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Optimization and Translation of MSC-Based Hyaluronic Acid Hydrogels
for Cartilage Repair

Abstract
Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, without an innate
regenerative response, often lead to degenerative changes towards the premature development of
osteoarthritis. Surgical interventions have yet to restore long-term mechanical function. Towards this end,
tissue engineering has been explored for the de novo formation of engineered cartilage as a biologic approach
to cartilage repair. Research utilizing autologous chondrocytes has been promising, but clinical limitations in
their yield have motivated research into the potential of mesenchymal stem cells (MSCs) as an alternative cell
source. MSCs are multipotent cells that can differentiate towards a chondrocyte phenotype in a number of
biomaterials, but no combination has successfully recapitulated the native mechanical function of healthy
articular cartilage. The broad objective of this thesis was to establish an MSC-based tissue engineering
approach worthy of clinical translation.

Hydrogels are a common class of biomaterial used for cartilage tissue engineering and our initial work
demonstrated the potential of a photo-polymerizable hyaluronic acid (HA) hydrogel to promote MSC
chondrogenesis and improved construct maturation by optimizing macromer and MSC seeding density. The
beneficial effects of dynamic compressive loading, high MSC density, and continuous mixing (orbital shaker)
resulted in equilibrium modulus values over 1 MPa, well in range of native tissue.

While compressive properties are crucial, clinical translation also demands that constructs stably integrate
within a defect. We utilized a push-out testing modality to assess the in vitro integration of HA constructs
within artificial cartilage defects. We established the necessity for in vitro pre-maturation of constructs before
repair to achieve greater integration strength and compressive properties in situ. Combining high MSC density
and gentle mixing resulted in integration strength over 500 kPa, nearly 10-fold greater than previous reports of
integration with MSC-based constructs. Furthermore, we demonstrated the durability of this repair system by
applying dynamic loading and showed its functional contribution to the distribution of compressive loads
across the repair space.

Overall, the studies contained within this thesis offer the first MSC-based tissue engineering strategy that
successfully recapitulates native mechanical function while also demonstrating the potential for complete
functional cartilage repair.
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ABSTRACT 

 

OPTIMIZATION AND TRANSLATION OF MSC-BASED HYALURONIC ACID 

HYDROGELS FOR CARTILAGE REPAIR 

 

Isaac E. Erickson 

Robert L. Mauck 

 

Traumatic injury and disease disrupt the ability of cartilage to carry joint stresses and, 

without an innate regenerative response, often lead to degenerative changes towards the 

premature development of osteoarthritis. Surgical interventions have yet to restore long-

term mechanical function. Towards this end, tissue engineering has been explored for the 

de novo formation of engineered cartilage as a biologic approach to cartilage repair. 

Research utilizing autologous chondrocytes has been promising, but clinical limitations 

in their yield have motivated research into the potential of mesenchymal stem cells 

(MSCs) as an alternative cell source. MSCs are multipotent cells that can differentiate 

towards a chondrocyte phenotype in a number of biomaterials, but no combination has 

successfully recapitulated the native mechanical function of healthy articular cartilage. 

The broad objective of this thesis was to establish an MSC-based tissue engineering 

approach worthy of clinical translation. 

 

Hydrogels are a common class of biomaterial used for cartilage tissue engineering and 

our initial work demonstrated the potential of a photo-polymerizable hyaluronic acid 
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(HA) hydrogel to promote MSC chondrogenesis and improved construct maturation by 

optimizing macromer and MSC seeding density.  The beneficial effects of dynamic 

compressive loading, high MSC density, and continuous mixing (orbital shaker) resulted 

in equilibrium modulus values over 1 MPa, well in range of native tissue. 

 

While compressive properties are crucial, clinical translation also demands that 

constructs stably integrate within a defect. We utilized a push-out testing modality to 

assess the in vitro integration of HA constructs within artificial cartilage defects. We 

established the necessity for in vitro pre-maturation of constructs before repair to achieve 

greater integration strength and compressive properties in situ. Combining high MSC 

density and gentle mixing resulted in integration strength over 500 kPa, nearly 10-fold 

greater than previous reports of integration with MSC-based constructs. Furthermore, we 

demonstrated the durability of this repair system by applying dynamic loading and 

showed its functional contribution to the distribution of compressive loads across the 

repair space. 

 

Overall, the studies contained within this thesis offer the first MSC-based tissue 

engineering strategy that successfully recapitulates native mechanical function while also 

demonstrating the potential for complete functional cartilage repair. 



ix 

 TABLE OF CONTENTS 

 

 

 
DEDICATION ........................................................................................................................ iii 

 

ACKNOWLEDGMENTS ...................................................................................................... iv 

 

ABSTRACT ........................................................................................................................... vii 

 

LIST OF TABLES ................................................................................................................. xv 

 

LIST OF FIGURES .............................................................................................................. xvi 

 

CHAPTER 1: Introduction .................................................................................................... 1 

 

CHAPTER 2: Background ..................................................................................................... 6 

2.1. Articular Cartilage ............................................................................................... 6 

2.1.1. Structure and Organization ..................................................................... 6 

2.1.2. Composition ........................................................................................... 7 

2.1.3. Physiological Loading ............................................................................ 8 

2.1.4. Mechanical Properties ............................................................................ 8 

2.1.5. Pathology ................................................................................................ 9 

2.1.6. Current Treatment ................................................................................ 10 

2.2. Cartilage Tissue Engineering ............................................................................ 11 

2.2.1. Biomaterials .......................................................................................... 11 

2.2.2. Hydrogels ............................................................................................. 11 

2.2.3. Mesenchymal Stem Cells ..................................................................... 13 

2.2.4. Mechanical Stimulation ........................................................................ 14 

2.3. Functional Cartilage Repair ............................................................................. 15 

2.3.1. Integration............................................................................................. 15 

2.3.2. Durability and Load Distribution ......................................................... 16 

2.4. Summary and Clinical Significance ................................................................. 17 

 



x 

CHAPTER 3: Differential Maturation and Structure Function Relationships in MSC 

and Chondrocyte Seeded Hydrogels ................................................................................ 18 

3.1. Introduction ........................................................................................................ 18 

3.2. Materials and Methods ...................................................................................... 22 

3.2.1. Cell Isolation and Expansion ................................................................ 22 

3.2.2. Cell Seeding in Hydrogels .................................................................... 22 

3.2.3. Construct Culture and Analysis ............................................................ 24 

3.2.4. Mechanical Testing .............................................................................. 25 

3.2.5. Biochemical Analyses .......................................................................... 25 

3.2.6. Histology .............................................................................................. 26 

3.2.7. Statistical Analyses ............................................................................... 26 

3.3. Results ................................................................................................................. 27 

3.3.1. 3D Culture:  Cell Shape, Viability, and Construct Dimensions ........... 27 

3.3.2. Biochemical Composition and Histological Analysis .......................... 30 

3.3.3. Mechanical Properties .......................................................................... 33 

3.3.4. Structure-Function Correlation Analysis .............................................. 35 

3.4. Discussion ............................................................................................................ 37 

3.5. Conclusions ......................................................................................................... 42 

 

CHAPTER 4: Macromer Density Influences Mesenchymal Stem Cell Chondrogenesis 

and Maturation in Photo-crosslinked Hyaluronic Acid Hydrogels .............................. 44 

4.1. Introduction ........................................................................................................ 44 

4.2. Materials and Methods ...................................................................................... 47 

4.2.1. MSC Isolation and Expansion .............................................................. 47 

4.2.2. Fabrication of Acellular and MSC-Seeded Constructs ......................... 47 

4.2.2. Mechanical Characterization of Acellular Constructs .......................... 48 

4.2.3. Macromolecular Diffusion in Acellular Constructs ............................. 48 

4.2.4. Long-term Culture Conditions ............................................................. 48 

4.2.5. Viability and Short-term Expression Analysis ..................................... 49 

4.2.6. Biomechanical Analysis ....................................................................... 49 

4.2.7. Biochemical Analysis ........................................................................... 50 

4.2.8. Histological Analysis of MSC-seeded Constructs................................ 50 

4.2.9. Statistical Analysis ............................................................................... 51 



xi 

4.3. Results ................................................................................................................. 51 

4.3.1. Macromer Density Influences Acellular Hydrogel Mechanics ............ 51 

4.3.2. MSC Viability and Differentiation in HA Gels with Increasing 

Macromer Density ............................................................................. 52 

4.3.3. Construct Dimensional Stability and Biochemical Content ................. 54 

4.3.4. Mechanical Properties of MSC-laden Constructs ................................ 57 

4.3.5. ECM Deposition and Distribution ........................................................ 58 

4.3.6. Macromolecular Diffusion in Acellular MeHA Hydrogels .................. 59 

4.4. Discussion ............................................................................................................ 60 

4.5. Conclusions ......................................................................................................... 66 

 

CHAPTER 5: High Density MSC Seeded Hyaluronic Acid Constructs Produce 

Engineered Cartilage with Native Properties ................................................................. 67 

5.1. Introduction ........................................................................................................ 67 

5.2. Methods ............................................................................................................... 70 

5.2.1. Hyaluronic Acid Hydrogel Synthesis ................................................... 70 

5.2.2. MSC Isolation, Expansion, and 3D Culture ......................................... 71 

5.2.3. Mechanical and Biochemical Analysis................................................. 72 

5.2.4. Histological Analysis............................................................................ 72 

5.2.5. Gene Expression ................................................................................... 73 

5.2.6. Statistical Analysis ............................................................................... 73 

5.3. Results ................................................................................................................. 74 

5.3.1. Construct Formation and Mechanical Properties with Increasing 

Seeding Density ................................................................................. 74 

5.3.2. Biochemical Content and Distribution with Increasing Seeding 

Density ............................................................................................... 76 

5.3.3. Matrix Gene Expression with Increasing Seeding Density .................. 78 

5.3.4. Maturation of High Density Constructs with Orbital Shaking ............. 80 

5.4. Discussion ............................................................................................................ 80 

5.5. Conclusions ......................................................................................................... 85 

 

 



xii 

CHAPTER 6: Dynamic Compression Promotes Cartilage-Like Functional Properties in 

MSC-Seeded Hyaluronic Acid Hydrogels ....................................................................... 86 

6.1 Introduction ......................................................................................................... 86 

6.2. Methods ............................................................................................................... 88 

6.2.1. Construct Formation and Culture ......................................................... 88 

6.2.2. Dynamic Compressive Loading ........................................................... 88 

6.2.3. Analysis Techniques ............................................................................. 89 

6.2.4. Statistical Analysis ............................................................................... 89 

6.3. Results ................................................................................................................. 90 

6.3.1. Initial MSC Viability ............................................................................ 90 

6.3.2. Mechanical Properties .......................................................................... 90 

6.3.3. Biochemical Content ............................................................................ 91 

6.3.4. Histology .............................................................................................. 93 

6.4. Discussion ............................................................................................................ 93 

6.5. Conclusions ......................................................................................................... 94 

 

CHAPTER 7: Improved Cartilage Repair via InVitro Pre-Maturation of MSC Seeded 

Hyaluronic Acid Hydrogels .............................................................................................. 96 

7.1. Introduction ........................................................................................................ 96 

7.2. Methods ............................................................................................................. 100 

7.2.1. MeHA Hydrogel ................................................................................. 100 

7.2.2. MSC Isolation and Cartilage Repair Model ....................................... 100 

7.2.3. Experimental Groups and Culture Conditions ................................... 101 

7.2.4. Micro-Computed Tomography (µCT) ................................................ 103 

7.2.5. Mechanical Testing ............................................................................ 103 

7.2.6. Biochemical Content and Histology ................................................... 104 

7.2.7. Statistical Analysis ............................................................................. 104 

7.3. Results ............................................................................................................... 105 

7.3.1. Repair Construct Morphology and Interface Characteristics ............. 105 

7.3.2. Mechanical Properties ........................................................................ 107 

7.3.3. Biochemical Content .......................................................................... 109 

7.3.4. Histological Analysis.......................................................................... 110 

 



xiii 

7.4. Discussion .......................................................................................................... 112 

7.5. Conclusions ....................................................................................................... 117 

 

CHAPTER 8: Increasing the Functional Repair Potential of MSC-Seeded Hyaluronic 

Acid Hydrogel Constructs In Vitro ................................................................................ 118 

8.1. Introduction ...................................................................................................... 118 

8.2. Methods ............................................................................................................. 120 

8.2.1. MSC Isolation and Cartilage Defect Preparation ............................... 120 

8.2.2. Defect Repair ...................................................................................... 121 

8.2.3. Integration Testing and Durability ..................................................... 122 

8.2.4. Load Transmission Testing ................................................................ 122 

8.2.5. Compression Testing, Biochemistry, and Histology .......................... 122 

8.2.6. Statistical Analysis ............................................................................. 123 

8.3. Results ............................................................................................................... 123 

8.3.1. Integration Strength and Durability of In Vitro Repair ...................... 123 

8.3.2. Compressive Properties of MSC Seeded MeHA Constructs.............. 125 

8.3.3. Load Transmission in Repaired Defects ............................................. 125 

8.3.4. Histology ............................................................................................ 128 

8.4. Discussion .......................................................................................................... 128 

8.5. Conclusions ....................................................................................................... 133 

 

CHAPTER 9: Cartilage Matrix Formation by Bovine Mesenchymal Stem Cells in 

Three-Dimensional Culture is Age-Dependent ............................................................. 134 

9.1. Introduction ...................................................................................................... 134 

9.2. Methods ............................................................................................................. 136 

9.2.1. Aging and Articular Cartilage ............................................................ 136 

9.2.2. Aged MSCs and Chondrocytes in Pellet Culture ............................... 137 

9.2.3. Aged MSCs in 3D HA Hydrogels ...................................................... 138 

9.2.4. Cell and Cartilage Isolation ................................................................ 138 

9.2.5. Split-Line Analysis of Collagen Orientation ...................................... 138 

9.2.6 Histology ............................................................................................. 139 

9.2.7. Statistical Analysis ............................................................................. 139 

 



xiv 

9.3. Results ............................................................................................................... 141 

9.3.1. Cartilage Composition and Structure Change with Age .................... 141 

9.3.2. Age Affects MSC and Chondrocyte Matrix Formation in Pellets ...... 142 

9.3.3. Aging Affects MSC Chondrogenesis in HA Hydrogels ..................... 144 

9.4. Discussion .......................................................................................................... 147 

9.5. Conclusions ....................................................................................................... 150 

 

CHAPTER 10: Summary and Future Directions ............................................................. 152 

10.1. Summary ......................................................................................................... 152 

10.2. Limitations and Future Directions ............................................................... 158 

10.2.1. Graft Hypertrophy ............................................................................ 158 

10.2.2. Dynamic Culture .............................................................................. 159 

10.2.3. Exogenous TGF-β3 Supplementation .............................................. 159 

10.2.4. MSC Age and Species of Origin ...................................................... 160 

10.2.5. Long-Term Durability of Repair ...................................................... 161 

10.2.6. Estimation of Functional Repair ....................................................... 161 

10.2.7. Large Animal Study ......................................................................... 162 

10.3. Conclusions ..................................................................................................... 163 

 

Appendix 1:  Related Publications ..................................................................................... 164 

 

Appendix 2:  Related Conference Abstracts ..................................................................... 165 

 

Bibliography ......................................................................................................................... 167 

 



xv 

LIST OF TABLES 

Table 3-1:  Time dependent changes in construct dimensions and biochemical content. 
Mean ± SD of 3-4 samples per group at each time point. (*indicates p<0.05 versus day 0 
**indicates p<0.05 from day 14, #indicates p<0.05 versus day 0 and day 14) .....................28 

Table 3-2: Correlation of mechanical properties and biochemical content in chondrocyte 
and MSC seeded constructs. Correlation coefficients relating measured mechanical 
properties (EY and IG*I) with concentration of GAG and collagen for chondrocyte and 
MSC seeded constructs. *indicates p<0.05, **indicates p<0.01, ***indicates p<0.001, ‘ns’ 
indicates no significant difference. ..........................................................................................37 

Table 4-1:  Construct dimensions, biochemical content, and mechanical properties of 
MSC-seeded MeHA and Ag constructs after 6 weeks of culture (mean ± standard 
deviation (SD); n=3-4/group). ....................................................................................................57 

 



xvi 

LIST OF FIGURES 

Figure 2-1:  Histological image of articular cartilage with zonal differences in the 
organization of chondrocytes from the superficial to deep zone (H&E staining; 40X 
magnification). (Wooley et al. 2005) ........................................................................................... 7 

Figure 2-2:  Arthroscopic image of a focal cartilage defect from traumatic injury. The lack 
of intrinsic cartilage healing presents the need to fill defects with a suitable replacement 
tissue. (Ruckstuhl et al. 2008) ..................................................................................................... 9 

Figure 2-3:  Explanted HA constructs 12 weeks after subcutaneous implantation of 
HA/auricular chondrocyte constructs in nude mice. The 2 wt % constructs resemble 
native cartilage tissue, whereas other HA constructs remained relatively translucent, with 
little change in their macroscopic appearance since implantation. (Chung et al. 2006) ....13 

Figure 2-4:  Equilibrium compressive Young's modulus of chondrocyte- and MSC-laden 
agarose constructs through 10 weeks of culture in chondrogenic medium (CM; with and 
without TGF) or basal medium (BM). The mechanical properties in chondrocyte-laden 
constructs achieved a higher stiffness than MSC-laden constructs. (Mauck et al. 2006) .14 

Figure 2-5:  Relative gene expression of articular chondrocyte-seeded HA hydrogels after 
1 day (black) and 5 days (white) of dynamic compressive loading normalized to free-
swelling controls. Significant differences (p ≤ 0.05) between free-swelling and 
mechanically loaded samples are denoted by asterisks. (Chung et al. 2008) .....................15 

Figure 3-1: Calcein AM staining of live cells in construct cross sections on day 42 for 
chondrocytes (A-C) and MSCs (D-F) in agarose (left), MeHA (middle), and Puramatrix 
(right) hydrogels. (40X magnification; scale bar = 50 µm) .....................................................27 

Figure 3-2: Biochemical content of chondrocyte and MSC-seeded constructs as a 
function of time over an 8 week culture period. (A) DNA content, (B) GAG as a percentage 
of the wet weight (%ww), and (C) collagen as a percentage of the wet weight. Data 
represent the mean ± SD of 3-4 samples from one of two replicate studies. *indicates 
p<0.05 for day 56 comparisons between hydrogels within cell type. **indicates greater 
value (p<0.05) for comparisons on day 56 within hydrogel between cell types. 

†
indicates 

no significant increase from day 0 (p>0.05). ...........................................................................29 

Figure 3-3: Histological analysis of chondrocyte and MSC-seeded constructs on day 56. 
Alcian blue staining of proteoglycan in chondrocyte (A-C) and MSC-seeded (D-F) agarose 
(top), MeHA (middle), and Puramatrix (bottom) hydrogels. Picrosirius red staining of 
collagen in chondrocyte (G-I) and MSC-seeded (J-L) agarose (top), HA (middle), and 
Puramatrix (bottom) hydrogels. (100X magnification; scale bar = 200 µm) .........................32 

Figure 3-4: (A) Equilibrium modulus (EY), and (B) dynamic modulus (IG*I), of agarose 
(Ag), MeHA, and Puramatrix (Pu) hydrogels seeded with chondrocytes or MSCs over 56 
days. Data represent the mean ± SD of 3-4 samples from one of two replicate studies. 
*indicates p<0.05 for day 56 comparisons between hydrogels within cell type. ** indicates 
greater value (p<0.05) for comparisons on day 56 within hydrogel between cell types. 
†
indicates no significance from day 0 (p>0.05). ......................................................................33 

Figure 3-5: Correlation plots relating measured mechanical properties to biochemical 
constituents. (A) Plots for chondrocyte seeded hydrogels. (B) Plots for MSC seeded 
hydrogels. Dashed line shows linear curve fit for each gel type. .........................................34 



xvii 

Figure 4-1:  Biphasic parameters of permeability (k) and aggregrate modulus (HA) for 
MeHA gels with increasing macromer density. (R

2
>0.89; n=3-4/group; * indicates p<0.05 

vs. 1%; ** indicates p<0.05 vs. 1% and 2%) .............................................................................52 

Figure 4-2:  (A) Live (green, left) and dead (red, right) MSCs in 1%, 2%, and 5% MeHA, and 
Ag hydrogels 21 and 42 days after encapsulation (10X magnification; 200 µm scale bar). 
(B) Mitochondrial activity of constructs through day 21. (C) DNA content of MSC-seeded 
constructs through day 42. (n=4/group/time point, ** indicates p<0.05 vs. 1% and Ag on 
day 42, * indicates p<0.05 vs. Ag on day 42; 

‡ 
indicates p<0.05 vs. day 0) ..........................53 

Figure 4-3:  Collagen type I (top), collagen type II (middle), and aggrecan (bottom) mRNA 
levels MSC-seeded MeHA (1%, 2%, and 5%) and Ag constructs through 21 days of 
chondrogenic culture.  Note robust increases in collagen II and aggrecan, indicative of 
chondrogenic differentiation. ...................................................................................................54 

Figure 4-4:  Dimensional variation in acellular and MSC-seeded constructs with time in 
culture.  Differences shown as the percentage of initial size (4 mm diameter and 2.25 mm 
thickness, n=4/group/time point).  Inset image of MSC-seeded constructs after 6 weeks of 
in vitro culture in chondrogenic medium. ...............................................................................55 

Figure 4-5: A) s-GAG percent wet weight (% ww) in 1, 2, and 5% MeHA, and Ag constructs 
through 42 days of in vitro chondrogenic culture.  (** indicates p<0.05 vs 2 and 5% at day 
42)  B) collagen content (% ww) in MeHA and Ag constructs through 42 days of culture.  
Increased concentration of ECM was observed in Ag and 1% MeHA hydrogels by day 42.  
(** indicates p<0.05 vs all other groups at day 42) C) s-GAG release per day per construct 
for MSC-seeded MeHA and Ag constructs through 42 days of culture.  (n=4/group/time 
point, ‡ p<0.05 vs. day 0) ...........................................................................................................56 

Figure 4-6:  Equilibrium compressive modulus (A) and dynamic modulus (B) of MeHA 
and Ag hydrogels through 6 weeks of culture (** indicates p<0.05 vs. all other groups at 
day 42; * indicates p<0.05 vs. 2% and 5%).  Failure strain (C) and tensile modulus (D) of 
MSC-seeded 1 and 2% MeHA and Ag constructs at 2, 4, and 6 weeks. Biomechanical 
properties increase more rapidly and to a higher level in lower concentration MeHA 
constructs. (n=4/group/time point, ‡p<0.05 vs. day 0; * indicates p<0.05 vs. all lower 
groups on the terminal time point (day 42); # indicates p<0.05 vs. Ag group at same time 
point; + indicates p<0.05 vs. 1% MeHA group at same time point) ......................................58 

Figure 4-7:  Alcian blue stained sections of MSC-seeded 1, 2, and 5% MeHA and agarose 
(Ag) constructs after 3 (top), 7 (middle), and 14 days (bottom) of chondrogenic culture 
(10X magnification).  Pericellular aggregation of proteoglycans is evident in higher % 
MeHA constructs in contrast to a more even distribution in 1% MeHA constructs and Ag 
controls. (Scale bar = 250 µm) ..................................................................................................59 

Figure 4-8:  Alcian blue (top) and picrosirius red (middle) stained sections from 1%, 2%, 
and 5% MeHA and agarose (Ag) constructs (10X magnification) on day 42.  Collagen type 
II immunostaining (bottom) on day 42 (5X).  Note the dependence of proteoglycan and 
collagen distribution on MeHA macromer concentration.  (Scale bar = 250 µm) ...............60 

Figure 4-9:  Time course of release of 70 kDa (A) and 2000 kDa (B) fluorescein-
conjugated dextran from 1%, 2%, and 5% MeHA hydrogels. Data were normalized to the 
maximum observed release from 1% MeHA for both dextran sizes. Effective diffusivity 
(C) of dextran of both sizes decreased with increasing MeHA macromer concentration. 
(n=3/group; ** indicates p<0.05 vs. both 2% and 5% MeHA groups; * indicates p<0.05 vs. 
the 5% MeHA group only)..........................................................................................................62 



xviii 

Figure 5-1:  Cartilage matrix diffusion is limited within HA hydrogels of higher macromer 
density (left), but increasing MSC seeding density may improve matrix connectivity 
(right) to enhance the functional development of tissue engineered cartilage. .................70 

Figure 5-2:  (A) Calcein AM fluorescence 1 day after encapsulation confirmed differences 
in cell seeding density while demonstrating initial viability in both 20M (top) and 60M 
(bottom) seeding density groups (100X magnification; scale bar = 100 µm). (B) 
Equilibrium (EY) and (C) dynamic modulus (|G*|) of MSC-laden HA and Ag hydrogels at 
20M and 60M seeding densities after 1 (white), 28 (grey), and 56 (dark grey) days of in 
vitro culture within a chemically defined chondrogenic medium with TGF-β3 (10 ng/mL). 
(n=4 constructs per group; bars indicate p<0.05) ..................................................................75 

Figure 5-3:  (A) Concentration of sulfated glycosaminoglycan (sGAG) and as a percent of 
the construct wet weight (%ww) within MSC-laden HA and Ag hydrogels at seeding 
densities of 20 million MSCs/mL (20M) and 60 million (60M) MSCs/mL after 1, 28, and 56 
days of in vitro culture within a chemically defined chondrogenic medium with TGF-β3 
(10 ng/mL). (n=4 constructs per group; bars indicate p<0.05) (B) Alcian blue staining of 
proteoglycans in day 56 sections of MSC-laden HA and Ag constructs at 20M and 60M 
seeding densities. (100X magnification; scale bar = 200µm) ................................................76 

Figure 5-4:  (A) Collagen concentration as a percent of the construct wet weight (%ww) 
within MSC-laden HA and Ag hydrogels at seeding densities of 20 million MSCs/mL (20M) 
and 60 million (60M) MSCs/mL after 1, 28, and 56 days of in vitro culture within a 
chemically defined chondrogenic medium with TGF-β3 (10 ng/mL). (n=4 constructs per 
group; bars indicate p<0.05) (B) Picrosirius red staining of collagens in day 56 sections 
of MSC-laden HA and Ag constructs at 20M and 60M seeding densities. (100X 
magnification; 200µm scale bar) ..............................................................................................77 

Figure 5-5:  (A) Relative expression of aggrecan (AGG) and (B) collagen type II (COL II) by 
MSCs in 1% HA and Ag hydrogels after 1, 28, and 56 days of chondrogenic culture.  (n=2-
3; bars represent p<0.05) ..........................................................................................................78 

Figure 5-6 (A) Calcein AM fluorescence 2 weeks after encapsulation showed differences 
in cell number and morphology between dynamic and static culture groups (200X 
magnification; 50 µm scale bar). (B) Equilibrium (EY) and dynamic modulus (|G*|) of static 
and dynamic culture groups after 3 (white), 6 (grey), and 9 (dark grey) weeks of in vitro 
culture. (C) sGAG and collagen concentration after 3, 6, and 9 weeks. (n=4-5 constructs 
per group; bars indicate p<0.05) (D) Proteoglycan (left) and collagen staining (right) of 
week 9 constructs. (100X magnification; scale bar = 200 µm) ..............................................79 

Figure 6-1:  Equilibrium compressive modulus of MSC-seeded agarose 
(20 million cells/mL) after dynamic loading. Loading was initiated after 3 days or 3 weeks 
of pre-maturation.  *indicates significance from day 0, ** indicates significance between 
day 0 and free-swelling controls within each time point (p<0.015). (Huang et al. 2010) ....87 

Figure 6-2:  (A) Control and loading conditions for 9 weeks of culture. CL constructs 
were loaded the entire 9 weeks, DL underwent 6 weeks of loading after 3 weeks of pre-
culture, and the LR group was loaded the first 3 weeks followed by 6 weeks of FS culture. 
(B) Custom bioreactor for dynamic loading. ...........................................................................88 

Figure 6-3:  Live/Dead fluorescent imaging after 3 weeks showed a greater number of live 
cells in high MSC density MeHA constructs that had undergone a daily regimen of 
dynamic compressive loading (right) than were found within constructs maintained in 
free-swelling culture conditions (left). (100X magnification; scale bar = 100 µm) ..............90 



xix 

Figure 6-4:  (A) The equilibrium modulus and (B) dynamic modulus (IG*I) of MeHA 
constructs after 3, 6, and 9 weeks of their respective dynamic compressive loading 
regimens (n=4-7; *p<0.05). ........................................................................................................91 

Figure 6-5:  (A) The glycosaminoglycan (GAG) concentrations (%ww) of MeHA constructs 
after continuous dynamic compressive loading (CL), delayed loading (DL), loading 
release (3 weeks loading follwed by return to FS conditions; LR), and free-swelling (no 
loading; FS) culture (n=4-7; *p<0.05).  (B) Proteoglycan staining (alcian blue) after 6 and 9 
weeks (50X magnfication; scale bar = 200 µm). ......................................................................92 

Figure 6-6:  (A) The collagen concentrations (%ww) of MeHA constructs after continuous 
dynamic compressive loading (CL), delayed loading (DL), loading release (3 weeks 
loading follwed by return to FS conditions; LR), and free-swelling (no loading; FS) 
culture (n=4-7; *p<0.05).  (B) Collagen staining (picrosirius red) after 6 and 9 weeks (50X 
magnfication; scale bar = 200 µm). ..........................................................................................92 

Figure 7-1:  Schematic illustrating the experimental design, creation of in vitro repair 
groups, and analysis techniques utilized in this study. ......................................................101 

Figure 7-2:  Contrast enhanced µCT imaging of in vitro repaired cartilage defects after 8 
weeks.  Some contraction was observed in the 1% IS repair group (black arrows), while 
the PC repaired constructs showed no evidence of contraction or gapping.  
Proteoglycan-associated signal attenuation increased in 1% MeHA and 2% Ag indicating 
more accumulated proteoglycan than the remaining MeHA groups, yet still less than 
native cartilage (ring).  Signal in FS controls was greater than in IS polymerized samples.  
C-C controls often contained large gaps between repair cartilage and adjacent host 
cartilage (black arrows). ..........................................................................................................106 

Figure 7-3:  Integration strength of in vitro cartilage repair was dependent on both 
hydrogel formulation and repair technique.  The integration of MSC-laden MeHA (1%) and 
Ag reached nearly half the C-C controls (top grey region), while higher macromer 
concentration MeHA gels did not support integrative repair.  Pre-culture (black bars) 
improved integration strength in both 1% MeHA and Ag repaired constructs.  (n=4-
5/group/timepoint; lines indicate p<0.05) ..............................................................................107 

Figure 7-4:  Compressive properties of repair constructs were dependent on both 
hydrogel formulation and culture condition.  IS repair construct properties (grey bars) 
were severely limited, while FS controls (hatched bars) attained the greatest equilibrium 
modulus.  PC (black bars) improved the compressive properties of the hydrogel repair 
constructs for 1% MeHA and Ag, but did not match FS controls.  (n=4-5/group/timepoint; 
lines indicate p<0.05) ...............................................................................................................108 

Figure 7-5:  Biochemical content was dependent on hydrogel formulation and culture 
conditions.  sGAG content (A) in 1% MeHA increased significantly in both FS and PC 
conditions compared to IS repair.  IS repair similarly limited collagen accumulation (B) 
for every MeHA concentration and Ag.  DNA content (C) generally increased from week 4 
to 8 for PC and FS hydrogels, while DNA content in IS groups did not significantly 
change.  (n=4-5/group/timepoint; lines indicate p < 0.05) ....................................................109 

Figure 7-6:  Picrosirius red staining of collagen shows that IS repair limits construct 
maturation, while increased collagen density was observed in PC and FS constructs.  
Isolated aggregates of collagen were observed within 3% and 5% MeHA constructs from 
all experimental groups.  (100X original magnification; scale bar = 250 µm) ....................111 



xx 

Figure 7-7:  Integration strength vs. equilibrium modulus (log scale) for 1% MeHA and Ag 
(IS and PC) constructs compared to C-C integration control and equilibrium modulus of 
juvenile bovine cartilage (see Chapter 9). Functional cartilage repair requires both stable 
lateral integration and restoration of compressive properties in the defect. The PC 
repairs for both hydrogels approached C-C repairs for integration compared to IS, 
though significant progress remains in matching native tissue mechanics. ....................114 

