consumes the factN({k3, C}kT

, {C}k3
, C, S, n), freshly

generatesk1, and creates the factN(C, {k1, C}k2
, {k1, n

′, S}k3
) for somek3 : shK C T , kT : dbK T , andn, n′ :

nonce.

Proof. Ruleα4.1 is the only A level rule that an honestTGS may fire; the rest of the lemma follows by inspection of
this rule.

Lemma 48. For C : client, S : server, k : shK C S, m0 : msg, andK : KAS, K cannot fire an A level rule which
increasesk-rank relative tom0.

Proof. Inspection of ruleα2.1.

Lemma 49. For C : client, S : server, k : shK C S, m0 : msg, andT : TGS, T cannot fire an A level rule which
increasesk-rank relative tom0.

Proof. Inspection of ruleα4.1.

50

Lemma 50. For C : client, S, S′ : server, k : shK C S, andm0 : msg, if S′ fires an A level rule which increases
k-rank relative tom0 thenS′ = S andm0 = t for somet : time.

Proof. Inspection of ruleα6.1.

Lemma 51. For C,C ′ : client, S : server, k : shK C S, andm0 : msg, if C ′ fires an A level rule which increases
k-rank relative tom0, thenC ′ = C, m0 = C, t for somet : time, the rule isα3.1, and its firing creates the fact
N(Y, {C, t}k) for someY : msg.

Proof. Rulesα1.1, α1.2, α3.1, α3.2, andα5.2 can never increasek-rank relative to anym0 for k : shK C S.
Ruleα5.1, fired byC ′, produces the factN(Y, {C ′, t}k′) for someY : msg, t : time, S′ : server, andk′ : shKC ′S′.

As Y also appears on the left hand side of this rule, whose firing increasesk-rank relative tom0, it must be that the
k-rank of{C ′, t}k′ relative tom0 is greater than thek-rank relative tom0 of the left hand side of this rule. This term
has positivek-rank relative tom0 if and only if m0 = C ′, t andk = k′; considering the type ofk = k′, we see that
C = C ′ andS = S′.

51

C Anomalous Traces

In this appendix we give detailed traces for some of the anomalies discussed in Section 7. These include discussion of
the MSR rules which are fired in each trace; the message flows are as shown in Section 7.

C.1 A level trace of ticket anomaly

C, α1.1

−→
N(C, T, n1)
L(C, T, n1)

L(C, T, n1) N(C, T, n1)
K, α2.1

−→
N(C, {AKey, C}kT

,

{AKey, n1, T}kC
)

L(C, T, n1)
N(C, {AKey, C}kT

,

{AKey, n1, T}kC
)

I
−→

∃X : msg
I(C, X, {AKey, n1, T}kC

)

I({AKey, C}kT
)

L(C, T, n)
I({AKey, C}kT

)
I(C, X, {AKey, n1, T}kC

)
I
−→ N(C, X, {AKey, n1, T}kC

)

I({AKey, C}kT
)

N(C, X, {AKey, n1, T}kC
)

L(C, T, n1)

C, α1.2

−→ AuthC(X, n1, T, AKey)

I({AKey, C}kT
) AuthC(X, n1, T, AKey)

C, α3.1

−→
N(X, {C}AKey, C, S, n2)

L(C, S, T, n2)
AuthC(X, n1, T, AKey)

AuthC(X, n1, T, AKey)
L(C, S, T, n2)
I({AKey, C}kT

)
N(X, {C}AKey, C, S, n2)

I
−→ I(X, {C}AKey, C, S, n2)

AuthC(X, n1, T, AKey)
L(C, S, T, n2)

I(X, {C}AKey, C, S, n2)

I({AKey, C}kT
)

I
−→

N({AKey, C}kT
,

{C}AKey, C, S, n2)

AuthC(X, n1, T, AKey)
L(C, S, T, n2)
I(C, X, {AKey, C}kT

)

N({AKey, C}kT
,

{C}AKey, C, S, n2)

V alid(C, S, n2)

T, α4.1

−→
N(C, {SKey, C}kS

,

{SKey, n2, S}AKey)

Figure 33: Producing anomalous behavior in the abstract formalization.

