View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Kosmopolis

Penn

Libraries University of Pennsylvania
UMIVERSITY of PEN A ScholarlyCommons
Departmental Papers (CIS) Department of Computer & Information Science

June 2000

On Indexed Data Broadcast

Sanjeev Khanna
University of Pennsylvania, sanjeev@cis.upenn.edu

Shiyu Zhou

University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Recommended Citation
Sanjeev Khanna and Shiyu Zhou, "On Indexed Data Broadcast", . June 2000.

Postprint version. Published in Journal of Computer and System Sciences, Volume 60, Issue 3, 2000, pages 575-591.
Publisher URL: http://dx.doi.org/10.1006/jcss.1999.1688

NOTE: At the time of publication, author Sanjeev Khanna was affiliated with Bell Laboratories. Currently (August 2005), he is a faculty member in the

Department of Computer and Information Science at the University of Pennsylvania.

This paper is posted at ScholarlyCommons. http://repositoryupenn.edu/cis_papers/144

For more information, please contact libraryrepository@pobox.upenn.edu.

https://core.ac.uk/display/214169424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/144
mailto:libraryrepository@pobox.upenn.edu

On Indexed Data Broadcast

Abstract

We consider the problem of efficient information retrieval in asymmetric communication environments
where multiple clients with limited resources retrieve information from a powerful server who periodically
broadcasts its information repository over a communication medium. The cost of a retrieving client consists of
two components: (a) access time, defined as the total amount of time spent by a client in retrieving the
information of interest; and (b) tuning time, defined as the time spent by the client in actively listening to the
communication medium, measuring a certain efficiency in resource usage. A probability distribution is
associated with the data items in the broadcast representing the likelihood of a data item's being requested at
any point of time. The problem of indexed data broadcast is to schedule the data items interleaved with certain
indexing information in the broadcast so as to minimize simultaneously the mean access time and the mean
tuning time.

Prior work on this problem thus far has focused only on some special cases. In this paper we study the indexed
data broadcast problem in its full generality and design a broadcast scheme that achieves a mean access time
oef at most (1.5 + ¢) times the optimal and a mean tuning time bounded by O(log n).

Comments

Postprint version. Published in Journal of Computer and System Sciences, Volume 60, Issue 3, 2000, pages
575-591.

Publisher URL: http://dx.doi.org/10.1006/jcss.1999.1688

NOTE: At the time of publication, author Sanjeev Khanna was affiliated with Bell Laboratories. Currently
(August 2005), he is a faculty member in the Department of Computer and Information Science at the
University of Pennsylvania.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/144

http://repository.upenn.edu/cis_papers/144?utm_source=repository.upenn.edu%2Fcis_papers%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages

On Indexed Data Broadcast®

Sanjeev Khanna | Shiyu Zhout

Abstract

We consider the problem of efficient information retrieval in asymmetric communi-
cation environments where multiple clients with limited resources retrieve information
from a powerful server who periodically broadcasts its information repository over a
communication medium. The cost of a retrieving client consists of two components:
(a) access time, defined as the total amount of time spent by a client in retrieving the
information of interest; and (b) tuning time, defined as the time spent by the client in ac-
tively listening to the communication medium, measuring a certain efficiency in resource
usage. A probability distribution is associated with the data items in the broadcast,
representing the likelihood of a data item’s being requested at any point of time. The
problem of indexed data broadcast is to schedule the data items interleaved with certain
indexing information in the broadcast so as to minimize simultaneously the mean access
time and the mean tuning time.

Prior work on this problem thus far has focused only on some special cases. In this
paper we study the indexed data broadcast problem in its full generality and design a
broadcast scheme that achieves a mean access time of at most (1.5+¢) times the optimal
and a mean tuning time bounded by O(logn).

*A preliminary version of this paper appears in the Proceedings of the 30th Annual Symp. on Theory of
Computing, 1998.

tDepartment of Fundamental Mathematics Research, Bell Laboratories, 700 Mountain Avenue, Murray
Hill, NJ (sanjeev@research.bell-labs.com).

!Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104-
6389 (shiyu@cis.upenn.edu). The work was mainly done while the author was at Bell Laboratories, Lucent
Technologies.

1 Introduction

We study the problem of efficient information retrieval in asymmetric communication envi-
ronments. A communication environment is said to be asymmeltric if the available/needed
communication capacity from the information source to the information recipient is much
larger than the communication capacity that is available/needed in the reverse direction. A
representative example is the communication environment in which multiple mobile clients re-
trieve information from a server base-station over a wireless channel. The “pull-based” model
used in the traditional client-server information retrieval systems, where clients retrieve data
by making individual requests to the server, is poorly-suited for such environments. An alter-
native model is the so called “push-based” model, whereby the server broadcasts (pushes) its
information repository onto the communication medium and multiple clients simultaneously
retrieve the specific information of individual interest. This latter model has been extensively
studied in the information systems community (sometimes under the name of broadcast disks)
and is the model of choice for many asymmetric settings [1, 5, 13].

