
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

April 2005

Achieving Near-Optimal Traffic Engineering
Solutions for Current OSPF/IS-IS Networks
Ashwin Sridharan
University of Pennsylvania

Roch A. Guérin
University of Pennsylvania, guerin@acm.org

Christophe Diot
Intel Research

Follow this and additional works at: http://repository.upenn.edu/ese_papers

Copyright 2005 IEEE. Reprinted from IEEE/ACM Transactions on Networking, Volume 13, Issue 2, April 2005, pages 234-247.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/ese_papers/106
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Ashwin Sridharan, Roch A. Guérin, and Christophe Diot, "Achieving Near-Optimal Traffic Engineering Solutions for Current OSPF/
IS-IS Networks", . April 2005.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kosmopolis

https://core.ac.uk/display/214131637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/ese_papers/106
mailto:repository@pobox.upenn.edu

Achieving Near-Optimal Traffic Engineering Solutions for Current
OSPF/IS-IS Networks

Abstract
Traffic engineering is aimed at distributing traffic so as to "optimize" a given performance criterion. The ability
to carry out such an optimal distribution depends on the routing protocol and the forwarding mechanisms in
use in the network. In IP networks running the OSPF or IS-IS protocols, routing is along shortest paths, and
forwarding mechanisms are constrained to distributing traffic "uniformly" over equal cost shortest paths.
These constraints often make achieving an optimal distribution of traffic impossible. In this paper, we propose
and evaluate an approach that is capable of realizing near optimal traffic distribution without any change to
existing routing protocols and forwarding mechanisms. In addition, we explore the trade-off that exists
between performance and the overhead associated with the additional configuration steps that our solution
requires. The paper's contributions are in formulating and evaluating an approach to traffic engineering for
existing IP networks that achieves performance levels comparable to that offered when deploying other
forwarding technologies such as MPLS.

Keywords
Networks, Routing, Traffic Engineering, Aggregation

Comments
Copyright 2005 IEEE. Reprinted from IEEE/ACM Transactions on Networking, Volume 13, Issue 2, April
2005, pages 234-247.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/106

http://repository.upenn.edu/ese_papers/106?utm_source=repository.upenn.edu%2Fese_papers%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages

234 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

Achieving Near-Optimal Traffic Engineering
Solutions for Current OSPF/IS-IS Networks

Ashwin Sridharan, Student Member, IEEE, Roch Guérin, Fellow, IEEE, and Christophe Diot

Abstract—Traffic engineering aims to distribute traffic so as to
“optimize” some performance criterion. This optimal distribution
of traffic depends on both the routing protocol and the forwarding
mechanisms in use in the network. In IP networks running the
OSPF or IS-IS protocols, routing is over shortest paths, and
forwarding mechanisms distribute traffic “uniformly” over equal
cost shortest paths. These constraints often make achieving an
optimal distribution of traffic impossible. In this paper, we propose
and evaluate an approach that can realize near optimal traffic
distribution without changes to routing protocols and forwarding
mechanisms. In addition, we explore the tradeoff that exists
between performance and the configuration overhead that our
solution requires. The paper’s contributions are in formulating
and evaluating an approach to traffic engineering in IP networks
that achieves near-optimal performance while preserving the
existing infrastructure.

Index Terms—Aggregation, networks, routing, traffic engi-
neering.

I. INTRODUCTION

AS THE AMOUNT and criticality of data being carried on
IP networks grows, managing network resources to ensure

reliable and acceptable performance becomes increasingly im-
portant. Furthermore, this should be accomplished while mini-
mizing or deferring costly upgrades. One of the techniques that
is being evaluated by many Internet Service Providers (ISPs)
to achieve this goal is traffic engineering. Traffic engineering
uses information about the traffic entering and leaving the net-
work to generate a routing scheme that optimizes network per-
formance. Most often the output of traffic engineering is an “op-
timal” set of paths and link loads that produce the best possible
performance given the available resources. However, explicitly
setting up such paths and (optimally) assigning traffic to them,
typically calls for changes to both the routing protocols and the
forwarding mechanism they rely on, e.g., through the introduc-
tion of new technology such as MPLS [15].

Currently, two of the most widely used Interior Gateway
routing protocols are OSPF [14] and IS-IS [4], and devising so-
lutions that allow these protocols to emulate “optimal routing,”
is therefore desirable. There are two main difficulties in doing

Manuscript received May 1, 2003; revised January 21, 2004; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor J. Roberts. The work of
A. Sridharan and R. Guérin was supported in part by the National Science Foun-
dation under Grants ANI-9902943 and ITR-0085930

A. Sridharan and R. Guérin are with the Department of Electrical and Systems
Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
ashwin@ee.upenn.edu; guerin@ee.upenn.edu).

