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Adeno-Assocated Virus (AAV) Serotype 9 Provides Global Cardiac Gene
Transfer Superior to AAV1, AAV6, AAV7, and AAV8 in the Mouse and
Rat

Abstract
Heart disease is the leading cause of morbidity and mortality. Cardiac gene transfer may serve as a novel
therapeutic approach. This investigation was undertaken to compare cardiac tropisms of adeno-associated
virus (AAV) serotypes 1, 6, 7, 8, and 9. Neonatal mice were injected with 2.5 × 1011 genome copies (GC) of
AAV serotype 1, 6, 7, 8, or 9 expressing LacZ under the control of the constitutive chicken β-actin promoter
with cytomegalovirus enhancer promoter via intrapericardial injection and monitored for up to 1 year. Adult
rats were injected with 5 × 1011 GC of the AAV vectors via direct cardiac injection and monitored for 1
month. Cardiac distribution of LacZ expression was assessed by X-Gal histochemistry, and β-galactosidase
activity was quantified in a chemiluminescence assay. Cardiac functional data and biodistribution data were
also collected in the rat. AAV9 provided global cardiac gene transfer stable for up to 1 year that was superior to
other serotypes. LacZ expression was relatively cardiac specific, and cardiac function was unaffected by gene
transfer. AAV9 provides high-level, stable expression in the mouse and rat heart and may provide a simple
alternative to the creation of cardiac-specific transgenic mice. AAV9 should be used in rodent cardiac studies
and may be the vector of choice for clinical trials of cardiac gene transfer.
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Adeno-Associated Virus (AAV) Serotype 9 Provides 
Global Cardiac Gene Transfer Superior to AAV1, 
AAV6, AAV7, and AAV8 in the Mouse and Rat

Lawrence T. Bish,1 Kevin Morine,1 Meg M. Sleeper,2 Julio Sanmiguel,3 Di Wu,3

Guangping Gao,4 James M. Wilson,3 and H. Lee Sweeney1

Abstract

Heart disease is the leading cause of morbidity and mortality. Cardiac gene transfer may serve as a novel ther-
apeutic approach. This investigation was undertaken to compare cardiac tropisms of adeno-associated virus
(AAV) serotypes 1, 6, 7, 8, and 9. Neonatal mice were injected with 2.5 � 1011 genome copies (GC) of AAV
serotype 1, 6, 7, 8, or 9 expressing LacZ under the control of the constitutive chicken �-actin promoter with cy-
tomegalovirus enhancer promoter via intrapericardial injection and monitored for up to 1 year. Adult rats were
injected with 5 � 1011 GC of the AAV vectors via direct cardiac injection and monitored for 1 month. Cardiac
distribution of LacZ expression was assessed by X-Gal histochemistry, and �-galactosidase activity was quan-
tified in a chemiluminescence assay. Cardiac functional data and biodistribution data were also collected in the
rat. AAV9 provided global cardiac gene transfer stable for up to 1 year that was superior to other serotypes.
LacZ expression was relatively cardiac specific, and cardiac function was unaffected by gene transfer. AAV9
provides high-level, stable expression in the mouse and rat heart and may provide a simple alternative to the
creation of cardiac-specific transgenic mice. AAV9 should be used in rodent cardiac studies and may be the
vector of choice for clinical trials of cardiac gene transfer.
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Introduction

ADENO-ASSOCIATED VIRUS (AAV) is an ideal gene therapy
vector because its low immunogenicity favors persistent

transgene expression. The immune response evoked by car-
diac AAV injection is negligible and not significantly ele-
vated over the baseline response that occurs after treatment
with saline or naked plasmid (Wright et al., 2001). This is in
contrast to the profound immune response elicited by other
viral vectors, such as adenovirus, herpesvirus, and to some
extent, lentivirus (Wright et al., 2001; Vandendriessche et al.,
2007). As a result, AAV vectors are capable of providing safe,
long-term gene transfer in animal models to several organs,
including liver, skeletal muscle, and heart (Gao et al., 2002;
Arruda et al., 2005; Woo et al., 2005).

AAV is especially suited to serve as a gene therapy vec-
tor for cardiac diseases, which generally follow a chronic
course and would therefore require safe, persistent trans-

gene expression. Indeed, a phase 1/2 clinical trial using
AAV1 to deliver the SERCA2a gene to patients with con-
gestive heart failure (CHF) has already been proposed (Ha-
jjar et al., 2008), and others are sure to follow. However, there
are many other genes that may demonstrate clinical benefit
in CHF and several other novel AAV serotypes that may
transduce the heart more efficiently than AAV1 (Gao et al.,
2002, 2004).

