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*k*-Universal Finite Graphs

Abstract
This paper investigates the class of k-universal finite graphs, a local analog of the class of universal graphs,
which arises naturally in the study of finite variable logics. The main results of the paper, which are due to
Shelah, establish that the class of k-universal graphs is not definable by an infinite disjunction of first-order
existential sentences with a finite number of variables and that there exist k-universal graphs with no k-
extendible induced subgraphs.
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k�Universal Finite Graphs

Eric Rosen� Saharon Shelah� and Scott Weinstein

Abstract� This paper investigates the class of k�universal �nite graphs� a
local analog of the class of universal graphs� which arises naturally in the
study of �nite variable logics� The main results of the paper� which are due
to Shelah� establish that the class of k�universal graphs is not de�nable by an
in�nite disjunction of �rst�order existential sentences with a �nite number of
variables and that there exist k�universal graphs with no k�extendible induced
subgraphs�

�� Introduction

This paper continues the investigation of the existential fragment of L��� from
the point of view of �nite model theory initiated in �RW��� and �Ros���� In
particular� we further study an analog of universal structures� namely� k�universal
structures� which arise naturally in the context of �nite variable logics� The main
results of this paper� Theorems ��� and ���� which are due to Shelah� apply tech�
niques from the theory of sparse random graphs as developed in �SS��� and �BS���
to answer some questions about k�universal structures left open in these earlier
works� In order to make the current paper more or less self�contained� we recall
some notions and notations from the papers cited above� which may be consulted
for further background and references�

We restrict our attention to languages which contain only relation symbols�
We let Lk denote the fragment of �rst�order logic consisting of those formulas all
of whose variables both free and bound are among x�� � � � � xk� and similarly� Lk��

is the k�variable fragment of the in�nitary language L��� We let Lk	�
 denote the
collection of existential formulas of Lk� that is� those formulas obtained by closing
the set of atomic formulas and negated atomic formulas of Lk under the operations
of conjunction� disjunction� and existential quanti�cation� and we let Lk��	�
 be
the existential fragment of Lk�� � The fragments

V
Lk	�
 and

W
Lk	�
 of Lk��	�


consist of the countable conjunctions and the countable disjunctions of formulas of
Lk	�
 respectively� We write qr	�
 for the quanti�er rank of the formula �� which
is de�ned as usual�

���� Mathematics Subject Classi�cation� Primary ��C��� ��C�	� �	C
��
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Baldwin and an anonymous referee for useful comments on an earlier draft of this paper�

�



� ERIC ROSEN� SAHARON SHELAH� AND SCOTT WEINSTEIN

Definition ���� Let A and B be structures of the same relational signature�
A�kB 	A�k�nB
 	A�k

��B
� if and only if� for all � � Lk	�
 	with qr	�
 � n
 	for
all � � Lk��	�

� if A j� �� then B j� ��

These relations may be usefully characterized in terms of the following non�
alternating� local variants of the Ehrenfeucht�Fraisse game� The n�round� �k�game
from A to B is played between two players� Spoiler and Duplicator� with k pairs
of pebbles� 	��� ��
� � � � � 	�k� �k
� The Spoiler begins each round by choosing a
pebble �i that may or may not be in play and placing it on an element of A� The
Duplicator then plays �i onto an element of B� The Spoiler wins the game if after
any round m � n the function f from A to B� which sends the element pebbled
by �i to the element pebbled by �i is not a partial isomorphism� otherwise� the
Duplicator wins the game� The eternal �k�game is an in�nite version of the n�round
game in which the play continues through a sequence of rounds of order type ��
The Spoiler wins the game� if and only if� he wins at the nth�round for some n � �
as above� otherwise� the Duplicator wins� The following proposition provides the
link between the �k�game and logical de�nability�

Proposition ��� 	�KV���
� �� For all structures A and B� the following

conditions are equivalent�

	a
 A�k�nB�
	b
 The Duplicator has a winning strategy for the n�round �k�game from

A to B�
�� For all structures A and B� the following conditions are equivalent�

	a
 A�k
��B�

	b
 The Duplicator has a winning strategy for the eternal �k�game from

A to B�

� For all structures A and �nite structures B� the following conditions are

equivalent�

	a
 A�k
��B�

	b
 A�kB�

In this paper� we will focus our attention on the class of �nite simple graphs�
that is� �nite structures with one binary relation which is irre�exive and symmetric�
We will use the term graph to refer to such structures� In general� we let A�B� � � �
refer both to graphs and to their underlying vertex sets and we let jAj denote the
cardinality of A� We use E for the edge relation of a graph� Edges	A
 is the edge
set of the graph A� that is� Edges	A
 � ffa� bg � A � E	a� b
g�

�� k�Universal Graphs� De	nability and Structure

We say that a graph G is k�universal� if and only if� for all graphs H�H�kG� By
Proposition ���� this is equivalent to G satisfying every sentence of Lk��	�
 which
is satis�ed by some 	possibly in�nite
 graph� We say that a graph G is k�extendible�
if and only if� k � jGj and for each � � l � k

G j� �x� � � ��xk���xk	
�

��i�j�k��

xi �� xj �

	
�

��i�k��

xi �� xk �
�

��i�l

E	xi� xk
 �
�

l�i�k

	E	xi� xk


�



k�UNIVERSAL FINITE GRAPHS �

It is easy to verify� by applying Proposition ���� that every k�extendible graph is
k�universal� The class of k�extendible graphs plays an important role in the study
of �
 � laws for certain in�nitary logics and logics with �xed point operators 	see
�KV���
� Indeed� the existence of k�universal �nite graphs follows immediately
from the fact that for every k� the random graph G � G	n� p
 with constant edge
probability � � p � � is almost surely k�extendible 	see� for example� �Bol
��
�

Let Uk be the class of k�universal graphs and let

�k � f� � Lk	�
 � �G	G is a graph and G j� �
g�

Note that for all graphs G�G � Uk� if and only if� G j�
V
�k� Thus� Uk is de�nable

in
V
Lk	�
 over the class of graphs� In �RW���� we established via an explicit

construction that for all � � k� Uk is not de�nable in
W
Lk	�
� The following

theorem signi�cantly strengthens this result for large enough k� its proof involves a
probabilistic construction employing techniques from the theory of sparse random
graphs�

Theorem ���� For all k � � and k� � �� Uk is not de�nable in
W
Lk

�

	�
 over

the class of graphs�

We call a class of structures C �nitely based� if and only if� there is a �nite
set of structures fA�� � � � � Ang � C such that for every structure B � C� Ai � B
for some � � i � n� We obtain the following result as a corollary to the proof of
Theorem ����

Corollary ���� For all k � ��

�� Uk is not �nitely based� and

�� the class of k�extendible graphs is not �nitely based�

In �RW���� we observed that for all k� Uk is decidable in deterministic polyno�
mial time� The following theorem gives a stronger �descriptive complexity� result�

Theorem ���� For all k� Uk is de�nable in least �xed point logic�

It is clear that if G is k�extendible and G � H� then H is k�universal� The
question naturally arises whether there are k�universal graphs which contain no
k�extendible subgraph� The following theorem answers this question a�rmatively�

Theorem ���� For each k � �� there is a graph G such that

�� G is k�universal� and
�� �H � G�H is not k�extendible�

The next theorem is a strengthening of the �rst part of Corollary ���� The
proof of this theorem expands on the construction developed to prove Theorem ����
We say a graph G is a minimal k�universal graph just in case G is k�universal and
contains no proper induced subgraph which is k�universal�

Theorem ���� For all k � �� there is an in�nite set of pairwise Lk�inequivalent
minimal k�universal graphs�

We proceed to prove the above results� Theorem ��� is an immediate corollary
of the following lemma which is due to Shelah�

Lemma ���� For all k � � and k� � �� there is a graph N such that

�� N is k�extendible and
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�� for every � � Lk
�

	�
� if N j� �� then there is a structure M such that M j� �
and M is not k�universal�

We approach the proof of Lemma��� through a sequence of sublemmas� We �rst
introduce some graph�theoretic concepts which play a central role in the argument�

Definition ���� Let A be a �nite graph�

�� We say a � ha�� � � � � ani is a t�witness for A� if and only if� a is an injective
enumeration of A and for each i � n� jfj � i � E	aj � ai
gj � t�

�� ��	A
 � the least t such that there is a t�witness for A� 	��	A
 is the coloring
number of A�



� K�
t � fA � ��	A
 � tg�

�� A ��t B� if and only if� A � B�B � K�
t and every t�witness for A can be

extended to a t�witness for B� that is� if a is a t�witness for A� then there is
a b such that ab is a t�witness for B�

The coloring number was introduced and extensively studied in �EH���� The
following sublemma states a free amalgamation property of ��t �

Definition ���� Let A and B be �nite graphs�

�� A is compatible with B� if and only if� the subgraph of A induced by A �B
is identical to the subgraph of B induced by A �B�

�� Suppose A is compatible with B and let C be the subgraph of A induced by
A �B� The free join of A and B over C� denoted by A 
C B� is the graph
whose vertex set is A �B and whose edge set is Edges	A
 � Edges	B
�

Sublemma ��	� Suppose A�B � K�
t � A is compatible with B� C is the sub�

graph of A induced by A � B� C ��t A� and C ��t B� Then� A
C B � K�
t �

A ��t A 
C B� and B ��t A
C B�

Proof� The sublemma follows immediately from the de�nitions�

The next sublemma establishes a lower bound on ��	G
 when G is k�universal�
For the proof of the sublemma we extend the de�nition of k�universality to apply
also to tuples� We also introduce a re�nement of the concept that will be used
in the proof of Theorem �� An m�tuple a � 	a�� � � � � am
 is proper i� for all
i � j � m� ai �� aj� For all models A and B� and j�tuples a � A� b � B� we write

	A� a
�k	B� b
		A� a
�k�n	B� b

 i� for all formulas �	x
 � Lk	�
 	with qr	�
 � n
�
with j free variables� if A j� ��a�� then B j� ��b��

Definition ���
� For j � k� a proper j�tuple a � A is k�universal in A 	k� n�
universal in A
 i� for allB� and proper j�tuples b � B such that the partial function
f	x
 from A to B that maps ai to bi is a partial isomorphism� 	B� b
�k	A� a

		B� b
�k�n	A� a

� The rank of a � A is � if it is k�universal� and the greatest n
such that it is k� n�universal� otherwise�

Sublemma ����� If ��	G
 � �k��� then G is not k�universal�

Proof� Suppose ��	G
 � �k��� and� for reductio� that G is k�universal� Sup�
pose G � fai � i � ng� and let

I � fhi�� � � � � iki � i� � i� � � � � � ik � n and hai� � � � � � aiki is k
universal in Gg�

Since G is k�universal� it follows that I �� �� Let hi�� � � � � iki � I with ik max�
imal� Let w � fj � ik � E	aj � aik
g� and for each j � w� let uj � fl � l �
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f�� � � � � k 
 �g and E	aj � ail
g� Choose l
� � f�� � � � � k 
 �g� As jwj � �k��� there is

u � f�� � � � � k 
 �g 
 fl�g such that for every j � w� u �� uj 
 fl�g�
Now� let H be a k�extendible graph with edge relation E�� Since hai� � � � � � aiki

is k�universal in G� we may choose b�� � � � � bk � H such that the Duplicator has a
winning strategy for the �k�game played from H to G with the jth pair of pebbles
placed on bj and aij � We show that� in fact� the Spoiler can force a win from this
position� which yields the desired contradiction� The Spoiler picks up the pebble
resting on bl� and places it on a point b � H 
 fb�� � � � � bkg such that E�	b� bk
 and
E�	b� bl
 for each l � uwhile 	E�	b� bl
 for each l � f�� � � � � k
�g
	u�fl�g
� In order
to successfully answer the Spoiler�s move� the Duplicator must move the pebble now
resting on ail� and place it on a point am � G such that E	am� aik
 and am �� aik �
In order to achieve this� she must choose am so that either ik � m or m � w� But in
the �rst case we would have that the position h� � � � hbj� aij i� � � � � hbk� aiki� hb� ami �

j �� l�i is a winning position for the Duplicator in the �k�game from H to G� This
implies that h� � � � aij � � � � � aik� am � j �� l�i is k�universal in A� But then� since
ik � m� we have h� � � � ij� � � � � ik�m � j �� l�i � I� But� this contradicts the choice
of ik to be maximal with this property� Therefore� it su�ces to show that m �� w�
But this follows immediately from the fact that m � ik and the construction of u�

The next sublemmas deal with the theory of the random graph G � G	n� n��
�
� an irrational between � and �� as developed in �SS��� 	see also �BS��� for connec�
tions with model theory
� We say a property holds almost surely 	abbreviated a�s�

in G	n� n��
� if and only if� its probability approaches � as n increases� Shelah and
Spencer showed 	see �SS���
 that for any �rst�order property � and any irrational
� between � and �� either � holds a�s� in G	n� n��
 or 	� holds a�s� in G	n� n��
�
For each such �� we let T� � f� � � holds a�s� in G	n� n��
g and we let K�

� be
the set of �nite graphs each of which is embeddable in every model of T�� We will
suppress the superscripts on these notations� when no confusion is likely to result�
in general� we will use notations which leave reference to a particular � implicit� as
in the following de�nition�

Definition ���� 	�SS���
� Let G and H be graphs with G � H� and let � be
a �xed irrational between � and ��

�� 	G�H
 is sparse� if and only if� jEdges	H
 
 Edges	G
j�jH 
 Gj � ����
�� 	G�H
 is dense� if and only if� jEdges	H
 
 Edges	G
j�jH 
Gj 	 ����

� G �s H� if and only if� for every I� if G � I � H� then 	G� I
 is sparse�
�� G �i H� if and only if� for every I� if G � I � H� then 	I�H
 is dense�

We say G is sparse 	dense
� if and only if� 	�� G
 is sparse 	dense
�

Note that since � is irrational every 	G�H
 as above is either sparse or dense�

Sublemma ����� If G � K�� then � �s G�

Proof� The reader may �nd a proof of this sublemma in �Spe����

Sublemma ����� If � is irrational and ��	k � �
 � � � �� then

�� K� � K�
��k��	 and

�� if A �s B� then A ���k�� B�

Proof� �� By Sublemma ���
� it su�ces to show that if � �s G� then G �
K�
�k��� So suppose � �s G�We inductively de�ne a �k���witness for G proceeding
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from the top down� Since G is sparse� jEdges	G
j�jGj� k��� from which it follows
immediately that there is a point a � G whose degree is � �k � �� We let a � ajGj
be the last element of our �k � ��witness for G� Now� since � �s G� G

� � G
 fag
is sparse� so we may �nd an a� � G� whose degree 	in G�
 is � �k�� as before� We
let a� � ajGj�� be the next to last element of our �k� ��witness for G� Proceeding
in this way� we may complete the construction of a �k � ��witness for G�

�� Suppose A �s B and suppose a is a �k � ��witness for A� Just as above we
may inductively construct an enumeration b of B
A so that ab is a �k���witness
for B�

The following closure operator plays an important role in the proof of Lemma
����

Definition ����� We de�ne for graphs G�H withG � H and natural numbers
l� a closure operator cll�m	G�H
 by recursion on m�

�� cll��	G�H
 � G�

�� cll�m��	G�H
 �
S
fB � B � H and jBj � l and B � cll�m	G�H
�iBg�

We let cll��	G�H
 �
S
m�� cl

l�m	G�H
� We say that H is l�small� if and only if�

there is a G � H such that jGj � l and cll��	G�H
 � H�

The following lemma gives the crucial property of closures we will exploit � for
a �xed l there is almost surely in G	n� n��
 a uniform bound on the cardinality of
the closure of a set of size at most l�

Sublemma ����� For every l there is an l� such that a�s� for every A � G	�

G	n� n��

� if jAj � l� then jcll��	A�G
j � l��

Proof� Note that if B �i B
� and B � C � B�� then C �i B

�� It follows that
we may represent cll��	A�G
 as A �

S
i�i� Bi where jBij � l and 	A �

S
j�iBj
 �

Bi �i Bi� Moreover� we may suppose� without loss of generality� that this last
extension is strict� for otherwise Bi could be omitted from the representation� Next
we argue that there is an m 	depending on l
 which a�s� uniformly bounds i�� that
is� there is an m such that

	y
 a�s� in G � G	n� n��
 for all A � G� jAj � l� there is an i� �
m such that cll��	A�G
 may be represented as A �

S
i�i� Bi where

jBij � l and 	A �
S
j�iBj
 �Bi �i Bi�

The sublemma follows immediately from this� for then l� � m � l is an a�s� uniform
bound on jcll��	A�G
j�

Let


 � Min	f	� � jEdges	B
 
 Edges	C
j

 	jB 
 Cj
 �

B � G� jBj � l� A �B �i B�A �B � C � Bg
�

It follows from the de�nition of �i that 
 	 �� Let m � � � l�
� We claim that m
satis�es condition 	y
� Let

wi � jA �
�

j�i

Bj j 
 � � jEdges	A �
S
j�iBj
j�

Then� by hypothesis� w� � jAj � l� Moreover� wi�� � 	wi 
 

� To see this�
let C � Bi � 	A �

S
j�iBj

� Then� A � Bi � C � Bi� Hence� wi�� � j	A �S

j�iBj
 � Bij 
 � � jEdges		A �
S
j�iBj
 �Bi
j � 	jA �

S
j�iBj j � jBi 
 Cj
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� � 	jEdges	A �
S
j�iBj
j � 	jEdges	Bi
j 
 jEdges	C
j

 � 	wi 
 

� It follows� by

induction� that wi � l 
 i � 
� Therefore� if i 	 l�
� then wi � �� So� by Sublemma

���
� if i� � m� then cll��	A�G
 � A �
S
i�i� Bi �� K�� Therefore� a�s� i� � m�

For the purposes of the next sublemma and beyond� we introduce the following
notational convention� we write A �� B for A ��t B� when t � �k�� 
 ��

Sublemma ����� If � is irrational� ��	k � �
 � � � �� k � � and k � � � k�

then the following condition holds a�s� in G � G	n� n��
� For all a�� � � � � ak� � G�

if A � clk
���	fa�� � � � � ak���g� G
 and B � clk

���	fa�� � � � � ak�g� G
� then

�� B � K� and

�� A �� B�

Proof� �� This is an immediate consequence of the preceding Sublemma� By
the �rst�order ��� law for G	n� n��
� given any �xed bound l�� a�s� for all A � G�
if jAj � l�� then A � K��
�� First observe that our closure operator is monotone in �� hence A � B and also�
by the de�nition of the closure operator� that for no C � B�C �� A� jCj � k� do we
have A �C �i C� We argue that A �� B as follows� Suppose a � ha�� � � � � ajAji is

a �k�� 
 ��witness for A� and let b � hb�� � � � � bjBji be a �k � ��witness for B� The
latter exists by Sublemma ���� since B � K�� Now� for every b � B 
A� jfa � A �
E	a� b
gj � k� for otherwise we could �nd a set C � B�C �� A� jCj � k � �� such
that A �C �i C� Let w � fi � � � i � jBj and bi �� Ag� and let b� � hbi � i � wi
be the restriction of b to an enumeration of B 
 A� By hypothesis� k � �� so
	�k� �
 � k � �k��
 �� hence� we may conclude that ab� is a �k��
 ��witness for
B�

Sublemma ����� If � � � � ��k� then G	n� n��
is a�s� k�extendible�

Proof� The reader may �nd a proof of this sublemma in �McA����

We are now in a position to proceed to the proof of Lemma ����

Proof of Lemma ���� Let k � � and� without loss of generality� let k� 	
k� �� Fix � to be an irrational number between ��	k� �
 and ��k� It then follows
from Sublemmas ���� and ���� that there is a �nite graph N such that

	N�
 N is k�extendible�

	N�
 for all a�� � � � � ak� � N� if A � clk
�
��	fa�� � � � � ak���g� N 
 and

B � clk
���	fa�� � � � � ak�g� N 
� then B � K� and A �� B�

To complete the proof we must construct for each � � Lk
�

	�
� a graph M such
that M is not k�universal and if N j� �� then M j� �� By Sublemma ���� and
Proposition ���� it su�ces to construct for each d � � a graph M such that

	M�
 ��	M 
 � �k��� and

	M�
 the Duplicator has a winning strategy for the d�move �k
�

�game from N to
M�

We proceed to construct a structure M that satis�es conditions 	M�
 and 	M�
�
We �rst de�ne chains of structures hMi � i � d � �i and hMi�j � i � d� j � jii�
satisfying the following conditions�

�� If A � Mi� A �� B�B � K�� and B is k��small� then for some j � ji� A �
Ai�j and B and Bi�j are isomorphic over A�
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�� M� � ��

� For all i � d� �� ��	Mi
 � �k���
�� For each i � d�Mi�� � Mi and Mi�ji � Mi���
�� For each j � ji� there are Ai�j� Bi�j with

	a
 Bi�j is k��small�
	b
 Bi�j � K��
	c
 Ai�j �Mi�
	d
 Ai�j �� Bi�j �
	e
 Bi�j is compatible with Mi�j and Ai�j is the subgraph of Mi�j induced

by Bi�j �Mi�j �
	f
 Mi�j�� � Mi�j 
Ai�j

Bi�j�

By Sublemma ����� there are only �nitely many k��small B � K�� The existence
of chains satisfying the above conditions then follows immediately from the free
amalgamation property for �� stated in Sublemma ����

We now let M � Md��� It follows immediately from the construction that M
satis�es condition 	M�
 above� Thus� it only remains to show that M satis�es
condition 	M�
� In order to do so� it su�ces to verify the following claim which

supplies a winning strategy for the Duplicator in the d�move �k
�

�game from N to
M�

Claim� Suppose A � fa�� � � � � ak�g � N�A� � clk
�
��	A�N 
 and f is

an embedding ofA� 	the subgraph of N induced by A�
 intoM�d��	�i�
Then the pebble position with �r on ar and �r on f	ar
� for � � r �

k� is a winning position for the Duplicator in the i�move �k
�

�game
from N to M�

We proceed to establish the claim by induction� Given � � i � d� suppose
that A�A�� f� and the pebble position are as described� It su�ces to show that
given any move by the Spoiler� the Duplicator can respond with a move into
M�d��	��i��	 which will allow the conditions of the claim to be preserved� Sup�
pose� without loss of generality� that the Spoiler moves �k� onto a vertex a � N�

Let A�� � clk
���	fa�� � � � � ak���g� N 
 and let A��� � clk

���	fa�� � � � � ak���� ag� N 
�
Then� by condition 	N�
� A��� � K� and A�� �� A���� Then� by condition � on
the construction of our chains de�ning M� there is a B � M�d��	��i��	 and an
isomorphism f � from A��� onto B with f � and f having identical restrictions to A���
Therefore� the conditions of the claim will be preserved� if the Duplicator plays
pebble �k� onto f

�	a
�

Proof of Corollary ���� Let k � �� �� Suppose� for reductio� that Uk is
�nitely based with �basis� fA�� � � � � Ang� Let k� be the maximumof the cardinalities

of the Ai� Then� there is a sentence of Lk
�

	�
 which de�nes Uk� contradicting
Theorem ����

�� Suppose for reductio that the class of k�extendible structures is �nitely based
and choose k� as above with respect to a �basis� for this class� As in the proof of
Lemma ���� there is a k�extendible graph N such that each Lk

�

	�
 sentence true in
N has a model which is not k�universal and hence not k�extendible� This implies
that every submodel of N of size at most k� is not k�extendible� which yields the
desired contradiction�

Proof of Theorem ���� We show that the complement of Uk is de�nable in
least �xed point logic� which is su�cient since the language is closed under negation�
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In fact� it is de�ned by a purely universal sentence� The main idea is to show that
for all A�A �� Uk i� either card	A
 � k 
 � or for all proper k 
 ��tuples a � A� a
is not k�m�universal for some m � �� Equivalently� every proper k 
 ��tuple has
�nite rank� This follows easily from the following sequence of observations�

�� For all A� A is k�universal i� there is a proper k 
 ��tuple a � A such that
a is k�universal in A�

�� For all A� and every proper k 
 ��tuple a � A� a is k�universal in A i� a is
k�m�universal in A� for all m � ��


� For every A and proper k 
 ��tuple a� if a has rank m � � in A� then
there is some set S � f�� � � � � k
�g and formula �	x�� � � � � xk
 �

V
i�k xi ��

xk�
V
i�S E	xi� xk
�

V
i��S 	E	xi� xk
� such that for all a

� � A� if A j� �	aa�
�

then aa� has rank � m�

Observations � and � essentially follow immediately from the de�nitions� Ob�
servation 
 may be veri�ed by considering the k�extendible models�

The above conditions yield an easy inductive de�nition of all the proper k
 ��
tuples that are not k�universal� Call a formula of the form of � above a k�extension
formula� Let ��� � � � � �t be the set of k�extension formulas� By observation 
� a
proper k 
 ��tuple a has rank � i� there is some k�extension formula � such that
there is no a� such that A j� �	aa�
� and a has rank � m � � i� there is some
k�extension formula � such that for all a�� if A j� �	aa�
� then aa� has rank � m�

We now show how to express this de�nition by a least �xed point formula� Let
�	x�� � � � � xk��
 be the following formula�

�

i�j�k��

xi � xj �
�

s�t

�xk		�s	xxk
 �
�

j�k

R	x�� � � � � xj��� xj��� � � � � xk

�

R appears positively in the formula� so that � de�nes an inductive operator on each
graph G��G	X
� that maps k 
 ��ary relations P to k 
 ��ary relations �G	P 
�
Let ��

G � �G	�
� and let �n��
G � �G	�n

G
� If �n��
G � �n

G� then �n
G is a �xed

point of the operator� In fact� it is the least �xed point� which we denote ��G �
Observe that for all proper k
 ��tuples a� a � �n��

G 
�n
G i� the rank of a is n� By

the above observation� G is k�universal i� ��G � Ak��� Therefore� the following
formula de�nes the class of graphs that are not in Uk�

�x� � � �xk��
�

i�j�k��

xi � xj � �x� � � � xk���
�
G 	x�� � � � � xk��


This completes the proof�

Proof of Theorem ���� Let k � ��We construct G as follows� Let V be the
set of binary sequences of length k� that is� V is the set of �� ��valued functions with
domain f�� � � � � kg� For each � � i � k� let Vi � V � fig and let U �

S
��i�k Vi� U

is the set of vertices of the graph G� The edge relation E of G is de�ned as follows�

E		f� i
� 	g� j

�� 	i �� j � f	j
 � g	i

�

We proceed to verify that G satis�es the conditions of the theorem�
First we show that G is k�universal� Let H be an arbitrary graph� We describe

a winning strategy for the Duplicator in the �k�game from H to G� At each round
the Duplicator plays so as to pebble at most one element of each Vi�Wemay suppose
without loss of generality that all k pebbles are on the board at round s� that the
Duplicator has played �i on an element of Vi� and that the map from the elements
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pebbled in H to the corresponding elements pebbled in G is a partial isomorphism�
Suppose the Spoiler plays �j onto an element b � H at round s � � and let X be
the set of i such that there is an edge between b and the vertex of H pebbled by
�i� Let 	fi� i
 be the vertex of G pebbled by �i at round s� We must show that the
Duplicator may play �j at round s � � onto a vertex 	g� j
 � Vj such that for all
� � i � k�

E		g� j
� 	fi� i

�� i � X�

It is clear that 	g� j
 satis�es this condition when g is de�ned as follows� g	i
 � fi	j
�
if i � X� g	i
 � �
 fi	j
� if i �� X� This completes the proof that G is k�universal�

Let H � G� and suppose� for reductio� that H is k�extendible� It is easy to
verify that any graph H is k�extendible i� for all j�tuples a in H� j � k� a is k�
universal in H� To establish the contradiction� we show that there are a�� a� � H
such that 	a�� a�
 is not k�universal in G� which immediately implies that 	a�� a�

is not k�universal in H either�

The cardinality of any k�extendible graph is � k � �� so there is an l � k such
that H contains two vertices� 	f�� l
� 	f�� l
� in Vl� Let w

� � fj j j �� l and f�	j
 ��
f�	j
g and let w�� � fj j j �� l and f�	j
 � f�	j
g� Let w � w�� if jw�j � jw��j�
and let w � w��� otherwise� Observe that jwj � 	k 
 �
��� which is � k 
 � for all
k � �� We now show that 	f�� l
� 	f�� l
 is not k� jwj � ��universal in G� Suppose
that w � w�� Let �	x�� � � � � xjwj��
 �

�

��i�j�jwj��

xi �� xj �
�

��i�jwj��

	E	x�� xi
 � 	E	x�� xi

 �
�

��i�j�jwj��

E	xi� xj
�

	Note that jwj � 
 � k� since k � ��
 Observe that for any jwj � 
�tuple a �
	a�� � � � � ajwj��
 such that a� � 	f�� l
 and a� � 	f�� l
� G �j� �	a
� If we let

�	x�� x�
 � �x� � � �xjwj���	x�� � � � � xjwj��
�

then it follows that G �j� �		f�� l
� 	f�� l

� Therefore 		f�� l
� 	f�� l

 is not k� jwj���
universal in G� The argument for w � w�� is similar�

The above construction may be extended to arbitrary �nite relational signa�
tures�

Proof of Theorem ���� Let k � �� For all n � �k� we construct graphs Gn

such that�

�� Gn is k�universal�
�� For all H � Gn� if H is k�universal� then the diameter of H is � b	n 


�
��c�	k
 �
�

	Recall that the diameter of a graph is the maximum distance between any two
vertices if it is connected� and � otherwise� It is an easy exercise to show that for
k � 
� every minimal k�universal graph is connected�
 This immediately yields the
fact that there are minimal k�universal models of arbitarily large �nite diameter� It
is easy to check that the property of having �nite diameter � d is expressible in L��
which implies that any two graphs with di�erent diameters are Lk�inequivalent�

The graphs Gn are based on a modi�cation of the construction from the proof
of Theorem 
� Let V be the set of functions from the interval f
	k
�
� � � � � k
�g
into f�� �g� For each m� � � m � n 
 �� let Vm � f�� �g � V � fmg� The set of
vertices of Gn is

S
m Vm� The edge relation on Gn is de�ned as follows� For all

m�m�� a � Vm� a
� � Vm� � if m � m� or k � m
m� � n
 k	mod n
� then 	E	a� a�
�
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If � � m
m� � k
�	mod n
� and a � 	�� f�m
� a� � 	��� f ��m�
� with �� �� � f�� �g
and f� f � � V � then E	a� a�
 i� f �	m 
 m�
 � f	m� 
 m
� 	Here� subtraction is
modulo n�
 Finally� if m 
 m� � k 
 �	mod n
� then E	a� a�
 i� � � �� In this
case� each a � Vm is either adjacent to every vertex in Vm� or to none of them� If
m� � m � b	n 
 �
��c� then the distance d	a� a�
 � b	n 
 �
��c�	k 
 �
� Observe
also that for all l � n
�� there is an automorphism of Gn taking each Vm to Vm�l �
	All indices are modulo n�


First we show that Gn is k�universal� Let G� be an arbitary graph� It su�ces to
prove that the D wins the �k�game from G� to Gn� By an argument similar to the
one given in the proof of Theorem 
� it is easy to see that the D can play so that in
each round i � k� she plays a pebble on a vertex in Vi� We now argue by induction
that in each subsequent round j 	 k� she can maintain the following condition�
there is some l � n such that there is exactly one pebble on each Vm� for m such
that � � m 
 l � k 
 �	mod n
� The basis step is already taken care of� Suppose
that in round j� the D has a single pebble in each vertex set Vl� � � � � Vl��k��	� We
consider two cases� One� the S replays the pebble �i whose pair �i in Gn is on an
element of Vl� It is easy to verify that the D can respond by playing �i on a vertex
in Vl�k � Observe that the D�s pebbles are now on Vl��� � � � � Vl�k � as desired� Two�
the S replays any other pebble �i�� whose pair �i� is on some element of Vl� � l �� l��
The D can respond by replaying the pebble on some other element of Vl� � Again�
that this is possible essentially follows from the proof of Theorem 
�

Next we argue that any k�universalH � Gn has diameter � b	n
�
��c�	k
�
�
In particular� it is su�cient to prove H must contain a vertex from each Vm�m �
n 
 �� Let A be any k�extendible graph� The argument proceeds by establishing
that� in the �k�game from A to H� the S can eventually force the D to play a pebble
on a vertex in each Vm �H� If Vm �H � �� for some m� then the D loses�

In rounds � through k� the S plays on a k�clique in A� For every k�clique in
Gn� and hence also in H� there is an m � n
 � such that each Vm� � � � m� 
m �
k 
 �	mod n
� contains exactly one element from the clique� Therefore� after k
rounds� the D must have a single pebble on each of Vm� � � � � Vm��k��	� for some m�
It su�ces to show that the S can force the D to play so that exactly one pebble
occupies a vertex in each set Vm��� � � � � Vm�k� since by iterating this strategy� he
can force the D to play onto each Vl�

To simplify the notation� we assume m � � and that each pebble �i� � � i �
k 
 �� is on a vertex in Vi� Let bi � 	�i� fi� i
� �i � f�� �g� fi � V � be the element
pebbled by �i� In round k� �� the S replays pebble �� and places it on an element
a � A such that E	a� ��
 and for i � f�� � � � � k 
 �g� E	a� �i
 i� �i � �� 	Here
we abuse notation and use �j to refer also to the element on which the pebble is
located�
 Since �� and �� are now adjacent in A� the D has to play �� on some
element in a set Vl� for 
	k 
 �
 � l � k	mod n
� so that it is adjacent to ���

By the condition that for i � f�� � � � � k 
 �g� E	a� �i
 i� �i � �� the D cannot
play in Vl� for 
	k 
 

 � l � �	mod n
� If the D plays the pebble in Vk� then
the S has succeeded� Suppose that the D plays �� on an element of V��k��	� We
now claim that there is no 
�clique in Gn �H� each of whose elements is adjacent to
both �k�� and ��� This is because 	i
 the only elements of Gn that are adjacent to
vertices in both V��k��	 and Vk�� are members of either V� or V�� and 	ii
 there is
no 
�clique in V� � V�� Thus the S can force a win in 
 moves by replaying pebbles
��� ��� �� so that they occupy a 
�clique each of whose elements are adjacent to ��
and �k���
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The remaining case occurs when the D plays �� on a vertex in Vj� for � �
j � k 
 �� Without loss of generality� let j � k 
 �� and let b� be the vertex
now occupied by ��� Let w� � fi j � � i � 
 and E	bk��� bi
 i� E	b�� bi
g and
w�� � fi j � � i � 
 and E	bk��� bi
 i� 	E	b�� bi
g� Again without loss of generality�
suppose that jw�j � � and w� � f�� �g� By exploiting the fact that �� and �k��
both occupy vertices in Vk��� the S can now force the D to play �� onto Vk�

The S �rst places �� on a vertex such that for all j� � � j � k 
 �� j �� ��
E	��� �j
� and 	E	��� ��
� It is easy to see that the D must put �� on either V�
or Vk� In the �rst case� the S responds by playing �� so that for all j� � � j �
k 
 �� E	��� �j
 and 	E	��� ��
� The D now loses immediately� The only vertices
adjacent to each �j � � � j � k 
 �� are elements of V� or V�� but for each b � V�
or V�� E	b� �k��
 i� E	b� ��
� In the second case� the S then plays �� onto a vertex
such that for all j� � � j � k 
 �� E	��� �j
� This compels the D to play �� in V��
so that there is a now a single pebble in each V�� � � � � Vk� as desired�
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