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314 / INFORMATION SCIENCE

INFORMATION THEORY

A calculus capable of accounting for variation and
information flow within systems regardless of whether
they are biological, social, or technical. Information
theory is characterized by a few axioms from which
many measuring functions, accounting equations,
theorems, limits, and, above all, its notion of infor-
mation and communication can be derived. The in-
formation theorist treats quantities of information
much like a physicist traces energy uses and losses
within a mechanical system or an accountant mea-
sures cash flows and capital distributions within a
company. Although quantities of information do not
behave like energy and matter and have little to do
with truth or value, once information flows are as-
sessed they can be related to and shed light on other
organizational features of the system in which such
flows are observed.

Origins

The idea of information theory emerged in the late
1940s and came to several researchers virtually in-
dependently. NORBERT WIENER, the founder of cy-
BERNETICS (the theory of communication and control
in humans and machines), came to it while working
on statistical aspects of communication engineering.
Soviet mathematician A. N. Kolmogoroff came to it
from probability theory, and cLAUDE sHANNON of
the Bell Telephone Laboratories in the United States
developed it while working on problems of coding
and deciphering messages. Earlier, British statistician
R. A. Fisher, known for his analysis of variance,
suggested a quantitative expression for the amount
of information an experiment provides. Nearly a
century before all four of them, Austrian physicist
Ludwig Boltzmann had measured thermodynamic
entropy by a function that resembles the one now
used in information theory. However, it was Shan-
non who published the most elaborate account of

the theory in 1948, offering proof of the uniqueness
of its form and twenty-one theorems of considerable
generality. WARREN WEAVER anticipated that any the-
ory clarifying the understanding of information and
communication was certain to affect all fields of
knowledge. He gave a popular account of Shannon’s
work and coauthored with him The Mathematical
Theory of Communication (1949). Subsequently, U.S.
statistician - Solomon Kullback linked information
theory to statistics, and British cybernetician W. Ross
Ashby generalized it to many variables.

Historically, information theory was a major stim-
ulus to the development of communication research.
It made the heretofore vague notions of information
mathematically tractable, liberated it from the con-
flicting claims by diverse disciplines concerned with
knowledge and communication technology, and le-
gitimized research on communication and informa-
tion processes whether they occurred in society, in
electronic information systems, or within the human
brain.

Three versions of the theory are discussed here:
the possibilistic and semantic theory of information,
the probabilistic or statistical theory of communica-
tion, and its extension to a method for testing com-
plex models of qualitative data.

Semantic Information

The semantic theory quantifies information in ways
similar to ordinary uses of the term: we might judge
one report to be more informative than another, we
might experience how little we can say in a telegram,
and we might admit to having not enough informa-
tion to decide how to resolve an issue. To obtain
information we may ask questions. Questions admit
uncertainty and are designed to elicit answers that
help the questioner decide among several uncertain
possibilities. The knower selects an answer from a
repertoire of possible responses. The questioner de-
cides what that answer means and which uncertain
alternatives it thereby excludes. Information is al-
ways selective among a set of preconceived alterna-
tives, and the theory quantifies this selectivity in
terms of the number of questions we need to have
answered.

The semantic theory presupposes a distinction be-
tween two sets of elements, languages, or symbol
repertoires, connected by a code. One contains the
set of messages, answers to questions, statements, or
meaningful actions exchanged; the other contains the
set of meanings, referents, things, people, ideas, con-
cepts, or consequences the former refer to, indicate,
or are about. The semantic theory suggests that in-
formation is manifest in what the elements in one set
imply about those in the other set. From the point
of view of the questioner or receiver the theory



expresses the amount of information, I, a message
conveys as the difference between two states of un-
certainty, U, before and after that message became
known:

state of | _
I (message knowlcdge) -
before recelpt) (after recelpt)
= U( of message U "of message

The message is an element in one set; the uncertain-
ties concern elements in the other set, for example,
the interpretations such messages could have; and
the amount of information indicates the selectivity
that a message induces within the domain of possible
interpretations.

Accordingly, information is positive when a mes-
sage, answer, or report reduces the receiver’s uncer-
tainty about what he or she wishes to know. A
sequence of informative messages, such as would be
received during an interview or a conversation, re-
duces the receiver’s uncertainty or enhances his or
her state of knowledge stepwise and results in ad-
ditive quantities of information associated with each
message. A message whose content is already known
does not alter the receiver’s uncertainty and is redun-
dant, simple repetition being one example. A message
that says something unrelated to what the receiver
needs to know is irrelevant. A message that denies
what previously appeared certain and thus increases
the receiver’s uncertainty conveys negative amounts
of information. Except for some syntactic limitations,
the formal complexity or material composition of
the message does not enter the definition of infor-
mation and does not affect what or how much it
conveys. Semantic information measures not what a
message is but what it does in someone’s cognitive
system of distinctions.

