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A Process Algebraic Framework for Modeling Resource Demand and
Supply

Abstract
As real-time embedded systems become more complex, resource partitioning is increasingly used to guarantee
real-time performance. Recently, several compositional frameworks of resource partitioning have been
proposed using real-time scheduling theory with various notions of real-time tasks running under restricted
resource supply environments. However, these approaches are limited in their expressiveness in that they are
capable of describing resource-demand tasks, but not resource supplies.

This paper describes a process algebraic framework for reasoning about resource demand and supply inspired
by the timed process algebra ACSR. In ACSR, realtime tasks are specified by enunciating their consumption
needs for resources.

To also accommodate resource-supply processes we define PADS where, in addition to ACSR-like resource
requests, we can specify availability of a resource in a given time step. Using PADS, we define a supply-demand
relation where a pair (S; T) belongs to the relation if the demand process T can be scheduled under supply S.
We develop a theory of compositional schedulability analysis as well as a technique for synthesizing an
optimal supply process for a set of tasks. We illustrate our technique via a number of examples.
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A Process Algebraic Framework for Modeling Resource
Demand and Supply?
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1 Department of Computer Science, University of Cyprus, Nicosia, Cyprus
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Abstract. As real-time embedded systems become more complex, resource par-
titioning is increasingly used to guarantee real-time performance. Recently, sev-
eral compositional frameworks of resource partitioning have been proposed using
real-time scheduling theory with various notions of real-time tasks running under
restricted resource supply environments. However, these real-time scheduling-
based approaches are limited in their expressiveness in that, although capable
of describing resource-demand tasks, they are unable to model resource supply.
This paper describes a process algebraic framework for reasoning about resource
demand and supply inspired by the timed process algebra ACSR. In ACSR, real-
time tasks are specified by enunciating their consumption needs for resources.
To also accommodate resource-supply processes we define PADS where, given a
resource CPU, the complimented resource CPU denotes for availability of CPU
for the corresponding demand process. Using PADS, we define a supply-demand
relation where a pair (S, T ) belongs to the relation if the demand process T can
be scheduled under supply S. We develop a theory of compositional schedulabil-
ity analysis as well as a technique for synthesizing an optimal supply process for
a set of tasks. We illustrate our technique via a number of examples.

1 Introduction

The increasing complexity of real-time embedded systems demands compositional de-
sign and analysis methods for the assurance of timing requirements. Component-based
design has been widely accepted as a compositional approach to facilitate the design of
complex systems. It provides means for decomposing a complex system into simpler
components and for composing the components using interfaces that abstract compo-
nent complexities. Such approaches are increasingly used in practice for real-time sys-
tems. For example, ARINC-653 standard by the Engineering Standards for Avionics
and Cabin Systems committee specifies partition-based design of avionics applications.
Also, hypervisors for real-time virtual machines provide temporal partitions to guaran-
tee real-time performance [15, 11].

To take advantage of the component-based design of real-time systems, schedu-
lability analysis should support compositional analysis using component interfaces.
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These interfaces should abstract the timing requirements of a component with a min-
imum resource supply that is needed to meet the resource demand of the component.
Component-based real-time systems often involve hierarchical scheduling frameworks
that support resource sharing among components as well as associated scheduling algo-
rithms [5, 20]. To facilitate the analysis of such systems, resource component interfaces
and their compositional analysis have been proposed [16, 21, 22, 8, 23, 12]

This paper presents a formal treatment of the problem of compositional hierarchical
scheduling by introducing a process algebraic framework, PADS, for modeling resource
demand and supply inspired by the timed process algebra ACSR [13, 14]. The notions of
resource demand and supply are fundamental in defining the meaning of compositional
real-time scheduling analysis. Our proposed algebraic framework formally defines both
of these notions. As in ACSR, a task in our formalism is specified by describing its
consumption needs for resources. To also accommodate resource-supply processes, we
extend the notion of a resource and given a resource cpu we use cpu to denote the
availability of the resource for consumption by a requesting task. Our formalism then
addresses the following issues:

1. Schedulability: We define a supply simulation relation |= that captures when a task
T is schedulable by a supply S, S |= T .

2. Compositionality: We explore conditions under which we may safely compose
schedulable systems. Specifically, we are interested to define functions on supplies,
◦, and appropriate conditions, f , such that if T1 is schedulable by S1 and T2 by S2

then the parallel composition of T1 and T2 is schedulable by S1 ◦S2, assuming that
condition f holds:

S1 |= T1, S2 |= T2

S1 ◦ S2 |= T1‖T2
, f(S1, S2)

3. Supply Synthesis: We propose a method by which we can generate a supply process
to schedule a set of tasks, assuming that such a scheduler exists. Our method is
based on the notion of a demand of a task which is a supply that can schedule the
task and, at the same time, it is optimal in the sense that (1) it does not reserve more
resources than those required and (2) it captures all possibilities in which a task can
be scheduled. We then prove that two or more tasks are schedulable if and only if
they can be scheduled by the composition of their demands.

Related work. As mentioned above, this work brings together two long-standing lines
of research. On the one hand, there has been much work on compositional hierarchical
scheduling based on real-time scheduling theory [16, 21, 22, 8, 6, 7]. Typically, such ap-
proaches to schedulability analysis rely on overapproximations of task demand using,
for example, demand bound functions and underapproximations of resource supply us-
ing, supply bound functions. Efficient algorithms are developed to ensure that demand
never exceeds supply. On the other hand, several formal approaches to scheduling based
on process algebras [3, 14, 13, 19, 18], task automata [10, 9], preemptive Petri nets [4],
etc., have been developed. To the best of our knowledge, none of these approaches
consider the problem of modeling resource supply explicitly. Instead, sharing of a con-
tinuously available processing resource between a set of tasks has been considered.