Rodent models offer a relatively quick and inexpensive
system in which to screen and evaluate the therapeutic po-
tential of such genes and serotypes before advancing to large
animal and clinical trials. With respect to serotype, initial
studies in the literature were conducted with AAV2 simply
because this was the first serotype to be engineered into a
vector (Carter, 2004). However, once additional serotypes
were isolated (Gao et al., 2002, 2004), pseudotyped vectors
soon went into production (Hildinger et al., 2001) and were
evaluated for differential tissue tropism. In the mouse, an
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initial screen of AAV1–AAV5 identified AAV1 as the most
cardiotropic serotype (Du et al., 2004), but later, more com-
prehensive studies that included AAV6–AAV9 all concur
that AAV9 is the most cardiotropic serotype for the murine
heart (Inagaki et al., 2006; Pacak et al., 2006; Vandendriess-
che et al., 2007; Zincarelli et al., 2008). However, although
these studies were able to identify the most potent AAV
serotype for cardiac gene transfer, none focused on combin-
ing highly efficient gene transfer with a delivery method that
would limit systemic exposure. In the rat, AAV8 was iden-
tified as the serotype most efficient for cardiac gene transfer
(Palomeque et al., 2007), but this study only evaluated
AAV1–AAV8. In fact, a direct comparison of AAV9 with
other serotypes has not been performed in the rat heart.

Our goal in this study was to compare the cardiac tropism
of AAV1, which may soon be used in a clinical trial for heart
failure (Hajjar et al., 2008), with those of the novel AAV
serotypes 6, 7, 8, and 9 in the mouse and rat. To expand on
the existing literature in the mouse, we delivered the virus
by a subxiphoid injection technique to target the pericardial
space in an effort to limit systemic exposure (Zhang et al.,
1999). In the rat, this is the first direct comparison of AAV9
with other AAV serotypes in the heart. In both species, we
sought to maximize transgene expression and performed a
dose–response study to identify the minimal dose required
for global delivery. Mice were monitored for up to 1 year to
evaluate stability of expression, and rats underwent both he-
modynamic and biodistribution analysis to determine the
safety profile of AAV-mediated cardiac gene transfer.

Materials and Methods

Vector design and production

Each vector was designed to express the nuclear-localized
LacZ reporter gene under the control of the constitutive
chicken �-actin promoter with cytomegalovirus (CMV) en-
hancer (CB promoter). Vectors were produced according to
the previously described pseudotyping protocol by the Vec-
tor Core of the University of Pennsylvania (Philadelphia,
PA) (Gao et al., 2002). Briefly, recombinant AAV genomes
containing AAV2 inverted terminal repeats (ITRs) were
packaged by triple transfection of 293 cells with a cis-plas-
mid containing the LacZ transgene, an adenovirus helper
plasmid, and a chimeric trans-plasmid containing the AAV2
rep gene fused to the capsid gene of the AAV serotype of
interest.

Animal use and vector delivery protocol

All animals were handled in compliance with National In-
stitutes of Health (Bethesda, MD) and institutional guide-
lines that were approved by the Institutional Animal Care
and Use Committee of the University of Pennsylvania.
Neonatal mice were injected with vector as previously de-
scribed (Zhang et al., 1999). Briefly, 4- to 5-day-old mice (n �
4 per group) underwent cryoanesthesia, and a puncture was
made at the left costoxiphoid angle of the anterior chest with
a 33-gauge Hamilton needle. To avoid direct injection into
the myocardium, microbore tubing (Tygon, I.D. 0.02 in.;
Saint-Gobain Performance Plastics, Bridgewater, NJ) was
threaded over the needle to leave 3 mm exposed at the end.
This subxiphoid approach positions the needle beneath the

sternum and anterior to the heart. Fifty microliters contain-
ing the AAV vector in normal saline was then injected into
the pericardial space. Pups were subsequently rewarmed
under a heat lamp and returned to their mothers for further
care.

Adult rats (300 g, n � 4 per group) underwent left thora-
cotomy after intubation and mechanical ventilation, and 250
�l containing the AAV vector was injected directly into the
myocardium of the left ventricular free wall in five equal ali-
quots from the base to apex. Animals were allowed to re-
cover until euthanasia at 4 weeks. A subset of rats (n � 3 per
group from AAV8 and AAV9) underwent functional analy-
sis at 4 weeks, before euthanasia. These rats were subjected
to two-dimensional (2-D) echocardiography followed by ac-
quisition of pressure–volume loops using a 2F conductance
catheter (Millar Instruments, Houston, TX). For placement of
the conductance catheter, rats underwent sternotomy after
intubation and mechanical ventilation, and the catheter was
inserted into the left ventricular cavity via a stab incision
through the apex of the heart.

