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Abstract
Myosin-Is are the single-headed, membrane-associated members of the myosin superfamily that are found in
many eukaryotic cells. These actin-based motors have been shown to play important roles in powering
membrane dynamics, defining cytoskeletal structure, and regulating mechanical signal-transduction.
However, many molecular details of myosin-I function are not known. My goal has been to determine the
mechanical and kinetic properties of a myosin-I isoform (myo1b) as it undergoes its force-generating power
stroke under physiological tension and when external mechanical loads are applied to it. We therefore
characterized the force dependence of myo1b splice isoforms using an optical trap and a novel isometric force
clamp. Myo1b is alternatively spliced within the regulatory domain of the molecule, yielding motors that have
“lever-arms” with different lengths. We found the actin-attachment kinetics of all myo1b splice isoforms to be
highly force sensitive, with forces of < 2 pN decreasing the rate of actin detachment > 75 fold. However, we
found that the magnitude of the tension sensitivities depend on the splice isoform. Therefore, we propose that
the tension sensing properties of myo1b are transcriptionally regulated. Finally, we found the tension
sensitivity of myo1b to be regulated by calcium, such that micromolar calcium concentrations effectively
uncouple the myosin active site from lever arm rotation. Taken together, this work supports a model in which
myosin-Is play roles in generating and sustaining membrane tension, and that the mechanochemical
properties of this protein are regulated by alternative splicing and calcium.
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ABSTRACT 

 

SINGLE MOLECULE STUDIES OF MYOSIN-IB 

 

Joseph M. Laakso 

 

Supervisor:  Dr. E. Michael Ostap 

 

Myosin-Is are the single-headed, membrane-associated members of the 

myosin superfamily that are found in many eukaryotic cells.  These actin-based 

motors have been shown to play important roles in powering membrane dynamics, 

defining cytoskeletal structure, and regulating mechanical signal-transduction.  

However, many molecular details of myosin-I function are not known.  My goal has 

been to determine the mechanical and kinetic properties of a myosin-I isoform 

(myo1b) as it undergoes its force-generating power stroke under physiological 

tension and when external mechanical loads are applied to it.  We therefore 

characterized the force dependence of myo1b splice isoforms using an optical trap 

and a novel isometric force clamp.  Myo1b is alternatively spliced within the 

regulatory domain of the molecule, yielding motors that have “lever-arms” with 

different lengths.  We found the actin-attachment kinetics of all myo1b splice 
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isoforms to be highly force sensitive, with forces of < 2 pN decreasing the rate of 

actin detachment > 75 fold.  However, we found that the magnitude of the tension 

sensitivities depend on the splice isoform.  Therefore, we propose that the tension 

sensing properties of myo1b are transcriptionally regulated.  Finally, we found the 

tension sensitivity of myo1b to be regulated by calcium, such that micromolar 

calcium concentrations effectively uncouple the myosin active site from lever arm 

rotation.  Taken together, this work supports a model in which myosin-Is play roles 

in generating and sustaining membrane tension, and that the mechanochemical 

properties of this protein are regulated by alternative splicing and calcium. 
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1.  Introduction  

1.1  Objectives of thesis and experimental approach 

Myosins encompass a functionally and biochemically diverse superfamily of 

proteins comprised of at least 24 different classes (Foth, Goedecke & Soldati 2006, 

Richards, Cavalier-Smith 2005), including the extensively studied muscle myosin, 

otherwise known as conventional myosin II.  While certain elements of myosin 

structure and function are common to all members of the superfamily, such as ATP 

hydrolysis and actin binding, many of the cellular functions and regulatory 

mechanisms of members of the myosin superfamily remain to be studied in detail.  

Essential to our understanding of myosin function is in depth knowledge of the 

mechanical and biochemical differences between individual myosins.   

Single molecule techniques are a set of increasingly useful tools to probe the 

mechanics of motor proteins.  These techniques can be employed to make 

measurements at the nanometer (nm) distance and pico-Newton (pN) force scales 

necessary to directly observe molecular motor forces and displacements (Knight, 

Mashanov & Molloy 2005).  The development of infrared-laser based optical 

trapping systems has lead to the ability to trap and manipulate particles which, 

coupled to various “handles”, serve as reporters for the motions of and forces 

produced by single molecules (Ashkin 1997). 
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The experiments described in this thesis will use single molecule techniques 

to examine the biochemical and biophysical properties of a myosin molecular 

motor, myosin-Ib (myo1b).  Our experimental system gives us a unique opportunity 

to probe myo1b with various forces and chemical tests.  Regulation by alternative 

splicing of myo1b is also tested by performing similar experiments with the 

different naturally occurring splice isoforms of myo1b.  Solution biochemistry data 

is used to confirm measurements of myosin kinetics at the single molecule level, as 

well as draw broader conclusions about the functional properties of myo1b.  These 

data, taken together, not only identify and characterize the sensitive regulatory 

properties of unconventional myosins, but also add to our general understanding of 

motor proteins and how they respond to forces.    

 

1.2  Specific aims  

The first aim of this thesis is to characterize the response of myo1b to 

external force resisting the power stroke.  Structural and biochemical evidence 

suggest that myosin-I produces force and displacement along the actin filament via a 

two-step mechanism that is correlated with the release of ATP hydrolysis products.  

We and others have proposed that one of these substeps is a force sensitive 

transition that may become rate limiting under load.  Functionally, this will have a 

direct effect on the lifetime of acto-myo1b attachments.  Using a feedback-enhanced 

optical trapping system developed by Takagi, Goldman and Shuman(Takagi et al. 
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2006a), we can measure the forces and displacements produced by single myosin 

molecules during an acto-myosin interaction.   By ensemble averaging individual 

interactions, we can confirm the two-step mechanism for myo1b and correlate the 

steps with release of ATP hydrolysis products.  We can then measure the lifetimes 

of acto-myo1b interactions under a variety of resistive loads via force feedback to 

determine the sensitivity of substeps to external load.  This work will probe the 

mechanochemistry of myo1b in great detail and add to our understanding of how 

motor proteins can respond to changes in force.   

The second specific aim is to examine the regulation of myo1b mechanical 

properties.  Myo1b is alternatively spliced to generate three naturally occurring 

proteins having regulatory domains consisting of 4, 5, or 6 IQ motifs that bind 

calmodulin (CaM) in a calcium sensitive manner.  We predict that these splice 

isoforms will have step sizes that vary linearly with the number of IQ motifs.  We 

can then determine if increasing lever arm length affects the force sensitivity of 

myo1b.  Specifically, one can predict that increasing lever arm length will increase 

force sensitivity by changing the distance over which the force must act to exit the 

force sensitive transition state.   We can further probe regulation of force sensitivity 

by conducting force dependence experiments in the presence of free calcium.  The 

biochemical properties of myo1b are known to be regulated by calcium, however if 

calcium binding to light chains along the regulatory domain causes a change in the 

crossbridge compliance, force sensitivity of myo1b could be abolished.  This would 

suggest that tension sensing properties of myo1b could be regulated by free cellular 
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calcium concentration.  By repeating the step size and force dependence 

measurements for myo1b splice isoforms, as well as testing the effect of free 

calcium on force dependence, we can gain deeper insight into both the structural 

basis for tuning of force sensitivity, as well as how that force sensitivity is regulated 

by intracellular signaling molecules.  Answers from these experiments will open 

new questions into the cellular functions of myo1b.   

The third specific aim is to measure the stiffness of the acto-myo1b 

crossbridge.   In our experiments, we can oscillate the stage during acto-myo1b 

interactions by known amounts using an additional feedback loop connected to a 

piezo stage controller.  By simultaneously measuring the force produced by the 

myosin as it resists stretching due to the stage oscillation, we can measure the 

myo1b force-extension properties.  These measurements will then be made for the 

myo1b splice isoforms from aim 2, which will allow us to determine if the myo1b 

lever arm behaves as a rigid rod with uniform stiffness, or rather has compliant 

elements of varying stiffness.  Making these measurements in the presence of free 

calcium will also allow us to determine if the effect of calcium on force sensitivity 

is due to increasing compliance of the myo1b lever arm.   

Collectively, achieving these specific aims will address the mechanical 

properties of myo1b and how they are regulated.  The characterization of myo1b as 

a possible tension sensor, as well as how that tension sensitivity is regulated, will 

change how we view potential myosin-I functions inside of cells, and probe how 

biochemical properties of motors are altered by force.   
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1.3  The cytoskeleton 

The eukaryotic cytoskeleton collectively refers to a network of protein 

filaments and associated proteins that serve a variety of cellular functions including 

structural support, intracellular transport, motility and division.  Central to these 

functions are three sets of proteins that can dynamically polymerize to form 

filaments.  Through polymerization, cytoskeletal proteins can produce force and 

power motility, form tracks which can provide a framework for moving cellular 

cargoes, develop structures and organelles such as the thin filament in muscle and 

the eukaryotic centriole, and compartmentalize the cell through molecular crowding.  

Each type of filament has its own unique regulatory properties and associated 

proteins.   

Actin filaments (f-actin) are formed by the addition of globular monomers 

(g-actin) with Mg·ATP, into a helical filament (STRAUB, FEUER 1950).  When 

incorporated into a filament, an actin monomer can hydrolyze its bound ATP, 

resulting in an ADP-actin form that is less stable and more likely to depolymerize.  

G-actin monomers are always incorporated in a specific orientation, resulting in a 

polarized filament with two ends (termed barbed and pointed) that differ in their 

relative rates of monomer incorporation (Wegner 1976).  The polarity of the actin 

filament results in a g-actin concentration dependent phenomenon called 

“treadmilling” in which ATP-actin monomers are added to the barbed end, while 
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ADP-actin dissociates from the pointed end.  In the cell however, actin filaments 

may be stabilized or destabilized by a variety of regulatory factors (reviewed in 

(Pantaloni, Le Clainche & Carlier 2001)).   

Microtubules (MTs) are composed of GTP-bound alpha and beta tubulin 

dimers with each alpha tubulin connected to the beta tubulin of the following dimer 

to form a polarized protofilament.  Protofilaments are arranged next to each other in 

the same orientation to form an imperfect helix which, like actin, has a polarity with 

a specified + and – end.  Another similarity to actin is that the hydrolysis of bound 

nucleotide destabilizes the filament and prevents binding of monomers to the end of 

the filament.  Thus, microtubules can undergo a treadmilling process similar to actin 

(Margolis, Wilson 1978), yet again we find that the dynamics of microtubule 

assembly and disassembly are highly regulated inside the cell.  MTs are organized 

with minus ends terminating in a microtubule organizing center (Frankel 1976) 

(MTOC) which serves to stabilize the minus ends and promote MT growth radially 

from the MTOC.  Microtubule dynamics are summarized by a process called 

dynamic instability (Mitchison, Kirschner 1984), in which rapidly growing MTs are 

protected by a “GTP cap” where the kinetics of GTP-bound monomer addition are 

faster than the rate of GTP hydrolysis.  If the free concentration of monomer is 

reduced, or the kinetics of monomer addition are otherwise slowed, then the GTP 

cap is lost and GDP-tubulin rapidly depolymerizes in a process called “catastrophe”.  

By reintroducing a GTP cap through addition of monomers, steady growth of MTs  
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can be rescued.  MTs have their own repertoire of binding partners with diverse 

functions termed microtubule associated proteins, or MAPs.   

Intermediate filaments (IFs) are a diverse superfamily of proteins including 

at least 65 different genes sorted into 5 different classes. (Helfand, Chang & 

Goldman 2004).  IFs are distinct from other cytoskeletal filaments in a number of 

ways, for instance they form filaments that are not polarized, they do not bind or 

hydrolyze nucleotides, and the expression of IFs is cell and tissue specific, resulting 

in unique IF profiles for certain cell types.  Although IFs do not serve as tracks for 

molecular motors, emerging evidence suggests that IF localization and motility are 

mediated by molecular motors such as dynein (Helfand et al. 2002), and kinesin 

(Gyoeva, Gelfand 1991).   

These three types of proteins comprise the main structural elements of the 

eukaryotic cytoskeleton.  Through their dynamic assembly, they can influence a 

wide variety of processes and functions as well as produce force and higher-order 

structure.  Fundamental to the function of cytoskeletal filaments are their 

interactions with molecular motors.  In addition to proper localization of IFs, motor 

proteins can link the cytoskeleton to other organelles such as the plasma membrane, 

or produce force and power directional movement along filaments.   
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1.4  Cytoskeletal motors 

Motor proteins may be broadly defined as any protein that is able to utilize 

chemical energy, usually in the form of ATP, to produce mechanical work.  In the 

context of the cytoskeleton, three main classes of motor proteins hydrolyze ATP to 

produce force and directional displacement along microtubules or F-actin.  Kinesins 

and dyneins utilize microtubule based tracks, while myosins use f-actin.  These 

three protein families commonly share three functional domains summarized in 

figure 1.2.  A motor domain, which is responsible for binding to the cytoskeletal 

track and also catalyze the hydrolysis of ATP.  A globular tail domain, which can 

bind cargoes or serve regulatory functions.  And a “neck,” also known as the light 

chain binding domain (LCBD), connecting the motor to the tail, which may be 

involved in the binding of accessory proteins or dimerization of motors.  (Tyreman, 

Molloy 2003).   

There are well-studied examples from each of these classes of motor 

proteins that could highlight the diversity in function and regulation of motor 

proteins that can be studied via single molecule techniques.  This thesis will 

specifically deal with the myosin superfamily of proteins, so the remaining 

introduction will place an emphasis on the structural and mechanical studies of 

myosin leading up to the experiments presented herein.   
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1.5  The myosin superfamily of molecular motors  

The myosin superfamily of molecular motors encompasses at least 24 

classes of proteins sharing a common highly conserved amino-terminal motor 

domain which binds actin and hydrolyzes ATP to produce force and do work (Foth, 

Goedecke & Soldati 2006).  The carboxy-terminus of the protein is composed of a 

tail, which is highly divergent among the different classes of myosin and may 

contain functional motifs such as Src-homology 3 (SH3), and pleckstrin homology 

(PH) domains.  Additionally, the tail may form a coiled-coil to dimerize myosin 

heavy chains as is the case for myosin V (Cheney et al. 1993).  Connecting the head 
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and tail is the neck, otherwise known as the regulatory domain or the light chain 

binding domain, which serves as a “lever arm” to amplify small conformational 

changes in the motor domain (see 1.6 in this thesis).  Along the neck are IQ motifs 

(consensus sequence IQXXXRGXXXR) which bind calmodulin (CaM) or 

calmodulin-like proteins (Cheney, Mooseker 1992).  

 

1.6 Myosins in the context of the actin cytoskeleton 

 The actin cytoskeleton, coupled to the action of myosin motor proteins, 

provides the framework and driving force for a number of fundamental cell 

biological processes.  Electron microscopy of cortical actin networks inside the cell 

shows a dense meshwork of f-actin (figure 1.3) that might be expected to pose a 

challenge for the long distance transport of cargoes.  The creation of this meshwork 

is due to the action of proteins that promote nucleation of a new filament on the side 

of a preexisting actin filament according to what is known as the dendritic 

nucleation model (Mullins, Heuser & Pollard 1998, Svitkina, Borisy 1999, Pollard, 

Borisy 2003).  Briefly, generation of a new branch point in the filament network is 

accomplished through the activation of a member of the  
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Wiskott-Aldrich syndrome family of proteins (WASP family) such as N-WASP, 

that simultaneously binds to a complex of two proteins (the Arp2/3 complex) that 

are closely related to actin, giving rise to the name actin related protein (Arp).  The 

close structural similarity of the Arp2/3 proteins to actin monomers helps them 

serve as a nucleation site for a new actin filament, which appears as a branch point 

on the old filament.   
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The branched filaments consistently extend at an angle from the preexisting 

filament at a 70° angle, with the polarization of the new filament in the same 

orientation as the preexisting filament.  Therefore the growth of new filaments in the 

context of filopodia or lamellopodia at the leading edge of the cell could provide a 

force to drive processes such as cell motility (Lindberg, Hoglund & Karlsson 1981), 

or vesiculation of endosomes, reviewed in (Soldati 2003).  Perhaps the best 

described example of force production by an actin network through the 

polymerization of new filaments is the motility of the pathogen Listeria 

monocytogenes (Tilney, Portnoy 1989).  Listeria can propel itself through the 

cytoplasm of its host cell essentially by “surfing” on a wave of actin polymerization 

due to proteins on one end of the pathogen that activate actin polymerization factors 

like those which generate the branched actin filaments described above.  This 

activity occurs independently of the action of motor proteins, showing that actin 

itself can produce a force sufficient to drive the motion of cytoplasmic 

compartments or vesicles.   

Although actin can do work independently of motor proteins, coupling actin 

polymerization to the action of myosins can expand the range of biological 

functions attributable to the cytoskeleton in eukaryotic organisms.  The extension of 

lamellipodia into phagocytic cups for the engulfment of an extracellular object 

involves the coordinated action of myosins and the actin cytoskeleton {{229 

Swanson,J.A. 1999; 230 Cox,D. 2002}}.  In a similar fasion, the actin cytoskeleton 

and associated myosin motors have been implicated in macropinocytic events in 
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acanthamoeba (Ostap et al. 2003)(Swanson et al. 1999, Cox et al. 2002).  Organelle 

transport by myosins is also dependent on having a dynamic actin cytoskeleton that 

can polymerize into filaments and turn over monomers (Semenova et al. 2008). 

Thus, the interactions between the actin cytoskeleton and myosin motors 

provide a coordinated mechanism through which a cell can support a variety of 

functions not limited to long distance transport of organelles or vesicles.  While the 

breadth of this field is beyond the scope of this thesis, it is important to consider the 

range of potential functions for a myosin, and how those functions are regulated. 

Functions such as tethering of an organelle in the cortical actin network require that 

myosins remain fixed to an actin filament for a long period of time.  Long-distance 

transport of organelles, on the other hand, requires that myosin motors be able to 

navigate the dense network of filaments in the cytoplasm.  Furthermore, the 

regulation of myosin force production to prevent improper timing of organelle 

movements enables the motor to effectively function in the cell.   

There are similarities in myosin structure and biochemistry common to 

members of the superfamily that can provide a background against which we can 

compare the details of the work presented in this thesis.  Perhaps the earliest and 

most comprehensively studied example of a myosin-actin system is provided by 

myosin-II, otherwise known as conventional myosin, in the context of skeletal 

muscle.   
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1.7  Myosin II  

1.7.1  Myosin II in skeletal muscle 

Myosin II is best known as the force-generating contractile protein in 

muscle.  Skeletal muscle (figure 1.4) is an organ system composed of a series of 

long, cylindrical, multinucleated cells called fibers, which are arranged into bundles.  

Within each fiber are the contractile units of muscle, myofibrils.  Myofibrils consist 

of repeating units connected in series called sarcomeres. The sarcomeres contain the 

principle force-generating structure of muscle consisting of two types of filaments, 

the thick and thin filaments.  The thick filament was isolated and identified by A. 

Szent-Gyorgi and found to be Myosin II (Szent-Gyorgyi 1941, Szent-Gyorgyi, 

Banga 1941).  The thin filament was characterized by F. B. Straub and named actin 

for its ability to activate the myosin in the thick filament. 

The thick and thin filaments are oriented in such a way that the heads of the 

myosin in the thick filament exist in a bipolar arrangement and free to interact with 

the actin in the thin filament (HUXLEY 1963).  This orientation allows myosins to 

power sliding of the thin filament relative to the thick filament from both ends of the 

sarcomere, thus contracting the Z-disks on either side of the myofilaments towards 

the center of the sarcomere.  The degree of overlap between the filaments would 

therefore be expected to change during muscle stimulation, which turns out to be the 

case (HUXLEY, NIEDERGERKE 1954) (PAGE, HUXLEY 1963).  This model for 

muscle contraction, based on the interaction of myosin and actin in thick and thin 
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filaments is called the “sliding filament theory” of muscle contraction, proposed by 

A.F. Huxley (HUXLEY 1957). 
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1.7.2  Domain architecture of Myosin-II 

Myosin II is a hexameric protein of total molecular weight (MW) ~500 kDa 

consisting of two dimerized heavy chains of MW ~200 kDa with associated light 

chains of MW ~19 kDa and ~25 kDa.  Limited proteolytic digestion of myosin II 

produces two fragments which are distinguished by high percentage coiled-coil 

structure (light meromyosin, LMM) versus the ability to bind actin and hydrolyze 

ATP (heavy meromyosin, HMM) (GERGELY 1953)(MIHALYI, SZENT-

GYORGYI 1953, SZENT-GYORGYI 1953).  Work by Susan Lowey et al. showed 

that HMM could be further digested to produce HMM-subfragment 1, which 

contained single monomer heads and associated light chains, and HMM-

subfragment 2, which contained part of the coiled-coil rod (Lowey et al. 1969).  

This provided evidence that myosin was a dimer of heavy chains joined through 

association of their coiled-coil tails.  The insoluble nature of the coiled-coil region 

of LMM suggested early on that it was the component responsible for thick filament 

formation in muscle.   