Figure 8-1:  Schematic of the preparation of in vitro cartilage defects, MeHA repaired 
defects, C-C repair defects, and FS control constructs.......................................................121 

Figure 8-2:  (A) Integration strength of HA and cartilage (C-C) repaired defects after 2 and 
6 weeks of chondrogenic culture (n=5-6). (B) The percent change in the integration 
strength of constructs after the application of 7200 cycles of 10% strain deformations 
compared to the mean integration strength of unperturbed constructs (n=5-6). (C) The 
percent change in integration strength was also determined for repaired constructs after 
removing both the top and bottom layer with a freezing stage microtome (n=4-6). (bars 
with associated p-values indicate statistically significant comparisons) .........................124 

Figure 8-3:  (A) The unconfined equilibrium compressive modulus and (B) dynamic 
modulus of constructs maintained in free-swelling culture and constructs retrieved from 
repaired defects after push-out testing. (n=4-11; also included constructs from durability 
and load transmission tests; bars with associated p-values indicate statistically 
significant comparisons).........................................................................................................126 

Figure 8-4:  (A) The unconfined equilibrium compressive modulus before and after 
removal of repair material consisting of either MSC seeded HA hydrogels or cartilage 
plugs after 2 and 6 weeks of chondrogenic culture (n=5-6). (B) The percent change in 
equilibrium modulus as a result of removing the center of repaired constructs. ............126 

Figure 8-5:  Equilibrium modulus of intact explant cartilage before and after the creation 
of a 4 mm concentric defect (normalized to intact modulus). To demonstrate the effect of 
the biopsy incision alone, the removed cartilage was replaced and the cartilage was 
tested again. (n=4-5; *p<0.05 vs intact cartilage) ..................................................................127 

Figure 8-6:  (A) Proteoglycan staining of FS constructs at the time of implantation and 
after 2, 4, and 6 weeks of FS dynamic culture (25X magnification; scale bar = 0.5 mm). (B) 
Stained proteoglycan within MeHA and cartilage repaired constructs showing the 
interface (white arrows) between repair material and defect cartilage (25X magnification; 
scale bar = 0.5 mm). .................................................................................................................127 

Figure 8-7:  Proteoglycan stained section of MeHA construct retrieved after 6 week push-
out testing shows hydrogel fracture through the less developed center region (alcian 
blue; 25X magnification; scale bar = 0.5 mm). ......................................................................131 

Figure 9-1:  Experimental groups for analysis of fetal, juvenile, and adult native cartilage 
(A), pellet study of chondrocytes (CHs) and mesenchymal stem cells (MSCs) of fetal, 
juvenile, and adult origin cultured for 6 weeks in chondrogenic medium with (CM+) and 
without (CM-) TGF-β3 (B), and the investigation of MSCs within a 3D hyaluronic acid (HA) 
hydrogel context (C). ...............................................................................................................137 

Figure 9-2:  DNA content (A) decreased as the donor age of bovine cartilage increased (F 
= fetal; J = juvenile; A = adult). Glycosaminoglycan (GAG) content (B) did not change 
with age, but collagen content (C) increased significantly. Cartilage equilibrium 
compressive modulus (D) increased slightly with age, whereas the dynamic modulus (E) 
was independent of age (three donors; n = 3-4 per donor. .................................................140 



xxi 

Figure 9-3:  Histologic staining of proteoglycans (top) and collagens (bottom) show age-
related changes in proteoglycan and collagen content and localization while providing a 
visual confirmation of decreasing cellularity with age. Depth-dependent collagen 
organization increased with donor age (alcian blue and picrosirius red; 100X 
magnification; scale bar = 50 µm). .........................................................................................141 

Figure 9-4:  Split-line analysis revealed prominent alignment of collagen fibers in juvenile 
articular cartilage (right). The star-shaped splitting pattern observed in fetal samples 
(left) indicated collagen in this immature cartilage is less organized. ...............................142 

Figure 9-5:  DNA (A), glycosaminoglycan (GAG) (B), and collagen (C) content of 
mesenchymal stem cell and chondrocyte (CH) pellets from fetal (F), juvenile (J), and 
adult (A) bovine donors cultured in chondrogenic medium with (CM+) and without TGF-
β3 (CM-). Data represent the mean ± SD for three donors per age and three pellet 
analyses per donor. .................................................................................................................143 

Figure 9-6:  Proteoglycan staining of fetal, juvenile, and adult mesenchymal stem cell 
(MSC) pellets cultured in chondrogenic medium with TGF-β3 (CM+) for 6 weeks. Fetal 
MSC pellets accrued more proteoglycan than juvenile pellets; adult MSCs formed the 
smallest pellets with the least amount of proteoglycan (alcian blue; 50X magnification; 
scale bar = 500 µm). .................................................................................................................144 

Figure 9-7:  Calcein AM labeling of viable MSCs in HA hydrogels (A) on Day 21 showed 
more cells in fetal MSC gels and a dramatic decline in viable cells for adult MSCs. 
Ethidium labeling (B) indicated a greater number of adult MSCs were nonviable 
compared with gels seeded with fetal or juvenile MSCs (100X magnification; scale bar = 
250 µm). DNA content (C) on Day 21, normalized to initial DNA levels, showed fetal MSCs 
increased in number while adult MSC numbers declined significantly (n = 4; dashed line 
represents Day 0 levels). .........................................................................................................145 

Figure 9-8:  Biochemical content of MSC-seeded HA constructs after 21 days in culture 
showed an age-dependent accumulation of (A) GAG and (B) collagen. The (C) equilibrium 
compressive modulus and (D) dynamic compressive modulus of MSC constructs was 
similarly dependent on MSC age. (n = 4 constructs per age). ............................................146 

Figure 9-9:  Picrosirius red staining of collagens (top) and alcian blue staining of 
proteoglycans (bottom) supported the quantitative biochemical measures (50X 
magnification; scale bar = 250 µm). .......................................................................................147 

Figure 10-1:  Summary of progress in the development of compressive properties in 
MSC-seeded MeHA hydrogels starting with 2% w/v formulation the macromer and MSC 
density were optimized and continuous loading (CL) and dynamic culture were utilized.  
Each successive step resulted in a doubling of the equilibrium modulus. .......................157 

Figure 10-2:  (A) Surgical team executing cadaver simulation in a minipig stifle joint. (B) 
Close-up of cartilage defects in trochlear groove. (C) Experimental conditions to be 
tested in vivo.  (DE=direct encapsulation of MSCs in situ; PM=pre-maturation in vitro; 
*Positions within each joint and left/right sides will be randomized) ................................162 



1 

CHAPTER 1:   Introduction 

 

Functional cartilage repair requires both the replacement of damaged cartilage with an 

equally functional material that will also integrate to adjacent host cartilage, thus forming 

a contiguous repair that is capable of performing the demanding mechanical functions in 

the joint. Tissue engineering has emerged as a promising approach to form cartilage in 

vitro that can be used for cartilage repair. Initial efforts utilizing chondrocytes and 

advanced culture techniques have been successful at generating cartilage-like tissue with 

at least one mechanical property (equilibrium modulus) that equals native cartilage. 

Despite these promising results, the comorbidity of autologous chondrocyte harvest can 

be detrimental to the health of the remaining cartilage. Furthermore, chondrocytes from 

an injured or diseased joint may be suboptimal for tissue engineering. As a result of these 

limitations, the interest in using mesenchymal stem cells (MSCs) as an alternative cell 

source has intensified in recent years. MSCs can proliferate in vitro with phenotypic 

stability while also maintaining their ability to differentiate towards a chondrogenic 

lineage when given proper chemical and environmental cues. Despite their several 

advantages over chondrocytes, MSCs have been routinely outclassed by chondrocytes 

when evaluating the mechanical maturation of tissue engineered constructs. Similarly, 

MSC-based constructs have reached lesser levels of functional integration in vitro than 

have chondrocyte-seeded materials. Significant work remains to optimize an approach to 

functional cartilage tissue engineering that would capitalize on the benefits of using 

MSCs. The objective of this thesis was to optimize an MSC-based approach to generate a 

clinically relevant engineered cartilage. 
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In order to provide a framework for the work described herein, Chapter 2 will provide an 

overview of cartilage biology and mechanics with an emphasis on its functional role in 

skeletal motion. Common pathologies and repair paradigms will also be described to 

motivate the need for improved biologic solutions. Lastly, a review of cartilage tissue 

engineering will discuss biomaterials, cell sources, and strategies that are commonly 

employed in this field. 

 

As a first step, Chapter 3 describes an evaluation of the potential for three distinct 

hydrogel biomaterials for cartilage tissue engineering by evaluating mechanical 

properties, biochemical content, and histological appearance. Photo-polymerizable 

methacrylated HA (MeHA), self-assembling peptide (Puramatrix), and agarose hydrogels 

were each seeded with chondrocytes or MSCs with the hypothesis that construct 

maturation would be dependent on the interactions between each unique 3D 

microenvironment and the cell type encapsulated therein. 

 

After establishing the potential for MSC chondrogenesis within MeHA, Chapter 4 reports 

on the optimization of MeHA macromer density to improve the maturation of constructs 

seeded with juvenile bovine MSCs as opposed to previous work where its formulation 

had been optimized for porcine auricular chondrocytes. MSCs were seeded (20 million 

cells/mL) in 1%, 2%, and 5% MeHA (mass/volume) and cultured for 6 weeks while 

analyzing the developing functional properties along with the differences in the 

expression of cartilage matrix associated gene expression. 
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Chapter 5 explores MSC seeding density as an approach to accelerate construct 

maturation in MeHA hydrogels of various macromer densities. While high chondrocyte 

seeding densities (>50 million/mL) typically result in concomitant increases in construct 

mechanics, encapsulating MSCs at high densities had not been shown to elicit the same 

response. Since the effects of MSC density had not yet been studied in MeHA, this 

investigation compared the effects of MSCs at 20 and 60 million/mL in 1%, 3%, and 5% 

MeHA. Given its positive response to seeding density, 1% MeHA was the focus of an 

additional study investigating the effect of dynamic culture (the gentle continuous mixing 

of constructs and medium) on the rate of construct maturation via increased nutrient and 

growth factor transport. 

 

Continuing the pursuit of functional parity to native cartilage tissue, Chapter 6 reports on 

the use of a bioreactor for the application of continuous dynamic compressive loading. 

Dynamic loading is effective at accelerating the functional development of chondrocyte 

seeded constructs and MSC seeded agarose (given an initial 3 week period of pre-

maturation). MSCs photo-encapsulated within 1% MeHA (50 million/mL) were exposed 

to either 9 weeks of daily (3hrs) cyclic deformations (10% strain), 6 weeks of loading 

after 3 weeks of pre-maturation, or 3 weeks of loading followed by 6 weeks of free-

swelling culture. 

 

While the development of compressive properties in tissue engineered cartilage 

constructs is indisputably essential, often overlooked and understudied is the potential for 



4 

an in vitro generated construct to integrate within a defect. In Chapter 7, an in vitro defect 

model is used to determine the capacity of MSC-based MeHA for functional integration. 

Considering previous reports that integration is dependent on construct maturation, MSC-

seeded MeHA (1%, 3%, and 5%) was either polymerized in situ or allowed 4 weeks to 

mature before implantation within the center of a cartilage ring. The strength of 

integration was determined after 4 and 8 weeks along with the compressive properties of 

the MeHA constructs. 

 

The rationale for creating tissue engineered cartilage with similar mechanical properties 

as native tissue is to restore function where cartilage is lost or diseased. This alleviates 

the burden that cartilage adjacent to a defect may experience with the hope that 

degenerative changes can be avoided. In addition to increasing MSC density to improve 

integration, Chapter 8 describes the first in vitro analyses of integration durability and the 

capacity for integrated constructs to contribute to load transmission in a defect. 

 

One caveat of this work is the use of juvenile bovine MSCs. While young patients 

requiring cartilage repair represent an important and ever growing cohort, the majority of 

patients that would benefit from tissue engineered cartilage are middle-aged or elderly. 

Chapter 9 explores the effects that age has on in vitro cartilage matrix formation by 

bovine MSCs in pellet and MeHA hydrogel constructs with fetal, juvenile, and aged 

bovine MSCs. 
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Chapter 10 will summarize this work while highlighting some of its implications for the 

progression of the field of cartilage tissue engineering. Limitations will be addressed and 

future studies will also be outlined that could further increase our understanding of the 

potential of MSC-based MeHA constructs for functional cartilage repair. 
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CHAPTER 2:   Background 

 

Articular cartilage is the dense white tissue covering the bones involved in joint motion. 

When healthy, the unique composition and mechanical properties of cartilage lubricate 

and distribute the loads created by normal body movement. Tissue engineering seeks to 

create a biologic remedy to the debilitating effects of cartilage injury and disease, but 

improvements in the current technology are necessary to develop a fully functional repair 

paradigm. 

 
2.1. Articular Cartilage 

2.1.1. Structure and Organization 

Articular cartilage is composed primarily of water, collagens, proteoglycans, and highly 

specialized cells called chondrocytes organized in a depth-dependent fashion (Figure 

2-1) (Muir et al. 1970; Clarke 1971; Maroudas 1979). The superficial zone contains flat, 

elongated chondrocytes, aligned collagen fibrils, and the lowest proteoglycan content of 

all zones (Muir 1970; Setton et al. 1993). The chondrocytes in the middle zone are more 

spherical while the collagen fibers are larger and less oriented (Broom and Marra 1986). 

Deep zone cartilage has the largest concentration of proteoglycans and the least amount 

of water (65%) (Maroudas 1968; Maroudas 1979). The collagen fibers are largest here, 

and similar to the chondrocytes, are oriented vertically (Redler et al. 1975).  
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Figure 2-1:  Histological image of articular cartilage with zonal differences in the 
organization of chondrocytes from the superficial to deep zone (H&E staining; 40X 
magnification). (Wooley et al. 2005)  

 

2.1.2. Composition 

Water comprises 65-80% of the wet weight of articular cartilage and is drawn to cartilage 

largely by Ca2+ and Na+ ions that neutralize the fixed negative charges on proteoglycans 

(Maroudas 1968; Maroudas 1979; Mankin et al. 1994). The large water content found 

within this dense cartilage matrix assists in distributing joint loads (Muir 1983). While 

there are many collagens found in cartilage, type II collagen comprises 90-95% of all 

collagens found here and 10-20% of the tissue wet weight (Muir 1980). Collagens are 

responsible for the tensile properties and play a role in the compressive properties as this 

tightly crosslinked network constrains proteoglycans (Setton et al. 1993). Proteoglycans 

or protein-polysaccharides in cartilage consist mainly of the aggregating proteoglycan—

aggrecan (4-7% of cartilage wet weight) (Muir 1980; Muir 1983). Aggrecan consists of a 

core protein decorated with sulfated glycosaminoglycans (sGAG) keratan (~50) and 

dermatan (~100) sulfate (Mankin et al. 1994). This aggrecan molecule accumulates 

(~200) on the non-sulfated GAG, hyaluronate, to form massive, nearly immobile 

aggregates (Muir 1983). Amidst this extracellular matrix are chondrocytes, comprising 

~10% of the tissue volume (Stockwell 1979). While chondrocytes are sparse, their 
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sensitivity to growth factors or cytokines plays a vital role in maintaining and remodeling 

articular cartilage through a balance of catabolism and synthesis (Nagase and Kashiwagi 

2003; Karsenty 2005). 

 

2.1.3. Physiological Loading 

The structure and composition of cartilage are crucial to its ability to distribute near 

constant physiologic loading. This loading occurs at frequencies varying from 0.1-2 Hz 

while delivering contact stresses from 1-6 MPa, but ranging as high as 18 MPa (Lee et al. 

1981; Kääb et al. 1998; Herberhold et al. 1999). In addition to compressive loading, joint 

surfaces also undergo a sliding motion at observed velocities of 20-250 mm/sec (Wang 

and Ateshian 1997). 

 

2.1.4. Mechanical Properties 

The mechanical function of articular cartilage is made possible by the interplay between 

aggregating proteoglycans and the constraining network of collagen molecules (Setton et 

al. 1993). This mechanical behavior can be described via biphasic theory where the 

proteoglycan-associated fixed charge density is responsible for interstitial fluid 

pressurization through osmotic and repulsive forces (Lai and Mow 1980; Mow et al. 

1980; Mow et al. 1989). In biphasic theory, the resistance to fluid flow through the tissue 

bears the bulk of a rapidly applied stress (~95%), but as the fluid is dispelled from 

cartilage the remaining stress is absorbed by the solid phase of the tissue (Soltz and 

Ateshian 1998; Soltz and Ateshian 2000). Permeability (k) describes the ability of fluid to 

flow through a solid matrix and in the case of articular cartilage, extremely low values 
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from 10-15 to 10-16 m4/Ns have been observed. The equilibrium Young’s modulus (EY) for 

articular cartilage of various species ranges from 0.1-1.4 MPa under a variety of testing 

conditions (Ateshian et al. 1997; Chen et al. 2001). The tensile modulus (5-50 MPa) is 

largely imparted by the collagen content and organization of articular cartilage (Roth and 

Mow 1980; Akizuki et al. 1986). Perhaps the most physiologically relevant aspect of 

cartilage mechanics may be the dynamic modulus (|G*|) which is primarily a measure of 

the initial fluid phase aspect of loading—values obtained from bovine tissue in 

unconfined compression range from 13-37 MPa (Park et al. 2004). 

 

Figure 2-2:  Arthroscopic image of a focal cartilage defect from traumatic injury. The lack 
of intrinsic cartilage healing presents the need to fill defects with a suitable replacement 
tissue. (Ruckstuhl et al. 2008) 

 

2.1.5. Pathology 

Damage to articular cartilage occurs in several forms including degenerative joint disease 

(accelerated by joint misalignment and obesity), traumatic injury (Figure 2-2), 

osteochondritis dissecans (loss of underlying blood supply), and the subsequent slow 

degradation process that often leads from one of these forms of damage to the onset of 

osteoarthritis (Cohen et al. 1998; Walter et al. 1998; Wang et al. 2006). Futhermore, the 

avascular nature of cartilage severely limits its self-regenerative capacity (Caplan et al. 
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1997). Approximately nine percent of Americans over thirty suffer from osteoarthritis 

and over 200,000 undergo total knee replacement annually. 

 

2.1.6. Current Treatment 

Attempts to treat cartilage damage center around both long and short term goals to relieve 

pain, restore function, slow/prevent disease progression, and if necessary to delay the 

need for total knee replacement. The treatment of cartilage injury or damage typically 

begins with lavage and debridement to remove tissue that may impede joint motion 

(Buckwalter 2002; Detterline et al. 2005). Microfracture is a marrow-stimulating 

procedure that generates a healing response through clot formation and subsequent scar 

formation, but does not restore full mechanical function (Steadman et al. 2001; Detterline 

et al. 2005). Osteochondral auto(allo)grafting is a more aggressive procedure that 

transfers cylindrical grafts from non-load bearing (cadaveric) regions to the defect site 

(Kleemann 2007). Limitations of this technique include donor-site morbidity (autografts) 

and poor integration due to graft incongruencies (Kleemann 2007). A cell-based repair 

technique involves the in vitro expansion of autologous chondrocytes to be delivered into 

a defect area covered by a periosteal flap (Micheli et al. 2001; Micheli et al. 2006). While 

this procedure represents the first in its class, results have not demonstrated its efficacy 

over that of microfracture (Knutsen et al. 2004). The current treatment regimes for 

cartilage damage still lack evidence of full functional restoration that also prevents 

disease progression, leaving a significant need for more advanced treatment options that 

can fulfill all of the objectives for cartilage repair. 
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2.2. Cartilage Tissue Engineering 

Considering the need for enhanced cartilage repair strategies, many have begun 

developing tissue engineering solutions that typically include a scaffold biomaterial, 

suitable cell source, and appropriate chemical/environmental cues. 

 

2.2.1. Biomaterials 

Three primary classes of biomaterials for cartilage tissue engineering include sponges, 

meshes, and hydrogels from a variety of natural and synthetic materials. Scaffold free 

techniques have also been employed that generate cartilage that is biochemically similar 

to native cartilage without the need for a biomaterial scaffold (Masuda et al. 2003; 

Novotny et al. 2006; Murdoch et al. 2007; Mayer-Wagner et al. 2010). In conjunction 

with a suitable scaffold and cell source, chemical factors are used to drive cells towards 

the chondrogenic phenotype and to increase the synthesis of desired extracellular matrix 

proteins for the development of a cartilage-like graft material (Yaeger et al. 1997; 

Dunham and Koch 1998; Nixon et al. 1998; Weisser et al. 2001; Mauck et al. 2003; 

Zhou et al. 2004).  

 

2.2.2. Hydrogels 

While sponges and meshes have been increasingly effective at generating cartilage-like 

graft material both in vitro and in vivo, difficulties persist with inefficient cell infiltration 

and in maintaining proper phenotypes of cells spread on pore walls (Gruber et al. 2003). 

Scaffold-free methods offer a simplified approach, but as most other solutions it remains 

unknown if they provide sufficient mechanical strength for the demanding joint 
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environment. Alternatively, cells can be encapsulated directly within most hydrogels, 

offering a solution to problems with infiltration while helping to maintain a rounded cell 

phenotype typically desired of chondrocytes (Benya and Shaffer 1982). One such 

hydrogel, agarose, is a linear thermo-setting polysaccharide gel derived from seaweed. 

Agarose is effective at maintaining the phenotype of encapsulated chondrocytes and 

allowing for the synthesis and elaboration of a functional cartilage-like matrix (Benya 

and Shaffer 1982; Mauck et al. 2007; Byers et al. 2008). Another hydrogel class is the 

self-assembling peptide hydrogel which consists of amino acid sequences that 

spontaneously (in ionic solutions) form stable beta-sheets that ultimately create a 

nanofibrous hydrogel structure. Kisiday et al have utilized this hydrogel type to form 

cartilage-like matrix when seeded with articular chondrocytes (Kisiday et al. 2002; 

Kisiday et al. 2004). 

 

HA is a large (up to 10 MDa) polysaccharide consisting of alternating units of D-

glucuronic acid and N-acetyl-D-glucosamine (Bayliss et al. 1983; Bonnet et al. 1985; 

Stern 2003). While HA is found in all of our connective tissues, it represents only 1% of 

all gycosaminoglycans in articular cartilage (Mankin et al. 1994). In addition to retaining 

and regulating the flow of water, HA serves as the backbone for proteoglycan 

aggregation by binding aggrecan monomers via link protein (Mankin et al. 1994). HA 

performs numerous roles in modifying cellular functions during human development and 

more specifically during the development of diarthrodial joints. In developed cartilage, 

HA is an important ligand for cell-matrix interactions with pericellular matrix via the 

CD44 cell receptor (Knudson 1993; Embry and Knudson 2003). Furthermore, HA is 
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cleaved and degraded by hyaluronidases present within intracellular lysosomal 

compartments (HYAL 1) and on the surface of chondrocytes (HYAL 2), resulting in a 1 

to 3 week half life (Stern 2003). The biologic relevance of HA in cartilage tissue makes 

HA-based hydrogels an interesting choice for cartilage tissue engineering research. 

Photo-polymerizable HA hydrogels have been developed by methacrylating HA to create 

macromers that can be polymerized with UV light (Smeds et al. 2001; Nettles et al. 2004; 

Burdick et al. 2005). Methacrylated HA (MeHA) hydrogels have been shown to maintain 

auricular chondrocyte phenotype under certain conditions when the molecular weight and 

macromer density of these hydrogels were varied (Figure 2-3) (Chung et al. 2006; Chung 

et al. 2006).  

 

Figure 2-3:  Explanted HA constructs 12 weeks after subcutaneous implantation of 
HA/auricular chondrocyte constructs in nude mice. The 2 wt % constructs resemble native 
cartilage tissue, whereas other HA constructs remained relatively translucent, with little 
change in their macroscopic appearance since implantation. (Chung et al. 2006) 

 

2.2.3. Mesenchymal Stem Cells 

While chondrocytes may seem the obvious choice for cartilage tissue engineering, 

problems associated with their use include donor-site morbidity, chondrocyte disease 

state, low cell number, and the de-differentiation of expanded cells (Schnabel et al. 2002; 

Stokes et al. 2002; Barbero et al. 2003; Darling and Athanasiou 2005; Diaz-Romero et al. 
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2007). Bone marrow derived MSCs have become popular for their ease of expansion and 

the fact that donor site morbidity is not associated with the joint space where the repair 

will occur. Extensive work investigating the suitability of MSCs for cartilage tissue 

engineering has found them capable of chondrogenesis and cartilage matrix formation, 

but key benchmark properties have not surpassed those found in similar chondrocyte 

experiments (Figure 2-4) (Stenderup et al. 2003; Song and Tuan 2004; Mauck et al. 

2006; Sethe et al. 2006; Kopesky et al. 2007). Promoting MSC differentiation and 

subsequent matrix synthesis is a significantly more complex process than simply 

maintaining the phenotype of chondrocytes and capturing the ECM that is generated.  

 

Figure 2-4:  Equilibrium compressive Young's modulus of chondrocyte- and MSC-laden 
agarose constructs through 10 weeks of culture in chondrogenic medium (CM; with and 
without TGF) or basal medium (BM). The mechanical properties in chondrocyte-laden 
constructs achieved a higher stiffness than MSC-laden constructs. (Mauck et al. 2006) 

 

2.2.4. Mechanical Stimulation 

Mechanical stimulation provides an important environmental cue that has also been 

found to increase matrix synthesis and organization resulting in greater functional 

properties in engineered constructs (Mauck et al. 2003; Huang et al. 2010). Dynamic 

compressive loading increases aggrecan promoter activity in MSC-seeded Ag hydrogels 
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(Mauck et al. 2007) and the upregulation of proteoglycan synthesis has been observed in 

chondrocyte-seeded self-assembling peptide hydrogels (Kisiday et al. 2004). In 

chondrocyte-laden MeHA hydrogels, the expression of collagen type II and aggrecan was 

shown to increase after 5 days of compressive loading (Figure 2-5) (Chung et al. 2008). 

 

Figure 2-5:  Relative gene expression of articular chondrocyte-seeded HA hydrogels after 
1 day (black) and 5 days (white) of dynamic compressive loading normalized to free-
swelling controls. Significant differences (p ≤ 0.05) between free-swelling and 
mechanically loaded samples are denoted by asterisks. (Chung et al. 2008) 

 

2.3. Functional Cartilage Repair 

In order to proceed from the in vitro development of suitable cartilage graft materials it is 

important to consider what is required to promote the necessary integrative repair. 

Without successful integration into a cartilage defect, even an engineered tissue with the 

most suitable properties will be of no benefit when implanted (Ahsan and Sah 1999). 

 

2.3.1. Integration 

A common testing modality for integrative repair is the push-out test of integration 

strength, where the force required to displace a repair material from an annular cartilage 

construct is recorded and divided by the interface area providing the shear stress at 
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failure. While it is difficult to determine how large this failure stress should be to 

approach clinical significance, van de Breevaart Bravenboer et al have pushed through 

intact cartilage to record a failure stress of 8.8 MPa (van de Breevaart Bravenboer et al. 

2004). This group has also achieved the greatest cartilage-cartilage integration; following 

5 weeks of subcutaneous in vivo culture, they recorded failure stresses of 1.32 MPa for 

hyaluronidase and collagenase treated explants versus 0.84 MPa for untreated controls 

(van de Breevaart Bravenboer et al. 2004). Attempts at chondrocyte- or MSC-seeded 

hydrogel-cartilage integration using an untreated explant model have not exceeded failure 

stress values greater than 64 kPa (Hunter and Levenston 2004; Maher et al. 2009; 

Vinardell et al. 2009). However, with trypsin treatment of the explant cartilage, 

Obradovic et al seeded polyglycolic acid hydrogels with immature bovine chondrocytes 

and observed a failure stress of 384 kPa (Obradovic et al. 2001). 

 

2.3.2. Durability and Load Distribution 

The capacity for the repair integration interface to withstand normal loading without 

failure is a critical aspect of functional repair. While Fierlbeck et al have investigated 

crack propagation at the cartilage-cartilage interface in a single lap test (Fierlbeck et al. 

2006), no attempts have been made to understand the effects of physiologic loading on 

the durability of in vitro repair. The ability for a repair construct to function by 

distributing loads across a defect site is also an important consideration that has yet to be 

studied. 
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2.4. Summary and Clinical Significance 

There are over 20 million Americans suffering from cartilage injury or disease. Many of 

these will end up receiving one of more than 200,000 total knee replacements that are 

performed annually. While effective at the restoration of joint function, joint prosthetics 

have a limited lifetime of 10-15 years before revision procedures are often required. 

Therefore, there exists a great need for technologies that can repair cartilage with the 

objective of delaying the onset of osteoarthritis and the need for joint replacement.  

 

Cartilage tissue engineering is an approach that would create a biologic tissue for 

cartilage repair. Successful generation of functional engineered cartilage could delay 

disease progression, simultaneously increasing patient health and activity levels. 

Subsequently, health care costs would also decline if engineered grafts remain durable 

over the long-term. 
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CHAPTER 3:   Differential Maturation and Structure Function Relationships in 

MSC and Chondrocyte Seeded Hydrogels  

 

3.1. Introduction 

The growing prevalence of osteoarthritis, other degenerative cartilage diseases, and 

traumatic injuries, motivates the goal of developing replacement cartilage tissue. To 

address this need, tissue engineering strategies have focused on the production of 

functional cartilage constructs that possess features similar to the native tissue (for 

review, see (Hung et al. 2004; Kuo et al. 2006)). While it is not yet clear whether an 

engineered construct must completely recapitulate all mechanical features of the native 

tissue at the time of implantation, it is clear that if permanent biologic repair is to be 

effected, the engineered systems must enable this eventuality. Most cartilage tissue 

engineering strategies combine mature chondrocytes with biocompatible and/or 

biodegradable 3D culture systems (for review, see (Chung and Burdick 2008)). 

Hydrogels, in particular, force encapsulated cells to assume a rounded shape and aid in 

the retention or resumption of the chondrocyte phenotype (Benya and Shaffer 1982; 

Hauselmann et al. 1994). A large number of hydrogels have been developed for these 

applications, ranging from simple thermoreversible gels (such as agarose) (Buschmann et 

al. 1992), to more complex bioengineered gels that present ECM relevant adhesive (i.e. 

RGD) (Burdick and Anseth 2002; Connelly et al. 2007) and/or degradation cues (e.g., 

MMP-cleavable elements) (Park et al. 2004; Lutolf and Hubbell 2005).  
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In many cartilage tissue engineering efforts, primary or culture expanded chondrocytes 

are employed. These cells, while possessing the proper phenotype, are of limited supply. 

Further limiting clinical use, aged and/or osteoarthritic chondrocytes produce ECM lower 

in collagen content compared to young chondrocytes (Tallheden et al. 2005; Tran-Khanh 

et al. 2005). This, coupled with in vitro expansion induced chondrocyte de-differentiation 

(Schnabel et al. 2002; Stokes et al. 2002), has initiated new efforts on the use of adult-

derived mesenchymal stem cells (MSCs). MSCs can be isolated from adult bone marrow, 

and possess a multi-lineage differentiation capacity (Prockop 1997; Johnstone et al. 1998; 

Pittenger et al. 1999). In pellet cultures in defined media supplemented with TGF-β/BMP 

superfamily members (Majumdar et al. 2001), MSCs undergo chondrogenesis and 

deposit a proteoglycan rich ECM (Mauck et al. 2006). This same phenotypic conversion 

has been demonstrated in a number of hydrogels (Caterson et al. 2002; Erickson et al. 

2002; Williams et al. 2003; Awad et al. 2004). However, while MSC chondrogenesis is 

apparent at the molecular/histological level, few studies have evaluated the resultant 

mechanical properties developed in these MSC-laden constructs or compared them 

directly to those achieved by chondrocytes. In one study using adipose derived adult stem 

cells, the mechanical properties of cell-laden agarose, alginate, and fibrous gelatin based 

foams were evaluated over a 4 week time course (Awad et al. 2004). In that study, 

mechanical properties increased modestly with time, though primary chondrocyte 

controls were not examined. More recently, we acquired bovine chondrocytes and MSCs 

from the same donor or groups of healthy donors and evaluated their maturation with 

long-term culture in agarose in a pro-chondrogenic media formulation (Mauck et al. 