Analysis of LacZ expression and vector biodistribution

Distribution of transgene expression in mouse and rat tis-
sues was determined by staining with 5-bromo-4-chloro-3-
indolyl-�-D-galactopyranoside (X-Gal) as previously de-
scribed (Zhang et al., 1999). �-Galactosidase activity was
quantified by Tropix Galacto-Light Plus assay (Applied
Biosystems, Foster City, CA). For biodistribution analysis,
samples were snap frozen in liquid nitrogen. After DNA ex-
traction, genome copy titers were quantified by TaqMan
polymerase chain reaction (PCR) (Applied Biosystems) us-
ing primers and probes designed against the LacZ transgene.
An uninjected control was analyzed to confirm specificity of
the assay.

Statistical analysis

Mean values from each experimental group were com-
pared by one-way analysis of variance (ANOVA) with Stu-
dent–Newman–Keuls post-hoc analysis.

Results

Evaluation of cardiac gene transfer by AAV serotypes in
the mouse

AAV serotypes 1, 6, 7, 8, and 9 were evaluated for their
ability to provide gene transfer to the mouse heart. Neona-
tal mice (day 4–5) were injected via the pericardial cavity
with 2.5 � 1011 genome copies (GC) of AAV-CB-LacZ and
killed at 6 weeks to analyze transgene expression by X-Gal
staining. All serotypes were capable of providing highly ef-
ficient global cardiac gene transfer at this dose of vector (Fig.
1). AAV8 and AAV9 were also efficient at transducing the
diaphragm (Fig. 1). Expression was low in the liver for all
serotypes examined (Fig. 1).

Dose response of AAV serotypes in the mouse heart

Because all serotypes examined appeared to have similar
cardiac tropism at the initial vector dose, a dose–response
study was performed next. Two additional groups of mice
were injected with AAV-CB-LacZ as described previously
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and monitored for 6 weeks: one at a dose of 2.5 � 1010 GC
and another at a dose of 2.5 � 109 GC. AAV9 continued to
provide high-level, global cardiac gene transfer at the inter-
mediate dose, whereas expression mediated by the other
serotypes declined sharply (Fig. 2a). At the low dose, AAV9
was still able to provide moderate cardiac transgene 

expression, whereas expression mediated by the other
serotypes was negligible (Fig. 2a). In addition, although car-
diac transgene expression continued to be high at the inter-
mediate dose, expression in the liver and diaphragm was
barely detectable (data not shown). A quantitative �-galac-
tosidase assay was performed on cardiac tissue extracts from

SUPERIOR GLOBAL CARDIAC GENE TRANSFER BY AAV9 1361

FIG. 1. Representative photomicrographs of sections from mouse heart, diaphragm, and liver 6 weeks after intrapericar-
dial injection of 50 �l containing 2.5 � 1011 GC of AAV-CB-LacZ of the indicated serotype. Sections have been stained with
X-Gal and counterstained with eosin. Scale bars: 1 mm for heart, 200 �m for liver and diaphragm.

FIG. 2. Dose response of LacZ expression in the mouse heart 6 weeks after intrapericardial injection of 50 �l containing
the indicated dose of AAV-CB-LacZ. (a) Representative photomicrographs of mouse heart stained with X-Gal and coun-
terstained with eosin. Scale bars: 200 �m. (b) Graph displaying �-galactosidase activity as determined by quantitative chemi-
luminescence assay of samples from mice treated with the intermediate dose. Columns and error bars represent means and
SD. Note that AAV9 is superior to the other serotypes evaluated at the intermediate dose (*p � 0.05 vs. other serotypes).

http://www.liebertonline.com/action/showImage?doi=10.1089/hum.2008.123&iName=master.img-000.jpg&w=486&h=181
http://www.liebertonline.com/action/showImage?doi=10.1089/hum.2008.123&iName=master.img-001.jpg&w=268&h=149


the intermediate group, and the results of this assay con-
firmed the X-Gal staining: activity in the AAV9-treated
hearts was approximately 1 log higher than in the other
serotypes (Fig. 2b).