Our approach to supply synthesis is conceptually similar to the work of Altisen
et al. on applying controller synthesis to scheduling problems [1, 2]. The difference is
that we are not aiming to generate schedulers, but rather an interface for a task set, an
abstraction that can be used in a component-based approach to real-time system design.

The rest of the paper is structured as follows. Section 2 presents our process algebra
and its semantics. Section 3 contains our results on compositional schedulability anal-
ysis and interface construction, followed by examples illustrating the application of the
theory in Section 4. Section 5 concludes the paper.

2 The Language

In our calculus, PADS (Process Algebra for Demand and Supply), we consider a system
to be a set of processes operating on a set of serially reusable resources denoted by R.
These processes are (1) the tasks of the system, which require the use of resources in
order to complete their jobs, and (2) the supplies, that specify when each resource is
available to the tasks. Based on this, each resource r ∈ R can be requested by a task, r,
granted by a supply, r, or consumed,

↔
r , when a supply and a request for the resource

are simultaneously available. An action in the formalism is a set containing resource
requests, grants and consumptions, where each resource may be represented at most
once. For example, the action {r1, r2} represents a request for the resources r1 and r2
whereas the action {r1,

↔
r2, r3} involves the granting of resource r1, consumption of

resource r2 and request for resource r3. We take a discrete time approach: we assume
that all actions require one unit of time to complete measured on a global clock with
action ∅ representing idling for one time unit since no resource is being employed.

We write Act, ranged over by α and β, for the set of all actions and distinguish
ActR, the set of actions involving only resource requests, ranged over by ρ, and ActG,
the set of actions involving only resource grants, ranged over by γ. Given α ∈ Act
we use the notation α to reverse between resource grants and requests in action α, so,

{r1, r2,
↔
r3} = {r1, r2,

↔
r3}. Finally, we write res(α) for the set of resources occurring

in α: res(α) = {r ∈ R|r ∈ α or r ∈ α or
↔
r∈ α}.

2.1 Syntax

The following grammars define the set of tasks, T, the set of supplies S and the set of
timed systems P, where I and J are sets of indices, and I is assumed to be nonempty.
Furthermore,C ranges over a set of task constants, each with an associated definition of
the formC

def= T , where T may contain occurrences ofC as well as other task constants
and, D ranges over a similar set of supply constants.

T ::= FIN | Σi∈Iρi : Ti | C
S ::= FIN | Σi∈Iγi : Si | D
P ::= FIN | T | S | P‖P | Σj∈Jαj : Pj

We consider FIN to be the terminated process. Then a task process can be a ter-
minated process, a task constant, or a nondeterministic choice Σi∈Iρi : Ti. The latter



offers the choice of executing each of the actions ρi and then proceeding as Ti, where
I 6= ∅. Similarly, a supply process can be a terminated process, a supply constant, or a
nondeterministic choice. Finally, a process can be an arbitrary composition of tasks and
supplies or a nondeterministic choice between processes Σj∈Jαj : Pj .

2.2 Semantics

The semantics of PADS are given in two steps. First, we develop a transition system in
which nondeterminism is resolved in all possible ways, �. Then, we refine � into−→
by implementing a type of “angelic” behavior in the way in which tasks resolve their
nondeterminism by choosing the best possible outcome given the available supply. The
rules for the first-level transition relation can be found in Table 1, whereas the second-
level transition relation is subsequently defined on the basis of a preemption relation.

We proceed to consider relation � defined in Table 1. FIN being a well-terminated
(and not a deadlocked) process, it allows time to pass (axiom (IDLE)). Nondeterministic
choice in tasks and supplies can be resolved by executing an action and then proceed-
ing as its continuation ((SumT) and (SumS)). A constant behaves as the process in
its defining equation (Const). Finally, rule (Par) specifies the way in which a paral-
lel system evolves. To begin with, note that the components of a parallel composition
evolve synchronously in that the composition advances only if both of the constituent
processes are willing to take a step. Furthermore, the rule enunciates the outcome of
the synchronization between two parallel processes, the most important aspect being
that a request within the one component is satisfied by an available grant in the other.
The condition of rule (PAR) imposes a restriction on when two actions may take place
simultaneously within a system. Specifically, we say that actions α1 and α2 are com-
patible with each other if, whenever r occurs in both actions then one occurrence must
be a request and the other a supply of the resource. So, for example, it is not possible to
simultaneously offer a resource in one component and consume or offer it in another,
nor to request it by two different tasks. We capture this requirement as follows:

compatible(α1, α2) =
∧

r∈res(α1)∩res(α2)

(r ∈ α1 ∧ r ∈ α2) ∨ (r ∈ α2 ∧ r ∈ α1)

We may now combine compatible actions by transforming a simultaneous request and
supply of the same resource into a consumption:

α1 ⊕ α2 = {r ∈ α1, α2|r 6∈ α1 ∪ α2} ∪ {r ∈ α1, α2|r 6∈ α1 ∪ α2}
∪{↔r |r ∈ αi, r ∈ α(i+1)mod2, i ∈ {1, 2}} ∪ {

↔
r | ↔r∈ α1 ∪ α2}

Note that, the associativity of the parallel composition operator with respect to �
follows by the associativity of ⊕ which, in turn, is easy to prove by its definition.