2006; Huang et al. 2008). Testing the equilibrium and dynamic mechanical properties of 
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these constructs showed that while MSC-laden constructs increased in mechanical 

properties, they did so to a lesser extent than chondrocyte-laden constructs.  

 

MSC-biomaterial interactions are important for both initial viability as well as subsequent 

chondrogenesis. For example, human MSCs decrease in viability in hydrogels when not 

presented with the appropriate 3D adhesive niche (Nuttelman et al. 2005; Salinas et al. 

2007). MSCs can be isolated based on their adhesion to tissue culture plastic, and thus 

precipitating the first step in phenotypic conversion may be necessary to maintain 

viability in this anchorage dependent population. Conversely, these same adhesive cues 

may negatively regulate chondrogenic differentiation; a recent study showed that RGD-

modified alginate decreased the extent of MSC chondrogenesis as measured by ECM 

production (Connelly et al. 2007). These findings suggest that hydrogels for MSC-based 

cartilage tissue engineering must preserve viability while still promoting chondrogenic 

conversion and functional maturation.  

 

In our previous studies showing differences in construct mechanical properties between 

chondrocytes and MSCs, it was not clear whether the lower properties achieved by MSCs 

was due to a fundamental limitation in chondrogenesis, or whether this functional 

maturation could be influenced by the 3D environment (i.e., hydrogel) in which the cells 

were placed. To further address this question, this study examined the potential of bovine 

MSCs to undergo chondrogenesis in 3D culture in three distinct hydrogels. We employed 

agarose (Mauck et al. 2006) as well as two hydrogels based on natural materials. The 

first, a commercially available self-assembling peptide gel (Puramatrix; Pu), possesses 
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favorable properties for the culture of numerous cell types and supports chondrocyte-

mediated ECM deposition (Kisiday et al. 2002; Kisiday et al. 2005). More recently, we 

and others have demonstrated that equine (Kisiday et al. 2007) and human (Mauck et al. 

2006) MSCs undergo chondrogenesis in this hydrogel. While not providing specific 

receptor mediated interactions (e.g., RGD signaling cascades are not activated), the gel 

does appear to promote cell adhesion and neurite extension (Holmes et al. 2000) and may 

further be susceptible to proteolytic breakdown. The second biopolymer used was a 

photo-crosslinked hyaluronic acid (HA) based hydrogel. This gel supports ECM 

deposition by articular and auricular chondrocytes, both in vitro and in vivo (Nettles et al. 

2004; Burdick et al. 2005; Chung et al. 2006).  HA expression is regulated during limb 

bud formation and mesenchymal cell condensation, and is a primary structural 

component of adult cartilage ECM (Toole 2004; Li et al. 2007). Chondrocytes interact 

with HA in the pericellular environment via CD44 receptors located on the cell surface 

(Knudson 1993; Knudson and Knudson 2004) and actively endocytose HA fragments 

(Morales and Hascall 1988). Thus, relative to the inert, non-interactive and non-

degradable agarose hydrogel used in our previous studies, these two hydrogels provide an 

interactive and degradable, biologically relevant interface that might modulate MSC 

chondrogenesis and construct maturation. 

 

To carry out this study, bovine chondrocytes and MSCs were isolated from the same 

group of donors and seeded in agarose, Puramatrix, and HA hydrogels. Constructs were 

cultured for 8 weeks with biweekly analysis of construct physical properties, MSC 

viability, ECM content, and mechanical properties. To further investigate the relationship 
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between deposited ECM and mechanical outcomes, we performed correlation analysis of 

the emerging structure (composition) and function (mechanical properties) of constructs 

formed from each cell type in each hydrogel.  

 

3.2. Materials and Methods 

3.2.1. Cell Isolation and Expansion 

Bovine chondrocytes and MSCs were isolated from juvenile bovine joints within 36 

hours of slaughter (Research 87, Boylston, MA). Articular chondrocytes (CH) were 

enzymatically isolated from carpometacarpal articular cartilage as previously described 

(Mauck et al. 2003).  Chondrocytes were seeded in hydrogels immediately upon isolation. 

Bone marrow derived MSCs were isolated from the underlying trabecular region of the 

carpal bone as in (Mauck et al. 2006). In order to obtain a sufficient number of MSCs, 

cells were expanded in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 

10% fetal bovine serum (Gibco) and 1X penicillin-streptomycin-fungizone through 

passage 2 or 3. Both chondrocytes and MSCs were seeded at a density of 20 million 

cells/mL in agarose, methacrylated HA (MeHA), and Puramatrix self-assembling peptide 

hydrogels.  Two complete studies were performed with cells from a minimum of 3 donor 

animals pooled for each experiment. Similar trends were observed in each replicate, with 

data from one study presented in this manuscript.  

 

3.2.2. Cell Seeding in Hydrogels 

To produce cell-laden agarose gels, Type VII agarose (Sigma Chemicals, St. Louis, MO) 

was dissolved in phosphate buffered saline (PBS) at a concentration of 4% w/v, 
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autoclaved, and cooled to 49oC. Agarose was combined 1:1 with a cell suspension (40 

million/ml) of either chondrocytes or MSCs in DMEM to provide a seeding density of 20 

million cells per ml in a 2% w/v agarose hydrogel. The cell-hydrogel suspension was cast 

between two glass plates separated by 2.25 mm thick spacers and gelled at 25o C for 20 

minutes. Cylindrical constructs were removed from gel slabs using a sterile 5 mm 

diameter biopsy punch (Miltex, York, PA).  

 

Photo-crosslinkable methacrylated hyaluronic acid (MeHA) solutions were produced as 

previously described (Burdick et al. 2005). Briefly, 65 kDa HA (Lifecore, Chaska, MN) 

was methacrylated by reaction with methacrylic anhydride (Sigma Chemicals, St. Louis, 

MO) at pH 8.0 for 24 hours, dialyzed in distilled water against a 5kDa MW cutoff, 

lyophilized, and stored at -20oC (Burdick et al. 2005; Chung et al. 2006; Chung et al. 

2008). MeHA was dissolved to 2% w/v in PBS supplemented with 0.05% w/v of the 

photoinitiator I2959 (2-methyl-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone, 

Ciba-Geigy, Tarrytown, NY). To produce cell-laden gels, cells were resuspended in the 

MeHA macromer solution (20 million cells/mL) and the suspension cast between glass 

plates as above. Polymerization was achieved with UV exposure through the glass plates 

for 10 minutes using a 365 nm Blak-Ray UV lamp (Model #UVL-56, San Gabriel, CA). 

Cylindrical constructs were cored from the resulting slab with a 5 mm diameter biopsy 

punch. 

 

The self-assembling peptide hydrogel solution was purchased as Puramatrix ((REDA)4, 

1% w/v; BD Bioscience, San Jose, CA). Chondrocytes (isolated immediately) or MSCs 
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(after trypsinization) were washed twice in a sterile 10% w/v sucrose solution to remove 

residual culture medium. Cell pellets were resuspended at 40 million cells/mL in a 10% 

sucrose solution and mixed well with an equal volume of 1% w/v Puramatrix solution to 

produce a final concentration of cell-seeded 0.5% w/v Puramatrix. A sterile neoprene 

rubber mold with cylindrical cavities (5 mm diameter; 2.25 mm thickness) was placed on 

the bottom of a 100 mm culture dish. Cell/Puramatrix solution was injected into the void 

spaces, and sterile filter paper (pre-wet with DMEM) was placed over the mold. The filter 

paper served as both a source and a path for diffusion of ions from the culture medium to 

initiate self-assembling peptide polymerization. A glass plate was then added to sandwich 

the filter paper to the mold to ensure an even construct surface. Sufficient medium to 

cover the molds was added and constructs were allowed to polymerize for 30 minutes. 

The molding apparatus was then carefully disassembled and constructs removed to non-

tissue culture treated 6-well plates. 

 

3.2.3. Construct Culture and Analysis 

Constructs were cultured (1mL/construct) in TGF-β3 (10ng/ml, R&D Systems, 

Minneapolis, MN) supplemented chemically defined chondrogenic medium consisting of 

high glucose DMEM with 1x PSF, 0.1 µm dexamethasone, 50 µg/mL ascorbate 2-

phosphate, 40 µg/mL l-proline, 100 µg/mL sodium pyruvate, ITS+ (6.25 µg/ml insulin, 

6.25 µg/ml transferrin, 6.25 ng/ml selenous acid, 1.25 mg/ml bovine serum albumin, and 

5.35 µg/ml linoleic acid) in non-tissue culture treated 6-well plates.  Media were changed 

twice weekly. Encapsulated cell viability was visualized with the Live/Dead assay 

(Invitrogen, Eugene, OR). Samples for Live/Dead were cross-sectioned with a sterile 
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scalpel and rinsed twice in sterile PBS before being incubated for 20 minutes (at 20ºC) in 

a PBS solution containing 2 µM Calcein AM and 4 µM Ethidium homodimer-1. Stained 

construct cross-sections were imaged using an inverted fluorescence microscope (Nikon 

T30, Nikon Instruments, Inc., Melville, NY).  

 

3.2.4. Mechanical Testing 

Mechanical testing in unconfined compression was carried out bi-weekly to determine 

equilibrium and dynamic properties as in (Mauck et al. 2006). On the day of testing, 

sample dimensions were measured with a digital caliper. Creep tests were then performed 

in a PBS bath between two impermeable platens with a 2 gram load applied and 

displacement monitored until equilibrium (~300 seconds). Subsequently, stress relaxation 

tests were performed by applying a single compressive deformation to 10% strain (at 

0.05%/second) followed by 20 minutes of relaxation to equilibrium. The equilibrium 

modulus (EY) was calculated from the equilibrium stress and strain values based on the 

measured construct dimensions. Dynamic testing was then carried out via the application 

of a sinusoidal deformation of 1% applied at 1.0 Hz for ten cycles. The dynamic modulus 

(|G*|) for each sample was calculated from the slope of the dynamic stress-strain curve as 

in (Park et al. 2003). 

 

3.2.5. Biochemical Analyses 

After compression testing, construct wet weights were recorded and samples were 

digested in papain for analysis of DNA, glycosaminoglycan (GAG), and collagen content 

(Mauck et al. 2006). DNA content (per construct) was determined using the dsDNA 
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Picogreen Assay (Molecular Probes, Eugene, OR) with lambda DNA as a standard. GAG 

content (total and percent wet weight) was determined using the 1,9-dimethylmethylene 

blue (DMMB) dye binding assay with chondroitin-6 sulfate as a standard (Farndale et al. 

1986). Digested aliquots were also hydrolyzed for 16 hours in 12N hydrochloric acid at 

110oC and the orthohydroxyproline (OHP) content quantified via colorimetric reaction 

with chloramine T and diaminobenzaldehyde, against an OHP standard curve 

(Stegemann and Stalder 1967). Collagen content was extrapolated from OHP using a 1:10 

ratio of OHP:collagen (Vunjak-Novakovic et al. 1999).  

 

3.2.6. Histology  

 Samples from each hydrogel at each time point were fixed in 4% paraformaldehyde, 

infiltrated with Citrisolv, and embedded in paraffin blocks. Sections (8 µm) were 

mounted on glass slides and stained for proteoglycan using alcian blue (pH 1.0) and for 

collagen via picrosirius red as in (Mauck et al. 2003). 

 

3.2.7. Statistical Analyses 

Statistical analysis was performed using Systat (v10.2, San Jose, CA). A three-way 

ANOVA analysis was carried out, with cell type, time in culture, and hydrogel type as 

independent factors. Dependent variables were wet weight, thickness, diameter, Young’s 

modulus, dynamic modulus, [GAG], [collagen], and DNA content. When significant 

effects (p<0.05) were observed, Fisher’s LSD post hoc analysis was used to compare 

between groups. All values are reported as the mean ± SD. For correlation analyses, 
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GraphPad Prism (San Diego, CA) was used to fit data and determine goodness of fit, and 

t-tests were used to compare correlation slopes between conditions. 

 

3.3. Results  

3.3.1. 3D Culture:  Cell Shape, Viability, and Construct Dimensions 

Upon encapsulation, chondrocytes and MSCs took on a rounded shape in each hydrogel. 

In agarose, both cell types remained rounded throughout the culture duration, and 

occasional small clusters could be observed indicative of cell division (Figure 3-1). In the 

photo-crosslinked MeHA gels most cells remained rounded, while a minor fraction of 

both cell populations developed small protrusions. In Puramatrix gels, chondrocytes and 

MSCs showed both round shapes as well as pronounced filopodial projections throughout 

the gel, with this finding more pronounced in MSC cultures. Viability was high for each 

cell type in all gels, with Live/Dead staining showing no obvious differences between 

agarose, MeHA, and Puramatrix hydrogels on either day 14 or 42 (Figure 3-1). 

 

Figure 3-1: Calcein AM staining of live cells in construct cross sections on day 42 for 
chondrocytes (A-C) and MSCs (D-F) in agarose (left), MeHA (middle), and Puramatrix 
(right) hydrogels. (40X magnification; scale bar = 50 µm) 
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Table 3-1:  Time dependent changes in construct dimensions and biochemical content. 
Mean ± SD of 3-4 samples per group at each time point. (*indicates p<0.05 versus day 0 
**indicates p<0.05 from day 14, #indicates p<0.05 versus day 0 and day 14) 

 

While viability was similar, differences in dimensional characteristics were observed in 

the three cell-seeded hydrogels and summarized in Table 3-1. For all constructs, marked 

increases in wet weight were observed between day 14 and day 56 (p<0.005). Increased 

wet weight correlated with increases in s-GAG and collagen deposition within the 

constructs (increasing its density), as well as changes in construct diameter and thickness. 

Of significant note, Puramatrix hydrogels seeded with chondrocytes and MSCs decreased 

in volume over the initial two weeks of culture, with the most marked changes in MSC-

laden construct diameters (>40% reduction for Puramatrix-MSC, p<0.001 vs. day 0).  

This decrease in diameter slowly reversed with time, but remained <30% of the starting 

diameter on day 56. These changes in size translated to changes in Puramatrix wet 
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weight, with both chondrocyte- and MSC-laden Puramatrix gels significantly lower than 

all other gels at day 56 (p<0.001). Conversely, MeHA gels increased in size with culture 

duration, particularly in the axial direction, increasing by ~25% and ~37% in thickness by 

day 56 for chondrocyte- and MSC-seeded conditions, respectively (p<0.001). Agarose 

hydrogels underwent only minor changes in dimensions throughout the culture period 

with either cell type. 

 

Figure 3-2: Biochemical content of chondrocyte and MSC-seeded constructs as a function 
of time over an 8 week culture period. (A) DNA content, (B) GAG as a percentage of the wet 
weight (%ww), and (C) collagen as a percentage of the wet weight. Data represent the 
mean ± SD of 3-4 samples from one of two replicate studies. *indicates p<0.05 for day 56 
comparisons between hydrogels within cell type. **indicates greater value (p<0.05) for 
comparisons on day 56 within hydrogel between cell types. 

†
indicates no significant 

increase from day 0 (p>0.05). 
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3.3.2. Biochemical Composition and Histological Analysis 

Biochemical and histological analysis of constructs was carried out on a bi-weekly basis 

for each gel type and each cell type. In general, increasing time led to more matrix 

accumulation in each gel for each cell type as shown by histology and quantification of 

deposited ECM. For all chondrocyte-laden gels, DNA content increased 2-3 times over 

the 8 week culture period (p<0.001, Figure 3-2A). On day 56, there was no significant 

difference between the total DNA content of each hydrogel construct. In MSC-laden 

constructs, little change in DNA content was observed over the 8 week time course. 

MeHA-MSC and Puramatrix-MSC constructs contained ~20% more DNA/construct than 

agarose-MSC constructs on day 56. (Figure 3-2A; MeHA, p=0.08; Puramatrix, p=0.06, 

versus agarose). 

 

Overall ANOVA results showed that sGAG deposition in each hydrogel was dependent 

on time in culture (p<0.001), hydrogel type (p<0.001), and cell type (p<0.001). For 

chondrocytes and MSCs, significant increases in sGAG content were observed in each 

gel (Figure 3-2B, p<0.001). On day 56, agarose-CH gels contained 1.5-3-fold greater 

sGAG per wet weight (ww) compared to MeHA-CH and Puramatrix-CH gels. Agarose-

CH gels attained ~3.2%ww sGAG and were significantly greater (p<0.001) than both 

Puramatrix-CH (~2%) and MeHA-CH (~1%) gels (Figure 3-2B). Conversely, agarose-

MSC and MeHA-MSC hydrogels contained similar amounts of GAG on a per wet weight 

basis, while Puramatrix-MSC gels were nearly 2 times greater. Puramatrix-MSC gels 

contained ~3.9% wet weight GAG, which was greater (p<0.001) than both agarose-MSC 
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(~2.5%) and MeHA-MSC (~1.8%) gels (Figure 3-2B). Indeed, this value was higher than 

the highest value achieved for chondrocyte seeded gels (agarose-CH group, p<0.001). 

Most interestingly, this was not the result of increased GAG production in Puramatrix-

MSC gels, but rather was the result of the reduction in volume observed; on a per 

construct basis, agarose-MSC and MeHA-MSC gels contained 1500-1600 µg of GAG 

compared to ~800 µg for Puramatrix-MSC gels (Table 3-1).  

 

Similar to GAG results, collagen content was dependent on time in culture (p<0.001), gel 

type (p<0.001), and cell type (p<0.001). Collagen content as a function of wet weight was 

1.4-5 fold greater in agarose-CH than in MeHA-CH and Puramatrix-CH constructs. 

Agarose-CH gels contained ~2.1% ww collagen, a higher level than in Puramatrix-CH 

(~1.5%) and MeHA-CH (~0.4%, p<0.02, Figure 3-2C) constructs. In terms of collagen 

content per construct, agarose-CH contained 2-fold greater collagen than Puramatrix-CH 

and 4-fold greater collagen than MeHA-CH constructs (p<0.001; Table 3-1). Conversely, 

Puramatrix-MSC gels contained the highest collagen content (1.8%), levels greater than 

for agarose-MSC (1.2%, p<0.001), and both greater than MeHA-MSC (0.8%, p<0.001) 

constructs. For these MSC cultures, the highest collagen density observed (in the 

Puramatrix-MSC group) was only slightly lower than that found for the best chondrocyte-

laden hydrogel group (agarose-CH, p<0.02). As with GAG content, the apparent 

improvement in collagen content in Puramatrix-MSC constructs was more a function of 

dimensional changes, with ~2-fold less total collagen in these constructs compared to 

either agarose or MeHA on a per construct basis (Table 3-1; p<0.001).  
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Figure 3-3: Histological analysis of chondrocyte and MSC-seeded constructs on day 56. 
Alcian blue staining of proteoglycan in chondrocyte (A-C) and MSC-seeded (D-F) agarose 
(top), MeHA (middle), and Puramatrix (bottom) hydrogels. Picrosirius red staining of 
collagen in chondrocyte (G-I) and MSC-seeded (J-L) agarose (top), HA (middle), and 
Puramatrix (bottom) hydrogels. (100X magnification; scale bar = 200 µm) 

 

Histological staining of constructs produced findings consistent with gross biochemical 

measures. Alcian blue staining of GAG deposition in chondrocyte- and MSC-seeded 

constructs correlated well with biochemical measures (Figure 3-3A-F). Noticeably less 

GAG deposition was observed in MeHA-CH sections relative to all other groups. 

Picrosirius red staining of collagen elicited similar results; agarose-CH and Puramatrix-

CH constructs stained much more intensely for collagen than MeHA-CH constructs. 

More collagen was observed in MeHA-MSC constructs, though staining remained less 

intense and less evenly distributed than in either agarose-MSC or Puramatrix-MSC 

constructs. (Figure 3-3G-L). 
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Figure 3-4: (A) Equilibrium modulus (EY), and (B) dynamic modulus (IG*I), of agarose (Ag), 
MeHA, and Puramatrix (Pu) hydrogels seeded with chondrocytes or MSCs over 56 days. 
Data represent the mean ± SD of 3-4 samples from one of two replicate studies. *indicates 
p<0.05 for day 56 comparisons between hydrogels within cell type. ** indicates greater 
value (p<0.05) for comparisons on day 56 within hydrogel between cell types. 

†
indicates no 

significance from day 0 (p>0.05). 

 

3.3.3. Mechanical Properties 

The equilibrium (EY) and dynamic (|G*|) compressive modulus of cell-seeded constructs 

were evaluated over the 8 week time course (Figure 3-4). Overall, time, gel type, and cell 

type were significant factors in both mechanical measures (p<0.05). The equilibrium 

modulus (EY) of chondrocyte-seeded constructs increased with time relative to their 

starting values (p<0.001 on day 28 for agarose-CH and p<0.05 on day 42 for Puramatrix-

CH; for MeHA-CH, p=0.343 on day 56), though Puramatrix constructs were too soft for 

mechanical testing until day 28. On day 56, EY of agarose-CH constructs reached ~170 

kPa, a value 5-7 fold (p<0.001) greater than that of either MeHA-CH or Puramatrix-CH 
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constructs. Similar findings were noted with regards to |G*|, though the differences 

between groups were accentuated. On day 56, agarose-CH constructs reached a |G*| of ~1 

MPa, a level 20- and 10-fold greater (p<0.001) than MeHA-CH and Puramatrix-CH 

constructs, respectively.  

 

Figure 3-5: Correlation plots relating measured mechanical properties to biochemical 
constituents. (A) Plots for chondrocyte seeded hydrogels. (B) Plots for MSC seeded 
hydrogels. Dashed line shows linear curve fit for each gel type. 
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A different functional maturation process was noted for MSC-seeded constructs, with 

increases in equilibrium properties comparable between each hydrogel. Each hydrogel 

seeded with MSCs increased in EY as a function of time in culture (p<0.005 vs. day 0 on 

day 14 for agarose-MSC, day 42 for MeHA-MSC, and day 28 for Puramatrix-MSC). The 

EY of agarose-MSC constructs on day 56 was ~100 kPa, compared to ~60kPa for MeHA-

MSC gels and ~80 kPa for Puramatrix-MSC gels. At this time point, EY of MSC-seeded 

constructs were similar to one another, with significant difference only found between 

agarose-MSC and MeHA-MSC (p<0.01). Similarly, the |G*| of agarose-MSC constructs 

increased with time (p<0.001 vs. day 0), reaching a value of ~0.15 MPa on day 56. |G*| 

values for MeHA-MSC and Puramatrix-MSC increased with time as well, reaching 0.04 

MPa and 0.12 MPa, respectively. At this time point, |G*| for agarose-MSC and 

Puramatrix-MSC gels were not different from one another (p=0.37), while the |G*| of the 

MeHA-MSC group was significantly lower than both (p<0.05). For both EY and |G*|, the 

highest values achieved for MSC-laden hydrogels on day 56 were lower than that 

achieved for the agarose-CH group (p<0.001 and p<0.001, respectively). 

 

3.3.4. Structure-Function Correlation Analysis 

To better elucidate the relationships between new matrix deposition and functional 

maturation, correlation analyses were performed between the level of a given 

biochemical constituent and the resulting construct mechanical properties.  Specifically, 

EY and |G*| were correlated to the concentration (as a percentage of wet weight) of s-

GAG and collagen in each construct for each cell type and each hydrogel formulation. 

The results of these correlations are shown in Figure 3-5, and the slopes and correlation 
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coefficients are provided in Table 3-2.  For each comparison, a significant linear fit was 

achieved (p<0.005), with R2 values ranging from 0.392 to 0.925. For chondrocyte-seeded 

constructs, the slope of the correlations was uniformly higher for agarose-CH gels than 

for either the MeHA-CH and Puramatrix-CH gels (p<0.05). For example, the slope of EY 

vs. [GAG] for agarose-CH gels was 62.9 kPa/%ww, and was significantly higher than for 

MeHA (13.9 kPa/%ww) and Puramatrix (20.0 kPa/%ww) constructs. For MSC-laden 

constructs, modest differences were observed between gel types (all lower, p<0.01 

compared to agarose except for MeHA EY vs. [COLL], p=0.08). For the same comparison 

as above on MSC-laden constructs (EY vs. [GAG]), correlation slopes were 37.6, 24.7, 

and 22.2 kPa/%ww for agarose-MSC, MeHA-MSC, and Puramatrix-MSC, respectively. 

Finally, comparing the same correlations slopes across cell types allows one to draw 

conclusions regarding the ability of MSCs to produce functional matrix relative to a 

chondrocyte control. For all agarose-MSC groups except EY vs. [COLL] (p=.367), 

correlation slopes were lower in agarose-MSC than in agarose-CH samples (p<0.05). For 

MeHA-MSC and Puramatrix-MSC constructs, the correlation slopes of EY were 

generally higher than those achieved in the corresponding chondrocyte group. 

Conversely, the |G*| slopes in MeHA-MSC and Puramatrix-MSC were lower than their 

chondrocyte counterparts (p<0.005). In either case, for both EY and |G*|, the correlation 

slopes for the MSC-laden constructs remained well below that achieved in agarose-CH 

constructs (p<0.05).  
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Table 3-2: Correlation of mechanical properties and biochemical content in chondrocyte 
and MSC seeded constructs. Correlation coefficients relating measured mechanical 
properties (EY and IG*I) with concentration of GAG and collagen for chondrocyte and MSC 
seeded constructs. *indicates p<0.05, **indicates p<0.01, ***indicates p<0.001, ‘ns’ 
indicates no significant difference. 

 

3.4. Discussion 

The goal of this study was to evaluate the functional formation of cartilage tissue in three 

distinct MSC-laden hydrogels, and to compare these findings to those produced by fully 

differentiated chondrocytes maintained in the same culture environment. The motivation 

for this study was based on our previous finding that in agarose hydrogels, MSCs 

underwent chondrogenesis, but formed cartilage-specific ECM of lower quantity and 

quality than constructs formed with donor matched fully-differentiated chondrocytes 

cultured under the same conditions. Given the growing body of evidence supporting 

biomaterial dependent stem cell differentiation, we hypothesized that cell-hydrogel 

interactions would modulate the rate and extent of functional chondrogenesis. Results of 

this study show that, surprisingly, the external hydrogel environment plays a more 
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significant role in chondrocyte- compared to MSC-mediated matrix deposition and 

functional maturation. Articular chondrocytes formed the most mechanically robust ECM 

in agarose hydrogels, followed by Puramatrix and then MeHA gels. Conversely, MSC-

laden hydrogels showed similar results across gel types, with marked increases in 

mechanical properties in each gel. However, in each case, the maximum compressive 

properties achieved in MSC-laden constructs remained lower than that achieved by fully-

differentiated chondrocytes in agarose gels. These findings are consistent with our 

previous observations (Mauck et al. 2006; Huang et al. 2008), and further support the 

notion that existing methodologies for effecting MSC chondrogenesis in 3D culture have 

not yet been optimized to produce cells possessing functional matrix forming capacity on 

par with that of a fully differentiated chondrocytes.  

 

Several important observations were made regarding differential biomaterial effects on 

construct formation with either chondrocytes or MSCs. Notably, changes in construct size 

were pronounced in the differing hydrogels. We have previously reported only minor 

changes in construct diameter and thickness in agarose hydrogels seeded with 

chondrocytes or MSCs (Mauck et al. 2006). Findings in agarose in this study were 

consistent with that observation, and further showed pronounced increases in volume in 

cell-seeded MeHA gels (particularly in the axial direction), and a marked reduction in 

volume in Puramatrix-based constructs, particularly when seeded with MSCs. These 

changes in Puramatrix construct volume are consistent with recent work by Kisiday and 

colleagues, who reported decreases in construct diameter in bone marrow and adipose-

derived MSC-seeded constructs seeded in ~0.4% (KLDL)3 self-assembling peptide gels 
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(Kisiday et al. 2007). This change in construct size may limit clinical application to 

constructs that have been pre-matured in vitro, punched to size, and then implanted into 

defined cartilage defects. More generally, this contraction suggests that cell-mediated 

traction is occurring, as has similarly been reported when constructs are formed using 

gelatin sponges (Awad et al. 2004). Indeed, both chondrocytes and MSCs were elongated 

with numerous cell protrusions in the Puramatrix constructs. One consequence of this 

volume reduction in Puramatrix-based gels was to increase the effective concentration of 

GAG and collagen within the constructs, though the total amount per construct was lower 

than that produced by chondrocytes. The decreased volume resulted in Puramatrix-based 

constructs reaching levels of GAG and collagen concentrations (on a percentage wet 

weight basis) comparable to that observed for chondrocytes seeded in agarose gels. 

Notably, DNA content on day 56 in each MSC-seeded hydrogel was comparable, 

suggesting that the production levels, on a per cell basis, were lower in Puramatrix 

hydrogels. Regardless of this concentration effect, Puramatrix-MSC mechanical 

properties did not match those of agarose-CH constructs. 

 

Another observation in this study was that articular chondrocytes in MeHA did not 

readily form functional matrix. This finding is consistent with our previous studies 

comparing auricular and articular chondrocytes in this hydrogel (Chung et al. 2006), 

wherein auricular chondrocytes produced a considerably more robust ECM than articular 

chondrocytes. In this previous work, constructs were cultured both in vivo 

(subcutaneously) and in vitro in a serum-containing medium. Here we show that in vitro 

culture in a chemically defined pro-chondrogenic media formulation does not restore 
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functional capacity to articular chondrocytes in this gel. This finding of lower ECM 

formation was not a function of cell death due to UV of photo-initiator exposure as DNA 

content increased similarly for chondrocytes in this gel as in the other two culture 

systems assayed. This suggests that the MeHA gel, in its present formulation, may not be 

optimized for articular-derived cells. While it is not yet clear whether matrix was made in 

lower quantities, or made in the same quantity and lost from the gel during culture, it is 

clear that these chondrocyte seeded MeHA constructs will require further modification to 

optimize their growth. More generally, these findings suggest that chondrocytes are more 

sensitive to the gel environment than MSCs (which performed much better in this MeHA 

formulation). This was a surprising result, given that articular chondrocytes are largely 

anchorage independent (as they can live well in cell aggregates (Aufderheide and 

Athanasiou 2007)), while MSCs require a defined extracellular niche. This finding 

suggests that MeHA gel properties may be optimized to improve construct maturation. 

For example, we have recently shown that the starting concentration of the MeHA 

solution (and so the starting mechanical properties of the hydrogel) alters the final 

mechanical properties of MSC-seeded constructs after 9 weeks of culture (see Chapter 4), 

and that a new hydrolytically degradable MeHA formulation promotes more rapid 

distribution of formed ECM components (Sahoo et al. 2008). By altering the biomaterial 

environment in these covalently crosslinked HA assemblies, an optimal environment for 

MSC chondrogenesis that is both permissive and pro-chondrogenic may be achieved.  

 

To better understand how matrix deposition related to functional maturation in these 

constructs, we carried out a single factor correlation analysis for each hydrogel and cell 
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type. Similar analyses have previously been performed for chondrocytes and MSCs 

seeded in degradable meshes and hydrogels (Vunjak-Novakovic et al. 1999; Mauck et al. 

2002; Awad et al. 2004). The results of this analysis show how, for a given amount of 

ECM deposition, mechanical outcomes vary between conditions. In agarose-CH 

constructs, we found a strong positive correlation between GAG and EY, and show that 

for MeHA and Puramatrix constructs, the correlation slopes were smaller. This indicates 

that not only do agarose-CH constructs make more GAG, but the functional consequence 

of a given amount of GAG is greater in this hydrogel. While GAG levels were generally 

lower in MeHA and Puramatrix gels compared to agarose, collagen concentration in 

Puramatrix and agarose were comparable. However, the correlation slope for this ECM 

component was lower for the Puramatrix samples, indicating inferior matrix assembly. 

