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Chapter 1: A History of Paint on Brick and Stone Exteriors

in Europe and Colonial to Modern America

1.1 Introduction

It is well known that architectural masonry exteriors have been painted

since ancient Greece, and though coatings were often brightly colored, the true reason for

the application is not known. Was the paint applied solely for decorative purposes, or was

this decoration borne of a perceived need to protect the masonry? Ultimately, paint is

essential for both reasons, and paint was applied to different elements to perform

different functions. The purpose of this chapter is to give a brief history of the European

and colonial to modem American tradition of paint on architectural masonry exteriors.

Some recent publications discourage the use of paint on brick and stone, and even

state that its application is detrimental to the continued stability of the substrate. In Guy

E. Weismantel's Paint Handbook, a section on brick begins, "According to most experts,

a brick masonry wall should never be painted. Brick in itself is a finished material, and

any painting of brick is often due to a problem."' However, a literature survey tends to

favor the belief that paint has been seen as a protective and decorative coating for

mgsonry up until the development of more modem paint films, and their application has

given forth the notion that painting masonry is "bad". The paints used until this point not

only provided decoration, but helped to create a "sacrificial layer" on the masonry to

extend its life and "renewed" surfaces in the absence of cleaning strategies.

' Guy E. Weismantel, Paint Handbook, (Boston: McGraw Hill, 1981), 1 1-20.
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1.2 Paint and Porous Masonry Materials—Science behind the Theories

Surface coatings applied to brick and porous stone will be successful depending

on a variety of factors. The porosity of the stone is one of the most important factors to

consider. As substrate porosity increases, paint may become more readily absorbed,

thereby changing the degree to which the paint can serve as a film. Surface smoothness

also is determinant of a successful film. Much of the adhesion of paint to the substrate is

due to mechanical keying as opposed to a chemical bond. Therefore, if a substrate is too

smooth, i.e., with highly fired or glazed bricks, a film-forming paint will not adhere

properly. However, if it is too rough, a continuous film cannot be achieved.^

Of course, the addition of paint can alter the water vapor permeability of the stone

or brick as well, and this is an important factor to consider. Every paint type and even

brand will affect permeability in a different way, and this is extremely significant when

studying why views have changed over time concerning the appropriateness of painting

masonry.

The general alkalinity of brick and stone (primarily due to the mortar) is another

property that can affect paint performance. In older oil based paints, used often until

relatively recently, the oil reacts with the alkalies producing a soap. The paint layer then

becomes soft and eventually flakes off the substrate. Therefore, either oil based paint that

cannot saponify should be used, or a non-oil based primer such as "latex" should be used

first. However, oil paint has been shown to have poor water vapor permeability and does

not allow masonry to "breathe" leading most texts and industry documentation to

recommend using a complete synthetic emulsion water-based system for masonry. Before

" H.E. Ashton, "Coatings for Masonry Surfaces," Canadian Building, Digest 131, (1970): 1

.
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"latex" systems were developed, surfaces were often treated with a solution of zinc

sulfate. This solution would allow "the precipitation of free lime as calcium sulfate

(gypsum) thus rendering the surface neutral."

Efflorescence is a common problem with masonry, with or without a paint layer.

In addition to the damage that soluble salts do to brick and stone, it also affects paint

performance. Salt crystallization can cause flaking and detachment leading to coating

failure as it destroys the cohesive strength ofthe film as well as its bond to the substrate.

Current theory regarding the relationship of salts and coatings states that the paint layer,

reducing the water vapor permeability in the masonry, exacerbates damage. One can

argue, regardless of the accuracy of this statement, that efflorescence and spalling

continue past the time that any salts inherent in the masonry would be discharged, and are

not a direct result of the application of a paint, but are a symptom of a larger problem that

should be solved and not masked by a superficial coating. Often cases of increased

moisture are a result ofthe removal or neglect of fimctional details such as gutters,

overhangs and cornices. It is this removal of a building's line of defense against water

infiltration that results in damage.

In addition to the natural weathering mechanisms of stone and brick, the effect

caused by human action is also important. The deliberate destruction of works, or good

intentions with disastrous consequences, like overpainting and stripping to return a work

to its "original" state, contribute to the loss of historic appearance.

Ibid, 2.





1.3 Ancient Practices

Relatively little is known about ancient painting practices, but in the recent past,

this has been acknowledged, spurring the pursuit of more research. Only fragmented

evidence, at best, remains of painted architectural elements of Greece though we have

exhausted the subject of its form. As interest expanded in the subject of Greek

architecture in the 1830s and 1840s, a closer examination was made of the seemingly

stark white marble. It was found that the pristine columns and entablatures of temples and

older archaic architecture had been brightly painted. The painted decoration was a

cohesive scheme, uniting architecture, sculpture and color. Vitruvius discusses the

techniques of this decoration in his Ten Books on Architecture. Many of the decorated

surfaces were intended to imitate more noble materials or were used to unify two

disparate materials.

For protection, stones such as tuffwere coated with pitch, and brick was

commonly plastered. The latter was sometimes finished and polished to look like stone.

Although just beginning to come into common use when Vitruvius wrote his treatise,

marble was already highly admired for its strength, and most of all for its appearance.

Some scholars believe it is unlikely that marble was protected with non-transparent

coatings, since its beauty was so admired and imitated. Scientific evaluation confirms

this, as there is evidence of weathering underneath surface coatings.

When Pompeii was discovered by Johann Joachim Winckelmann, he believed that

the painted decoration on marble sculptures and arches were later additions to originally

unpainted stone. Tragically, these were "cleaned" in the nineteenth century, and the paint

^ R. Rossi Manaresi, "Stone Protection from Antiquity to the Beginning of the Industrial Revolution," In

Science and Technologyfor Cultural Heritage 2.(1 993): 151-152.
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was removed.' Brick largely dominated Roman architecture, and for many years, it was

assumed that the expertly laid brick walls were left exposed. However, it has been

discovered that they were usually covered in marble, tiles or mosaics, the brick acting as

a structural element covered with decorative cladding. Lime washes were also applied as

an initial covering. Evidence of this exists on several major monuments including the

arches of Septimus Severus and Constantine and the column of Marcus Aurelius and

Trajan's Column. There is also evidence of painting for the purposes of unifying and

protecting structures that were repaired.^

1.4 European Traditions

Little has been written regarding the coating of brick and stone during the middle

ages, though the Romanesque and Gothic periods yield some information. Many

examples of European architecture show evidence of painted exteriors from the time of

their construction. While the practice indicates that aesthetic and ideological reasons

formed its basis, paint also served as a form of protection. Examples of this are common

in Northern Europe where polychromy was prevalent. In other areas, white marble was

used for its aesthetic qualities, as is shown in Pisa and Lucca Cathedrals. At Siena and

Orvieto Cathedrals, a transparent coating called "cera coUa" was applied. This treatment

' Jukka Jokilehto, "Painted Surfaces in European Architecture," In Seminar on Building Surface

Treatments, (Rome: ICCROM, 1991), 7.

^ Ibid, 7-8.

^ R. Rossi Manaresi, "Stone Protection from Antiquity to the Beginning of the Industrial Revolution," In

Science and Technologyfor Cultural Heritage 2.(1 993): 1 52- 1 54.
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was a mixture of wax and resin, and was certainly a protective measure, however, it is not

known if this was appHed originally or after deterioration had already occurred.^

In the Renaissance and Baroque periods, it was common knowledge that stones

decayed, and that this was primarily the result of water infiltration. This is examined in

detail by Leon Battista Alberti in de re Aedifectoria, in which he calls for the seasoning

of stones to ensure durability. Plaster and stucco coatings were encouraged for protection

of brick and softer stones, but their primary use was aesthetic, to imitate marble or other

stone. This was even done on what were considered durable stones like travertine,

thereby reinforcing the evidence that the coatings were aesthetic.^ At this time, paint was

also applied either directly on masonry, or was part of an intonaco (lime plaster) layer

that could imitate other materials or draw attention to specific elements or special values.

While texts of the fifteenth and sixteenth centuries do not mention the use of clear

protective coatings, scientific investigation has indicated their presence. Treatments such

as wax mixed wath colophony, honey and mutton tallow have been found, and varnish

made from sandarac, nut oil, incense and potash alum is recommended for stone

protection in the sixteenth century Marciana Manuscript. Other documents refer to the

use of varnishes and oils, but it is unknown if the substances were for protection or

aesthetics."* "The first specific indication of stone treatment with the declared purpose of

protection is dated 1 567, and is an exception for such an early date. It refers to the Public

Palace of Louvain, which was 'built in porous stone that was easily alterable due to frost.

Ibid.

Ibid, 154.

" Ibid.





so that the habit of painting it with oil was adopted' . . .and was continued until 1
829"'

'

These practices continued until the second half of the nineteenth century, when advances

in coatings and materials technology provided for the formulation of more elaborate

mixtures with the intention of forming a thick coat on stone (i.e. white lead-based

coatings). After this, the development of chemical treatments like silicates and

fluosilicates allowed for greater diversity in treatment options.'^

In medieval as well as classical architecture, elaborate schemes of polychrome

painting were also introduced. Weimar, Germany was filled with polychromed buildings

dating from the fifteenth and sixteenth centuries that, until recently, had been overpainted

in yellow and white. '^ While the use of color and artistic theory during the medieval

period was abundant, especially in Italy, much of it took place within the interior of

buildings and involved the skill of fine artists. In the Baroque and Rococo periods paint

color and its resulting dramatic effects were ultimately realized. However, much of the

experimentation during this time also took place within interiors.

As early as the nineteenth century, knowledge regarding the painting of medieval

interiors was disseminated and interior as well as exterior paint were truly examined.

Ruskin was especially concerned with the exterior of the architecture of this period,

desiring to emphasize the skill of the artist and the inherent age of the material. The

Romantic movement created new interest in the architecture of the past, and sought to

give meaning to the surrounding landscape. Scholars like Viollet-le-Duc believed that

the period preceding them was excessive, and sought to return architecture to their

" Ibid, 155.

'-Ibid, 155-156.

" Jokilehto, "Painted Surfaces in European Architecture", 9.
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perceived ideal. This resulted in the "stripping" ofmany elements and the addition of

others, causing the realization of a period that never was. John Ruskm, on the other hand,

despised the idea of painting for paint's sake, and preferred bare materials. Nevertheless,

it created a new interest in the architecture of the past, but with the fashion of stripping of

masonry to the bare brick or stone without concern for the reason that paints and coatings

were applied, an assumption is made, creating a structure that never was.

7.5 Early Developments

A painter's guild was first formed in London in 1487 and was united with the

stainer's guild in 1502. They were allowed to use oil paints, while members of the

plasterer's guild used "whiting, blacking, red lead, red and yellow ochre, and russet... in

size water." The English guild tradition was carried over into America when Thomas

Child of Boston brought the first paint mill to the country ca. 1701.'^ From then on, the

craft continued and flourished. However, in America, the guild system eventually

collapsed through the overturn of British rule. It became possible to acquire paint

materials including pigments, oils and other necessities fi-om merchants or painters.

People could paint for themselves or hire unskilled labor to perform the work.

Despite the early availability of painters and paint materials in America, buildings

were rarely painted in the seventeenth century. Only later in the eighteenth century does

documentation show an increase in house painting. At this time, painting was usually

done with whitewash, and any other means of exterior coating was extremely rare until

'"* Richard M. Candee, "Housepaints in Colonial America: Their Materials, Manufacture and Application,"

originally appearing in Color Engineering Magazine in four parts: September-October 1966; November-

December 1966; January-February 1967 and March-April 1967 (New York: Chromatic Publishing Co.): I.

'^
Ibid.
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well into the nineteenth century. '^ Paint other than whitewash was prohibitively

expensive and painters were rare. The exception to this rule is with public buildings and

churches, which were painted earlier.

Since the Colonial period, most houses in America were constructed in wood.

Forests had a seemingly unending supply of trees, and early on, sawmills were operating

while brick kilns took much more work and resources. Other obstacles lay in the way of

early masonry. Obtaining suitable limestone in great quantities for burning was also

impossible in many areas, requiring Rhode Island to be the chief supplier of the Colonies'

limestone as the climate did not permit using clay mortar (a common practice in England

at the time). Oyster shell lime was common until 1724 and along the Connecticut River,

no lime was used before 1679.

Stone was also rare in some areas like coastal Virginia, and transportation of large

quantities was, of course, not possible. Even where fieldstone was plentiful, as in

Massachusetts, the lack of lime made building difficult. This does not mean that masonry

buildings did not exist. Bricks were produced as early as 1611 in Jamestown, and one of

the first settlers was trained as a bricklayer. Virginia produced bricks, and a kiln was first

recorded in 1629 in the Massachusetts Bay Colony. In Philadelphia, a bricklayer was in

residence before the city was laid out. Bricks were first used for chimneys and houses for

the wealthy. Once bricks could be produced economically, they replaced stone as the

primary masonry material in the Colonies.'^ From then on. brick and stone masonry

evolved; Colonists and people of early America used various styles, bond patterns and

'* Ibid, 2.

'^ Fiske Kimball, Domestic Architecture ofthe American Colonies and ofthe Early Republic, (New York:

Dover Publications, Inc., 1966), 35.

'* Ibid, 38-40.
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building plans throughout the seventeenth century, hi Pennsylvania and Rhode Island,

both building stone and limestone for mortar could be found, and thus, these two areas

developed an early and strong masonry tradition. The first brick buildings in the Colonies

were built as early as 1707 and were a direct result of the desire for more permanent

structures. Often these came in the form of government buildings and the houses of the

wealthy. This desire drove the development of brick kilns that could produce quality

bricks in an economical fashion.

One of the most distinctive masonry traditions to develop during this time was the

Quaker patterned brick tradition. As it relates to the subject at hand, they show that quite

obviously, many buildings of brick were to be seen without paint. In the Delaware Valley

(consisting of West New Jersey, Delaware and Pennsylvania,) the tradition of patterned

brick houses and meetinghouses flourished. The scheme, design and meaning of the

buildings were reflective of Quaker society. A network of builders and consumers united

the region with webs of readily identifiable buildings with slight stylistic variations. As a

common thread, the gable ends of brick houses and meetinghouses of nearly identical

form within a community were decorated with glazed headers set in a distinctive pattern.