Figure 33 shows a sequence of rule firings which realize the ticket anomaly of Section 7.1. Arrows indicate the
firing of rules, with the labels above each arrow indicating theprincipal firing the rule and the rule being fired. In each
row, the rule being used rewrites the facts in the second column as those in the fourth; the facts in the first column
remain untouched by the rule in question.

C sends a request for credentials toK using the ruleα1.1. K sees the network messageC, T, n1 and replies
using ruleα2.1, sending the network messageC,TGT , {AKey, n1, T}kC

whereTGT = {AKey, C}kT
is the ticket

granting ticket. The intruderI reads this message from the network using ruleINT and creates a new messageX using
MG. I then creates (usingDMC, DMC, CMP, CMP) the messageC, X, {AKey, n1, T}kC

, i.e., K ’s message with
the ticketTGT for T replaced by the freshly generated messageX, and puts it on the network usingTRN. C now
sees the network messageC,X, {AKey, n1, T}kC

, which is of the form she expects (she does not expect to be able
to read the ticket, and so cannot tell that it has been replaced byX). She thus completes the Authentication Service
Exchange by firing ruleα1.2, storingX, n1, T , andAKey in the memory predicateAuthC .

Believing she has obtained credentials forT , C now initiates the Ticket Granting Exchange withT . She uses
the AuthC memory predicate to fire ruleα3.1 and send the network messageX, {C}AKey, S, n2. When I sees
this message on the network he removes the message from the network (INT). She then generates a new message
TGT , {C}AKey, S, n2 by replacingX with the original ticketTGT (DMC, CMP). I then puts this message onto

52

the network (TRN). Finally, T sees the network messageTGT , {C}AKey, S, n2 and uses this to fire the ruleα4.1,
grantingC ’s apparent request for credentials for use withS.

C.2 C level trace of encryption type anomaly

Here we give a trace which realizes the encryption type anomaly sketched in Section 7.3. Recall thatC knows
that the keykC : dbKe C has been compromised and attempts to request a ticket-granting ticket fromK : KAS

using some other database keyk′C : dbKe′ C. C thus fires ruleγ1.1, putting the messageKOpts, C, T, n1, e
′ on

the network. I already has possession ofkC ande as indicated by the predicatesI(kC) and I(e). Using rulesINT,
DMC, CMP, andTRN, she interceptsC ’s message and constructs the messageKOpts, C, T, n1, e and then put this
message on the network.K sees this altered request as a legitimateKRBAS REQmessage and fires ruleγ2.1, placing
C, X, {AKey, n1, TF lags, T}e

kC
on the network, whereX is the ticket granting ticket{TF lags,AKey,C}kT

for
C to present toT . I intercepts this message usingINT and then obtainsAKey usingDMC, SDC’, andDMC; an
additional application ofDMC allows her to obtain the ticket-granting ticket. At this point,I has the ticket-granting
ticket and the session keyAKey needed to use it, so she may impersonateC to theTGS T .

I(kC)
I(e)

C, γ1.1

−→
N(KOpts, C, T, n1, e

′)
L(C, KOpts, T, n1, e

′)

N(KOpts, C, T, n1, e
′)

I, INT
−→ I(KOpts, C, T, n1, e

′)

I(KOpts, C, T, n1, e
′)

I, DMC
−→

I(KOpts, C, T, n1)
I(e′)

I(KOpts, C, T, n1)
I(e)

I, CMP
−→ I(KOpts, C, T, n1, e)

I(KOpts, C, T, n1, e)
I, TRN
−→ N(KOpts, C, T, n1, e)

N(KOpts, C, T, n1, e)
V alidK(KOpts, C, T, n1, e)
SetAuthF lagsK(KOpts, C, T, TF lags)
SetETypesK(C, e, e, T, e′′)

K, γ2.1

−→
N(C, {TF lags, AKey, C}e′′

kT
,

{AKey, n1, TF lags, T}e
kC

)

N(C, {TF lags, AKey, C}e′′
kT

, {AKey, n1, TF lags, T}e
kC

)
I, INT
−→

I(C, {TF lags, AKey, C}e′′
kT

,
{AKey, n1, TF lags, T}e

kC
)