For the MSC-laden cultures, a different trend was observed. For these cells, in each gel 

type, similar correlation slopes were achieved. This suggests that between gels, MSCs 

assemble functional matrix in a similar fashion, though the slopes of these correlations 

were lower than that found for the same comparison in agarose-CH hydrogels. This 

finding further supports the notion that MSCs elaborate ECM that is inferior to that 

produced by fully differentiated chondrocytes. While not identified in the current study, 

we hypothesize that there exists critical structural ECM components whose expression 

and deposition is not yet optimized in MSC cultures. These factors must be identified and 

exploited to allow MSC-based constructs to achieve properties similar to that produced 

by agarose-CH constructs for functional cartilage tissue engineering applications.  
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While robust growth was observed in MSC-seeded constructs, biochemical content and 

mechanical properties did not yet meet that of the native tissue. For example, while s-

GAG content reached 3-4% ww for agarose-MSC and Puramatrix-MSC cultures (near 

physiologic levels), the highest collagen content achieved was ~2% ww, less than 20% of 

the native tissue. It should be noted that this low collagen content was found in both MSC 

and chondrocyte-based cultures, and is a persistent limitation in engineered cartilage 

(Huang et al. 2008). Moreover, we did not specifically measure type I versus type II 

collagen ratios, which may well have differed in the differing hydrogels, particularly 

those that showed considerable contraction. Furthermore, while MSC-laden cultures 

reached equilibrium compressive properties that were ~25% that of bovine cartilage (and 

~50% that of chondrocyte cultures), the dynamic modulus of MSC-based constructs only 

reached ~0.2 MPa (as compared to 1 MPa for chondrocyte-based constructs). The 

dynamic modulus is a critical mechanical feature of the native tissue, and consequently 

these values must be further optimized to enable in vivo function. Additional 

quantification of other mechanical features of these constructs, such as the hydraulic 

permeability and tensile properties, would also be useful in understanding the key 

differences amongst cell types and 3D culture conditions.  

 

3.5. Conclusions 

The results of this study demonstrate biomaterial dependent functional cartilage tissue 

formation. In particular, MSC-seeded constructs increased in mechanical properties in 

each hydrogel, with the most robust maturation reaching 100 kPa, ¼ the value of native 

bovine tissue. Continuing work is focused on further optimization of gel properties (as 
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detailed above) and culture conditions to improve MSC-based construct maturation. 

Recent reports have shown that the passive mechanical properties of the material can 

influence MSC differentiation in 2D cultures (Engler et al. 2006). These changes are 

slightly more difficult to achieve in 3D cultures, as changing the stiffness of the 3D 

network often requires concomitant changes in permeability, but such studies warrant 

further consideration.  Alternatively, we have shown that dynamic loading can improve 

chondrocyte-based agarose construct maturation (Mauck et al. 2000; Mauck et al. 2003), 

and that articular chondrocytes in MeHA gels alter matrix gene expression with 

mechanical loading (Chung et al. 2008). Similarly, dynamic loading increased construct 

properties of chondrocyte-seeded Puramatrix hydrogels (Kisiday et al. 2004). We and 

others have further demonstrated that mechanical loading can modulate MSC 

chondrogenesis in 3D hydrogel culture (Huang et al. 2004; Mauck et al. 2007; Terraciano 

et al. 2007). These and other optimization strategies offer multiple avenues for improving 

MSC-based engineered cartilage constructs. 

 

 

 

This previously published Chapter was included with kind permission from Mary 

Ann Liebert, Inc: Tissue Engineering Part A, “Differential Maturation and 

Structure Function Relationships in MSC and Chondrocyte Seeded Hydrogels”, 

volume 15, 2009, pgs 1041-1052, Isaac E. Erickson, Alice H. Huang, Cindy Chung, 

Ryan T. Li, Jason A. Burdick, Robert L. Mauck. 
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CHAPTER 4:   Macromer Density Influences Mesenchymal Stem Cell 

Chondrogenesis and Maturation in Photo-crosslinked Hyaluronic Acid Hydrogels 

 

4.1. Introduction 

Articular cartilage lines the surfaces of joints and functions to transmit stresses. This 

function is enabled by the complex interplay between the fluid within the tissue with the 

dense extracellular matrix (ECM); specifically the type II collagen network and the large 

negatively charged proteoglycans. Subsequent to trauma, or as a result of degenerative 

diseases, cartilage undergoes fluctuations in its mechanical and biochemical content, and 

thus, loses its load-bearing capacity. To address this, the last two decades have witnessed 

a surge in activity aimed at the formation of engineered cartilage. Much of this work 

employed articular chondrocytes in three-dimensional (3D) culture environments (see 

(Chung and Burdick 2008) for review). In 3D hydrogels in particular, chondrocytes 

produce cartilage ECM that is assembled into a functional network with properties that 

begin to approximate that of native tissue (Buschmann et al. 1992). Physical properties of 

the gel, including polymer density and crosslinking, control the localization and 

mechanical properties of newly formed matrix (Bryant et al. 1999; Ng et al. 2006), as 

well as the diffusion of large macromolecules (Albro et al. 2008). The potential of 

hydrogels is underscored by recent work showing that compressive properties can meet 

or exceed native tissue properties (0.5-1.0 MPa) when custom media regimens are 

employed (Lima et al. 2007; Byers et al. 2008).  
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Despite these promising findings, the clinical use of chondrocytes may have limitations. 

Aged chondrocytes form mechanically inferior constructs when compared to those 

derived from juvenile chondrocytes (Tallheden et al. 2005; Tran-Khanh et al. 2005). An 

alternative might be the use of mesenchymal stem cells (MSCs) (Prockop 1997; 

Johnstone et al. 1998; Pittenger et al. 1999), which are expandable and retain their multi-

differentiation characteristics (Baksh et al. 2004). As with chondrocytes, a range of 3D 

environments have been employed for engineering cartilage with MSCs (e.g., (Erickson 

et al. 2002; Awad et al. 2004; Meinel et al. 2004; Betre et al. 2005; Li et al. 2005; Mauck 

et al. 2006)). Chapter 3 demonstrated that bovine MSCs undergo chondrogenesis in 

agarose (a thermoreversible hydrogel), in self-assembling peptide gels, and in photo-

crosslinked hyaluronic acid (HA) hydrogels. Mechanical properties and biochemical 

content of these constructs increased with time in each hydogel, though tissue formation 

was dependent on the type of hydrogel employed.  

 

The literature on MSC differentiation indicates that specific factors modulate the rate 

and/or extent of MSC chondrogenesis. The biologic interface can induce different levels 

of molecular level chondrogenesis and control cell shape; inclusion of RGD moieties in 

modified alginate gels can limit chondrogenesis above a certain threshold (Connelly et al. 

2007), while modification of polyethylene glycol (PEG) hydrogels with a collagen 

mimetic peptide can enhance chondrogenesis (Lee et al. 2008). Direct comparisons 

between photo-crosslinked PEG hydrogels (simple, non-interactive) and HA hydrogels 

(biologic, interactions through CD44 receptors) show improved chondrogenesis in HA 

when all other factors are held constant (Chung and Burdick 2009). Additionally, 
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biophysical properties such as pore size modulate the extent to which MSCs differentiate 

and accumulate matrix in PEG-based semi-interpenetrating networks (Buxton et al. 

2007). While not yet shown for chondrogenesis in 3D culture, the micromechanics of the 

supporting environment can also tune MSC lineage-specification in 2D culture systems 

(Engler et al. 2006).  

 

Collectively, these findings suggest that the biological, mechanical, and biophysical 

properties of the microenvironment interact to control the lineage specification of MSCs, 

as well as tissue maturation. Our past work with crosslinked HA hydrogels suggests that 

macromer density (which is inversely related to pore size and directly proportional to 

bulk mechanical properties) can be used to tune matrix formation by auricular 

chondrocytes (Chung et al. 2006). As Chapter 3 showed that MSCs undergo 

chondrogenesis in HA gels, but do so to a lesser extent than in other hydrogel 

environments (such as agarose), the purpose of this study was to determine whether 

changes in HA macromer density influence ECM deposition and generation of functional 

cartilage-like properties by MSCs. Results indicated that increasing HA density promoted 

chondrogenesis and matrix formation and retention, but yielded functionally inferior 

constructs due to limited matrix distribution throughout the construct expanse. These data 

provide new insight into how early matrix deposition regulates long term construct 

development, and define new parameters for optimizing functional MSC-based 

engineered cartilage using HA hydrogels. 
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4.2. Materials and Methods 

4.2.1. MSC Isolation and Expansion 

Bone marrow was extracted from juvenile bovine tibiae (Research 87, Boylston, MA) 

and MSCs isolated (Mauck et al. 2006). MSCs were expanded in a basal medium (BM) 

composed of DMEM supplemented with 10% fetal bovine serum (FBS, Gibco 

Invitrogen, Carlsbad, CA) and 1% penicillin-streptomycin-fungizone (PSF) through 2-3 

passages. Three replicate studies were performed, with MSCs from 2-3 donor animals 

pooled for each replicate. Each replicate showed similar trends, and data from one 

replicate is presented. 

 

4.2.2. Fabrication of Acellular and MSC-Seeded Constructs 

Photo-crosslinkable methacrylated hyaluronic acid (MeHA) macromer was synthesized 

(~25% degree of methacrylation) as previously described in Chapter 3 and assessed by 

NMR (Burdick et al. 2005). MeHA solutions were prepared at 1%, 2%, and 5% 

(mass/volume) in PBS with 0.05% w/v of the photoinitiator I2959 (2-methyl-1-[4-

(hydroxyethoxy)phenyl]-2-methyl-1-propanone, Ciba-Geigy, Tarrytown, NY). For cell-

laden gels, MSCs were suspended in MeHA solutions at 20 million cells/mL. Acellular 

and MSC-laden MeHA macromer suspensions were then cast between glass plates 

separated by a 2.25 mm spacer and photopolymerized with UV exposure as described in 

Chapter 3. As controls, agarose hydrogels (Ag; 2.25 mm thick) were formed at 20 million 

cells/mL (Huang et al. 2008). Cylindrical constructs were cored from hydrogel slabs at 4 

mm (for MSC-laden gels) or 8 mm (for acellular gels).  
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4.2.2. Mechanical Characterization of Acellular Constructs  

Acellular MeHA disks (Ø5 mm by 2.25 mm) were formed as above and tested in 

confined compression in a PBS bath (Mauck et al. 2000). Three sequential ramps of 10% 

strain (0.05%/second) were applied, and samples were allowed to reach equilibrium 

between ramps (~1200 seconds). Data from the second ramp (10-20% deformation) were 

extracted and fit to the Biphasic Theory of Mow and co-workers (Mow et al. 1980) to 

determine construct permeability (k) and aggregate modulus (HA).   

 

4.2.3. Macromolecular Diffusion in Acellular Constructs 

Fluorescein-conjugated dextran (70 kDa and 2,000 kDa; Molecular Probes, Invitrogen) 

was suspended within MeHA (1%, 2%, and 5%) hydrogels at 175 µg/mL or 85 µg/mL, 

respectively. Gels were maintained in 2 mL of PBS at 37oC on a rocker plate, and 

supernatant sampled over 72 hours. Released dextran was measured via fluorescence (485 

nm/518 nm), with concentration determined from standard curves. The effective 

‘diffusivity’ was determined by plotting concentration (normalized to final) versus the 

square root of time (Quinn et al. 2000).  

 

4.2.4. Long-term Culture Conditions 

Constructs were cultured for up to six weeks (1 mL/construct) in TGF-β3 (10 ng/mL; 

R&D Systems, Minneapolis, MN) supplemented, chemically defined medium. This 

medium consisted of high-glucose DMEM with 1× PSF, 0.1 µM dexamethasone, 50 

µg/mL ascorbate 2-phosphate, 40 µg/mL L-proline, 100 µg/mL sodium pyruvate, and 
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ITS+ (6.25 mg/mL insulin, 6.25 mg/mL transferrin, 6.25 ng/mL selenous acid, 1.25 

mg/mL bovine serum albumin, and 5.35 mg/mL linoleic acid). Media were changed twice 

weekly. 

 

4.2.5. Viability and Short-term Expression Analysis 

For viability assays, samples were tested at 3 and 6 weeks using the Live/Dead staining 

kit described in Chapter 3 (Molecular Probes, Invitrogen). Additionally, on days 0, 3, and 

21, metabolic activity was quantified with the MTT assay. Briefly, samples were 

incubated in MTT reagent for 1 hour at 37oC, washed in PBS, and developed color eluted 

with dimethyl sulfoxide (DMSO), and absorbance read at 540 nm. For gene expression, 

RNA was extracted from day 0, 1, 7 and 21 samples with two sequential extractions in 

TRIZOL-chloroform. After quantification of RNA yield and purity (Nanodrop, Thermo 

Scientific, Waltham, MA), reverse transcription was carried out with the Superscript First 

Strand Synthesis System kit (Invitrogen). cDNA amplification was carried out using 

SYBR Green Master Mix on a 7300 Applied Biosystems real time PCR machine with 

intron spanning primers. Expression of type I collagen (Col I), type II collagen (Col II) 

and aggrecan (AGG) were determined and normalized to GAPDH.  

 

4.2.6. Biomechanical Analysis 

Compressive equilibrium (EY) and dynamic (|G*|) moduli of constructs were determined 

by unconfined compression between impermeable platens in a PBS bath as described in 

Chapter 3 (Mauck et al. 2000; Park et al. 2004). In a separate study, tensile properties 

were measured. MSC-seeded samples were fabricated as above, but cut from slabs into 
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strips (4 mm x 20 mm x 1.5 mm), and cultured in chondrogenic medium with TGF-β3 (6 

mL per strip). Given the larger size of these samples and the poor findings with 5% HA in 

compression studies, only 1% and 2% MeHA concentrations were investigated. Samples 

were tested via a quasi-static extension to failure (Huang et al. 2008), with the ramp 

tensile modulus computed from the linear region of the stress-strain curve.  

 

4.2.7. Biochemical Analysis 

After testing, construct wet weights were recorded and the content of DNA, sulfated 

glycosaminoglycan (sGAG,) and collagen was determined as in Chapter 3. Collagen was 

extrapolated from orthohydroxyproline (OHP) using a 1:7.14 ratio of OHP:collagen 

(Neuman and Logan 1950). In one replicate, sGAG content within the culture medium 

was measured at each feeding.  

 

4.2.8. Histological Analysis of MSC-seeded Constructs 

Constructs were fixed in 4% paraformaldehyde, embedded in paraffin and sectioned (8 

µm). Analysis was carried out on days 3, 5, 7, 10, and 14 and bi-weekly through week 6. 

Samples were stained for proteoglycans with alcian blue (pH 1.0) and for collagen via 

picrosirius red (Huang et al. 2008). Immunohistochemistry was used to visualize 

localization of collagen types I and II (Huang et al. 2008). Samples underwent antigen 

retrieval and were sequentially treated at room temperature with 300 mg/mL 

hyaluronidase (Type IV, Sigma, St. Louis, MO), 3% H2O2, and blocking reagent 

(DAB150 IHC Select, Millipore, Billerica, MA). Sections were then treated with 

antibodies (5 mg/mL) to type I collagen (MAB3391, Millipore) or type II collagen (11e-
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116B3, Developmental Studies Hybridoma Bank, Iowa City, IA) in 3% BSA (control 

sections treated with 3% BSA only). Finally, biotinylated goat anti-rabbit IgG secondary 

antibody conjugated with streptavidin horseradish peroxidase was localized to primary 

antibodies, and color developed with DAB chromagen reagent (DAB150 IHC Select, 

Millipore). Images were acquired at magnifications of 5X or 10X. 

 

4.2.9. Statistical Analysis 

Data are reported as the mean and standard deviation; sample numbers are indicated in 

the associated figure legends. Statistical analysis (SYSTAT 12, Systat Software, Chicago, 

IL) included both one-way and two-way ANOVA, with gel group (1%, 2%, 5% MeHA, 

and Ag) and time in culture as independent variables. When significance (p<0.05) was 

indicated by ANOVA, Tukey’s post hoc tests were applied to enable comparisons 

between groups.  

 

4.3. Results 

4.3.1. Macromer Density Influences Acellular Hydrogel Mechanics 

Prior to cell-seeding studies, crosslinked MeHA hydrogels were formed at varying 

concentrations (1%, 2%, and 5%) and tested in confined compression. Increasing 

macromer concentration led to decreases in construct permeability (k), with both 2% and 

5% MeHA hydrogels significantly less permeable than 1% MeHA hydrogels (p<0.05, 

Figure 4-1). HA showed the reverse trend, with 5% MeHA gels significantly stiffer than 

both 1% and 2% gels (p<0.05).  
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Figure 4-1:  Biphasic parameters of permeability (k) and aggregrate modulus (HA) for MeHA 
gels with increasing macromer density. (R

2
>0.89; n=3-4/group; * indicates p<0.05 vs. 1%; ** 

indicates p<0.05 vs. 1% and 2%) 

 
4.3.2. MSC Viability and Differentiation in HA Gels with Increasing Macromer Density 

After ascertaining concentration-dependent differences in hydrogel properties, MSC 

viability and differentiation was assessed in MeHA gels of increasing macromer 

concentration (1%, 2%, and 5%). Viable cells were observed uniformly in all MeHA and 

Ag constructs on both day 21 and day 42 (Figure 4-2). There appeared to be more cell 

clustering with higher MeHA concentrations at both time points. Little evidence of cell 

death was observed under any condition (data not shown). Metabolic activity showed 

that, relative to day 1, 1% MeHA and Ag gels increased with time (p<0.05), but after 21 

days no significant differences were observed between groups (p>0.05). DNA content per 

construct was ~20% and ~40% higher after 42 days in 2 and 5% MeHA hydrogels 

compared to 1% MeHA and Ag hydrogels, respectively (p<0.05).  
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Figure 4-2:  (A) Live (green, left) and dead (red, right) MSCs in 1%, 2%, and 5% MeHA, and 
Ag hydrogels 21 and 42 days after encapsulation (10X magnification; 200 µm scale bar). 
(B) Mitochondrial activity of constructs through day 21. (C) DNA content of MSC-seeded 
constructs through day 42. (n=4/group/time point, ** indicates p<0.05 vs. 1% and Ag on 
day 42, * indicates p<0.05 vs. Ag on day 42; 

‡ 
indicates p<0.05 vs. day 0) 

 
Expression analysis was performed on MSC-seeded constructs maintained in a 

chemically defined media supplemented with TGF-β3. Results indicated that collagen 

type I expression remained low throughout the 21 day period, at most increasing by a 

factor of two over this time course. Conversely, collagen type II expression increased 

dramatically in each condition, and appeared to be a function of macromer density (with 

levels in 5% MeHA nearly 4-fold greater than in 1% MeHA or Ag) (Figure 4-3). 

Aggrecan increased relative to starting levels in each construct by day 7, with generally 

higher levels of expression observed in the MeHA constructs compared to Ag constructs. 

For aggrecan, no clear differences were observed between MeHA gels of different 

concentrations. These data indicate that MSCs are viable in MeHA hydrogels over long 



54 

periods, that constructs have stable or slightly increased cell content, and that MSCs 

undergo chondrogenesis in each of these 3D environments.  

 

Figure 4-3:  Collagen type I (top), collagen type II (middle), and aggrecan (bottom) mRNA 
levels MSC-seeded MeHA (1%, 2%, and 5%) and Ag constructs through 21 days of 
chondrogenic culture.  Note robust increases in collagen II and aggrecan, indicative of 
chondrogenic differentiation. 

 
4.3.3. Construct Dimensional Stability and Biochemical Content 

Biochemical content in engineered cartilage is a function of matrix deposition and 

retention, as well as volumetric space. In low concentration MeHA gels, initial 

dimensions (diameter and thickness) decreased markedly (Figure 4-4). This contraction 

occurred in both acellular and MSC-seeded gels, suggesting that the initial contraction is 

a function of the gel itself, rather than cell-mediated mechanisms. Acellular and MSC-

seeded 1% MeHA constructs contracted by ~10% in thickness and ~20% in diameter 
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over the first day. Conversely, 5% gels increased in thickness by ~5%, with no change in 

diameter. 2% MeHA constructs were intermediate to these extremes, while Ag constructs 

did not change, consistent with previous findings. With culture, construct dimensions 

changed as well; 1% MeHA constructs recovered towards their original geometry, while 

2% and 5% MeHA constructs increased in thickness by ~30%, and in diameter by 10-

20%, by day 42. Over this same time course, Ag constructs showed small increases in 

diameter and thickness.  

 

Figure 4-4:  Dimensional variation in acellular and MSC-seeded constructs with time in 
culture.  Differences shown as the percentage of initial size (4 mm diameter and 2.25 mm 
thickness, n=4/group/time point).  Inset image of MSC-seeded constructs after 6 weeks of 
in vitro culture in chondrogenic medium. 

 

Biochemical content of constructs was assessed through six weeks of culture. On a per 

wet weight (ww) basis, 1% MeHA constructs accumulated the highest s-GAG content in 

MeHA, reaching levels comparable to Ag constructs (p>0.05), while 2 and 5% MeHA 

constructs contained less s-GAG (p<0.05, Figure 4-5A). On Day 42, 1% MeHA and Ag 

constructs contained ~3% s-GAG per wet weight, while 2% and 5% MeHA constructs 

contained ~2% s-GAG. Conversely, in terms of total s-GAG per construct, values in 1% 

MeHA constructs were less than both 2% and 5% MeHA constructs (p<0.05; Table 4-1). 

s-GAG lost to the culture media was highest for Ag, reaching peak release rates by day 

11. 5% MeHA constructs released the least amount s-GAG per day over the first 21 days, 
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with similar release rates from each MeHA construct observed thereafter (Figure 4-5C). 

Collagen content showed a similar trend as s-GAG, with the exception of Ag constructs, 

which contained higher collagen levels (1.4% ww, p<0.05) than each of the MeHA 

constructs by day 42 (1%: 0.7%ww, 2%: 0.3%ww, 5%: 0.4%ww, Figure 4-5B). In terms 

of total collagen per construct, Ag constructs contained the highest levels, while the 

MeHA formulations were not different from one another (Table 4-1). 

 

Figure 4-5: A) s-GAG percent wet weight (% ww) in 1, 2, and 5% MeHA, and Ag constructs 
through 42 days of in vitro chondrogenic culture.  (** indicates p<0.05 vs 2 and 5% at day 
42)  B) collagen content (% ww) in MeHA and Ag constructs through 42 days of culture.  
Increased concentration of ECM was observed in Ag and 1% MeHA hydrogels by day 42.  
(** indicates p<0.05 vs all other groups at day 42) C) s-GAG release per day per construct 
for MSC-seeded MeHA and Ag constructs through 42 days of culture.  (n=4/group/time 
point, ‡ p<0.05 vs. day 0)   
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Table 4-1:  Construct dimensions, biochemical content, and mechanical properties of 
MSC-seeded MeHA and Ag constructs after 6 weeks of culture (mean ± standard deviation 
(SD); n=3-4/group). 

 

4.3.4. Mechanical Properties of MSC-laden Constructs  

Differences in biochemical content (and concentration) of ECM resulted in widely 

different compressive and tensile properties. While all constructs increased in equilibrium 

and dynamic modulus with time (p<0.05), by day 42 the equilibrium modulus of 1% 

MeHA constructs was ~20% greater than Ag constructs (p<0.05, Figure 4-6A) and more 

than 100% greater than both 2% and 5% MeHA constructs (p<0.05). The dynamic 

compressive modulus data followed a similar trend, where 1% MeHA constructs were 

~20% greater than Ag, and ~5-fold greater than 2% and 5% MeHA constructs (p<0.05, 

Figure 4-6B). On day 42, the tensile modulus of Ag constructs was ~2-fold higher than 

that of 1% MeHA (p<0.05, Figure 4-6D), while 1% MeHA constructs were more than 7-

fold greater than 2% MeHA constructs (p<0.05). Failure strain did not change markedly 

with culture (Figure 4-6C). 
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Figure 4-6:  Equilibrium compressive modulus (A) and dynamic modulus (B) of MeHA and 
Ag hydrogels through 6 weeks of culture (** indicates p<0.05 vs. all other groups at day 
42; * indicates p<0.05 vs. 2% and 5%).  Failure strain (C) and tensile modulus (D) of MSC-
seeded 1 and 2% MeHA and Ag constructs at 2, 4, and 6 weeks. Biomechanical properties 
increase more rapidly and to a higher level in lower concentration MeHA constructs. 
(n=4/group/time point, �p<0.05 vs. day 0; * indicates p<0.05 vs. all lower groups on the 
terminal time point (day 42); # indicates p<0.05 vs. Ag group at same time point; + 
indicates p<0.05 vs. 1% MeHA group at same time point) 

 

4.3.5. ECM Deposition and Distribution  

Histological analysis at early time points showed marked differences in matrix 

distribution as a function of macromer density (Figure 4-7). In 5% MeHA constructs, 

proteoglycans were sequestered into dense rings around cells by day 7. In contrast, 1% 

MeHA and Ag gels showed a more homogenous distribution of proteoglycans. Similarly, 

by day 42, proteoglycan and collagen was evenly distributed in 1% MeHA and Ag, while 

intense pericellular localization was evident in 5% MeHA constructs (Figure 4-8). 
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Collagen type II (Figure 4-8) showed increased sequestration of this ECM component in 

the pericellular space in higher macromer concentration MeHA constructs. Consistent 

with biochemical findings, histological results also show more intense collagen (bulk and 

type II) staining in Ag constructs compared to all MeHA constructs. 

 

Figure 4-7:  Alcian blue stained sections of MSC-seeded 1, 2, and 5% MeHA and agarose 
(Ag) constructs after 3 (top), 7 (middle), and 14 days (bottom) of chondrogenic culture (10X 
magnification).  Pericellular aggregation of proteoglycans is evident in higher % MeHA 
constructs in contrast to a more even distribution in 1% MeHA constructs and Ag controls. 
(Scale bar = 250 µm) 

 

 
4.3.6. Macromolecular Diffusion in Acellular MeHA Hydrogels 

To better understand the mechanism of matrix distribution, we evaluated macromolecular 

diffusivity of small (70 kDa, on the order of growth factors) and large (2000 kDa, on the 

order of ECM aggregates) molecules in MeHA gels of varying macromer density. 

Release rates of 70 kDa dextran from MeHA hydrogels decreased as macromer density 

increased (Figure 4-9A). A similar finding was observed with 2000 kDa dextran (Figure 

4-9B). Linear regression to the relative concentration plotted against the square root of 
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time provides a quantitative ‘effective diffusivity’ for comparing these responses. Linear 

fits captured the data well (R2>0.75) for each macromer density and both dextran sizes. 

Macromer concentration had a significant effect on ‘effective diffusivity’ for both 70 and 

2000 kDa dextran. For each increase in macromer concentration, a significant decrease in 

diffusivity was observed (p<0.05; Figure 4-9C).  

 

Figure 4-8:  Alcian blue (top) and picrosirius red (middle) stained sections from 1%, 2%, 
and 5% MeHA and agarose (Ag) constructs (10X magnification) on day 42.  Collagen type II 
immunostaining (bottom) on day 42 (5X).  Note the dependence of proteoglycan and 
collagen distribution on MeHA macromer concentration.  (Scale bar = 250 µm) 

 

4.4. Discussion 

Realization of a functional engineered cartilage construct requires that a clinically 

relevant cell type be situated within a 3D environment that supports cell viability as well 

as the production and retention of cartilage specific ECM molecules. Further, the 

encapsulating material must allow assembly of these molecules into a dense network with 

physiologic mechanical properties. In this work, we investigated the ability of MSCs to 
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undergo chondrogenesis in crosslinked methacrylated HA hydrogels. This hydrogel 

formulation has several promising attributes; it is a well defined biologic that can be 

photo-polymerized in situ to fill any sized defect (Nettles et al. 2004). Previous work in 

Chapter 3 with this gel at a 2% macromer concentration established that MSCs undergo 

chondrogenesis in MeHA, but also indicated that the rate and extent of functional 

maturation was reduced when compared to agarose. As MeHA macromer density 

influences ECM deposition by auricular chondrocyte seeded HA gels (Chung et al. 

2006), this study specifically investigated how variations in this parameter influence the 

maturation of MSC-based constructs. Results from this study demonstrate that two 

competing effects occur as macromer density increases: enhanced chondrogenesis that is 

countermanded by biophysical impediments to distributed matrix assembly.  

 

As previously noted for MeHA , and consistent with other hydrogels (Ng et al. 2005), 

changes in macromer density had marked effects on the mechanical properties; constructs 

with higher macromer densities were stiffer. Despite the increasing gel density, viability 

and DNA assays indicated that cells survive and divide throughout the material. 

Encapsulated MSCs increased expression of cartilage-specific matrix and accumulated 

increasing amounts of proteoglycan through 42 days. Despite the hindered diffusion 

observed for 70 kDa molecules, histological analysis (staining for proteoglycan 

deposition) showed that chondrogenesis occurred throughout the gel, and was not 

restricted to the periphery in higher macromer concentrations. These findings suggest that 

the HA gels support viability and MSC chondrogenesis at all macromer concentrations.  
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Figure 4-9:  Time course of release of 70 kDa (A) and 2000 kDa (B) fluorescein-conjugated 
dextran from 1%, 2%, and 5% MeHA hydrogels. Data were normalized to the maximum 
observed release from 1% MeHA for both dextran sizes. Effective diffusivity (C) of dextran 
of both sizes decreased with increasing MeHA macromer concentration. (n=3/group; ** 
indicates p<0.05 vs. both 2% and 5% MeHA groups; * indicates p<0.05 vs. the 5% MeHA 
group only) 
 

The enhanced chondrogenic differentiation and proteoglycan observed in higher 

macromer concentration MeHA constructs could arise from a number of different factors. 

First, we have previously shown that MeHA hydrogels enhance molecular level 

chondrogenesis compared to inert crosslinked networks such as PEG (Chung and Burdick 
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2009). HA is a component of the native cartilage ECM and so the gel presents a biologic 

interface with which both chondrocytes and MSCs can interact (through CD44 receptors) 

(Knudson and Knudson 2004). In high macromer constructs, a greater probability of 

receptor mediated interaction with the material exists, just as concentration dependent 

effects are observed when RGD is coupled to otherwise biologically inert hydrogels 

(Connelly et al. 2007). Alternatively, the higher stiffness of the material may influence 

differentiation. Findings in monolayer studies suggest that MSCs can interpret the 

microenvironmental stiffness to modulate differentiation (Engler et al. 2007). Here, 

increasing macromer density increases gel stiffness; MSCs may respond to this by 

increasing the degree to which they undergo chondrogenesis. Still another possibility 

relates to the rapid and intense accumulation of newly formed matrix in the pericellular 

space in higher density MeHA. While a high local proteoglycan concentration exerts 

negative feedback on further proteoglycan production by chondrocytes (Buschmann et al. 

1992), this does not seem to be the case with MSCs in this system. Rather, the ECM in 

the pericellular space may act to concentrate locally produced factors (ECM to which the 

cells bind, or growth factors that themselves bind to ECM), creating a microenvironment 

that better supports and/or maintains chondrogenesis. Future studies will be required to 

elucidate the precise mechanism by which this enhanced differentiation occurs in higher 

density MeHA gels.   

 

Despite the anabolic and/or pro-chondrogenic effects of increasing MeHA macromer 

density, these positive findings were counterbalanced by the limited diffusion of large 

ECM molecules away from their origin. This limitation impeded the homogenous 
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distribution of formed ECM, and so hampered the functional maturation. This is 

consistent with the findings of Buxton and colleagues, who showed that inclusion of 

spacers within PEG gels allowed for greater matrix distribution by human MSCs (Buxton 

et al. 2007) and by Ng and colleagues using bovine chondrocytes in an agarose system 

(Ng et al. 2005). While 5% MeHA constructs produced and retained the highest absolute 

amount of proteoglycan, they failed to develop increasing mechanical properties 

compared to lower macromer concentration constructs that produced lesser amounts of 

proteoglycan. This is partially due to volumetric changes observed; 1% MeHA constructs 

made less proteoglycan, but contracted slightly and so concentrated the formed ECM, 

while 5% MeHA constructs made and retained more proteoglycan, but swelled 

significantly. These findings suggest that new methods must be developed to take 

advantage of the positive features of a higher MeHA concentration, while increasing the 

mobility of newly formed matrix. For example, Bryant and colleagues have shown 

greater ECM distribution in chondrocyte-seeded PEG gels that contain degradable 

linkages (Bryant and Anseth 2003), and Park and co-workers have shown similar 

findings in MMP-cleavable hydrogels (Park et al. 2004). Working with a new 

hydrolytically degradable version of these crosslinked HA hydrogels, we have recently 

shown that crosslink degradation leads to more rapid dispersion of ECM in short term 

MSC studies (Sahoo et al. 2008). It is not yet clear how long the pro-chondrogenic signal 

provided by the HA microenvironment (be it stiffness or biologic moieties) must be 

present to result in long term increases in matrix production. In future studies, it will be 

critical to carefully tune early matrix assembly, and the positive benefits thereof, with 

long term requirements for matrix elaboration. 
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The results of this study are promising, in that they show a clear macromer density 

dependent development of construct mechanical properties. The equilibrium and dynamic 

compressive properties of MSC-seeded 1% MeHA constructs match or exceed properties 

achieved with Ag hydrogels seeded with the same MSC population and maintained 

identically. Indeed, equilibrium compressive properties and s-GAG content reach 25% 

and 50% of native tissue levels, respectively. However, collagen content in MeHA gels 

remains low, and is lower than that produced in Ag constructs. This is a significant 

finding, as collagen content correlates well with tensile properties in native tissue and 

engineered constructs. In this study, the tensile properties of 1% MeHA constructs 

remained significantly lower than Ag constructs. Further, it should be noted that the 

compressive mechanical properties (even in Ag hydrogels) remain lower than that 

produced by native chondrocytes in Ag hydrogels (Mauck et al. 2006). This is consistent 

with the idea that MSCs remain incompletely (or inefficiently) committed to the 

chondrocyte phenotype, even in MeHA.  