The unit of measurement in information theory
equals the amount the answer to a yes-or-no question
conveys and is called one bit (for binary digst). Since
N alternatives can be exhaustively distinguished by
logaN yes-or-no questions, the state of uncertainty
becomes simply U = log,N bits. Thus, if U is an
integer, U equals the number of times N alternatives
can be divided in half until only one alternative
remains. The remainder is elementary algebra:

state of ) _
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Il

—log,
N before message

- lng Paftcr}before

Il

Thus information—the difference between two states
of uncertainty—is seen to be a measure of the con-
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straint a message imposes by singling out a subset of
the initial number of uncertain possibilities N. With
P as the logical probability of this subset, it may also
be interpreted as a measure of the difficulty of se-
lecting among a set of alternatives by chance and
thus becomes equated with that message’s surprise
value. For example, because ignorant students can
answer.50 percent of all yes-or-no questions correctly
merely by choosing at random, teachers expect that
knowledgeable students will perform significantly
above that logical probability. Therefore, the seman-
tic theory can also be seen to equate information
with choices that deviate from what would be ex-
pected under conditions of ignorance.

When the alternatives are enumerable, information
theory offers a precise instrument for quantification.
The answer to the question “Did she have a boy or
a girl?” conveys one bit of information. To make
appropriate choices among eight different subway
trains requires three bits of information. To locate
one criminal among, say, a million Bostonians re-
quires nearly twenty bits of information, which is
the minimum amount that Boston’s police depart-
ment has to process per individual crime. A Hollerith
card with eighty columns by twelve rows, whose
positions may be either punched or not, can store up
to 960 bits of information. Two such cards can store
twice as much. According to Bremmermann’s Limit,
which states that no computer can do better than
10*7 bits per second and per gram of its mass, the
limit on computability on earth is about 1072 bits
and is not achievable in practice.

When the alternatives are less clear or known only
in relation to each other, the theory offers possibili-
ties of quantitative comparisons. The statement ““She
plays a stringed instrument” conveys three to four
bits less information than one asserting that “She
plays the viola,” because the former leaves uncertain
which stringed instrument she plays. For the same
reason, ‘“‘about noon” conveys less than “at 12:03
P.M.,” although the additional quantity conveyed by
minutes may be irrelevant in a particular situation.
Information quantities can also be associated with
the logical structure of complex messages. For ex-
ample, two statements connected by an inclusive or
convey less information than either statement does
by itself; when the logical conjunction and is used
to connect them, they are more informative together
than either is alone.

Note several properties of the semantic theory.
First, quantities of information are not tied to phys-
ical entities. The length of the silence between the
signals of the Morse code is as critical as the absence
of a letter from a friend is informative to the usual
receiver.

Second, quantities of information are always ex-
pressed relative to someone’s cognitive system of
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distinctions, including the distinctions an “objective”
measuring instrument makes for a scientific observer.
An X-ray photograph may be more informative to
the physician than it is to the patient precisely be-
cause the former tends to have a more elaborated
conceptual system and language for interpreting such
images. It follows that one can observe that person
A said X to person B, where X is a vehicle of
communication or the material form of a message,
but it is only when the codes relating the cognitive
systems of A and B to X are known that one can
assert how much semantic information A communi-
cated to B.

Third, quantities of information are always con-
textual measures. They are not attributable to a
single message but express what this message does
in the context of all possible messages or conditions.
The larger this repertoire, the greater the amount of
information a particular message may convey and its
receiver needs to process in order to make an appro-
priate selection. Where there are no options there is
no information. When the context of communication
is not clearly understood, quantities of information
may become at best approximate.

Fourth, a valuable oddity of the theory is that
paradoxical or contradictory messages turn out to
convey quantities of information that are infinite,
indicating the logical inadequacy or powerlessness of
a cognitive system to cope with such messages. This
is particularly true when messages are self-referential.
For example, “Ignore this command” asserts how it
is to be taken, its illocutionary force or its truth
value, and is impossible in a system that insists on
the distinction or asymmetry between language and
action or between statements and what these state-
ments refer to. See also SEMANTICS.