While the broadcast approach is effective in disseminating massive amounts of information
to multiple clients, an individual client looking for certain data items may be required to
actively listen to the medium for indefinitely long periods of time. From a client’s perspective,
the cost of this information retrieval process can be viewed as being composed of two distinct
components: (a) the total time elapsed from the moment a client requesting a data item tunes
in to the medium to the time when the required data item is received, and (b) the total time
spent by the client actively listening to the communication medium. We refer to the first
component as the access time and the second as the tuning time. The distinction between
these two lies in the fact that the clients (such as the laptop computers in the context of
wireless mobile computing) are assumed to be able to switch between the resource-consuming
aclive mode and the resource-conserving doze mode. Since listening to the medium requires
a client to be in the active mode, the server may provide certain indexing information in the
broadcast so as to enable the clients to lapse into the doze mode during periods when no
relevant information is being broadcast. (For example, the server may broadcast periodically
as the indexing information a list of the keys of the data items to be broadcast in the coming
period so that a client, upon receiving the list, can check the list to see whether or not the
key of the requested item is in the list. If it is, then the client can keep listening and retrieve
the item in the coming period. Otherwise, the client can first doze off and then wake up after
this period when new indexing information comes in.) Therefore, so to speak, the tuning time
forms a measure of the efficient utilization of certain important resources in the process of
information retrieval (such as the limited power supply of mobile laptop computers).

The objective of this paper is to study the design of efficient broadcast schemes (i.e., proto-
cols between the server and the clients) in which the server broadcasts data items interleaved
with indexing information so as to minimize both the average access time and the average
tuning time.

1.1 The Model and the Problem

We consider the single channel broadcast model in which a server (information provider)
periodically broadcasts various data items (sequences of bits) over a fixed channel and the
clients (information receivers) tune in to the channel and extract the data of interest.

Let n be the total number of data items to be broadcast. We specify that each item j is

uniquely identified by its key (index), denoted key(j), which is a distinct number between 1
and n assigned by the server. The clients can search for data items in the retrieval process
only by making key comparisons.
Remark: The assignment of the keys to the data items is done by the server during the
broadcast scheduling. We shall assume here that this assignment is also known to the clients.
Although the validity of this assumption is not important for the theoretical results of this
paper, it is critical for a practical implementation of the scheme under a scenario where the
schedule may be dynamically varying. We assure a careful reader that this assumption is
in fact easily supported by natural ways of implementing our scheme. However, since the
implementation details are beyond the scope of the present paper, we will not further address
this issue here.

A broadcast consists of a sequence of item buckets each of uniform size L bits. We assume
that each bucket can hold up to logn keys. Since the key of any data item takes logn bits,
we have L > log?n. The assumption is reasonable since, for instance, buckets of 1IKB can be
used for broadcasts of 2% data items.

The set of buckets of a broadcast is classified into two classes: data buckets and index
buckets, where data buckets are used to contain data items and index buckets are used to
contain certain indexing information such as a list of the keys of a set of data items. For
ease of exposition, we assume without loss of generality that each data bucket of a broadcast
contains exactly one complete data item. (Thus a data item is simply a sequence of L bits.)

We consider exclusively the broadcast that consists of repetitions of a broadcast cycle. We
will often refer to a broadcast cycle as just a broadcast for convenience. The time required to
broadcast /receive a bucket is assumed to be one unit of time, and we will measure both the
access time and tuning time in terms of the time units.

A probability distribution p' = (p1,p2,...,ps) is associated with the data items in the
broadcast, where the probability p; associated with data item j represents the “likelihood”
of the item’s being requested by the clients (independently) at any point of time (or the
“popularity” of the item). The distribution is assumed to be known to the server prior to the
broadcast: It either may be known as statistical data or can adaptively change from cycle to
cycle in the broadcast. But it is fixed for any particular cycle and the scheduling of one cycle
depends solely on the distribution.

Mean Access Time / Tuning Time: The access time of a request is defined to be the time
elapsed from the moment the request is made (i.e., the moment when a client looking for a data
item tunes in to the channel) to the time when the requested item is received by the client.
The mean access time of a broadcast is the expected access time of a request (randomly chosen
according to the distribution p) averaged over all possible moments of making the request.

3

That is, if we denote by N the total number of buckets in a broadcast cycle and by W (t, 7)
the access time of a request for item j that is made at time ¢ in a broadcast cycle, then the
mean access time of the broadcast is

n

1 & .
ACC = WZZpJ-W(t,]).

t=1j5=1

The tuning time of a request is the amount of time spent on listening to the channel from the
moment when the request is made to the time when the requested item is received, where by
listening we mean that the client is in the resource-consuming active mode. Observe that the
access time is given by the sum of the time spent in the doze mode and the tuning time. The
mean tuning time of a broadcast is defined analogously: if we denote by T'(t,7) the tuning
time of a request for item j that is made at time ¢ in a broadcast cycle, then the mean tuning

time of the broadcast is

1 .
TUNE = N ZijT(t,j).

t=1j5=1

Indexed Data Broadcast: An indexed data broadcast scheme consists of two protocols: a
server protocol followed by the server to schedule the broadcast consisting of data items (in
data buckets) interleaved with indexing information (in index buckets), and a client protocol
followed by the clients to retrieve information in the broadcast (by switching between the
active mode and the doze mode depending on the relevance of the information received). The
problem, which we refer to as the indexed data broadcast problem, is to design an indexed
data broadcast scheme that minimizes both the mean access time and the mean tuning time.

1.2 Related Work and Our Results

There are some obvious similarities between the problem of information retrieval in the afore-
mentioned push-based broadcast model and the problem of classical database search. For
example, any search in either problem is accomplished by key comparisons. However, we point
out here a fundamental difference between these two problems. To retrieve an information
item in the classical database search, the search may always begin at a certain well-defined
location of choice in a data structure, say, the root of a balanced search tree for instance.
A lot of work has been done to minimize the access time in this setting (see, for instance,
[15, 10, 18, 16]). In contrast, however, in the broadcast model, the client begins its search based
only on the information that is being broadcast at the moment it tunes in. This constitutes
a unique aspect of the indexed data broadcast problem. One of the contributions of our work
is to introduce new ideas to deal with this aspect of the problem.