Isolation and identification of the light chains of myosin II was 

accomplished by various chemical treatments, including urea, guanidine-HCl, or 

alkaline pH followed by gel electrophoresis separation (Gershman, Stracher & 

Dreizen 1969) (Frederiksen, Holtzer 1968) to generate three species of light chain 

with different molecular weights, one of which was ~19 kDa, and two ~25 kDa.  

The 25 kDa light chains were determined  
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to be required for catalytic function of the myosin ATPase (Dreizen et al. 1967) and 

are therefore called the essential light chains (ELC).  The regulatory light chain 

(RLC), while nonessential for overall function of the protein, is regulated via 

phosphorylation by myosin light chain kinase (MLCK), which increases the actin-

activated ATPase of the myosin (Small, Sobieszek 1977).  Myosin-II light chains 

are structurally related to the protein calmodulin, which binds to the neck region of 

other myosin superfamily proteins.   

This early work on myosin II structure identified the three important 

domains that are now known to be common to all cytoskeletal motor proteins.  The 

head in subfragment 1 binds actin and hydrolyzes ATP, while the long coiled-coil 

tail is responsible for dimerization and higher-order organization of the protein.  
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Joining the head and tail is the neck region, otherwise known as the regulatory 

domain, which has associated light chains responsible for both overall function and 

proper regulation of myosin activity.    

 

1.7.3  High-resolution structure of the myosin II motor domain 

The motor domain represents the most highly conserved feature of all 

members of the myosin superfamily, and the general structural features of the 

myosin II head are likely similar among all myosins with few exceptions.  The first 

high-resolution structure of myosin II was obtained in 1993 (Rayment et al. 1993b) 

by methylating lysine residues of subfragment 1 to generate a crystallizable 

construct with the associated light chains (figure 1.6).  Three main fragments 

originally identified by limited proteolytic digestion of the S1, termed the 50 kDa, 

25 kDa, and 20 kDa regions, dominate the overall structure with the 50 kDa region 

forming the actin binding site and the 20 kDa region extending away from the motor 

as an extended alpha-helix.   
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At the intersection of these domains is a 7-stranded beta-sheet with the 

nucleotide binding pocket located at the end of the central beta strand.  The three 

main elements of the binding pocket consist of three loops; switch I, switch II, and 

the P-loop.  These loops interact with the magnesium ion, catalytic water, and 

nucleotide and can transmit information about the nucleotide hydrolysis state in the 

pocket to the rest of the molecule.  These conserved elements make myosins a 

member of a much larger family of proteins called P-loop NTPases, which includes 

kinesin. 

The 50 kDa region is separated by a cleft that spans the length of the entire 

domain and connects the nucleotide binding pocket with the actin binding site.  The 

actin binding site is composed of residues from both the upper and lower domains, 
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and the relative motions of the two domains have consequences for the actin affinity 

of myosin.  Importantly, this cleft was recognized early on as a means of 

communication between the actin-myosin interface and nucleotide binding pocket 

(Rayment et al. 1993a).  When the myosin is bound to an actin filament the cleft is 

closed to allow proper formation of the actin-binding interface.  The cleft must be 

open, however, to allow space for the gamma-phosphate of ATP in the nucleotide 

binding pocket.  Such communication would be necessary to ensure proper coupling 

of the biochemical cycle of myosin to force production.   (Small, Sobieszek 1977) 

 

1.7.4  Biochemical cycle of myosin 

Early solution kinetics studies of the ATP hydrolysis activity of myosin 

established that (1) binding of ATP to myosin causes dissociation of the actomyosin 

complex and (2) that under steady-state conditions, actin increases the overall rate 

of ATP hydrolysis by a single myosin head (Eisenberg, Zobel & Moos 1968).  This 

lead to a proposal for a possible scheme for muscle contraction based on cyclic 

binding and hydrolysis of ATP, actin, and myosin.  A series of papers following this 

work by EW Taylor and RW Lymn elucidated the biochemical mechanism of this 

cycle using transient kinetic techniques (Lymn, Taylor 1971, Lymn, Taylor 1970, 

Taylor, Lymn & Moll 1970). 

In order to measure the rate of hydrolysis of ATP, Lymn and Taylor 

developed the chemical quench-flow apparatus.  Briefly, by modifying a 

conventional stopped-flow experiment, they could mix samples containing substrate 
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and product and acid-quench the reaction after a set time by varying flow rate or 

tubing length.  Phosphate liberation could then be measured by the amount of 

radioactive phosphate (from labeled ATP) in solution.   From this analysis, they 

determined that the initial rate of phosphate release of 50-75 s-1, termed the 

“phosphate burst”, corresponded to the steady-state rate of hydrolysis of ATP 

(Lymn, Taylor 1971, Lymn, Taylor 1970), but was slower than the rate of 

dissociation of actomyosin by ATP ( > 250 s-1) as measured by dissolution of 

solution turbidity.  Rapid gel separation of myosin and radiolabeled hydrolysis 

products in the absence of actin showed that the rates of ADP and phosphate release 

were both slow and likely rate limiting under steady-state conditions (Taylor, Lymn 

& Moll 1970).  Repeating the gel separation technique in the presence of actin 

however, showed that the hydrolysis products dissociate from myosin faster by at 

least a factor of 10 in the presence of actin (Lymn, Taylor 1971). 

Taken together, the work by Lymn and Taylor show that hydrolysis of ATP 

likely occurs after dissociation of myosin from actin, and the rate of product release 

is sped up greatly by binding of actin to myosin.  This provided detailed 

biochemical clues to the actomyosin ATPase cycle as it relates to muscle 

contraction, and the Lymn and Taylor model as summarized in figure 1.7  provides 

quantitative biochemical counterparts to the main aspects of the Huxley sliding 

filament theory.  Future work would expand the biochemical cycle and further 

elucidate structural and strong/weak binding states associated with specific 

biochemical states (figure 1.11).   
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This cycle is a common feature among all members of the myosin 

superfamily although the individual rate constants may differ (De La Cruz, Ostap 

2004).  One of the consequences of alterations in particular rate constants in the 
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actomyosin ATPase cycle is to change the fraction of time the myosin spends 

attached to the actin filament, otherwise known as the duty ratio.  By modifying the 

duty ratio, a myosin motor can be kinetically tuned to perform different functions 

inside a cell, highlighting a biochemical method of functional diversity in the 

myosin superfamily.  A theme of this thesis is how force can affect this biochemical 

cycle in predictable ways, such as modifying the duty ratio, and what these effects 

might be on the function of an unconventional myosin.   

 

1.7.5 The swinging lever arm model 

In order to couple the biochemical cycle of myosin to the relative movement 

of thick and thin filaments in muscle, or the movement of intracellular cargoes by 

unconventional myosins, it is necessary to determine how force is converted from 

the  

chemical energy stored in ATP to mechanical work.  The nature of this mechanical 

work is produced by a rotation of the myosin lever arm, coupled to release of ATP 

hydrolysis products, in what is now called the “power stroke”.  The crystal structure 

of the myosin S1 gives an indication of how movements in the motor domain may 

be coupled to an angular change in the long alpha-helix extending away from the 

motor domain (the lever), however the snapshot of a rigor conformation alone gives 

an incomplete picture of the dynamics of the power stroke of myosin.   

Early electron micrographs showed that the interaction between thick and 

thin filaments was accomplished by the presence of a crossbridge now known to be  
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the head domain of myosin II (HUXLEY 1957).  The first direct observations of 

multiple states of crossbridge attachment were made by comparing electron 

micrographs of insect flight muscle prepared in the presence and absence of ATP to 

generate the relaxed and rigor conformations of the crossbridge (Reedy, Holmes & 

Tregear 1965).   The rigor preparation showed crossbridges tilted at an angle of 45° 

relative to the thin filament.  Alternatively, muscle fixed in the presence of ATP 

showed a different orientation, with the myosin heads roughly 90° or perpendicular 

to the thin filament.  This work was further substantiated by low angle x-ray 
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diffraction patterns, which showed that actin and myosin helical periodicities did not 

change between resting and contraction, while the changes in 145 Å meridional 

reflections corresponding to the helical arrangement of crossbridges suggested a 

significant change between relaxed and rigor muscle (Reedy, Holmes & Tregear 

1965, Huxley, Brown & Holmes 1965, Huxley, Brown 1967).  This work led to H. 

E. Huxley’s 1969 proposal that a change in the orientation of the crossbridges, 

coupled somehow to ATP hydrolysis, could account for force production during 

muscle shortening (Huxley 1969).   

Direct experimental evidence soon followed the predictions made by the 

diffraction patterns.  Crossbridges could be partially synchronized by subjecting 

frog muscle fibers to rapid length changes and measuring the resulting changes in 

tension in the interval during and immediately after the length changes.  In these 

experiments, a rapid tension change during the length change (T1) is followed by a 

slower resolution (T2) of tension to the resting state.  This work was interpreted to 

mean that the crossbridge of muscle was composed of two elements in series, an 

elastic element responsible for the initial generation of tension as well as a visco-

elastic element which would eventually share the tension generated by the first 

element (Huxley, Simmons 1971).  The overall response was due to the stretching 

of the coiled-coil domain of the myosin in response to the rapid length change (T1), 

which was followed by a rotation of the S1 head of the myosin backwards about a 

fulcrum point to what we now know is the pre-power stroke state (T2).  The overall 

conclusions (Huxley et al. 1983) of this work were very much in line with the 
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proposal of the swinging cross-bridge model, and in line with subsequent x-ray 

diffraction patterns during crossbridge sliding with millisecond time resolution 

showing the decrease in intensity of the 145 Å meridional reflection (Huxley et al. 

1983).  

 

Synchronization of force generation by tilting was correlated with a specific 

change in biochemical states, specifically the release of phosphate from the myosin 

head (Hibberd et al. 1985).  Hibberd and colleagues utilized a “caged” ATP 

compound which could be activated by laser-pulse photolysis to synchronously 
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activate muscle crossbridges and induce a rapid tension decrease corresponding to 

crossbridge detachment.  The amplitude of the restoration of that tension, which 

occurs due to force generation by active crossbridges, is reduced in the presence of 

10mM free phosphate.  This is a consequence of Pi rebinding to AM·ADP and 

generating a weakly bound state. Since the restoration of tension is due to entry into 

the force generating state, the rate of tension generation can be expressed as the sum 

of the forward and reverse rate constants for the force generating state.  The rate of 

tension restoration is increased in 10 mM phosphate, suggesting that rebinding of 

phosphate to AM·ADP also reverses the power stroke that accompanies force 

generation. 

Direct visualization of different cross bridge states coupled to biochemical 

states would be fundamental to graduation of the swinging crossbridge model to the 

swinging lever-arm model for the myosin power stroke, and very compelling 

evidence has been generated from structural studies capturing myosin S1 in 

different conformations.  Cryo-EM reconstructions from two different myosins in 

the presence and absence of MgADP displayed two different orientations of the 

lever arm extending away from the motor domain, with little structural change 

within the motor domain itself (Jontes, Wilson-Kubalek & Milligan 1995, Whittaker 

et al. 1995).  The rotations of the lever arm in these studies accounted for ~23° for 

smooth muscle myosin II (a conventional myosin, figure 1.9) and 32° for brush-

border myosin I (an unconventional myosin).   These angular rotations resulted in 

displacements of 35 Å and 50 Å respectively along the axis of the actin filament.  
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These reconstructions provided evidence that a change in biochemical state in the 

nucleotide binding pocket could correspond to changes in the lever arm orientation.  

The comparison between ADP and rigor states also suggested that there could be an 

additional force generating step after phosphate release. 

A limitation of the EM reconstructions, however, was their lack of fine 

resolution of the motor domain.  Although the authors could correctly state that no 

large-scale readjustments to the motor domain occurred, the location of the pivot 

point for the lever arm was not resolvable.  Crystal structures of vertebrate smooth 

muscle myosin in a pre-power stroke state were determined in the presence of 

ADP·AlF4, an ATP analogue; as well as ADP·BeFx, a transition state analogue 

(Dominguez et al. 1998).  In comparison with the 1993 Rayment et al. skeletal 

muscle structure, the structures in the presence of ATP or transition state analogues 

showed a tilt of the “converter” domain, so named due to it being a communication 

point with interactions bridging both the nucleotide binding pocket of myosin as 

well as the lever arm.  In both pre-power stroke structures, the converter is tilted 

roughly 70° relative to the post-power stroke structure in the Rayment 1993 S1 

structure due to rotations about two conserved glycine residues in the SH-1 helix 

(positions 709 and 720, figure 1.10), however the major rotation occurs at Gly720, 

suggesting it is the pivot point for the power stroke.  Mutations in these residues 

uncouple the biochemical cycle of myosin from the power stroke, rendering it 

unable to undergo the conformational changes necessary to produce force (Patterson 

et al. 1997) .   
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An important prediction of the swinging lever-arm model is that the 

effective length of the lever arm will affect the force generated by the rotation of the 

converter domain.  The development of actin-gilding motility assays (Kron, Spudich 

1986), in which myosin molecules are fixed to the surface of a glass coverslip and 

allowed to interact with free fluorescently-labeled actin filaments, provides an 

opportunity to test such a prediction.  Uyeda et al. generated myosin constructs with 

0 – 3 light chain binding sites to create lever arms of different predicted lengths.  In 

agreement with the swinging lever arm model, the velocity of sliding actin filaments 
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moving on the surface of the myosin-coated coverslip were linearly related to the 

length of the lever arm (Uyeda, Abramson & Spudich 1996a).  In an analogous 

experiment, Anson and coworkers generated artificial lever arms with comparable 

stiffness by substituting alpha-actinin repeats for light chain binding sites and found 

similar results in motility assays (Anson et al. 1996).  Importantly, the kinetic 

properties of the motor were unchanged by the length of the neck, suggesting that 

the neck served primarily as a rigid lever arm which amplified the small 

conformational changes in the motor domain.   

Taken together, the swinging lever arm model is supported by a convincing 

sum of evidence.  The coordination of biochemistry, force production, and angular 

movement of the lever demonstrate in exquisite detail how the cyclic hydrolysis of 

ATP by myosin, coupled to structural states that differ in actin affinity, can produce 

force by amplifying a conformational change in the converter region of the motor 

into a large displacement of the lever arm (figure 1.11).  One of the aims of this 

thesis is to examine the lever arm as it relates to other properties of the myosin, 

specifically force dependence and stiffness. 

 

1.8  Myosin I 

1.8.1  Isolation and characterization of myosin-I 

In 1973 Pollard and Korn purified an ATPase from Acanthamoeba 

Castellani which shared many common features with the known myosins from  
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smooth and skeletal muscle (Pollard, Korn 1973).  Like muscle myosin, the new 

ATPase was able to bind (and be activated by) actin in an ATP dependent manner.  

Notable differences however, include the inability of Acanthamoeba myosin to form 

bipolar filaments, a smaller molecular weight, and different amino acid 

composition.  Purification of other myosins with similar activity soon followed in 

acanthamoeba (Maruta et al. 1979), simple eukaryotes, (Cote et al. 1985), and 

vertebrate brush borders (Mooseker, Pollard & Fujiwara 1978).   
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By screening an acanthamoeba genome library with a probe specific for a 

nematode myosin II, Hammer et al. identified and cloned the myosin-IB gene 

which, due to the size of its mRNA product, proved that the new myosins-I could 

not be degradation products of myosin II and were unique gene products (Hammer, 

Jung & Korn 1986) .  Amino acid sequence analysis demonstrated that the motor 

domains were highly conserved relative to conventional myosin-II and therefore the 

newly discovered unconventional myosin-Is represented “true” myosins.   

 

1.8.2  General features of myosin-Is 

Myosin-Is are widely expressed, single headed members of the myosin 

superfamily that bind to the plasma membranes of cells and participate in membrane 

structure and dynamics, and responses to signaling events (Kim, Flavell 2008). 

Myosin-Is can be loosely grouped into two subclasses based on the length of their 

tails.  Eight myosin-I isoforms are expressed in humans, six short tailed forms 

(Myo1a, b, c, d, g and h) and two long-tailed (Myo1e and f) (Berg, Powell & 

Cheney 2001).  Short-tailed myosins have a basic tail region called the tail 

homology 1 (TH1) domain, while long-tailed isoforms have, in addition to the basic 

region, a conserved tail homology 2 (TH2) domain rich in proline and alanine as 

well as an SH3 domain (Coluccio 1997).  The neck  

region of myosin-Is consist of a variable number (0-6) of IQ motifs, which can bind 

calmodulins or calmodulin-like proteins in a calcium-sensitive manner. 
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1.8.3 Myosin-I tails 

The highly divergent tails of myosin-Is are largely responsible for their 

plasma membrane localization and some protein binding characteristics.  The basic 

tail can bind to anionic phospholipids via electrostatic interactions (Hayden, 

Wolenski & Mooseker 1990, Adams, Pollard 1989) and generate force while 

associated with the membrane to power the movement of actin filaments in vitro 

(Zot, Doberstein & Pollard 1992).  Using large unilamellar vesicles as model 
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membrane systems, Hokanson and Ostap measured the affinity for the myo1c tail to 

LUVs of varying phospholipid composition (Hokanson, Ostap 2006).  While the 

myo1c tail bound weakly to physiological concentrations of phosphatidylserine 

(40%), the tail bound strongly to LUVs containing a physiologically relevant 

concentration (2%) of the important signaling lipid phosphatidylinositol 4,5-

bisphosphate (PIP2).   

Both PS and PIP2, being negatively charged (net charge –1 and –4 per 

headgroup at pH 7, respectively) would be expected to bind to the tail via 

electrostatic interactions, but by normalizing tail binding to the total negative 

charge, Hokanson and Ostap demonstrated that the tight binding of the myo1c tail is 

specific for PIP2.   This binding is inhibited by the soluble headgroup of PIP2, 

inositol 1,4,5 trisphosphate (InsP3), which is generated by cleavage of the PIP2 by 

phospholipase C (PLC) in response to signaling events.  Subsequent site directed 

mutagenesis and modeling studies demonstrated that the PIP2 binding region of the 

tail was similar in structure and function to a pleckstrin homology (PH) domain, and 

that this putative PH domain is a common element among vertebrate myosin-Is 

(Hokanson et al. 2006). 

Protein binding via the tail is best described in the long-tailed myosin-Is of 

lower eukaryotes.  The tail domain of fission yeast myosin-I (myo1p) is able to 

influence actin dynamics at the cell cortex by binding to and activating the Arp2/3 

complex, known for its ability to nucleate branched actin filaments and generate 

dendritic actin networks. (Lee, Bezanilla & Pollard 2000).  Budding yeast myosin-Is 
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(myo3p and myo5p) influence actin dynamics in a similar fashion through binding 

of verprolin as mediated by the SH3 domain of their tails.  Verprolin can then 

interact with Bee1p/Las17p which themselves activate the Arp2/3 complex.  

(Lechler, Shevchenko & Li 2000, Geli et al. 2000, Evangelista et al. 2000).  Jung et 

al. used the SH3 domains of the dictyostelium myosin-Is myoB and myoC to look 

for potential binding partners by incubating a GST-SH3 resin with Dictyostelium 

cell extracts (Jung et al. 2001).   They discovered a myosin-I binding partner, p116, 

which serves as a scaffold for binding to the Arp2/3 complex and actin capping 

protein.   The protein was renamed CARMIL, which stands for capping protein, 

Arp2/3, myosin-I linker.  Sequence analysis confirmed homologues of CARMIL in 

Acanthamoeba, Drosophila, C. elegans, mouse, and human, suggesting that the 

ability of myosin-Is to modulate Arp2/3 dependent actin polymerization through 

their SH3 domains may be more general. 

The variety in domain organization and binding mediated by the tail of 

myosin-Is is likely a consequence of the ancient evolutionary history of class I 

myosins (Richards, Cavalier-Smith 2005).  Although this thesis does not deal 

specifically with the myosin-I tail and its binding partners, it is important to 

consider the tail in the context of myosin-I localization when we consider how force 

could affect myo1b function. 
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1.8.4 The myosin-I lever arm 

The neck domains of myosin-Is, also called the light chain binding domain 

(LCBD) are primarily made up of tandem repeats of IQ motifs, 20-25 residue 

sequences which contain the consensus sequence IqxxxRGxxxR. These motifs serve 

as target sites for the binding of calmodulin (CaM) or calmodulin-like proteins.  

Binding of light chains to IQ motifs is proposed to help stabilize the extended α-

helical structure of the IQ motif to allow it to better serve as a lever arm (Bahler, 

Rhoads 2002).  Thus, the number of IQ motifs along the myosin-I neck and the 

nature of their interaction with calmodulin has important effects on the mechanical 

properties of the myosin. 

CaM is a small (~17 kDa) protein with two globular lobes separated by a 

flexible hinge region.  Upon binding to IQ motifs, the α-helix of the hinge region 

partially dissolves, allowing the two lobes of CaM to wrap around the motif in a 

conformation stabilized by a number of hydrophobic interactions (Ikura et al. 1992).  