Statistical Theory of Communication

In the mathematical theory of communication the
statistical analog of uncertainty is called entropy and
is defined by the famous Shannon-Wiener formula:

H(A)= = Y p. log: p.

aeA

where the variable A consists of mutually exclusive
categories, values, or symbols @, and p, is the prob-
ability with which a is observed in A. The entropy is
a measure of variability or diversity not unlike the
statistical concept of variance, except that it does not
require variables to express magnitudes and is hence
entirely general. When all observations fall into one
category the entropy is zero; otherwise it is a positive
quantity whose maximum depends on the number
of distinctions drawn within a sample.

In social research, entropy measures have served

to assess occupational diversity in cities, the varia-
bility of television programming, the consensus on
preferences for political candidates, the specificity of
financial reports, the diversity of opinions, and the
richness of vocabularies. Entropy measures may be
used comparatively, for example, to differentiate be-
tween different genres of literature (newspaper En-
glish is low in entropy compared with avant-garde
poetry); or they may be correlated with other vari-
ables, for example, to ascertain how diversity of
opinion is related to number of newspapers serving
a community or to predict the reading ease of a text.
However, taking full advantage of the additivity of
entropy and information quantities, the theory’s most
important contribution is the calculus it defines on
top of such entropies. Already the relationship be-
tween entropy and the aforementioned uncertainty
is instructive in this regard.

When there are N4 alternatives a and each is
observed the same number of times, that is, p, = 1/
N4, then in this special case, the entropy equals the
uncertainty, H(A) = U(A) = log:N4. When # indi-
vidual observations are differentiated into mutually
exclusive classes @ = 1,2, ..., so that n =
ny+n+ and p, = n,/n, then

H(A) = Z-n—“ (logn —logyn,)
aeA

in which log,n is the quantity of uncertainty in the
sample of size n with each observation considered
unique, log,#, is the quantity to which the uncer-
tainty reduces after knowing an observation to be of
type a4, and ¥ n,/n renders the expression as an
average reduction of uncertainty. Thus the entropy
H(A) is the average uncertainty or diversity in a
sample when its n observations are considered in
categories. The entropy formula is the same whether
one considers the entropy in one variable, A, in a
matrix of two variables, say, A and B, or in a cross-
tabulation of many variables A, B, C, . . . , Z:

HABC ... Z)= =203 .0 pube... 10g2Pave..

a b

The mathematical theory of communication relates
a sender, who emits symbols a from a set A with a
certain entropy H(A), to a receiver, who receives
symbols b from a set B with a certain entropy H(B),
by means of a channel that converts input symbols
a into output symbols b and associates a probability
with each transition. In the ideal channel, symbols
sent and symbols received are related one-to-one
(Figure la). Variation at the receiver for which the
sender does not account is called noise and is mani-
fest in one-to-many relations (Figure 1b). Variation
at the sender omitted by the receiver is called equiv-
ocation and is manifest in many-to-one relations
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Figure 1. (Information Theory) Four
examples of symbol-transition dia-
grams: (a) crror free; (b) noise only;

(Figure 1c) with the most typical example being a
mixture of these (Figure 1d). Noise and equivocation
distract from perfect communication but in different
ways. The term noise is borrowed from acoustical
distortions and is generalized here to cover all kinds
of random alterations, blurred images, and uncer-
tainties about how a sent symbol is received. Equiv-
ocation shows up in a receiver’s simplification of
what has been sent or the ambiguity about the send-
er’s intentions. The theory has three ways of express-
ing the amount of information transmitted, T(A:B),
through a channel:

(1) T(A:B) = H(B) — Ha(B)
(2) T(A:B) = H(A) — Hg(A)
(3) T(A:B) = H(A) + H(B) — H(AB)

The first expresses communication as the difference
between the entropy at the receiver and that part of
its entropy that is noise, Ha(B). The second expresses
communication as the difference between the entropy
at the receiver and that part of its entropy lost as
equivocation, Hy(A). Both formally resemble the
expression for the semantic information by being the
difference between the entropy without and the en-
tropy with reference to a second variable. The third
expresses communication as the difference between
the entropy that the sender and the receiver would
exhibit if they were entirely unrelated and the joint
entropy, H(AB), that is in fact observed. It follows
that noise and equivocation can be obtained algebra-
ically by Ha(B) = H(AB) — H(A) and Hg(A) =
H(AB) — H(B), respectively. Communication is sym-
metrical, T(A:B) = T(B:A), can be interpreted as
shared variation, and the quantities involved may be
depicted as in Figure 2.