Related Work: Using data broadcast as an information dissemination mechanism has been
studied in both the network model [11, 6] and the wireless model [8] since the mid 80s.
Much of the previous work has focused mainly on the problem of minimizing the mean access
time in the model where broadcast consists solely of data items. In [21] and [4], an optimal
condition on the mean access time for this case was shown. Anily el al. gave a factor of two

4

approximation algorithm for mean access time minimization [3]. Recently, Bar-Noy et al. [4]
showed that the mean access time minimization problem is NP-complete even in this simpler
model !. They proposed an approximation scheme that achieves a 9/8-approximation ratio.
It is not known whether the problem of minimizing the mean access time is Max SNP-hard.
It is also not known whether the techniques of Bar-Noy et al. could be used to minimize both
the mean access time and the mean tuning time simultaneously. Some other related work can
be found in [2, 7, 9, 12, 19, 20].

The problem of indexed data broadcast was first formalized by Imielinski et al. in [13].

They considered the simplest case where the distribution over data items is uniform and
studied some easy broadcast schemes that achieve (1 + €)-approximation to mean access time
and [logn| mean tuning time, where n is the number of data items. Note that information-
theoretic reasons imply that mean tuning time must be Q(logn) in the uniform distribution
case. Indexed data broadcast in the multi-channel model has also been considered. Using
O(log n) channels, an indexing scheme that achieves O(logn) mean tuning time was presented
in [17].
Our Results: To our knowledge, there has been no prior work giving guaranteed good per-
formance for the problem of indexed data broadcast with arbitrary distributions over data
items. In this paper, we study for the first time the problem of indexed data broadcast in its
full generality, in which the distribution over data items is arbitrary, and prove the following
main result.

Theorem 1 For each € > 0, there is an indexed data broadcast scheme that achieves mean
access time at most (1.5 + €) times the optimal plus an additive O(logn) term, and mean
tuning time upper bounded by O(logn/(eloge™')).

We remark that for almost all the distributions of interest, the mean access time needed 1s
super-logarithmic. (For example, for any distribution which has a linear number of proba-
bilities of value Q(+), the optimal mean access time is Q(n) as we will see by Lemma 2.)
Therefore the O(logn) additive term in the mean access time approximation is essentially
negligible. We further remark that the constants hidden in the complexities of the scheme are
small and the scheme itself is fairly easy to implement.

1.3 Organization of the Paper

The remainder of this paper is organized as follows. In Section 2, we present in detail the
construction of the broadcast scheme and establish some useful properties. In Section 3,
we analyze the performance of our scheme and prove the main result of the paper, namely,
Theorem 1.

!The NP-hardness proof of [4] requires that the sum of the p;’s is strictly less than 1. It is not known if
the case where this sum 1is required to be 1 is NP-hard.

2 The Indexed Data Broadcast Scheme

In this section, we present the construction of our indexed data broadcast scheme and examine
some of its basic properties. As mentioned in Section 1.1, an indexed data broadcast scheme
consists of two protocols: a server protocol followed by the server to schedule the broadcast
and a client protocol followed by the clients to retrieve information in the broadcast. Since the
broadcast is scheduled by the server, it is typical that once the server protocol is completed,
the client protocol would follow accordingly.

In what follows, we discuss the constructions of these two protocols in detail. For our
discussion, we assume that p; > nlﬁ for all 1 < 35 < n; this assumption is without loss of
generality as we indicate next. If it were not so, then we increase the p;’s that are less than
nlw to nlw This causes an increase of at most nl—g in the total probability. We then perturb
the largest probability in the distribution by this tiny amount to make the distribution well-
defined, i.e., p; > an and 377, p; = 1. Tt is not difficult to verify that this adjustment
(essentially) does not affect the evaluation of the mean access time and the mean tuning time.
We remark here that the threshold of nlﬁ is not important and it can be replaced by any
reasonably small polynomial.

We denote by [n] the set of integers {1,2,...,n} and all logarithms are to the base 2.

2.1 The Server Protocol

Our construction of the server protocol can be broadly divided into three components:

1. the scheduling of the data items;
2. the design of the indexing mechanism; and

3. the scheduling of the broadcast that contains both the data and the indices.

The scheduling of the data items aims to minimize the mean access time while designing the
indexing mechanism seeks to minimize the mean tuning time. The objective of scheduling the
broadcast is to interleave the data items as scheduled in (1), and the indices as designed in
(2), so as to minimize both the mean access time and the mean tuning time. We discuss next
the construction of each of these components and examine some of its properties.

2.1.1 Scheduling of the Data Items

The problem of scheduling only the data items to minimize the mean access time has been
studied extensively over the past few years. It was shown in [14] that in order to achieve the
minimum mean access time, the broadcast should be arranged in a way that the instances
(appearances) of each data item are equally spaced. The following lemma of [21] gives a
quantitative characterization of the optimal scheduling of data items, and serves as the starting
point in the construction of our schedule:

Lemma 2 Let df = (0, \/pi)/\/P;- Then the mean access time is at least

ACCH = - §jm(r+1 §2¢E

In fact, ACC* is achievable if all d7’s are inlegral and il is possible lo place evaclly di — 1
data items between every two conseculive appearances of item j in the broadcast (i.e., equal
spacing is possible with respect to d*’s).

One serious limitation of the above result is that equal spacing may not be achievable by any
schedule, e.g., some d7 may not be integral. In fact, even if all d}’s are integral, the problem
of minimizing the mean access time has been shown to be NP-complete by Bar-Noy et al. [4]
who also presented a 9/8-approximation algorithm for this problem. However, it is not known
whether the resulting sequence of data items can be used for simultaneously minimizing the
mean access time and the mean tuning time.