Example 1. Consider the supply S def= {r1, r2} : S and the following task processes:

T1
def= {r1, r2} : FIN + {r1} : T1 T2 = {r2} : FIN + {r1, r3} : T2

T3
def= {r2} : FIN T4 = {r1} : FIN



Table 1. Transition rules for tasks, supplies and systems

(Idle) FIN
∅
� FIN

(SumT) Σi∈Iρi : Ti
ρi
� Ti I 6= ∅

(SumS) Σi∈Iγi : Si
γi
� Si I 6= ∅

(Const) P
α
� P ′

C
α
� P ′

C
def
= P

(Par) P1

α1
� P ′1 P2

α2
� P ′2

P1‖P2

α1⊕α2
� P ′1‖P ′2

compatible(α1, α2)

(SumP) Σj∈Jαj : Pj
αj

� Pj J 6= ∅

We have:

T1‖S
{↔r1,

↔
r2}

� FIN‖S (1) T1‖S
{↔r1,r2}

� T1‖S (2)

T2‖S
{r1,

↔
r2}

� FIN‖S (3) T2‖S
{↔r1,r2,r3}

� T2‖S (4)

(T1‖S)‖T3

{↔r1,
↔
r2}

� (T1‖S)‖FIN (5)

Note that (T1‖S)‖T3 has no transition other than (5) above, while (T1‖S)‖T4 has no
transitions altogether since both T1 and T4 require r1 during the first time unit. 2

Moving on to the second level of the semantics, we employ a preemption relation
on actions to prune away all transitions that do not represent correctly the behavior of a
system, as we would expect it. In particular, we make the following two assumptions:

1. Given a supply, a task should respond angelically and, given a nondeterministic set
of transitions by which it can evolve, it should choose only between the ones that
are satisfied by the available suply, assuming that such options exist. For example,
T2‖S above should retain only transition (3) out of the available (3) and (4).

2. In addition, we assume that a task behaves greedily and, at each step, it employs as
many of the supplied resources as possible. For example, the composition T1‖S in
Example 1 should only retain transition (1) out of transitions (1) and (2).

Given the above, we define the preemption relation ≺ so that α ≺ β if one of the
following hold:

1. {r|r ∈ α,↔r∈ α} = {r|r ∈ β,↔r∈ β}, α ∩ R 6= ∅ and β ∩ R = ∅,
2. α ∩ R = β ∩ R = ∅, {r|r ∈ α,↔r∈ α} = {r|r ∈ β,↔r∈ β} and {r| ↔r∈ α} ⊆
{r| ↔r∈ β}.

Intuitively, an action precludes another if it makes better usage of the same offered
resources. In particular, an action β preempts an action α, if, either α and β concern



the same offered resources (granted or consumed) but α, unlike β, also contains some
unsatisfied resource requests (condition (1)), or α and β contain only the same granted
and consumed resources but β consumes more resources than α (condition (2)).

We may now define the relation α−→ by the following rule:

P
α
� Q

P
α−→ Q

, there is no P
β
�, α ≺ β

We conclude this section by introducing some notations. We write P −→ if there
exists action α such that P α−→. If P 6 α−→ for all actions α, we write P = δ, where
δ is the deadlocked process. We write P =⇒ P ′ if there exist actions α1 . . . αn and
processes P1, . . . , Pn−1 such that P α1−→ P1

α2−→ . . . Pn−1
αn−→ P ′. The set of traces of

P , traces(P ), is defined to be the set of all infinite sequences of actions α1α2 . . . such
that P α1−→ P1

α2−→ . . .. Finally, for w = α1α2 . . ., we write w for α1 α2 . . .

3 Schedulability

In this section we present a theory of schedulability for our calculus. We begin by
defining when a set of tasks is considered to be schedulable by a supply. Then we
present an alternative characterization based on a type of simulation relations and we
prove the two definitions to be equivalent. In what follows we write T∗ for the set
containing all processes of the form T1‖ . . . ‖Tn, n ≥ 1, and S∗ for the set containing
all processes of the form S1‖ . . . ‖Sn, n ≥ 1. For simplicity, we refer to elements of T∗

and S∗ simply as tasks and supplies, respectively.

Definition 1. A task T ∈ T∗ is schedulable under supply S ∈ S∗ if whenever T‖S =⇒
P then P 6= δ and for all P α−→ we have α ∩ R = ∅.

According to this definition, a task T is schedulable under supply S if at no point during
their interaction does the system deadlock and, moreover, no request for a resource
remains unsatisfied.

Example 2. Here follow some examples relating to the above definition.

– T
def= {r}:FIN is not schedulable under S def= {r′}:FIN. We have T‖S {r,r

′}−→ and
the definition is violated.

– T
def= {r}:FIN is schedulable under S def= {r, r′}:FIN. We have T‖S {↔r ,r′}−→

FIN‖FIN which satisfies the definition.
– T

def= {r}:FIN + ∅:{r}:FIN is schedulable under S def= {r}:FIN. The composition

of the two processes has only one possible transition T‖S {
↔
r }−→ FIN‖FIN. Note that

the transition T‖S
{r}
� {r}:FIN‖FIN at the lower-level of the semantics is pruned

by the preemption relation. Thus, the definition is satisfied. The same holds for
T

def= {r}:FIN+{r′}:FIN and S def= {r}:FIN since {r′, r} ≺ {↔r }. This illustrates
that as long as there is some possible way of scheduling a task’s requirements by
an available supply, the task is considered to be schedulable by the supply. 2



Before moving on to our alternative schedulability definition we introduce the following
useful notation: For T ∈ T∗ and α, β ∈ Act, we write, β�T α, if there exists no γ such
that T

γ−→ T ′ and β ⊂ γ ⊆ α.