Although communication always involves some
kind of covariation, it speaks for the generality of
the theory that senders and receivers need not share
the same symbol repertoire. Indeed much of com-
munication proceeds by conversions of mental im-
ages into verbal assertions, of sound into electrical
impulses, of temporal representations into spatial
ones, of expressions in one language into those of
another, and so forth, during which some patterns
are retained.

Regardless of the nature of the media involved,
the amount of communication possible is limited by
the number of options available. More specifically,

(c) cquivocation only; (d) mixed.

no channel can transmit more information than its
weakest component. For the simple channel between
a sender and a receiver T(A:B) ...« = min|H(A),H(B)].

Considering that messages can take many material
forms and information can be carried by rather dif-
ferent symbols, much of early information theory
was concerned with the construction and evaluation
of appropriate codes for efficient and/or error-free
communication. The coding function may be part of
the communicator (e.g., a natural language) or part
of the medium (e.g., a microphone or loudspeaker)
(Figure 3).

In his fourth theorem Shannon shows that, given
enough time, it is always possible to encode a mes-
sage for transmission even through a very limited
channel. However, with C as the channel capacity
(in bits per second) and H as the entropy in the
source (in bits per symbol) no code can achieve an
average rate greater than C/H (symbols per second).
In other words, different languages, different signal-
ing alphabets, and different media may make com-
munication more or less efficient, but none can exceed
C/H.

Redundancy is another important concept pro-
vided by the theory. Redundancy is measured as the
difference between the amount that could be and the
amount that is in fact transmitted:

Rszax—T

Redundancy may be caused by duplication of chan-
nels of communication, repetition of messages sent,
or a priori restrictions on the full range of symbols
or symbol combinations used for forming messages
(by a GRAMMAR, for example). Although redundancy
appears to measure the inefficiency of transmission,
in human communication it is a valuable quantity
because it can compensate for transmission errors
and the effects of selective inattention. For example,
the detection of misspellings in a written text, the
simplifications used in forming a telegram, and speed
reading are all possible only because of redundancy.
Shannon estimated that the English language is about
50 percent redundant; subsequent researchers revised
his calculation to nearly 70 percent. Shannon’s tenth
theorem states that the effect of noise in a channel
of communication can be compensated for by an
amount of redundancy equal to or exceeding the
amount of noise in that channel. This redundancy



318 / INFORMATION THEORY

Noise

1, (8)

M

\;—.—-

Transmission 1 (A:B8)
Sender’s eatropy H (A)
, S

4

Receiver's entropy 1 (B)

Figure 2. (Information Theory)
Informational account for simple
communication channels.

Equivocation

1, (A)

Noise
Sender e Encoding | Channel e  Decoding 1 peceiver
) function o function. ceave

)

Equivaocation

Figure 3. (Information Theory)
Multicomponent communication pro-
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may stem either from an additional correction chan-
nel or from a suitable coding of the messages trans-
mitted. ,

In complex systems of many variables the total
amount of information transmitted within it is

- H(AB...Z)

To analyze this quantity, various equations are avail-
able. For example,

T(A:B:...K:L:...:Z) = T(A:B:...:K) + T(L:M:...:Z)
+ T(AB...K:LM...Z)

decomposes this total into two quantities within and
one quantity between the subsystems AB...K and
LM...Z. Or

+ ... + T(AB...Y:Z)

expresses the total as the sum of the amounts trans-

> mitted between two variables plus the amount be-

tween the two and a third, the amount between the
three and a fourth, and so on.

H(Z) = T(A:Z) + Ta(B:Z) + Tag (C:Z)
© 4 w. + Tap.x(Y:Z) + Hap..v(Z)

explains the entropy in Z in terms of the amount of
information transmitted from A plus the amount of
information transmitted from B controlled for by A,
and so on, plus the unexplainable noise in Z. In this
manner complex information flows within a system
may be analyzed.

cess. (After Claude Shannon.)

Structural Models

Structural modeling searches for models of qualita-
tive data that represent an optimum balance between
structural simplicity and the insignificance of their
errors of information omission. Thus models may be
found that fit the data best and model the flow of
information throughout a system with the least amount
of error. Shannon’s originally chainlike conception
is just one such model. ‘

In the previous examples the total amount of in-
formation found in the multivariate data about a
system is seen as defined by two kinds of quantities.
The sum H(A) + H(B) + ... + H(Z) = H(mjng) can
be interpreted as the maximum entropy that a model
mi.q exhibits whose variables A,B,...,Z are statisti-
cally independent. The quantity H(AB...Z) = H(m,)
is the entropy actually observed within a model m,
capable of representing all complexities contained in
the data. If the two quantities were equal, the data
could be said to fit the model of independent vari-
ables and show no structure. The total amount,
T(mina) = H(ming) — H(m,), can be seen to express
the amount of information by which the model 7;nq
is in error. Between the two models, m, and m;qq,
on which classical information theory is based, a
host of other models could be constructed and tested.
Consider four structurally different models within
six variables each (Figure 4).