To overcome the above-mentioned problems, we first “shift” the optimal distance sequence
dz by some “small” amount so that the resulting sequence of distances, which we call a feasible
sequence, becomes “nicer” in the sense that all distances in the sequence are integral, equal
spacing is achievable, and moreover, the increase in the mean access time is small.

Definition 3 A sequence of distances dy,dy,...,d, is said lo be feasible if il satisfies the
following two requirements:

o cach d; is an integral power of 2; and
* >, % <1

In what follows, we first describe the procedure Shifting that shifts the optimal distance
sequence d; to a feasible sequence. Next we exhibit the procedure to schedule data items
according to the feasible sequence of distances that results from Shifting. Then we describe
the procedure to assign keys to the data items. We examine some properties achieved by these
procedures at the same time.

Throughout the rest of the paper, we assume without loss of generality that

P1=>p2 2 ... 2 Py (1)
Then following Lemma 2, we have df = (37, \/p:)//p; and therefore

& <d <. <.

Shifting: For integral ¢ > 1, let S; = {j € [n] | 27! < d% <2} and S} = {j € 5; | 27" <
ds < (4/3)2°71} (thus S! C S;). Let K be the largest integer such that Sk is non-empty. Since
elementary calculus shows that >-7_, \/p; < V/n, and we assumed that p; > an for all j, it
follows that df < n® and therefore K < [6logn]. The shifting procedure is as follows:

Procedure Shifting
Input: optimal distance sequence (df,d;, ..., d}), where df < d5 < ... < d.

For each 1 <1 < K,
1. for each j € S;, if j € S; \ S} then set d; = 2. Otherwise,

2. suppose j; < jy < ... < j, are the indices (subscripts j of df) in S]. Set d’ = 20 if [is
odd and d’; = 2i=1 otherwise.

Let d = (di,dy,...,d,) be the sorted sequence of distances d’;
Output: d

In other words, for each 5;,1 <7 < K, if for an index j € S;, d} is “big”, i.e., more than
(4/3)2'=1, then we shift it to the next power of 2. For the set of d:’s where j € S, i.e., d}’s
are “small”, we shift them up and down alternately to the closest powers of 2. Finally we sort
the shifted sequence.

Let us show that the output sequence is feasible. For this we need some definitions. Let
X; be the set of indices j such that d} is shifted in Step (1). In Step (2), we pair up the set
of indices in S} into pairs (jox—1,J2x) for k = 1,..., | 5], with one possible singleton exception
Jp for the case that p is odd (j, is the largest index in S!). Let X3 be the set of indices that
are paired up in Step (2) and let X5 be the set of indices that have no matched pair in Step
(2). It is clear that (X7, X3, X3) is a partition of [n].

Lemma 4 The output sequence ciof Shifting is feasible.

Proof: Each d; is a power of 2 by definition. So it suffices to show that Z] 1 dl < 1. We
will show that for each i =1,2,3, 3 ;cx, 7 7 < dex 7 Since) 7, d, =200 d (sequence of

d; is just the sorted sequence of d’) and E =1 (by Lemma 2), thls will clearly complete

J=1 d*
the proof.

For + = 1 and 3, the statement is immediate since each such d is obtained by shifting d}
to the next integral power of 2. For : = 2, we notice that X, consists of disjoint matched pairs
and for each such pair ¢,i+1 € X3 (¢ is odd), if 7,2+ 1 € S}, for some 1 < k < K then, by

the description of Step (2), we have dlé + ﬁ - 2}%1 + 21k But this is at most 1 _|_ d* since
dr,dz ., < (4/3)2"7! by the definition of Sj. a
Data Scheduling: Suppose d = (dy,dz,...,d,), where di < dy < ... < d,, is the feasible
sequence of distances output by procedure Shifting. For 1 < j < n, 1et 7(2) be such that the
distance in d corresponding to data item ¢ is d,(;). Procedure Shifting first maps the optimal
distance d} corresponding to data item 7 to d} and then to d.g (by sorting) in the output
sequence. By definition, d; < 2d7. It is clear that 7 is a permutation on [n] and d; is
the distance in d that corresponds to data item 7~'(j). Let us now describe the scheduling
procedure.

Procedure ScheduleData

Input: d= (dv,d,...,d,), where dy < dy < ... <d, and d is feasible.
1. Initialize an array Q[1..Ng] of Ny empty data buckets, where Ny = d,,;

2. For j =1 to n, if the first available (empty) bucket in array) is at position ¢, then we

assign data item 7~'(j) to the set of buckets at positions ¢ + Id;, [= 0,1,..., L%J
J
(Such an empty bucket always exists in () since d is feasible and thus }-7_, -~ < 1.)

Output: Q.

1
d]

Lemma 5 In the schedule () output by procedure ScheduleData, each data item is exactly
equally spaced.

Proof: It is clear from the description of the procedure that, to prove the lemma, all we
need is to show that the above procedure is well-defined, i.e., no two data items are assigned
to the same bucket by the procedure.

Suppose this is not the case. Then let #7!(;) be the first data item whose allocation causes
a collision with an earlier allocated data item 7#~!(7) for some 7 < j. Let ¢; < ¢; be the starting
positions of data item 77!(¢) and data item 7~!(j), respectively. Then there exist /; and ;
such that ¢; 4+ [;d; = t; + [;d;. On the other hand, since : < 7 we know that d; < d;; moreover,
since each dj is an integral power of 2 we know that d; is a multiple of d;. Therefore, it must
be the case that {; —1; is a multiple of d; as well. However, following Step 2 in the procedure,
all such positions as ¢; in @ (positions of the form ¢; 4+ Id;) must have already been occupied
by data item 77'(i) before item 7~!(j) is scheduled. This contradicts the assumption that ¢;
is the starting position of data item 7=='(j). O

Remark: If there are empty buckets in () when the scheduling is complete, we can delete
them.
Next we examine the mean access time achieved by the scheduling.