Specifically, the C-terminal lobe of CaM binds the IQxxxR portion of the motif 

while the N-terminal lobe is specific for the GxxxR half.  Each lobe of CaM 

contains two EF-hand motifs, which in the absence of calcium adopt a “closed” 

conformation in which the hydrophobic core of each lobe is buried and inaccessible, 

otherwise known as apo-CaM.  Binding of calcium to the EF-hand motifs causes a 

conformational change in which the lobe transitions to an “open” state, thus 

exposing the hydrophobic core (Grabarek 2006).  CaM generally binds tightly to 

IQ-motifs in the calcium-free form of the protein, while binding of calcium 
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generally results in weak binding and eventually dissociation of one or more CaMs 

from the neck region of a myosin-I under increasing calcium conditions (Manceva 

et al. 2007, Lin, Tang & Ostap 2005).  While the majority of light chain binding to 

myosin-I in cells is likely due to CaM, there exists evidence that alternative light 

chains could compete with CaM in the presence of calcium, with potential 

consequences on myosin targeting inside cells (Tang et al. 2007). 

 

While atomic-level structural information regarding the binding of CaM to 

the IQ-motifs of myosin-Is is lacking, a variety of conformations of bound CaM 

(and CaM like proteins) exist in complex with the IQ motifs from other 

unconventional myosins.  Besides the general closed and open forms of CaM, a 

semi-open conformation allows partial exposure of hydrophobic residues for tight 

binding to the IQ motifs of myosin-V and may inhibit the binding of calcium to the 

EF-hands of CaM to prevent dissociation (Houdusse et al. 2006).  Two different 
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structures of mlc1p (a CaM-like protein) are seen in x-ray crystallographic 

structures depending on the IQ motif of myosin-V to which it is bound.  When 

bound to IQ2, both lobes of mlc1p interact extensively with the IQ-motif in a 

structure resembling the conventional apo-CaM interaction with an IQ-motif.  

However, the structure of mlc1p bound to IQ4 of the myosin is strikingly different, 

with the N-terminal lobe of CaM free from the IQ motif and loosely tethered to the 

bound C-terminal lobe (Terrak et al. 2003).   

Binding specificity and calcium sensitivity of the CaM interaction with IQ 

motifs is highly dependent on not just the highly conserved residues of the IQ 

motifs, but also the more variable residues, resulting in inconsistent calcium 

sensitivity for IQ motifs along the regulatory domains of myosins with multiple IQ 

motifs.  Differences in binding  

could also account for variation in the mechanical properties of the myosin lever, a 

possibility that will be investigated in this thesis by measuring the stiffness of the 

acto-myo1b crossbridge as a function of the number of IQ motifs.   

 

1.8.5 Potential functions of myosin-Is 

 The function of myosin-I described in 1.8.3 represents an incomplete picture 

of the range of potential functions for myosin-Is in the context of the cell.  In 

addition to actin-polymerization activity, myosin-Is in yeast contribute to endocytic 

events and cell motility in collabration with the actin cytoskeleton as described 

earlier in this thesis (section 1.6).  Like vertebrates, yeast cells express multiple 
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class-I myosins with overlapping potential functions (Wessels et al. 1991, Jung, Wu 

& Hammer 1996).  Inactivating mutations of single myosin-Is show little or no 

defect in endocytosis or cell migration, however inactivating multiple myosin-Is in 

the same cell has more profound functional consequences in these processes.  It has 

therefore been proposed that the collective expression of multiple myosin-I isoforms 

contributes to overall efficiency of cellular processes in yeast. 

 How myosin-Is contribute in a general way to increased efficiency can 

potentially be understood by monitoring the effects of myosin-I expression levels on 

the forces produced by the dendritic network of actin filaments in the cell cortex, 

otherwise known as cortical actin tension.  Using a micropipette aspiration 

technique, Dai et al., measured the relative cortical actin tension in Dictyostelium 

cells overexpressing myosin-I proteins and found them to have an increased cortical 

tension relative to control (Dai et al. 1999).  Alternatively, the same measurements 

showed a decrease in tension in Dictyostelium cells lacking multiple myosin-Is, 

consistent with the prediction that myosin-Is are partially functionally redundant.  

The generation of cortical actin tension by myosin-Is in yeast is likely closely 

related to the established roles of myosin-I in actin polymerization and endocytosis 

(Titus 2000).  Emerging evidence suggests that similar roles are carried out by 

myosin-Is in vertebrates (figure 1.12).   

 Myosin-Ia (myo1a), otherwise known as brush border myosin-I, has a well 

defined function in the apical microvilli of intestinal brush border cells, wherein 

myo1a connects the plasma membrane with the underlying bundle of cross-linked 
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actin filaments in each microvillus.  Myo1a knockout mice, developed in the 

Mooseker lab, show disruption of microvillar architecture and loss of proper spacing 

between the actin cytoskeleton and the plasma membrane, in addition to a decrease 

in vesicle shedding from the microvilli into the lumen of the intestines (Tyska et al. 

2005b, McConnell et al. 2009).  These results, taken together, indicate that myo1a 

motor activity can generate tension in the intestinal microvilli, which is important 

for proper structure and overall function of the intestine.   

 In the case of myosin-Ic (myo1c), a more diverse range of functions has 

been described, involving vesicle trafficking, endocytosis, exocytosis, and 

adaptation in hair cell bundles (figure 1.12).  The ability of a myosin to generate 

tension is proposed for models of hair cell adaptation in which myo1c functions to 

link membrane-associated ion channels with the underlying actin cytoskeleton 

(Batters et al. 2004c, Gillespie, Cyr 2004).  In such a model, deflections of the hair 

cell bundles change the probability that a membrane-associated mechanosensitive 

ion channel will be open or closed depending on the direction and magnitude of the 

deflection.  Myo1c has been proposed to move along the actin filament in response 

to bundle deflection, generating a force via motor activity which restores the resting 

tension between the mechanosensitive ion channel and the motor.  Consistent with 

this model, myo1c mutants that are specifically inhibited by ADP analogs were 

expressed in mice, and these mutant mice showed adaptation defects (Holt et al. 

2002).    
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 The proposed functions of myo1c and myo1a also highlight the importance 

of proper regulation of myosin function in the context of the cell.  For instance, if 

myo1c indeed serves as the adaptation motor in inner ear hair cells, the activity of 

the motor must be regulated such that it is active at certain tension levels, and 

inactive at other tension levels.  Additionally, while the motor is inactivated, it must 

maintain the connection between the membrane-bound ion channel and the actin 

cytoskeleton.  How a motor is able to accomplish these functions is investigated in 

this thesis for the closely related motor protein, myosin-Ib.   

1.9  Myosin-Ib 

Myosin-Ib (myo1b, formerly MyrI) was originally discovered in rat tissues 

using an antibody specific for a synthetic peptide containing a highly conserved 

sequence from the brush-border myosin-I (BBMI/myo1a) motor domain.  Amino 

acid sequence analysis showed a high degree of similarity between myo1a and the 

newly discovered myosin in the motor and tail domains, but expression patterns of 

the two proteins differed widely (Ruppert, Kroschewski & Bahler 1993).  In contrast 

to myo1a, which is expressed specifically in the intestines, myo1b has a wide 

expression pattern both in neonatal and adult rat tissues.  Myo1b exists in three 

different splice isoforms, (myo1ba,b,c), which have 6,5 or 4 IQ motifs respectively 

along the neck domain of the protein.  The three IQ motifs closest to the motor 

domain more closely resemble the canonical IQ motif discussed  



 

43

earlier, while the distal three IQ motifs are more variable and predicted to bind 

calmodulin relatively weakly.  Interestingly, the splice isoforms of myo1b differ in 

the composition of the three most distal IQ motifs, with alternative splicing 

generating “hybrid” IQ motifs containing parts of IQ motifs 4/5 in the case of 

myo1bb, and 4/6 in the case of myo1bc.  It is interesting to speculate that the 

stiffness of the lever arm of myo1b may be modulated by changes in CaM (or other 

light chain) binding through alternative splicing (Lin, Tang & Ostap 2005), a 

possibility that will be investigated in this thesis. 

Detailed transient kinetic characterization of myo1b was carried out by 

Coluccio and Geeves in 1999, and subsequently expanded upon by Lewis et al. in 

2006, in an effort to kinetically characterize the various myosin-Is with the related 

goal, shared by many researchers of unconventional myosins, of relating 

biochemistry and function in myosin motors (Coluccio, Geeves 1999) (Lewis et al. 

2006).  The defining kinetic features, summarized in table 1.1, of the myosin are a 

slow overall ATPase cycle, with relatively slow ATP binding and release of 

hydrolysis products ADP and phosphate.  Phosphate release from acto-myo1b (k+4΄) 

is rate limiting at ~0.58 s-1 under solution kinetics conditions.  As a result of the 

slow phosphate release kinetics, myo1b is predicted to exist predominantly in the 

weakly bound AM·ADP·Pi state, mostly detached from the actin filament under 

strain-free conditions.  Therefore myo1b is predicted to be a low duty ratio motor 

under solution kinetics conditions. 
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Although myo1b is extremely well-described kinetically, the potential 

function(s) of this protein within the cell remain somewhat of a mystery.  Electron 

microscopy studies show myo1b as an elongated monomer (with associated light 

chains) in solution that can potentially bundle actin filaments (Stafford et al. 2005).  

Consistent with this finding, myo1b localizes to dynamic cortical actin networks 

such as those found in the protruding lamellipoda of motile cells.  Myo1b is highly 

expressed in ruffling membranes along the leading edge, which are known to be 

sites of actin polymerization during cell movement.  In contrast to these findings, 

myo1b seems to be excluded from stable actin  
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structures such as stress fibers.  The mechanism of this exclusion likely involves 

tropomyosin binding to myosin target sites along the actin filament (Ostap 2008, 

Tang, Ostap 2001). 

Both the motor domain and tail of myo1b are crucial for myo1b localization 

and therefore proper function.  The actin networks within the lamellipodia are 

motile relative to the leading edge of the cell during cell movement, and move at a 

rate consistent with the velocities of actin sliding along a myo1b coated surface in a 
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conventional actin gliding motility assay.  In light of localization, actin bundling, 

and solution kinetics studies, proposed cellular functions of myo1b include 

generating tension within cortical actin networks, powering retrograde flow of actin 

during motility, and powering movement of endocytic or other membrane-enclosed 

vesicles along actin tracks.   

 

An important feature of the myo1b working stroke, with general relevance to 

the field of myosin molecular motors as a whole, was demonstrated in 1999 when 

Claudia Veigel et al. made detailed measurements of the forces and displacements 

produced by myosins undergoing their power stroke (Veigel et al. 1999).  In a 

powerful demonstration of the applicability of single molecule techniques to the 

study of molecular motors, Veigel et al. suspended an actin filament held taut 

between two beads immobilized in optical traps (see section 1.9 and methods of this 

thesis) and lowered the actin filament over a surface with immobilized myosin.  By 

measuring the deflection of the bead in the optical trap due to the myosin binding to 

actin and undergoing its power stroke, precise measurements of the displacement  



 

47

 

 

produced by the myosin power stroke could be made (figure 1.16).  They succeeded 

in showing that the displacement generated by the myo1b working stroke occurs in 

two steps totaling 11nm. 

The two-step mechanism was also found for the closely related myo1a, 

providing early evidence for the potentially widespread nature of the two-step 

working stroke.  Future work, including the experiments presented in this thesis, 
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would relate the structural changes of the two-step working-stroke to biochemical 

states of myosins and shed light on how those biochemical and structural states 

could be regulated by strain on the myosin.  Besides implications for the function of 

myo1b inside cells, these various sets of experiments shed light on a phenomenon 

originally observed in muscle and reported in 1923, called the Fenn effect.  

 

1.10  Towards a molecular explanation of the Fenn effect. 

1.10.1 Experimental observation of the Fenn effect in muscle. 

When a muscle hydrolyzes ATP, the energy released from the reaction 

produces force and heat.  The force developed by the myosin motor generates stress 

between the myosin (thick) and actin (thin) filaments, which is resolved by the thin 

filaments sliding relative to the myosin in the thick filament in the direction of the 

power stroke.  In 1922, W.O. Fenn conducted experiments in the basement of A.V. 

Hill’s house in order to investigate the efficiency of muscle under different loading 

conditions (Rall 1982).  In these experiments, Fenn measured the energy liberated 

by the muscle as a function of load subjected to and work produced by the muscle.  

In comparison to the amount of energy liberated during isometric contraction of 

muscle (without shortening), Fenn discovered that excess energy is produced when 

the muscle is allowed to shorten against a load, and in fact there is a direct 

relationship between energy liberated and work done by the muscle (Fenn 1923).  

These results can be roughly summarized by the following equation: 
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Equation 1 

HWIE ++≅  

Where E is energy liberated by the muscle, I is isometric energy, W is work, and H 

is excess heat during shortening.  The general conclusion from these landmark 

experiments in muscle physiology is that a muscle can respond to the mechanical 

environment via some form of feedback mechanism that regulates energy 

expenditure. 

 

 As it relates to the power stroke, it is possible to envision the Fenn effect as 

being due to a strain-dependent step in the chemo-mechanical crossbridge cycle.  

The prevailing hypothesis being that, if during stimulation the thin filament were 

prevented from sliding and relieving the stress imposed by the power stroke, as is 
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the case during an isometric contraction, the myosin head remains bound to the thin 

filament and unable to complete its ATPase cycle.  Two  candidates for strain-

dependence from the Lymn-Taylor cycle (see figure 1.11) that would result in more 

efficient ATP hydrolysis during isometric contraction and also maintenance of the 

strong-binding state would be the slowing of the ADP release or ATP binding steps 

under strain (Nyitrai, Geeves 2004).  Alternatively, if phosphate release were 

slowed, the myosin could produce force before releasing phosphate and detach from 

the filament (Takagi, Homsher, Goldman, and Shuman, 2006).  The following will 

provide a brief summary of what is currently known about the molecular basis for 

strain dependence in molecular motors and the Fenn effect with particular emphasis 

on the emerging evidence from single molecule studies. 

 

1.10.2  ADP release as it relates to muscle shortening 

The rate constants for ADP release and ADP affinities of various skeletal 

muscle myosins varies substantially and would be expected to have consequences 

for the rate at which muscle shortens.  Two papers related these kinetic 

measurements to the maximum shortening velocities of muscle fibers in an effort to 

show that the rate of ADP release for a muscle myosin limits the rate of shortening 

due to crossbridge cycling.  Siemankowski et al. showed that the rate of ADP 

release was linearly related to the maximum shortening velocity of muscle, and that 

this effect could be correlated with changes in temperature, which affected ADP 

release and consequently muscle shortening velocity (Siemankowski, Wiseman & 
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White 1985).  This result was further confirmed in 2001, when Weiss et al. 

measured ADP affinities for a variety of muscle isoforms and showed a similar 

relationship between ADP affinity and muscle shortening velocity (Weiss et al. 

2001).  This provided an evolutionary mechanism to tune muscles to work at 

different maximum speeds when stimulated, and strongly implicated ADP release as 

a potential biochemical strain sensing transition, but did not provide a direct 

observation of a strain-sensing mechanism. 

 

1.10.3  Biochemical evidence for a nucleotide sensitive/insensitive transition 

In 2000, Geeves et al. provided substantial biochemical evidence for a 

structural transition within the myo1b molecule whereby the nucleotide binding 

pocket exists in two conformations with differences in nucleotide affinity.  By 

monitoring the fluorescence change associated with ATP induced dissociation of 

myosin from pyrene-labeled actin filaments, the timecourse of ATP binding could 

be determined for the myosin (Geeves, Perreault-Micale & Coluccio 2000).  

Surprisingly, the rate of ATP-induced dissociation was biphasic, consisting of an 

ATP concentration sensitive fast phase, and a separate slow phase.  This suggested 

that myo1b exists in two states in solution, one which could readily bind ATP and 

one which was not able to bind nucleotide without first isomerizing to the ATP 

accessible state.  Geeves et al. proposed a model for their data whereby the 

nucleotide binding site of myo1b existed in a “closed” state which was unable to 

bind or release nucleotide, versus an “open” state which could readily exchange  
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nucleotide, and that the transition between these two states was mediated by tilting 

or “rocking” of the lever arm of myo1b (Nyitrai, Geeves 2004).  Comparable 

biphasic relationships for ATP induced dissociation of myosin were also found for 

myo1c, myosin-V, and smooth muscle myosin-II (Sweeney et al. 1998a, Batters et 

al. 2004b, Hannemann et al. 2005).   
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1.10.4  Direct measurements of myosin strain dependence 

1.10.4.1 Single molecule measurements of strain-dependent ADP release 

Another demonstration of a functional consequence of strain sensitivity is 

shown for the unconventional myosin, myosin V.  Myosin-V, as opposed to myosin-

I, is a two-headed multimer of heavy chains and associated light chains.  Known to 

bind cargos such as melanosomes in vivo, myosin-V has been proposed to be a 

motor specifically adapted for the transport of cellular cargos along actin filaments 

(Mehta et al. 1999a, Wu et al. 1997, Wu et al. 2002).  In order to “walk” along actin 

filaments, myosin-V takes alternating “hand-over-hand” steps along the actin 

filament in which the trailing head detaches from the actin filament and moves 

approximately 73 nm forward along the filament, powered in part by the power 

stroke of its partner head, to bind to the next “target zone” on the actin filament. 

(Yildiz et al. 2003).  For myosin-V to undergo a large number of successive steps, it 

is necessary to somehow coordinate the biochemical cycles so that the trailing head 

detaches before the leading head, and that one head is always bound to the actin 

track.   

Single molecule measurements of monomeric myosin-V step size (the 

displacement produced by the power stroke) showed that the power stroke for a 

single head/lever arm occurred in two substeps of ~16nm and ~5nm, suggesting a 

similar mechanism to what had been observed earlier for myo1b and myo1a (Veigel 

et al. 2002).  This step size, however, is not large enough to account for the distance 

covered by myosin-V when stepping along actin filaments, which was measured to 
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be ~36 nm from single molecule tracking of processive myosin-V movement (Yildiz 

et al. 2003).  A way to reconcile the two measurements and introduce a model that 

incorporated an asymmetric strain was proposed whereby the trailing head would 

detach from the actin filament and move forward due to the action of the power 

stroke of the leading head.  The detached head could then undergo a rapid 

“diffusional search” due to random thermal motions which would lead to rebinding 

of the head at the next actin target binding site.  The distance between actin binding 

sites for the heads would presumably stretch the molecule, imposing an asymmetric 

load on both of the bound heads.  The (new) leading head would be experiencing a 

backwards load while at the same time trailing head would experience a forward 

load. 

Consistent with this model, the stepping kinetics of a processive, two headed 

myosin-V were increased relative to those of a single headed construct (Veigel et al. 

2002).  Measurements of a single-headed construct, however, under external load 

imposed by the optical traps would provide a direct quantitative estimate of the 

strain dependence of the interaction.  To accomplish this measurement, Veigel et al. 

modified the aforementioned optical-trap based assay used to measure myo1b and 

myo1a step sizes.  By monitoring the positions of the optically trapped beads in 

their assay with fast (~1ms) time resolution, the investigators were able to rapidly 

impose either a “pushing” force in the forward direction of the power stroke or a 

“pulling” force opposing the power stroke of myosin-V by moving both optical 

traps after detection of an acto-myosin attachment event.  They simultaneously  
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measured the displacement produced by the myosin during the power stroke and 

developed a method to measure the rates of entry to and exit from the state seen in 

the second step of the working stroke (Veigel et al. 2005). 

By synchronizing a large number of single attachment events to the 

beginning of each event and extending the end position to a predetermined limit, all 

the individual events could be averaged together to produce the records seen in 

figure 1.20.  Besides a confirmation of a two step mechanism for the working 

stroke, the lifetime of the first step is measured as an exponential increase in 

displacement.  Alternatively, by synchronizing the ends of the events and extending 

backwards, the lifetime of the second step is observed as an exponential increase in 

displacement directly prior to detachment.  Veigel et al. measured the rates of entry 

to and exit from the second step in response to either a pushing or pulling force 

experienced by the myosin.  They found that the rate of entry into the second step of 

the working stroke was decreased by a pulling force, and accelerated by a pushing 

force.  If the rate of entry into the second step is governed by ADP release and 

further rotation of the lever arm, and the rate of exit by ATP binding and 

detachment, this would be compelling evidence for a strain-dependent ADP release. 