I(C, {TF lags, AKey, C}e′′
kT

, {AKey, n1, TF lags, T}e
kC

)
I, DMC
−→

I(C, {TF lags, AKey, C}e′′
kT

)
I({AKey, n1, TF lags, T}e

kC
)

I({AKey, n1, TF lags, T}e
kC

)
I(kC)

I, SDC′

−→ I(AKey, n1, TF lags, T)

I(AKey, n1, TF lags, T)
I, DMC
−→ I(AKey)

Figure 34: Encryption Type Anomaly

53

D Message Fields

This appendix consists of tables describing the correspondence between the message structures defined in [16] and the
network messages in our formalizations of Kerberos 5. Each table lists the field names (intypewriter type) as
given in Section 5 of [16], with subfields indented to indicate the level of nesting, and the corresponding names used
for the fields included in our formalizations. For those fields with subfields, the entry for the field shows the included
subfields as well as any encryption that is used; this provides some overlap with the entries for the subfields.

The KRBAS REQmessage type is a message of typeKRBKDCREQ, which is defined in Section 5.4.1 of [16].
The fields of this message are listed in Table 2.

Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted)KRBAS REQ (omitted)KRBAS REQ (omitted)KRBAS REQ
padata (omitted) (omitted) (omitted)
req-body C, T, n1 C, T, n1 KOpts, C, T, n1, e

kdc-options (omitted) (omitted) KOpts

cname C C C

sname T T T

from (omitted) (omitted) (omitted)
till (omitted) (omitted) (omitted)
rtime (omitted) (omitted) (omitted)
nonce n1 n1 n1

etype (omitted) (omitted) e

addresses (omitted) (omitted) (omitted)
enc-authorization-data (omitted) (omitted) (omitted)
additional-tickets (omitted) (omitted) (omitted)

Table 2: Fields in theKRBAS REQmessage.

The KRBAS REPmessage type is a message of typeKRBKDCREP, which is defined in Section 5.4.2 of [16].
Note that the structure of theticket field is defined in Section 5.3.1 of [16]. The fields of this message are listed in
Table 3.

TheKRBTGSREQmessage type is a message of typeKRBKDCREQ, which is defined in Section 5.4.1 of [16].
The fields of this message are listed in Table 4.

As noted in the description ofpadata under Section 5.4.1 of [16], “[r]equests for additional tickets (KRBTGSREQ)
must contain apadata of PA TGSREQ.” The description ofPA-DATA in Section 5.2.7 of [16] seems to suggest that,
at least in this message, the checksum should be present and keyed. Section 5.2.7.1 of [16] notes that “[t]he checksum
in the authenticator (which must be collision-proof) is to be computed over theKDC-REQ-BODYencoding.” Thus we
take thecksum field to be a keyed checksum over thereq-body field. It is important to note that this field does not
include theticket , so the checksum will not be able to detect tampering with the ticket.

The padata field contains the authentication header, which is of typeKRBAP REQ(as noted in the second
paragraph under section 3.3 and the first paragraph of 5.5.1 in [16]). The subfields of this message type are listed
directly as subfields ofpadata . These include theticket , whose constituent subfields are not listed (see Table 3)
since it is unreadable by the client, and the freshly constructedauthenticator , whose subfields are listed. A
full description of authenticators is given in section 5.3.2 of [16]. Thecksum field of the authenticator “contains
a checksum of the application data that accompanies theKRBAP REQ” (under the description ofcksum in 5.3.2
of [16]), i.e., that accompanies the authentication header.

TheKRBTGSREPmessage type is a message of typeKRBKDCREP, which is defined in Section 5.4.2 of [16],
and as such parallels the structure of theKRBAS REPmessage given above. The fields of this message are listed in
Table 3. We do not show the effects of an anonymous ticket (in which theANONYMOUSflag in theticket is set);
this would change thecname from C to a genericclient name.