—

Lemma 6 Let us denote by ACCy the mean access time of the broadcast scheduled by ScheduleData(d),
where d = (dy,dy, ..., d,) is feasible. Then

ACGC, = Zp] o) +1) < (154 0(1))ACC™ + O(log n).

To establish the lemma, we begin with the following proposition.

Proposition 1 Leti,i+ 1 (v odd) be two indices in Xy that are paired up. Then

3 * *
§(Pz'd¢ + pig1diyy) > pidry + Pig1da(itr)-

Proof: Following the description of procedure Shifting and the definition of X,, we have
that 7,2 + 1 € S, for some k € [K], and that d.u = 2% and dr(ivr) = 2k=1_ Moreover, by
assumption, we have df < d;,; and thus p; > p;y;. Denote p;/piy1 by a. Then d, = /ad;
(by Lemma 2) and therefore, 1 < a < 16/9 since 257! < df < dr, < (4/3)2F1

Now to establish the proposition, it suffices to show that 2(ad; 4+ /ad) > a2% + 281,
Since df > 2871, the preceding inequality is implied by 2(a 4 /a) > 2a + 1, which in turn
can be easily verified to hold for 1 < a < 4. The proposition follows. a
Proof of Lemma 6: Since d is feasible, ScheduleData on Jgives an equal-spacing schedule
by Lemma 5 and so by Lemma 2, we have:

i Y pida(j)

=1 jeX;

t\ﬁl»—\

1 1
ACCo = 5 Y opildey +1) = 5t
7=1

To complete the proof, it is sufficient to show that, for = = 1,2, 3= .cx, p;d;) is upper
bounded by 2 E]eX p;d; and for i« = 3, it is either o(ACC™) or O(log n).

For the case ¢ = 1, this follows from the fact that for each j € Xy, we have d;) <3 d* by
the definition of X, and Step (1) of procedure Shifting. For the case ¢ = 2, this follows from
Proposition 1 since X, solely consists of disjoint matched pairs as in the proposition.

For the case © = 3, we first notice that by the pairing up procedure, each S! may contribute
at most 1 element to X3. Therefore we have | X5| < K < [6logn]|. Now,

Yo pidey < 2) pid;

JEX3 jEXg
= Z@ > VP

JEX3

< 2(V2ACCH)(y/[6log n]).

So if ACC* = w(logn), the contribution of the above summation to the mean access time is

o(ACC™). Otherwise, ACC* = O(logn) and it contributes an additive term of O(logn). O
Key Assignments: Our key assignment to the data items ¢ is defined to be

key(i) = m(i)

(equivalently, key(7='(j)) = 7). That is, the keys of the data items 7 are ordered according
to their corresponding distances d,(;) in d.

Let us examine a property of this key assignment that will be useful for our subsequent
analysis. First we need a definition.

Definition 7 An interval-partition of a (multi)subset S of [n] is a partition of S into disjoint
intervals of integers. Such a partition is said to be minimal if there are no two intervals in
the partition whose union is also an interval.

10

It is readily seen that the minimal interval-partition of a set S is unique. We define the number
of intervals in the minimal interval-partition of S to be the interval partition number of S.
For example, the minimal interval-partition of S = {7,6,9,3,5,1,6,2,7} is ([1, 3], [5,7],[9,9]).

So the interval partition number of S is 3.

Lemma 8 Suppose dy < dy < ... < d, is a feasible sequence of distances. Let J be an arbi-
trary subsequence of consecutive data items in Q resulting from ScheduleData(dy,ds, ..., d,),
and let Ty C [n] be the set of keys assigned to the data items in J. Then the interval partition
number of Ty is alt most 2K, where K = logd,,.

To prove the lemma, we begin with the following observation.
Proposition 2 For each j € [n], the starting position of data item 7~(j) in Q) is at most d;.

Proof: Consider the interval I formed by the first d; buckets in the array (). For each 7 < j,
the number of appearances of data item 7~'(¢) in [is at most d;/d;. Therefore, at the time
when we start allocating data item 7~'(5), there can be at most d; 372} — data items that
have already been allocated in /. But this is less than d; by the assumption that d is feasible
and therefore there must be an empty bucket in [which can be used as the starting position

for data item 77(j). O

Proof of Lemma 8: Let us partition the set [n] of keys of n data items into K intervals
I, ..., Ix such that, for each 1 <17 < K and each j € I; we have d; = 2¢. First we notice
that the set of keys in each I; forms an interval following our key assignment (the keys of
the data items are ordered according to their corresponding distances in J) We will show
that after Step 2 in the scheduling, for each 1 < ¢ < K, the data items with keys in [;
appear in) in a round-robin fashion. That is, suppose I, = {k,k+ 1,...,k + [}, then the
corresponding data items of these keys in [; appear in @ in the order of #='(k), 7 '(k +
D,..., 7 (k+0),7 k), m"(k+1),...,77'(k+1), etc. Then it is straightforward to see, by
our key assignment, that each I; can contribute at most 2 intervals in the minimal interval-
partition of 7. Since we have K such [;’s, these can contribute for a total of at most 2K
intervals in the minimal interval-partition of T';. This will complete the proof of the lemma.