Definition 2. A relation S ⊆ T∗×S∗ is a supply simulation relation if for all (T, S) ∈
S, S −→, and, if S α−→ S′ then

1. there exists T
β−→ T ′ with β ⊆ α and (T ′, S′) ∈ S, and

2. if T
β−→ T ′ with β �T α, then (T ′, S′) ∈ S.

If there exists a supply relation between T and S, then we write S |= T and we say that
S schedules T .

That is, a task and a supply are related by a supply simulation relation if (i) the
supply is able to offer resources to the task (S −→), (ii) if a supply offers a set of
resources then the task will be able to respond by employing some (or all) of these
resources and remain schedulable by the resulting state of the supply (clause 1), and
(iii) given a set of resources offered by the supply, any maximal transition by which
the task can accept the offered supply will result in a state that remains schedulable
by the remaining supply (clause 2). Here, by a maximal response of the task, we mean
all greedy transitions β by which the task can employ the offered resources α, that is,
where β�T α. Note that any non-maximal transition of T taking place as a response to
S

α−→ would be subsequently pruned in the composition S‖T as it would be preempted
by greedier responses of T . Therefore, such transitions can be ignored.

We may now prove that the two alternative ways of defining schedulability of a task
by a supply coincide.

Lemma 1. A task T ∈ T∗ is schedulable under supply S if and only if S |= T .

PROOF: To begin with, suppose there exists a supply simulation relation R between
T and S. We will show that if S‖T α−→ S′‖T ′ then S′‖T ′ 6= δ, α ∩ R = ∅ and
(S′, T ′) ∈ R. So suppose that S‖T α−→ S′‖T ′, S α1−→ S′ and T α2−→ T ′, α = α1⊕α2.

We know that for some β ⊆ α1, T
β−→ T ′′ (Definition 2(1)). This implies that α2 ⊆ α1

(otherwise α1⊕α2 ≺ α1⊕β and S‖T 6 α−→). Consequently, we deduce that α∩R = ∅.
In addition, since T ′ is schedulable by S′, by Definition 2 we have that S′ −→ and for

each S′
β1−→ there exists T ′

β2−→ such that S′‖T ′ −→, that is, S′‖T ′ 6= δ. And, finally,
we may observe that there is no T

γ−→, α2 ⊂ γ ⊆ α1 (otherwise α1 ⊕ α2 ≺ γ ⊕ α2),
which, by Definition 2(2), implies that (S′, T ′) ∈ S.

Conversely, suppose that task T is schedulable by supply S. We will show thatR =
{(S, T )|S is schedulable by T} is a supply simulation relation. Suppose (S, T ) ∈ R.
Since S‖T 6= δ, S −→. Furthermore, if S α−→ S′ then T −→. Since T is schedulable

by S, there exists T
β−→ T ′, β ⊆ α. If not, that is for all T

γ−→ T ′′, γ ∩ α 6= γ,

then S‖T α′−→, α′ ∩ R 6= ∅ which contradicts our assumption of T being schedulable

by S. Next, suppose that T
β−→ T ′, β ⊆ α and for no β ⊂ γ ⊆ α. Then, clearly,

S‖T α⊕β−→ S′‖T ′, where T ′ is schedulable by S′, which implies that (S′, T ′) ∈ R, as
required. 2

We define when a task is schedulable and this is done in the following obvious way.



Definition 3. A task T ∈ T∗ is schedulable if there exists a supply S with S |= T .

We observe that the crux of the schedulability of a task by a supply lies in the
capability of the task to operate acceptably for all possible behaviors of the supply.
Furthermore, at each point during its execution and for each supply provision of the
supplier, the task must behave well in all its nondeterministic executions that can take
place by employing the resources available. The notion of a cylinder, defined below is
intended to capture the relevant executions of the task given a behavior of the supply.

Definition 4. Given a task T ∈ T∗ and an infinite trace w = α1α2 . . ., we define the
w-cylinder of T to be the set A = ∪i≥1Ai, where

A1 = {(T, α1, P1)|T
α1−→ P1}

Ai = {(Pi, βi, P ′i )|Pi
βi−→ P ′i , βi �Pi αi,∃(Q, γ, Pi) ∈ Ai−1}, i > 1

Furthermore, we say that an w-cylinder A = ∪i≥1Ai is live if (i) A contains no triple
of the form (Q,α, δ), (ii) Ai 6= ∅ for all i and (3)

⋃
(P,β,Q)∈Ai

β = αi.

Lemma 2. A task T ∈ T∗ is schedulable if and only if it possesses a live cylinder.

PROOF: Suppose T has a live w-cylinder where w = α1α2 . . .. Consider supply S0

defined by the following set of equations Si
def= αi+1:Si+1. Then, we may confirm that

S0 |= T . The details are omitted. On the other hand, if T is schedulable, then there
exists a supply S that schedules it. If we consider a trace w = α1 α2 . . . of S, we may
construct an associated cylinder of T and confirm that it is live. 2

3.1 Matching Supplies to Tasks

In this section we focus our attention to the problem of collecting the resource require-
ments of a task into a matching supply. Specifically, given a task, we would like to
generate a supply process which schedules the task and at the same time is optimal in
that (1) it does not reserve more resources than those required by the task and (2) it
provides all the alternative resource assignments in which the task can be scheduled.
Both of these properties are important during the compositional scheduling of real-time
tasks. The first property is clearly desirable since conservation of resources becomes
critical when real-time components are composed. For the second property, we observe
that capturing all possible ways of scheduling a task gives flexibility when one tries to
compositionally schedule a set of tasks where the challenge is to share the resources
between the tasks in ways that are acceptable to each one of them.