As a further test of the model, Oguchi et al. measured the force at which 

single headed myosin-V detached from an actin filament at varying ADP 

concentrations and globally fit the histograms of unbinding forces to two gaussian 

distributions (Oguchi et al. 2008).  These distributions presumably represent the 

detachment rates of AM·ADP  A +  M·ADP for the lower force distribution and  
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AM  A + M for the higher force distribution as the affinity for actin of M·ADP is 

less than that for myosin in rigor (no nucleotide).  When subjected to a pulling force 

in the experiments (opposing the direction of the power stroke), the proportion of 

myosins in the AM·ADP state was increased suggesting a decreased rate of ADP 

release.  In contrast, a pushing force in the direction of the power stroke accelerated 

ADP release.  These experiments were an elegant demonstration of strain affecting 

the biochemistry of an unconventional myosin. 

In addition to the compelling evidence for strain dependent coordination of 

the two heads for myosin-V, Veigel et al. repeated their measurements of the two 

step working stroke for smooth muscle myosin and added to their measurements an 

imposed load on the myosin as it produced force in the single molecule assay.  In 

experiments similar to their myosin-V work, they correlated the two steps of the 

working stroke to changes in ATP concentration and measured the effect on the 

lifetimes of the working stroke substeps.  They confirmed their two-step working 

stroke measurements for a conventional smooth muscle myosin-II and discovered 

that the lifetimes of the first and second steps have different sensitivities to ATP 

concentration.  Specifically, the lifetime of the ATP-independent step was related to 

the force the myosin was exposed to (Veigel et al. 2003).  As for myosin-V, when 

they “pulled” the myosin in the opposite direction of the power stroke, the rate of 

the ATP-independent step (likely ADP release) decreased while the opposite held 

true for a “pushing” force in the forward direction of the power stroke.  These 

results represent some of the best direct evidence for a strain-dependent ADP 
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release mechanism for myosins (including muscle myosins) and imply that these 

findings may have some generality for many members of the myosin family of 

molecular motors, and perhaps also the kinesin family of molecular motors (Yildiz 

et al. 2008, Yildiz et al. 2004).   

 

1.10.4.2 Strain-sensitive reversal of the power stroke. 

 In contrast to strain sensitive ADP release, another molecular explanation for 

the Fenn effect could be detachment of myosin from the actin filament after 

generating force, but with the products of hydrolysis still in the nucleotide binding 

pocket.  Studies in isometrically contracting myofibrils show that Pi release is rate 

limiting in muscle (Lionne et al. 1995, Lionne et al. 2002), suggesting that perhaps 

there are multiple strain-dependent steps in the biochemical cycle of myosin.  

Consistent with this, Takagi et al., measured the detachment kinetics of skeletal 

muscle myosin-II at the single molecule level using a novel feedback-enhanced 

isometric force clamp (Takagi et al. 2006a), at high loading rates designed to mimic 

the load imposed on a single myosin-II crossbridge during isometric contraction.  

As they increased the loading rate on single molecules, they observed increased 

rates of detachment kinetics (figure 1.21) due to the effect of force on the myosin 

ATPase.  They interpreted this result in terms of the Fenn effect as detachment of 

the M·ADP·Pi from the actin filament after force generation.  Thus, energetic 

efficiency is increased since the myosin would be able to detach from the actin 

filament without ATP binding under load.    
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1.11  Optical Trapping Techniques 

The increasing use of single molecule techniques has powered many exciting 

advances in our understanding of the function of motor proteins.  Although single  

molecule techniques incorporate an increasing variety of methods to study dynamics 

of individual proteins, the experiments in this thesis deal primarily with the use of 

an infrared laser based optical trapping system, otherwise known as “laser 

tweezers”. 

In 1975, Arthur Ashkin and J.M. Dziedzic were in the process of improving 

laser based methods for manipulating liquid droplets in air using laser radiation 
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pressure (Ashkin, Dziedzic 1975).  Their methods eventually resulted in the 

development of optical trapping techniques in which tightly focused laser beams 

could prevent the diffusion of molecules away from the laser beam waist.  Although 

the technique of optical trapping is perhaps most famous for the Nobel prize 

winning work demonstrating the use of laser radiation pressure in trapping 

individual sodium atoms, (Chu et al. 1985, Chu et al. 1986) biological applications 

of optical trapping were quickly developed to manipulate viruses, bacteria, whole 

eukaryotic cells, and even the plasma membranes of cells to create cytoplasmic 

extensions (Ashkin, Dziedzic 1989, Ashkin, Dziedzic 1987, Ashkin, Dziedzic & 

Yamane 1987). 

The optical trapping studies used in this thesis will deal mainly with trapping 

of micron sized objects, the principles of which can be understood by the ray optics 

diagram in figure 1.22 (Dantzig, Liu & Goldman 2006).  Briefly, a small object, 

such as the 1 micron polystyrene spheres used in this thesis, is brought in the 

vicinity of a focused infrared laser beam.  The intensity of the laser light in the beam 

waist is described by a gaussian distribution with the greatest intensity of light in the 

center of the beam.  When the sphere encounters the light of the laser beam, it 

refracts the light and changes its trajectory, thus exerting a force on the light.  In 

accordance with the principle of conservation of momentum, the laser light exerts 

an opposing force of equal magnitude on the bead.  When the bead moves outside 

the center of the beam waist in the x and y axes, the intensity of the light is greater 

on one side of the bead creating a net gradient force in the direction of the center of  
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the trap.   When the bead is positioned directly below the focal spot of the laser, as 

in (B), the z-axis force on the bead acts in the opposite direction of the laser beam 

light, to counter the scattering force of the laser beam (the radiation pressure Ashkin 

and Dziedzic used to levitate droplets).  As a result, the behavior of the bead in the 
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trap can be approximated by a linear Hookean spring with a stiffness dependent on 

the intensity of the laser beam (Svoboda, Block 1994).   

Typical experimental geometries used in optical trapping studies of 

molecular motors include the single-bead assay, and the three-bead assay.  In both 

sets of experiments, optically trapped micron-sized beads serve as “handles” to 

which the proteins to be interrogated are attached.  The single-bead assay is 

particularly well-suited to studying dimeric processive molecular motors such as 

myosin-V, myosin-VI, conventional kinesin, and dynein, among others (Svoboda et 

al. 1993, Mehta et al. 1999b, Rock et al. 2001, Ross et al. 2006).  In a typical single-

bead assay, the motor protein is attached to a bead, usually through its tail domain 

via an antibody or a functional tag with a specific binding partner on the bead.  A 

single bead can then be immobilized in an optical trap and brought in the vicinity of 

the binding partner for the protein on the surface of a glass coverslip, typically the 

characteristic filament track for the motor, i.e. microtubules for kinesin, f-actin for 

myosin.  The position of the bead can simultaneously be tracked by conventional 

light scattering techniques or by projecting the refracted laser light from the trapping 

beam onto a four-quadrant photodiode.  At sufficiently low motor protein densities, 

single interactions with the filament can be reported by changes in the bead position 

in the trap (during stepping for example) or by changes in the bead position variance 

due to Brownian motion (Svoboda, Block 1994, Svoboda et al. 1993).  At low trap 

stiffnesses, relatively unrestricted movement of the motor along the track can be 

visualized by changes in the bead position in the trap.  Alternatively, the trap 
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stiffness can be increased to examine the stepping behavior of the protein against an 

imposed load, similar to what a motor protein might experience inside a cell (Ross, 

Ali & Warshaw 2008).   

An alternative experimental geometry, which will be used extensively in the 

experiments discussed in this thesis, is the three-bead assay, developed by Finer et 

al. (Finer, Simmons & Spudich 1994).  In this type of experiment, the motor and 

track are inverted relative to the single bead assay.  The use of two independently 

suspended beads in separate optical traps can allow binding of a filamentous track 

protein to both beads, which is stretched to create a bead-filament-bead “dumbbell”.  

The dumbbell is then lowered over the surface of a third bead, sparsely coated with 

the motor protein, on the surface of the experimental chamber, called a “pedestal” 

bead.  The positions of both beads can be monitored in much the same way as for 

the single-bead assay. 

In 1996, Simmons et al. demonstrated the use of a feedback-enhanced 

optical trapping system that could rapidly respond to the changes in force exerted on 

the trapped bead (Simmons et al. 1996).  By coupling an acousto-optic modulator to 

the beam path of the trapping laser, the intensity of the laser and therefore the 

stiffness of the optical trap could be modulated to change the force on the bead.  In 

order to measure the isometric force during attachment of myosin-II to actin, Takagi 

et al. developed an isometric force clamp which incorporated a feedback-enhanced 

optical trapping system in a three bead assay (Takagi et al. 2006b).  In this 

experiment, one of the beads, termed the transducer bead, is monitored and any 
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change in bead position during, for example, an interaction between a myosin 

attached to the surface of a coverslip and a suspended actin filament, is rapidly 

communicated to the motor bead through a feedback loop.   

By way of the feedback loop, the position of the trap opposite the transducer 

bead is driven in the opposite direction of the power stroke until the transducer bead 

is restored to its pre-power stroke position.  Thus the actin filament length between 

the transducer bead and the myosin is held constant, and the dynamic stiffness of the 

dumbbell is higher, approximating the conditions a myosin might experience when 

generating isometric force against a load.  The experiments presented in this thesis 

will take advantage of the experimental setup developed by Takagi et al. to impose a 

near-isometric load to an unconventional myosin.  By monitoring the change in 

force necessary to restore the position of the transducer bead, we can estimate the 

force experienced by the myosin in the opposite direction of the power stroke and 

correlate the force with the lifetime of acto-myosin attachments to obtain 

information about the binding kinetics.   

 

1.12  Thesis Overview 

The broad goal of this thesis is to use single molecule techniques to address 

questions concerning the biochemistry, regulation, and mechanics of a motor 

protein, myo1b.  Specific questions to be addressed include: 

 •  What is the mechanical response of myo1b to an external load? 
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 •  How is myo1b regulated by alternative splicing? 

•  What signaling molecules regulate myo1b function and how could they 

affect the response of myo1b to load? 

•  Does the light chain binding domain act as a rigid lever? 

Chapter 2 of this thesis will cover the appropriate methods and materials used to 

perform the experiments in this thesis.  The experimental apparatus will be 

described and particular attention will be paid to the techniques used to select and 

analyze data.  Chapter 3 will show the results of experiments used to address the 

questions above at the single molecule level.  Chapter 4 will discuss our progress in 

achieving the aims detailed in section 1.2.  Functional properties of myo1b will be 

addressed in terms of a model and our experimental results will be compared with 

other members of the myosin superfamily to highlight the diversity in function of 

these interesting molecular motors.    

 

 

 

 

 

 

 



 

67

2. Methods 

This chapter will introduce the proteins, apparatus, chamber preparation, and 

analysis techniques used in the experiments in this thesis.  All chemicals are from 

Sigma unless otherwise noted. 

 

2.1 Protein and reagent preparations 

2.1.1 Buffer recipes 

Lysis Buffer:  10 mM Tris, pH 7.5, 200 mM NaCl, 4 mM MgCl2, 2 mM ATP, 5 mM 

DTT, 0.5% Igepal, 1 mM EGTA, 1 mM PMSF, 0.01 mg/ml aprotinin, and 0.01 

mg/ml leupeptin. 

Wash Buffer: 10 mM Tris, pH 7.5, 200 mM NaCl, 4 mM MgCl2, 2 mM ATP, 5 mM 

DTT, 1 mM EGTA, 1 mM PMSF, 0.01 mg/ml aprotinin, and 0.01 mg/ml leupeptin. 

Elution Buffer:  10 mM Tris, pH 8.0, 100 mM NaCl, 1 mM EGTA, 1 mM DTT, 

0.01 mg/ml aprotinin, and 0.01 mg/ml leupeptin, 0.2 mg/ml FLAG peptide, 5 uM 

Calmodulin. 

Column buffer:  10 mM Tris, pH 8.0, 50 mM NaCl, 1 mM EGTA, and 1 mM DTT. 

Protein storage buffer: 10 mM MOPS, pH 7.0, 25 mM KCl, 1 mM DTT, 1 mM 

EGTA, 50% glycerol. 

Buffer A: 2 mM Tris-HCl, pH 8.0, 0.2 mM ATP, 0.5 mM DTT, 0.1 mM CaCl2, 1 

mM  NaAzide. 
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High Salt Buffer: 500 mM KCl, 4 mM MgCl2, 1 mM EGTA, 20 mM KH2PO4, pH 

7.2. 

Motility Buffer: 25 mM KCl, 10 mM MOPS, pH 7.0, 1 mM EGTA, 1 mM MgCl2 

(Stored in 5x aliquots).   

KMg25: 10 mM Imidazole, pH 7.0, 25 mM KCl, 2 mM MgCl2, 1 mM EGTA and 1 

mM DTT. 

Activation buffer:  1x Motility buffer supplemented with 5 mM DTT, 1 mg/ml 

BSA, 1 mg/ml glucose, 20 μM CaM, 192 U/ml glucose oxidase, 48 μg/ml catalase 

(Roche).   Variable amounts of ATP, free calcium, and phosphate were added as 

described in the text.  DTT, BSA, and glucose were from freshly prepared stocks of 

1M DTT, 10 mg/ml BSA, and 250 mg/ml glucose all solubilized in dH2O. 

 

2.1.2 Coomassie Plus protein concentration determination. 

 Protein concentrations were determined using the Bradford assay via 

Coomassie Plus (Pierce).  Protein concentration standards were prepared in 

duplicate using 0, 2, 6, 10, and 20 ng BSA in 95 μl H2O.  5 μl Dialysis buffer was 

then added to each standard sample.  An unknown concentration sample was 

prepared by adding 5 μl of the protein to be determined in 95 μl H2O. 1.5 ml of 

Coomassie Plus reagent was then added to each sample, and tubes were mixed by 

brief vortexing.  Absorbance at 595 nm was measured using a UV-visible 

spectrophotometer (Varian).  A linear fit to the protein standard absorbance at 595 
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nm vs. known protein concentration was used to determine the concentration of the 

unknown sample.  

 

2.1.3 Myosin constructs 

 Myo1b constructs were prepared as described in (Lin, Tang & Ostap 2005).  

All myo1b splice isoform constructs were truncated after the final IQ motif in the 

light chain binding domain, thus all constructs contained the motor and IQ motifs 

and excluded the tail domain (figure 2.1).  An additional non-native construct 

(myo1bIQ) consisting solely of the motor and first IQ motif was also prepared.  A 

FLAG sequence for purification and a 15-amino acid AviTag sequence for site-

specific biotinylation were inserted at the C-termini, and the constructs were 

subcloned into a baculovirus transfer vector (pBlue-Bac4.5).   

 

 Myo1b constructs were expressed and purified from Sf9 cells that were co-

infected with virus containing recombinant myo1b and calmodulin (El Mezgueldi et 
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al. 2002).  Four liters of Sf9 cells were pelleted by low-speed centrifugation, 

suspended in lysis buffer, and homogenized with 5 strokes in a Dounce 

homogenizer.  Cell extract was spun at 100,000 x g for 1h in an LM-8 

ultracentrifuge (Beckman).  Supernatant was split into two equal volumes and 

loaded onto two 1.5 mL columns with FLAG resin that had been pre-equilibrated 

with wash buffer.  After a 30 minute incubation, the column was washed with 5 

column volumes of wash buffer.  Bound protein was eluted with three column 

volumes of elution buffer by adding elution buffer to the column and stirring gently 

with a Pasteur pipette to mix the resin and buffer. Eluted protein was then loaded 

onto a Mono-Q column (Amersham Biosciences) equilibrated in column buffer.  

Myo1b constructs with bound CaM were eluted in a linear 50 mM – 1 M NaCl salt 

gradient.  Fractions containing Myo1b were combined and concentrated by filtration 

through low speed centrifugal filter devices (Millipore).  Concentrated protein was 

then site-specifically biotinylated with biotin ligase according to a kit 

manufacturer’s protocol (Avidity).  Site-specific biotinylation encouraged optimal 

orientation of the myo1b motor domain for interaction with actin filaments (Lin, 

Tang & Ostap 2005).  Biotinylated protein was then dialyzed against 2 x 1 L protein 

storage buffer over two days.  Protein concentration was determined using the 

Coomassie Plus based Bradford assay (see above).  Typical protein concentrations 

were ~1.0 – 10 mg/ml.  Protein integrity was determined by a standard gliding actin 

filament assay (Lin, Tang & Ostap 2005). 
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2.1.4 G-actin preparation 

 Monomeric g-actin was prepared from a protocol from Spudich and Watt 

(Spudich, Watt 1971) with modification.  Acetone powder from rabbit back muscle 

was extracted on ice by gentle stirring in buffer A for 30 minutes.  The remaining 

acetone powder was separated from extracted protein by centrifugation for 30 

minutes at 7800 g in a SS-34 superspeed centrifuge rotor (Sorvall).  The 

supernatant, containing the g-actin, was then filtered through a cheesecloth and the 

volume estimated.  G-actin was then polymerized by adding salt to 50 mM KCl and 

MgCl2 to 2 mM.   After 1hr at room temperature with gentle stirring, salt 

concentration was increased to 0.8 M KCl to dissociate contaminating tropomyosin 

filaments.  After 30 minutes of gentle stirring at room tempereature, the actin 

filaments were pelleted by centrifugation in a 50.3-Ti rotor for 2 hours at 88000 g in 

an LM-8 ultracentrifuge (Beckman).  The supernatant was discarded and the actin-

containing pellet was washed briefly and then resuspended in ~3 ml of buffer A by 

pipetting with a Pasteur pipette.  Actin filaments were depolymerized by dialyzing 

the protein into 1 L buffer A over two days vs. three changes of buffer A.  The 

depolymerized actin was then clarified by centrifugation in a 50.3-Ti rotor 

(Beckman) for 2 hours at 88000g in an LM-8 ultracentrifuge (Beckman).  The top 

2/3 of the supernatant, containing the g-actin monomers, was collected and stored 

for up to 90 days at 4°C.  Concentration was determined by absorbance at 290 nm.  

Of note is the omission of a final gel filtration step, we found that removing this 

final step improved the stability of our actin filaments under pretension.    
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2.1.5 Rhodamine-phalloidin labeled f-actin (RPFA) preparation 

 F-actin stocks were prepared from g-actin by diluting the g-actin stock into 

5x motility buffer and dH2O to make 2 μM f-actin in 1x motility buffer.  

Rhodamine-labeled phalloidin (Sigma) was added to 10 μM and the actin was 

allowed to polymerize for 30 minutes at room temperature. Each RPFA preparation 

was used for up to two weeks at a time, at which point the rhodamine fluorescence 

was too dim to easily visualize actin filaments.   

 

2.1.6 N-ethyl maleimide(NEM) modified myosin-II  

 NEM-myosin II was prepared according to the method of Veigel et al. 

(Veigel et al. 1998).  Myosin-II prepared from rabbit back muscle, provided by John 

Beausang from Yale Goldman’s lab, was diluted 1:10 into dH2O to form filaments.  

At a protein concentration of 16.5 mg·ml-1, 78 μl of protein was diluted into 722 μl 

of dH2O in a 1.5 ml plastic centrifuge tube. The polymerized protein was spun at 

13,000 rpm for 30 minutes at 4°C in an eppendorf 5415 R desktop centrifuge. The 

supernatant was discarded and the myosin was resuspended in ~110 μl high salt 

buffer to depolymerize the protein.  N-ethyl maleimide (Sigma) was dissolved in 

high salt buffer to 50 mM and 12 μl of this stock solution was added to the 

depolymerized myosin to give ~5 mM NEM.  The mixture was allowed to react at 

room temperature and stopped after 90 minutes with the addition of 1 ml of 20 mM 
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DTT in dH2O.  NEM-myosin, having repolymerized, was spun at 13,000 rpm for 30 

minutes and the supernatant was discarded.  NEM-myosin was resuspended in ~400 

μl high salt buffer + 50% glycerol and stored for up to one month at -20°C. 

 

2.1.7 NEM-myosin-II coated beads 

 2 μl of polystyrene beads (1.1 µm mean diameter, Sigma, LB-11) were 

washed twice in 250 μl dH2O to remove surfactant in storage solution.  The beads 

were resuspended in ~15 μl dH2O by brief sonication in a bath sonicator and ~80 μl 

of the NEM-myosin-II stock solution was added to the beads.  The beads + myosin 

were incubated for two hours at 4°C.  Two 1.5 ml plastic centrifuge tubes were pre-

coated with 1mg/ml BSA for at least 15 minutes in high salt buffer for one and 

motility buffer for the other.  Pre-coating the tubes with BSA for at least 30 minutes 

prevented adsorption of the NEM-myosin-II beads to the wall of the tubes.  The 

coated beads were added to the tube containing 1 mg/ml BSA in high salt buffer and 

mixed gently to depolymerize long myosin filaments on the beads.  The beads were 

collected by low speed centrifugation (7 minutes @ 8000 rpm on a desktop 

centrifuge) and resuspended in 1 mg/ml BSA in motility buffer (from the second 

tube).  The beads were collected by another round of low speed centrifugation in the 

second coated tube and resuspended in ~200 μl motility buffer.  Coated beads were 

stored at 4°C and used for up to 10 days. 
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2.2  Apparatus 

2.2.1  Optical Trap 

A detailed description of the optical trap setup developed by Takagi, 

Goldman, and Shuman can be found with details on calibration and design 

principles from (Takagi et al. 2006a).  A diagram of the setup is shown in figure 2.2.  