 

Despite these limitations, these data provide new insight into how early matrix deposition 

regulates long term construct development, and define new parameters for optimizing the 

formation of functional MSC-based engineered cartilage using HA hydrogels. For 

example, in the case of higher density MeHA constructs, dynamic loading might be used 

to further matrix distribution. Theoretical and experimental results suggest that dynamic 

loading can expedite the movement of large molecules in dense hydrogels (Mauck et al. 

2003; Albro et al. 2008). Such an approach may be useful in coupling the pro-
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chondrogenic/matrix formation events in MeHA hydrogels, while still providing a 

mechanism for distribution of newly formed constituents throughout the construct, 

potentially improving bulk mechanical properties. 

 

4.5. Conclusions 

Taken together, these results provide new evidence that HA hydrogels support the 

functional chondrogenesis of MSCs, with mechanical properties matching or exceeding 

our best results to date in other hydrogel systems. With further optimization, this material 

holds tremendous promise in the fabrication of functional cartilage replacements to 

restore function to damaged or diseased native tissue.  

 

 

 

This previously published Chapter was included with kind permission from 

Elsevier: Osteoarthritis and Cartilage, “Macromer Density Influences Mesenchymal 

Stem Cell Chondrogenesis and Maturation in Photo-crosslinked Hyaluronic Acid 

Hydrogels”, volume 17, 2009, pgs 1639-1648, Isaac E. Erickson, Alice H. Huang, 

Swarnali Sengupta, Sydney R. Kestle, Jason A. Burdick, Robert L. Mauck. 
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CHAPTER 5:   High Density MSC Seeded Hyaluronic Acid Constructs Produce 

Engineered Cartilage with Native Properties 

 

5.1. Introduction 

Articular cartilage injuries and disease result in focal defects with limited intrinsic 

capacity for regeneration. The presence of a defect requires adjacent cartilage to bear an 

increased proportion of joint load (Guettler et al. 2004; Albro et al. 2008) which 

increases local stresses and the likelihood of continued degeneration and development of 

osteoarthritis (Ding et al. 2005; Magnussen et al. 2009). An ideal repair material would 

completely integrate to fill the defect with a cartilage-like material possessing functional 

load-bearing characteristics (Ateshian et al. 2003). However, meeting of this high 

benchmark for functional repair remains an elusive goal. Current regenerative strategies 

that deliver ex-vivo expanded autologous chondrocytes (ACI/ACT) (Brittberg et al. 

1994) or promote endogenous healing via bone marrow stimulation (microfracture) 

(Steadman et al. 2001) may improve patient outcomes, but functional restoration of the 

tissue has yet to be demonstrated (Jones et al. 2008). Instead, a transient fibrous repair 

material forms lacking in native tissue properties. 

 

An alternative approach is to engineer de novo cartilage in vitro for implantation within a 

cartilage defect. Indeed, recent work utilizing chondrocytes in specialized media 

conditions and 3D hydrogels has produced constructs that match or exceed native tissue 

values for equilibrium modulus and proteoglycan content (Lima et al. 2007; Byers et al. 

2008; Bian et al. 2010; Ng et al. 2010). However, the clinical shortage of healthy 
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chondrocytes and the co-morbidity associated with their harvest (Lee et al. 2000) are 

considerable limitations. Mesenchymal stem cells (MSCs) can be obtained from patient 

bone marrow and expanded in vitro to clinically relevant numbers without losing their 

ability to undergo chondrogenic differentiation (Pittenger et al. 1999). MSCs have been 

combined with countless biomaterials for cartilage tissue engineering (Huang et al. 

2010), but no such combination has yet achieved mechanical properties that approach 

native tissue or engineered chondrocyte-based cartilage (Mauck et al. 2006; Huang et al. 

2010).  

 

One approach for improving the functional maturation of MSC-based engineered 

cartilage may be to increase the starting cell density within a construct. Here, the 

rationale is that with more point sources for matrix production, the functional contiguity 

of matrix should occur at an earlier time in culture, and formed matrix should be 

concentrated to a greater extent. Indeed, early work using chondrocytes embedded in 

alginate and agarose showed that, provided a sufficient supply of nutrients, increasing 

seeding densities led to increasing mechanical and biochemical outcomes (Chang et al. 

2001; Mauck et al. 2003). MSCs likewise depend on seeding density, where densities up 

to ~10 million MSCs/mL led to increased expression of cartilage matrix associated genes 

compared to lower cell densities (Huang et al. 2004). However, in work from our group 

and others, using both agarose and alginate hydrogels, no improvement in mechanics was 

observed at higher MSC densities with continual exposure to pro-chondrogenic media 

(Ponticiello et al. 2000; Kavalkovich et al. 2002; Huang et al. 2009). Indeed, in alginate 

gels, there appeared to be a maximum in matrix production per cell occurring in the range 
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of 25 million cells/mL, with both higher and lower densities leading to inferior outcomes 

on a per cell basis (Kavalkovich et al. 2002).  

 

That same work and related studies, however, suggest that additional cues from the 

microenvironment can influence functional matrix elaboration, namely, the biomolecular 

identity of the supporting 3D network (Kavalkovich et al. 2002) as well as its biophysical 

properties (Huebsch et al. 2010). Our recent work (see Chapter 4) with a photo-

polymerizing hyaluronic acid (HA) hydrogel (Burdick et al. 2005; Chung and Burdick 

2009) showed that when MSCs were encapsulated (20 million/ml) in hydrogels of 1%, 

2%, and 5% (w/v) macromer concentrations, the most robust constructs developed in the 

1% formulation. This improved matrix functionality occurred despite the fact that MSCs 

had higher levels of cartilage matrix-related gene expression and matrix synthesis (per 

construct) in the higher macromer density constructs (Chung et al. 2009; Erickson et al. 

2009). Histological analysis showed that in high density gels, discrete lacunae of poorly 

distributed matrix formed, while in 1% gels a well distributed and contiguous 

proteoglycan and collagen network was established. Overcoming these limitations in the 

distribution of cartilage matrix may increase the potential of higher HA macromer density 

hydrogels for functional development while also taking advantage of their greater initial 

strength and dimensional stability. 

 

To test this hypothesis directly, the objective of this Chapter was to determine whether an 

increase in MSC seeding density would enhance tissue engineered cartilage properties in 

high macromer concentration HA hydrogels, and specifically whether this increase would 
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be mediated by improved matrix connectivity (Figure 5-1). Towards this end, HA 

hydrogels of 1, 3, and 5% macromer density were seeded at either 20 or 60 million 

MSCs/mL and cultured for 4 and 8 weeks in a chemically defined pro-chondrogenic 

media formulation. At each time point, construct maturation was evaluated via 

assessment of biomechanical, biochemical, and histological properties, along with 

measures of the expression of cartilage matrix associated genes. Further, under the best 

conditions derived above, we evaluated growth of high seeding density constructs under 

dynamic culture (orbital shaking) conditions to further improve functional maturation. 

 

Figure 5-1:  Cartilage matrix diffusion is limited within HA hydrogels of higher macromer 
density (left), but increasing MSC seeding density may improve matrix connectivity (right) 
to enhance the functional development of tissue engineered cartilage. 

 

5.2. Methods 

5.2.1. Hyaluronic Acid Hydrogel Synthesis 

Methacrylated HA (MeHA) macromer was synthesized by reacting methacrylic 

anhydride (Sigma, St. Louis, MO) and 74 kDa HA (Lifecore, Chaska, MN) followed by 

1H NMR characterization (25% methacrylated) as previously described (Burdick et al. 
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2005). Lyophilized MeHA was stored at -20° C before being sterilized by exposure to a 

biocidal UV lamp for 15 minutes. Macromer was dissolved to 1, 3, and 5% 

(mass/volume) in sterile PBS with 0.05% photoinitiator Irgacure-2959 (2-methyl-1-[4-

(hydroxyethoxy)phenyl]-2-methyl-1-propanone; Ciba-Geigy, Tarrytown, NY). 

 

5.2.2. MSC Isolation, Expansion, and 3D Culture 

Bone marrow derived MSCs were isolated from juvenile bovine femurs as in (Mauck et 

al. 2006) and expanded through passage 3 in basal medium consisting of DMEM with 

10% fetal bovine serum and 1% penicillin-streptomycin-fungizone (PSF) (Invitrogen, 

Carlsbad, CA). After culture expansion, MSCs were trypsinized and encapsulated at 

either 20 or 60 million cells/mL in 1%, 3%, and 5% (w/v) MeHA via UV polymerization 

(10 min) between glass plates separated by 2.25 mm as in (Erickson et al. 2009). Sterile 4 

mm diameter biopsy punches were used to create MSC-laden hydrogel cylinders. MSCs 

were also encapsulated within agarose (Ag; 2% w/v; Type VII, Sigma, St. Louis, MO) 

hydrogels. Agarose, a well established scaffold for cartilage tissue engineering (Mauck et 

al. 2006), was included as a control. All constructs (1 ml/construct) and were cultured in 

a chemically defined medium consisting of high glucose DMEM with 1x PSF, 0.1 µm 

dexamethasone, 50 µg/mL ascorbate 2-phosphate, 40 µg/mL l-proline, 100 µg/mL 

sodium pyruvate, ITS+ (6.25 µg/ml insulin, 6.25 µg/ml transferrin, 6.25 ng/ml selenous 

acid, 1.25 mg/ml bovine serum albumin, and 5.35 µg/ml linoleic acid) that was further 

supplemented with TGF-β3 (10 ng/ml, R&D Systems, Minneapolis, MN). Constructs 

were cultured in non-tissue culture treated 6-well plates with complete medium changes 

occurring thrice weekly. In a second series of studies, using only the high density 1% HA 
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formulation, constructs were also evaluated with culture on an orbital shaker (1.2 rpm) 

for the duration of the study (Farrell et al. 2011). This ‘dynamic culture’ group was 

accompanied by a ‘static culture’ control group treated identically. 

 

5.2.3. Mechanical and Biochemical Analysis 

At defined time points (4 and 8 weeks for macromer study, 3, 6, and 9 weeks for shaking 

study), construct mechanical properties and biochemical content was assessed. The 

unconfined equilibrium compressive modulus was derived from a stress relaxation test 

(10% strain; 1000 sec relaxation) (Mauck et al. 2000). After equilibration, the dynamic 

modulus was determined by applying 5 sinusoidal cycles of compression at 1 Hz (1% 

strain amplitude) (Park et al. 2008). After mechanical testing each construct was weighed 

and digested in papain before being analyzed for DNA, sulfated glycosaminoglycan 

(sGAG), and collagen content (Mauck et al. 2006). DNA content was analyzed using the 

Picogreen dsDNA assay kit (Molecular Probes, Eugene, OR), sGAG using the 1,9-

dimethylmethylene blue (DMMB) dye binding assay, and the orthohydroxyproline 

(OHP) was measured and converted to collagen as previously described (Neuman and 

Logan 1949; Stegemann and Stalder 1967; Farndale et al. 1986). 

 

5.2.4. Histological Analysis 

To assess the viability of encapsulated MSCs within HA and Ag hydrogels, samples were 

halved diametrically and stained with calcein AM and ethidium homodimer (Live/Dead 

kit; Invitrogen). Additional constructs were fixed in 4% paraformaldehyde, paraffin 
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embedded, and sectioned (8 µm). Sections were stained for collagens (picrosirius red) 

and proteoglycan (alcian blue) before imaging at 100 X magnification. 

 

5.2.5. Gene Expression 

To assess the expression of cartilage matrix associated genes, constructs were frozen in 

TRIZOL and mRNA isolated by phenol/chloroform extraction. After quantification of 

RNA yield and purity (Nanodrop, Thermo Scientific, Waltham, MA), reverse 

transcription with the Superscript First Strand Synthesis System kit (Invitrogen) was 

performed. Intron spanning primers and SYBR Green Master Mix were used to amplify 

cDNA on a 7300 Applied Biosystems real time PCR machine. Aggrecan (AGG) and 

collagen type II (COL II) gene expression levels were determined and normalized to 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). (Huang et al. 2010) 

 

5.2.6. Statistical Analysis 

All statistical analyses were performed using SYSTAT (v13, San Jose, CA). Three-way 

ANOVA was used with hydrogel formulation (1, 3, 5% MeHA, and Ag), MSC seeding 

density (20 or 60 M/mL), and time (0, 4, and 8 weeks) as independent variables. Two-

way ANOVA was used for the analysis of the dynamic culture environment with time (3, 

6, and 9 weeks) and culture condition (dynamic and static) as independent variables. 

Fisher’s least significant difference post hoc test was used for each analysis of pair-wise 

comparisons and a threshold of p<0.05 was used to establish significant differences 

between experimental groups. The experiments were repeated at least one time in full, 
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with consistent results found between replicates; data from one replicate are presented 

here. 

 

5.3. Results 

5.3.1. Construct Formation and Mechanical Properties with Increasing Seeding Density 

As expected, increasing the initial MSC seeding density from 20 million cells/mL (20M) 

to 60 million cells/mL (60M) resulted in a clear increase in viable cell density within the 

construct (Figure 5-2A, Day 1 images shown). Increased cell density did not appear to 

compromise viability at any HA concentration at later time points (not shown). While an 

increase in cellularity was achieved, our starting hypothesis was not borne out by 

experimental findings. Namely, the compressive properties of higher macromer density 

(i.e., 3% and 5%) HA constructs did not increase with an increase in MSC seeding 

density. While the modulus (EY) of 20M 3% HA constructs increased to 51 kPa by 8 

weeks, tripling the seeding density to 60M did not change construct properties (56 kPa) 

(Figure 5-2B). Likewise, in 5% HA gels, EY reached 66 kPa at 20M and 72 kPa at 60M, 

and were not different from one another (Figure 5-2B). However, and interestingly, the 

EY of 1% HA constructs reached 121 kPa at 20M, and were nearly 3-fold greater (313 

kPa) at 60M (p<0.05; Figure 5-2B). Consistent with our previous findings (Huang et al. 

2009), Ag control constructs showed no change with increased seeding density, reaching 

138 and 126 kPa for 20M and 60M conditions, respectively (Figure 5-2B). The results 

for dynamic modulus were similar to EY where 3% and 5% HA constructs increased with 

time, but did not increase to greater levels at higher MSC seeding densities (Figure 

5-2C). The dynamic modulus of 20M 1% HA constructs reached 1.10 MPa while their 
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60M counterparts reached 1.97 MPa at 8 weeks (p<0.05; Figure 5-2C). Ag controls 

increased with time and seeding density, reaching 0.78 MPa (20M) and 1.11 MPa (60M) 

after 8 weeks (p=0.001).  

 

Figure 5-2:  (A) Calcein AM fluorescence 1 day after encapsulation confirmed differences 
in cell seeding density while demonstrating initial viability in both 20M (top) and 60M 
(bottom) seeding density groups (100X magnification; scale bar = 100 µm). (B) Equilibrium 
(EY) and (C) dynamic modulus (|G*|) of MSC-laden HA and Ag hydrogels at 20M and 60M 
seeding densities after 1 (white), 28 (grey), and 56 (dark grey) days of in vitro culture 
within a chemically defined chondrogenic medium with TGF-β3 (10 ng/mL). (n=4 
constructs per group; bars indicate p<0.05) 
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Figure 5-3:  (A) Concentration of sulfated glycosaminoglycan (sGAG) and as a percent of 
the construct wet weight (%ww) within MSC-laden HA and Ag hydrogels at seeding 
densities of 20 million MSCs/mL (20M) and 60 million (60M) MSCs/mL after 1, 28, and 56 
days of in vitro culture within a chemically defined chondrogenic medium with TGF-β3 (10 
ng/mL). (n=4 constructs per group; bars indicate p<0.05) (B) Alcian blue staining of 
proteoglycans in day 56 sections of MSC-laden HA and Ag constructs at 20M and 60M 
seeding densities. (100X magnification; scale bar = 200µm) 

 

5.3.2. Biochemical Content and Distribution with Increasing Seeding Density 

Consistent with these observed changes in functional properties, sGAG content in 20M 

1% HA constructs reached 3.5% wet weight (%ww) while 60M constructs reached 4.8%, 

a value similar to native bovine cartilage (Figure 5-3A) (see Chapter 9). 3% HA 

constructs reached 1.8% ww (20M) and 2.1% ww (60M) sGAG content, while the 5% 

HA constructs reached 1.2% ww (20M) and 1.4% ww (60M) sGAG content (Figure 

5-3A). sGAG content in the 2% Ag constructs reached 1.9% ww (20M) and 3.0% ww 

(60M). Collagen content showed differing trends, where in 60M 1% HA constructs 

collagen reached 1.0% ww, a level significantly less than in the 20M constructs (1.8% 
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ww, p<0.001, Figure 5-4A). Similarly, 60M 3% HA reached 0.6% collagen while 20M 

constructs reached 0.9%. Conversely, 20M and 60M 5% HA and 2% Ag constructs were 

equivalent at 0.7% and 1.2% collagen, respectively (Figure 5-4A).  

 

Figure 5-4:  (A) Collagen concentration as a percent of the construct wet weight (%ww) 
within MSC-laden HA and Ag hydrogels at seeding densities of 20 million MSCs/mL (20M) 
and 60 million (60M) MSCs/mL after 1, 28, and 56 days of in vitro culture within a 
chemically defined chondrogenic medium with TGF-β3 (10 ng/mL). (n=4 constructs per 
group; bars indicate p<0.05) (B) Picrosirius red staining of collagens in day 56 sections of 
MSC-laden HA and Ag constructs at 20M and 60M seeding densities. (100X magnification; 
200µm scale bar) 

 

Consistent with biochemical measures, alcian blue staining of proteoglycans in 60M 1% 

HA was more intense than in the 20M group, while picrosirius red staining of collagen 

was more intense for 20M samples (Figure 5-3B and Figure 5-4B). Differences in either 

proteoglycan or collagen staining related to the initial MSC seeding density were not 

observed in 3% or 5% HA, and increasing MSC seeding density did not result in less 

aggregation of accumulated matrix proteins (Figure 5-3B and Figure 5-4B). Similar to 
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1% HA, the 60M 2% Ag control constructs were stained more intensely for proteoglycan 

than their 20M counterparts (Figure 5-3B).  

 

Figure 5-5:  (A) Relative expression of aggrecan (AGG) and (B) collagen type II (COL II) by 
MSCs in 1% HA and Ag hydrogels after 1, 28, and 56 days of chondrogenic culture.  (n=2-
3; bars represent p<0.05) 

 

5.3.3. Matrix Gene Expression with Increasing Seeding Density 

Aggrecan expression (AGG) increased significantly in 1% HA and 2% Ag constructs 

over the duration of the study (Figure 5-5A). In 1% HA constructs, AGG expression 

(relative to GAPDH) reached 0.66 for 20M and 0.75 for 60M constructs (p=0.286), while 

expression in Ag was 0.37 for 20M and 0.66 for 60M (p=0.003) constructs (Figure 

5-5A). Relative expression of collagen type II (COL II) decreased in 60M 1% HA (0.56) 
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compared to 20M constructs (0.87; p=0.004), while in Ag, seeding density did not alter 

COL II expression (0.41 vs. 0.32; p=0.427; Figure 5-5B). 

 

Figure 5-6 (A) Calcein AM fluorescence 2 weeks after encapsulation showed differences in 
cell number and morphology between dynamic and static culture groups (200X 
magnification; 50 µm scale bar). (B) Equilibrium (EY) and dynamic modulus (|G*|) of static 
and dynamic culture groups after 3 (white), 6 (grey), and 9 (dark grey) weeks of in vitro 
culture. (C) sGAG and collagen concentration after 3, 6, and 9 weeks. (n=4-5 constructs 
per group; bars indicate p<0.05) (D) Proteoglycan (left) and collagen staining (right) of 
week 9 constructs. (100X magnification; scale bar = 200 µm) 
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5.3.4. Maturation of High Density Constructs with Orbital Shaking 

Gentle mixing of the culture medium had a profound effect on the maturation of high 

MSC density 1% HA constructs. Calcein AM fluorescence revealed an increase in cell 

number and in their apparent spreading (Figure 5-6A). Both the equilibrium and dynamic 

moduli of these constructs doubled with dynamic culture, reaching over 1 MPa and 6 

MPa, respectively, by 9 weeks (Figure 5-6B). sGAG and collagen content reached 4.8% 

(sGAG) and 4.5% (collagen), levels 30% and 29% greater than ‘static culture’ controls 

(Figure 5-6C). Histological analyses confirmed these changes with more intense 

proteoglycan and collagen staining in the ‘dynamic culture’ constructs (Figure 5-6D).   

 

5.4. Discussion 

Engineered articular cartilage may be ideal for the restoration of focal defects, but only if 

it develops mechanical properties matching native tissue. While chondrocytes have been 

used to generate constructs in vitro with native mechanical function (Lima et al. 2007; 

Byers et al. 2008; Bian et al. 2010; Ng et al. 2010), the difficulty in obtaining sufficient 

quantities of healthy chondrocytes renders their use impractical (Lee et al. 2000). MSCs 

have also been utilized for cartilage tissue engineering, but attempts to generate 

constructs with native functionality have thus far been unsuccessful. The objective of this 

study was to determine if increasing the seeding density of MSCs in HA hydrogels would 

enhance construct maturation, and so close this functional divide. It was hypothesized 

that a greater MSC density would be particularly important in higher macromer density 

HA (3% and 5%) gels, where diffusivity of large macromolecules is limited. Finally, 

gentle mixing of long-term cultures was explored as a means of further enhancing growth 
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of these high density constructs by limiting the establishment of nutrient and growth 

factor gradients at the construct boundaries. These efforts resulted in the formation of 

engineered constructs that matched several key functional benchmarks of native articular 

cartilage. 

 

Contrary to our original hypothesis, increased MSC density in 3% and 5% HA constructs 

did not improve matrix distribution, accumulation, or the development of functional 

properties. Chapter 4 showed that higher macromer concentrations of HA are less 

permissive to formed matrix distribution and the current findings indicate that even a 3-

fold increase in MSC density does not enable the formation of a functionally contiguous 

matrix in these higher macromer concentration hydrogels. Conversely, a higher initial 

MSC density (60M) in low macromer concentration (1%) HA constructs did increase the 

functional properties, with a nearly 3-fold increase in equilibrium properties to 313 kPa 

(Figure 5-2B) after 8 weeks of culture. Interestingly, and in keeping with previous work, 

agarose constructs were independent of seeding density (Huang et al. 2009). These 

results highlight the fundamental differences between HA and agarose hydrogels, and 

establish that functional gains can be achieved with higher seeding densities, but that 

these changes are highly dependent on the material formulation employed.  

 

In this work, we used a modified version of hyaluronic acid (HA) to form the stable, 

covalently crosslinked backbone of the hydrogel. HA is a biologically relevant molecule 

that plays a critical role in anchoring large proteoglycans in the cartilage extracellular 

matrix (Knudson 1993; Mankin et al. 1994). Cells can also interact directly with HA 
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through CD44 transmembrane receptors, and this interaction can modulate cell migration, 

proliferation, differentiation, and HA degradation (Embry and Knudson 2003). 

Interestingly, HA added to human MSCs in a 3D alginate environment increases cartilage 

matrix production (Kavalkovich et al. 2002), suggesting a direct biologic role for this 

molecule. Likewise, human MSCs possess abundant CD44 receptors and undergo 

chondrogenesis to a greater extent in these crosslinked HA networks compared to 

similarly crosslinked (but bioinert) poly(ethylene glycol) (PEG) gels, even after 

controlling for mechanical properties (Chung and Burdick 2009). Like PEG, agarose is a 

bioinert microenvironment that permits MSC chondrogenesis, but does not provide 

natural cell adhesion sites and is not degradable and so precludes cell-mediated 

remodeling. This may in part explain why increasing MSC density in HA constructs leads 

to greater functional properties than agarose constructs. 

 

The ability for cells to remodel their microenvironment within the HA constructs is 

particularly relevant when considering the biochemical and biomechanical differences 

between the 20M and 60M 1% HA groups. The equilibrium modulus was ~3-fold greater 

in the 60M group, while the sGAG concentration was only ~25% greater, and the 

collagen concentration was actually less, ~50% of the 20M constructs. This disparity 

between mechanical properties and biochemical constituents indicates that other factors 

may be responsible for the significant increase in function we observed. Our group and 

others have shown that as bovine cartilage matures, collagen becomes more organized 

(see Chapter 9) and is better crosslinked, resulting in increases in cartilage mechanical 

properties (Guilak et al. 1997). Likewise, genome wide expression analyses showed that 
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MSCs differentiate towards a chondrocyte phenotype in agarose, but that hundreds of 

genes remain differentially expressed between the two cell types (Huang et al. 2010). 

Therefore, the observed increase in mechanics in low macromer density HA constructs 

may be from cell-mediated matrix remodeling or a contribution from other matrix 

constituents that were expressed in this natural HA microenvironment. Further analysis, 

on a molecular basis, is warranted to identify these key mediators of mechanical function 

that vary as a function of seeding density.  

 

 From our data, it appears that the ability to remodel the surrounding matrix is critical for 

mechanical function to be improved with increasing MSC seeding density. Along these 

lines, initial MSC seeding density increased chondrogenesis on a per cell basis in a 

gelatin foam material, but mechanical properties were not assessed (Ponticiello et al. 

2000). Similarly, Wang and colleagues seeded umbilical cord MSCs at 5, 25, and 50 

million/mL in a non-woven polyglycolic acid mesh and reported that matrix 

accumulation and mechanical integrity increased as a function of seeding density (Wang 

et al. 2009). Maher et al seeded 30 and 60 million MSCs/mL in a self-assembling peptide 

hydrogel to promote integration in a gap model of cartilage repair and reported that 

hydrogel seeded at a higher MSC density formed a more cartilage-like material and 

increased the integration strength of repair (Maher et al. 2009). Similar to HA in the 

present work, these studies were conducted in materials that are more permissive of 

matrix accumulation or remodeling, which may offer insight into why they benefit from 

high MSC density unlike agarose or other non-degradable materials. Current studies, 
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using degradable linkages (Chung and Burdick 2009) within our HA network will further 

optimize this important parameter.  

 

It has also been noted that MSCs are particularly sensitive to nutrient supply (Pattappa et 

al. 2010). To address this concern, we cultured our best performing high density 

constructs (1% HA, 60 million cells/mL) under continual agitation conditions in 

chondrogenic medium. This simple modification to the culture environment resulted in 

profound increases in bulk mechanics and matrix accumulation. Under these conditions, 

equilibrium properties reached levels in excess of 1MPa, and sGAG contents of 4.8% of 

the wet weight. These values match or exceed native tissue levels, and represent the 

highest ever achieved in this HA system. While this exact technique has not reportedly 

been used in conjunction with any other MSC-based approach, perfusion and rotating 

wall bioreactors have been utilized to increase nutrient transport for chondrocyte-based 

systems (Sittinger et al. 1994; Chen et al. 2004). Vunjak-Novakovic et al observed 

significant increases in all biochemical and mechanical metrics when chondrocyte seeded 

fibrous polyglycolic acid scaffolds were cultured in a rotating wall bioreactor (Vunjak-

Novakovic et al. 1999). Interestingly, using MSCs cultured in agarose gels in a rotating 

wall bioreactor, Sheehy et al observed an adverse effect on the growth of constructs over 

3 weeks (Sheehy et al. 2011). Similarly in alginate, Hannouche et al and found that MSC 

chondrogenesis is delayed compared to the same MSCs in a collagen hydrogel 

(Hannouche et al. 2007) under rotational culture. These observations indicate that the 

level of MSC differentiation and matrix assembly, and its material environment, may 

differentially regulated response to dynamic culture conditions. Indeed, even in the case 
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of dynamic compression, MSCs do not initially respond favorably to this stimulus when 

encased within an agarose hydrogel, but given time to mature and synthesize pericellular 

matrix, a robust response follows (Huang et al. 2010). In the present study, using HA 

constructs, dynamic culture was initiated at the time constructs were formed, but the 

degree of mixing was likely less than would occur in a rotating bioreactor system. The 

precise relationship between material and fluid environments needs to be further 

understood to optimize this robust growth potential.  

 

5.5. Conclusions 

HA hydrogels formed at a macromer concentration of 1% offer a permissive 

microenvironment to encapsulate MSCs at a high density (60 million/mL) which 

generates constructs with a mean equilibrium modulus of 313 kPa at 8 weeks, 

approximately 50% greater than our best MSC-based results reported to date (Huang et 

al. 2009). Dynamic culture accelerated the maturation of these high MSC density 1% HA 

constructs, with native tissue mechanical (~1MPa) and sGAG (4.8%) levels reached 

within 9 weeks. The ability for HA to allow advanced construct maturation in response to 

both high MSC density and dynamic culture represents a significant step towards the 

development of functional engineered tissue for cartilage repair.  
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CHAPTER 6:   Dynamic Compression Promotes Cartilage-Like Functional 

Properties in MSC-Seeded Hyaluronic Acid Hydrogels 

 

6.1 Introduction 

The specialized mechanical function of articular cartilage must be recapitulated in a 

successful engineered cartilage repair. Chondrocytes can generate in vitro cartilage 

constructs with mechanical properties at or near native levels when cultured in 

specialized media formulations (Lima et al. 2007; Byers et al. 2008; Bian et al. 2010). 

While these advances in chondrocyte-based tissue engineering are highly instructive, the 

difficulty of obtaining sufficient numbers of healthy autologous chondrocytes represents 

a considerable challenge. To circumvent this limitation, many have evaluated MSCs, an 

autologous cell type that can be expanded in vitro and with a demonstrated capacity for 

chondrogenic differentiation. Despite their potential, MSC-based engineered cartilage has 

yet to achieve functional properties comparable to those produced by chondrocytes in 3D 

culture (Mauck et al. 2006; Huang et al. 2009; Sheehy et al. 2011). 

 

Chapters 3-5 have highlighted our efforts to generate to generate cartilage-like repair 

constructs which began with mechanical properties that were ~20 fold less than native 

cartilage in Chapter 3. Optimization of macromer concentration (Chapter 4) and MSC 

density coupled with dynamic culture (Chapter 5) have generated constructs that reach 

native levels of mechanical function and sulfated glycosaminoglycan (sGAG) content. 

While these results are promising, additional factors may further improve the maturation 

and suitability of these engineered cartilage grafts for clinical use. In particular, dynamic 
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compressive loading has been shown to improve the maturation of both chondrocyte- and 

MSC-based constructs (Mauck et al. 2000; Huang et al. 2010). For MSCs in agarose, 

anabolic response to daily dynamic compressive loading is dependent on a preliminary 3-

week pre-culture period, during which time MSCs undergo chondrogenic differentiation 

and establish a contiguous extracellular matrix (Figure 6-1) (Huang et al. 2010). HA, as a 

natural constituent of the cartilage microenvironment, provides a favorable biologic 

interface for MSC interaction through CD44 receptors, and can advance chondrogenesis 

relative to other photo-polymerizable materials (such as poly[ethylene glycol], PEG) that 

lack attachment sites (Chung and Burdick 2009). The objective of the present study was 

thus to evaluate a number of different dynamic compressive loading regimens with the 

goal of improving the functional properties of MSC-seeded HA constructs. 