These were often "diaper" or diamond shaped."

The coming of the Georgian period to America marked the time when buildings

for common use were regularly painted. This period was begun in England around 1 700

by Sir Christopher Wren, but reached architects and builders in America somewhat later.

In 1715, when architect Andrea Palladio's Works was first translated into English, and as

'^
Ibid, 36.

" Michael J. Chiarrapa, "The Social Context of Eighteenth-Century West New Jersey Brick Artisanry," in

Perspectives in Vernacular Architecture IV, edited by Thomas Carter and Bernard L. Herman (Columbia,

MO: University of Missouri Press, 1991).
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other handbooks like Colen Campbell's Vitruvius Britannicus (1 71 5-25), James Gibbs's

Book ofArchitecture (1 728), William Salmon's Palladia Londinensis (1 734) and Robert

Morris's Select Architecture (1757) were published, architects began to use "Georgian"

elements, which were often painted.^' As Kimball describes, the Academic styles that

came into being during the eighteenth century and spread through texts such as these

called for a more

abstracted composition of space, mass and surface...As received from

Jones, its greatest English protagonist... architecture should be 'solid,

proportionable according to rule, masculine and unaffected.... In the hands

of Wren the style became less austere and more intimate, something of a

baroque surprise and movement appeared... Under Dutch influence brick

became the favored material.^^

The use of paints increased as the popularity of these designs, eventually being adapted

for both public buildings and private (if usually elite) dwellings, spread. As the century

continued, masonry also became more common, especially among the wealthy.

In the Middle Colonies and the south, houses were commonly made of brick. In

England, masonry buildings became the norm as the decimation of forests made wood

prohibitively expensive. While these are the norms, there are certainly exceptions in all of

these cases, as taste and preference played a significant part in the choice of construction

materials, as it does today. When considering the use of masonry, local conditions

perhaps played the largest part, above stylistic concerns. As stated above, grand houses of

stone were really only common in Pennsylvania, despite the dictate of tastemakers and

writers of freatises.

-' John C. Poppeliers, S. Allen Chambers, Jr., and Nancy B. Schwartz, What Style is It?: A Guide to

American Architecture, (New York, John Wiley & Sons, Inc., 1983), 18.

^^ Kimball, Domestic Architecture ofthe American Colonies and ofthe Early Republic, 53.
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Kimball suggests that to gain a better understanding of the development of

masonry architecture (and hence, its decoration and protection), one should look not to

texts that were prescriptive tools, but to the buildings themselves. The type and method of

masonry construction and the detailing of the exterior reveal a great deal. Typically, brick

of this period was laid in Flemish bond, but this was not the rule. Occasionally, there

were deviations from this; dark or glazed headers were used in a pattern as described

above. Moulded bricks were used for the water table, and other differences indicate a

progression in masonry construction and aesthetics. All the while, artists and masons

improved their skills.

Figure 1.1 Mount Pleasant. From Roger W. Moss, Historic Houses of Philcuii'ipliin, I'^'^S, p. 95.

From an early date, stucco was employed as a covering for brick and rubble

masonry, especially in Charleston and the Philadelphia area. According to Kimball,

"increased warmth and weatherprootlng seem to have been the principal reasons for its

employment rather than a desire to imitate stone.""' He illustrates this argument by

discussing Mount Pleasant in Philadelphia (1763-65). where the facades are finished in

-' Ibid, 68.
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stucco struck like ashlar while the brick quoins are left unfinished, (Figure 1.1) and states

that only after the Revolutionary War did the appearance of exposed brick become

aesthetically objectionable.

Along with architectural texts previously discussed, newspaper advertisements

and early city directories show that the availability of paint materials and the number of

professional painters increased. The businessmen featured in these publications include

importers, merchants selling pigments, and painters themselves. While some painters

were rooted in a specific area, usually a city, it was more common in the late eighteenth

and early nineteenth century for a painter to take his business "on the road", painting in

rural areas.^'' The practice gained momentum, when in 1736, the first ready mixed paints

became available; although, they were not widely used until the 1 860s when re-sealing

paint cans were developed. Until then, paint was mixed much as it had been for

millennia: by mixing dry pigments and binder (often oil) with a muUer on a marble or

other smooth stone slab.

Different techniques were used for interior and exterior painting. Due to the lack

of physical evidence for many of the instances of exterior coatings, one must look to the

surviving documentation for clues. English estimator's books, reprinted in America in the

early eighteenth century, list the prices for each element that was to be painted and the

most popular colors: "stone, fimber, and blue for painting 'windows, doors, rails and

banisters, for stair-cases, shop-windows, and mundilions...'"; while the 1700 edition of a

similar book describes painting "outside works; as doors, shop-windows. Window Cases,

Pediments, Architraves, Friezes and Cornices, and all other Timber-works which are

^* Candee, "Housepaints in Colonial America: Their Materials, Manufacture and Application," 2-3.
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exposed to the weather...""' As these books do not Hst the cost or materials for painting

exteriors, even clapboards, this supports the case that trim was pamted, while often, the

rest of the facade was not. While this could mean that the painting of trim was the first

step in exterior painting in America, it may also indicate that those who could afford to

paint their trim could also afford to have a stone or brick house that was not painted.

Thus, many Georgian buildings of the eighteenth century only had painted trim. This is

evidenced at Thomas Turner's Cliveden in Germantown, Pennsylvania, (Figure 1.2)

where in 1766 only the bargeboards, cornices, eaves, windows, shutters, doors and door

cases are painted on an otherwise brick house.''' It should also be noted that the trim was

the first element to be painted (usually with a paint having insecticidal or biocidal

qualities), sometimes before construction was complete, giving support to the thought

that it would have been painted regardless of stylistic concerns."^

Figure 1.2 Cliveden, From Roger W. Moss, Historic Houses ofPhihiclclphia, 1998, p 117.

The earliest large-scale exterior coating in America was done on wood clapboards

with tar, obviously for protective reasons. This practice was done throughout the

Ibid, 4.

;

Ibid.

Frank G Matero, personal communication, December 7, 2001

.
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eighteenth century and carried over to the protection of the lower portion of brick

buildings. It was certainly not as desirable as painting in oil, which was done on finer

framed houses early in the century; this became more popular by 1 760, when exterior

painting was listed in an estimator's book. Over time, however, exteriors made their way

out of these handbooks as interior painting became more complex and the focus ofmany

28
pamters.

Little has been written describing the exteriors of buildings before the

Revolutionary War, but Candee indicates that the practice of painting buildings in oil was

more common in urban areas and larger towns where a person dedicated to the craft was

likely to do a steady business. He bases this argument on the fact that rural areas show

little evidence of painted buildings until the turn of the century. It is only after the

Revolutionary War that documentary evidence indicates that exteriors were painted.

Candee accounts the writings of a French traveler in Philadelphia in 1796: "'An attempt

is made to enliven the facades by painting them brick colour, then painting symmetrical

white lines in squares, thus seemingly outlining the divisions between the bricks. The

window trim is painted white in imitation of cut stone.' Another brick treatment is

described in a journal of 1782. 'Ye Painter at work this week painting ye roof of our

House and Back Buildings with Brickdust.'"

Brick dust was often used as a pigment for painting brick or roofs. This gave

fireproofing protection to wood and gave a more pleasing color to poor quality brick. The

desire to imitate a more noble material was also attempted by using sand applied onto a

-* Candee, "Housepaints in Colonial America: Their Materials, Manufacture and Application," 5.

^'Ibid.
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coat of white lead in oil to simulate cut stone. This was done in Boston at the Brattle

Street Church in a 1 744 renovation and at Mount Vernon in 1
799.^°

Documents detailing the application of paint prior to the nineteenth century are

very rare. However, the few documents that remain and the physical evidence indicate

that for exterior painting three coats of oil based paint (with turpentine added) were

applied, with wood intended to be repainted every few years when the white lead became

chalky. Often the secondary fa9ades were painted in Spanish brown. Other common

shades were used, as well as compound colors consisting of ochres, lampblack, indigo,

etc.^' One must consider, however, regional differences in painting styles. This is less

evident in the existing literature, and can be examined only through the buildings

themselves. Texts were often intended for use by architects and painters and do not

necessarily reflect how or in what style vernacular buildings were painted.

After the Revolutionary War the materials used in construction in the United

States remained the same, though the forms changed. Brick houses began to be seen in

greater numbers in New England, as did the numbers of cut stone houses (but to a lesser

degree.) One example of a stone house begtm during this time was the famed house of

Robert Morris in Philadelphia (began 1 793, never completed) which was to be faced with

marble. As time went on, innovations in the treatment of materials were seen. Chiefly,

stucco was increasingly struck to look like ashlar, as seen at Solitude, also in Philadelphia

(1784); this technique began to be used more fi-equently after the turn of the century with

the buildings of Benjamin Henry Latrobe and Robert Mills.^^ Thus, the application of

'°
Ibid.

" Ibid, 6.

'^ Kimball, Domestic Architecture ofthe American Colonies and ofthe Early Republic. 1 52.
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exterior finishes, in this case stucco, was becoming increasingly an aesthetic rather than

protective treatment. The stylistic effect, however, can be applied to paint. While it

certainly served the purpose of protection, the impetus was the appearance of a more

noble material.

1.6 Traditions ofthe Early to Mid-Nineteenth Century

By the beginning of the nineteenth century, exterior paint was much more

common than had been in previous years. Travelers' accounts note many examples of

white houses with green shutters (much to the dismay of A.J. Downing, who thought this

practice deplorable); and in 1818 brick houses of Boston were "painted white or stone

color... the frame houses are painted more variously, according to the fancy of the owners

or occupiers."^^

It is certainly easier to study paint on exterior buildings within the United States

in the nineteenth century, as most existing historic structures were built during this

time. Paint was often applied for what painters called the "economic" part of the

building, meaning that it was for protection of the exterior materials, but the century saw

many changes: not only in building technology, but in paint technology as well. By the

1830s, red brick was rarely seen. In New England, where the stucco technique was not as

prevalent as in other areas, brick was often painted gray. Some buildings where this

technique can be seen are Boston's Franklin Crescent, and the Gore House in Waltham,

Massachusetts. In areas where wood buildings were still common, the most prestigious

" Candee, "Housepaints in Colonial America: Their Materials, Manufacture and Application," 5-6.

^* Pamela W Hawkes, "Economical Painting: The Tools and Techniques Used in Exterior Painting in the

19* Century," The Technology ofHistoric American Buildings, (Fredricksburg: APT, 1983), 189.
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used smooth boarding in lieu of clapboards set with close joints with the wood painted

and sanded to resemble cut stone; this technique became a favorite of Bullfmch.^^

As the century progressed, taste began to play an increasing role in the lives of

Americans. A. J. Downing's Cottage Residences (1873) was released in the United States

and detailed not only proper design for all situations from townhouses to houses for the

clergy, but also mandated taste. Downing felt that a building's materials should reflect its

style and use, if not the class of the occupant, and vice versa. Mansions should be made

of stone, and wood should not imitate more noble materials, contrary to common practice

(though brick could be painted to resemble stone). The "Pointed" or "Tudor" style was

appropriate only when built of stone or brick covered in stucco. "To erect a dwelling in

this style of so light and frail a material as wood, under any circumstances, would be a

complete violation of good taste, as there would be an entire discordance or incongruity

between the style adopted and the material employed."

When compared to previous handbooks, one can also see the progression of

architectural types and their details through time. For instance. Downing states that while

stone is the most desirable and durable building material "both in expression and reality"

brick "is being used in increasing numbers," and goes on to explain that brick's solidity

and permanence is appropriate for houses in a rural setting. This statement shows that

brick was accepted in locations other than the city, where we find the majority of

masonry buildings. While this treatise is mostly about proper taste, it also gives clues that

^' Kimball, Domestic Architecture ofthe American Colonies and ofthe Early Republic, 1 53.

'^ Andrew Jackson Downing, Victorian Cottage Residences (New York: Dover Publications, Inc., 1981),

57.
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masonry was cost-efficient at the time. However, Downing indicates that the use ot brick

in the country was for structural stability instead of visual effect.

The offensive hue of red brick walls in the country is easily removed by
coloring them any agreeable tint, which will also render them drier and

more permanent. Brick and stucco (that is, a wall built of rough brick, and

coated exteriorly with a [stucco]) is, when well executed, one of the best

materials for cottages or villas. It is much warmer and drier than wood, or

even stone, and is equal to the latter in external effect, when marked off

and colored to resemble it.

IJE-SIGS Nil.

An Ikbeci-lar ('ottace is tue Old Esg \ Ctrrrxr.r. Vrii

DE!5IGX Vlll.

, IS Tin; Itamas- Styi

Figure 1.3 Downing's Houses. From Victorian Cottage Residences, 1873.

From this statement, it can be seen that paint and stucco were seen as measures

that resulted in both an aesthetic and visual effect. Downing details the methods in which

Ibid, 8.
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stucco should be applied, detailed and tinted to resemble "agreeable" light colored stones.

This technique was favored for "English" or "Rural Gothic" style cottages and villas in

the "Italian" style. (Figure 3) Other styles deemed suitable by Downing also utilize

masonry construction. For his "suburban cottage for a small family," brick finished with

stucco was appropriate "as the projecting roof would afford perfect security for the

dryness and preservation of the walls," and advocates using rough (i.e., hand-molded)

brick as it would accept the stucco better, and "in many districts where bricks are easily

obtained. . .will be found as cheap as wood." Stucco was a common finish for brick

fi-om the Colonial period onward, and was often scored and painted to resemble stone.

Stone dwellings were appropriate for mansions and Tudor cottages, as stated above, but it

was also considered suitable for "ornamental" farmhouses. However, in farmhouses, the

stones should be laid irregularly of rough or slightly dressed stone, with the trim except

for sashes and doors painted the same color as the stone.