We begin by defining a function on combining supplies. This is helpful for a subse-
quent definition that considers matching supplies to tasks.

Definition 5. Given supplies S1 and S2 we define S1 ⊗ S2 =

S1 ⊗ S2 =


S1 if S2 = FIN
S2 if S1 = FIN
Σi∈IΣj∈J αi ∪ βj :(

⊗
k∈I,αk�S1αi∪βj

Pk ⊗
⊗

l∈J,βl�S2αi∪βj
Ql)

if S1
def=
∑
i∈I αi:Pi and S2

def=
∑
j∈J βi:Qi



Essentially, the joined supply S1 ⊗ S2, joins together the various summands of the
individual supplies as follows: in its topmost summand it unites all available grants of
S1 with all available grants of S2, while the continuation process consists of the join
of those continuations of S1 and S2 which appear after ”maximal” subsets of the initial
action in question. For example we have:

∅ : {cpu} : ∅ : FIN⊗ ∅ : ∅ : {cpu} : FIN = ∅ : {cpu} : {cpu} : FIN
∅ : {cpu} : ∅ : FIN⊗ (∅ : ∅ : {cpu} : FIN + {cpu} : ∅ : ∅ : FIN)

= ∅ : {cpu} : {cpu} : FIN + {cpu} : {cpu} : ∅ : FIN

Using this definition we now move to define the demand of a task. The demand of
a task is intended to capture the optimal supply that can schedule a task in the sense we
have already discussed. The main point to note in this definition is that we combine all
same-prefixed nondeterministic choices of a task by a singly-prefixed supply.

Definition 6. Given a task T def=
∑
i∈I αi:Ti, we define its demand as follows:

demand(T ) def= Σi∈Iαi:
⊗

j∈I,αi=αj

demand(Tj)

Example 3. Consider tasks

T1 = {cpu} : ∅ : T1 + ∅ : {cpu} : T1

T2 = {cpu} : ∅ : ∅ : T2 + ∅ : {cpu} : ∅ : T2 + ∅ : ∅ : {cpu} : T2

T3 = {cpu} : ∅ : ∅ : T3 + ∅ : ({cpu} : ∅ : T3 + ∅ : {cpu} : T3)

Their demands are given by X1, X2 and X3 below, respectively.

X1 = {cpu} : ∅ : X1 + ∅ : {cpu} : X1

X2 = {cpu} : ∅ : ∅ : X2 + ∅ : {cpu} : {cpu} : X2

X3 = {cpu} : ∅ : ∅ : X3 + ∅ : ({cpu} : ∅ : X3 + ∅ : {cpu} : X3)

2

The next lemma considers the optimality of demand(T ) following the requirements
posed at the beginning of this section. We write w′ ≤ w for the infinite traces w′ =
α1α2 . . . and w = β1β2 . . ., if either w′ = w, or there exists j such that αj ⊂ βj and
αi = βi for all 1 ≤ i < j.

Lemma 3. A task T possesses a live w-cylinder if and only if there exists w′ ≤ w such
that w′ ∈ traces(demand(T )).

PROOF: Suppose demand(T ) α1−→ T1
α2−→ T2

α3−→ . . .. We may show that for the
w-cylinder A = ∪i≥Ai, where w = α1α2 . . . we have Ti =

⊗
(P,β,Q)∈Ai

demand(Q)
and A is live. The details are omitted.

To establish the opposite direction suppose A = ∪i≥Ai is a live w-cylinder of T .
Now consider the w′-cylinder of T , B = ∪i≥Bi, where w′ = β1β2 . . . is defined such



that β1 = α1, B1 = A1 and βi ∈ {γ1∪ . . .∪γn|Pi
γi−→, Pi ∈ {P |(P, α,Q) ∈ Bi−1}},

Bi = {(P, α,Q)|P α−→ Q,α �P βi,∃(Q, γ, P ) ∈ Bi−1}. We may now prove, that
w′ ∈ traces(demand(T )) and, therefore, that it is a live cylinder of T . 2

As a consequence of the result we conclude that a task T is schedulable by its
demand. Furthermore, demand(T ) may schedule all cylinders of T and it schedules
them exactly, i.e. it offers exactly the resources that are necessary for the scheduling.

3.2 Compositional Theory

We proceed to consider the schedulability problem of a set of tasks. The first issue we
tackle is the compositionality problem: If T1 is schedulable by S1 and T2 by S2 can we
combine S1 and S2 into a supply that schedules T1‖T2? We begin by noting a certain
subtlety in this problem which we need to consider while answering it.

Consider the tasks

T1 = {r}:∅:FIN + ∅:{r}:FIN and T2 = {r}:∅:FIN + ∅:{r}:{r}:FIN.

These tasks are schedulable under supplies S1 = ∅:{r}:FIN and S2 = {r}:∅:FIN,
respectively. That is, it is sufficient for task T1 to obtain resource r during the second
time unit and for task T2 during the first time unit. However, a supply S = {r}:{r}:FIN,
offering r during both time units, fails to schedule T1‖T2. This is due to the fact that
the supply for resource r during the first time unit is intended for task T2 but may be
consumed by task T1 leading to a deadlock of the system during the third time unit.