 

Figure 6-1:  Equilibrium compressive modulus of MSC-seeded agarose 
(20 million cells/mL) after dynamic loading. Loading was initiated after 3 days or 3 weeks 
of pre-maturation.  *indicates significance from day 0, ** indicates significance between 
day 0 and free-swelling controls within each time point (p<0.015). (Huang et al. 2010)  
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6.2. Methods 

6.2.1. Construct Formation and Culture 

To carry out this study, MeHA was synthesized and dissolved at 1% w/v in PBS with 

0.05% w/v photoinitiator I2959 as described in Chapter 3 (Burdick et al. 2005). Juvenile 

bone-marrow derived MSCs were expanded, photo-encapsulated (50 million cells/mL) in 

1% MeHA, punched to 4 mm in diameter, and cultured in chondrogenic medium with 

TGF-β3 for up to 9 weeks under static culture conditions. 

 

Figure 6-2:  (A) Control and loading conditions for 9 weeks of culture. CL constructs were 
loaded the entire 9 weeks, DL underwent 6 weeks of loading after 3 weeks of pre-culture, 
and the LR group was loaded the first 3 weeks followed by 6 weeks of FS culture. (B) 
Custom bioreactor for dynamic loading. 

 

6.2.2. Dynamic Compressive Loading 

Three loading groups (Figure 6-2A) were exposed to dynamic unconfined compressive 

deformations (10%) at 1 Hz for 3 hours daily using a previously described custom 

bioreactor system (Figure 6-2B) (Mauck et al. 2000). The continuous loading (CL) group 

underwent 9 weeks of loading, initiated the day after construct formation. The delayed 

loading (DL) group was cultured for 3 weeks in free-swelling (FS) conditions before 
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loading was initiated. The loading release (LR) group was dynamically loaded for the 

first 3 weeks of culture, followed by return to FS conditions for an additional 6 weeks. 

Control constructs were maintained for the entire 9 week duration of the study in FS 

conditions. 

 

6.2.3. Analysis Techniques 

MSCs in FS and CL constructs were fluorescently labeled with the Live/Dead kit and 

imaged after 7 days to capture any differences in viability resulting from dynamic 

loading. At 3, 6, and 9 weeks, constructs from each group were tested in unconfined 

compression to determine the equilibrium and dynamic moduli as described in Chapter 3. 

After testing, constructs were papain digested and analyzed for sGAG, and collagen 

content. Additional samples for histology were processed and stained for proteoglycan 

(alcian blue) and collagen (picrosirius red) distribution.  

 

6.2.4. Statistical Analysis 

Two-way ANOVA was performed with time (3, 6, and 9 weeks) and loading condition 

(CL, DL, LR, and FS) as independent variables. Tukey’s post hoc test was performed for 

each analysis of pair-wise comparisons and a threshold of p<0.05 was used to discern 

significant differences between experimental groups. 
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6.3. Results 

6.3.1. Initial MSC Viability 

Calcein AM staining in 7 day constructs revealed a greater number of viable cells in the 

constructs that underwent daily compressive loading (CL) than in the FS control gels 

(Figure 6-3A). More dead cells were observed in the FS constructs than in the CL 

constructs (Figure 6-3B). 

 

Figure 6-3:  Live/Dead fluorescent imaging after 3 weeks showed a greater number of live 
cells in high MSC density MeHA constructs that had undergone a daily regimen of 
dynamic compressive loading (right) than were found within constructs maintained in free-
swelling culture conditions (left). (100X magnification; scale bar = 100 µm) 

 

6.3.2. Mechanical Properties 

Over the 9 week period, dynamic loading modulated the functional growth of MSC-

seeded constructs. Consistent with our previous findings with MSCs in agarose (Huang et 

al. 2010), continuous loading over the first 3 weeks decreased the equilibrium modulus 

(EY), though only by 20% (Figure 6-4A). When this loading was continued through 6 

and 9 weeks, the modulus of CL constructs was greater than that of FS controls by 28% 
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and 70% (p=0.003), respectively (Figure 6-4A). Delayed loading (DL) initiated after 3 

weeks of FS culture also increased construct EY (38%) by 9 weeks. Interestingly, loading 

for the first 3 weeks followed by FS culture for 6 weeks (the LR group) resulted in an EY 

that was comparable to the FS control group (Figure 6-4A). 

 

Figure 6-4:  (A) The equilibrium modulus and (B) dynamic modulus (IG*I) of MeHA 
constructs after 3, 6, and 9 weeks of their respective dynamic compressive loading 
regimens (n=4-7; *p<0.05). 

 

The dynamic modulus followed closely the development of the equilibrium modulus with 

the CL constructs reaching 4.4 MPa, about 20% greater than the FS group (3.7 MPa; 

Figure 6-4B). The DL and LR constructs reached dynamic modulus values similar to FS 

controls, attaining 3.6 and 3.7 MPA, respectively (Figure 6-4B). 

 

6.3.3. Biochemical Content 

sGAG concentrations correlated with increases in construct EY, with 3.7% sGAG in the 

CL group being ~20% greater than the other loading groups and the FS controls (Figure 

6-5A). While collagen concentrations were not significantly different between 

experimental groups after 9 weeks, considerable increases in collagen were observed with 

time in culture where each group accumulated over 3% collagen per wet weight (Figure 

6-6A). 
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Figure 6-5:  (A) The glycosaminoglycan (GAG) concentrations (%ww) of MeHA constructs 
after continuous dynamic compressive loading (CL), delayed loading (DL), loading release 
(3 weeks loading follwed by return to FS conditions; LR), and free-swelling (no loading; 
FS) culture (n=4-7; *p<0.05).  (B) Proteoglycan staining (alcian blue) after 6 and 9 weeks 
(50X magnfication; scale bar = 200 µm). 

 

 

Figure 6-6:  (A) The collagen concentrations (%ww) of MeHA constructs after continuous 
dynamic compressive loading (CL), delayed loading (DL), loading release (3 weeks loading 
follwed by return to FS conditions; LR), and free-swelling (no loading; FS) culture (n=4-7; 
*p<0.05).  (B) Collagen staining (picrosirius red) after 6 and 9 weeks (50X magnfication; 
scale bar = 200 µm). 
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6.3.4. Histology 

Proteoglycan staining was consistent with biochemical findings. Increases in intensity 

were evident between 6 and 9 weeks, as were increases in the dynamic loading groups 

(CL and DL) compared to FS controls (Figure 6-5B). Collagen staining appeared well 

distributed throughout each construct, but similar to the biochemical findings no obvious 

differences in staining intensity were observed between loaded and control constructs 

(Figure 6-6B). 

 

6.4. Discussion 

The objective of this study was to determine whether dynamic compression could be used 

as a tool to improve the mechanical function of our optimized MSC-based cartilage 

constructs formed from photo-crosslinkable HA hydrogels. After the first 3 weeks of 

loading we observed a slight decrease in modulus, consistent with previous findings in a 

MSC-seeded agarose hydrogel system (Huang et al. 2010). In this study, the decrease in 

properties was not as severe, owing perhaps to the higher seeding density and/or different 

material attributes of the HA system. Interestingly, when loading was continued for the 

next 3 weeks, the modulus tripled, more than recovering from the initial decline in 

properties (Figure 6-4A). With 3 additional weeks of loading (to 9 weeks total), 

constructs achieved an equilibrium modulus of 587 kPa (a level 70% higher than FS 

controls) along with a dynamic modulus of 4.4 MPa (20% higher than FS controls, 

Figure 6-4B). When loading was delayed 3 weeks (DL), lower mechanical properties 

were attained than for the CL group. These results indicate that MSCs in HA hydrogels 

are mechanosensitive, and that while early loading initially retarded functional 
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development, continued loading enhanced mechanical function over the long term. Of 

note, loaded samples that were returned to FS conditions after 3 weeks (the LR group) 

were not significantly different from FS controls, suggesting that the loading-induced 

enhancement of functional maturation is dependent on multiple loading events applied 

over the entire culture period. 

 

Fluorescent imaging of viable cells indicated that early loading led to increased quantities 

of viable cells in MeHA hydrogels (Figure 6-3A-B). Previous reports on MSCs in 

agarose demonstrated that early loading negatively affects MSC chondrogenesis, but in 

this work the constructs were not loaded after 3 weeks. This work showed a rapid 

increase in functional development after the first 3 weeks that may have been amplified 

by the increase in cell number resulting from dynamic loading. Dynamic loading is 

known to increase solute transport which in turn may be responsible for the increased 

fraction of viable cells (Albro et al. 2008). The mechanical properties of CL constructs 

were less than FS hydrogels after 3 weeks despite the inverse relationship to cell number. 

If the chondrogenesis of MSCs undergoing early continuous loading was inhibited in lieu 

of proliferation, this may explain why the mechanics were initially less, but as the greater 

number of MSCs in the CL constructs did eventually differentiate, these constructs 

matured at a significantly more rapid pace than the FS controls. 

 

6.5. Conclusions 

These findings indicate that dynamic compressive loading is another approach that can be 

effectively used to accelerate the development of MSC-MeHA constructs to clinically 
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relevant functionality. Furthermore, these results offer additional insights into the 

profound effect that microenvironments can have on the chondrogenic response of MSCs 

within various biomaterials. 
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CHAPTER 7:   Improved Cartilage Repair via InVitro Pre-Maturation of MSC 

Seeded Hyaluronic Acid Hydrogels 

 

7.1. Introduction 

The role of articular cartilage is to provide a low friction joint surface that resists wear 

while distributing stresses in a demanding joint environment (Ateshian et al. 2003). 

Together with the limited regenerative capacity of native cartilage, these functional 

demands have made cartilage repair a rather intractable problem. Regenerative strategies 

(e.g. autologous chondrocyte implantation [ACI] or microfracture) for the repair of 

cartilage defects arising from disease or traumatic injury often result in fibrocartilaginous 

tissue that does not restore function (Meachim and Roberts 1971; Horas et al. 2003; 

Harris et al. 2010). Successful lateral integration is likewise a complication in both ACI 

and osteochondral grafting procedures (Horas et al. 2003; Domayer et al. 2008; 

Niemeyer et al. 2008; Erggelet et al. 2010). Failed graft integration results in changes in 

mechanical stress which can damage adjacent cartilage and result in the early onset of 

osteoarthritis (Mankin 1982; Volpin et al. 1990; Bullough 2004; Guettler et al. 2004). 

The clinical demand for functional, biological cartilage replacement strategies has 

motivated the efforts of many researchers in the fields of biomaterials and tissue 

engineering to create a graft material. However, the elusive goals are that the biomaterials 

must have sufficient mechanical stiffness and the ability to integrate with host tissue to 

provide clinically relevant functional outcomes. 
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Considerable progress has been made towards the in vitro tissue engineering of 

neocartilage with compressive properties approaching native levels. Of note, articular 

chondrocytes encapsulated within various biomaterials have generated constructs with 

native mechanical properties when exposed to specialized media and dynamic loading 

conditions (Lima et al. 2007; Byers et al. 2008; Bian et al. 2010). While these advances 

are significant, obtaining sufficient quantities of healthy chondrocytes from a patient to 

generate autologous tissue engineered cartilage remains a challenge. Towards this end, 

the autologous use of mesenchymal stem cells (MSCs) has become increasingly popular 

as MSCs are easily expanded in vitro while maintaining the capacity for chondrogenic 

differentiation (Johnstone et al. 1998; Pittenger et al. 1999). Despite their potential, one 

report suggests that in vitro repair with MSCs results in a fraction of the integration 

strength obtained by chondrocytes (Vinardell et al. 2009). To date, no reported studies of 

MSC-based cartilage constructs have examined the simultaneous development of 

compressive and integrative properties, both of which are crucial for successful cartilage 

repair. 

 

While many in vitro studies show histological data to demonstrate ‘good’ orthotopic graft 

to host tissue integration, relatively few provide biomechanical evidence to support these 

claims (Emans et al. 2010; Oliveira et al. 2010; Toh et al. 2010). The intricacies and cost 

of such studies are perhaps the primary reason that more studies are not routinely 

conducted (Gratz et al. 2006). When mechanics have been assessed through in vitro or 

ectopic in vivo models, integration strength is reported as a function of tension or shear to 

failure of the cartilage repair interface. Results from these studies show that integration is 
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dependent on biomaterial properties (Hunter and Levenston 2004; Rice et al. 2008), cell 

type (Vinardell et al. 2009), construct pre-culture (Obradovic et al. 2001; Hunter and 

Levenston 2004), and growth factor supplementation (Ionescu et al. 2011). Cartilage age 

(DiMicco et al. 2002; Ionescu et al. 2011), surface degradation (Obradovic et al. 2001; 

van de Breevaart Bravenboer et al. 2004; Tam et al. 2007), and the application of tissue 

adhesives (Silverman et al. 1999; Peretti et al. 2003; Wang et al. 2007) also modulate 

integration strength. In general, integration occurs under conditions of active 

biosynthesis, can be improved by increased permissiveness of the host cartilage matrix, 

and by the use of tissue adhesives. 

 

Yet to be established is whether in situ formed constructs or the implantation of in vitro 

matured constructs is more appropriate for cartilage repair. Two important questions 

emerge: first, while in situ gelation is the most direct and practical clinical application 

(Wang et al. 2007), it is yet to be demonstrated that in situ formed constructs can 

completely integrate and develop sufficient compressive properties to protect adjacent 

host cartilage. Obradovic et al seeded chondrocytes on polyglycolic acid (PGA) scaffolds 

and found that immature constructs (5 day pre-culture) integrated better than mature (5 

week pre-culture) constructs (Obradovic et al. 2001). Conversely, an in vitro study by 

Hunter et al reported that construct maturation had a limited effect on the integration 

strength of PGA scaffolds, concluding also that in situ maturation is inhibited by adjacent 

cartilage (Hunter and Levenston 2004). Moreover, it is not clear whether the implantation 

of a mature construct will limit the degree to which integration occurs. The Obradovic 

study implanted chondrocyte-seeded PGA constructs with an equilibrium modulus of 224 
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kPa (confined compression) which resulted in an adhesive strength of ~250 kPa; 

however, this work, like the rest of the literature did not report the modulus of the repair 

material after in vitro culture within the defect model. It thus remains to be determined 

when implantation should take place and the subsequent maturation that can occur in the 

defect site. 

 

To address some of these issues, we have optimized a photo-crosslinkable methacrylated 

hyaluronic acid (MeHA) hydrogel (Burdick et al. 2005) to maximize chondrogenesis of 

encapsulated MSCs (Chapters 3-4) (Chung and Burdick 2009). Our findings 

demonstrated that low MeHA macromer densities (1% w/v) provide a permissive 

environment for the formation and diffusion of cartilage matrix components and for the 

functional maturation of MSC-based tissue engineered cartilage. Still unknown, however, 

is the potential for MSC-laden MeHA to mature and integrate in a cartilage repair model. 

Further, the extent to which pre-culture (an initial period of construct maturation) 

modulates integration and compressive properties is unknown. 

 

Thus, the objective of the present study was to determine the effects of tissue pre-

maturation on the potential of MSC-laden MeHA for functional cartilage repair. Two 

independent factors were considered: 1) which MeHA macromer concentration (1%, 3%, 

or 5%) and 2) which construct maturation state (0 or 4 weeks) would result in the greatest 

combination of both compressive properties and integration strength. To accomplish this 

design, MSCs were encapsulated in MeHA and either UV polymerized within explant 

cartilage defects (in situ repair group: IS) or pre-cultured for 4 weeks (PC) before being 
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press-fit into a defect (Figure 7-1). The integration strength of repair and the 

simultaneous development of compressive properties were determined, as were the 

biochemical content, histological appearance, and the 3D space filling of repair 

constructs was assessed by contrast enhanced µCT.  

 

7.2. Methods 

7.2.1. MeHA Hydrogel 

Methacrylated HA (MeHA) was synthesized as in Chapter 3 with NMR analysis 

indicating a degree of methacrylation of 25%. The MeHA macromer was then dissolved 

to 1, 3, and 5% (mass/volume) in sterile PBS with 0.05% photoinitiator Irgacure-2959 (2-

methyl-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone; Ciba-Geigy, Tarrytown, 

NY). 

 

7.2.2. MSC Isolation and Cartilage Repair Model 

Juvenile bovine MSCs were isolated and expanded through passage 3 as in Chapter 3. 

Cartilage was cored from the trochlear grooves of juvenile bovine femurs (3-6 months of 

age) using 8 mm diameter biopsy punches (Miltex, York, PA) and cultured in basal 

medium while MSCs were being expanded (~3 weeks). Three days before beginning the 

experiment, cartilage was trimmed to ~3 mm in thickness and concentric 4 mm diameter 

cores were removed from each cartilage sample using biopsy punches with a custom 

device to create cartilage defects. A schematic of the in vitro repair model and the design 

of the experiment is shown in Figure 7-1. 
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Figure 7-1:  Schematic illustrating the experimental design, creation of in vitro repair 
groups, and analysis techniques utilized in this study. 

 

7.2.3. Experimental Groups and Culture Conditions 

Expanded MSCs were seeded at a density of 20 million cells per ml into 1%, 3%, and 5% 

MeHA and photo-polymerized inside of the previously prepared cartilage rings. Photo-

polymerization was carried out within a custom chamber wherein oxygen was purged 

with N2 gas throughout the 10 minute UV exposure to ensure complete polymerization 

(365 nm Blak-Ray UV lamp, Model #UVL-56, San Gabriel, CA). These constructs were 

referred to as in situ (IS) repaired constructs. 

 

To investigate the effects of construct maturation on integration, MSCs were 

encapsulated in 1%, 3%, and 5% MeHA via UV polymerization between glass plates 

spaced by 2.25 mm as in Chapter 3. Sterile 5 mm diameter biopsy punches were used to 

create MSC-laden hydrogel cylinders. After 4 weeks of pre-culture, biopsy punches were 

used to core a 4 mm construct from the 5 mm hydrogels and these cores were press fit 
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within the additional cartilage defects. This experimental repair group was referred to as 

pre-culture (PC) repaired constructs. 

 

To serve as a control for the effects of construct maturation within a cartilage defect, 

additional MSC-seeded MeHA hydrogels were fabricated at the same time (4 mm), but 

were maintained in free-swelling conditions for the duration of the study. Samples from 

this control group were referred to as free-swelling (FS) constructs. 

 

MSCs were also encapsulated within agarose (Ag; 2% w/v; Type VII, Sigma, St. Louis, 

MO) hydrogels (a well established scaffold for cartilage tissue engineering (Mauck et al. 

2006) to provide a comparison and control for the unique microenvironment of the 

MeHA hydrogels. Molten MSC-laden Ag was gelled within cartilage defects (to produce 

IS repair group) and press-fit after 4 weeks of pre-culture (to form a PC group). Lastly, 

cartilage defects were re-fitted with 4 mm cartilage plugs that were obtained from the 

initial defect preparation. This cartilage-to-cartilage (C-C) control offered an in vitro 

analog to osteochondral transplantation, an established surgical repair approach. 

 

All FS hydrogel constructs (1 mL/construct) and repaired defects (3 mL/construct) were 

cultured in TGF-β3 (10 ng/ml, R&D Systems, Minneapolis, MN) supplemented 

chemically defined medium consisting of high glucose DMEM with 1x PSF, 0.1 µm 

dexamethasone, 50 µg/mL ascorbate 2-phosphate, 40 µg/mL l-proline, 100 µg/mL 

sodium pyruvate, ITS+ (6.25 µg/ml insulin, 6.25 µg/ml transferrin, 6.25 ng/ml selenous 
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acid, 1.25 mg/ml bovine serum albumin, and 5.35 µg/ml linoleic acid) in non-tissue 

culture treated 6-well plates with feedings thrice weekly. 

 

7.2.4. Micro-Computed Tomography (µCT) 

Contrast-enhanced micro-computed tomography (µCT) has been used to analyze 3D 

structure and proteoglycan content of articular cartilage (Palmer et al. 2006). 3D µCT 

imaging was utilized for analysis of cartilage defect filling to visualize the cartilage repair 

interface and proteoglycan accumulation within the repair material. Samples (n=3) at 4 

and 8 weeks were first prepared by staining in Lugol’s solution (5% w/w I2 and 10% KI 

in dH2O) for 24 hours (Palmer et al. 2006) and then scanned at an energy level of 70 kV 

and intensity of 114 µA (vivaCT 40, SCANCO USA, inc, Wayne, PA). 3D 

reconstructions provided visualization of defect filling and related to proteoglycan 

content for each hydrogel repair group and the C-C controls. 

 

7.2.5. Mechanical Testing 

The integration strength of the in vitro repaired cartilage was assessed using a push-out 

test (van de Breevaart Bravenboer et al. 2004; Moretti et al. 2005). A custom 3.8 mm 

indenter affixed to an Instron 5848 mechanical testing device pushed the hydrogel repair 

out of the cartilage annulus (0.2 mm/sec) while recording load. Failure stress (integration 

strength) was calculated as the quotient of the load at failure and the interface area 

(height x circumference). 
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After push out testing, the unconfined equilibrium compressive modulus was derived 

from a stress relaxation test (10% strain; 1000 sec relaxation) (Mauck et al. 2000) as 

described in Chapter 3. For each group and time point 4-5 samples were analyzed. After 

equilibration, the dynamic modulus was determined by applying 5 sinusoidal cycles of 

compression at 1 Hz (1% strain amplitude) (Park et al. 2008). Free swelling constructs 

were similarly assessed. 

 

7.2.6. Biochemical Content and Histology 

Following the mechanical testing of FS and recently removed repair constructs (PC and 

IS), each (n = 4-5) was weighed and digested in papain before being analyzed for DNA, 

sGAG, and collagen content as described in Chapter 4. 

 

Constructs were fixed in 4% paraformaldehyde after µCT scanning, dehydrated, 

infiltrated with Citrisolv (Fisher), and embedded with paraffin. Sections (8 µm) were 

stained for collagens (picrosirius red) and imaged at 100 X magnification (Mauck et al. 

2003). 

 

7.2.7. Statistical Analysis 

All statistical analyses were performed using SYSTAT (v13, San Jose, CA). Three-way 

ANOVA was used for biochemical and integration data with hydrogel formulation (Ag, 

1%, 3%, and 5% MeHA), culture condition (FS, IS, and PC), and time (4 and 8 weeks) as 

independent variables. Two-way ANOVA was used for equilibrium modulus with 

hydrogel formulation (Ag, 1%, 3%, and 5% MeHA) and culture condition (FS, IS, and 
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PC) as independent variables. Fisher’s least significant difference post hoc test was used 

for each analysis of pair-wise comparisons and a threshold of p<0.05 was used to discern 

significant differences between experimental groups. 

 

7.3. Results 

7.3.1. Repair Construct Morphology and Interface Characteristics 

Photo-polymerization of MSC-laden MeHA within cartilage defects resulted in full 

defect filling with stable integration to the host cartilage at time 0 (i.e. constructs could be 

easily handled without dislodging the repair material). In some samples, a slight 

contraction of the IS 1% MeHA hydrogel core was observed with time in culture, but the 

majority of the repair interface remained intact. No hydrogel contraction was observed for 

the IS 3%, 5%, or Ag groups with time (data not shown). Constructs maintained in FS 

conditions for the first 4 weeks increased in opacity, with 1% MeHA and Ag constructs 

appearing more opaque and palpably stiffer. PC constructs from all groups were stable 

after being press fit into cartilage defects and remained in place for the final 4 weeks. 

 

Cartilage and constructs were rapidly and effectively infiltrated by the charged contrast 

agent (I2KI) and based on an inverse relationship of the contrast agent to the content of 

proteoglycan, the repair interface between native cartilage and the experimental repair 

constructs was visualized in 3D. These data confirmed that slight hydrogel contractions 

occur within the 1% MeHA IS repair group. Conversely, PC constructs completely filled 

the defect space (Figure 7-2). Notable gaps were observed at the repair interface in the 

cartilage to cartilage (C-C) control. No tissue engineered construct presented signal 
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intensity levels as high as natural cartilage. However, greater signal attenuation was 

observed for 1% MeHA FS and PC constructs than in the IS repair hydrogels, indicating 

increased proteoglycan content (Figure 7-2). Similarly, increased attenuation in each 

culture condition (IS, PC, and FS) was observed in both 1% MeHA and 2% Ag compared 

to either 3% or 5% MeHA. 

 

Figure 7-2:  Contrast enhanced µCT imaging of in vitro repaired cartilage defects after 8 
weeks.  Some contraction was observed in the 1% IS repair group (black arrows), while the 
PC repaired constructs showed no evidence of contraction or gapping.  Proteoglycan-
associated signal attenuation increased in 1% MeHA and 2% Ag indicating more 
accumulated proteoglycan than the remaining MeHA groups, yet still less than native 
cartilage (ring).  Signal in FS controls was greater than in IS polymerized samples.  C-C 
controls often contained large gaps between repair cartilage and adjacent host cartilage 
(black arrows). 
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Figure 7-3:  Integration strength of in vitro cartilage repair was dependent on both 
hydrogel formulation and repair technique.  The integration of MSC-laden MeHA (1%) and 
Ag reached nearly half the C-C controls (top grey region), while higher macromer 
concentration MeHA gels did not support integrative repair.  Pre-culture (black bars) 
improved integration strength in both 1% MeHA and Ag repaired constructs.  (n=4-
5/group/timepoint; lines indicate p<0.05) 

 

7.3.2. Mechanical Properties 

After 4 weeks of IS repair, the integration strength of each hydrogel group was less than 

20 kPa (Figure 7-3). The integration strength of IS 1% MeHA constructs at 4 weeks (17 

kPa) increased 4 fold (67 kPa) by 8 weeks (p=0.002). Ag IS controls likewise increased 

from 5 to 31 kPa over this same period (p=0.075). The C-C control constructs reached 93 

kPa at 4 weeks and increased to 225 kPa by 8 weeks. The PC technique (at 8 weeks) 

resulted in a 30% increase (87 kPa) in integration over IS repair for 1% MeHA (p=0.168) 

and a near 3 fold increase for Ag controls (p<0.001; 88 kPa). The integration strength of 

3% and 5% MeHA peaked at 17 kPa for PC, with no significant effects observed for 

either time (4 or 8 weeks) or repair condition (IS or PC). 
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Figure 7-4:  Compressive properties of repair constructs were dependent on both hydrogel 
formulation and culture condition.  IS repair construct properties (grey bars) were severely 
limited, while FS controls (hatched bars) attained the greatest equilibrium modulus.  PC 
(black bars) improved the compressive properties of the hydrogel repair constructs for 1% 
MeHA and Ag, but did not match FS controls.  (n=4-5/group/timepoint; lines indicate 
p<0.05) 

 

Compressive properties of the inner core from IS and PC repaired constructs were 

evaluated after measurement of the integration strength. Strikingly, the equilibrium 

modulus of FS 1% MeHA reached 120 kPa by 8 weeks, while 8 weeks of IS repair with 

the same MeHA concentration resulted in a modulus of only 9 kPa (Figure 7-4; p<0.05). 

Similarly, IS culture resulted in reductions of equilibrium modulus of at least 50% for 

each additional hydrogel formulation (p<0.05). The modulus of 1% MeHA PC constructs 

reached 68 kPa , a value that was ~60% of FS controls and more than 7 times greater than 

IS constructs (p<0.001). Likewise, Ag constructs achieved a modulus of 56 kPa for PC 

compared to 24 kPa for IS at 8 weeks (p=0.001). The modulus of both 3% (7 kPa) and 

5% (30 kPa) PC MeHA controls was not statistically different than the IS values. 
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Figure 7-5:  Biochemical content was dependent on hydrogel formulation and culture 
conditions.  sGAG content (A) in 1% MeHA increased significantly in both FS and PC 
conditions compared to IS repair.  IS repair similarly limited collagen accumulation (B) for 
every MeHA concentration and Ag.  DNA content (C) generally increased from week 4 to 8 
for PC and FS hydrogels, while DNA content in IS groups did not significantly change.  
(n=4-5/group/timepoint; lines indicate p < 0.05) 

 

7.3.3. Biochemical Content 

Trends in biochemical content followed the measured compressive properties of repair 

constructs. For example, sGAG content in FS 1% MeHA constructs after 8 weeks (3.2% 

w/w) was ~25% greater than in PC (2.5%) and ~3 fold greater than in IS (1.2%) 

constructs (p<0.05; Figure 7-5B). The sGAG content in 3% and 5% MeHA hydrogels (in 

all conditions) reached ~1% of wet weight after 4 weeks and did not increase with an 

additional 4 weeks of culture. sGAG content in Ag FS, PC, and IS constructs reached 
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~2% of wet weight at 8 weeks, independent of repair condition. The highest level of 

sGAG in PC constructs was observed in 1% MeHA (2.5%), ~2-3 fold greater than sGAG 

in the other MeHA-based PC repair groups (p<0.001; Figure 7-5B). 

 

Collagen content in 1% MeHA constructs mirrored patterns observed for sGAG, with IS 

constructs containing less than half that of FS or PC constructs (Figure 7-5C). While 

collagen increased through 8 weeks in both 1% MeHA FS (p<0.001) and PC (p=0.062) 

constructs, PC constructs contained ~25% less collagen at week 8 (p=0.029). While IS 

collagen levels were equivalent for all MeHA macromer densities, collagen in FS and PC 

constructs was uniformly greater in 1% MeHA than in either 3% or 5% MeHA (p<0.05). 

Regardless of hydrogel formulation, IS cultured constructs contained less than 50% of the 

collagen in FS and PC constructs (p<0.05). Similarly, collagen in the Ag IS constructs at 

8 weeks was 50% of the PC construct levels, while collagen in FS constructs was ~20% 

higher than in PC constructs (p=0.144; Figure 7-5C). 

 

DNA content in IS repaired constructs was stable from 4 to 8 weeks of culture (p>0.05; 

Figure 7-5A). Conversely, DNA in FS and PC constructs increased ~2 fold (p<0.005) 

during the final 4 week period. 

 

7.3.4. Histological Analysis 

Histological staining confirmed the quantitative biochemical findings for collagen 

content (Figure 7-6). Picrosirius red staining of collagen was most intense in FS 

constructs, with slightly less staining in PC constructs, and much less staining in the IS 
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repaired groups. The interface between the hydrogel and cartilage showed close 

apposition in all cases with visible collagen deposition at the interface. Collagen in 3% 

and 5% MeHA constructs was present in isolated accumulations, consistent with the 

limited matrix distribution previously observed in these higher macromer density gels 

(see Chapter 4). 

 

Figure 7-6:  Picrosirius red staining of collagen shows that IS repair limits construct 
maturation, while increased collagen density was observed in PC and FS constructs.  
Isolated aggregates of collagen were observed within 3% and 5% MeHA constructs from 
all experimental groups.  (100X original magnification; scale bar = 250 µm) 
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7.4. Discussion 

The functional repair of focal cartilage defects requires the restoration of mechanical 

function coupled with complete integration between the tissue engineered cartilage and 

adjacent host cartilage. While tissue engineered cartilage constructs with native 

compressive properties have been generated, quantitative analysis of the integrative 

potential of these constructs remains to be demonstrated. We have shown the potential for 

in vitro MSC-based cartilage development with photo-crosslinkable HA hydrogels, but 

had yet to analyze its capacity for integrative repair. One general concern with constructs 

that are matured in vitro is whether they are capable of integrating to host cartilage. 

Therefore, the two objectives of the present study were to 1) evaluate the integrative 

capacity of methacrylated HA hydrogels and 2) to determine the effect of in vitro pre-

culture (PC) on the integration of tissue engineered cartilage to native cartilage. 

 

The initial selection of HA hydrogels was based on its natural presence in cartilage, 

capacity for IS polymerization to fill irregularly shaped defects, overall biocompatibility, 

and in vivo degradation. In Chapter 4 it was demonstrated that lower macromer density 

formulations led to increased compressive properties, however, it was also observed that 

higher macromer density HA increased dimensional stability (Chung et al. 2009), an 

important factor for the IS formation of hydrogel constructs for cartilage repair. The 

results from the present study indicate that IS polymerized 1% MeHA remained stable 

(Figure 7-2) and reached integration strengths greater than either of the higher macromer 

density formulations (Figure 7-3). Quantification of matrix accumulation showed that the 

improved integration in IS 1% MeHA may be a result of the simultaneous increase in 
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both sGAG and collagen with time, where matrix content in IS 3% and 5% MeHA did 

not increase (Figure 7-5B-C). While integration strength paralleled accumulation of 

matrix constituents, compressive properties did not develop in either MeHA or Ag 

hydrogels when used for IS repair. 