Downing also supports applying paint directly to brick. In the "bracketed",

"irregular old English" and "Italian" styles, he states that to "destroy" the "raw and

disagreeable color of new brick" it should be painted in three coats of oil of a "soft,

pleasing shade" with (in the case of the "Italian" style) wood trim painted and sanded to

resemble stone.^^

Downing was not alone in his beliefs, as evidence shows. Samuel Sloan in 77?^

Model Architect supported painting brick to disguise its color but conceded, "The public

have acted very differently and urged by motives of economy, have built the principal

part of our cities and towns of this cheap and durable material." Lewis Allen in Ridral

' Ibid, 30.

'ibid, 89, 133, 144.
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Architecture (1852) credits brick as being able to take on any color given to them by the

"taste of the builder." Much of the exterior brick of the nineteenth century and earlier

was painted. Although, on many occasions it was painted red with white joints painted in.

This gave the appearance of using a higher quality of brick and joinery than may have

been feasible, either due to resources or location. High-fired brick was often unavailable

or cost ten times the amount ofcommon brick.'" Often builders used high fired brick on

the front facades of buildings and painted side walls, constructed of common brick to

match. Paint was also used to blend patches with old brick when new work was installed.

When brick was to be painted, a mason would lay the units tightly. The wall was

then rubbed down with a broom and covered with linseed oil. This oil served as a

protective water repellent for high-fired brick or was an absorption retarder when finished

with paint. Brick primer could also be used. This was a diluted wood primer or a

commercially available mix such as D.S. McDannell's Waterproof Priming for Brick,

containing shellac, sodium bicarbonate, water and rosin. Following these treatments were

the finish coats. These were either commercial mixes or homemade versions. One mix

consisted of Venetian red, orange chrome ground in turpentine, boiled oil and japan (wax

produced from the lacquer of the sumach tree). Then the work was often finished with

striking artificial joints in white.''^

The newer styles of brick, including mottled brick were also imitated with paint.

The emergence of these techniques tends to support the argument that during this time an

increasingly complicated combination of aesthetics and economy were at work. Poor

*" Hawkes, "Economical Painting: The Tools and Techniques Used in Exterior Painting in the 19*

Century," 206.
"' Ibid, 205.
"^

Ibid, 207.
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quality bricks were used due to cost, but instead of being painted to resemble stone or

simply for color, they were disguised as other bricks. Obviously, it was not brick itself

that was considered unattractive. The brick technique was attractive but the materials did

not allow for their exposure.

Another consideration, which should be made concerning the impetus for painting

brick, was the use of decorative treatments like marbleizing, sanding and graining. These

techniques were obviously intended to hide the brick substrate and have been in use since

the twelfth century. Materials that are more common were sanded or painted to imitate

expensive marbles and other stones. This was done in the United States as well as

Europe; it is seen at Washington's Mount Vernon (1799). Sanding was also considered a

protective measure, though there has been no evidence to support this commonly held

belief in the available literature.

/. 7 New Developments—the Industrial Revolution to 1950

As stated above, the nineteenth century was witness to many changes in both

building and paint technology. In addition to advances in the science behind paint,

painters also revised their approach. Unions like the Decorating Contractors of America

(1884) and the International Brotherhood of Painters (1887) were established and public

education took the place of apprenticeship.'*^ Individual businesses also grew by the end

of the century while the absence of guilds in the United States allowed people to paint

their own buildings and houses. Handbooks published for architects, builders and

homeowners were distributed from the beginning of the nineteenth century had short

Ibid, 190-192.
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recipes for whitewash or sections dedicated to paint. Even before these texts were

published, people regularly whitewashed their own buildings. After the Civil War the

publication of handbooks dealing specifically with painting such as F.B. Gardner's

Everybody 's Paint 5ooA: (1 888) and Anson Oilman's Every Man His Own Painter

(1871), as well as household magazines and technology and architectural journals only

made the practice simpler and more popular. These sources, along with actual

specifications have become the primary sources for information on historic painting

practices.

Through the early twentieth century, the materials of exterior paints did not

radically change. In addition to common whitewash, most were white lead and pigments

ground in linseed oil (in some areas, fish oil was used). In the 1850s, the addition of zinc

white to the available repertoire served as an alternative to harmful white lead.

Furthermore, driers like metallic salts of lead, manganese or cobalt were added, and

mineral spirits and turpentine were used as thiimers. Mineral paints, which form a

chemical bond with the substrate while allowing for water vapor transfer, were developed

during this time as well.

In order to attract the common consumer, paint catalogues featuring colored

swatches or color lithographs showed variations of paint schemes for the architect or

average home owner; and whether appropriate or not, paint manufacturers were touting

the advantages of paint. "Paint is a necessity: do not spare it either inside or out, whether

your buildings be brick, stone, plaster or wood.'"*^ In fact, this claim serves to illustrate

the question at hand: why were stone and brick painted? It would seem that while

Ibid. 195.
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necessity and aesthetics served to be the underlying reasons for the practice in previous

centuries, with the development of large-scale marketing, the practice was due to an

entirely different reason. People were told to use the material on everything, with no

precedent to justify it except the fervent claims of the manufacturer; and use it people

did: Americans alone consumed over 174,000,000 pounds of mixed paint in 1868.''"^

As paint materials developed and with the addition of synthetic binders and other

previously unknown ingredients, the claims did not change. Painting masonry and brick

was continuously encouraged, though these materials were the same that had been in use

before the developments in paint technology. Only painting manuals intended for

professionals discouraged painting too often. In fact, the inappropriate use of the modem

paints may have led to the question of the use of paint on masonry, as old paints like

whitewash and oils did not threaten the fabric of old structures.

By the early twentieth century, changes in mechanization and scientific research

as well as the ability to transport materials on the railroad, brought advances that resulted

in better tools and better, less expensive paint. Many of these developments have been

rejected as a product of the momentum of progress, but many more, such as titanium

dioxide (available 1916) have been retained and have formed the basis of the modem

paint industry.

Between World War I and World War II, the paint industry experienced rapid

changes. Processes and formulas developed for the war efforts were put into common

use, including latex paints and other materials, mainly due to the expanding

petrochemical industry. Although synthetic materials such as celluloid and plastic were

Ibid, 211.
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produced in 1870, they were not used in paints until after World War I. They are now

widely used."*^

The common use of paint changed during this period as well. Marketing increased

and harnessed the forward-looking vision of the emerging society. Paint companies like

Benjamin Moore sought to capitalize on this hopeful and idealistic consumer driven

society, as their publications illustrate (Figures 1.4, 1.5). Once again, consumers were

encouraged to paint everything: wood, brick, stone, even cars, and they responded by

doing so. This was an age of unapologetic consumption. (Figure 1.6).

Figure 1.4 Benjamin Moore Brochures 1924 (L) and 1934 R). from: \v\vw.benjaminmoore.com

/archives

"'' Caleb Hombostel. Construction Materials: Types, Uses unci Applications, (New York: John Wiley and

Sons, Inc., 1991), 574.
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1.8 Modern Approaches—1950 to the Present

Paint manufacturing processes have become much more complex since 1950.

Paints are now developed in the laboratory after many testing procedures and standards

are applied to the proposed coating. Computers generate exact color and chemical

proportions to streamline the development process. Synthetics have reached an all time

high for production and use, along with chemical bonding systems such as epoxy paints.

These new materials have met with varied success. Epoxy and alkyd paints may cause

damage to masonry substrates due to their poor water vapor permeability. These and

other paints contain environmentally harmful chemicals that have been restricted from

use, eliminating the choices that painters and architects had in the past.

When faced with painting masonry, current choices are usually alkyd, mineral,

latex or simulated whitewashes. Often the painter or purchaser of the coating either lacks

the knowledge to make a proper decision, or the cost in combination with the desires of

the client overshadow the necessity for proper materials and application. With the

development of higher firing techniques masonry materials that usually do not need to be

protected, their coating has become largely aesthetic.

1.9 Current Thought

As has been shown, the tradition of paint on masonry has progressed through time

from a protective to an aesthetic treatment, with periods in which the line between the

two is blurred. The subject of whether brick should or should not be painted is debated in

current texts and information directed toward the building professions. Not only do texts
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differ in recommendations, but they often acknowledge the dispute.'*' Failures have been

reported; these include older coatings flaking off buildings, impermeable coatings

causing water to be trapped within the brick, leading to freeze-thaw cycling and thus

causing subsequent spalling, and the failure of coatings that are applied to bricks treated

with water repellents. Ashton states, however, that this last problem may be prevented by

using "latex" paints, which have a higher rate of vapor permeability, allowing moisture to

escape from the substrate. In his 1970 article "Coatings for Masonry Surfaces", he also

recommended the use of two other types of coatings: "rubber base" paints with binders of

vinyltoluene-acrylic, styrene-butadiene and chlorinated rubber which did not

economically compete with "latex", and a "breathable" asbestos-sand coating for

masonry, including brick. Obviously, the asbestos paint is now restricted. Also mentioned

were cement paints used before the formulation of "latex" paints, which chalked and

were difficult to renew.

According to Ashton in 1 970, "masonry surfaces can be successfully painted if

the correct type of coating is used for the substrate in question and if good design and

construction have prevented leaks and openings in the structure." His article states that

paint serves as a protective coating "by preventing rain penetration" as well as

performing an aesthetic function.

Recent and even current fashion has resulted in the removal of paint from

historically painted buildings. It has resulted from owners' desire to avoid repainting. As

can be determined from evidence given above, these coatings were often applied as a

Ashton, "Coatings for Masonry Surfaces," 3.

' Ibid, 3-4.

' Ibid, 4.
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Chapter 2: Salt Weathering Processes

2. 1 The Salt Weathering Process

Salts are naturally present both in earth and in water. They also result from air

pollution, inappropriate chemical treatments (including conservation treatments like

acidic and alkaline cleaning solutions, Portland cement, waterglass products, etc.^'),

deicing salts, by-products of organisms, and alterations to the water table due to

irrigation, over-pasturing and flooding. While devastating to the environment for many

reasons, the focus of this chapter will be on damage salts cause to the built environment.

The characteristics of the material used for building plays a large role in its

deterioration by salts. Primarily, these characteristics influence how water is transported

within the material. The porosity and water vapor permeability of masonry are the most

important factors to consider. Salts enter a building transported in solution with water,

and according to Arnold and Zehnder (1990), the water that is contained within a

building is largely a diluted salt solution." The pore structure of masonry allows for the

capillary transport of water from the ground or driving rain. Water in the vapor state

enters through condensation at the surface and within pores and through the

hygroscopicity of the material and the salts (the ability of a material to attract moisture

from the air).^''

" Andreas Arnold and Konrad Zehnder, "Salt Weathering on Monuments", in The Conservation of

Monuments in the Mediterranean Basin: Proceedings of the /" International Symposium, Ban, 7-10 June

1989, Fulvio Zezza, ed. Brescia, Italy: Grafo, 1990, 33.

^^ Andrew Goudie and Heather Viles, Salt Weathering Hazards, New York, John Wiley & Sons, Inc., 1997,

49-50.
'^ Arnold and Zehnder, "Salt Weathering on Monuments," 32.
'''

A.E. Charola. "Salts in the Deterioration of Porous Materials: An Overview," Journal ofthe American

Institute for Conservation 39 (2000), 328.
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2.2 Influence ofPorosity and Material Composition

The porosity of a material is the controlling factor in determining how it will

weather. The pore size, radii distribution, total porosity and surface properties all affect

the weathering phenomena by allowing (or not allowing) the formation of secondary

materials (including salts) within the pore structure. These factors also determine how

damaging a weathering agent will be." Porosity originates in three ways: primary

porosity is created when the rock forms, secondary porosity occurs when the primary

pores are modified during the final deposition and crystallization of the rock, and

weathering porosity is created by the process of weathering. Additionally, the type of

porosity defines the permeability of a material. Open porosity occurs when the system of

pores is interconnected and is accessible from the stone's surface. This means liquid

water and its vapor can enter at the surface and is distributed throughout the material via

flow pore channels. Pores can also be inaccessible to moisture and have non-through flow

pore channels.^^ These do not contribute to weathering unless the pore walls are

destroyed and water is allowed to enter.

The location of pores is also important in determining the weatherability of a

material. Interparticle porosity is the space between the particles of a stone and is the

primary type. Intraparticle porosity is the space within these particles. Finally, the pore

space within the crystal lattice of a material is called intracrystalline porosity. "^^ Each of

these types plays a role in the weathering of stone. However, some types and locations of

" Bemd Fitzner, "Porosity Properties and Weathering Behaviour of Natural Stones: Methodology and

Examples," In Second Course on Stone Material in Monuments: Diagnosis and Conservation, Heraklion,

Crete, C.U.M. University School of Monument Conservation, Bari: 1993, 44.

" Ibid, 44.

" Ibid.
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pores are more prone to weathering than others. Fitzner (1993) has defined four porosity

groups based on their weathering behavior during freeze-thaw cycling £ind/or salt

crystallization, identifying those most susceptible to deterioration. Group 1 consists of

stones with a high total porosity consisting of large pores with large entry points. He

found these stones to be very sensitive to freeze-thaw but resistant to salt crystallization.

Group II is comprised of stones consisting of a high total porosity and large pores with

small entry points. These stones were resistant to freeze-thaw cycling as well as salt

crystallization. Group III stones exhibit the most damage, being sensitive to both freeze-

thaw cycling and salt crystallization. These stones have a high total porosity comprised of

large amounts of both small and large pores with large or small entries. Finally, Group

IV, with low to medium total porosity stones with a high volume of small pores exhibit

resistance to both freeze-thaw and salt crystallization.^^

From his observations, Fitzner concludes, "The destruction of the granular

skeleton by salt crystallization is caused by the proportion of large to small pores

assuming a sufficient total porosity. Stones with a sufficient volume of larger pores and a

higher volume of smaller pores which are interconnected can be considered as

significantly sensitive to physical weathering." This study forms the basis of current

beliefs regarding salt crystallization processes. Fitzner goes on to say:

Due to thermodynamical reasons the salt crystallization starts in large

pores. Small dimensioned pore space serves as supply reservoir for salt

solutions allowing the growth of salt crystals. After filling the large pores

the crystallization process continues in direction of the small pores. The

filling degree of pores controls also the area of pore space and the

intensity of mechanical stone destruction caused by salt hydration

procedures due to volume increase of the salt body. As the formation and

the growth of ice crystals in the pore space follow the same laws, the stone

'*
Ibid, 45.
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of the porosity group III can be considered also to be sensitive to freeze-

thaw stress.^^

As stated above, the deterioration caused by salt crystallization and freeze thaw

cycling causes mechanical failure by breaking the intergranular bonds between particles.