To resolve this issue, we associate tasks with their matching supplies by annotating
each resource reference by a number which distinguishes the task in which the resource
is employed/supplied. Precisely, we assume that each task is associated with a resource
identity and if resource r is requested by a task with identifier i we write r[i] for the
request and, similarly, if a supply of r is intended for the task with identifier i we write
r[i] for the supply. So, we say that task {r[1]}:FIN is schedulable by supply {r[1]}:FIN
and task {r[2]}:FIN by supply {r[2]}:FIN. However, note that resources r[1] and r[2]
do refer to the same resource and for all other purposes should be treated as the same.
So, for example, {r[1]} ∩ {r[2]} 6= ∅. To model this precisely we write:

– P [i] for the process P with all its resources r renamed as r[i].
– α ∩R β for {r ∈ R|r[i] ∈ α, r[j] ∈ β, or r[i] ∈ α, r[j] ∈ β}

Furthermore, we use the notation α[i] = {r|r[i] ∈ α} and, if w = α1α2 . . ., w[i] =
α1[i]α2[i] . . .. We have the following result:

Lemma 4. If T1 is schedulable by S1, T2 is schedulable by S2 and S1‖S2 does not
deadlock, then T1[1]‖T2[2] is schedulable by S1[1]‖S2[2].

PROOF: We will show thatR, below, is a supply simulation relation.

R = {(T1[1]‖T2[2], S1[1]‖S2[2])|S1 |= T1, S2 |= T2, S1[1]‖S2[2] does not deadlock}

Let (T1[1]‖T2[2], S1[1]‖S2[2]) ∈ R. By the definition of R, S1[1]‖S2[2] −→. So con-
sider S1[1]‖S2[2] α−→ S′1[1]‖S′2[2]. It must be that α = α1[1]⊕α2[2], where S1

α1−→ S′1,



S2
α2−→ S′2 and α1 ∩ α2 = ∅. Since S1 |= T1, S2 |= T2, we have T1

β1−→ T ′1, S′1 |= T ′1,

and similarly T2
β2−→ T ′2, S′2 |= T ′2. In fact, for all T1

β1−→ T ′1, β1 �T1 α1, it holds that

S′1 |= T ′1, and for all T2
β2−→ T ′2, β2 �T2 α2, it holds that S′2 |= T ′2. This implies that for

all T1[1]‖T2[2]
β−→ T ′1[1]‖T ′2[2], β �T1[1]‖T2[2] α, (T ′1[1]‖T ′2[2], S′1[1]‖S′2[2]) ∈ R and

there exists at least one such α-transition. This completes the proof. 2

However, note that even if S1‖S2 deadlocks, it is still possible that the schedules S1

and S2 can be combined to produce a schedule for T1‖T2. In particular, we may suspect
that every infinite trace of S1‖S2 is capable of scheduling T1‖T2, and in fact we can
show that the part of the transition system that pertains to non-deadlocking behavior
achieves exactly that. The following operator on supplies extracts this type of behavior.

S1×S2 =


S1 if S2 = FIN
S2 if S1 = FIN
(α ∪ β):(S′1 × S′2) if S1 = α:S′1, S2 = β:S′2, α ∩ β = ∅, S′1 × S′2 6= δ
δ if S1 = α:S′1, S2 = β:S′2, α ∩ β 6= ∅ or S′1× S′2 = δ

Σi∈I,j∈J(Si1 × S
j
2) if S1 = Σi∈IS

i
1, S2 = Σj∈JS

j
2

Note that the set of recursive equations used in the definition of S1 × S2 may allow
more than one solution. Consider, for example, S1 = {r1} : S1 and S2 = {r2} : S2. It
is easy to see that S1 × S2 = δ is a trivial solution. However, we are interested in the
maximal solution to this set of equations, which in this case is S1 × S2 = {r1, r2} :
S1 × S2. For finite-state processes, the maximal solution can be computed iteratively.
Due to space restrictions the proof is omitted.

It is easy to see that, if S1‖S2 does not deadlock then S1 × S2 6= δ. However, the
opposite is not true. By the construction of ×, S1 × S2 selects the part of the transition
system of S1‖S2 that does not lead to deadlocked states. For example, consider

S1
def= {r}:{r}:FIN + ∅:{r}{r}:FIN and S2

def= ∅:{r}:FIN + {r}:∅:FIN

Then, although S1‖S2
{r}−→ {r}:FIN‖{r}:FIN = δ, S1 × S2 = {r}:({r} : {r}:FIN×

∅:FIN), and ({r}{r}:FIN× ∅:FIN) = {r}{r}:FIN.

Lemma 5. If T1 is schedulable by S1, T2 is schedulable by S2 and S1 × S2 6= δ, then
T1[1]‖T2[2] is schedulable by S1[1]× S2[2].

PROOF: The proof is similar to that of the previous lemma. 2

At this point we turn our attention to the problem of constructing an interface for a
set of mutually schedulable tasks. To do this, we employ the notion of demands and we
prove the following:

Lemma 6. If T1[1]‖T2[2] has a live w-cylinder then there exists a trace w′ ≤ w such
that w′ ∈ traces(demand(T1[1])× demand(T2[2])).