By Proposition 2, we know that for each j € I;, the starting position of data item 7=~'(j)
is at most d; = 2. Since d; is the distance between consecutive appearances of data item
7=1(j) in Q after Step 2, each such item 7~'(j) appears exactly once in the first 2' buckets
in (). Moreover, since the starting position of each data item is always chosen to be the first
available bucket and it proceeds in the order of the keys, the data items 7~'(j) corresponding
to the keys j € [; appear in () in order. Now Lemma 5 guarantees that the same pattern of
these items appears in the next 2° buckets and so on, which forms a round-robin. a

2.1.2 The Indexing Mechanism

We use a balanced g-ary broadcast tree (¢ is to be determined) defined as follows: A balanced
q-ary broadcast treeis a complete g-ary tree whose leaves are the data buckets in) (we assume
without loss of generality that the length of @ is an integral power of ¢). The internal nodes

11

of the tree contain the indexing information, in which each internal node v consists of two
domains:

e a storage scheme that stores the ranges of the keys associated with the data items
contained in the leaves of the subtree rooted at v;

e a pointer to the first internal node w visited after v in a depth-first traversal of the
broadcast tree excluding the nodes in the subtree of v. (The pointer is stored as a time
offset indicating how long from now w would be broadcast.)

Remark: In the case that v has no succeeding nodes except those in its subtree, its pointer
would point to the root of the broadcast tree for the next broadcast cycle.

In the storage scheme defined by the first domain of an internal tree node v, we use the
data structure of a balanced tree (for example) to store the intervals in the minimal interval
partition of the set of keys associated with the data items contained in the leaves of the subtree
rooted at v. Then, in spite of the fact that the total number of distinct keys associated with
the leaves contained in a subtree may be as large as O(n), Lemma 8 guarantees that the
interval partition number of such a set of keys is at most 2K. Since to specify any interval
[a, b] needs only to store its two endpoints @ and b, and each key can be specified using logn
bits, this takes a total of O(K logn) space.

An internal tree node consists of a sequence of index buckets that contains the above
storage scheme of the first domain plus the pointer defined by the second domain, which is
contained in the last bucket of the sequence. The total amount of storage needed by any
internal node is thus bounded by O(K logn). Since each bucket in a broadcast is of uniform
size L., we have:

Proposition 3 Fach internal node of the broadcast tree can be stored in r = O((K logn)/L)
buckets.

By assumption K < [6logn] and L > log® n; thus we have r = O(1).

We refer to the broadcast of a leaf of the tree as a data burst and the broadcast of an
internal node of the tree an index burst. While a data burst involves the broadcast of merely
one (data) bucket, an index burst typically spans several (index) buckets in a broadcast.
However, the number of buckets in any index burst is upper bounded by r = O(1) following
the above proposition. We specify that all the buckets contained in any single index burst are
broadcast consecutively in order.

2.1.3 Scheduling the Broadcast

A broadcast cycle, denoted B, is generated by a pre-order traversal of the broadcast tree. A
broadcast schedule is simply an infinite sequence of the broadcast cycles.

12

2.2 The Client Protocol
2.2.1 Description of the Protocol

We now describe the client protocol used by the clients to retrieve a specific data item. By
assumption (see the remark in Section 1.1), the key of the requested item is known to the
client. In what follows, we assume that each bucket in a broadcast contains a (1-bit) “flag”
indicating whether it 1s a data bucket or an index bucket and that each index bucket contains
a flag indicating whether or not it is the first bucket of an index burst.

When a client tunes in to the broadcast, three possible scenarios arise:

1. The client is in the midst of receiving a sequence of data bursts. In this case, the client
compares its search key j against the keys of the data items being broadcast. If the
client finds a match, it simply downloads the data bucket and tunes off. Otherwise, it
stays tuned in for the next burst.

2. The client finds the first bucket of an index burst. In this case, the client checks if the
key j belongs to one of the key ranges specified in the index burst and then proceeds as
follows:

(a) If the key j indeed belongs to one of the ranges, the client stays tuned in for the
next burst. Otherwise, if the next burst is a data burst, the client proceeds as in
Step (1); else it repeats Step (2).

(b) If the key j does not belong to any range specified in the current index burst, the
client records from the terminal index bucket the time offset ¢ (the pointer) for the
broadcast of the next index burst and dozes off until then. (The time ¢ indicates
the earliest time from now that the server may broadcast the indexing information
of an item not in the subtree.) The client repeats Step (2) upon waking up.

3. The client is in the midst of receiving an index burst. It waits until the beginning of
the next burst. If the burst is a data burst then it proceeds as in Step (1); otherwise (it
finds the first bucket of an index burst) it proceeds as in Step (2).

2.2.2 Basic Properties of the Protocol

Since the factor contributed by a single burst to the access time and the tuning time is
negligible, we assume from here on that the client always tunes in to the broadcast at the
beginning of a burst. We start with some definitions.

Let R = R(B) denote the ¢-ary broadcast tree for the broadcast cycle B and let Ng denote
the length of a broadcast cycle B, i.e., the total number of buckets in B. Suppose that data
item j is requested by a client at time ¢ in B. Let v = v(t) be the node of R that is broadcast
at time ¢t and let w = w(t,7) be the leaf of R (data bucket) containing data item j that is
nearest to v in the future broadcast after time ¢t. Denote by p = p(¢,7) the least common
ancestor of v and w in R. Let ¢, and ¢, be the children of p on the path P, from p to v and

13

the path P, from p to w, respectively. For each node u # ¢, on the path P,, we denote by
S R(u) the set of siblings that lie to the right of u; and we set SR(c,) to be the set of children
of p that lie between ¢, and ¢, (excluding ¢, and ¢,). Define A(t, j) to be the union of SR(u)
over all the nodes v on P,. Similarly, for each node u # ¢, on the path P,, we denote by
SL(u) the set of siblings that lie to the left of u; and we define D(t,5) to be the union of
SL(u) over all the nodes u # ¢, on P,. Set E(t,7) to be the set of nodes on the path P,.
Finally, let V(¢,7) be the (disjoint) union of A(t,7), D(t,7) and E(t,7).