The setup is based on an inverted microscope (Olympus)  mounted on a 6’ by 4’ 

Vibration isolation optical table (I-2000 Stabilizer, Newport) to reduce mechanical 

noise transmitted to the sample chamber from the surroundings.  The trapping laser 

consists of a single Millenia IR laser diode (λ = 1064 nm, Spectra-Physics Lasers) 

split by polarization into two beams via a polarizing beam splitting cube (Newport), 

the relative intensities of which can be adjusted with a half wave plate which 

allowed for equivalent trapping strengths (within 10%).  Although both beams can 

be controlled with separate 1-dimensional Acousto-optical deflectors (AODs)  

(Brimrose), allowing rapid (3 µs) x-axis positional control of the trap, the 

experiments in this thesis will only use the AOD controlling the trap from the 

horizontally polarized light as depicted in the figure.  Both beams can also be 

controlled, together or individually, by adjusting the angles of mirrors along the 

beam path.  The laser light is recombined at a second polarizing beam cube, and the 

combined beams are directed to the specimen plane by way of periscoping mirrors.  

At this point the laser intensity is attenuated (with the exception of the stiffness 

experiments) to 40% by a neutral density filter (Thorlabs) in order to reduce trap  
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stiffness in all experiments except actomyo1b stiffness measurements.  The beams 

are focused to two diffraction-limited spots by the objective lens (Olympus, 

UPlanApo/IR 60x) and used to trap beads in solution.  After interacting with the 

beads, the laser light is collected and collimated by a condenser lens (Olympus 

PlanApoUV 60x).  The beams are directed to another polarizing beam splitter by a 

mirror at an angle 45° to the optical axis of the microscope.  The horizontally and 

vertically polarized light, representing the motor and transducer traps respectively, 

are collected separately on the two 4-quadrant photodiodes (Current Designs).  The 
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distribution of laser intensity on the photodiodes reports the magnitude of the force 

acting on the bead, which can be converted to distances by dividing by the known 

trap stiffness.  Signals are filtered and amplified (Frequency Devices) and recorded 

using an analog-to-digital converter board (National Instruments).  An EMCCD 

camera (Andor) mounted on the side-port of the microscope stage allows sensitive 

fluorescence imaging of the specimen during attachment of RPFA to NEM-myosin-

II coated beads.  Positional stage control in x, y, and z axes is provided by a 

piezoelectric controller (Mad City Labs). 

For measurement of stage position fluctuations, an additional infrared laser 

beam (λ = 930 nm, Point-Source) was installed on the same beam path as the 

trapping laser, with the exception that after being collected and collimated by the 

condenser objective the light was directed to a separate 4-quadrant photodiode.  The 

position of this laser was controlled manually by tilting mirrors and set to the center 

of the pedestal bead used during experiments.  The changes in stage position due to 

drift or mechanical vibration of the instrument are reported by deflections in the 

laser light by the pedestal.   

 

2.2.2 Calibration of the Optical Trap 

To determine the trap stiffness and detector sensitivity, the following 

calibration measurement was performed for each experiment.  A single bead was 

brought in the vicinity of each optical trap and the trapped beads were directed away 

from the area of the chamber containing beads.  The x-axis voltage signals from the 
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4-quadrant photodetectors were recorded for 5 seconds at a 20 kHz sampling rate.  

The resulting power spectra for both signals were plotted as shown in figure (2.3) 

and fit to a Lorentzian function using the equation: 

Equation 2 
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where Sv = power spectrum in units V2/Hz, f = frequency, and k represents an 

electronic noise cutoff.  The roll off frequency (fc) is related to the trap stiffness (κ) 

by the following equation:  

Equation 3 

κ = 2πγƒc 

where π = Pi (mathematical constant), and γ is the viscous drag coefficient of the 

trapped bead in N·s·m-1.  γ can be determined from first principles by: 

Equation 4 

γ = 3πηd 

where d is the diameter of the trapped bead (the mean particle diameter used in the 

experiments in this thesis is 1.1 µm), and η is the dynamic viscosity of the solvent 

(for water = 0.001 N·s·m-2).   

  Over the range of frequencies where the power spectrum is approximately 

constant (f << fc) the calibration constant to convert the voltage measurement from 

the photodiode to force (the detector sensitivity) can be determined from the 

following equation: 
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Equation 5 
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where kB = Boltzmann’s constant (~ 1.38 x 10-23 J·K-1), γ = the viscous drag 

coefficient of the trapped bead in N·s·m-1, T = temperature in K, and C = the 

calibration constant for the photodetector (in pN·V-1).  This calibration data was 

recorded for every bead-actin-bead dumbbell used in experiments. 
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2.2.3  Isometric force feedback 

In order to apply varying loads on the acto-myo1b crossbridge, a feedback 

loop was incorporated which acts to keep the position of one of the beads (termed 

the “transducer” bead) at a predetermined force level in the optical trap by driving 

the position of the other bead (termed the “motor” bead).  As shown in figure (2.4) 

originally from Takagi et al. 2006, stretching the actin filament between two beads 

in the three-bead assay geometry places a pretension force on the two beads in the 

trap.  The force on either bead is given by the difference signal [(A + B) – (C + D)] 

from the respective 4-quadrant photodiode.  Zeroing the voltage output of the 

photodiodes after pretensioning the filament and then engaging the feedback loop 

keeps the force on the transducer bead constant during an experiment. 

During force feedback experiments, the myosin binds to the actin filament, 

undergoing a power stroke and producing force in the direction of the pointed end of 

the actin filament (left, as shown in the figure).  The change in x-axis voltage 

difference signal from the transducer bead is sent through an integrating amplifier 

that directs the motion of the motor trap, and consequently the trapped bead, in the 

opposite direction of the power stroke.  The motion of the motor bead drives the 

bead-actin-bead dumbbell in the opposite direction of the power stroke until the 

transducer bead is restored to its pre-power stroke position (dotted line in figure 

2.4), closing the feedback loop.  The force on the motor bead, and therefore the 

myosin, is reported by the resulting x-axis voltage difference signal from the motor 

trap 4- 
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quadrant photodiode.  The resulting forces reported in the experiments in this thesis 

therefore, are simply a result of the myosin undergoing its power stroke, and the 

distributions of forces are due to variation in the  

length of the power stroke, stiffness of the myosin, and binding position of the 

myosin to the actin filament.   

 

2.2.4  Stage position feedback 

We have designed a method to measure stage position fluctuations by adding 

an additional infrared laser beam to the experimental apparatus described above.  

This laser is on the same beam path as the trapping laser, except its position is 

controlled manually and centered on the pedestal bead on the surface of the sample 

chamber.  The light, after interacting with the pedestal bead, is projected onto the 4-

quadrant photodiode which measures changes in stage position as the light is 

deflected by the pedestal bead during movement of the stage (for example, due to 

drift).  The signal from the photodiode is then sent through an integrating amplifier 

to a piezo stage controller which moves the stage until the signal on the photodiode 

is returned to zero.  By incorporating this stage feedback system into our 

experiments, we can reduce fluctuations in the x-axis position of the stage (figure 

2.5 and 3.16) due to drift or other mechanical vibration.  Additionally, by injecting a 

sinusoidal command signal into the summing junction of the x-axis position detector 

we can use the feedback loop to oscillate the stage during stiffness measurement 

experiments (see 2.4.4). 
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2.2.5  Calibration of the isometric force feedback loop 

Calibration of the feedback response can be accomplished by adjusting the 

gain of the integrating amplifier of the feedback loop described above.  Briefly, an 

actin filament was stretched between two trapped beads, and the x-axis voltage 

signals from both beads were zeroed by adjusting the position of the photodiode 

detectors.  The feedback loop was engaged and a 2 Hz square wave command signal 

was injected into a summing junction of the transducer bead x-axis position signal.  

The feedback response was recorded and the time required for the transducer signal 

to return to zero was measured.  The integral loop gain was adjusted so that the half 

time for the response was ~50 ms for force feedback experiments.  For stiffness 

measurements the feedback gain was increased to allow a half time of ~5 ms. 

Proportional and differential feedback controls were not used in the experiments in 

this thesis. 

 

2.2.6  Calibration of the stage feedback loop 

In order to calibrate the stage feedback loop and obtain the calibration to 

convert feedback output voltage to distance moved by the stage we first measured 

the input voltage required to drive the stage piezo controller by known amounts.  A 

stage micrometer was used to compare voltage sent to the piezo controller to  
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distance between successive 1 µm marks on the stage micrometer.  1 V was found to 

correspond to 788 nm of stage movement.   

Before every experiment involving stage feedback, the output voltage from 

the x and y-axis difference signals from the 4-quadrant photodiode for the 930 nm 

position detection laser were zeroed at the center of a pedestal.  A 1 Hz square wave 

corresponding to ~10 nm of stage motion was injected into the summing junction of 

the stage laser photodiode x-axis position signal, and the response of the feedback 

loop was recorded.  The x-axis signal was recorded and the time required to restore 

the x-axis signal to zero was adjusted using the integral gain much the same way as 
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for the isometric feedback loop.  For all experiments the time required for half 

signal restoration was set to ~10 ms.  As for the isometric force feedback loop, 

proportional and differential controls were not used. 

 

2.3  Experimental protocol 

2.3.1  Motility chamber preparation 

Coverslips (22 x 40 – 1.5 – Fisher) were prepared by coating with a 1% 

nitrocellulose in amyl acetate (Fullam) solution to which 2 µl of 1.9 µm silica beads 

(Bangs Laboratories, 1% initial volume) in amyl acetate were added to serve as 

pedestals.  Coated coverslips were stored in a plastic petri dish and left to dry for 30 

minutes at room temperature.  Motility chambers were prepared by applying double 
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sided tape to each end of an uncoated coverslip and tracing the inside tape edge of 

each side with a thin strip of silicon vacuum grease (Dow Corning).  A coated 

coverslip was placed on top of the vacuum grease and gentle pressure was applied to 

form a thin motility chamber of approximate volume 20 µl.   

Solutions were added sequentially to the chamber as follows: 0.1 mg/ml 

streptavidin in water (3 min), 1 mg/ml BSA in motility buffer (2 x 5 min) to block 

nonspecific binding of protein to the nitrocellulose-coated surface, 1 – 5 nM 

biotinylated myo1b in motility buffer + 20 µM CaM (5 min), 1 nM RPFA in 

activation buffer.  NEM-myosin-II coated beads were added to one side of the 

chamber to replace ~1/4 the volume of the chamber.  The chamber was sealed with 

vacuum grease and used for up to 90 minutes in experiments.    

 

2.3.2  Data Collection 

For each experiment, two NEM-myosin-II coated beads were separately 

immobilized in optical traps and brought away from the bead-infused area of the 

experimental chamber.  Calibration of trap stiffness was performed as described 

above for each experiment. Fluorescent actin filaments were observed in the camera 

display, and a bead-actin-bead dumbbell was prepared by moving the stage until a 

fluorescent actin filament was brought into contact with one of the beads.  By 

moving the stage, the other end of the actin filament could be brought into contact 

with the other bead.  Care was taken to avoid long “overhangs” from bead 

attachment positions too close to the center of the filament.  Additionally, filaments 
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were selected for length, with only filaments between ~ 5 and 15 µm used in 

experiments.   

After forming a dumbbell, the actin filament was stretched manually by 

adjusting the tilt of a mirror that controlled the x-axis position of one of the beads.  

The force applied to the filament could be estimated by observing the change in 

voltage signal from both beads and multiplying by the calibration factor (C) from 

the calibration described above.  For most experiments the pretension force on the 

beads was ~ 2 – 3 pN.  The stretched actin filament would then be brought close to 

the surface of the coverslip, and the stage piezo controller was used for all further 

adjustments of the stage relative to the dumbbell position.  At this point the stage 

was moved to position the center of the actin filament directly over the pedestal.  

The stage was then raised, bringing the actin filament into contact with the pedestal, 

which caused the actin filament to flex in response to pressure from the pedestal.  

Flexing of the actin filament caused a change in force on the beads, which was 

reported in the voltage signal.  The stage was then lowered slightly until the actin 

filament was no longer bending over the pedestal.  Each pedestal was “scanned” by 

moving the stage in 100 nm increments, allowing the actin filament to sample 

multiple areas of the pedestal for 5-10 second intervals.  At the myosin densities 

used for single molecule experiments, ~ 50% of scanned pedestals showed 

interactions with a myosin.  Interactions were detected visually by observing the 

voltage signals from trapped beads in real time.  During an interaction between 

myosin and the suspended actin filament, a change in system stiffness results in a 
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decrease in Brownian noise in the bead voltage signals.  Additionally, the power 

stroke of the myosin causes a change in the average voltage signal on the bead.  

Upon observation of interactions, voltage signals were recorded for 6 – 10 minute 

intervals at a 2 kHz sampling rate.  Drift was corrected manually in the y and z axes 

by visual observation of the relative positions of the three beads before and after 

each experiment.   

For force feedback experiments, the experimental protocol is much the same 

with some exceptions.  After collecting the first set experimental data set, the 

direction of the power stroke was determined by looking at the direction of the 

change in voltage signal during acto-myosin interactions.  During an interaction, the 

powerstroke causes the stretched dumbbell to move in one direction, thus the 

voltage changes on the two beads are equal in magnitude (when converted to force) 

but opposite in direction, since one bead moves towards the center of its trap while 

the other moves further from the center of its trap.   Force feedback experiments 

require that the direction of the force is always away from the center of the motor 

trap to result in a “pulling” force opposing the power stroke, so for roughly half the 

experiments it was necessary to switch the orientation of the dumbbell.  This was 

accomplished by moving the stage away from the actin filament and shuttering the 

trapping laser light (Uniblitz), after which the stage was rapidly moved manually so 

that when the laser light was re-introduced by releasing the shutter one of the beads 

was immediately trapped in the trap opposite its original orientation.  The other bead 

was then immobilized in the remaining laser trap by stage movement, thus 
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switching the orientation of the filament.  After checking the orientation of the 

filament, the voltage signals from the two photodiodes were zeroed and the 

feedback loop was engaged.  Pedestals were scanned and interactions were observed 

in the same way as for the no-feedback experiments.   

For experiments in which the stage position feedback was used, pedestals 

were scanned in the absence of stage feedback until the filament orientation was 

determined and a myosin was found.  The position of the stage position detection 

laser was manually adjusted by way of a mirror along the beam path before it 

converged with the trapping laser beams.  When the beam was positioned roughly at 

the center of the pedestal bead (visualized by looking at the reflected laser light in 

the digital camera projection) the voltage output signals from the stage position 

photodiode were zeroed in both x and y axes.  The feedback loop was then engaged 

and the voltage output from the feedback loop was monitored and recorded with all 

data to observe the corrections for drift and stage fluctuations made by the feedback 

loop.   

 

2.3.3  Steady state ATPase 

The steady state ATPase of myo1bIQ was assessed using the NADH enzyme 

linked assay as described (De La Cruz, Sweeney & Ostap 2000) (Furch, Geeves & 

Manstein 1998) in KMg25 using an Applied Photophysics (Surrey, UK) SX.18MV 

stopped flow instrument.  5 µM Myo1bIQ was added to one syringe of the stopped-

flow instrument, while the other syringe contained 0.5 mM DTT, 0.5 mM ATP, 0.4 
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mM NADH, 1 mM phosphoenolpyruvate , 40 U/mL lactate dehydrogenase , 200 

U/mL pyruvate kinase, and varying actin concentration.  The time courses of NADH 

reduction were monitored by absorbance change at 340 nm with a 400 nm long pass 

filter and converted to ADP concentration produced by the Beer-Lambert law using 

the extinction coefficient for NADH (ε340 = 6220 M-1cm-1) and a cuvette path length 

of 0.2 cm.  The actin dependence (activation) of the observed ATPase rate was fit to 

a rectangular hyperbola in accordance with standard Michaelis-Menten kinetics.  

Experiments at each actin concentration (0 – 100 µM) were done in triplicate at 

23°C 

 

2.3.4  Transient Pi release 

Transient phosphate (Pi) release was measured in the stopped flow apparatus 

described above using the coupled assays system containing the fluorescently 

labeled mutant of phosphate binding protein (PiBP) as described (Lewis et al. 2006, 

Brune et al. 1994).  The instrument and syringes were incubated for at least 2 hours 

in a phosphate “mop” containing 1 mM 7-methylguanosine and 0.2 U·mL-1 

nucleoside phosphorylase, to remove contaminating inorganic Pi. During 

experiments, one syringe contained 5 µM Myo1bIQ, 2 µM CaM, 10 µM PiBP, in 

KMg25 containing 2.5 µM ATP.  After a brief aging period to allow formation of 

the AM·ADP·Pi complex, the solution in the first syringe was rapidly mixed with 

the actin solution in the second syringe containing 0.02 U·mL-1 apyrase, 2 µM CaM, 

and 2µM PiBP, and varying [actin] in KMg25.  The fluorescence enhancement of Pi 
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binding to labeled PiBP was recorded using a 425 nm excitation wavelength and a 

440 nm long-pass filter 

 

2.4  Data Analysis 

2.4.1  Selection of events 

Events were selected using the covariance thresholding method as described 

in Takagi et al., (2006) with modification.  All software used for analysis was 

written in Labview (National Instruments) by Henry Shuman.  The average co-

variance (cov) of the motor, mF , and transducer, tF , force signals was calculated for 

a 85 ms time window centered on each data point of the force traces using the 

equation, 

Equation 6 
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where  is an average over the time window.  The means of tF , mF and mt FF ⋅ are 
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The covariance was then smoothed over a 50 ms sliding-window to generate the 

covariance histograms (figure 2.7) used to select attachment events.  A typical  

covariance histogram was bimodal, with one peak of higher covariance 

corresponding to the detached state, and one lower covariance peak corresponding 

to actomyosin attachment events.   

 Two methods, based on covariance thresholding, were used to determine the 

start and ends of actomyo1b attachments.  Selection method #1 was used to 

minimize false positives in the attachment-duration measurements.  For this method, 

attachment starts were defined as the point when the covariance decreased from the 

peak of the distribution of covariances assigned to actin detached from myo1b 

(point A in figure 2.6) and reached the peak of the covariance distribution assigned 

to actin bound to myo1b (point B in figure 2.6).  Attachment ends were defined as 

the point when the covariance returned to the peak of the detached covariance 

distribution. 

 Selection method #2 was used to optimize the time resolution of the time 

courses of the ensemble averages.  Attachment starts were defined as the point when 

the covariance decreased below a point between the attached and detached 

covariances where the histogram of covariances was at a minimum (point C in 

figure 2.6).  Since these selection criteria resulted in a greater number of false 

positive events, that are expected to have zero net displacement, the total ensemble  
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averaged events were normalized to the number of events identified by selection 

method #1, by multiplying the displacements by the ratio of events collected by the 

two methods. 

 A particular exclusion was made for events collected with the isometric 

feedback loop engaged that showed an initial positive deflection in force which was 

immediately followed by a rapid “reversal” to a negative force (figure 2.8).  These 

types of events were not analyzable for the experiments presented in this thesis as 

the rapid change in force saturated the feedback loop in the direction of the power 

stroke, with the transducer bead having moved back to the center of the optical trap.  

While these reversals may represent an interesting phenomenon, we have not 

quantitatively developed an explanation for their ocurrance.  These events are very 

similar to the observations of  “bipolar” attachment events observed by Takagi et 

al., (Takagi, Shuman & Goldman 2004) and we consider them to be more likely to 

occur at higher gain settings (see discussion).   

 

2.4.2  Ensemble Averaging 

Ensemble averaging of synchronized interactions were performed according 

to the method of Veigel et al. (2003).  Events were synchronized to the start or end 

of each event according to selection method #2 (see 2.4.1).  Events were extended 

forwards in time by extending an average of the force value immediately before 

detachment over 50 ms (see panel C of figure 1.19).  Alternatively, the events were 

extended backwards in time by extending the force value immediately after  
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attachment over 50 ms.  Selecting this force value removes the error associated with 

calculating the covariance over a sliding window during attachment or detachment.  

Time courses of the ensemble averages were fit using Kaleidagraph (Synergy 

Software) to a single exponential rate function 
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Equation 9 

kobs = Amplitude(1-erate•time) 

Best fit parameters and standard errors of the fits are reported.  For feedback event 

sorting, ensemble averages of event starts and ends were binned by the force value 

50 ms prior to detachment. 

 

2.4.3  Maximum likelihood estimation 

 Bootstrap Monte Carlo simulations were performed to generate data for 

Maximum Likelihood Estimations (MLEs) of the log-likelihood of equation 10 in 

Labview by John Lewis.  A range of all applicable parameters was tested to find the 

peak in the log likelihood, and the parameters corresponding to this peak were 

reported as the best-fit values.  Errors were assessed at a 97% confidence level.  The 

calculated MLEs from the simulated data were normalized according to the MLE 

from the original data set.  If the value was less than 2 standard deviations away, it 

was rejected.  The parameters from the accepted set were collected and the 

maximum and minimum values were recorded.  Errors were obtained by subtracting 

the maximum and minimum values from the respective parameters.   