PROOF: Suppose that the w-cylinder of T1[1]‖T2[2] is live. It is easy to see that w[1]
and w[2] give rise to live cylinders in T1[1] and T2[2]. Then, by Lemma 3, there ex-
ist w1 ≤ w[1] and w2 ≤ w[2] such that w1 ∈ traces(demand(T1[1])) and w2 ∈



traces(demand(T2[2])). This implies that, w1 ∪w2 ≤ w is a trace of demand(T1[1])×
demand(T2[2]), as required. 2

This result implies that all alternatives of scheduling T1[1]‖T2[2] will be explored by
demand(T1[1])× demand(T2[2]). It can be extended to the composition of an arbitrary
number of tasks. We are now ready to present our main theorem:

Theorem 1. T1‖T2 is schedulable if and only if demand(T1[1])×demand(T2[2]) 6= δ.
Moreover, if it is schedulable, then it is schedulable by demand(T1[1])×demand(T2[2]).

PROOF: Suppose T1[1]‖T2[2] is schedulable. Then, by Lemma 2 it has a live w-
cylinder. Consequently, by Lemma 6 there is a tracew′ ≤ w such that thew′ is a trace of
demand(T1[1])×demand(T2[2]). This implies that demand(T1[1])×demand(T2[2]) 6=
δ. On the other hand, if demand(T1[1]) × demand(T2[2]) 6= δ, then, since, addition-
ally, demand(T1[1]) schedules T1[1] and (T2[2]) schedules T2[2], then, by Lemma 5,
T1[1]‖T2[2] is schedulable by demand(T1[1])× demand(T2[2]). 2

Based on this result we may determine the schedulability and a related scheduler
for a set of tasks T1, . . . , Tn, as follows: For each task, extract its demand and compute
the combinations D1 = demand(T1)× demand(T2), D2 = D2 × demand(T3), . . .. If
this process does not reduce to some Di = δ then the tasks are schedulable by Dn−1.
Furthermore, according to Theorem 1, if they are indeed schedulable then Dn−1 6= δ.
Thus, this method is guaranteed to produce a schedule if one exists.

4 Examples

Example 4. We first define a simple periodic task with period p and execution time w,
Taskw,p = T0,0,w,p, as follows:

Te,t,w,p =


∅ : Te,t+1,w,p if e = w, t < p
T0,0,w,p if e = w, t = p
∅ : Te,t+1,w,p + {r} : Te+1,t+1,w,p if e < w,w − e < p− t
{r} : Te+1,t+1,w,p if e < w,w − e = p− t

Note that in our definition, the task cannot idle if idling will make it miss the dead-
line. If the supply can avoid giving the resource to the task in this case, the system will
have an unmet resource request transition that signals non-schedulability (by Defini-
tion 1). Let us consider an instance of a classical scheduling problem for a set of periodic
tasks running on a single processor resource: Task2,3‖Task2,7‖S, where S = {r} : S.
In the figure below, we show the initial part of the state space of the example. Each
state is represented as a tuple ij|km, where i and j are the first two parameters of the
first task and k and m are the first two parameters of the second task. The other two
parameters do not change and are omitted to avoid cluttering the figure. We also omit
labels on the transitions: all transitions are labeled by {↔r }.
00 | 00 11 | 01 22 | 02 00 | 13 11 | 14 22 | 15 00 | 26 11 | 00

01 | 11 12 | 12 01 | 24 12 | 25

22 | 01

12 | 11

00 | 12 11 | 13

01 | 23

...

...



The tasks are schedulable according to the Definition 1 and the transition system
of the composite process, shown above, can be seen as the specification of feasible
schedulers for the task set. Non-determinism in the transition system represent different
decisions that a scheduler can make. For example, the trace along the top of the figure
corresponds to the rate-monotonic scheduling policy, which gives priority to Task2,3

as it has the smallest period.
We now consider the demand of a periodic task defined above. It is easy to see

that the task process is resource-deterministic, that is, its behavior is determined by the
availability of resources. For a resource-deterministic task, the demand is obtained by
a straightforward replacement of requested resources by matching offered resources.
Thus, demand(Taskw,p) = X0,0,w.p is defined below:

Xe,t,w,p =


∅ : Xe,t+1,w,p if e = w, t < p
X0,0,w,p if e = w, t = p
∅ : Xe,t+1,w,p + {r} : Xe+1,t+1,w,p if e < w,w − e < p− t
{r} : Xe+1,t+1,w,p if e < w,w − e = p− t

It is easy to check that demand(Task2,3)‖demand(Task2,7) does not deadlock and
thus can schedule the two tasks according to Lemma 4.

Let us now consider a task with variable execution time which takes between b and
w time units to complete: Taskvb,w,p = Taskb,p + Taskb+1,p + . . . + Taskw,p. One
can see that demand(Taskvb,w,p) = demand(Taskw,p). This observation matches the
well-known fact from the real-time systems theory that for independent periodic tasks
it is sufficient to consider worst-case execution time of each task [17].

Example 5. To illustrate compositional analysis with partial supplies, we begin with a
simple example of time-partitioned supplies that are widely used in practice. Consider
a periodic time partition with period P , duration D ≤ P , and relative start time t0,
which essentially offers a resource r for the interval [t, t + D) during each period:
Partt0,D,P = P0,t0,D,P is defined as follows where, again, addition is modulo P :

Pt,t0,D,P =
{
{r} : Pt+1,t0,D,P if t0 ≤ t < t0 +D
∅ : Pt+1,t0,D,P otherwise

It is clear that partitions with the same period and non-overlapping service intervals
[t, t + D) do not conflict. We can now analyze schedulability of tasks allocated to a
partition separately from any other task in the system. It is, for example, trivial to see
that partition Partt0,D,P can schedule a task TaskD,P for any t0.