 

Given the poor maturation of IS constructs (compared to FS controls), constructs were 

next allowed a period of PC to mature before being press fit in the cartilage explant repair 

model. µCT imaging showed a good fit without gapping between tissue engineered and 

adjacent cartilage (Figure 7-2). The integration strength of PC repaired constructs was 

equal to or better than that of the IS repair groups and the equilibrium modulus of the 

tissue engineered cartilage from the PC repairs was significantly greater for 1% MeHA 

and Ag (Figure 7-3; Figure 7-4). An initial period of construct maturation resulted in 

repairs that approached C-C control integration strength while also attaining mechanical 

properties that were closer to native tissue levels (Figure 7-7). 

 

The reduction in equilibrium modulus that was observed in the IS repaired defects may 

be due to limited nutrient and chondrogenic factor diffusion as compared to those 

constructs pre-cultured in free-swelling conditions. However, the in vitro culture 

environment of the IS groups more closely mimics the in vivo scenario in that the route 

for diffusion of nutrients and waste is limited to the top of the repair hydrogel. Despite 

tripling the medium volume with thrice-weekly changes, nutrients may also have been 

limited by competitive consumption from the adjacent explant cartilage itself. Hunter et 

al suggested that soluble factors from live cartilage explants may limit the IS maturation 
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of cartilage constructs, concluding that the implantation of mature constructs would result 

in the best outcomes (Hunter and Levenston 2004). Conversely, Bian et al recently 

showed that a small fraction of chondrocytes co-encapsulated with MSCs could increase 

differentiation substantially, but had no positive effect when cultured in adjacent gels 

(Bian et al. 2011). These challenges to the undifferentiated MSCs in various hydrogel 

formulations may help explain lower equilibrium modulus, DNA, sGAG, and collagen 

content in IS repaired defects compared to PC groups. The constructs used for the PC 

repairs were maintained for 4 weeks in optimal growth conditions without any conflicting 

factors released from the adjacent cartilage. This favorable PC period allowed for 

chondrogenic differentiation and the accumulation of cartilage matrix constituents that 

persisted (or increased) with 4 additional weeks of culture within the cartilage defect.  

 

Figure 7-7:  Integration strength vs. equilibrium modulus (log scale) for 1% MeHA and Ag 
(IS and PC) constructs compared to C-C integration control and equilibrium modulus of 
juvenile bovine cartilage (see Chapter 9). Functional cartilage repair requires both stable 
lateral integration and restoration of compressive properties in the defect. The PC repairs 
for both hydrogels approached C-C repairs for integration compared to IS, though 
significant progress remains in matching native tissue mechanics. 
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In contrast to our findings, Obradovic et al reported that repair with immature (5 day PC) 

chondrocyte seeded polyglycolic acid (PGA) constructs led to greater integration strength 

when compared to repair with more mature (5 week PC) constructs (Obradovic et al. 

2001). In addition to using a different scaffold (fibrous PGA mesh) that may promote cell 

migration into or out of the material, they also utilized a rotating wall bioreactor, which 

could limit the effects of nutrient diffusion, competitive consumption, and even soluble 

factors that may have influenced the outcome of the present study. Also, unlike their use 

of chondrocytes, we used MSCs that undergo differentiation during the PC period. While 

this study presented a different conclusion on the effects of PC, the increased integration 

strength of the immature constructs paralleled higher rates of sGAG and collagen 

accumulation, which was a key finding of the current work. Our observations are 

supported by Dimicco et al who demonstrated that integration is correlated with new 

collagen deposition (DiMicco and Sah 2001). Recent work by Vinardell et al 

encapsulated MSCs and chondrocytes in agarose to evaluate their potential for in vitro 

integration (Vinardell et al. 2009). In that study, sGAG and collagen accumulation was 

similarly limited with IS maturation, and the reported integration strength for their Ag IS 

repair group (22.7 kPa) was similar to the Ag IS results in this work (31 kPa). 

 

In order to address our limited understanding of the effects of the IS repair environment 

on cartilage repair with MSC-laden MeHA, future work will consider repair and co-

culture within live and devitalized cartilage as well as co-culture models where 

chondrocytes and MSCs are in the same gel (Bian et al. 2011). Further, while the 
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observed integration demonstrates the potential for successful repair, the in vitro model 

used here lacks the physical demands of the joint; loading may influence the formation of 

a stable integrated repair or disrupt a repair interface with insufficient durability. Cyclic 

deformation of repaired defects in vitro could offer new insights into integrative repair 

durability and the necessary restrictions on post-operative joint motion before the 

resumption of normal activities. Long-term dynamic compressive loading could also be 

used to overcome diffusional limitations in IS (and PC) repair by enhancing the diffusion 

of nutrients and soluble factors (Mauck et al. 2003; Albro et al. 2008). Continuous 

loading could further improve the chondrogenic differentiation of MSCs and subsequent 

maturation of the repair construct (Hunter and Levenston 2002; Mauck et al. 2006; 

Huang et al. 2010). 

 

While not addressed here, the use of tissue adhesives and enzymatic degradation of 

interface surfaces can directly increase integration strength between tissue engineered and 

adjacent host cartilage (Silverman et al. 1999; Peretti et al. 2003; Wang et al. 2007). The 

integration strength of the best case in this study (PC 1% MeHA) neared C-C controls 

and the equilibrium modulus approached native properties (~25%). Future work to 

improve integration strength may utilize degrading enzymes or tissue adhesives. 

Additionally, while we have recently demonstrated that increasing the MSC cell density 

by 3-fold in 1% MeHA resulted in constructs with an equilibrium modulus of over 300 

kPa (see Chapter 5), the effect of these higher cell densities on integration has not yet 

been explored. The increased synthetic activity that markedly increased mechanical 

properties in this preliminary work may also prove to enhance the integration strength. 
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Additionally, there may be a temporal component when it comes to pre-culture that is cell 

density related.  

  

7.5. Conclusions 

The IS polymerization of MSC-laden hydrogels resulted in a stable integrated repair 

interface, but addressed only one aspect of functional cartilage repair. Allowing a PC 

period for the pre-maturation of constructs improved both integration and the 

compressive properties of the tissue engineered cartilage used for in vitro cartilage repair. 

Future investigations to confirm the mechanism by which the IS environment inhibits 

construct maturation and the effects of joint motion on integration will lead to further 

advancements in functional cartilage repair. 
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CHAPTER 8:   Increasing the Functional Repair Potential of MSC-Seeded 

Hyaluronic Acid Hydrogel Constructs In Vitro 

 

8.1. Introduction 

The motivation for Chapter 7 was to investigate the repair potential of MSC-seeded 

MeHA hydrogels by analyzing the integration strength when gels were polymerized in 

situ or were allowed a period of pre-maturation or pre-culture. Two important 

conclusions come from Chapter 7.  First, 1% MeHA is the most supportive formulation 

for not only the in vitro maturation of cartilage-like constructs (Chapters 4-5), but also for 

the in vitro integration of MSC-seeded constructs to adjacent cartilage. Secondly, we 

noted that allowing hydrogels a pre-culture period before implantation improved 

integration strength and the compressive properties of the repair construct. While the 

integration strengths reported in Chapter 7 were higher than previous reports for MSC-

based constructs, they were still far below cartilage-to-cartilage controls and 

chondrocyte-based approaches, indicating there is considerable room to improve the 

potential for MSC-seeded MeHA for real functional cartilage repair. 

 

Chapter 5 of this thesis determined that 1% MeHA formulations responded to high MSC 

density and dynamic culture with remarkable increases in functional maturation. 

Increasing MSC density within this in vitro model of repair is a feasible approach to 

increasing the synthesis of matrix components that are critical in bridging the integration 

interface, thereby increasing its strength. Furthermore, dynamic culture during the pre-

culture phase may lead to accelerated growth, and repaired constructs in dynamic culture 
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may more closely replicate the dynamic joint environment compared to the static culture 

conditions previously employed. This study will combine both of these factors pertaining 

to the maturation of MSC-seeded MeHA constructs to maximize their in vitro repair 

potential. 

 

While considering the compressive properties of a repair material and its integration 

within a cartilage defect already surpasses the extent to which in vitro repair has been 

studied in this particular model, it remains unclear what level of in vitro integration is 

sufficient to successfully repair articular cartilage in vivo. One important consideration is 

whether the repair interface between the engineered and native cartilage is durable, i.e. 

whether it will remain stably integrated under normal joint loading conditions. While 

crack propagation for cartilage-to-cartilage integration has been studied in a single lap 

test (Fierlbeck et al. 2006), no attempts have been made to study the effects of 

compressive loading on in vitro integration within an annular cartilage defect model. The 

results of such a study could determine the suitability of a repair strategy while offering 

additional insights into the necessary duration of a prescribed rehabilitation regimens to 

help protect newly implanted cartilage grafts. 

 

One key tenet of functional cartilage repair is that implanted engineered cartilage perform 

the required functional role of distributing joint stresses in order to protect cartilage 

adjacent to a defect from being over loaded which can lead to unwanted degenerative 

events (Buckwalter and Lane 1997; Wu et al. 2002; Wyland et al. 2002). Just as the case 

with the durability of graft integration, this concept has yet to be studied in vitro. Some 
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may argue that graft durability and function are best studied in vivo, but orthotopic in vivo 

studies typically show histological images as the only evidence of integration and 

function without any quantitative analysis. On the other hand, in vitro tests are 

considerably less expensive while allowing for informative biomechanical testing to 

demonstrate functional repair. 

 

The objective of this study was to enhance functional integration of MeHA constructs 

within an in vitro defect model by seeding them with MSCs at a high density and 

culturing under dynamic conditions to improve nutrient and growth factor transport. The 

durability will be assessed by quantifying the integration strength before and after the 

application of a prolonged period of cyclic compressive deformations. The ability for 

constructs to participate in load transmission within the in vitro defects will be 

determined by measuring the equilibrium modulus before and after the removal of the 

engineered, integrated material from the center of the defect. 

 

8.2. Methods 

8.2.1. MSC Isolation and Cartilage Defect Preparation 

Juvenile bovine MSCs were isolated and expanded through passage 3 as described in 

Chapter 3. Cartilage cylinders were removed from juvenile bovine trochlear grooves and 

maintained in basal medium until 3 days before the implantation of pre-matured 

constructs when they were formed into annular constructs (see Chapter 7). Briefly, 

constructs were cut to ~2.25 mm in thickness and a 4 mm core was removed to create the 

defect (Figure 8-1).  
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Figure 8-1:  Schematic of the preparation of in vitro cartilage defects, MeHA repaired 
defects, C-C repair defects, and FS control constructs. 
 

8.2.2. Defect Repair 

Similar to the PC constructs in Chapter 7, MSCs were encapsulated within 1% MeHA at 

50 million cells/mL, punched into 5 mm cylinders, and maintained for 3 weeks in 

chondrogenic medium with TGF-β3 (10 ng/µL) under dynamic culture conditions (orbital 

shaker; see Chapter 5). At the end of the PC or pre-maturation period, 5 mm constructs 

were punched to 4 mm, press-fit within the prepared defects (Figure 8-1), and the 

resulting repair composites were cultured dynamically for 6 weeks. Additional constructs 

underwent mechanical, biochemical, and histological analyses while the remaining gels 

were maintained in dynamic free-swelling culture for the duration of the 6 week study 

(FS controls). Cartilage-to-cartilage (C-C) controls were also created by restoring 

randomized cartilage cores back into cartilage defects (Figure 8-1). 
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8.2.3. Integration Testing and Durability 

MeHA repaired and C-C constructs underwent push-out testing after 2 and 6 weeks to 

determine the integration strength of the repair interface (see Chapter 7). Additional 

constructs were first subjected to 7200 cycles of 10% deformation at 1 Hz (2 hrs) applied 

with an Instron material testing device and a custom indenter within a PBS bath.  

 

8.2.4. Load Transmission Testing 

To determine the contribution of the MeHA constructs to the distribution of load within a 

cartilage defect the equilibrium modulus was determined before and after the removal of 

the MeHA repair construct. Before testing, parallel top and bottom surfaces were created 

by sectioning with a freezing stage microtome. Stress relaxation tests were conducted 

consisting of two sequential ramps of 5% and 10% strain (0.05%/sec) that were applied 

with 20 minutes relaxation after each ramp. Data from the second ramp (5-15% 

deformation) were extracted and the equilibrium stress and strain values based on the 

measured construct dimensions. The integration strength was also determined when 

removing the repair material from the center of the defects. In addition to testing of the 

C-C controls, fresh cartilage cylinders were tested intact, after punching a 4 mm defect 

from the center, and after returning the cartilage to the center. 

 

8.2.5. Compression Testing, Biochemistry, and Histology 

Compression testing and biochemical analyses of FS controls and the repair material 

pushed-out of the composite constructs were conducted as described in Chapters 3-4. 
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Histological staining was performed as in Chapter 3 on FS controls, C-C, and MeHA 

repaired constructs to visualize the accumulation and distribution of cartilage matrix 

components in the context of in vitro repair. 

 

8.2.6. Statistical Analysis 

All statistical analyses were performed using SYSTAT (v13, San Jose, CA). Two-way 

ANOVA was used throughout with repair method (MeHA or C-C) and time as 

independent variables. A paired one-tailed student’s t-test was also utilized to compare 

the equilibrium modulus of repaired defects to defects after push-out testing. Fisher’s 

least significant difference post hoc test was used for each analysis of pair-wise 

comparisons with a threshold of p<0.05 assigned to distinguish significant differences. 

 

8.3. Results 

8.3.1. Integration Strength and Durability of In Vitro Repair 

Pre-cultured high MSC density MeHA constructs (3 weeks) and cartilage plugs were 

stably implanted within cartilage rings. Significant integration was observed for the 

cartilage repaired constructs which reached 419 kPa after only 2 weeks of dynamic 

culture (Figure 8-2A). High MSC density MeHA integrated 22% better than C-C 

controls reaching 513 kPa after 2 weeks (p=0.313), but they did not significantly increase 

from 2 to 6 weeks (557 kPa; Figure 8-2A). C-C integration improved from 2 to 6 weeks 

(p=0.01) reaching 695 kPa, 25% greater than MeHA repaired constructs (p=0.166). 
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Figure 8-2:  (A) Integration strength of HA and cartilage (C-C) repaired defects after 2 and 6 
weeks of chondrogenic culture (n=5-6). (B) The percent change in the integration strength 
of constructs after the application of 7200 cycles of 10% strain deformations compared to 
the mean integration strength of unperturbed constructs (n=5-6). (C) The percent change 
in integration strength was also determined for repaired constructs after removing both 
the top and bottom layer with a freezing stage microtome (n=4-6). (bars with associated p-
values indicate statistically significant comparisons) 

 

The durability of in vitro repair was tested by applying 2 hours of cyclic deformation 

(10% strain) to MeHA and C-C repair constructs before comparing the integration 

strength to the untreated control. Overall, the decrease in integration strength resulting 
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from the prescribed loading scenario for both groups was between 30 and 40%, except 

for the C-C repair group at 6 weeks which only resulted in a 10% decrease (Figure 

8-2B). 

 

In order to determine the integration strength independent of any fibrous matrix formed 

on the outside of the repaired constructs, constructs from the load transmission study 

which had the top and bottom surfaces removed underwent push-out testing. The 

resulting comparison at 2 weeks showed a 72% decrease in integration for MeHA while 

the integration of the C-C group actually increased by 58% (Figure 8-2C). However, at 6 

weeks the effect of sectioning was similar for both repair groups, where MeHA 

integration was reduced by 48% and integration of C-C repairs by 36% (Figure 8-2C). 

 

8.3.2. Compressive Properties of MSC Seeded MeHA Constructs  

The FS control constructs increased in equilibrium and dynamic modulus over a total of 9 

weeks to attain 793 kPa and 4.7 MPa, respectively (Figure 8-3A-B). The in situ 

maturation of MeHA constructs after implantation was significantly reduced, reaching a 

mean equilibrium modulus of 157 kPa after 9 weeks (3 weeks in pre-culture + 6 weeks in 

situ) and a dynamic modulus of 1.4 MPa (p<0.001; Figure 8-3A-B).  

 

8.3.3. Load Transmission in Repaired Defects 

The equilibrium modulus of MeHA repaired defects significantly increased from 770 to 

1501 kPa between 2 and 6 weeks (p=0.001) while defects repaired with cartilage plugs 

similarly increased from 518 to 1743 kPa (p<0.001; Figure 8-4A). The reduction in the 
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equilibrium modulus for MeHA and cartilage repaired defects after core removal ranged 

from 32% to 47% after both 2 and 6 weeks (p<0.05; Figure 8-4B). As an additional 

control, intact explant cartilage had an equilibrium modulus of 367 kPa that was reduced 

by ~20% by removing a 4 mm core from its center and a significant effect was still 

observed when the cartilage was returned to fill the defect (p<0.05; Figure 8-5).  

 

Figure 8-3:  (A) The unconfined equilibrium compressive modulus and (B) dynamic 
modulus of constructs maintained in free-swelling culture and constructs retrieved from 
repaired defects after push-out testing. (n=4-11; also included constructs from durability 
and load transmission tests; bars with associated p-values indicate statistically significant 
comparisons) 

 

 
Figure 8-4:  (A) The unconfined equilibrium compressive modulus before and after 
removal of repair material consisting of either MSC seeded HA hydrogels or cartilage 
plugs after 2 and 6 weeks of chondrogenic culture (n=5-6). (B) The percent change in 
equilibrium modulus as a result of removing the center of repaired constructs. 
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Figure 8-5:  Equilibrium modulus of intact explant cartilage before and after the creation of 
a 4 mm concentric defect (normalized to intact modulus). To demonstrate the effect of the 
biopsy incision alone, the removed cartilage was replaced and the cartilage was tested 
again. (n=4-5; *p<0.05 vs intact cartilage) 

 

Figure 8-6:  (A) Proteoglycan staining of FS constructs at the time of implantation and after 
2, 4, and 6 weeks of FS dynamic culture (25X magnification; scale bar = 0.5 mm). (B) 
Stained proteoglycan within MeHA and cartilage repaired constructs showing the interface 
(white arrows) between repair material and defect cartilage (25X magnification; scale bar = 
0.5 mm). 
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8.3.4. Histology 

Proteoglycan staining showed a continual increase in accumulation with maturation, but 

matrix levels decreased towards the center region of the FS constructs (Figure 8-6A). 

The interface between MeHA and adjacent cartilage appeared continuous with heavy 

matrix accumulation (white arrows), but a more profound decrease in proteoglycan was 

observed towards the center of the MeHA constructs (Figure 8-6B). A stable interface 

was also evident in sections of C-C repair control constructs, but slight fissures or gaps 

were often seen (Figure 8-6B).  

 

8.4. Discussion 

Chapter 7 established the benefit of an initial period of construct maturation before 

implantation as a means to improve integration strength and the functional properties of 

engineered cartilage for in vitro repair, however, the integration strength only reached 87 

kPa (~39% of C-C levels) and the equilibrium modulus only 68 kPa (~20% of native 

levels). Utilizing high MSC density (50 million/mL) and dynamic culture (orbital shaker) 

resulted in MeHA-cartilage integration of 513 kPa in just 2 weeks after implantation 

(Figure 8-2A). This level of integration is nearly 6.5 fold greater than what was reported 

in Chapter 7 and nearly 25 times previously published reports of MSC-based integration 

(Vinardell et al. 2009). Indeed, this result bests all published reports of in vitro cartilage 

integration using chondrocytes, including work by Obradovic et al who seeded 

chondrocytes on polyglycolic acid scaffolds and implanted them within trypsin treated 

explants to obtain an integration strength of 375 kPa after 8 weeks (Obradovic et al. 
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2001). One published investigation of in vivo cartilage-cartilage integration within a 

subcutaneous mouse model reported values of 840 kPa and 1320 kPa using hyaluronidase 

and collagenase enzyme treatments, but one criticism of this work was that the fibrous 

encapsulation was left intact for push-out testing (van de Breevaart Bravenboer et al. 

2004). Our constructs maintained integration strengths of over 360 kPa even after 

removal of the top and bottom layers and a stress-relaxation test preceding push-out 

analysis. 

 

The in vitro durability of integrative repair has not previously been examined, therefore 

no comparisons can be made to the literature. MeHA repaired constructs were subjected 

to a rather strenuous 2 hour period of cyclic loading which resulted in a 40% reduction in 

the integration strength, but this reduction was not statistically significant. The 

integration did not fail catastrophically and remained at 333 kPa, a significant level 

compared to published reports. Durability testing reduced the integration of the C-C 

repair group by 36% at week 2, but only 10% at week 6. While this reduction was not 

statistically significant from the observed reduction in the MeHA repaired defects, it may 

still suggest that cartilage repaired defects are more suited to resist loading induced 

fissures at the repair interface. 

 

Moretti et al demonstrated that matrix accumulated around the entire defect contributes 

significantly to the strength of cartilage integration (Moretti et al. 2005). To assess this 

effect in our system, constructs with their top and bottom sections removed were also 

tested for integration strength. It is important to note that in addition to sectioning of the 
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construct top and bottom, these constructs were also subjected to two freeze/thaw cycles 

and a stress relaxation test reaching a peak strain of 15% before integration testing was 

performed. As a result, 2 week MeHA construct integration was reduced by 72% while 

C-C integration increased by 58% (Figure 8-2B). The histological findings may help 

interpret this result, where the central regions of implanted MeHA constructs 

accumulated matrix at a much slower rate than more exterior regions (Figure 8-6B). The 

removal of these exterior regions would mean that the integration strength would solely 

rely on the interface between the cartilage and the less developed central region. In the 

case of the C-C repair defects, the middle region is mature cartilage and appeared to 

contribute more to the integration than the top and bottom regions. This may be in part 

due to increased congruence or a tighter fit in the center than towards the edges of the 

interface. Also, synthesized matrix may be more likely to be accumulated in the central 

rather than exterior regions of the interface. While this early effect may remain a 

phenomenon, by 6 weeks both MeHA and C-C behaved similarly with a reduction in 

integration of 48% and 36%, respectively. As the MeHA constructs matured in situ, it 

appeared that the center region began to contribute more to the integration strength than 

was observed at 2 weeks, while the opposite was true for the C-C repair defect. 

 

Another crucial aspect of functional cartilage repair is the compressive strength of the 

repair material. Increased seeding density and orbital shaking were applied to help foster 

construct maturation which did cause MeHA constructs to develop increased equilibrium 

and dynamic properties in situ (Figure 8-3A-B). While the properties of FS controls were 

about 5 fold greater (793 kPa) than the repair constructs (p<0.001), they did improve 
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from 25 kPa upon implantation to 157 kPa after 6 weeks, which is within 50% of the 

lower limit of native cartilage values. As previously described, construct maturation in 

situ was heterogeneous, resulting in exterior regions of dense matrix with decreased 

density in the central regions which may have created a fracture zone for some constructs 

(Figure 8-7). Nearly 50% of constructs showed some signs of fracture upon being 

pushed-out of cartilage defects and a large portion left fragments still fully attached to the 

wall of the cylindrical defects, indicating that the strength of integration may have 

exceeded the strength of some constructs. Constructs that were obviously fractured were 

not tested in compression (Figure 8-7), but the possibility remains that visibly intact 

samples tested in compression contained less visible fractures that would have a 

significant effect on the determination of equilibrium and dynamic properties. This 

certainly would not account for the entire difference between the FS and repair 

constructs, but may offer some explanation as to why the modulus data indicated that 

development appeared to plateau at 4 weeks. 

 

Figure 8-7:  Proteoglycan stained section of MeHA construct retrieved after 6 week push-
out testing shows hydrogel fracture through the less developed center region (alcian blue; 
25X magnification; scale bar = 0.5 mm). 
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To determine the functional consequence of MSC-MeHA repair in the context of the 

surrounding cartilage, the equilibrium modulus of the repaired defects was determined 

before and after removal of the repair tissue. The modulus of MSC-MeHA repaired 

constructs at 6 weeks was similar to the modulus of defects filled with mature cartilage 

tissue, a technique that represents the clinical procedure of osteochondral grafting. The 

modulus of the empty rings after MeHA or cartilage plug removal was the same (change 

in cross-sectional area was accounted for), indicating that the contribution of the cartilage 

defect itself was comparable for both repair groups. There was a significant reduction in 

modulus as a result of removing the MeHA or cartilage from the defect center (32-47%; 

Figure 8-4B), which implies that the repair tissue was contributing to the mechanical 

properties. When intact cylinders were tested before and after creating a 4 mm defect, a 

smaller but still significant decrease in modulus was also observed (20%; Figure 8-5). 

The larger difference observed in the repair study could be explained by the 

superphysiologic cartilage growth that occurred, where the observed differences in 

mechanical properties of the explant cartilage and the repaired defects (EY of TGF-β3 

cultured defects- 1500 kPA; EY of explant cartilage- 350 kPa) may have led to a steeper 

decline in compressive properties as a result of removing the defect center. Alternatively, 

the repair material (MeHA or cartilage) and the tissue formed at the repair interface may 

simply contribute more to the stress response of the entire construct than the center region 

of intact cartilage. Two key observations from this study arise: 1) it was demonstrated 

that focal defects diminish the mechanical function of adjacent cartilage and 2) MSC-
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MeHA repair restores function within in vitro cartilage defects as well as repair with 

autologous cartilage. 

 

8.5. Conclusions 

The implementation of higher MSC density and dynamic culture for the repair of in vitro 

cartilage defects with MSC-seeded MeHA hydrogels resulted in greater integration than 

previous reports of MSC and chondrocyte-based approaches. While the compressive 

properties of MeHA constructs retrieved after push-out testing improved, they remained 

lower than native cartilage. Regardless, their functional performance as a composite with 

the cartilage defect matched that of repaired defects with mature cartilage, ushering this 

MSC-MeHA system towards pre-clinical testing in a large animal model. 
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CHAPTER 9:   Cartilage Matrix Formation by Bovine Mesenchymal Stem Cells in 

Three-Dimensional Culture is Age-Dependent 

 

9.1. Introduction 

One caveat to the research performed as part of this thesis is the use of healthy juvenile 

bovine chondrocytes and primarily mesenchymal stem cells (MSCs). It is important to 

understand the effects of cell age when conducting research on potential clinical 

applications that involve autologous cell transplantation. Cartilage tissue undergoes 

remarkable alterations in composition, organization, and mechanical properties with 

aging (Morrison et al. 1996; Williamson et al. 2001; Charlebois et al. 2004). Aging is 

implicated in various cartilage pathologies, including osteoarthritis that will affect a 

major portion of the population (Frankowski and Watkins-Castillo 2002). Short of total 

joint arthroplasty, current treatments for traumatic cartilage injury and disease include 

microfracture or osteochondral autografting only offer satisfactory short-term solutions 

without evidence of long-term function (Steadman et al. 2001; Detterline et al. 2005; 

Kleemann 2007). Autologous chondrocyte implantation (ACI) utilizes in vitro expanded 

chondrocytes for implantation into a defect, but this technique also fails to produce 

functional, integrated repairs (Micheli et al. 2001; Knutsen et al. 2004; Micheli et al. 

2006).  

 

One limitation of ACI is the age of available donor chondrocytes. The literature suggests 

lower proliferation rates, extracellular matrix (ECM) forming potential, and more 

senescence in aged human chondrocytes (Martin and Buckwalter 2001; Barbero et al. 
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2004; Giannoni et al. 2005). Similarly, aged bovine chondrocytes produce less cartilage 

ECM in 3D culture (Tran-Khanh et al. 2005), and adult canine chondrocytes generate 

functional grafts only when expanded in specialized media (Ng et al. 2010). Adkisson 

and coworkers noted that immature human chondrocytes in a scaffold-free system 

produced cartilage-like ECM superior to adult chondrocytes (Adkisson et al. 2001).  

 

The evidence thus suggests that donor age limits the clinical potential of autologous 

chondrocytes and has motivated many groups to investigate the use of mesenchymal stem 

cells (MSCs). MSCs are a multipotent cell type found in bone marrow that can 

differentiate along osteogenic, chondrogenic, and adipogenic lineages (Baksh et al. 

2004). Like chondrocytes, however, MSC properties also change with age; MSC density 

in bone marrow decreases and aged MSCs are slower to proliferate (Stolzing et al. 2008). 

Regardless, aged MSCs can produce functional repair tissue. Rabbit tendon injuries 

repaired with autologous MSCs from young or aged animals produced repair tissue with 

equivalent material properties (Dressler et al. 2005). Osteogenic and adipogenic MSC 

differentiation has been reported to be both independent of age (Stenderup et al. 2003; 

Roura et al. 2006; Tokalov et al. 2007) and dependent on age (Kretlow et al. 2008; 

Coipeau et al. 2009). For human MSC chondrogenesis, both age-dependent and age-

independent findings have also been noted (Murphy et al. 2002; Scharstuhl et al. 2007; 

Payne et al. 2010). Recent findings showed a decline of potential in aged human male 

MSCs, but no decline in female MSCs (Payne et al. 2010). Another recent report on fetal 

and adult human MSCs showed similar adipogenic and osteogenic differentiation, but a 

small age-related decrease in cartilage ECM formation (Bernardo et al. 2007). 
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Although the literature demonstrates that aging effects MSC and chondrocyte function, 

no study has compared both cell types with increasing age in the bovine model system. 

Using the equine model, Kopesky and coworkers reported that adult MSCs in hydrogels 

form superior engineered tissue compared with juvenile MSCs and adult chondrocytes 

(Kopesky et al. 2010). Conversely, in Chapter 3 we show that juvenile bovine MSCs are 

inferior to donor-matched chondrocytes in various hydrogels (Mauck et al. 2006; Huang 

et al. 2008; Huang et al. 2010), but have not considered MSC age in our HA hydrogel 

system. 

 

The objective of this study was to confirm age-related changes in native cartilage and 

determine the effects of aging on bovine MSCs and chondrocytes in 3D pellet and 

hydrogel culture. Specifically, we sought to 1) confirm age-related changes in bovine 

cartilage, to establish how pellet chondrogenesis changes with age for 2) chondrocytes, 

and 3) MSCs. 4) Lastly, age-related differences in MSC chondrogenesis within a 

clinically relevant hydrogel context were investigated. 

 

9.2. Methods 

9.2.1. Aging and Articular Cartilage 

To analyze developmental differences in bovine cartilage with age, trochlear groove 

cartilage from fetal, juvenile, and skeletally mature (adult) stifle joints was analyzed for 

biochemical content (n=3-5 per donor), biomechanical properties (n=3-5 per donor), and 

histology (Figure 9-1A). This study was repeated three times. Cartilage samples were 
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harvested and sectioned with a freezing stage microtome to obtain ~1 mm thick x 4 mm 

diameter samples for mechanical testing. After testing, samples were analyzed for DNA, 

sulfated glycosaminoglycan (GAG), and collagen content. Histologic staining for 

proteoglycans and collagens was performed, and split-line directions evaluated across 

each joint and at each age. 

 

Figure 9-1:  Experimental groups for analysis of fetal, juvenile, and adult native cartilage 
(A), pellet study of chondrocytes (CHs) and mesenchymal stem cells (MSCs) of fetal, 
juvenile, and adult origin cultured for 6 weeks in chondrogenic medium with (CM+) and 
without (CM-) TGF-β3 (B), and the investigation of MSCs within a 3D hyaluronic acid (HA) 
hydrogel context (C). 

 

9.2.2. Aged MSCs and Chondrocytes in Pellet Culture 

Chondrocytes (primary) and MSCs (expanded) from fetal, juvenile, and adult bovine 

donors (three donors per age) were isolated, formed into cell-rich pellets (250,000 per 

pellet), and cultured up to 6 weeks in chondrogenic medium with (CM+) or without (CM-

) the chondrogenic induction factor transforming growth factor-β3 (TGF-β3) (Mauck et 

al. 2006) (Figure 9-1B). Biochemical assays for DNA, GAG, and collagen content in 

each pellet were performed (n = 3 per donor), and histological analysis of proteoglycans 

and collagens as in Chapter 4. 
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9.2.3. Aged MSCs in 3D HA Hydrogels 

Bone marrow-derived MSCs from fetal, juvenile, and adult bovine donors (three donors 

per age) were encapsulated in a photo-crosslinked HA hydrogel (see Chapter 3) and 

cultured for 3 weeks in chondrogenic medium with TGF-β3 (Figure 9-1C). Analyses of 

cell viability, mechanical testing, and biochemical content were all performed as 

described in Chapter 4. A histological analysis of proteoglycan and collagen 

accumulation and distribution was also conducted. 