The fields of theKRBAP REQmessage are shown in Table 6. This message has the same structure as the authen-
tication header of theKRBTGSREQmessage above. Thecksum field in the authenticator is described as optional

54

Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted)KRBAS REP (omitted)KRBAS REP (omitted)KRBAS REP
padata (omitted) (omitted) (omitted)
crealm (omitted) (omitted) (omitted)
cname C C C

ticket {AKey, C}kT
{AKey, C, tK,auth, tK,end}kT

{TF lags, AKey, C}kT

tkt-vno (omitted) 5 (omitted) 5 (omitted) 5
realm (omitted) (omitted) (omitted)
sname (omitted) (omitted) (omitted)
enc-part {AKey, C}kT

{AKey, C, tK,auth, tK,end}kT
{TF lags, AKey, C}kT

flags (omitted) (omitted) TF lags

key AKey AKey AKey

crealm (omitted) (omitted) (omitted)
cname C C C

transited (omitted) (omitted) (omitted)
authtime (omitted) tK,auth (omitted)
starttime (omitted) (omitted) (omitted)
endtime (omitted) tK,end (omitted)
renew-till (omitted) (omitted) (omitted)
caddr (omitted) (omitted) (omitted)
authorization-data (omitted) (omitted) (omitted)

enc-part {AKey, n1, T}kC
{AKey, n1, tK,auth, tK,end, T}kC

{AKey, n1, TF lags, T}kC

key AKey AKey AKey

last-req (omitted) (omitted) (omitted)
nonce n1 n1 n1

key-expiration (omitted) (omitted) (omitted)
flags (omitted) (omitted) TF lags

authtime (omitted) tK,auth (omitted)
starttime (omitted) (omitted) (omitted)
endtime (omitted) tK,end (omitted)
renew-till (omitted) (omitted) (omitted)
srealm (omitted) (omitted) (omitted)
sname T T T

caddr (omitted) (omitted) (omitted)

Table 3: Included fields for theKRBAS REPmessage.

55

Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted)KRBTGSREQ (omitted)KRBTGSREQ (omitted)KRBTGSREQ
padata {AKey, C}kT

{AKey, C, {TF lags, AKey, C}kT

{C}AKey tK,auth, tK,end}kT {C, [req-body]AKey,
{C, tC,Treq}AKey tC,Treq}AKey

pvno (omitted) (omitted) (omitted)
msg-type (omitted) (omitted) (omitted)
ap-options (omitted) (omitted) (omitted)
ticket {AKey, C}kT

{AKey, C, {TF lags, AKey, C}kT

tK,auth, tK,end}kT

authenticator {C}AKey {C, tC,Treq}AKey {C, [req-body]AKey,
tC,Treq}AKey

authenticator-vno (omitted) (omitted) (omitted)
crealm (omitted) (omitted) (omitted)
cname C C C

cksum (omitted) (omitted) H(req-body)

cusec (omitted) (omitted) (omitted)
ctime (omitted)tC,Treq tC,Treq tC,Treq

subkey (omitted) (omitted) (omitted)
seq-number (omitted) (omitted) (omitted)
authorization-data (omitted) (omitted) (omitted)

req-body C, S, n2 C, S, n2 TOpts, C, S, n2, e

kdc-options (omitted) (omitted) TOpts

cname C C C

sname S S S

from (omitted) (omitted) (omitted)
till (omitted) (omitted) (omitted)
rtime (omitted) (omitted) (omitted)
nonce n2 n2 n2

etype (omitted) (omitted) e

addresses (omitted) (omitted) (omitted)
enc-authorization-data (omitted) (omitted) (omitted)
additional-tickets (omitted) (omitted) (omitted)

Table 4: Fields in theKRBTGSREQmessage.

56

Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted)KRBTGSREP (omitted)KRBTGSREP (omitted)KRBTGSREP
padata (omitted) (omitted) (omitted)
crealm (omitted) (omitted) (omitted)
cname C C C

ticket {SKey, C}kS
{SKey, C, tT,auth, tT,end}kS

{SF lags, SKey, C}kS

tkt-vno (omitted) (omitted) (omitted)
realm (omitted) (omitted) (omitted)
sname (omitted) (omitted) (omitted)
enc-part {SKey, C}kS