Time course of AAV9 expression in the mouse heart

Because AAV9 appears to be the serotype most tropic for
the mouse heart, we next evaluated the stability of transgene
expression in this group over time. Mice were treated with
high-dose AAV9-CB-LacZ as described previously, and
monitored for up to 1 year with euthanasia occurring at 1
week, 2 weeks, 3 weeks, 6 weeks, 7 months, and 1 year.
Transgene expression was global and highly efficient at all
time points examined (Fig. 3). Expression was detectable by
1 week and reached a peak by 2 weeks that was stable
through 6 weeks. By 7 months and 1 year, numerous LacZ-
positive cells were still present throughout the heart al-
though their frequency was somewhat reduced (Fig. 3). Re-
sults of a quantitative �-galactosidase assay showed that
enzyme activity had decreased by approximately 5-fold from
6 weeks to 1 year (data not shown).

Cardiac tropism of AAV serotypes in the rat

AAV serotypes 1, 7, 8, and 9 were next evaluated for their
ability to provide gene transfer to the rat heart. AAV6 was
not evaluated in the rat because it performed similarly to
AAV1 in the mouse heart in this study and has been reported
previously to perform similarly to AAV1 in the rat heart
(Palomeque et al., 2007). Adult rats (8 weeks old) underwent
left thoracotomy with direct injection of 5 � 1011 GC of AAV-
CB-LacZ into the myocardium and were killed at 4 weeks
for analysis of LacZ expression by X-Gal staining. AAV9 pro-
vided highly efficient, global transgene expression to the tar-
geted region of the heart (left ventricular free wall), whereas
expression was minimal after injection with other serotypes
(Fig. 4).

Dose response of AAV serotypes in the rat

To determine whether AAV9 would continue to provide
high-level gene transfer at a lower vector dose, rats were in-
jected with 5 � 1010 GC of AAV-CB-LacZ as described pre-
viously and killed at 4 weeks. AAV9 was able to provide

BISH ET AL.1362

FIG. 3. Time course of LacZ expression after intrapericardial injection of 50 �l containing 2.5 � 1011 GC of AAV9-CB-
LacZ. Shown are representative photomicrographs of sections stained with X-Gal and counterstained with eosin. Scale bars:
1 mm for low magnification (top row), 200 �m for high magnification (bottom row).

FIG. 4. Representative photomicrographs of sections from rat heart 4 weeks after direct myocardial injection into the left
ventricular free wall of 250 �l containing 5 � 1011 GC of AAV-CB-LacZ of the indicated serotype in five equal aliquots. Sec-
tions have been stained with X-Gal and counterstained with eosin. Scale bars: 2.4 mm.

http://www.liebertonline.com/action/showImage?doi=10.1089/hum.2008.123&iName=master.img-002.jpg&w=490&h=130
http://www.liebertonline.com/action/showImage?doi=10.1089/hum.2008.123&iName=master.img-003.jpg&w=466&h=158


moderate gene transfer at this lower dose, but LacZ expres-
sion was barely detectable in the hearts of rats treated with
the other serotypes (Fig. 5a). A quantitative �-galactosidase
assay was performed on cardiac tissue extracts from the
high-dose group, and the results of this assay confirmed the
X-Gal staining: activity in the AAV9 hearts was 5- to 10-fold
higher than in the other serotypes (Fig. 5b).

Cardiac function after cardiac gene transfer in the rat

To determine whether cardiac gene transfer would have
deleterious effects on cardiac function, rats treated with the
high dose of the two most highly efficient serotypes, AAV8
and AAV9, underwent echocardiography (echo) and hemo-
dynamic assessment with a Millar pressure–volume con-
ductance catheter before euthanasia at 4 weeks and were
compared with uninjected controls. The echo data displayed
in Table 1 show that there is no significant difference in car-
diac function among the groups in terms of fractional short-
ening (FS) or ejection fraction (EF). There was also no sig-
nificant difference in cardiac geometry among the three
groups, although an unusually large animal in the AAV8
group did cause a trend toward increased cardiac mass and

chamber dimensions in this group (Table 1). The hemody-
namic data displayed in Fig. 6 show that there is no signifi-
cant difference in pressure–volume relationships among the
three groups. Therefore, cardiac gene transfer did not ad-
versely affect the cardiac cycle either in terms of diastolic fill-
ing or systolic pressure generation.