We say that the client probes a node v in R if the client is in the active mode at the time
when node v is broadcast.

Proposition 4 If data item j is requested al lime t in a broadcast cycle B then the set of
nodes of R(B) that the client probes is exactly V(t,7).

Proof: Recall the fact that the broadcast of B does a pre-order traversal on R(B) and
recall the pointer-jumping step, Step 2b, in the algorithm. It is then not difficult to see that
the client first probes the nodes in A(t,7) in a left-to-right and ascending fashion; next it
reaches node ¢,, whose subtree contains the desired data bucket; then the client probes the
nodes in D(t,7) U E(,7) in a left-to-right and descending fashion till it locates the leaf node
w containing data item j. a

Corollary 9 Suppose that a client looking for data item j tunes in at time t in the broadcast.
Then the client always succeeds in retrieving the first occurrence of data item j after time t
in the broadcast.

3 Performance Analysis

In this section we analyze the indexed data broadcast scheme as described in Section 2. We
prove the main result, Theorem 1, the proof of which will be derived from the two lemmas
stated below. Recall that the length of the data schedule @ (the number of the leaves in the
broadcast tree) is Ny and that r bounds the number of buckets needed to store the indexing
information contained in an internal node. We denote by h the height of the ¢g-ary broadcast
tree. Then, by definition, & = log, No.

Lemma 10 The mean access time ACC of the broadcast is at most

2 h 1
(1+§)ACCO+ ’“; ,

where ACCy is as defined in Lemma 6.

Lemma 11 The mean tuning time TUNE of the broadcast is at most

4qr logq E Vi + (h 4+ 2q)r.

i=1

14

First let us see that together these lemmas imply our main result. By Proposition 3, we
have that r = O(1). Also by the definition of Ny, we have Ny = d,, < 2d} < 2n°. Now we can
choose the parameter ¢ to be [3r/€] and thus h = log, No = O(logn). So by Lemma 6 and
Lemma 10, we have

ACC = (1.54+ ¢)ACC" 4+ O(log n).

Also using the fact that 327_, \/p; < \/n for any probability distribution, and Lemma 11, we
get
TUNE = O(log n/(elog e™")).

This completes the proof of the main theorem.

3.1 Proof of Lemma 10

Recall that d,(;) is the distance between any two consecutive appearances of data item j in
the data schedule). Then n; = Ny/d(;) is the total number of appearances of data item
J in broadcast cycle B. We denote by d%, ¢ = 1,...,n;, the distance between the ith and
(¢ + 1)st appearances of data item j in B, where d;” is the distance from the last appearance
of data item j in B to its first occurrence in the next cycle. It is clear that for any j € [n],
Np = S d.

Let W(t,7), where 1 <t < Np and j € [n], be the amount of time elapsed from the
moment ¢ (in a broadcast cycle) when the request for data item j is made to the time when
data item j is received. By Corollary 9, if ¢ is between the ith and (¢ + 1)st appearances of
data item j in B and the distance from ¢ to the (¢ 4 1)st appearance of data item j is k, then
W(t,j) = k. It is then straightforward to show that for any j

Ng ny 4
SW(t)=> >k
t=1 i=1 k=0
So we have:
1 NB n
ACC = —ZZpJ
B 4= 15=1
1 2 y dé
- N, I
Na 5" i
1i Yiidy(d; + 1)
= — D; 7
2 j=1 ! Ez 1]
1o
< L nli 4)
However, for any j € [n] and 1 <@ < n;, d; is at most (2d,(;)/q + h)r 4 d(;), since within an

interval of d () data buckets in a broadcast, there can be at most (2 dw(j)/q + h) index bursts

15

each of length at most r (buckets). Thus we have

1 n
ACC < 53 pi((dniy/a+ B)r + dry +1)
7=1
1< 2r
= 52 Pi((1+ —)deg) + hr +1)
j=1 q
1 2r hr +1
< S+ =) pildny + D) + —
9 =
2 hr +1
= 1+ 1)AcC, +
q 2
where the last equality is by Lemma 6. O

3.2 Proof of Lemma 11

Let T'(t,7), where 1 <t < Np and j € [nr], be the amount of time units spent by the client
listening to the channel from the moment ¢ (in a broadcast cycle) when the request for data
item j is made to the time when data item j is received. Then

1NB’/L

TUNE = N—ZEPJT(t7j)
Bt:lj:l

< ij mtaXT(tv.j)'
j=1
So it suffices to give an upper bound on max; T'(¢,).

Following Proposition 4, it is easy to see that T'(¢,7) is the number of time units spent on
listening to (or equivalently, broadcasting) the nodes in V (¢,7). In fact, since the number of
time units needed to broadcast any node in the tree is at most r, we have T'(¢,5) < r|V(t, 7).
In what follows, we will first give an upper bound on |[V(t,j)|. In fact, we will exhibit an
upper bound k(j) on |V(¢,7)| that does not depend on ¢. Then it is clear that max; T'(¢,5) <
rmax: |V (1,7)] < re(j).

Following the notation in Section 2.2, |V(t,7)| = |A(t,7)| + |D(t,7)| + |E(t, 7). We will
give an upper bound on each term in the summation.