While salt crystallization is the focus of this study, it is also important to examine other

degradation processes like freeze-thaw cycling and expansion and contraction of clays,

which, along with salts, act to destroy masonry.

In general, porous materials swell to a major or minor degree upon exposure to

moisture; this effect is called hygric dilatation if moisture is absorbed in relative humidity

ranges of 0-95% and hydric dilatation if the swelling is due to immersion in liquid

water.^^ When in a salt-free environment, the material shrinks again upon drying; this

cycle can be repeated with some material fatigue, but the material will remain essentially

the same volimie. If temperatures allow for freeze-thaw in combination with dilatation

and contraction, the material fatigue is more pronounced and the expansion of the grain

structure is irreversible "due to the volume of ice against liquid water" when the material

has been saturated; but "in the case of partial saturation, however, the freezing causes a

contraction of the pore structure."^' This is related to the phenomenon (discussed by

Fitzner and presented above) wherein larger pores are filled first drawing liquid from

finer pores which are then emptied, creating a "capillary underpressure" and causing the

grain structure to contract to a point where irreversible material fatigue is inevitable.

''Ibid, 51.

^ R. Snethlage and E. Wendler, "Moisture Cycles and Sandstone Degradation," in Saving Our

Architectural Heritage: Conservation ofHistoric Stone Structures, N.S. Baer and R. Snethlage, Editors,

New York: J. Wiley & Sons, (1997): 9
*' Snethlage and Wendler, "Moisture Cycles and Sandstone Degradation," 9.

*-Ibid,9, 11.
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The effect of swelling and shrinking is often increased or, alternatively, reversed

in the presence of salts; stones will contract while wet and then expand as they dry.

Further complicating the matter is the fact that the swelling does not reduce, and is

compounded with each additional cycle. ^^ These cycles of swelling and shrinking can

result in material fatigue. This effect is not yet well understood, and Snethlage and

Wendler (1997) conducted experiments to attempt to elucidate the phenomenon.

Snethlage and Wendler immersed blocks of Sander Schilf sandstone in NaCl

solution, then dried the samples at 35% relative humidity and observed any shrinking and

swelling. (See Figure 2.1) They found that contraction took place in the presence of salt

solutions (instead of expansion) due to the "formation of dense hydration shells between

the grains, which become denser as electrolytes become stronger."^"* Then during drying,

expansion occurred.

t

Stv> :X-^'-

» walet ^> expansion of hydration shells • cations -> contraction ol hydration shells

Figure 2.1 The Effect of Introducing Salts and Water to a Colloid System of Clays. From Snethlage and

Wendler (1997) Figure 2.7 p. 14, after Snethlage ( 1 990).

While the reason that expansion takes place when the samples dry is not clear,

Snethlage and Wendler propose that this may be due to salt crystallization within larger

^' Ibid, 12-13.

'^Ibid, 13.

34





pores or by "the formation of salt films which adhere tightly to the grains and push them

apart while they are growing."^^

While the relationship between salts and fi-eeze-thaw cycling is debated, Goudie

and Viles present nine reasons they may affect one another. One of these mechanisms is

surface sealing, where salts that have crystallized near the surface create water

entrapment below the sealed layer of substrate. The second is the combination of salt and

ice crystal growth, which may cause pore space reduction and greater crystal growth from

both solutions. The third mechanism is osmotic pressure; in this case, pressure causes

breakage in micropores as solutes released during ice crystal growth reach unfrozen

portions of the substrate. The fourth is the expansion of the large amount of ordered water

that has collected after a delay in freezing due to the presence of salts. The fifth

mechanism is a greater saturation of some substrates due to increased hygroscopicity

when salts are present. The sixth is increased water mobility as low concenfrations of

salts may increase the rate of flow through the substrate, causing increased crystallization

pressure and crystal growth. The seventh possible mechanism is "leapfrogging" of the

freezing front where crystallization takes place; this is due to salt crystallization being

forced fiirther away from ice crystallization fronts as it is rejected by those crystals. "In

the zone where salts become concentrated freezing may be temporarily prevented so that

the freezing front mayjump this zone, reforming on the other side. An unfrozen layer

might be expected to experience pressure as the adjacent frozen layers expand." The

eighth is the lower freezing rate of a salt solution compared to that of water, leading to

more time for salt crystals to form becoming larger and more destructive. The last

Ibid.

' Goudie and Viles, Salt Weathering Hazards, 159.
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mechanism is corrosion by salts, which act with ice to disintegrate stones.^' These

mechanisms should be studied further, as other sources do not necessarily support these

conclusions.

The pH level of a salt can also contribute to its weathering ability. Sodium

carbonate is alkaline with pH levels above 1 1 in saturated solutions. Those salts with pH

levels above 9 have greater mobility. This, coupled with the chemical deterioration

properties of the salt, aids in increasing the mobility of material components of the

substrate that have been attacked. For instance, "when limestones are submerged in

concentrated solutions [of sodiimi carbonate] appreciable quantities of iron go into

solution."^*

2.3 Transportation ofSalts and Crystallization Zones

Salts are typically transported through walls via masonry units and the permeable

mortar joints between them through groundwater, rainfall, dew or fog. Water evaporates

from these solutions and the salts concentrate. "Where and when supersaturation is

reached, different phases precipitate, and fractionate from multicomponent systems,

forming mostly spatial sequences of different salts. They become locally concentrated as

efflorescences on surface areas and as invisible subflorescences behind the surface of the

porous materials."^^ They are fractionated and are concentrated in areas identified by

Arnold and Zehnder (Figure 2.2) according to ion activity with the less soluble and less

hygroscopic salts (like sulfates and carbonates) being deposited near the lower portions of

^ Goudie and Viles, Salt Weathering Hazards, 159-60.

*lbid, 153.

"Ibid, 79.

" Arnold and Zehnder, "Salt Weathering on Monuments," 36.
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a wall, while the more soluble and hygroscopic chlorides and nitrates gather in the upper

portions. Finally, in zone D, no damage is observed as this area is beyond the reach of

capillary rise/' In zone A, there is less deterioration than in B, where most salt

efflorescences, mostly consisting of sodium carbonate, sodium sulfate, magnesium

sulfate, calcium sulfate and potassium nitrate, appear and cause disintegration, crumbling

and scaling. In zone C, which can be several centimeters to several meters high, is where

chlorides and nitrates usually accumulate and result in "dark and humid" patches.
^^

humidity may be taken up and spread over larger areas of the walls.'^

D

' ° A

g^^^^^f^gg^:^
Figure 2.2 The Different Zones Observed in the Area of Rising Damp on a Wail. From Arnold and

Zehnder(1990, Figure 1, p. 39.)

'Ibid, 37-8.

' Ibid, 36-7.

' Ibid, 37.
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Once inside the stone, salts can then exacerbate previous damage by crystallizing

within fractizres and act with other deterioration mechanisms (i.e. freeze-thaw cycling),

further decaying the stone.

Snethlage and Wendler ( 1 997) further explain moisture (and consequently, salt)

distribution within masonry walls. In each masonry unit and, on a larger scale, a wall,

moisture is distributed according to the properties of the material and the environmental

conditions (relative humidity, temperature). The moisture distribution can be calculated

and the maximum moisture content zone found. Usually the maximum moisture zone is

nearer the interior of the masonry unit and not at the surface, but this can vary depending

on the permeability of the stone. When a stone is highly permeable, the moisture is

distributed more evenly.'''*

The importance of the maximimi moisture content and its relationship to possible

damage is related to the critical moisture content (T). The critical moisture content is

defined as: "a material constant that is defined by the transition from capillary to water

vapor transport. It depends mainly on the porosity and the pore-size distribution."^^

Above the critical moisture content, solutions are transported through capillaries in liquid

form. Below this level, water is transported in the vapor state. "Therefore," Snethlage and

Wendler state, "during drying, salts will be enriched in that part of the stone where liquid

pore water is retained for the longest time, i.e., within the zone ofmaximum moisture

content. Later, when the moisture content in this zone drops below the critical value, the

velocity of electrolyte transport is strongly reduced. The salts are trapped and finally

^^ Snethlage and Wendler, "Moisture Cycles and Sandstone Degradation," 15.

" Ibid. 16.
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precipitate as a result of supersaturation of the solution"'^ and the sahs crystalHze. The

resuks of supersaturation and crystallization are discussed further in section 2.4.

Salts appear in buildings as efflorescence (crystallized salts on the surface of a

material) and subflorescence (crystallization below the surface or within a material).

Often efflorescence can be brushed off a masonry surface, leaving little visual damage.

Both can pose a threat to porous building materials, but subflorescence is generally

accepted as the most damaging, since more material is lost when cracking, spalling and

other damage takes place.

Where crystallization takes place, resulting in either efflorescence or

subflorescence. depends on the rate of evaporation of the water borne solution versus the

rate the solution is supplied. The rate of evaporation is determined by the temperature,

humidity and air currents of the environment; the supply of the solution is a factor of

"surface tension, pore radii, viscosity of the solution, and the path length from the source

of the solution to the site of the evaporation."^^ Efflorescence results when the supply of

salt solution to the crystallization site is at or greater than the rate of evaporation, causing

the solution to deposit on the surface. Subflorescence occurs when evaporation is quicker

than supply, causing a dry area to form beneath the surface of the substrate.

The damage caused by salt crystallization has been described in much of the

literature in qualitative terms rather than in quantitative ones, since this process is as yet

not fully understood. Lewin (1990) summarizes the lack of strong evidence for the

proposed theories regarding salt decay through crystallization. One theory is that of

'"Ibid, 16-17.
'^ Seymour Z. Lewin, "The Mechanism of Masonry Decay Through Salt Crystallization," In Conservation

ofHistoric Stone Buildings and Monuments: Report to the Committee on Conservation ofHistoric Stone

Buildings and Monuments, Washington, D.C., National Academy Press (1982), 120.
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"crystallization pressure," existing when "a growing crystal that has become confined

within a pore in stone (due to its growth) continues to grow even after there is no longer

any void space, and in so doing exerts a pressure against the confining walls which can

ultimately lead to the disruption of the host by the guest." But, he goes on to say that this

does not explain the damage, that "the term is rather anthropomorphic, suggesting that

the crystal feels a 'need' to grow... the origin, nature and parameters of that putative

pressure must be expressible in terms of the laws of physics and chemistry." ^^ Lewin

(1981) also states that after evaporation has taken place, leaving a saturated solution, that

at ordinary temperatures about 26 percent solid material would be left behind in the pore

or fissure. Therefore, after several hydration-dehydration cycles, the void would fill up.

Since Lewin conducted this research, more has been discovered about the salt

crystallization process.

Salt crystallization occurs when the water portion of the solution evaporates or

when the environment changes, with the reduction of the surrounding relative humidity.

Crystallization takes place within the stone at the wet-dry interface, with salts

crystallizing on the edge of the solution film. This results in a "fine grained microporous

salt body" that "enhances the capillary flow toward the edge of the film, advancing the

crystallizing front."^" The type of salt that results (that is, the particular crystal habit) is

determined by the environmental conditions to which the solution or already formed

crystal is exposed. The formation of these crystals results in crystallization and hydration

pressures that place force on the surrounding pores and cavities. This can result in

^* As quoted by Andrew Goudie and Heather Viles, Salt Weathering Hazards, New York, John Wiley &
Sons, Inc., 1997, 125-6.

'' Arnold and Zehnder, "Salt Weathering on Monuments," 3 1

.

*° Charola, "Salts in the Deterioration of Porous Materials: An Overview," 330.
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spoiling, flaking and blistering.^'' *^ The determination of the location of crystallization is

crucial, as has been determined by Lewin (1982), with decay only occurring within the

pores of the masonry, at least a fraction to a few millimeters from the surface. He states,

"the necessary condition for surface decay is the establishment of a steady state in which

the rate of difftision of water through a thin layer of the porous solid at the surface is

balanced by the rate of replenishment of water to that site from the source (reservoir) of

the solution."^^ He determined that the few millimeters between the surface and the

crystallization front is the thickness of the blister or spall that will be lost. Then, once that

layer is lost, providing that all factors remain steady, the same thickness will be lost after

the next decay cycle.^'* This finding corresponds to the statements of Snethlage and

Wendler (1997) in that the maximum moisture area and the location of salt crystallization

are necessarily the same and parallel to the stone surface, with this depth being the place

of detachment. "In this zone salts are enriched, while the surface scale and the interior

volume of the stone are leaching areas that deliver the dissolved matter."^^

Snethlage and Wendler (1997) elaborate on the types ofdamage that will be seen

as a result of the location ofmaximum moisture content. If the zone is located on the

surface, damage consists of sanding off (in the case of sandstones). Scaling will result if

the zone is within one to two millimeters of the surface; the deeper within the material the

maximum moisture content, the deeper the scaling. "The actual location depends on the

moisture fransport coefficient of the stone and on the transition coefficient of the surface,

Arnold and Zehnder, "Salt Weathering on Monuments," 31.

Lewin, "The Mechanism of Masonry Decay through Salt Crystallization," 120.

Ibid, 122.

Ibid, 140-2.

Snethlage and Wendler, "Moisture Cycles and Sandstone Degradation," 1 7.
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i.e., on the conditions of the building." They conclude that when wet-dry cycles are

quick, scales are likely to form, but where cycles are longer and material stays wet,

sanding off is the more favorable result with flakes and exfoliations to be interpreted as

intermediate conditions. They stress that the zone ofmaximum moisture content moves

through the stone in a "moisture wave" transporting "trapped" salts that cannot migrate

out into lower moisture content areas.
^^

Snethlage and Wendler use this concept of the "moisture wave" and moisture

fluctuations resulting in the above damage to elaborate on the rising damp model. They

question the role that capillary transport plays in the transport of moisture, considering

that broken mortar joints or other voids within a system are prevalent and would inhibit

capillary transport. Therefore, they introduce other mechanisms in addition to the

capillary transport explanation, stating that the fluctuations are a necessary mechanism

for the transport of solutions through a wall to the surface and result from "changing

moisture in the earth or... a periodic water supply from the surface, due to occasional rain

or moisture condensation."^^ They argue "the capillary transport of liquid water is much

faster than the ionic diffusion, so that salts would not have time to withdraw backwards

from the area of evaporation into the diluted solutions... [and] therefore, it seems justified

to consider additional moisture sources that are periodically effective, e.g., rain and

condensation, for the transport of the salts to the surface... "^^ They summarize that "in

Ibid.