Biodistribution of gene expression and vector 
genomes in the rat

Biodistribution studies were next performed to determine
the extent of LacZ expression and vector genome presence
in noncardiac tissues at 4 weeks in the high-dose groups
treated with AAV8 and AAV9. LacZ expression was largely
restricted to the heart after direct myocardial injection of both
serotypes (Fig. 7a). A minimal number of positive cells was
detected in the liver, and expression was virtually absent in
other tissues examined (Fig. 7a). Vector genomes were de-
tected in all tissues examined, with the highest number be-
ing found in the heart and liver (Fig. 7b). The number of
genomes detected in the heart and liver were similar and
were 2 to 3 logs more abundant than those found in other
tissues (Fig. 7b).

SUPERIOR GLOBAL CARDIAC GENE TRANSFER BY AAV9 1363

FIG. 5. Dose response of LacZ expression in the rat heart 4 weeks after direct myocardial injection of 250 �l of the indi-
cated dose of AAV-CB-LacZ in five equal aliquots. (a) Representative photomicrographs of rat heart stained with X-Gal
and counterstained with eosin. Scale bars: 200 �m. (b) Graph displaying �-galactosidase activity as determined by quanti-
tative chemiluminescence assay of samples from rats treated with the high dose. Columns and error bars represent means
and SD. Note that AAV9 is superior to the other serotypes evaluated (*p � 0.05 vs. other serotypes).
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Discussion

The goal of this investigation was to determine the rela-
tive cardiac tropisms of AAV serotypes 1, 6, 7, 8, and 9 in
the mouse and rat. We also sought to use a delivery tech-
nique that would maximize cardiac gene transfer while min-
imizing systemic exposure to vector. In the mouse arm of the
study, we found that injection of AAV into the pericardial
space of neonates via a subxiphoid approach is an effective
method for achieving highly efficient, global cardiac gene
transfer. At a high vector dose (2.5 � 1011), all serotypes ex-
amined were capable of providing high-level, global cardiac
gene transfer of the LacZ reporter gene with low hepatic ex-
pression. AAV8 and AAV9 also effectively transduced the
diaphragm at this dose. However, at an intermediate dose
(2.5 � 1010), AAV9 was the only serotype that continued to
provide high-level gene transfer to the heart. In addition, at
the intermediate dose, expression was limited almost en-
tirely to the heart, with only a minimal number of positive
cells detectable in the diaphragm and liver.

Although several other groups have demonstrated that
AAV9 is the most cardiotropic serotype in the mouse (Ina-
gaki et al., 2006; Pacak et al., 2006; Bostick et al., 2007; Van-
dendriessche et al., 2007; Zincarelli et al., 2008), none has fo-
cused on combining high-level gene transfer with a delivery
method that would limit potentially dangerous systemic ex-
posure. We were able to achieve global, cardiac-specific gene
transfer at a dose that was approximately 5-fold lower than
was possible after tail vein injection (Inagaki et al., 2006). This
allowed us not only to minimize extracardiac vector expo-
sure and gene transfer but also to reduce the animal’s total
viral load. In addition, our time course study demonstrated
that AAV9-mediated gene transfer after intrapericardial in-
jection has a quick onset and is relatively stable for at least
1 year.

This intrapericardial injection approach has been used pre-
viously to deliver adenovirus to the mouse heart, and al-
though LacZ transgene expression was efficient at 3 days, it

was virtually nonexistent in the myocardium by 2 months
(Zhang et al., 1999). This approach has also been used to de-
liver single-stranded AAV1 (ssAAV1) and self-complemen-
tary AAV1 (scAAV1) to the mouse heart; however, GFP ex-
pression mediated by ssAAV1 was barely detectable at 11
days and minimal at 21 days (Andino et al., 2007). Although
the use of scAAV led to faster onset of expression and higher
expression, scAAV limits therapeutic applications because
packaging capacity is reduced by half (McCarty et al., 2001,
2003; Choi et al., 2005). For example, the SERCA gene, which
has been proposed for use in a clinical trial (Hajjar et al.,
2008), is too large to package into scAAV. As a result, we be-
lieve that our strategy using ssAAV9 offers significant ad-
vantages over these previous approaches.