 

2.4.4 Stiffness measurements  

 We measured the stiffness of actomyo1b crossbridges by the simultaneously 

measuring the position of the stage during a controlled oscillation and recording the 
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force on the motor bead due to stretching of the actomyo1b crossbridge while 

attached to actin.  The three bead assay was performed as described earlier in 2.3.2 

with the isometric force clamp engaged, with the exception that a 1 Hz sinusoidal 

drive signal was injected into the summing junction of the x-axis detector of the 

stage position sensor.  Using the isometric force clamp maintains a constant 

pretension force on the actin-transducer bead linkages, removing the need to correct 

for bead-actin compliance in the stiffness measurement.   

Using stage feedback, the drive signal (figure 2.7 A) generated an error 

signal in the output of the stage feedback loop, which was then sent to the piezo 

stage controller.  The piezo controller moves the stage to correct the error signal, 

closing the feedback loop, and thus oscillating the stage.  The voltage output of the 

feedback loop was recorded and converted to distance according to the conversion 

factor measured above in 2.2.6. The force signals of the motor and transducer beads 

were collected and the gain of the isometric force clamp feedback loop was adjusted 

to minimize movement of the transducer bead (usually ~5 ms), ensuring that the 

motor bead force trace faithfully reported the force due to stretching of the myosin 

crossbridge.  Every 2000th point was averaged for both the force and stage position 

to generate an average over 1 second, and the force on the motor bead was plotted 

against the stage position to generate a phase plot (see results, figure 3.22), the long 

axis of which was fit to a straight line, the slope of the line giving the stiffness of the 

interaction in pN·nm-1.  Events were selected using the covariance method #2 
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described earlier, and no events less than 3 seconds or greater than 35 seconds were 

used.   
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3. Results 

3.1 Myosin-Ib can act as a molecular tension sensor 

 In the first part of the results section of this thesis, we set out to examine the 

response of myo1b to an external load resisting the power stroke, similar to what an 

individual myo1b molecule or cluster of myo1b molecules working together might 

experience in a cellular environment.  We examined the lifetimes of actomyo1b 

attachment durations as a function of force at the single molecule level using the 

isometric force clamp developed by Takagi, Goldman and Shuman (Takagi et al. 

2006a).  We then used ensemble averaging to confirm the two-step nature of the 

myo1b working stroke (Veigel et al. 1999) and show that ADP release corresponds 

to the highly sensitive transition for myo1b.  This work will show in detail how 

myo1b mechanochemistry changes due to an imposed load, providing in vitro 

evidence that it could potentially function as a tension sensor.  

 

3.1.1 Detection of single molecule interactions 

 The first series of experiments in this thesis sought to examine the 

mechanics and force sensitivity of myo1b at the single molecule level using the 

three-bead assay geometry.  For the following experiments, a myo1b construct 

containing five IQ motifs along the LCBD was used.  The activity of myo1b was 

assessed in the three bead assay configuration by observing interactions between the 
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suspended actin filament and the site-specifically biotinylated myosin (anchored via 

a biotin-streptavidin linkage) on the surface of the experimental chamber.  Data 

were collected at low trap stiffness (~0.022 pN·nm-1) to reduce the load imposed on 

the myosin by the optical trap.  A series of  

 

sample interactions collected at 50 µM ATP is shown in figure 3.1. Binding events 

between the actin and myosin can be observed as changes in the variance of the 

force trace due to an increase in system stiffness, with a simultaneous change in 

mean force acting on the bead in the optical trap due to the motion of the myo1b 

power stroke.  The start and endpoints of events were determined by the covariance 

thresholding methods described previously (Takagi et al. 2006a).   
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3.1.2 Kinetics of Myo1b substeps 

 To detect the presence of substeps in the myo1b working stroke, we used the 

method of ensemble averaging as described by Veigel et al. (Veigel et al. 1999).  

Briefly, by selecting events according to covariance method 2 (see methods) and 

synchronizing to the start of each event and extending the recording of the end 

immediately prior to detachment, a second substep can be observed as an increase in 

displacement after the initial substep that occurs within the time resolution of the 

instrument.  For the start time averages, the rate of the increase in displacement is 

related to the lifetime of the first substep (kstart).  Alternatively, by synchronizing the 

ends of the events and extending backwards in time immediately after attachment, a 

similar increase in displacement is observed, with the rate corresponding to the 

lifetime of the second step (kend).  Displacements in nm were calculated by dividing 

the forces recorded in the ensemble averaged traces by the known trap stiffness.  As 

shown in figure 3.2 the ensemble averages of myo1bb at various ATP concentrations 

show a rapid initial substep of 5.1 + 0.43 nm that takes place within the time 

resolution of our instrument.  This first substep is followed by a slower 3.3 + 0.35 

nm increase to the final displacement (errors represent standard deviations of the 

distribution of individual step sizes).  The start and end time averages both showed 

similar changes in displacement.   

 We fit the ensemble averaged start and end time courses to a single 

exponential function to measure the lifetimes of the first and second step 

respectively.  A plot of the rates of the start and end time averaged data versus ATP  
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concentration is shown in the bottom right panel of figure 3.2.  The rates of the start 

time averages had little ATP concentration dependence, varying from 0.37 s-1 to 

0.77 s-1.  The rates of the end time averages, however, were linearly related to the 

ATP concentration with a slope of 0.48 µM-1s-1.  The rates of the start and end time 

averages, therefore, are consistent (within a factor of three) with the known rates of  
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ADP release and ATP binding described in Table 1.1 when corrected for 

temperature considerations, with ATP dependent kinetics that would be expected for 

the lifetimes of the AM·ADP and AM(rigor) states respectively.  The overall 

lifetimes of actomyo1b attachment can be approximated by the lifetimes of the two 

substeps as determined by kstart and kend.  As shown in figure 3.3, histograms of 

attachment lifetime, plotted as frequency densities, can be well described by the 

predicted probability distribution generated by using the values for kstart and kend in 

the two step model shown in the bottom right panel. 
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3.1.3 Myo1b is a high duty-ratio motor under load 

 Using the isometric force clamp described in methods, we were able to 

subject myo1bb to a variety of loads resisting the motion of the power stroke.  As 

shown in panel B of figure 3.5, we observed dramatic increases in attachment 

duration under loads of up to 4 pN in the presence of 50 µM ATP.  A scatter plot of 

data collected from 12 different myosins is shown in figure 3.6, where the actin 

attachment lifetime is seen to increase in response to increasing force up to ~1.5 pN, 

after which the lifetimes appeared to be force-independent.  We assumed a model 

for the rate of actomyo1b detachment that includes force-dependent and force-

independent pathways: 

 

where kg is a force-dependent rate constant and ki is a force-independent rate 

constant for actomyo1b dissociation.  The force dependence of the detachment rate 

can by calculated by fitting our data to the following model: 
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Equation 10 

i
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where kg0 is the rate of kg in the absence of force, ddet is the distance parameter (the 

distance to the transition state of the force dependent step, or the distance over 

which the force acts), F is force, k is the Boltzmann constant, and T is the 

temperature.  Because the attachment durations at each force are expected to be 

exponentially distributed, we used bootstrap monte carlo simulations to generate 

data for maximum likelihood estimations (MLEs) which were used to determine the 

values and confidence limits of the parameters that describe the distribution of 

attachment lifetimes. 

 

 From the MLEs, the best-fit value of kg0 = 1.6 s-1 (+0.5/-0.35 s-1) is 

consistent with the rate of ADP release as measured via solution biochemical 
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methods (1.8 s-1) (Lewis et al. 2006) which is expected to limit detachment from the 

actin filament in the absence of force.   The distance parameter, ddet = 12 nm (+1.6/-

3.0 nm), is extraordinarily large and distinguishes myo1b as an extremely strain-

sensitive molecular motor.  The force independent rate of detachment ki, 

representing the rate of detachment at forces > 1.5 pN, was found to be 0.021 s-1 

(+0.007/-0.004 s-1).  The errors of the fit parameters represent the 97% confidence 

limits of 250 bootstrap Monte Carlo simulations of our data, calculated as described 

in Methods. 
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To determine the predicted duty ratio as a function of force, we measured the 

steady-state ATPase and transient rate of phosphate release from actomyo1b.  The 

actin dependence of both the ATPase rate and Pi release rate from actomyo1b is 

shown in figure 3.7 (panel A).  The solid line is a fit of the steady-state ATPase 

rates to the Michaelis-Menten equation, yielding Vmax = 0.38 + 0.14 s-1 and KM = 

310 + 160 µM.  The overlayed graphs show that the steady state rate ATPase of 

myo1b is dominated by rate-limiting phosphate release from actomyo1b.   

A plot of the detachment rate as a function of force is shown in panel B of 

figure 3.7.  The blue dots represent the inverse averages of 20 consecutive points 

(by force), where the black line is the fit of the model above to the raw data.  The 

inset shows the predicted duty ratio as a function of force, according to the equation: 

Equation 11 

duty ratio(F) = 
)(det Fkk

k

att
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where kdet(F) is our measured rate of detachment at force F (figure 3.7B), and katt is 

the rate of entry into the strong binding states estimated by the rate of Pi release at 

saturating actin concentration (figure 3.7A).  Myo1b, therefore, transitions from a 

low duty ratio motor to a high duty ratio motor when working against loads greater 

than 0.5 pN. 
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3.1.4 ADP release is the predominant strain-sensitive transition in the myo1b 

biochemical cycle 

 The two biochemical steps that could be modified to increase the lifetime of 

the strongly bound state in the myo1b ATPase cycle are inhibition of ADP release 

from the AM·ADP state or inhibition of ATP binding to the rigor complex. To 

distinguish between these two potential biochemical steps, we investigated the 

effect of force on the lifetimes of the working stroke substeps.  Interactions acquired 

in the presence of 50 µM ATP with the isometric force clamp (see methods) 

engaged were binned by force immediately prior to detachment into groups 

corresponding to all events between 0 to 0.125, 0.125 to 0.25, 0.250 to 0.50, 0.500 

to 0.750, 0.75 to 1.0, 1.0 to 2.0, and 2.0 – 4.0 pN.  We ensemble averaged the force 

binned events according to the end points of the interactions and observed transient 

increases in force in the ~500ms immediately preceding detachment (figure 3.8).  

Single exponential fits of the ensemble averaged ends yielded rates that decreased 

with increasing force, and the force dependence of the rates was fit to the equation 

Equation 12 

kT
dendF

endend ekFk
•−

= 0)(  

where kend0 is the rate of the time course in the absence of force and dend is the 

distance parameter of the substep.   

The best fit rate of kend0 (22 + 2.5 s-1) is in agreement with the rate of ATP 

binding at 50 µM ATP as determined by the fit to the end-time averages of data 

collected without the isometric force clamp engaged (kend = 24 s-1, figure 3.2).   
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Taken together these data suggest that the transient increases in force describe the 

lifetime of the same transition (ATP binding and detachment) as the unloaded data.  

The rate of kend decreases with force, however the best fit value for dend (2.5 + 0.83 s-

1) is much smaller than ddet.  Therefore the predominant force sensitive transition 

most likely responsible for the large value for ddet is not restriction of ATP binding 

to the AM(rigor) state, but rather inhibition of ADP release.  Additionally, we 

observed decreases in force immediately prior to the rapid increases in force 

immediately prior to detachment in expanded ensemble averages (figure 3.9).  

These decreases in force may represent fluctuations due to mechanical vibrations of 

the stage prior to detachment, a potential artifact corrected for in later experiments 

(see discussion). 

 

3.1.5 The myo1b force sensitive state is not reversible by phosphate rebinding 

  Given that the predominant force-sensitive state is likely AM·ADP, we 

sought to test if reassociation with phosphate could occur and drive the myosin into 

a weakly bound AM·ADP·Pi state as has been shown for myosin II (Hibberd et al. 

1985).  By repeating our force dependence measurements for myo1b in the presence 

of a large excess of free phosphate, we can examine the effect of phosphate on the 

lifetime of interactions as a function of force.  Specifically, if phosphate could 

reassociate with myo1b in the AM·ADP state, we would expect to see a decrease in 

the force sensitivity of myo1b.   
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 Single molecule interactions between myo1b and actin in the three-bead 

assay were observed under the same conditions as described in 3.1, with the 

exception of 10 mm free phosphate added to the final motility buffer.  A summary 

of the force dependence of the lifetimes of attachment is shown in figure 3.10.  The 

data were fit to the model in equation 10, and the associated errors for the  
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parameters were determined by the 97% confidence limits of 200 bootstrap Monte 

Carlo simulations of the data.  From the fit, ki was determined to be 0.022 s-1 

(+0.009/-0.012 s-1) and kg0 was determined to be 2.7 s-1 (+1.1/-2.3 s-1).  The force 

sensitivity, estimated by ddet, was 10 nm (+2.1/-2.6 nm).  The parameters are not 

significantly different from data collected in the absence of excess free phosphate 

(compare with figure 3.6).  We then tested the force and attachment duration 

distributions to determine if phosphate could increase the fraction of short, low  
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force events.  The data shown in figure 3.11 do not show any large redistribution of 

events, either in force or duration, with the addition of phosphate.  These data 

together suggest that myo1b is still able to function as a high duty ratio motor, when 

subjected to a resisting load against the power stroke, at the free phosphate 

concentrations that exist inside a cell.   
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3.2 Force sensitivity can be tuned by alternative splicing of the 

myo1b LCBD 

 The following experiments will test the contribution of the LCBD to the 

force sensitivity of myo1b.  The LCBD, or lever arm of myo1b is naturally 

alternatively spliced to generate constructs with 4, 5, or 6 IQ motifs.  The 

experiments described in 3.1 of this thesis dealt entirely with the 5 IQ motif splice 

isoforms, myo1bb, generating an incomplete picture of the remarkable tension 

sensitivity of this protein.  In the following experiments, we repeat our 

measurements of the step and substep sizes of the various natural splice isoforms, as 

well as a non-native construct with a single IQ motif.  We also test the force 

sensitivity of myo1b as it relates to the mechanical parameters of the LCBD/lever 

arm.  In all following results, we have improved the accuracy and resolution of our 

single molecule measurements by incorporating a stage feedback loop, which 

corrects for experimental error due to mechanical fluctuations of the stage (see 

methods and discussion).  These results test the hypothesis that the myo1b force 

sensitivity, demonstrated in 3.1, could be tuned by alternative splicing as a possible 

mechanism for a cell to modify its tension sensing machinery.   
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3.2.1 Step and substep sizes of myo1b splice isoforms. 

 In order to examine the effect of alternative splicing along the light chain 

binding domain (LCBD) on myo1b mechanochemistry, we examined the forces and 

displacements produced by single myo1b constructs containing the head and LCBD 

of myo1b at low load under the same experimental conditions as in 3.1.   Single 

actomyosin interactions were recorded at 1 µM ATP for the three naturally 

occurring myo1b splice isoforms (myo1ba-c) as well as a non-native myo1b 

construct containing a single IQ motif (myo1bIQ).  To obtain a rough comparison of 

the detachment rates for the various splice isoforms, we fit the histograms of 

attachment lifetimes to a single exponential function.  The lifetimes of the 

interactions of all constructs were consistent with each other, and consistent with 

predicted rates of detachment at1 μM ATP (Lewis et al. 2006)(figure 3.12).   

To examine the magnitude of the total power stroke of the myo1b constructs, 

as well as the substeps, single actomyosin attachment events were selected by 

covariance thresholding and synchronized according to the method of Veigel et al. 

(1999) to generate the ensemble start and end averages shown in figure 3.13.  Forces 

in pN were converted to distances in nm by dividing by the known trap stiffness for 

each experiment.  Confirming our previous measurement of the myo1bb construct 

with 5 IQ motifs, we observed that the total working stroke of myo1b occurs in two 

substeps for all constructs.  An initial step, likely corresponding to Pi-release, occurs 

within the resolution of the instrumental setup and accounts for a larger proportion 

of the total working stroke. A second, smaller step, believed to correspond to ADP- 
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release, follows the first as shown by the difference in start and end-time averages 

for each construct.  The total step sizes for each construct are shown in black, 

calculated by averaging 100 data points in the plateau of the end time ensemble 

averages prior to detachment.  The size of the first substep, shown in red, was 

generated by averaging 100 data points in the plateau immediately after attachment.  

The second substep, in blue, is the difference in size between the displacement of 

the total working stroke and first substep.  Error bars are standard deviation of the 

distributions of the 100 points used to generate step sizes.  A plot of step size vs. the 

number of IQ motifs was generated and fit to a straight line in shown in figure 3.14.   
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The relationship between step size and number of IQ motifs in the LCBD suggests 

that the total working stroke and substep sizes are a result of amplifications of small 

changes in the converter region of the motor domain via the LCBD.  Interestingly, a 
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fast transition is observed in the presence of stage feedback in the ensemble 

averages over expanded timescales (figure 3.15 A).  A filtered sample trace (figure 

3.15 B) shows that the interactions show a rapid transition between two force states.  

If the myosin detaches mostly from the higher force state, this force “flicker” could 

account for the fast transition seen in the ensemble averages of the data in the 

presence of stage feedback. 
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3.2.3 Force sensitivity of myo1b splice isoforms 

In the following experiments, we measured the response to force of the 

attachment kinetics of myo1b constructs with varying #IQ motifs along the LCBD.  

Excess calmodulin was included in all solutions to ensure complete occupancy of all 

IQ motifs. 
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The force dependence of acto-myo1b(IQ,a,b,c) attachment lifetime was 

measured as described in 3.1 in the presence of 50 µM ATP with both the isometric 

force clamp and the stage control feedback loop engaged.  The stage feedback gave 

an improved measurement of the average force during an actomyo1b interaction 

(figure 3.16).  The resisting force, however, was capped at a specific voltage level 

using a digital limiter corresponding to ~2.5 pN of total force to limit the proportion 

of extremely long-lived events.  Precise control of stage x-axis position through 

rapid feedback limits fluctuations in force due to mechanical vibration or other noise 

sources, ensuring an accurate and consistent measurement of the average force on 

the acto-myo1b crossbridge.  A series of  
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sample interactions at comparable forces resisting the power stroke for each myo1b 

construct are shown in figure 3.17.    

Scatter plots of attachment lifetime vs. force for each construct are shown in 

the inset panels of figure 3.18.  Confirming our previous result for 5 IQ motif splice 

isoforms (myo1bb), the attachment kinetics are highly force dependent, with load on 

the myosin increasing the attachment lifetime until a plateau is reached, at which 

point the detachment rate is force-independent.  The force at which the plateau is 

reached varies according to the number of IQ motifs in the construct, indicating that 
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the force dependence of the constructs is modulated by the number of IQ motifs 

along the LCBD. 

We globally fit our data for all myo1b constructs to the same model 

described in equation 3.10 that includes the same force-dependent detachment rate 

(kg) and force-independent detachment rate (ki) as alternative pathways for 

detachment.  Using Maximum Likelihood Estimations (MLEs) of 10000 bootstrap 

monte carlo simulations of our data, we generated the associated errors reported as 

97% confidence intervals.  The values for the kinetic parameters ki and kg0 are 

reported in table 3.1, along with the distance parameters for the myo1b constructs as 

well as the error values from the MLEs.   

 

  

 

 



 

123

The force response of myo1b, as described by ddet, is sensitive to the number 

of IQ motifs along the LCBD.  Fits of the detachment rate of myo1b constructs to 

the model above are shown by the red lines in figure 3.18.  The myo1b constructs 

demonstrate a range of force sensitivities which are best described in a plot of ddet vs 

second step (figure 3.19.   The force sensitivity of myo1b (ddet) shows a roughly 

linear relationship with the second step size, suggesting that the force sensitivity can 

be modulated by alternative splicing along the LCBD. 
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3.3 Calcium regulation of myo1b mechanochemistry 

 If myo1b were behaving as a tension sensor in vivo, there could exist 

regulatory mechanisms to allow myo1b to switch from a high duty ratio to a low 

duty ratio, such that clusters of myo1b on an actin filament would transition from a 

static structure to active motility.   As shown in the previous section, all of the 

naturally occurring splice isoforms are sufficiently sensitive to load that they can 

stall themselves simply through the force generated by their own power stroke.  In 
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the following section, we tested a potential mechanism through which the force 

resisting the motion of the lever arm could be uncoupled from the force dependent 

steps in the myo1b biochemical cycle.   

 

3.3.1 Free calcium reduces myo1b step size 

 Free calcium is predicted to directly influence calmodulin binding to the 

LCBD of myosins containing IQ motifs.  More specifically, the binding of calcium 

to the lobes of calmodulin induces a conformational change that weakens the 

affinity of calmodulin for the IQ motif (Manceva et al. 2007, Lin, Tang & Ostap 

2005).  If calmodulin serves to reduce the compliance of the myo1b LCBD, then 

calcium could have an effect on the step size of the myosin in single molecule 

measurements by decreasing the stiffness of the myo1b LCBD.  The decrease in 

stiffness would prevent the LCBD from serving as a suitable lever arm to amplify 

conformational changes in the motor domain.   