Ibid, 18.

Ibid, 20.

Ibid, 20-1.
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addition to a steady vertical moisture flow from the ground, periodically active moisture

sources are needed to produce salt efflorescences and damage."^*^

2. 4 Damage by Crystallization

Two mechanisms result in salt crystallization. The first is the precipitation of

crystals out of a solution. Precipitation takes place when evaporation causes a solution to

become supersaturated. Supersaturation occurs when the "ion activity product is greater

than the equilibrium constant. . .Thus the ion activity product determines whether or not a

salt can precipitate."*^' This condition is obtained when the rate of capillary migration and

the rate of evaporation reach equilibrium.

The other mechanism that results in crystallization is the hydration or dehydration

of crystals as an effect of the hygroscopicity of a salt. Salt initially crystallizes as a

hydrate through high relative humidity or low temperatures; it can dehydrate and

rehydrate with environmental fluctuations.^^ The point at which hydration or dehydration

takes place for a particular salt is defmed by its equilibrium relative humidity. This can be

calculated from the following equation:

RH*=(7'sal.//'s)100

"where Psait is the vapour pressure of the saturated solution of the salt and A is the

atmospheric water vapour pressure at that known temperature." The point at which a

salt will absorb moisture from humid air and precipitate on a surface takes place when the

^ Ibid, 22.

" Arnold and Zehnder, "Salt Weathering on Monuments," 38.

'•^ Charola, "Salts in the Deterioration of Porous Materials: An Overview," 335.

'' Arnold and Zehnder, "Salt Weathering on Monuments," 3 1

.

''' Goudie and Viles, Salt Weathering Hazards, 154.
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environmental relative humidity is above its equilibrium relative humidity (a constant

value). It is at this point that a salt will deliquesce if it is highly soluble.^^ If the relative

humidity of the air remains above this equilibrium constant, the salt will stay in solution

and will not cause damage.''^

"For example, for thenardite (Na2S04) to hydrate to mirabilite (Na2SO4l0H2O) at

20°C, the relative humidity must exceed 71%... Both sodium carbonate and sodium

sulfate show particularly high volume expansions on hydration and they [are effective

deterioration agents]."^' Other salts are also deleterious, though sodium sulfate and

sodium carbonate are perhaps the most damaging. These both have characteristics that

lend themselves to damage in the context of the built environment, and will be discussed

further in Chapter 3.

Once conditions are favorable for crystallization, the salts can crystallize with

different habits. Efflorescences usually appear as prisms and whisker shaped crystals with

the less soluble salts like sodium carbonate and sodium sulfate forming compact crusts of

"acicular, columnar or isometric crystals."^^ The shape and growth of crystals are

determined by the environment and conditions within a specific part of a wall, degree of

supersaturation of the solution and any impurities it may contain, as well as the crystal

lattice and habit of the solution.*^*^ As environmental conditions change, the salts will take

on different crystal habits. Crystals begin as bulkier isometric shapes when they are first

formed from solution and remain as long as they are saturated wdth the solution. As the

' Charola, "Salts in the Deterioration of Porous Materials: An Overview," 329.

* Arnold and Zehnder, "Salt Weathering on Monuments," 47.

'Goudie and Viles, Salt Weathering Hazards, 106.

* Arnold and Zehnder, "Salt Weathering on Monuments," 47.

' Ibid, 48.

44





solution dries out, they transform into "whiskery", needle shaped crystals that grow from

the thinning solution film. "In between all transitions from isometric equilibrium shapes

to prisms, needles and hairlike crystals are formed according to the decreasing thickness

of the solution film while the substrate is drying out."
'°^

As previously stated, Lewin (1982) established that the location of crystallization

was crucial when determining the level of salt damage that a material could sustain.

Arnold and Zehnder elaborate on this, stating that salt crystals can only grow within

pores and other voids. This can be in the form of subflorescence, but some efflorescence

can also take place underneath the surface, depending on the solution supply and the

evaporation rate.' ' When a material is inhomogeneous, a zone of preferential

crystallization develops where pore structure varies. This inhomogeneity can result from

a paint layer, fireskin or other difference between materials. To illustrate this

phenomenon, Arnold and Zehnder (1990) describe salt crystallization within highly

porous ceramics and mortars painted with the fresco technique. This example is

particularly useful for the current study, as it supports the belief of Franke and Reunann-

Oenel, that instead of forming within the subsfrate, salts will form between layers at the

film-subsfrate interface.

Arnold and Zehnder ( 1 990) exposed frescoed ceramics and lime mortars with

30% porosity to sodium nitrate and other salts and then dried them at 32% and 69%

relative humidity. They found that less efflorescence formed on materials dried at 32%

relative humidity and these showed more crystallization within the material. This showed

that the location of crystallization is effected by the relative humidity of the environment;

Ibid, 48.

Ibid, 48.
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it also showed that the deeper the crystallization front, the more decay is present. '^^ In

their study, Arnold and Zehnder describe the process by which this deterioration occurs

(Figure 2.3).

o-

Figure 2.3 Model of Disruption Process by Crystallizing Salts (nitronatrite). From Arnold and Zehnder

(1990, Figure 11 p. 42.)

First (Figure 2.3 a) salts crystallize in pores of about 1 to 10 microns; smaller pores

remain empty with these smaller pores and connecting channels supplying the solution

for crystallization to occur. "Thus we assume that the pores in this phase and on this

particular place are largely filled with a saturated or supersaturated solution."'^^ In the

next phase (Figure 2.3 b) the crystals have outgrown their original pores, grow into

others, and begin to coat larger voids. Since the crystals are larger than the pores, "we

presume that important pressures are built up on the pore walls resulting in a [tensile]

stress perpendicular to the siuface. In consequence, this force will disrupt the structures

preferentially by fissures parallel to the surface along a zone where the pores being filled

Ibid, 48-9.

Ibid, 49.
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by salt crystals are arranged close together, and preferentially where the material

cohesion is reduced, e.g. at discontinuities such as paint layers...
"'°''

In phase three

(Figure 2.3 c) the space between the two materials is wider, allowing greater evaporation

and thus, crystallization in this area. The crystals continue to grow if solution is still

present, but if the expansion continues and evaporation exceeds supply (as stated by

Lewin), the crystals will become columnar since the solution does not surround the

crystal. These columnar forms can exert pressures on the walls of the material that will

further widen the fissure.*"^ Finally, in the last phase (Figure 2.3 d) the amount of

solution is diminished. The crystals are reduced in size as the substrate dries. If there is

enough solution present and the columns are in contact with them, whiskers will form

which are powerful enough to separate the inhomogeneous layer. '^^ At this point, spalls

consisting of ceramic layers, loose layers of substrate or paint layers detach. It is this

process which results in the visible damage that is so apparent when coatings are applied

and subsequently lost.

This model is supported by the research of Snethlage and Wendler. In their study

of dilatation and contraction of clays (explained above), they rejected the theory of

hydration pressures and proposed a new model to elucidate stone deterioration. They

propose "dilatation and contraction, i.e., the displacements of grains relative to each

other, under the influence of moisture and dissolved ionic species is the only process

needed to explain the deterioration of stones"; they also suggest that, "This process

provides the open spaces in the grain structiires where the salts can precipitate.

Ibid.

Ibid.

Ibid.
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Ibid.

47





Displacements within the sak deposits due to changing moisture may enhance the

formation of gaps in the grain structure... It is most probable that salt crystallization

pressure occurs only in strongly salt-enriched stones where the coarse pores can be filled

up with salt crystals."'*'^

Snethlage and Wendler, "Moisture Cycles and Sandstone Degradation," 15.
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Chapter 3: Sodium Sulfate and Sodium Carbonate:
Experimental Part II

3. 1 Introduction

Sodium sulfate originates, in part, due to air pollution, which provides sulphur to

the system; the sodium being provided by ground water, the building material, de-icing

salts or cleaning fluids that contain sodium. The reaction of these substances causes

sodium sulfate to form. Sulfates can also result from "sea spray, volatile biogenic

sulphur, desert dust, marine gypsum and anhydrite as well as pollution sources."'"^ They

can also be inherent within a material; bricks, if not fired at a sufficiently high

temperature, will contain sodium sulfate.

Sodium carbonate can also originate from salt spray in marine environments.

Highly alkaline solutions will absorb CO2 from the atmosphere, leading to the formation

of alkali carbonates, as in the case of Portland cement. It can also result from the use of

alkali silicates (a.k.a. waterglass) for stone and plaster consolidation and as a binding

medium for silicate paints. Waterglass produces sodium carbonate and potassium

carbonate as part of its reaction

Alkali carbonate salts can, furthermore, react with atmospheric pollution to form

the more harmful sodium and potassium sulfate.
"'^

Certain carbonate stones are prone to

sulfate attack, while some granite types contain minerals that wear preferentially to

'"* McCardle and Liss, 1995 as quoted by Andrew Goudie and Heather Viles, Salt Weathering Hazards,

New York, John Wiley & Sons, Inc., 1997, 87.
"" Arnold and Zehnder, "Salt Weathering on Monuments," 34.
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others, increasing its porosity and thereby leaving behind larger pores vulnerable to

ftjrther attack.""

Even concrete can be prone to salt decay. The calcium aluminum sulfate mineral

ettringite is formed by sulfates reacting with alumina containing phases of hydrated

cement, producing a high sulfate form of calcium aluminate (3CaOAl203-3CaS04-

32H2O). While ettringite formation at the beginning of setting is desirable, it has been

found in cracks and voids in older concrete structures. This is known as delayed ettringite

formation (DEF).'" As explained by Livingston (2001), ettringite formation occurs when

water from the atmosphere enters the equation:

MONOSULFATE + 2Ca^^ + 2S04^" + 2OH2O > ETTRINGITE

The critical element in the formation of ettringite, however, is the hygroscopicity of the

potassium content of the cement; the potassium sulfate contamed in Portland cement

undergoes an exchange reaction with calcium and hydroxide ions to

produce a dilute potassium hydroxide solution and calcium sulfate:

K2SO4 + Ca^^ + 20H"

—

> 2K^ + 20H- + CaS04^

...However, over time the solution reacts with atmosphere CO2 to produce

potassium carbonate:

2K^ + CO3 ^—> K2CO3

which has a very low critical relative humidity for deliquescence (RH =

43%). Consequently, under prevailing temperature climate conditions, the

compound would typically be in a saturated solution rather than in solid

form... high exposure to moisture would tend to drive the equilibrium of

[the] equation to the right, favoring the formation of ettringite... In

""Goudie and Viles, Salt Weathering Hazards, 93.

'" R.A. Livingston, "The Role of Potassium Hygric Cycling in Delayed Ettringite Formation," Presented at

the Conference of the Geochemical Society, Goldschmidt, 2001, unpublished, I.
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addition to promoting the DEF, the potassium content may be the cause of
the damage itself."^

This damage "involves an increase in the volume of the reacting solids [K2CO3], a

pressure build up, expansion, [subsequent accumulation of more moisture] and in the

most severe cases, cracking and deterioration.... The volume change on the formation of

ettringite is very large, and is even greater than that produced by the hydration of sodium

sulphate.""^ "Moreover, the osmotic pressure difference between the saturated potassium

carbonate solution at the crack surface and the unsaturated potassium hydroxide

porewater inside the cement paste gel would be on the order of 1 200 Mpa. This stress

would drive crack propagation."'
'"^

Additionally, thaumasite (CaSi03CaC03CaS04T5H20) is formed through a

sulfate reaction with concrete. Like ettringite, it causes expansion, but it also causes

softening of the cement and disintegration in bricks that have been plastered with

Portland cement.
"^

As stated above, sodium carbonate efflorescence can form as a result of salt spray

in marine environments as well as from the presence of soluble alkali ions in Portland

cement, which leach out and form carbonate salts, including trona (NaHCOs-

Na2C03-2H20) (see Figures 3.1 and 3.2). Large amounts of these salts can be can be

produced. Arnold and Zehnder (1990) state:

The amounts of Portland cement used in walls being very large the

quantities of soluble salts may become very important too. As an example,

100 kg of Portland cement with a content of 0.1% of soluble Na20 may

Ibid.

Goudie and Viles, Salt Weathering Hazards, 142.

Livingston, "The Role of Potassium Hygric Cycling in Delayed Ettringite Formation," 1.

' Goudie and Viles, Salt Weathering Hazards, 142-3.

' Ibid, 76.
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produce 460 g of natrite (NaiCOB-lOHiO) or when reacting with sulfuric

acid from the polluted air 520 g of mirabilite (Na2SO4l0H2O)."^

The leaching of trona by the filtering of water through cement can cause the destruction

of masonry, including granite, as was demonstrated by Charola and Lewin (1979)."^

Figure 3.1 Space Model of the NaHCO,- Na.COjHjO System. From Hill and Bacon (1927, 2494.)

Figure 3.2 Trona Crystal. From http://www.gc.maricopa.edu/earthsci/imagearchive/picture50.htm.

" Arnold and Zehnder, "Salt Weathering on Monuments," 33.

"^ A.E. Charola, and S.Z. Lewin, "Examples of Stone Decay Due to Salt Efflorescence," In i"'

International Congress on the Deterioration and Preservation ofStones, Venezia 24-27 October 1979.

Padova: Universita degli Studi di Padova, 1979, 161-2.
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After masonry is damaged by salt, failure can present itself not only visually, but

mechanically as well. The loss of compressive strength (exemplified by uniaxial

compressive strength tests and wet-to-dry strength tests), weatherability and durability,

the increase in porosity and water absorption, and a change in the pore structure are all

consequences of salt infiltration of masonry."''