The potential applications of our technique are numerous.
The highly efficient and stable gene transfer mediated by
AAV9 makes it ideal for use as a cardiac gene transfer vec-
tor because most cardiac diseases follow a chronic course. In
addition, because the mice are injected as neonates and be-
cause vector dose can be adjusted to limit expression to the
heart, this intrapericardial injection technique can be used as
a simple alternative to the creation of cardiac-specific trans-
genic or knockout (using short hairpin RNA [shRNA];
Andino et al., 2008) lines. This would be especially useful in
the case of a gene whose manipulation during embryonic de-
velopment produces a lethal phenotype. Alternatively, this
gene transfer technique could be used to screen potentially
therapeutic transgenes in many of the widely available
mouse models of cardiac disease to identify candidates for
large animal trials. Finally, by using the high vector dose,
one could simultaneously treat both the heart and di-
aphragm, a technique that may prove useful in the mdx
mouse model of Duchenne muscular dystrophy (Yue et al.,
2003).

In the second arm of our study we evaluated in adult rats
the AAV serotypes that we had screened in the mouse arm,
to determine whether AAV9 would continue to be superior
as a cardiac gene transfer vector in a larger animal. To the
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best of our knowledge we are the first group to perform a
direct comparison of AAV9 with other serotypes in the adult
rat heart. The most comprehensive study found that AAV8
was superior to AAV serotypes 1–7 (Palomeque et al., 2007),
whereas others showed the superiority of AAV6 over AAV2
(Kawamoto et al., 2005) and of AAV1 over AAV2 and AAV5
(Schirmer et al., 2007). We did not test AAV6 in the rat be-
cause it performed similarly to AAV1 in mice in this study
and because it has been previously reported to perform sim-
ilarly to AAV1 in the rat (Palomeque et al., 2007). This is not
surprising because AAV1 and AAV6 are part of the same
clade and therefore share �95% sequence homology in their
capsids (Gao et al., 2002, 2004).

We report here that AAV9 provides highly efficient, global
gene transfer to the left ventricular free wall of the adult rat
after direct injection into the myocardium in five equally
spaced aliquots. This level of gene transfer exceeds that pro-
vided by the other serotypes evaluated by approximately 1
log and is superior to the gene transfer achieved by another
investigator using a vascular delivery method (Miyagi et al.,
2008). AAV9-mediated gene expression was also specific to
the heart after direct injection. Although vector genomes
were detected in all tissues examined, only a minimal num-

ber of LacZ-positive cells was detected in the liver, and pos-
itive cells were absent from the multiple other tissues ex-
amined. AAV9 may have an advantage in mediating cardiac
gene expression because of differential viral internalization
and/or nuclear uncoating, as was determined previously for
other AAV serotypes (Sipo et al., 2007), but further investi-
gation is necessary to confirm this hypothesis. Finally,
AAV9-mediated cardiac gene transfer via direct myocardial
injection in the rat appears to be safe, as no differences in
cardiac function were noted between AAV9-injected rats and
uninjected rats by either echocardiography or Millar con-
ductance catheter.

Our results indicate that AAV9 should be the vector of
choice for studies involving cardiac gene transfer to the rat
heart. This is important because as larger animals, rats offer
the opportunity to evaluate potentially therapeutic genes in
a more clinically relevant model. For example, it is techni-
cally more feasible to create models of ischemic cardiomy-
opathy via coronary artery ligation or models of pressure
overload cardiomyopathy via aortic banding in the rat rather
than in the mouse, and these rat models are well established
in the literature (Pleger et al., 2007; Sakata et al., 2007). How-
ever, investigators are not using AAV9 in these models, and
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FIG. 7. Biodistribution of LacZ expression and vector genomes 4 weeks after direct injection of 5 � 1011 GC of AAV8- and
AAV9-CB-LacZ into the rat heart. (a) Representative photomicrographs of LacZ expression in several organs examined. Sec-
tions were stained with X-Gal and counterstained with eosin. Scale bars: 200 �m. (b) Graph displaying vector genome dis-
tribution in several organs examined via TaqMan PCR. He, heart; Li, liver; Lu, lung; Br, brain; Te, testis; Ki, kidney; Sp,
spleen; St, stomach; Ga, gastrocnemius. Columns and error bars represent means and SD.



as a result, are achieving suboptimal gene transfer efficiency,
which may be causing them to underestimate or miss the
beneficial effects of potentially therapeutic genes.

AAV9 is the most cardiotropic serotype in the mouse and
rat and should be used in investigations involving cardiac
gene transfer in these animals. We have described techniques
that allow global, cardiac-specific gene transfer in these
species. If desired, cardiac specificity could be further en-
hanced by transcriptional and/or transductional targeting of
vectors (Godecke, 2006; Muller et al., 2006, 2007). AAV9 may
be the vector of choice for clinical trials in the heart, but large
animal and nonhuman primate studies should first be initi-
ated to evaluate the cardiac performance of AAV9 in these
higher species.
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