First we observe that for every two nodes uy and uq in A(t,7) U D(Z,7), the set of leaves
in the subtree rooted at u; and the set of leaves in the subtree rooted at u,; are disjoint;
moreover, data item j is not contained in any of these leaves. Let = be the node on the path
P, at the highest level in the tree such that SR(z), the set of siblings that lie to the right of
x, is non-empty. Let us use [to denote the level of = in the tree, level 0 containing the root.
Then by the above observation, we have that ¢ < dr(j)- It is straightforward to show that
|A(t,7)] < (¢ —1)(I + 1), which is then at most (¢ — 1)(log, dr(;y +1). A similar argument
shows that we can upper bound |D(¢,7)| by the same amount. Moreover, it is clear that
|E(t,7)] < h. So, overall, we can upper bound |V (t,7)| by

b+ 2(g — 1)(log, drgyy + 1),

16

which we denote by £(7) and which does not depend on ¢ as desired. Finally we have:

TUNE < ijm?XT(t,])

7=1
< > pirk())
7=1
= Y pir(h+2(q —1)(log, dx(;y + 1))
7=1
< Y pir(h+2(q —1)(log, 2d; + 1))
7=1
< ijr(h + 2q(log, d; + 1))
7=1
n n 1
= 2qr(log, > \/pj + D pilog, —) + (h +29)r
7=1 7=1 \/p7

< 4gqr logq Z Vi + (h+2q)r

i=1

where the third inequality follows from the definition of 7(j) and the last inequality follows
from the convexity of the logarithm function. O

Acknowledgement

We would like to thank Badrinath, Ed Coffman and Peter Winkler for helpful discussions. We
are also thankful to an anonymous referee for many valuable comments on an earlier version
of this paper.

References

[1] S. AcHARYA, R. ALONSO, M. FRANKLIN, AND S. ZDONIK, “Broadcast Disks: Data

Management for Asymmetric Communication Environments”, Proc. ACM SIGMOD
Conf., May 1995.

[2] M. AMMAR, J.WONG, “On the optimality of cyclic transmission in Teletext Systems”,
IEEE Trans. Comm. 35 (11), 1987, pp. 1159-1170.

3] S. ANiLy, C. Grass, R. HASSIN, “The scheduling of maintenance service”, submilted
for publication, 1996.

[4] A. BArR-Noy, R. BHATIA, J. NAOR, AND B. SCHIEBER, “Minimizing Service and
Operation Costs of Periodic Scheduling”, Proc. 9th ACM Symp. on Disc. Algorithms,
1998.

17

[5]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. BEsTAVROS AND C. CUNHA, “Server-Initiated Document Dissemination for the
WWW?” IEEE Data Engineering Bulletin, September 1996.

T. BOWEN ET AL., “The DATACYCLE architecture”, Comm. of the ACM, Vol 35, No.
12, December 1992, pp. 71-81.

M. CuHaAN, F. CHIN, “Schedulers for larger classes of pinwheel instances”, Algorithmica
(9), 1996. pp. 425-462.

D. GIFFORD ET AL., “The application of digital broadcast communication systems”,
Stanford University Tech. Report, 1992.

C. GraAss, “Feasibility of scheduling lot sizes of two frequencies on one machine”, Furo-

pean Journal of OR 75, 1994. pp. 354-364.

L. GuiBas AND R. SEDGEWICK, “A dichromatic framework for balanced trees”, IEFKE
FOCS, 1978. pp. 8-21.

G. HERMAN ET AL., “The datacycle architecture for very large high throughput database
systems”, Proc. ACM SIGMOD conf., 1987, pp. 97-103.

R. HorTE, L. ROSIER, I. TULCHINSKY, D. VARVEL, “Pinwheel scheduling with two
distinct numbers”, Theoretical Computer Science (100), 1992, pp. 105-135.

T. IMIELINSKI, S. VISHWANATHAN, AND B. BADRINATH. Energy Efficient Indexing on
Air. Proc. ACM SIGMOD Conf., May 1994.

R. JAIN AND J. WERTH, Airdisks and airRAID: modelling and scheduling periodic
wireless data broadcast (extended abstract). DIMACS Tech. Report 95-11, Rutgers Uni-
versity, May 1995.

D. KNuTH, “The Art of computer programming”, Vol. 1, Addison-Wesley, 1973.

W. PucH, “Skip lists: a probabilistic alternative to balanced trees”, Comm. ACM 33(6),
1990, pp. 668-676.

N. SHIVAKUMAR AND S. VENKATASUBRAMANIAN, Energy-efficient indexing for infor-
mation dissemination in wireless systems. ACM-Baltzer Journal of Mobile Networks and

Nomadic Applications (MONET), December 1996.

D. SLEATOR AND R. TARIJAN, “A data structure for dynamic trees”, JCSS 26(3), 1983,
pp- 362-391.

S. Su, L. TassiuLAs, “Broadcast scheduling for information distribution”, INFOCOM,
1997.

W. WEkI, C. Liu, “On a periodic maintenance problem”, OR Letters 2, 1983, pp. 90-93.

18

[21] N. VAIDYA AND S. HAMEED, “Improved Algorithms for Scheduling Data Broadcast”,
Technical Report 96-029, Dept. of Computer Science, texas A&M University, 1996.

19

	University of Pennsylvania
	ScholarlyCommons
	June 2000

	On Indexed Data Broadcast
	Sanjeev Khanna
	Shiyu Zhou
	Recommended Citation

	On Indexed Data Broadcast
	Abstract
	Comments

	tmp.1120768129.pdf.p2h9a