 We recorded displacements produced by actin-myo1ba interactions in the 

presence of 0, 1, and 9µM free calcium and plotted the step sizes as histograms in 

figure 3.20.  An intermediate effect is observed at 1 µM free calcium, where the 

average step size is 2.96 nm compared to 11.8 nm for myo1ba in the absence of 

calcium.  At 9 µM free calcium, the myo1ba average step size is close to zero (0.62 

nm), with the entire lever arm essentially uncoupled from any motion in the motor 

domain.  Based on these results, we can conclude that calcium results in a motor 

that is not suitable for generating motion along the axis of the actin filament.   
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3.3.2  Effect of calcium on myo1b force sensitivity 

The reduction in step size of myo1ba may result in an effect on the tension 

sensitivity of myo1b as measured in our single molecule assays.  An increase in 

compliance of the lever arm could reduce the ability of the LCBD to transduce force 

to the motor domain, allowing free rotation of the converter domain and release of 

ADP.  Additionally, calcium is known to have effects on the kinetic parameters of 

myo1c, particularly increasing the rate of ADP release (Adamek, Coluccio & 

Geeves 2008).   Therefore, through both increasing the compliance of the lever arm 

and altering kinetic parameters of the myo1b ATPase, calcium could serve to 

decouple the force imposed on the lever arm from mechanochemistry of the motor 

domain, thus acting as a chemical switch to turn myo1b from an extremely force-

sensitive motor to a force-insensitive motor. 

We tested the effect of free calcium on the force sensitivity of myo1ba by 

repeating our single molecule measurements using the isometric force clamp in the 

presence of 9µM free calcium.  Forces and attachment lifetimes are plotted in figure 

3.21.  Although we were able to show a range of forces in the presence of calcium 

over which myo1b would be expected to be highly force sensitive, there was 

minimal change in the attachment lifetime as a function of force (compare with 

3.18).  Myo1ba, in the presence of 9 µM free calcium, is as force sensitive as 

myo1bIQ, suggesting that the lever arm is nearly completely uncoupled from the 

movements in the motor.  This result strongly suggests that an intracellular calcium 
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signaling event could cause the myosin to rapidly detach from the actin filament and 

undergo repeated ATPase cycles without generating force and tension. 
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3.4 Stiffness of myo1b constructs 

 Our myo1b constructs allow us the unique opportunity to test a fundamental 

mechanical property of the LCBD of a myosin.  By directly measuring the stiffness 

of the actomyo1b crossbridge as a function of the number of IQ motifs for myo1b, 

we can test the hypothesis that the myo1b LCBD serves as a rigid lever arm or an 

elastic cantilever, and if there are any high-compliance elements within that lever 

arm or within the motor domain (Warshaw et al. 2000b, Uyeda, Abramson & 

Spudich 1996b).   
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3.4.1  The stiffness of the actomyo1b crossbridge is linearly related to the lever 

arm length. 

 By making a slight modification to our single molecule experiments in the 

presence of both the isometric force clamp and stage feedback, we can oscillate the 

stage during our experiments by known amounts and simultaneously record the 

force during stretching of a single myo1b molecule attached to an actin filament.  

We therefore tested the stiffness of the myo1b lever arm as a function of the number 

of IQ motifs by recording the force and displacement during our single molecule 

experiments while oscillating the stage at a frequency of 1 Hz.  The force and 

displacement data were averaged as described in Methods (2.4.4) to generate phase 

loops like the examples shown in figure 3.22.  Phase loops were fit to a straight line 

to give the average stiffness over the entire interaction in pN•nm-1.  The stiffness for 

each interaction was calculated and plotted in figure 3.23.  The average stiffness 

values were then calculated for each construct and plotted in figure 3.24.  As shown, 

the stiffness is roughly linear with the number of IQ motifs along the lever arm, with 

the shorter lever arms having a higher average stiffness.  The error in our 

measurement, however, is relatively high and it is possible that there is no real 

difference in stiffness between the different isoforms. 
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3.4.2  The average stiffness of myo1b in the presence of calcium.   

 To test if calcium binding to calmodulin causes an increase in the 

compliance of the myo1b lever arm, phase loop analysis was used to measure the 

average stiffness over the course of actomyo1ba interactions in the presence of 9 μM 

free calcium.  Stiffness values are plotted in figures 3.23 and 3.24.  Surprisingly, 

even at calcium concentrations which reduce the step size of myo1ba to nearly zero, 

the average crossbridge stiffness was not significantly different at 0.134 pN•nm-1.  

From this data we conclude that the uncoupling of the myo1b lever arm from force 
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generation and force sensitivity is not due to a large compliance change along the 

LCBD of the myosin. 

 

3.4.3  Double reversal events during forced oscillations. 

 Occasionally, an interesting phenomenon is observed where the myosin 

undergoes a reversal (see figure 2.8 in methods) while the stage is oscillating, 

however unlike the events observed at high feedback gain in the absence of stage 
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oscillation, the myosin remains attached to the actin filament and “re-reverses” to 

undergo normal force production (figure 3.25).  Although these events are rare 

(estimated to be < 1% of total events), they may deserve special consideration given 

the movement of the stage and stretching of the lever arm in both directions.   
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4. Discussion 

4.1 Summary of results 

The broad goal of this thesis is to use biophysical tools to study the effects of 

force on motor protein function at the single molecule level.   Using a dual-trap 

optical trapping system, we were able to measure the size of the two-step working 

stroke of myo1b and assign specific biochemical states to each step.  We then 

measured the force sensitivity of myo1b using a feedback-enhanced isometric force 

clamp, and found it to be an extremely force sensitive motor.  By repeating these 

types of experiments both for a variety of myo1b constructs and different chemical 

perturbations, we were able to draw broader conclusions about potential myo1b 

function and regulatory properties.  Furthermore, we demonstrated the use of a stage 

position clamp, and how that stage control could improve resolution of our step and 

substep sizes.  Finally, we used the stage control feedback loop to apply an 

oscillation to the stage during actomyo1b interactions to measure the stiffness of the 

actomyo1b crossbridge.   

In the final chapter of this thesis, I discuss how our progress in achieving the 

goals outlined in the specific aims relate to the possible molecular functions of 

myo1b inside a cell.   Attention is paid to regulatory properties of myo1b through 

tension sensitivity, and higher-level regulation of that sensitivity by various means.  
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Also, I explain our new understanding of the interesting properties of myo1b in the 

context of the myosin superfamily as a whole and how this particular protein may be 

specifically tuned to perform a role as a molecular tension sensor.   

 

4.2  Data collected at low resisting loads 

 

4.2.1 Validation of single molecule data 

A primary concern for any experiment that involves making measurements 

at the single molecule level for motor proteins, is ensuring that analyzed interactions 

are the result of one protein instead of multiple molecules.  Appropriate care was 

taken in all experiments to control the concentrations of myo1b and actin in 

solution, such that multiple filaments were not bound to the trapped beads at the 

same time.  Validation of the single molecule nature of our interactions was 

accomplished in the following ways.   

 The covariance selection criteria outlined in materials and methods in this 

thesis requires that there are two peaks in the covariance histogram for each 

recorded experiment, corresponding to the attached and detached states.  Multiple 

myosins, or nonspecific interactions between the coverslip surface and the actin 

filament would be expected to increase system stiffness and further decrease the 

covariance of the bead motion, resulting in multiple peaks in the covariance 

histogram.  Therefore, all experiments showing greater than two covariance peaks 
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were not included in our analysis.  Additionally, kinetic rates derived from our 

measurements at low load would be expected to agree with solution kinetics 

experiments, which are essentially unloaded.  From the start and end time ensemble 

averages of single actomyo1b interactions at varying ATP concentration, we 

measured rates of ADP release and ATP binding respectively, which are in line with 

solution kinetics measurements (Coluccio, Geeves 1999, Lewis et al. 2006).  This 

kinetic evidence, combined with covariance records, provide strong evidence that 

our conclusions are the result of interactions between single actin filaments and 

single myo1b molecules.   

 

4.2.2  The myo1b working stroke is composed of two substeps 

Biochemical, structural, and kinetic evidence suggest that the myosin-I 

working stroke is composed of two substeps (Jontes, Wilson-Kubalek & Milligan 

1995, Veigel et al. 1999, Nyitrai, Geeves 2004, Geeves, Perreault-Micale & 

Coluccio 2000, Veigel et al. 2002, Oguchi et al. 2008).  We therefore first set out to 

confirm the two-step working stroke for myo1b originally demonstrated by Veigel 

et al. (1999).  Two-step interactions can be discerned by eye in the single molecule 

force records highlighted in figure 3.1, and ensemble averaging of synchronized 

events shows two increases in displacement as expected for a two-step working 

stroke.  Increased stage control via the stage feedback loop allows a detailed 

inspection of the various substep sizes of the myo1b constructs, including the small 

steps of the single IQ construct.  With the exception of the non-native single IQ 
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construct, the second substep accounts for up to 50% of the total displacement 

generated by the myo1b working stroke.  This is similar to measurements made for 

other myosin isoforms (Veigel et al. 2002, Veigel et al. 2003), as well as earlier 

studies of myo1b (Veigel et al. 1999).   

 The total step sizes are roughly linear with increasing number of IQ motifs, 

as expected given the fact that the LCBD is proposed to serve as a rigid lever arm, 

(Sakamoto et al. 2003), and the size of the second step is more clearly linear with 

the number of IQ motifs along the LCBD.  This shows that whatever conformational 

changes in the motor domain occur, they are faithfully translated by the LCBD to 

amplify those changes and produce larger displacements.  Therefore the LCBD 

behaves as a rigid lever arm regardless of alternative splicing, and the effect on 

second step size would be predicted to have a proportional effect on the force 

sensitivity of myo1b if it serves as the predominant thermodynamic barrier to ADP 

release.   If this second substep corresponds to the 32° rotation of the lever arm seen 

in cryo-EM reconstructions in the presence and absence of ADP (Jontes, Wilson-

Kubalek & Milligan 1995, Whittaker et al. 1995),we calculate the effective lever 

arm length of myo1bb to be 6.0 + 0.63 nm.  If the lever arm were rigid, a similar 

number of IQ motifs would be predicted to have a 20 nm lever arm length 

(Warshaw et al. 2000a).  At present, we do not have an explanation for the 

inconsistency of our measurement with the displacement predicted by rotation 

shown in the cryo-EM studies.  It is possible that our measurements are an 

underestimate due to compliance between the bead and actin filaments, although we 
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do not consider this to be a significant source of error as the bead-actin connection 

stiffness is estimated to be an order of magnitude greater than the myosin stiffness.  

Alternatively, the 32° rotation may not indicate the actual structural states of a 

myo1b molecule undergoing force production.  Another possibility is that the LCBD 

of myo1b may not fold into a fully extended, linear alpha-helix. 

 

4.3  Myosin-Ib is a high duty-ratio motor under load 

The first specific aim of this thesis was to characterize the response of myo1b to 

an external load resisting the motion of the power stroke.  Using the three-bead 

assay geometry, we examined the lifetimes of actomyo1b attachment as a function 

of force and discovered that myo1b is an extraordinarily strain sensitive motor at 

small forces.  Furthermore, we biochemically characterized the structural states 

responsible for the substeps visualized via ensemble averaging and determined the 

that the sensitivity of ATP binding to force could not account for the tension 

sensitivity of myo1b.  Based on this work, we show that myo1b can potentially 

function as a tension sensor in vivo. 

 

4.3.1 Myosin-Ib is extremely sensitive to low physiological forces 

The force dependence of myo1b is easily recognizable in the raw data traces 

(figure 3.5) and the plot of attachment duration versus average interaction force 

(figure 3.6).  The average attachment lifetimes of actomyo1b interactions at 
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saturating ATP concentration transition from less than one second to > 50 seconds 

at forces greater than 1.5 pN.  The effect is most clearly illustrated in a plot of kdet 

vs. force (figure 3.7), where it can be seen that kdet decreases > 75 fold with ~ 1.5 

pN of resisting force.  At the low forces experienced by myo1b in the absence of the 

isometric clamp, a 1.5 fold decrease in kdet is predicted over the unloaded rate (kg0) 

due to the force imposed on the myosin molecule strictly from the stiffness of the 

optical trap.  This reduction is consistent with the values of kstart measured from the 

start time averages (figure 3.2).  As myo1b experiences higher resisting forces the 

lifetime of attachment to the actin filament increases until reaching a plateau with a 

rate of detachment of 0.021 s-1. Consequently, myo1b transitions from a low duty 

motor to a high duty ratio motor at increasing forces resisting the power stroke in 

the presence of high local actin concentration.   

An estimate of relative tension sensitivity is given by the distance parameter, 

ddet, which is ~14 nm for myo1bb.  This distance parameter is larger than that 

measured for nearly any other myosin to date, including molecular motors whose 

tension-sensitivity is necessary for processive movement along the actin filament 

(Veigel et al. 2005), highlighting the potential importance of tension-sensing in 

myo1b function.  Strikingly, myo1b is highly force dependent over relatively weak 

forces (< 2 pN) in contrast to other strongly strain-sensitive proteins such as 

myosin-VI, which is extremely force sensitive at this range only at higher ADP 

concentrations (Altman, Sweeney & Spudich 2004).  It is possible, based on these 

results, for a single myo1b to produce enough force to stall itself if it were coupled 
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to a sufficiently rigid element that resisted the motion of the power stroke.  A small 

cluster of myo1b molecules would be expected to be essentially irreversibly 

attached to the actin filament and immobile under the same conditions.  This 

phenomenon would be similar to the proposed load-induced anchoring model for 

myosin VI (Altman, Sweeney & Spudich 2004). 

 

4.3.2 ADP release is the force sensitive transition 

While the measured end-time averages for myo1b detachment as a function 

of force show some sensitivity to force as measured in our experiments (figure 3.8), 

dend is not nearly large enough to correspond to the predominant force sensitive 

transition responsible for the ~14 nm value for ddet.  Since the end-time averages 

show the rate of ATP binding, we conclude that ADP release corresponds to the 

predominant force-sensitive transition for myo1b, according to the model in figure 

4.1.  This conclusion agrees with other investigations of myosin at the single 

molecule level that identified  
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ADP release as a strain sensing transition (Veigel et al. 2002, Veigel et al. 2005, 

Veigel et al. 2003), however it remains possible that other biochemical steps such as 

phosphate release are strain dependent to different degrees for different myosins 

(Takagi et al. 2006a).  Our own data shows some strain dependence for ATP 

binding (figure 3.8), even if it is relatively modest in comparison with ADP release 

for myo1b.  Our time resolution at the feedback gain settings used in the 

experiments described in the results section of this thesis does not at the moment 

permit us to observe myo1b in the ADP·Pi state due to the increased amount of 

reversal events (see methods and figure 2.8), even though phosphate release is rate 

limiting under solution kinetics conditions for myo1b at 0.58 s-1 at 37°C.  Strain 

dependence in myosins, therefore, could represent a tunable property that differs 
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among members of the myosin superfamily to optimize their diverse molecular 

functions inside a cell.  This property is demonstrated in muscle as the Fenn effect, 

which may be the result of multiple strain dependent states (Takagi et al. 2006a).   

 

4.3.3 The force sensitive state is not reversible by excess phosphate 

Sleep and Hutton proposed in 1980 that there were two AM·ADP states, one 

of which could rebind phosphate in solution (Sleep, Hutton 1980).  In the general 

myosin kinetic scheme (figure 1.10), AM·ADP·Pi is a weakly bound state, 

predominantly detached from the actin filament during the biochemical cycle.  Since 

the AM·ADP state is the likely long lived force sensitive state observed in our 

isometric force clamp experiments, it is possible that phosphate could reassociate 

with an AM·ADP state that is energetically different from the strongly bound state 

observed in solution kinetics studies.  This reassociation may represent a Pi-

exchangeable state observed by Sleep and Hutton.  In the case of myosin-II, reversal 

of the power stroke to a weakly-bound state was observed upon photoactivation of 

caged phosphate in glycerinated muscle fibers (Dantzig et al. 1992).  We therefore 

repeated our isometric force clamp measurements in the presence of 10 mM free 

phosphate in an attempt to induce a weakly bound AM·ADP·Pi state.   

 In the presence of 10 mM free phosphate, we do not observe a redistribution 

of forces or attachment durations when compared with low phosphate conditions 

(figure 3.11).  This suggests that the application of force favors an AM·ADP state 

that is unable to rebind phosphate and induce a weakly-bound conformation.  Based 
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on our preliminary filtered data showing the transition between two states directly 

(figure 3.15), it is possible that force causes myo1b to transition to a conformation 

that is unable to release ADP and is also inaccessible to free phosphate.  It should be 

noted that our results do not distinguish between the inability to rebind phosphate 

versus the generation of a strongly bound AM·ADP·Pi pre-powerstroke state, the 

existence of which has been proposed based on spectroscopic studies of myosin-II 

(Sun et al. 2008).  As our results in figure (3.10) show, the kinetics of the 

actomyo1b attachment as a function of force, as estimated by the distance 

parameter, is not significantly different between the experiments in the presence or 

absence of 10 mM free phosphate.  Therefore, phosphate rebinding does not appear 

to be a likely candidate for modification of myo1b attachment duration under load.   

 

4.3.4  Alternative splicing tunes the force sensitivity of myo1b 

The effect of alternative splicing along the LCBD is clearly illustrated in the 

data generated from measuring the attachment lifetime of myo1b to actin as a 

function of force.  Based on the global fit of our data to the model described in 

equation 10, we can derive the kinetic parameters shown in table 3.1.  Values for kg0 

and ddet agree with our earlier measurements for myo1bb (Laakso et al. 2008), 

however the global fit arrives at a twofold smaller value for ki than was reported in 

our measurement without stage feedback (0.01 s-1 versus 0.02 s-1).  This is perhaps 

expected when one considers the reduction in force fluctuations due to precise 

control of stage position with the stage feedback loop (figure 3.16).  The ensemble 
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averages of our data collected with force feedback but without stage feedback all 

show transient decreases in force immediately prior to detachment (figure 3.9), 

which may represent force fluctuations due to noise in our measurement.  If 

mechanical noise causes the myosin to transiently experience a lower resisting 

force, it may be able to rotate the lever arm and release ADP before the feedback 

loop responds.  We therefore believe that the measurement made in the presence of 

stage feedback represents the more accurate description of ki 

The distance parameters generated from the global fit to the data show force 

sensitivity, yet the degree to which each construct is force sensitive appears to 

depend on the number of IQ motifs in a linear fashion (figure 3.19 and table 3.1). 

The immediate conclusion from this data is that alternative splicing of myo1b 

generates proteins with varying tension sensitivities at extremely low (< 2pN) 

forces.  The native constructs, consistent with our previous measurement of the 5-IQ 

motif construct, are all extremely tension-sensitive relative to other motor proteins 

and confirm that tension sensing is potentially an important functional property of 

myo1b.  Apart from functionality, the different constructs offer a way to probe the 

mechanical nature of the distance parameter as a measurement of force sensitivity.  

A plot of distance parameter vs. 2nd step size is shown in figure 3.19, illustrating the 

linear relationship between the size of the second substep and the force sensitivity of 

the construct.  However the linear nature of the distance parameter as a function of 

second step size is likely due to the linear nature of the second substep as a function 

of IQ motifs, given that with a longer lever arm, the force produced by 
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conformational changes in the motor domain combined with the thermodynamic 

energy of the environment, must overcome more distance with a longer lever arm 

before reaching the force sensitive transition state. Since we consider in our earlier 

work (Laakso et al. 2008) that ADP release is the force sensitive transition that is 

associated with a second substep, the linear nature of the distance parameter versus 

second step size makes sense.  A further point to be made is that the distance 

parameter is much larger than the second substep for all isoforms.  If the distance 

parameter is an accurate indication of the distance to the force sensitive transition, 

or the distance over which the force acts, the nature of the difference in size between 

ddet and the second substep, and consequently the structural rearrangements of 

myo1b under force are faithfully communicated among the different isoforms, 

suggesting that the effect of alternative splicing is not to modulate the compliance of 

the lever arm.   

In the absence of any detailed knowledge of the cellular functions of myo1b, 

we can only speculate as to the functional relevance of the altered tension-sensing 

properties of myo1b due to alternative splicing in vivo.  Alternative splicing is not a 

novel method of regulating myosin function, recent evidence has shown that 

alternative splicing can modulate association with other proteins (Roland, Lapierre 

& Goldenring 2009, Wagner et al. 2006, Hodi et al. 2006) and control regulatory 

properties such as phosphorylation (Jana et al. 2009), however the demonstration 

that alternative splicing can modulate force sensitivity appears to be a new 

regulatory property.   The widespread distribution of myo1b as a whole, and also the 
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widespread distribution of the splice isoforms in rodents (Ruppert, Kroschewski & 

Bahler 1993) may be so that a variety of cell types can dynamically regulate and 

rapidly modify their tension-sensing machinery in response to extracellular cues.  