3.2 Comparison ofSodium Sulfate and Sodium Carbonate

Some salts, including sodium carbonate (Na2C03) and sodium sulfate (Na2S04),

have certain characteristics that make them strong weathering agents. Goudie (1977)'^*'

has identified a set of five characteristics that make sodium sulfate particularly effective.

The first of these is the high degree of volume change fi-om the dehydrated thenardite

state (density 2.68) to the hydrated mirabilite state (density 1 .46) and the speed with

which this takes place, repeating up to several times a day (with dehydration of mirabilite

to thenardite taking twenty minutes at 39°C. The second characteristic is the rapid

solubility decrease of sodium sulfate as the temperature drops below 32.3°C. Thirdly,

"because sodium sulphate is so highly soluble substantial quantities of sulphate are

available for the process of crystal growth when solutions are evaporated by high diurnal

temperatures. Evaporation would also help to create a saturated solution fi-om which

crystals could grow on cooling." The fourth characteristic is solubility of sodium sulfate.

Its solubility does not increase linearly with an increase in temperature, but decreases as

' E.N. Caner-Saltik, I. Schumann and L. Franke, "Stages of Damage in the Structure of Brick Due to Salt

Crystallization," In Conservation ofHistoric Brick Structures, Edited by N.S. Baer, Dorset, England:

Donhead Publishing, Ltd., 1998, 52-55.
'"° Presented in Andrew Goudie and Heather Viles, Salt Weathering Hazards. New York, John Wiley &
Sons, Inc.. 1997, 107-8.
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temperatures rise above 32°C. The final attribute of sodium sulfate is the shape of its

mirabilite crystals, which form long, needle-like prisms that may be particulariy

destructive. It is important to note that these characteristics are also applicable to sodium

carbonate.

In addition to the above, both of these salts have the ability to crystallize,

deliquesce (dissolve in their crystallization water) and recrystallize as a lower hydrate

either within a porous material or independently due to changes in the relative humidity

and temperature of the environment. Often these changes cause the salt to take on another

crystal habit. (It should be stressed that the phase changes from solution to solid or from

one crystalline state to another are sufficient for sodium sulfate deterioration to take

place. ) The occurrence of the above characteristics is dependent upon the nature of the

salt and its hygroscopicity (the ability to absorb water from the air and form a saturated

solution). The equilibrium relative humidity and solubility curves for sodium sulfate

and sodium carbonate are presented in Figures 3.4 and 3.5. Other relevant data are

presented in Table 3.1.

' ' David J. McMahon et. al, "Deterioration Mechanisms of Sodium Sulfate," in Proceedings ofthe 7""

International Congress on Deterioration and Conservation ofStone Lisbon, Portugal 15-18 June 1992, Ed.

by J. Delgado Rodrigues, Fernando Henriques and F. Telmo Jeremias, Lisbon: Laboratorio Nacional de

Engenharia Civil, 1992, 706.
'^ Goudie and Viles, Salt Weathering Hazards, 131.
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Equilibrium Curves for Salts
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Figure 3.3 Equilibrium Curves for Sodium Sulfate and Sodium Carbonate.
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hydration rates they observed for sodium carbonate. The complex interaction of the

support in the hydration rate of sodium sulfate is shown in Figure 3.7. It has been shown

that both the substrate and the previous history of the salt plays an important role in the

moisture absorbing capability of sodium sulfate.
'^^

Moisture Absorption of sodium sulfate powders
»l 25-0 and 98%RH





which sodium sulfate was crystallized under varying conditions of temperature and

relative humidity into its anhydrous (thenardite) state and its decahydrous (mirabilite)

state. The deterioration was then observed. All states were found to cause some

deterioration, but the decahydrous (mirabilite) state was particularly damaging.

McMahon et al. found that simple calculations did not adequately explain any

difference between deterioration mechanisms and sought to elucidate the deterioration by

sodium sulfate by isolating the possible mechanisms, such as volume increase as a result

of hydration or crystallization from a supersaturated solution, comparing the deterioration

caused by each. The different conditions produced: rapid crystallization of mirabilite by

immersion in sodium sulfate solution then rapid cooling; crystallization of mirabilite

through evaporation; crystallization of mirabilite through evaporation and low

temperature fluctuations; crystallization of thenardite through evaporation and hydration

cycles; and crystallization of thenardite through evaporation.'

Figure 3.8 Volume Increases During the Precipitation of Mirabilite from a Supersaturated Solution. From

McMahon et al. (1992) Figure 4, 71 1.

McMahon et. al, "Deterioration Mechanisms of Sodium Sulfate," 709-710.

59





McMahon's results show that there is a volume increase of the solution as

mirabilite forms, with the greatest increases seen in the larger supersaturation ratios

(Figure 3.8).

From the different tests, crystallization of mirabilite from immersion and rapid

cooling produced "complete loss of integrity"; crystallization of mirabilite through

evaporation produced "negligible" surface deterioration; crystallization of mirabilite

through evaporation and temperature fluctuations led to significant deterioration;

crystallization of thenardite through evaporation and hydration produced significant

surface flaking and crystallization of thenardite through evaporation led to "negligible"

deterioration.'^^ From these tests, they concluded that thenardite was not the most

significant deterioration mechanism in the sodium sulfate system. Most importantly,

McMahon et al. found that "solid-state hydration of thenardite did not occur. Instead,

through-solution hydration occurred." '^^ They found that deterioration was significant

only when thenardite was converted to mirabilite in a process where thenardite (instead

of hydrating) dissolves and creates a supersaturated solution from which mirabilite

crystallizes. This, in turn, "results in volume increases of the sodium sulfate-water

system. This mechanism is best termed through-solution hydration rather than

hydration."'^' It was also observed that the faster this took place (with instantaneous

crystallization in a rapid cooling environment), the more damage occurred, as the pore

'-^
Ibid, 711-12.

'^^
Ibid, 710.

'"ibid, 712.
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volume increase was around 3% for a supersaturated solution. This volume is achieved

quicker than ice formation.
'^^

McMahon et al. conclude that the pressure developed during the crystallization of

mirabilite is

transferred directly between the mirabilite crystals and the walls of the

porous media, and [therefore] could be called 'crystal growth pressures.'

However, in saturated systems where crystal growth causes the pore

solution volume to increase, the crystal growth displaces nearby pore

fluid, which is induced to flow under a pressure gradient toward areas of

lower pressure...When the pore fluid is not forced out of the porous

material quickly enough to prevent the buildup of significant tensile

stresses, this causes failure within the porous material by cracking.
'^^

These observations are supported by Charola and Weber (1992) who conducted

fiirther experiments with sodium sulfate. They also sought to elucidate why sodium

sulfate was such a strong deterioration agent. They observed the dehydration of mirabilite

and the subsequent reprecipitation of thenardite and mirabilite under various conditions.

They found that when mirabilite was heated it first released its hydration water, appearing

to "melt" (Figure 3.10 a-f). Both mirabilite and thenardite crystals are precipitated fi-om

this crystalline water as it evaporates with the mirabilite continuing to dehydrate (Figure

3.10 g-i) until only thenardite remains (Figure 3.10 j).'^°

Thenardite hydrated very slowly in a humid environment compared to the quick

dehydration of mirabilite (the dehydration of mirabilite conducted for this study took

approximately 20 minutes.) Charola and Weber found that small cracks between particles

'-Mbid, 713.
'^'

Ibid.

"" A. Elena Charola and Johannes Weber, "The Hydration-Dehydration Mechanism of Sodium Sulfate," In

Proceedings ofthe 7"" International Congress on Deterioration and Conservation ofStone Lisbon, Portugal

15-18 June 1992, Ed. by J. Delgado Rodrigues, Fernando Henriques and F. Telmo Jeremias, Lisbon:

Laboratorio Nacional de Engenharia Civil, 1992, 582-3.
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began to close at two hours, and at five hours a skin formed on the thenardite consisting

of "small transparent crystals."'^' This skin inhibited rehydration, and caused water to

condense on the surface until enough water was present to dissolve it. Only after the skin

dissolves does thenardite recrystallize.'^^ In translating this to its application to building

stones, Charola and Weber observe that, "The recrystallization from the solution will tend

to occur in larger pores, and depending on the thermohygrometric conditions, mirabilite

or thenardite will crystallize. Thus, the presence of the salt in the stone will effectively

increase capillary condensation by drawing the liquid away from them."'^^ They found

that the thenardite crystals are very hygroscopic once the skin is dissolved and "enhance

capillary condensation"; they are also highly porous and do not contribute to swelling and

therefore, do not cause the buildup of hydration pressure. ' Charola and Weber conclude

that, "The increased deterioration can only be attributed to the multiple crystallizations

taking place during the dehydration of the hydrated salt."'^^

The "skin" observed by Charola and Weber (1992) forming on thenardite crystals

was sudied by Eric Doehne under the environmental scanning electron microscope. In his

experiments, he observed sodium sulfate through-solution hydration and dehydration in

stone pores. Doehne (1994) took into account the previously described mechanisms of

deterioration, including Arnold and Zehnder's fractionation model (1990) (Figure 2.2),

and the crystallization discoveries of McMahon et al. (1992). He continued the

Ibid, 583.

Ibid, 583-4, 587.

Ibid, 588.

Ibid.

Ibid, 589.

62





investigation into the mechanisms of sodium sulfate hydration, dehydration and

crystalHzation by using time-lapse video.

Like Charola and Weber ( 1 992), Doehne found that anhydrous sodium sulfate

crystals initially formed a skin upon hydration. This restricted hydration until there was

enough liquid water to dissolve it. This water can be observed as a swelling of the

surface, then "liquid water surround[s] the crystal and subsequent dissolution of the

anhydrous sodium sulfate and... form[s]... sodium sulfate solution."'^^ From this

solution, the decahydrate (mirabilite) crystallizes. During dehydration, Doehne found that

mirabilite forms "submicron aggregates" of sodium sulfate, resulting in a "highly porous,

high surface area salt structure consisting of sub-micron particles" after which hydration

and dehydration rates become approximately equal. '^^ Then, sodium sulfate decahydrate

crystals form with the dissolution of these fine particles. This phenomenon occurred

regardless of the speed at which the process was conducted.

Doehne concludes that the breakdown of sodium sulfate into fine particles may

explain why it is highly damaging, as they would allow "the penetration of water vapor

and liquid water films deeper into the sodium sulfate, substantially increasing the salt's

rate of water adsorption after several cycles. The physical breakdown into small particles

may also play a role in the penetration of sodium sulfate into micropores. Transport may

occur by 'floating' solid crystals into micropores on solution films or by direct

precipitation from solution. . . . Rapid expansion during subsequent hydration of sodium

' ^ Eric Doehne, "In Situ Dynamics of Sodium Sulfate Hydration and Dehydration in Stone Pores:

Observations at High Magnification Using the Environmental Scanning Electron Microscope," in ///

International Symposium on the Conservation ofMonuments in the Mediterranean Basin, Venice, 22-25

June 1994, Ed. by Vasco, Fassina et al., Venice: Soprintendenza ai Beni Artistic! e Storici di Venezia,

1994, 145.

'"
Ibid, 146.
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sulfate in micropores would result in fracturing of the stone.... The salt pressures

generated by such crystallization are generally an order of magnitude greater than the

strength of the stone."'^^

Doehne further explains that this crust occupies a similar volume in both states and

the small increase observed in the crystals is held within the intercrystalline spaces. He

also suggests that it is not the humidity cycling of these states that creates significant

damage, but it is the rapid formation of large, well-ordered mirabilite crystals from

solution and the resulting pressure on pore walls. '^^ This statement supports the

observations of McMahon et al and Charola and Weber.

3. 4 Experimental I: The Dehydration ofMirabilite to Thenardite and Natron to

Thermonatrite

The dehydration processes of sodium carbonate and sodium sulfate was captured

through photomicrography for this study and is illustrated here. Following the

experiments of Charola and Weber (1992), crystals of the hydrated salts were grown in

the laboratory. Crystals growing in solution form as their higher hydrates as long as the

temperature is below the transition temperature of 32.4°C. If these are exposed to

temperatures above the transition temperature or a lower relative humidity they will

dehydrate. They will eventually dehydrate into their lower hydrates with no volume

increase. Even in the event of rehydration, crystals will not generate any more force than

was originally experienced due to initial crystallization.

"'
Ibid, 147.

'^'ibid. 147-8.
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a)

c)

Figure 3.9 a) Mirabilite Crystal Structure, from Dana and Dana, 1966, p. 440: b) Natron Crystal Structure,

from Dana and Dana, 1966, p. 483; c) Thenardite and Thermonatrite Crystal Structure, from Dana and

Dana (1966), 405.

The habits of the sah crystals studied are illustrated in Figure 3.9.'^*^ In order to

compare the dehydration of mirabilite and natron, crystals of these salts were placed on a

hot plate under gentle heat and their changes observed under a microscope. When

mirabilite is heated, it first begins the formation of a white film on the exterior of the

crystal (Figure 3.10 a-c). It then begins to release its hydration water, and surrounding the

large crystal, small white thenardite crystals begin to form (Figure 3.10 d-e). It then

appears to "melt", forming a puddle on the edge of the crystal (Figure 3.10 f), with this

process continuing while thenardite crystals form at the edge and translucent mirabilite

crystals form in the center. As observed by Charola and Weber, both mirabilite and

thenardite crystals precipitate from this crystalline water as it evaporates. At this stage,

some large crystals and many small ones form dendritic growth. The mirabilite continues

''"'
It is important to note that natron crystallizes in the same way as gypsum, whose crystal structure is

featured in Figure 3.9 b. Similarly, thermonatrite crystallizes like thenardite. illustrated in Figure 3.9 c.
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to dehydrate (Figure 3.10 g-i) until only thenardite remains (Figure 3.10 j) leaving a

crusty film on the surface.