Just as for mq4, each model m; can be used to
generate its own maximum entropy distribution,
yielding T(m;) (for models with loops, as in m,, this
quantity must be obtained by iterative computation,
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Figure 4. (Information Theory) Four
examples of structural communica-
tion models in block diagrams: (from
left to right) undifferentiated whole;
Mind with circularities; linear chain; with

whereas for other models algebraic techniques are
readily available). In these terms the total amount of
information in the data can be decomposed by

T(miaga) = T(m;) + [T(ming) — T(m;)]

where T(m;) is the amount of information the model
m; fails to capture, whereas [T(m;n4) — T(m;)] is the
amount of information represented by m;.

Limitations of Information Theory

Some writers have argued that information theory is

biased by its early applications in engineering, that
it is unable to account for semantic aspects of com-
munication, and that it is limited to linear models
(allowing no feedback). None of these arguments is
correct.

According to Shannon’s second theorem, whose
proof is corroborated by many others, the form of
the entropy and the information functions is unique,
given the axioms of the theory. This puts the theory
on a rather unquestionable basis. The critics’ burden
is to reveal possible inadequacies of the theory by
showing the unreasonableness of its axioms, which
may be stated here as follows:

(1) Ha(p,1-p)
is continuous for O=p =1 and H,("2,%2)=1
(2) Hr(plapl’ aoe ypr)

is a symmetrical function of its arguments,

i p.=1, and
=1

(3) ;or any O=sA=<1:
H;(\p,(1=N)p,1-p)=H,(p,1-p)+
PHZ(A,I —)\)'

Inapplicabilities of the theory could be encoun-
tered, for example, when probabilities do not add to
one—a condition that would already fail the first
axiom. This condition may arise when the universe
of events is undefined, observations in a sample are
nonenumerable, or distinctions are fuzzy (do not
yield mutually exclusive categories). Information the-
ory presupposes the applicability of the theory of
probability (logical possibility, relative frequency,
proportion or percent), which is a rather basic de-
mand. The second axiom would become inappro-
priate, for example, when the ordering of the events

" independent components.

1,2,...,r would make a difference in the amounts the
whole set carries. This condition may arise when
data are nonqualitative (magnitudinal, for example),
in which case the information contained in these
proximities is ignored. The third axiom would fail
when information quantities are nonadditive and/or
probabilities are not multiplicative—for example, when
two messages jointly convey more information than
the sum of what they convey separately. This situa-
tion may arise in irony or when metacommunications
and communications are mixed up. The fact that
information theory cannot reflect its own context
and is, hence, morpheostatic in character is com-
mon to most social theories and not unique to this one.

Extensions of Information Theory

The basic idea of information theory—equating in-
formation with selectivity—may be extended. Effec-
tive decisions, one could argue, organize the world,
create unusual material arrangements. Messages
ranging from blueprints, computer programs, and
DNA to political speeches and votes convey infor-
mation to the extent that they bring about thermo-
dynamically nonentropic pattern, like the assembly
of a piece of equipment, a network of computations,
the biological structure of an organism, or new forms
of social organization. Thus information could. be

-conceived as a measure of the organizational work a

message can do, selection being a simple case of this.
Information in this sense can be processed (com-
bined, transformed, or encoded in different media)
or duplicated at comparatively little cost. Informa-
tion creates its own context of application. When it
organizes an information-processing system it may
become amplified, elaborated, and expanded beyond
its original scope. Information also becomes part of
any living organization, social or biological, that
maintains its structure against natural processes of
decay or organizational infringements from its envi-
ronment. Because the thermodynamic laws and the
economic costs of production and dissemination ap-
ply only to its material carriers, which are largely
arbitrary, information is not a commodity. It pro-
vides relatively independent accounts for the escalat-
ing organizational changes in contemporary society.
Information controls a society’s rate of thermody-
namic decay and directs its economic developments
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while escaping many of the traditional socioeco-
nomic constraints.
See also MODELS OF COMMUNICATION.
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