The fact that there is a transition from a distance parameter of ~ 10 nm for myo1bc 

to ~18 for myo1ba shows that there is a dynamic range of force sensitivity for 

myo1b, providing further evidence that this protein, and other closely related 

myosins, could indeed be part of a mechanochemical tension-sensing apparatus 

inside a cell.   

 

4.4 The origin of the large distance parameter 

4.4.1 Motions of the lever arm under load 

 Considering that the distance parameter (ddet) represents the distance over 

which the force acts in the strain sensitive transition, one might expect close 

agreement between ADP-release substep size and distance parameter.  In the case of 

smooth muscle myosin-II and myosin-V for example, the size of the second substep 

(2 nm and 5 nm respectively) is in good agreement with the distance parameter (2.7 

nm and 4.3 nm respectively) (Veigel et al. 2003).   If the displacement generated by 

the substep associated with ADP release is ~4.4 nm for myo1bb, and ADP release 

corresponds to the force sensitive transition responsible for the tension sensitivity 

seen in the single molecule recordings, it is interesting that there is such a large 

difference in distance between ddet and the second substep.  One possible 
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explanation for this observation is that effect of force is to structurally reverse the 

power stroke while maintaining the strong binding biochemical state, forcing the 

myosin to overcome a larger distance before entering a conformation capable of 

more readily releasing ADP.  The distance parameter would then be expected to be 

a reflection of the motion of the total step size, which would be in agreement within 

error from our measurements.  Another explanation is that the force sensitive 

transition is on a coordinate that is in line with a rigid lever arm motion, but that this 

transition state is further along the axis of the power stroke than the rigor 

conformation (figure 4.2) (Tsygankov, Fisher 2007).   

The complicated histogram of myo1ba step sizes in the absence of calcium in 

figure 3.20 has multiple distributions, which may reflect multiple calmodulin 

binding states or an unstructured region in the LCBD.  In all of our stiffness 

measurements, the stage  
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movement was controlled to be on average roughly the length of the step size.  If 

there were a region of very low stiffness (relative to the rest of the lever arm), or an 

unstructured element, the phase plot would be flattened over the portion of the 
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oscillation where the low-stiffness element existed, showing a lower stiffness value 

over forces in which the compliant element was slack.  The lack of nonlinearity in 

our phase plots (figure 3.22) provides further evidence that the LCBD serves as a 

rigid lever arm. 

 

4.4.2  Loop-1 of myo1b 

 Another question that applies to all myosins is what conformational changes 

in the nucleotide binding pocket of the motor domain result in the inhibition or 

acceleration of product release in response to load.  In the introduction to this thesis, 

the atomic structure of the myosin-II motor domain was discussed as a general 

example of the structure of a myosin.  Although the motor sequences are highly 

conserved among all members of the myosin superfamily, there is a particular loop 

(called loop 1) that connects two important elements in the nucleotide binding 

pocket, the P-loop and the switch-1 helix.  A number of studies implicate this loop 

as an important regulatory component of the ATPases of different myosins, 

specifically to the control of the rates of product release, suggesting it may act as a 

regulator of nucleotide access (Kurzawa-Goertz et al. 1998, Clark et al. 2005, 

Sweeney et al. 1998b).  This regulation of nucleotide access is coupled to the 

structural changes that alter actin binding by the myosin head as well.   

Consistent with this proposed role in tuning the kinetics of different myosin 

isoforms, loop 1 is considered a variable region of the myosin head (Uyeda, Ruppel 

& Spudich 1994).  Loop 1 is somewhat unique for myo1b in that it is very short, 
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consisting of only 6 amino acids.  Therefore it is expected to be less flexible and 

favor the ADP-bound state of the protein.  Studies of myo1b with altered loop-1 

primary sequence showed altered kinetic effects, suggesting that this loop should be 

taken into consideration in light of our tension-sensitivity results (Clark et al. 2005).  

It is possible that under force, the position of loop 1 and therefore switch-1 changes 

and the nucleotide binding pocket rearranges to result in a structural state which 

increases ADP affinity, possibly through altered coordination of ADP and 

magnesium.   

 

4.4.3 Magnesium release as a gate for ADP release 

 When ATP binds to the nucleotide binding pocket at the beginning of the 

myosin ATPase cycle, it does so with a magnesium ion as a cofactor that 

coordinates that ATP in the pocket for hydrolysis.  After hydrolyzing ATP and 

releasing phosphate, the release of ADP is biphasic with a strong binding phase that 

depends on the concentration of free magnesium in solution as well as a weak 

binding phase which is magnesium independent.  It has therefore been proposed that 

the magnesium ion coordinates the ADP so that it binds more tightly to the myosin.  

Coordination of magnesium in kinesin has been similarly proposed to gate release of 

ADP, and a mutant of a kinesin-2 motor that prevents ADP release by stabilizing the 

coordination of the magnesium ion has been developed (Hoeng et al. 2008).  Actin 

binding induces changes that favor the release of magnesium and then ADP, such 

that under steady state cycling conditions in the absence of load and physiological  
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magnesium concentrations the majority of actomyosin populates the AM·Mg·ADP 

state that has magnesium and ADP weakly bound, allowing virtually unrestrained 

release of ADP at rates similar to solution kinetics conditions (Hannemann et al. 

2005, Rosenfeld, Houdusse & Sweeney 2005).   
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 Structurally, the positions of switch 1 and the P-loop are placed in critical 

areas around the nucleotide binding pocket and interact extensively with both the 

ADP and the magnesium ion depending on the conformation of the myosin (figure 

4.3).  Not shown in the figure is loop 1, which connects switch 1 and the P loop.  A 

large difference in the conformation of switch 1 is seen in the predicted weak and 

strong ADP binding states, with the loss of magnesium coordination resulting in 

changes in switch 1 that render it less tightly coordinated to ADP, although there are 

also predicted changes in P-loop structure (Holmes et al. 2004).  The generality of a 

potential strain dependent magnesium release mechanism for strain-sensing is also 

supported by results from the class-I family of myosin motors.  Work by Fujita-

Becker et al., showed a reduction in actin sliding velocity by myo1d in the presence 

of increasing amounts of free magnesium over a physiological range of 

concentrations, and that this effect was due to a reduced rate of ADP release (Fujita-

Becker et al. 2005).   

 

4.5 Crossbridge stiffness and the lever arm of myo1b. 

4.5.1  The actomyo1b crossbridge does not behave as an elastic cantilever 

 The third specific aim of this thesis was to characterize the stiffness of the 

actomyo1b crossbridge.  The presence of an elastic element in skeletal muscle was 

shown in experiments by Huxley and Simmons examining small length changes in 

muscle (Huxley, Simmons 1971).  The identity of a springlike component in the 



 

153

actomyosin crossbridge then could be the lever arm, or another element within the 

motor domain.  If the stiffness of the crossbridge is a cantilevered beam with some 

elasticity κ, the stiffness can be modeled as a function of the length of that beam 

according to: 

Equation 13 

33

33
L

kTL
L
EI p==κ  

Where, EI/kT is the persistence length, k is the Boltzmann constant, and T is 

temperature.  Since we show in figure (3.14) that the force (and therefore 

displacement) produced by the different myo1b constructs is approximately linear 

with the number of IQ motifs along the LCBD, we can conclude that the length of 

the lever arm is approximately linear with the number of IQ motifs.  Therefore, we 

can test whether the lever arm behaves as an elastic cantilever for myo1b by 

measuring the stiffness of the myo1b constructs as a function of lever arm length 

(Uyeda, Abramson & Spudich 1996b).   

 By oscillating the stage by small amounts (~10 - 15 nm for native myo1b 

constructs) while simultaneously measuring the force produced during stretching, 

we were able to create a running window of the stiffness of the actomyo1b 

crossbridge during attachment events.  As we show in figure 3.24, the stiffness 

appears to vary linearly with the length of the lever arm, rather than as 1/L3.   A 

comparison between our data and the predicted stiffness of an elastic cantilever is 

shown in figure 4.4, assuming the same stiffness values for the 1 IQ motif construct.  

Our range of stiffness measurements for the experimental constructs used in this 
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thesis (0.17 pN·nm-1 – 0.28 pN·nm-1) are in good agreement with other 

measurements of crossbridge stiffness.  Veigel et al., measured the crossbridge 

stiffness for myosin-V and smooth muscle myosin-II at the single molecule level 

and found them to be ~0.2 and ~0.45 pN·nm-1 respectively (Veigel et al. 2005).  

Skeletal muscle myosin-II was found to be 0.7 pN·nm-1 (Veigel et al. 1998). 

 

The linear relationship of stiffness to lever arm length would support a 

model in which the lever arm were sufficiently rigid and coupled to an elastic spring 

within the motor domain itself (Warshaw et al. 2000c).  We are limited somewhat in 

our measurement as shown by the large distributions associated with the stiffness 

values, but we can roughly conclude that a linear fit is a better representation of the 
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data than 1/L3.  Increasing the resolution of our measurement could be 

accomplished by installing feedback loops to control the y and z axes of the stage, 

which may exhibit the same force fluctuations we correct for on the x-axis.  

Additionally, although the stiffness of the biotin-streptavidin linkage is predicted to 

be very high, it remains necessary to test the compliance of our biotin-streptavidin 

anchor linkage.  This could be accomplished using biotinylated actin at a very low 

molar ratio to unlabeled actin. 

 

4.6  Calcium regulation of force sensitivity 

4.6.1  Calcium reduces the force sensitivity of myo1b   

 Based on the force sensitivity of the myo1b, it is likely that a cluster of 

myo1b molecules inside a cell could exist as a static tether, linking a membrane 

bound compartment to the cortical actin cytoskeleton to immobilize it.  In this case, 

a regulatory mechanism could exist to initiate cycling of myo1b either by relaxing 

the tension along the myo1b lever arm while it is still attached to the actin filament, 

or by inducing a biochemical or structural state of myo1b that is weakly bound to 

the actin filament.  Calcium has been shown previously to be an important regulator 

of myosin function.  In the case of myosin-II in skeletal muscle, the effect of 

calcium is indirect, acting through calcium sensitive regulatory proteins bound to 

the thin filament (Gordon, Homsher & Regnier 2000).  In the absence of calcium, 

tropomyosin blocks the binding sites on the actin filament for myosin, but is 
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induced to move by binding of calcium to the associated regulatory protein troponin 

C.  In the case of smooth muscle myosin-II, calcium acts to activate the muscle by 

activating myosin light chain kinase, which then activates smooth muscle myosin-II 

by phosphorylation of the regulatory light chain of myosin  (Kamm, Stull 1985).   

A more direct effect of calcium binding is observed for myosin-Va, which 

exists in the absence of calcium or bound cargo in a compact, folded, enzymatically 

inactive state (Sellers et al. 2008, Thirumurugan et al. 2006, Liu et al. 2006).  In the 

presence of calcium, or induced by cargo binding, the MgATPase of myosin-V is 

activated and the protein becomes more elongated (Sellers et al. 2008, Li et al. 

2004).  In contrast to this activation, calcium also causes dissociation of one or more 

light chains along the lever arm of myosin-V, reducing its ability to move 

processively along the actin filament.  It is therefore likely that cargo binding is the 

physiological activator of myosin-V function, although the calcium binding 

properties may be important for regulation as well (Lu, Krementsova & Trybus 

2006, Trybus et al. 2007, Li, Ikebe & Ikebe 2005).   

In the case of myosin-I, calcium binding to light chains is also known to 

cause dissociation of at least one calmodulin from the lever arm of myo1c, which is 

likely responsible for the alterations in kinetic and motility properties observed in 

vitro (Gillespie, Cyr 2002)(Manceva et al. 2007).  Adamek et al., used transient 

kinetics techniques to demonstrate that although the steady state ATPase activity of 

myo1c is similar +/- calcium, there are a number of effects on the individual rate 

constants of the myo1c ATPase.  In particular, the rate constant for ATP hydrolysis 
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is inhibited, while the rate constant for ADP dissociation is accelerated > 10-fold in 

the presence of calcium (Adamek, Coluccio & Geeves 2008).  Alternatively, for the 

case of myo1b, calcium increases the rate of ADP release roughly twofold, and 

increases the rate of phosphate release roughly threefold. Therefore calcium could 

have an effect on the tension-sensitive properties of myo1b, both through alterations 

in calmodulin binding on IQ1 to relax the tension in the lever arm, and through 

simultaneous acceleration of ADP release.   

 Our investigations of the effect of calcium on the tension-sensing properties 

of myo1b show that calcium can reduce the force sensitivity of myosin-Ib at the 

single molecule level.  The mechanism of this reduction in tension-sensitivity is 

currently unknown, although the step size of myo1ba is greatly reduced in increasing 

amounts of free calcium in solution.  This suggests that the LCBD is uncoupled 

from the structural changes in the motor domain which are normally amplified by 

the lever arm.  The possibility that calcium binding to calmodulins along the lever 

arm of myo1b serves to increase compliance and cause the myo1b lever arm to 

become flaccid will be investigated in the next section of this discussion. 

  

4.6.2  How does calcium binding affect the force sensitivity 

As discussed earlier, the effect of calcium on force sensitivity could be 

brought about by two factors, a decrease in the step size of the motor and an 

increase in the rate of ADP release.  This effect probably is due to modulation of 

calmodulin binding along the other IQ motifs of the LCBD.  In that regard, it is 
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interesting that we observe such a mild reduction in stiffness for our stiffness 

experiments in the presence of 9 μM free calcium. We conducted our experiments in 

the presence of 20 μM calmodulin to ensure that all the IQ motifs have bound 

calmodulin, so the effect of calcium in this case is likely due to altered binding of 

calmodulins along the LCBD rather than dissociation of any individual calmodulins 

(Lin, Tang & Ostap 2005).  

IQ1, being the closest IQ motif to the motor domain, may have a more direct 

interaction with the motor domain of the protein than the other IQ motifs.  If the 

effect of calcium, through modification of the IQ1-calmodulin interaction, serves to 

decouple the force sensitivity of the motor by abolishing specific contacts between 

IQ1 and the motor domain, then perhaps a complete reduction in stiffness of the 

lever arm of myo1b is not necessary to uncouple the changes in the motor domain 

from the production of force. By analogy to myosin-II, the light chain bound to the 

IQ motif closest to the motor domain, the essential light chain, is involved in a 

number of contacts with the motor domain that modulate the ATPase, with 

mutations in about this domain having consequences in familial hypertrophic 

cardiomyopathy (Houdusse and Cohen 1996, Ushakov, 2008).   

 

4.7 The observation of high-gain “reversals” 

During our experiments in which we measured the stiffness of individual 

myo1b crossbridges, it was necessary to decrease the response time of the feedback  
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loop to levels approaching those used in the experiments of Takagi et al., (2006).  

The decreased response time ensured that during stage oscillation, the compliance of 

the bead-actin-bead dumbbell would be restored rapidly enough such that the force 
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due to stretching the myosin molecule would not be transmitted to the transducer 

bead, ensuring that the force measurement on the motor bead was an accurate 

representation of the force due to stretching (see figure 2.9).  By increasing the gain, 

we observed a greater proportion of “reversals” immediately following attachment 

and generation of force (figure 2.8 and 3.23).  These reversals are very similar to the 

published bipolar force events observed by Takagi et al.  The character of these 

reversals, therefore, is quite interesting even though we only have a qualitative 

understanding of them at the moment.   

A description of the sort of unfolding event that could result in a reversal is 

modeled in figure 4.5. If this shift is greater than the pretension force on the actin 

filament, the transducer bead would cross the zero point of the force level and the 

motor bead would attempt to “push” the transducer bead in the direction of the 

power stroke.  Due to the stiffness of the myosin crossbridge, it would be unable to 

do so and the actin filament would go slack.  Since our pretension force is on the 

order of ~2-3 pN, and a myo1b molecule working in our optical trap can produce 

such a force this much force when working against a load, a rapid structural 

reversal, or forced unfolding, could account for the reversal traces.  Figure 2.8 is a 

typical example of this kind of event, where it can be seen that the myosin 

dissociates from the actin filament shortly after undergoing the reversal.  

Alternatively, during stiffness oscillations, we occasionally observe events that 

undergo a reversal and then switch back to non-reversal force production while still 

bound to the actin filament (figure 3.25).   
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We consider three possible reasons for the rapid reversals in force seen in 

figures 2.8 and 3.25.  (1.)  An unfolding event, or loss of calmodulin causes a rapid 

relaxation along the lever arm of myo1b during an event.  This causes the transducer 

bead to rapidly cross the zero force point and the motor bead will then attempt to 

push the transducer back in place.  (2.)  The myosin rapidly reverses the power 

stroke during a near-isometric event and pulls the transducer bead past the zero 

force point, and the portion of the actin filament between the motor bead and the 

myosin goes slack.  (3)  Consistent with the observation made by Takagi et al., the 

myosin molecule “slips” along the actin filament until it reaches another target 

binding site.  This slippage occurs quickly enough that the time the myosin spends 

traveling along the actin filament is faster than the response time of the feedback 

loop, and when it rebinds it changes the average force on the beads and pulls the 

transducer past the zero force point.  At this point we cannot distinguish between 

any of these three mechanisms, although we consider the third possibility (slipping 

along the actin filament) to be less likely for myosin-Ib due to the fact that reversals 

can be returned to the pre-reversal force levels by the oscillation of the stage during 

stiffness measurements.   

   

4.8 Cellular implications 

Based on the predicted change in duty ratio as a function of force, in this 

thesis we propose a potential model for the molecular function of myosin-I (figure 
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4.6).  When attached to a specific cargo or membrane, myosin-I interacts with actin 

and generates a displacement that stretches a cellular “spring”.  This spring may be 

the deformation of membranes during endocytosis, the deformation of stiff actin 

networks during the transport of membranes or vesicles, or the tensioning of 

mechano-sensitive ion channels in the adaptation response of sensory hair cells.  

Tension on myosin-I results in a dramatically reduced rate of ADP release, and the 

myosin acts as an anchoring protein with attachment lifetimes > 45 s.  When strain 

on the spring is relaxed via membrane or protein movements, ADP is released, and 

active ATP cycling and motility of the motor complex resume.   

 A more detailed functional characterization of various myosin-Is, including 

myo1b, is necessary to test our proposed model.   Emerging evidence suggests that 

the generation of membrane tension by linking the plasma membrane to the 

underlying actin cytoskeleton, such as the structural maintenance of intestinal brush 

border microvilli by myo1a, is a general property of class-I myosins in vivo 

(Nambiar, McConnell & Tyska 2009, Tyska et al. 2005a).  Intracellular localization 

of myo1b is consistent with this general functional role (Ruppert et al. 1995), and 

the elongated structure of myo1b in solution could be optimal for crosslinking the 

plasma membrane with cortical actin filaments (Stafford et al. 2005).  Myo1c is an 

excellent example of a closely related myosin with a well characterized role as the 

adaptation motor in hair cell stereocillia of the inner ear (Batters et al. 2004c, 

Gillespie, Cyr 2004, Holt et al. 2002, Batters et al. 2004a).  For myo1c, a strain 

sensing mechanism was proposed to regulate the open/closed probability and  
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positioning of mechanosensitive ion channels, incorporating a strain-dependent 

ADP release step.  Our results support this and similar functional models for 

myosin-I, where myosin-Is function to generate and sustain tension, rather than 

rapidly transport cargoes.  This new understanding of myosin-I mechanics allows a 

more rigorous assignment of this motor’s molecular roles in controlling organelle 

morphology (Salas-Cortes et al. 2005) and dynamics (Bose et al. 2002) in the wide 

variety of cell types in which it is expressed.   

 

4.9  Conclusions  

 The experiments presented in this thesis demonstrate a number of interesting 

properties of myo1b and how they might be regulated.  By characterizing the 

response of myo1b to an external force, we showed that myo1b is extraordinarily 

strain sensitive, and that ADP release represents the likely force-sensitive transition 

in the myo1b biochemical cycle.  We further characterized the biochemistry of the 

force-sensitive state by showing that phosphate does not rebind and induce a 

weakly-bound conformation.  We then examined the regulation of this tension 

sensitivity by alternative splicing and calcium binding.  These results showed that 

alternative splicing can create a dynamic range of tension sensitivities for myo1b 

and that calcium binding can uncouple the force sensing properties of myo1b from 

the structural changes in the motor domain during the power stroke.  Finally, we 

examined the stiffness of the actomyo1b crossbridge as a function of lever arm 
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length and showed that stiffness of the actomyo1b crossbridge is largely insensitive 

to lever arm length, although there does appear to be a slight linear dependence.  

Accomplishing these goals, as outlined in specific aims, provides evidence to 

support models in which myosin-Is generally serve to generate and maintain 

membrane tension.   
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