 

9.2.4. Cell and Cartilage Isolation 

Fetal (second or third trimester; JBS, Souderton, PA), juvenile (3-6 months; Research 87, 

Boylston, MA), and adult bovine limbs (2-3 years; Animal Technologies, Tyler, TX) 

were acquired within 24 hours of slaughter. MSCs from three donors of each age were 

isolated from tibial or femoral bone marrow extractions by plastic adherence (Mauck et 

al. 2006) and maintained separately in growth medium consisting of DMEM with 10% 

fetal bovine serum (Invitrogen, Carlsbad, CA) and 1% penicillin-streptomycin-fungizone 

through Passage 2 or 3. Diced, full-thickness articular cartilage from three donors of each 

age group was enzymatically digested to release the chondrocytes which were used 

without passaging (Mauck et al. 2006). 

 

9.2.5. Split-Line Analysis of Collagen Orientation 

Split-line direction was evaluated across fetal and juvenile stifle joints. A round 1.25 mm 

diameter needle was dipped in India ink and inserted perpendicular to the cartilage 

surface to the level of the subchondral bone. India ink was drawn into the formed gaps, 
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creating a clearly visible line. This process was repeated in a grid with 5 mm intervals 

across the joint surface. 

 

9.2.6 Histology 

Histologic analysis of cartilage, pellets, and hydrogels was performed. All samples were 

fixed in 4% paraformaldehyde. Cartilage and hydrogels were embedded in paraffin and 

sectioned to 8 µm while pellets were cryosectioned to 12 µm. Sections were then stained 

for proteoglycans with alcian blue (pH 1.0) and for collagen by picrosirius red (see 

Chapter 3). 

 

9.2.7. Statistical Analysis 

Cartilage and pellet data are reported as the mean ± SD of results for three donors of each 

age group (n = 3-4 samples per donor per assay). Hydrogel data is reported as the mean ± 

SD of four samples from each MSC donor age. We determined differences in 

biochemical content and mechanical properties between fetal, juvenile, and adult native 

cartilage using one-way analysis of variance (ANOVA). We determined differences in 

biochemical content between cell pellets with age (fetal, juvenile, and adult) and media 

supplementation (with and without TGF-β3) using a two-way ANOVA. We used 

SYSTAT 13 (Systat Software, Chicago, IL) for all analyses including the Fisher’s least 

significant difference post hoc testing of pair-wise comparisons. 



140 

 

Figure 9-2:  DNA content (A) decreased as the donor age of bovine cartilage increased (F = 
fetal; J = juvenile; A = adult). Glycosaminoglycan (GAG) content (B) did not change with 
age, but collagen content (C) increased significantly. Cartilage equilibrium compressive 
modulus (D) increased slightly with age, whereas the dynamic modulus (E) was 
independent of age (three donors; n = 3-4 per donor. 
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9.3. Results 

9.3.1. Cartilage Composition and Structure Change with Age 

Cell density, collagen content, organization, and equilibrium modulus within native 

cartilage were dependent on donor age. Fetal cartilage DNA content was two and four 

fold greater than juvenile and adult cartilage, respectively (Figure 9-2A). GAG content 

(per wet weight) ranged between 5% and 6% regardless of cartilage donor age (Figure 

9-2B). Adult cartilage collagen content (10.3%) was two and four fold greater than 

juvenile (p=0.005) or fetal cartilage (p<0.001; Figure 9-2C). The compressive modulus 

of juvenile (0.73 MPa) and adult (0.64 MPa) cartilage was 50% to 75% higher than fetal 

(0.41 MPa) cartilage (Figure 9-2D). Histologic staining confirmed the level of 

biochemical constituents (Figure 9-3) and split-line analysis showed marked differences 

between fetal and juvenile cartilage with clearly demarcated split-line patterns in juvenile 

specimens, whereas fetal specimens lacked organization and directionality (Figure 9-4). 

 

Figure 9-3:  Histologic staining of proteoglycans (top) and collagens (bottom) show age-
related changes in proteoglycan and collagen content and localization while providing a 
visual confirmation of decreasing cellularity with age. Depth-dependent collagen 
organization increased with donor age (alcian blue and picrosirius red; 100X 
magnification; scale bar = 50 µm). 
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Figure 9-4:  Split-line analysis revealed prominent alignment of collagen fibers in juvenile 
articular cartilage (right). The star-shaped splitting pattern observed in fetal samples (left) 
indicated collagen in this immature cartilage is less organized. 

 

9.3.2. Age Affects MSC and Chondrocyte Matrix Formation in Pellets 

The biochemical content in chondrocyte pellets depended on donor age and TGF-β3 

supplementation. The DNA content in adult chondrocyte pellets cultured in CM+ for 6 

weeks was ~two- and three-fold greater than in juvenile (p<0.001) or fetal (p<0.001) 

chondrocyte pellets (Figure 9-5A). The GAG levels in fetal chondrocyte pellets in CM+ 

were at least 50% less than either juvenile (p=0.001) or adult (p=0.210) pellets (Figure 

9-5B). The collagen content in fetal chondrocyte pellets was greater than juvenile pellets 

(p=0.034) in CM+ and greater than both juvenile and adult pellets (p<0.001) in CM- 
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(Figure 9-5C). Interestingly, CM+ decreased GAG (p=0.002) and collagen (p<0.001) 

content of fetal chondrocyte pellets (Figure 9-5B-C). 

 

Figure 9-5:  DNA (A), glycosaminoglycan (GAG) (B), and collagen (C) content of 
mesenchymal stem cell and chondrocyte (CH) pellets from fetal (F), juvenile (J), and adult 
(A) bovine donors cultured in chondrogenic medium with (CM+) and without TGF-β3 (CM-). 
Data represent the mean ± SD for three donors per age and three pellet analyses per 
donor. 
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The DNA content of MSC pellets increased with age while ECM levels decreased. The 

DNA content was generally higher in juvenile and adult pellets than in fetal pellets in 

CM- or CM+. For adult MSC pellets, CM+ did not alter DNA content (p=0.485), 

whereas CM+ increased fetal (p=0.465) and juvenile (p<0.001) MSC pellet DNA by ~3-

fold. In CM-, MSCs produced very little GAG regardless of age. In CM+, MSCs from all 

age groups increased in GAG content with fetal MSCs accumulating two- and 15-fold 

higher levels than juvenile (p=0.085) or adult (p<0.001) MSCs, respectively. CM+ 

increased collagen content in MSC pellets for each age group with the greatest collagen 

accumulation in CM+ fetal pellets (Figure 9-6). 

 

Figure 9-6:  Proteoglycan staining of fetal, juvenile, and adult mesenchymal stem cell 
(MSC) pellets cultured in chondrogenic medium with TGF-β3 (CM+) for 6 weeks. Fetal MSC 
pellets accrued more proteoglycan than juvenile pellets; adult MSCs formed the smallest 
pellets with the least amount of proteoglycan (alcian blue; 50X magnification; scale bar = 
500 µm). 

 

9.3.3. Aging Affects MSC Chondrogenesis in HA Hydrogels 

MSC chondrogenesis in 3D hydrogels was strongly dependent on donor age. After 3 

weeks in CM+, DNA in fetal MSC-seeded gels increased by 48% (p<0.001), juvenile 

DNA changed very little (-15%; p=0.377), and adult DNA decreased (-35%; p<0.001; 

Figure 9-7C). The GAG content of both fetal and juvenile MSC-seeded constructs 
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reached approximately 3%, a level ~15-fold higher than adult MSC-laden gels (p<0.001; 

Figure 9-8A). Collagen content reached 0.20% in fetal and 0.28% in juvenile MSC-

seeded constructs on Day 21, while adult MSC-seeded hydrogels contained ~10 times 

less collagen (0.03%; p<0.001; Figure 9-8B). The equilibrium and dynamic moduli of 

fetal and juvenile MSC hydrogels reached ~90 kPa and ~800 kPa, respectively (Figure 

9-8C-D). The modulus of HA gels seeded with adult MSCs remained at acellular levels 

after 3 weeks, 15-fold less than fetal or juvenile MSC gels (p<0.001; Figure 9-8D). 

 

Figure 9-7:  Calcein AM labeling of viable MSCs in HA hydrogels (A) on Day 21 showed 
more cells in fetal MSC gels and a dramatic decline in viable cells for adult MSCs. 
Ethidium labeling (B) indicated a greater number of adult MSCs were nonviable compared 
with gels seeded with fetal or juvenile MSCs (100X magnification; scale bar = 250 µm). 
DNA content (C) on Day 21, normalized to initial DNA levels, showed fetal MSCs increased 
in number while adult MSC numbers declined significantly (n = 4; dashed line represents 
Day 0 levels). 
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Figure 9-8:  Biochemical content of MSC-seeded HA constructs after 21 days in culture 
showed an age-dependent accumulation of (A) GAG and (B) collagen. The (C) equilibrium 
compressive modulus and (D) dynamic compressive modulus of MSC constructs was 
similarly dependent on MSC age. (n = 4 constructs per age). 
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9.4. Discussion 

Donor cell age may be an important determinant of the success of autologous tissue 

engineering; however, the current literature presents contradicting evidence in a variety 

of model systems and culture contexts for MSCs. Our first objective was to confirm age-

related changes in bovine articular cartilage. Secondly, we sought to establish how age 

modulates chondrogenesis of chondrocyte pellets and thirdly, MSC pellets. Lastly, we 

investigated age-related differences in MSC chondrogenesis in a hydrogel context. 

 

Figure 9-9:  Picrosirius red staining of collagens (top) and alcian blue staining of 
proteoglycans (bottom) supported the quantitative biochemical measures (50X 
magnification; scale bar = 250 µm). 

 

This work was not without limitations. First, the hydrogel study used only MSCs, which 

was motivated by previous work indicating that chondrocyte function is limited in this 

HA hydrogel formulation (see Chapter 3), but only TGF-β3 was utilized, where 

additional growth factors may have elicited different results related to donor age. TGF-β3 
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is consistently used in tissue engineering to elicit a chondrogenic response, however, it 

remains possible that our age-related observations are due to changing responsiveness to 

TGF-β3, which was not studied. Finally, we did not evaluate hypertrophic markers, 

though, we have previously demonstrated that bovine MSCs in agarose hydrogels do not 

deposit appreciable amounts of mineral or collagen type X (Huang et al. 2009). 

 

Consistent with previous studies (Williamson et al. 2001; Williamson et al. 2003; 

Charlebois et al. 2004), our findings demonstrate that as bovine cartilage matures, 

mechanical properties and collagen content increase, GAG content remains stable, and 

cellularity declines. In human articular cartilage, Temple and colleagues showed no age-

related biochemical changes and a decrease in equilibrium modulus for only the 60+ age 

group, however, the youngest (21-39) age group was already skeletally mature (Temple 

et al. 2007). Studying younger donors, Kempson found increasing tensile properties of 

human articular cartilage until the third decade and suggested refinement of the 

collagenous network for 30 years (Kempson 1991). We also observed a marked change in 

the superficial collagen staining intensity in juvenile and adult bovine samples, consistent 

with previous studies of fetal to juvenile cartilage (Archer et al. 2003). In fully formed 

and specialized adult cartilage tissue, prevailing collagen orientation in this surface zone 

defines a “split-line” direction (Bullough and Goodfellow 1968; Clarke 1971) that is 

remarkably consistent amongst all human subjects (Below et al. 2002). In bovine joints, 

we observed similar split-line patterns in juvenile femoral condyles, trochlear grooves, 

and patellar cartilage surfaces. Notably, these patterns were entirely absent or poorly 

defined in fetal cartilage surfaces. This suggests that coincident with load-bearing use, 
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cartilage undergoes a rapid alteration in not just the amount of biochemical constituents, 

but also in the structure and functional assembly of these molecules. 

 

Along with changes in cartilage structure and function, chondrocytes extracted from 

bovine cartilage of differing ages showed differences in biosynthetic activities in a 3D 

pellet system. TGF-β3 increased DNA content at each age, and most in adult pellets, 

suggesting a switch from differentiated to proliferative activities. GAG and collagen 

deposition in fetal and juvenile bovine chondrocyte pellets was generally higher than 

adult chondrocyte pellets. Interestingly, fetal and juvenile chondrocyte pellets in 

chemically defined medium with TGF-β3 accumulated less GAG and collagen (fetal 

only) than those cultured without TGF-β3, a result that has not been previously reported. 

In contrast, TGF-β3 improved both GAG content and mechanical properties for 

immature chondrocytes in the context of 3D agarose hydrogels (Mauck et al. 2006). This 

may indicate a microenvironmental influence (such as cell-to-cell contact) in the 

interpretation of this soluble factor. 

 

Unlike chondrocytes, pellets formed from bovine MSCs of different ages were strongly 

age-dependent. TGF-β3 initiated robust chondrogenesis, consistent with the literature 

(Barry et al. 2001). Aged MSC pellets with TGF-β3 accumulated less GAG and collagen 

than immature MSCs. This decline in MSC potential has been observed in both murine 

(Kretlow et al. 2008) and male (but not female) human (Payne et al. 2010) MSCs in 

pellet format, although donors were skeletally matured. Another study has shown a small 

decline in matrix production from adult MSCs compared to fetal cells (Barbero et al. 
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2004). However, these reported deficiencies in aged human pellets were not as 

remarkable as observed in this study with bovine cells. 

 

Bovine MSC chondrogenic capacity in a 3D HA hydrogel environment was also 

evaluated. Chapter 3 demonstrates that these gels support both human and bovine MSC 

chondrogenesis (Chung and Burdick 2009). In this study, we used a 1% w/v HA 

formulation that maximizes matrix formation by juvenile bovine MSCs (see Chapter 4). 

Similar to pellets, bovine MSCs in this 3D context were highly age dependent, with fetal 

and juvenile MSCs producing robust samples with compressive properties reaching 

approximately 20% of native tissue values within 3 weeks. Conversely, adult MSCs 

produced little ECM, and only minor changes in mechanical properties. Tran-Khanh and 

coworkers, using bovine chondrocytes, reported a similar age-related decrease in 

biochemical and biomechanical properties in agarose hydrogels (Tran-Khanh et al. 2005). 

In contrast to these findings, Kopesky and coworkers found that adult equine MSCs in a 

self-assembling peptide hydrogel generated constructs with greater mechanical properties 

than either juvenile chondrocytes or MSCs, though only dynamic properties were 

reported (Kopesky et al. 2010). 

 

9.5. Conclusions 

This work represents a comprehensive investigation of aging in the context of bovine 

cartilage, 3D cell pellets, and in 3D hydrogels intended for cartilage tissue engineering. 

We demonstrated that age is an important modulator of cartilage properties and of the 

MSC and chondrocyte response to TGF-β3 in pellet culture. Most notably, bovine 
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chondrocytes decrease in matrix-forming capacity in pellet culture with advancing age, 

but these decreases are smaller than those seen in human chondrocytes (Adkisson et al. 

2001). Likewise, bovine MSCs show a sharp decrease with age in cartilage matrix-

forming capacity that is more severe than reported for human MSCs in this same format 

(Barbero et al. 2004). Overall, at each age, and under ideal conditions (absence of TGF 

for chondrocytes, presence of TGF for MSCs), bovine chondrocytes in pellet culture 

produce more GAG and collagen than MSCs, consistent with our previous findings 

(Mauck et al. 2006; Huang et al. 2010). Taken together, when considering an autologous 

cell-based tissue engineering strategy for cartilage repair, age must be an important 

consideration. Bovine cells are and remain a valuable tool for optimizing new material 

formulations, but care must be taken to ascertain the similarity in response of cells from 

this source in comparison to human cells.  

 

 

 

This previously published Chapter was included with kind permission from 

Springer Science + Business Media: Clinical Orthopaedics and Related Research, 

“Cartilage Matrix Formation by Bovine Mesenchymal Stem Cells in Three-

dimensional Culture Is Age-dependent”, PMID 21424832, March 2011, Isaac E. 

Erickson, Steven C. van Veen, Swarnali Sengupta, Sydney R. Kestle, Robert L. 

Mauck. 
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CHAPTER 10:   Summary and Future Directions 

 

10.1. Summary 

The function of articular cartilage is to distribute joint loads while providing a nearly 

frictionless surface for frequent articulations. The unique composition and structural 

organization of collagens and proteoglycans with this tissue lead to incredible mechanical 

properties that allow it to perform this function. Like many things found in nature, it has 

proven rather difficult to engineer a replacement tissue that can either resemble or 

function as well as native cartilage. This is discouraging for thousands of patients who 

would benefit from an improved clinical approach for cartilage injuries and disease. The 

core objective of this thesis was to optimize a tissue engineering system and demonstrate 

its potential for clinical translation. 

 

It has long been acknowledged that ‘materials matter’. In cartilage tissue engineering, a 

biomaterial serves as the physical environment, often called a scaffold, wherein cells 

choose to differentiate or remain unchanged, synthesize proteins or remain idle, move or 

sit still, recruit friends or stay silent, and even live or die. This list of cell decisions is 

clearly not exhaustive, but demonstrates the key importance of microenvironment on the 

potential of any material for tissue engineering. In Chapter 3, three fundamentally 

different hydrogels were considered for their potential to promote mesenchymal stem cell 

(MSC) differentiation and the subsequent functional maturation of engineered constructs. 

We demonstrated that the distinctive materials caused different responses by both 

chondrocytes and MSCs in long term culture. While chondrocytes performed better than 
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MSCs in agarose hydrogels, the opposite was found for methacrylated hyaluronic acid 

(MeHA) hydrogels that preferentially supported MSCs for the functional development of 

cartilage constructs. Analysis of matrix protein content and its correlation to functional 

properties revealed that hydrogel microenvironments affect the structural organization of 

synthesized matrix and the subsequent development of functional properties. 

 

The unique preference of MeHA hydrogels for MSCs, together with its convenient ultra-

violet light polymerization and natural, biocompatible composition made it a standout for 

additional study. The work in Chapter 3 used a 2% weight/volume ratio of the modified 

HA macromer that was established as the most promising formulation for porcine 

auricular chondrocytes (Chung et al. 2006). Using our understanding of the influence of 

microenvironments on MSC chondrogenesis, Chapter 4 was designed to determine the 

effect that the MeHA macromer density would have on MSC chondrogenesis and the 

functional development of engineered constructs. Indeed, it was found that a lower 

macromer density (1% w/v) doubled the mechanical properties of developing constructs 

from the 2% formulation. While higher macromer densities did promote chondrogenesis 

and actually resulted in more accumulated matrix per construct, histological evidence and 

analyses of diffusion characteristics indicated that these highly crosslinked networks were 

too restrictive of matrix distribution. The 1% w/v formulation of MeHA resulted in 

functional properties that matched our previous efforts with MSC-seeded agarose 

hydrogels. 
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While it was promising for MeHA to reach agarose levels of mechanical properties, 

neither gel system seeded with MSCs has been capable of fostering the development of 

constructs that approach chondrocyte or native tissue levels, a major milestone for the 

production of a clinically relevant engineered material. Towards this end, Chapter 5 

explored the effect of high MSC seeding density and dynamic culture (orbital shaking) as 

an approach to accelerate construct maturation by improving nutrient and growth factor 

diffusion to cells throughout the depth of the hydrogels. Increasing the MSC density from 

20 to 60 million per mL resulted in a concomitant increase of the equilibrium modulus 

(121 to 313 kPa). Interestingly, sulfated glycosaminoglycan (sGAG) content increased 

only slightly and collagen concentrations actually declined in high MSC density 1% 

MeHA constructs, suggesting a potential role for matrix remodeling in the advanced 

maturation of these engineered tissues. Adding upon the observed effect of MSC density, 

we next cultured MeHA constructs on an orbital shaker and observed unprecedented 

increases in mechanical properties that topped 1 MPa after 9 weeks of culture, more than 

doubling the results from identical constructs cultured in static conditions. With these 

findings, we have now accomplished the objective of reaching clinically relevant 

compressive properties. 

 

Another methodology commonly employed to promote MSC chondrogenesis and 

construct maturation in vitro is the application of dynamic compressive loading using a 

bioreactor. Physiologic loading is known to be critical in the development of articular 

cartilage and therefore should not be overlooked as a critical component of any cartilage 

tissue engineering system for proper conditioning of cells that will eventually be 
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implanted within a loading environment. In Chapter 6, high MSC density MeHA 

constructs that were subjected to daily dynamic loading for 9 weeks reached nearly twice 

the equilibrium modulus of unloaded controls. Constructs that were loaded for only the 

first 3 weeks also only attained half the modulus of the 9 week loading group, suggesting 

that initial loading events are not sufficient and that prolonged loading has a continual 

effect on construct development.  

 

Chapters 3-6 optimized a natural biomaterial, which combined with additional techniques 

accomplished the key objective of producing constructs with native mechanical 

properties. While promising, it remains unknown if these MeHA constructs will integrate 

and function within a cartilage defect. This was tested in Chapter 7 using an in vitro 

model of cartilage integration where cartilage explants are formed into rings, hydrogel 

constructs are cultured within the ring, and afterwards the force required to dislodge them 

is measured. Specifically, we tested whether constructs can be formed in situ or if they 

require in vitro pre-culture to improve integration and mechanical properties. The results 

from this study indicated that in situ polymerized constructs did have the capacity to 

integrate, but they did not develop compressive properties, while pre-cultured constructs 

integrated slightly better with significantly greater mechanical strength. Thinking 

clinically, this work points toward the necessity of generating more mature constructs 

before implantation to improve their functional potential in vivo. 

 

Chapter 8 was a coalescence of several factors previously found to be beneficial for 

functional cartilage repair: 1% w/v, high MSC density, dynamic culture, and pre-
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maturation before implantation. Using the push-out testing model, the durability of 

integrated constructs was assessed by testing the integration strength after the application 

of 2 hours of dynamic compression (1Hz; 10% strain), roughly a half marathon worth of 

activity. Integration strength was affected by this intense loading regime, but remained on 

par with the highest published reports of cartilage integration using a chondrocyte-based 

material. The functionality of the constructs was also assessed by testing the compressive 

properties of the repaired cartilage defects, which found that MeHA and cartilage 

repaired defects contributed equally to the composite mechanical properties. However, 

once removed from the defect, the compressive properties of MeHA constructs were still 

significantly lower than native cartilage. Regardless, this study reported extraordinary 

integration strength for MeHA repaired defects coupled with mechanical function equal 

to repair with mature cartilage. 

 

The last study presented in this thesis was an investigation of the effect that age has on 

MSC potential for in vitro matrix formation. The results clearly indicate that in both 

pellet and MeHA contexts, younger MSCs have a greater matrix forming potential. This 

has significant implications for this work and the work of many others who are similarly 

engaged in tissue engineering research. While young healthy cells can be advantageous in 

discovering methods and systems to be used for tissue engineering, age should be an 

important consideration when approaching pre-clinical investigations.  
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Figure 10-1:  Summary of progress in the development of compressive properties in MSC-
seeded MeHA hydrogels starting with 2% w/v formulation the macromer and MSC density 
were optimized and continuous loading (CL) and dynamic culture were utilized.  Each 
successive step resulted in a doubling of the equilibrium modulus. 

 

Overall, the work presented in this thesis began with some MSCs, a handful of hydrogels, 

and the objective of creating a clinically relevant engineered tissue. Figure 10-1 shows 

the progression that began with an equilibrium modulus of approximately 50 kPa, and 

ended with a 20 fold increase to 1 MPa. Along the way, this work also contributed to 

what we know about the influence of hydrogel microenvironments, density of crosslinked 

networks, increasing MSC density, dynamic culture systems, and continuous dynamic 

loading on the in vitro maturation of engineered MSC based constructs. Towards 

understanding the clinical potential of MSC-MeHA constructs, the in vitro integration 

and functionality were assessed, which demonstrated a high level of feasibility. 
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10.2. Limitations and Future Directions 

10.2.1. Graft Hypertrophy 

Chapters 5 and 6 of this thesis reported on MSC-seeded MeHA constructs with 

mechanical properties that match native tissue and therefore may be suitable for 

implantation, but evidence suggests that while implanted chondrocyte-based constructs 

maintain their phenotype, MSC-based constructs become hypertrophic in vivo (Pelttari et 

al. 2006; Bian et al. 2011). Hypertrophic changes in the MSC-MeHA constructs of this 

thesis were not examined, but this potential must be explored for this system to progress 

towards clinical realization. Future in vitro studies could investigate the gene expression 

of collagen type X or assay alkaline phosphotase found in culture medium. Ectopic in 

vivo models could also be utilized, but perhaps the most relevant context would be within 

an orthotopic large animal model. Regardless, if hypertrophy is found within MSC-

MeHA constructs, one method to mitigate this negative effect would be to deliver 

chemical regulators via microspheres such as parathyroid hormone-related protein which 

has shown some efficacy in reducing the hypertrophic response of MSC constructs within 

an ectopic mouse model (Bian et al. 2011). Bian et al have also demonstrated that co-

culture of articular chondrocytes with MSCs helps significantly reduce hypertrophy (Bian 

et al. 2011). While it was determined that this hypertrophy reducing effect was proximity 

dependent, it remains feasible that neighboring chondrocytes within an in vivo or in vitro 

defect could also help maintain the chondrogenic phenotype of MSCs within a repair 

construct. Lastly, more recent work has shown that dynamic compression may also serve 

to maintain MSC phenotype (unpublished finding), which strengthens the rationale for a 
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large animal study to determine if any additional considerations will need to be taken in 

the engineering of MSC-based cartilage to prevent graft hypertrophy.  

 

10.2.2. Dynamic Culture  

While the use of an orbital shaker dramatically improved construct mechanical properties 

and the integration strength of repair, it could be argued that this method of nutrient and 

growth factor transport does not resemble physiologic processes. Soluble factors reach 

cells within articular cartilage through synovial fluid and the blood supply of the 

subchondral bone. The diffusion of soluble factors is enhanced when cartilage undergoes 

physical deformation through normal joint loading (Mauck et al. 2003; Albro et al. 

2008). While these processes clearly differ from orbital shaking, it therefore remains 

unclear whether the orbital shaking of in vitro constructs offers an aphysiologic 

advantage or if this process actually more closely resembles the levels of transport found 

in vivo. Future studies could easily reduce the level of dynamic culture by lowering the 

rpm of the orbital shaker or by applying an intermittent regimen (e.g. 5 min every hour) 

to establish a lower threshold where positive effects are still observed without what may 

seem to be supraphysiologic diffusion. 

 

10.2.3. Exogenous TGF-β3 Supplementation 

Supplementation of chondrogenic medium with cytokines from the transforming growth 

factor (TGF) superfamily is a key requirement for MSCs to be able to differentiate and 

form a cartilage like matrix in vitro (Johnstone et al. 1998) and the TGF-β3 isoform was 

utilized throughout this thesis at a concentration of 10 ng per mL. This concentration has 
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been optimized to maximize the chondrogenesis of MSCs in vitro, but may exceed 

physiologic levels where resident cells are less dependent on this cytokine as they have 

already undergone chondrogenesis. While expensive, this high exogenous 

supplementation is rationalized, when considering its effectiveness in the development of 

in vitro grown constructs for implantation. However, in the defect model of repair 

presented in Chapters 7 and 8, it may be difficult to compare results to what may occur in 

vivo where levels of TGF may be significantly reduced. Furthermore, it was shown here 

and by others that chondrocytes within explant cartilage respond to TGF by significantly 

increasing biosynthesis which results in growth of mechanical properties. This anabolic 

response within the defect cartilage likely played a role in the observed integration 

strength, but the extent of this role could be elucidated in future experiments by utilizing 

devitalized cartilage as an additional control along with non TGF-supplemented 

constructs. If the in vitro integration response is found to be dependent on TGF-induced 

chondrocytes within the adjacent cartilage, future work could consider a physiologically 

relevant dosage of TGF when seeking to understand the applicability of in vitro repair. 

Alternatively, TGF-filled microspheres (Bian et al. 2011) could be administered within 

the interface upon implantation of a engineered graft to enlist the native chondrocyte 

response for improved healing.  

  

10.2.4. MSC Age and Species of Origin 

As discussed in Chapter 9, the age and species of progenitor cells are an important 

consideration when interpreting the results of tissue engineering studies. The age of 

MSCs in many species has been shown to affect their matrix forming capacity, therefore, 
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a limitation to this work was the use of juvenile bovine MSCs. Future studies with adult 

human MSCs will be important to verify the efficacy of this MeHA system in both 

forming robust constructs and integrating within a cartilage defect. If it proves difficult to 

show efficacy with aged cells, it may be warranted to investigate the potency of other 

aged sources of human progenitor cells (e.g. adipose-derived) or perhaps even to consider 

the implementation of induced pluripotent stem cells which have garnered recent and 

significant interest (Takahashi et al. 2007; Yu et al. 2007). 

 

10.2.5. Long-Term Durability of Repair 

While the work in Chapter 8 offered positive insights into the ability of MeHA repaired 

defects to withstand loading without failure, the single application regimen was both 

strenuous and abrupt. A future study that applied daily cyclic compressive loading, but at 

a lower amplitude, might be more realistic considering the potential immobilization 

and/or reduction in strenuous activities that would likely follow a procedure where an 

engineered graft would be implanted. Variables in this study may include the duration of 

immobilization (time after implantation without loading) and the duration of long-term 

loading. A properly controlled study of this nature would establish whether continuous 

loading is detrimental to integration, if dynamic loading enhances integration, and what 

post-operative activity regimen might be most suitable for future in vivo studies. 

 

10.2.6. Estimation of Functional Repair 

Chapter 8 showed similar function between MeHA and cartilage repaired defect when 

considering the mechanical properties of the whole repaired construct, but testing in 
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unconfined compression may have introduced a limitation. The natural loading 

constraints could be better reproduced and the effects of construct repair could have been 

better isolated using confined compression testing. As an alternative method to 

compression testing, a pressure sensing analysis system (e.g. tekscan) could be employed 

to visualize the distribution of contact stresses on the surface of a repaired defect. 

 

Figure 10-2:  (A) Surgical team executing cadaver simulation in a minipig stifle joint. (B) 
Close-up of cartilage defects in trochlear groove. (C) Experimental conditions to be tested 
in vivo.  (DE=direct encapsulation of MSCs in situ; PM=pre-maturation in vitro; *Positions 
within each joint and left/right sides will be randomized)   

 

10.2.7. Large Animal Study 

Lastly, the need for a large animal study of cartilage repair is the most critical future 

direction. It is difficult for in vitro studies to account for many aspects of the complex 

physiology and biomechanics of the joint. Towards this end, a large animal study has 

been designed to assess the efficacy of MSC-seeded MeHA constructs in repairing 
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cartilage defects within a pig model (Figure 10-2). Several aspects of this thesis will be 

utilized in this future work including 1% w/v MeHA, high MSC density, pre-culture of 

constructs before implantation, dynamic culture conditions, µCT imaging, and integration 

analysis. Biomechanical, biochemical, µCT, and histological findings will offer a 

comprehensive analysis of the clinical potential of the MSC-MeHA system optimized in 

this thesis. 

 

10.3. Conclusions 

While rife with promise, the field of tissue engineering has seen little success over the 

last two decades. One common difficulty within tissue engineering is the difficulty in 

recapitulating what nature has already built so perfectly. While this task is likely 

impossible, we make determinations about what aspects may be most critical for an 

engineered tissue to perform its necessary function. In cartilage, filling a defect is simple, 

but replacement cartilage capable of seamless integration and long-term function is the 

gold standard. With this objective in mind, we have optimized an elegant photo-

crosslinked hydrogel system that, when seeded with MSCs, will generate robust tissue 

with striking similarity to native cartilage. This engineered MSC-based tissue has 

demonstrated its potential for functional cartilage repair within an in vitro cartilage defect 

model and will be analyzed in a pre-clinical model to ultimately determine its clinical 

potential. The advances made using this MeHA hydrogel and the concepts and ideas that 

were evaluated in the various experiments of this thesis represent a significant step 

towards future success in tissue engineering. 
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