{SKey, C, tT,auth, tT,end}kS
{SF lags, SKey, C}kS

flags (omitted) (omitted) SF lags

key SKey SKey SKey

crealm (omitted) (omitted) (omitted)
cname C C C

transited (omitted) (omitted) (omitted)
authtime (omitted) tT,auth (omitted)
starttime (omitted) (omitted) (omitted)
endtime (omitted) tT,end (omitted)
renew-till (omitted) (omitted) (omitted)
caddr (omitted) (omitted) (omitted)
authorization-data (omitted) (omitted) (omitted)

enc-part {SKey, n2, S}AKey {SKey, n2, tT,auth, tT,end, S}AKey {SKey, n2, SF lags, S}AKey

key SKey SKey SKey

last-req (omitted) (omitted) (omitted)
nonce n2 n2 n2

key-expiration (omitted) (omitted) (omitted)
flags (omitted) (omitted) SF lags

authtime (omitted) tT,auth (omitted)
starttime (omitted) (omitted) (omitted)
endtime (omitted) tT,end (omitted)
renew-till (omitted) (omitted) (omitted)
srealm (omitted) (omitted) (omitted)
sname S S S

caddr (omitted) (omitted) (omitted)

Table 5: Included fields for theKRBTGSREPmessage.

57

and application specific in the first paragraph under Section 3.2.2 of [16].

Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted)KRBAP REQ (omitted)KRBAP REQ (omitted)KRBAP REQ
ap-options (omitted) (omitted) SOpts

reserved (omitted) (omitted) (omitted)0|1
use-session-key (omitted) (omitted) (omitted)0|1
mutual-required (omitted) 0|1 0|1
reserved (omitted) (omitted) (omitted)0| . . . |229 − 1

ticket {SKey, C}kS
{SKey, C, tT,auth, tT,end}kS

{SF lags, SKey, C}kS

authenticator {C, tC,Sreq}SKey {C, tC,Sreq}SKey {C, []SKey, tC,Sreq}SKey

authenticator-vno (omitted) (omitted) (omitted)
crealm (omitted) (omitted) (omitted)
cname C C C

cksum (omitted) (omitted) H(· · ·)
cusec (omitted) (omitted) (omitted)
ctime tC,Sreq tC,Sreq tC,Sreq

subkey (omitted) (omitted) (omitted)
seq-number (omitted) (omitted) (omitted)
authorization-data (omitted) (omitted) (omitted)

Table 6: Fields in theKRBAP REQmessage.

The structure of theKRBAP REPmessage, whichS sends toC when mutual authentication has been requested,
is shown in Table 7.

Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted)KRBAP REP (omitted)KRBAP REP (omitted)KRBAP REP
enc-part {tC,Sreq}SKey {tC,Sreq}SKey {tC,Sreq}SKey

ctime tC,Sreq tC,Sreq tC,Sreq

cusec (omitted) (omitted) (omitted)
subkey (omitted) (omitted) (omitted)
seq-number (omitted) (omitted) (omitted)

Table 7: Fields in theKRBAP REPmessage.

Finally, the structure of theKRBERRORmessages is shown in Table 8. Error messages are not implemented in
the A level formalization.

58

Field Name A Level B Level C Level
pvno (omitted) 5 (omitted) 5 (omitted) 5
msg-type (omitted)KRBERROR KRBERROR KRBERROR
ctime (omitted)−− |tC,Treq|tC,Sreq −− |tC,Treq|tC,Sreq −− |tC,Treq|tC,Sreq

cusec (omitted) (omitted) (omitted)
stime (omitted)t(K|T |S),err t(K|T |S),err t(K|T |S),err

susec (omitted) (omitted) (omitted)
error-code (omitted)ErrorCode ErrorCode ErrorCode

crealm (omitted) (omitted) (omitted)
cname (omitted)C (omitted)C (omitted)C
realm (omitted) (omitted) (omitted)
sname (omitted)K|T |S K|T |S K|T |S
e-text (omitted) (omitted) (omitted)
e-data (omitted) (omitted) (omitted)

Table 8: Fields in theKRBERRmessage.

59

	A Formal Analysis of Some Properties of Kerberos 5 Using MSR
	Recommended Citation

	A Formal Analysis of Some Properties of Kerberos 5 Using MSR
	Abstract
	Comments

	tmp.1229523470.pdf.XyRKD