The dehydration of natron was also observed. The behavior of one large

transparent crystal was followed (Figure 3.1 1 a). Upon exposure to heat, the crystal

formed an opaque film of thermonatrite on the surface (Figure 3.1 1 b). It quickly

dissolved, however and became a puddle of saturated solution (Figure 3.1 1 c). During

this phase, smaller opaque crystals began forming at the edges of this solution and the

puddle appeared to cave in on itself (Figure 3.1 1 d). From the outer edges of the central

portion of the puddle more transparent crystals of thermonatrite began to form working

their way inward toward the center (Figure 3.1 1 d-e). The smaller crystals on the outer

ring of the puddle continued to grow in opacity, as did the central core as it dehydrated

(Figure 3.1 1 f-g). At this point small crystals dehydrate until the entire formation was

opaque (Figure 3. 11 h-j). The thermonatrite crystals in the center grew larger, as did

those at the edge. The main difference between the dehydration of these salts is that while

sodium sulfate produces many extremely small crystals of thenardite, sodium carbonate

forms lesser and bigger crystals of thermonatrite.
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Figure 3.10 Dehydration of Mirabilite Crystals to Thenardite Under (.lentle Heal; Nikon SMZ-U Zoom I-

10 Stereoscope with Quartz Halogen Lamp. Magnification 1.25 x.
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Figure 3.11 Dehydration of Natron to Thermonatrite Under Gentle Heat: Nikon SMZ-U Zoom

Stereoscope with Quartz Halogen Lamp. Magnification 1.25 x.
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3.5 Salt Weathering Test

The effect of hydration and dehydration of these salts within a porous substrate

was also studied. This test aimed to evaluate the weathering capacities of two salts,

sodium carbonate and sodium sulfate. As stated above, the two salts are comparable in

their solubility and relative humidity equilibrium curves. However, the damage they

cause is different, with sodium sulfate being seen as a more "destructive" salt. To test this

the following testing procedure was conducted.

Treatment





weight gain and a greater difference in weights between low RH and high RH as

compared to sodium sulfate decahydrate treated samples.

Figure 3.12 Results of Cycling Sodium Carbonate and Sodium Sulfate Impregnated Bricks Between 20%
RH and 100% RH; Cycling period: 3 days each condition, repeated for 12 cycles.

Sodium carbonate showed a greater range in weight change throughout the cycles

and continued this trend throughout the duration of the experiment (Figure 3.12). From

the data presented above, it can be seen that sodium carbonate monohydrate is more

hygroscopic than sodium sulfate and that with continuing cycles the samples picked up

increasing amounts of moisture. The absorption properties of the porous substrate also

would have contributed to a small portion of this weight gain. The degree to which the

substrate alone absorbed water and dehydrated is observed in the control samples.

Since no visible damage was observed after twelve cycles, the samples were then

subjected to immersion in the respective salt solutions for approximately twenty-four

hours and then left to dry in a wind tunnel environment for approximately twenty-four
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hours. This cycle was repeated six times, but by the fifth cycle, no visible damage

occurred except for some minor losses in the form of a powdery residue at the bottom of

the solution containers. This was evident in both the sodium carbonate and sodium sulfate

treated samples. While damage was not readily apparent, their resulting efflorescences

took on totally different appearances; those of sodium sulfate had greater amounts of

"fluffy" or "whiskery" efflorescence, while those of sodium carbonate saturated solution

exhibited a haze resembling efflorescence. This could be due, in part, to the more

hygroscopic nature of sodium carbonate.
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Chapter 4: Coatings in the Presence of Salts

4.

1

Introduction

The question of whether paints and other protective coatings cause harm to

masonry has been discussed in various papers (Grissom et al, 2000, Charola, 2001,

Franke and Reimann-Oenel, 2001). As previously stated, it is still currently believed that

once salts enter into a porous material, a coating can be harmful in that it will enhance

deterioration. However, L. Franke and R. Reimarm-Oenel (2000, 2001) have called this

belief into question based on the results of their laboratory experiments on Cottaer,

Obemkirchener and Sander Schilff sandstones where sodium sulfate was introduced to

both coated and uncoated stone specimens in a wind tunnel envhonment.

4.2 The Effect ofCoatings

The experimental results of L. Franke and R. Reimann-Oenel (2000, 2001)

showed that the presence of a coating may lessen damage by causing the salt front to

form nearer the surface than in an untreated control specimen.

Experiments involving four sandstone types and two coating systems were

conducted. The coated samples and control samples were exposed to sodium sulfate

decahydrate and calcium sulfate dihydrate in a wind tunnel (details follow in Chapter 5).

They sought, through their experiments, to document the apparent damage in untreated

and treated samples and also determine the point in time where damage emerged and

observe the damage through the complete destruction of the surface. They defined the
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beginning of damage as the point where surface irregularities (raising, cracking)

formed.
'^'

Franke and Reimann-Oenel assert that damage mechanisms and causes may not

be the result of paints or clear coatings like silicone and methacrylate resins, but a series

of other factors. These include: damage already done to masonry prior to application of

the treatment, the stone and its inherent flaws, and salts. Then, if there are salts present,

the result is the loss of the coating making damage visible. They go on to say that this

visible damage in the form of a flaking coating has been used as the argument against

coating masonry, but this reveals that a coating should not only be chosen for its

aesthetics, but its performance on salt loaded stone. They acknowledge that most

sources maintain that coatings on stone endanger the buildings, but this is mostly

observed in cases of improper planning and execution of the treatment. They state that a

coating must reduce water absorption while maintaining water vapor permeability.

The experiments showed that there were clear differences between treated and

untreated samples. They found that samples treated with a silicone resin glaze (Lasur)

subsequently exposed to sodium sulfate decahydrate and calcium sulfate dihydrate only

deteriorated at the coating and substrate interface, while untreated samples of the same

stone type had surface damage consisting oftwo to three millimeters of detachment. Salt

crystallization on the treated samples was limited to areas above the coating (due to the

coating's high water vapor permeability), leaving the stone itself unharmed. Remarkable

""
L. Franke and R. Reimann-Oenel "Untersuchung des Einflusses von Lasuren auf die Lebensdauer von

Natursteinfassaden," Internationale Zeitschriftfur Bauinstandsetzen und Baudenkmalpflege 7, Jahrgang,

Heft 1.(2001): 33-5.

'"Mbid, 31-3.

"•'
Ibid, 30.
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above all, Franke and Reimann-Oenel state, is that not only was the extent of damage

reduced with the application of a coating, but also the life span of the stone was extended.

The time span varied upon the sandstone variety, but most samples were improved by the

application of the coating.
'''^

In their paper, Franke and Reimann-Oenel present case studies in which

treatments have been successful. These include the U.S. Capitol, where a repair made in

the 1980s revealed up to 40 layers of oil, latex, alkyd and emulsion paints. A Lasur was

applied, and was observed to give good adhesion and cover as well as good chemical and

aesthetic characteristics. Another successful treatment involving Lasuren was applied to

the Federal Building in Harmover and the Osnabriick City Hall, both sandstone buildings

in Germany. After fifteen years, an investigation in 1995 revealed that the treated facades

were conserved by the coating and the stone had not experienced damage.'''"''

However, Charola (2001) raises the question of adhesion strength or bonding of

the coating to the substrate. These results need to be confirmed with reports of water

vapor permeability and adhesion, for if the adhesion strength between the substrate and

coating is higher than the cohesive strength of the substrate, a portion of the surface of

the substrate will be lost when failure takes place.
''*^

This question is addressed in a first

approximation in the experimental procedure and results, presented in the following

chapters. But first, the coatings used for this experimental procedure are described.

"^
Ibid, 35-6.

'"Mbid, 30-1.
''"'

A.E. Charola, "Water Repellents and Other 'Protective' Treatments: A Critical Review" In: Hydrophobe

III,
3"* Internationa! Conference on Surface Technology with Water Repellent Agents, Ed. by K. Littmann

and A.E. Charola, Aedification Publishers, Freiburg: 2001.
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4.3 Experimental Coating Properties

For the purposes of the present study, a series of coatings were used. They were

chosen to give a variety of characteristics including different adhesion strengths, water

vapor transmission rates, water repellent properties, etc. These coatings include: a

Benjamin Moore Acrylic system, the Keim Granital Mineral coating system, PROSOCO,

Inc. Siloxane WB water repellent system and Atofina Kynar RC-10, 152 PWD PVDF

used as a water repellent system.

The Benjamin Moore Acrylic system consisted of Moore's® High-Build Acrylic

Masonry Primer and Superspec^"^ 1 00% Acrylic Exterior Masonry Coating. These

products were designed to seal masonry and provide a waterproof surface while

maintaining good adhesion.
'''^ Both of these are 100% acrylic, lending durability,

flexibility, stability (non-yellowing, temperature resistant), and resistance to abrasion and

solubility.
''•^

The Keim Granital Mineral Paint system is a silicate based paint system

specifically designed for mineral substrates. This product line was recommended for the

experiment presented here by the Cohalan Company, distributors of the Keim system in

the U.S. Although this paint system is unique in that it is not a film former, per se, it is

important to consider this type of coating in the presence of salts. Product literature for

this system claims that it is "the best imaginable protection for a building. . . [being]

highly water repellent without sealing the pores... the humidity of the substrate can still

diffuse out. There is no chance for mould, and the hard silicate surface makes [it] highly

'*^ Benjamin Moore & Co., "Benjamin Moore Focuses on Masonry Solutions," [online] 2001 [cited 6 April

2002]; available from http://www.benjaminmoore.eom/c/cl l.html.

'"* Guy E. Weismantle, ed. Paint Handbook, Boston: McGraw-Hill, 1981, 3-19-20.

75





resistant to weather, industrial pollution and fire."''*^ Mineral paints form a chemical bond

with the substrate, essentially becoming a part of the material. Since the paint is alkaline

in nature, it does not react with the alkaline substrate on which it is applied. One problem

that can be encountered, however, is the difficulty in removing the paint, since it does

form such a good bond.

PROSOCO, Inc.'s Weather Seal Siloxane WB is a water-based water repellent

system consisting of a "blend of monomeric silanes and oligomeric siloxanes...designed

for dilution with fresh water. . . [producing] a penetrating water repellent that is ideal for

dense or porous surfaces."'
"^*^ This product is also designed to "repel surface water

without trapping water vapor."' ^' All water repellents should add hydrophobic properties

to the pores of a material without hindering water vapor transmission or forming a fihn

on the surface. The intention of these coatings is to "extend [masonry's] usefiil life by

increasing weather resistance and reducing spalling, cracking, and efflorescence."
"

Another water repellent coating used was Atofina Kynar RC-10, 152 PWD PVDF

(hexafluoro-propylene-vinylidine-fluoride copolymer). This is an engineering

thermoplastic fluoropolymer designed to be fabricated into "pipes, fitting and valves,

pump assemblies, sheet and stock shapes, films and tubing."'^" While not yet marketed as

such, it has been tested for use as a water repellent coating when the powder form is

'"''
Research and Applied Technologies Pty Ltd., "Keim Mineral Paints: Keim Granital," [online] 2001

[cited 25 October 2001]; available from http://www.spec-net.com.au/keim/granital.htm.

"""PROSOCO, Inc.: Water Repellents 07 \90" Spec-Data. Architect's First Choice, Construction

Marketing Data Group: 200 1

.

"^' PROSOCO, Inc., "Section 07190: Water Repellents," [online] 1999 [cited 25 October 2001]; available

from http://www.prosoco.com.
"'^ Weismantle, Paint Handbook, 16-12.

'" Atofina Chemicals, Inc., "Kynar® and Kynar® Flex PVDF: Overview," [online] 2000 [cited 7 January

2002]; available from http://www.atofinachemicals.coni/kynarglobal/overview.cfrn.
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combined with acetone to form a 5% weight by weight solution.'"'''' Atofina Kynar's

properties include "mechanical strength and toughness, high abrasion resistance, high

thermal stability,... [resistance] to most chemicals and solvents, [resistance] to

ultraviolet... radiation, [resistance] to weathering and fungi, [and] low permeability to

most gases and liquids."' ^^ The last characteristic mentioned is of concern, as one

requirement for water repellents is water vapor permeability. However, this may not be

applicable since the above properties are not specifically for Kynar's use as a water

repellent for masonry, but for engineering component manufacture.

The coatings described above were applied to low porosity brick samples and

their characteristics compared using techniques similar to those of Franke and Reimann-

Oenel. Water vapor transmission rates, of concern to Charola (2001 ) were also

investigated. The experimental setup and results are presented in the following chapters.

"''
Kurt Wood, Atofina Chemicals, Inc., Telephone conversation with author, 8 January 2002.

'" Atofina Chemicals, Inc., "Kynar® and Kynar® Flex PVDF: Overview."
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Chapter 5: Coatings and Sodium Carbonate: Experimental Part II

5.1 Introduction

In order to study the behavior of salts in coated brick, a number of laboratory tests

were conducted. All tests used extruded high-fired brick from the same palette obtained

from a local masonry supplier cut into appropriate sizes. Comparability was assured by

identifying the source bricks for each sample. (This is illustrated by the experimental

matrices for each test.) Tests included water vapor transmission of the coatings; capillary

water absorption, total immersion and drying using deionized water and sodium

carbonate with a brick substrate; salt weathering tests using both sodium sulfate and

sodium carbonate; coating adhesion; and finally, a test that repeated as closely as possible

the experimental setup used by L. Franke and R. Reimann-Oenel (2001) but using

sodium carbonate as the testing salt.

Sample Treatments





5.2 Characterization ofBrick Samples

The brick samples were characterized using capillary absorption rates, imbibation

capacity and drying rates. These tests were repeated using sodium carbonate solution.

The following sample matrix was used:

Treatment





Capillary Absorption: Water

Square Root Time (seconds)

Figure 5.1 Capillary Water Absorption Rates of Sample Bricks

Porosity of the brick was found following total immersion procedures as

recommended in NORMAL 7/81 and ASTM C 67-97. From this data, the percent

apparent porosity was obtained. Results are shown below.