We can similarly define more complex partial supplies. Consider, for example, com-
positional scheduling based on periodic resource models [21, 22]. A periodic resource
model is a supply that guarantees w units of resource execution within a period P ,
however, the availability of the resource within the period is unknown a priori. We can
straightforwardly model a periodic resource model as PRMw,P = demand(Taskw,P ).
We can then analyze whether a set of tasks is schedulable with respect to this supply.
This analysis will not be limited to independent periodic or sporadic tasks, unlike exist-
ing approaches in the literature.

As an example, consider the system T1 = Task1,3‖Task1,5‖PRM3,5. Figure 1
shows the initial state space using the same notation as above, except now the state tuple



also includes the state of the supply. Note that, in this transition system we have actions
pertaining to resource consumption, abbreviated by

↔
r , actions pertaining to resource

requests, abbreviated by r, and idling actions. Recall that idling and consumed resource
actions are incomparable in the preemption relation, while idling preempts unsatisfied
resource requests. We see that a poor scheduling decision can make Task1,3 miss its
deadline. The scenario is seen on the right side of the figure: in the first two time units,
one unit of resource goes to T1,5 and the other unit of resource is denied to both tasks
(this can happen in any order). If on the third step the supply denies access to the
resource again, the first task cannot idle, thus we reach a transition labeled by {r},
which implies that the task misses its deadline, leading to a violation of Definition 1.

r

r

rr

O

OrO O

r

00 | 00 | 00

11 | 01 | 11 01 | 11 | 11

12 | 02 | 12

01 | 01 | 01

12 | 12 | 22 02 | 12 | 12
r

13 | 13 | 13

02 | 02 | 02

Fig. 1. Scheduling with a periodic resource

5 Conclusions

In this paper, we have presented PADS, a process algebra for resource demand and
supply. The algebra can be used to describe a process and its demand on resources nec-
essary for the execution of a real-time task as well as a supply process that describes the
behavior of a resource allocator. We have defined precisely the notion of schedulabil-
ity using demand and supply, that is, when a process can be scheduled under a supply
process, and provided a compositional theory of demand-supply schedulability. We be-
lieve that PADS is the first process algebra that can describe the behavior of demand
and supply processes and compositional schedulability between them.

There are several directions in which the current work can be extended. We are cur-
rently adding priorities to resource requests in the same way as in [13]. This allows us
to represent schedulability with respect to particular schedulers, which is often a more
practical question to analyze. We plan to extend the framework with the notion of or-
der between supplies. This notion will capture the “generosity” of a supply, that is, a
more generous supply will be able to schedule any task that the less generous supply
can. With this notion, we will be able to formally represent the hierarchical scheduling
approaches based on resource models [21] that rely on approximating the necessary
supply, making it more generous than necessary, in exchange for a simple representa-
tion. It would also be interesting to explore how to extend the notion of schedulability to
the notion of resource satisfiability between demand and supply of arbitrary resources
that are not shared mutually exclusively. Another extension is to explore demand and
supply processes in the presence of probabilistic behavior.
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13. I. Lee, P. Brémond-Grégoire, and R. Gerber. A Process Algebraic Approach to the Specifica-

tion and Analysis of Resource-Bound Real-Time Systems. Proceedings of the IEEE, pages
158–171, 1994.

14. I. Lee, A. Philippou, and O. Sokolsky. Resources in process algebra. Journal of Logic and
Algebraic Programming, 72:98–122, 2007.

15. Linuxworks. LynxSecure Embedded Hypervisor and Separation Kernel, 2010.
www.lynuxworks.com/virtualization/hypervisor.php.

16. G. Lipari and E. Bini. Resource partitioning among real-time applications. In Proceedings
of ECRTS’03, pages 151–160. IEEE Computer Society, 2003.

17. J. Liu. Real-time systems. Prentice Hall, 2000.
18. M. Mousavi, M. Reniers, T. Basten, and M. Chaudron. PARS: a process algebra with re-

sources and schedulers. In Proceedings of FORMATS’03, LNCS 2791, pages 134–150, 2003.
19. M. Nunez and I. Rodriguez. PAMR: A process algebra for the management of resources in

concurrent systems. In Proceedings of FORTE’01, pages 169–184, 2001.
20. S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein. Analysis of hierarchical fixed-priority

scheduling. In Proceedings of ECRTS’02, pages 173–181. IEEE Computer Society, 2002.
21. I. Shin and I. Lee. Periodic resource model for compositional real-time guarantees. In

Proceedings of RTSS’03, pages 2–13. IEEE Computer Society, 2003.
22. I. Shin and I. Lee. Compositional real-time scheduling framework. In Proceedings of

RTSS’04, pages 57–67. IEEE Computer Society, 2004.
23. L. Thiele, E. Wandeler, and N. Stoimenov. Real-time interfaces for composing real-time

systems. In Proceedings of EMSOFT ’06. ACM, 2006.


	University of Pennsylvania
	ScholarlyCommons
	9-8-2010

	A Process Algebraic Framework for Modeling Resource Demand and Supply
	Anna Philippou
	Insup Lee
	Oleg Sokolsky
	Jin-Young Choi
	Recommended Citation

	A Process Algebraic Framework for Modeling Resource Demand and Supply
	Abstract
	Comments


	tmp.1290528488.pdf.4W2mT