Sample





Capillary Absorption: Water and Sodium Carbonate Saturated Solution

o 0.40

0.20

0.10
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Relative Moisture Content % versus Time (hours)

-Brick 1-2 Water

- Brick 1 -2 with Sodium Carbonate

Brick 2-2 Water

' Brick 2-2 vntti Sodiuni Cartxxiate

Figure 5.3 Drying Curves of Brick Samples with Water and Sodium Carbonate

Change in Moisture Content/Change In Time versus Moisture Content

-Brick 1-2 with Water

-Brick 1-2 with Sodium
Carbonate

Brick 2-2 with Water

06 05 04

Moisture Content |gycm3}

Figure 5.4 Drying Rate Curves of Brick Samples with Water and Sodium Carbonate
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After capillary absorption (Figures 5.1 and 5.2) and total porosity (Table 5.3)

were determined, both the drying curves and the drying rate of the samples were obtained

following an adaptation ofNORMAL 29/88. The results are presented above (Figure 5.3

and 5.4). (Also see Appendix B.) When comparing the results of the tests using sodium

carbonate to those using deionized water, it is clear that the presence of salts slows down

the drying process and increases the relative critical moisture content. Furthermore, while

the critical moisture content for samples placed in deionized water is reached after

approximately 10 to 15 hours, it is not reached until after 20 to 30 hours when placed in

sodium carbonate solution. The increased moisture absorption of samples treated with

sodium carbonate is due to the high hygroscopicity of this salt.

5.3 Water Vapor Transmission ofCoatings

To test the water vapor transmission rates of the coatings, a modified version of

ASTM E 96-80, Standard Test Methodsfor Water Vapor Transmission ofMaterials, was

used.

Coating System





The results of the water vapor transmission tests (see Table 5.7 and Figure 5.5)

show that the Benjamin Moore Acrylic System reduced the water vapor permeability of

the brick much more significantly than the other coatings used in the experiment. The

Keim Granital Mineral Paint system, PROSOCO Siloxane WB, and Atofina Kynar water

repellent did not significantly change water vapor transmission rates from that of the

control. (Also see Appendix C.) It should be noted that the standard deviation of results

obtained for the samples treated with Atofina Kynar was greater, indicating poor

reproducibility of product application. Additionally, it is important to note the different

results obtained for the cut and rough sides treated with epoxy. Sides that were cut were

much more permeable and showed lower resistance to water vapor transmission than

those left rough.

Treatment





-Brick 1-1 Control

-Brick 1-2 Atofina

- Brick 2-3 Atofina

- Brick 3-2 Benj Moore

Brick 4-2 Keim

Cut Surface 1 Epoxy

Rough Surface 2 Epoxy

Brick 1-3 Prosoco

Figure 5.5 Sampling of Water Vapor Transmission Rates

5.4 Coating Adhesion Test

As stated in Chapter Four, the adhesion of a coating to the substrate is significant

to the greater question at hand in that if a coating's adhesive strength is stronger than the

cohesive strength of the substrate, the integrity of the substrate may be compromised in

the event of spalling. Therefore, the adhesion of the coatings used were tested using

ASTM D 3359-97 Standard Test Methodsfor Measuring Adhesion by Tape Test. (See

Appendix D for photographs and results matrix.) All of the coatings used throughout the

course of the experiments were tested, including the epoxy coatings. The results of this

test showed a variety of adhesion strengths among the coatings tested and that adhesion

strength is greatly altered when the crystallization of sodium carbonate occurs (Table

5.8).
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5.5 Salt Deterioration in the Presence ofa Coating

In order to repeat the tests conducted by Franke and Reimann-Oenel (2001 ),

bricks were cut to prisms that measured 5 x 5.5 x 9 cm. The "fireskin" was retained on at

least two sides—the coated and the absorbing surfaces. All samples were coated with

Axson Wood & Stone Transparent Polyester Epoxy on the vertical sides. The bottom

surface was left as the absorbing (untreated) surface and the tops were coated (Table 5.9).

Treatment





After sample preparation, the coatings were allowed to cure for twelve days. The

prisms were then set into individual plastic containers with the uncoated, "absorbing"

surface resting on glass beads. The containers were filled with saturated sodium

carbonate monohydrate solution to the level of the glass beads. The tops of the containers

were pierced to allow the prisms to be exposed to the air, with the gap between the prisms

and the cutout filled with paraffin. This mechanism restricted movement of the solution

to capillary rise through the height of the sample. Each day, the prisms were exposed to a

household fan for approximately four hours on high speed that provided a wind tuimel

effect (see Appendix E.) Samples were rotated each day to expose every side to the wind.

The experiment was conducted in a controlled environment that averaged 20°C and 20%

to 25% relative humidity. Observations were made each day to assess damage.

The day after testing began, crystals began forming in the bottom of the sample

apparatuses. To ensure proper liquid flow, these crystals had to be broken up periodically

by massaging the containers. On the tenth day of testing, the first signs of damage were

seen on samples coated with Atofina; efflorescence began to form under the coating films

along the pattern of the brushstrokes oftwo of the three samples treated with this water

repellent.

After this initial damage, efflorescence began to form in an unexpected area. This

occurred by day 17, and consisted of efflorescence forming under the epoxy coated

vertical surfaces (even when the tops showed no signs of efflorescence.) This

phenomenon was first observed on untreated samples and those coated with Benjamin

Moore paint. It later appeared on more samples in patterns and at levels that were

indicative of the depth at which the salt fronts were forming within (this was later





confirmed after the samples were broken open.) By day 22, the surface of one Benjamin

Moore treated sample began to blister, and the paint film was soft to the touch. By day

29, a second Benjamin Moore treated prism exhibited blistering of the coating layer.

Between day 29 the tenth week, an increase in the visible deterioration explained above

was observed.

It appears that the samples coated with Keim and PROSOCO coatings most

closely resemble untreated samples. All samples coated with Benjamin Moore and

Atofina exhibited active deterioration: in the form of visible efflorescence in the case of

Atofma (with the salts actually increasing adhesion strength), and blistering in the case of

Benjamin Moore. Neither Keim nor PROSOCO treatments exhibited any surface

deterioration. All of the samples exhibited efflorescence imder the vertical surfaces

coated with epoxy, with the most appearing on untreated and Benjamin Moore treated

samples.

After ten weeks of testing, the samples were broken open and photographed under

magnification to determine the level at which the salt ft-ont developed. The following was

observed (see Table 5.11 and Appendix E for photographs):
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Coating

System





should be noted that the product formed a rubbery, hazy film on the surface of the

substrate rather than penetrating deeply.) It is expected that damage would result in

sanding of the surface rather than flaking.

91





Chapter 6: Discussion and Conclusions

Several conclusions can be drawn from the experiments conducted during this

study. Before presenting these, it is important to acknowledge that the material used for

these tests had a large impact on the results. By using a high fired low porosity brick

(average percent apparent porosity of 3.40 ± 0.56%), the damage that could possibly

occur was limited. While the use ofnew bricks assured that variables to consider would

be mmimal (i.e. they were from the same palette and had not been exposed to pollutants

and weathering) this minimized visible damage. It can be assumed that, considering the

relationship of high porosity with salt damage, by using a material with a higher porosity

and lower mechanical resistance, damage due to salt weathering would be more dramatic.

It has been shown that both sodium carbonate and sodium sulfate are harmful

when introduced into porous materials. However, significant differences are observed in

the field depending on the nature of the masonry used. While the reasons for this

difference are not yet fully understood, the experiments conducted here served to

contribute to their elucidation. These, conducted on highly fired, low porosity brick

showed that sodium carbonate monohydrate is more hygroscopic than sodium sulfate.

Hence, it is likely that less crystallization will occur, explaining in part the lower

deterioration effect sodium carbonate has as compared to sodium sulfate.
'^^

Furthermore, the laboratory dehydration of single crystals of the decahydrate salts

showed distinct differences between them. While sodium sulfate formed many small

crystals, sodium carbonate generated fewer and larger crystals. Differences in the

' Goudie and Viles, Sail Weathering Hazards, Table 4.13.

92





effectiveness in the deterioration exerted by these sahs could, in a first approach, be

attributed to these dehydration differences, which could be significantly affected by the

porosity (pore size distribution and shape) of the material. The results obtained on the

effect of sodium carbonate crystallization on various coatings is summarized in Table 6.1

.

Treatment





with PROSOCO Siloxane WB, where a deeper penetration was obtained, resulted in the

formation of a sah front related to the depth of coating penetration at about 2 centimeters

below the surface. The untreated material showed a similar salt front at twice this

distance.

Conclusions

This study has confirmed that painting masonry surfaces will reduce damage and,

for the case of silicate paints (Lasuren) that do not change the water vapor permeability

properties significantly, the damage would be retarded. For the case of water repellents,

the deterioration will be determined by the penetration depth of the product, and the

eventual damage will be evident as detachment or powdering; though, at a lower depth

than untreated materials.
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APPENDIX A: SALT WEATHERING TESTS
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SAMPLE PREPARATION FOR SALT WEATHERING
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APPENDIX B: CAPILLARY ABSORPTION,

TOTAL IMMERSION AND DRYING
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Capillary Absorption/ Total Immersion/ Drying with Saturated Sodium Carbonate Solution

Capillary Absorption

Total Immersion

O I

Drying 3 hrs

\

0.1

Drying 22 hrs
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APPENDIX C:

WATER VAPOR TRANSMISSION OF COATINGS
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WATER VAPOR TRANSMISSION DATA





Standaid Deviation

Resistance
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WVT

(1/i)
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WATER VAPOR PERMEABILITY OF COATINGS

Brick M Control

Brick 1-2Alofina

Brick 1-3 Prosoco

Brick 2-1 Control

Brick 2-2 Benj Moore

- Brick 2-3 Atofina

-Brick 3-1 Control

- Brick 3-2 Benj Moore

Brick 3-3 Keim

Brick 4-1 Benj Moore

Brick 4-2 Keim

Brick 4-3 Prosoco

Brick 5-1 Keim

Brick 5-2 Alofina

Brick 5-3 Prosoco

Cut Surface 1 Epoxy

Rough Surface 1 Eopxy

Cut Surface 2 Epoxy

Rough Surface 2 Epoxy

Cut Surface 3 Epoxy

Rough Surface 3 Epoxy
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Sample Preparation: Water Vapor Permeability

Coated Samples for Water Vapor Permeability Test

Prepared Samples in Containers for Water Vapor Permeability Test
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APPENDIX D: ADHESION STRENGTH TESTS
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ADHESION TEST RESULTS
1 OF 2

Sample





ADHESION TEST RESULTS
2 OF 2

6.1 B (Rough

uncut side)





Conlrol Samples (Noi Ifxposod to Sails) Before Testing

Before Adhesion Testing

Before Adhesion Testing

Adhesion Test Results: Control Sampt

Surface Coating Adhesion Tests: Benjamin Moore Acrylic System

Adhesion Test Resuhs

Adhesion Test Results

Before Adhesion Testing Adhesion Test Results

Adhesion Test Results: Salt Treated Samples

Before Adhesion Testing

Adhesion Test Results

Adhesion Test Results: Salt Treated Samples

Before Adhesion Testing

Adhesion I est Results

Adhesion Test Results; Salt Treated Sample:

Before Adhesion Testing

Adhesion Test Results
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Before Adhesion Testing

Before Adhesion 1 esting

Before Adhesion Testing

Surface Coating Adhesion Tests: Keim Granital System
Adhesion Test Results Control Samples I Adhesion Test Results: Salt Treated Samples I

Adhesion Test Results

Adhesion Test Results

Adhesion Test Results

^^i "





Control Samples (Not Exposed to Saltsi Before Testing Adhesion Test Results: Control Sanipl

Surface Coating Adhesion Tests: Water Repellent Treatments and Epoxy

5:
r _

pro -XKO

Adhesion Test Results: Salt Treated Samples
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APPENDIX E: SALT DETERIORATION

IN THE PRESENCE OF A COATING
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Sample Preparation: Atoflna Kynar System

Sample Preparation Using Kynar RC- 10.052 PWD PVDF and Acetone

Prepared Samples in Containers for Tests on the Influence of Coatings on Salt

Formation
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Sample Preparation: Prosoco Siloxane WB Water Repellent S

Sample Preparation Using Prosoco Siloxane WB Water Repellent

Prepared Samples in Containers for

Tests on the Influence of Coatings on Salt Formation
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Sample Preparation: Benjamin Moore Acrylic System

Sample Preparation Using High-Build Acrylic Masonry Primer and

Superspec 100% Acrylic Exterior Masonry Coating

Prepared Samples in Containers for

Tests on the Influence of Coatings on Salt Formation
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Sample Preparation: Keim (iranital System

Sample Preparation Using Kiemfarben GmbH Granital with Keim Dilution Potassium Silicate System

Prepared Samples in Containers for

Tests on the Influence of Coatings on Salt Formation





SALT DETERIORATION IN THE PRESENCE OF A COATING: RESULTS





Side B (Uncut. Rough)

Influence of Salt on Coatings: Control

Side D (Uncut. Rough)
Top(Fireskir
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Side B (Uncut. Rough)

Influence of Salt on Coatings: Atofina Kynar System





Influence of Salt on Coatings: Prosoco Siloxane WB Water Repellent System
deB (Uncut, Rough)

\
Side C( Cut I 1 %„... n ,

*

Side D (Uncut, Rough)





Side B (Uncut. Rough)

Influence of Salt on Coatings: Benjamin Moore Acrylic System
Side D (Uncut, Roueh)

Top(Fireskin)
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Side A (Cut) Side B (Uncut, Rough)

Influence of Salt on Coatings: Keim Granital System
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Salt Front Development: Control

(Zdr^o\

#i
Salt Front of Control Samples

Salt Front of Control Samples: Nikon SMZ-U Zoom 1:10

0.5x Magnification; 200 ASA
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Salt Front Development: Atofina Kynar System

Salt Front of Atofina Kynar Treated Samples

^ W^%.^a^> M^^
Salt Front of Atofina Kynar Treated Samples: Nikon SMZ-U Zoom 1:10

0.5x Magnification; 200 ASA
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Salt Front Development: Prosoco Siloxane WB
Water Repellent System

rrosoco

Salt Front of Prosoco Siloxane Treated Samples





Salt Front Development: Benjamin Moore Acrylic System

Salt Front of Benjamin Moore Treated Samples

Salt Front of Benjamin Moore Treated Samples: Nikon SMZ-U Zoom 1:10

0.5x Magnification; 200 ASA
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Salt Front Development: Keim Granital System

Salt Crystallization in Keim Granital Treated Samples

Salt Crystallization in Keim Granital Treated Samples: Nikon SMZ-U Zoom 1:10

2.5x Magnification; 200 ASA
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