C. Diot is with Intel Research, Cambridge CB3 0FD, U.K. (e-mail:
christophe.diot@intel.com).

Digital Object Identifier 10.1109/TNET.2005.845549

so. The first is that these protocols use shortest path routing
with destination based forwarding. The second is that when the
protocols generate multiple equal cost paths or next hops for
a given destination routing prefix, the forwarding mechanism
equally splits the corresponding traffic across them to balance
the load. This “equal” splitting is an approximation that de-
pends on the selection of which next hop to use for a given
packet. This selection is based either on the value (one for each
possible next hop) of a hash function applied to the packet
header (source and destination addresses and port numbers),
or on the state of a simple round-robin scheme that cycles
through the possible next hops. Although the latter option is
occasionally used and provides for a more even distribution of
load across possible next hops, the former option is the more
commonly used in practice. This is because it preserves packet
ordering within a flow, and because the large number of flows
that modern routers handle results in a good approximation of
equal splitting [5]. For simplicity, in the paper we assume that
traffic is split in exactly equal fractions across equal cost next
hops.

The constraints imposed by the use of both shortest path
routing and equal splitting across equal cost paths make it dif-
ficult or even impossible to achieve optimal traffic engineering
link loads. One of the first works to explore this issue was [7],
where a local search heuristic was proposed for optimizing
OSPF weights assuming knowledge of the traffic matrix.
Ref. [7] showed that in spite of these constraints, properly
selecting OSPF weights could yield significant performance
improvements. However, the paper also showed that for some
topologies, performance could still differ substantially from
the optimal solution. Subsequently, a result from linear pro-
gramming [2, ch. 17, sec. 17.3] was used in [20] to prove that
any set of routes can be converted into a set of shortest paths
based on some link weights that matches or improves upon
the performance of the original set of routes. This establishes
that the shortest path limitation is in itself not a major hurdle.
However, the result of [20] assumes forwarding decisions that
are specific to each ingress–egress pair, and more importantly,
the ability to split traffic in an arbitrary ratio over different
shortest paths. Both of these assumptions are at odds with
current IP forwarding mechanisms.

Compatibility with destination based forwarding can be
achieved through a simple extension to the result of [20],
simply by taking advantage of a property of shortest paths
[17], or by readjusting the program formulation itself [1].1

Accommodating the constraint of uneven splitting of traffic

1This is explained in detail in Section II-A.

1063-6692/$20.00 © 2005 IEEE

SRIDHARAN et al.: ACHIEVING NEAR-OPTIMAL TRAFFIC ENGINEERING SOLUTIONS FOR CURRENT OSPF/IS-IS NETWORKS 235

across multiple shortest paths is a more challenging task. It is
typically not supported with the forwarding path implemen-
tations that accompany most routing protocols (some limited
support is available with Cisco’s proprietary routing protocol
EIGRP2). A new protocol, OSPF-OMP, was proposed in [19]
that circumvents this constraint by modifying the hash function
in the router to allow unequal load balancing. However, this
will require significant changes to the forwarding mechanisms
in the router’s data path, which is typically not something that
can be accomplished through a simple software upgrade.

The solution we propose leverages the fact that present day
routers have thousands of route entries (destination routing pre-
fixes) in their routing table. Instead of changing the forwarding
mechanism responsible for distributing traffic across equal cost
paths, we plan to control the actual (sub)set of shortest paths
(next hops) assigned to routing prefix entries in the forwarding
table(s) of a router. In other words, for each prefix we define a
(sub)set of allowable next hops by carefully selecting this subset
from the set of next hops corresponding to the shortest paths
computed by the routing algorithm. This allows us to control
how traffic is distributed without modifying routing protocols
such as OSPF or IS-IS, and without requiring changes to the
data path of current routers, i.e., their forwarding mechanism.
It does, however, require some changes to the control path of
routers in order to allow the selective installment of next hops
in the forwarding table.

Our initial focus is on gaining a better understanding of how
well the selective installment of next hops for different routing
prefixes can approximate an optimal traffic allocation (set of link
loads). This problem is shown to be NP-complete in [17] and
hence one must resort to heuristics. Toward this end, we propose
a simple local search heuristic for implementing the solution.
We obtain a bound on the gap between the heuristic and optimal
allocation, and also demonstrate its efficacy through several ex-
periments. Even though we study the heuristic in the context of
a routing problem, we believe that it is generic enough to be of
potential use in other load balancing scenarios. The main finding
from our investigation is that the performance achieved by this
approach is essentially indistinguishable from the optimal.

This being said, an obvious drawback of “hand-crafting” the
set of next hops that are to be installed for each routing prefix
in a router’s forwarding table, is the configuration overhead it
introduces. The potential magnitude (proportional to the size of
the routing/forwarding table) of this overhead could make this
approach impractical. As a result, our next step is to investigate a
solution that can help mitigate this overhead, albeit at the cost of
a possible degradation in performance. Specifically, we limit the
number of routing prefixes for which we perform the proposed
selective installment of next hops. Our results indicate that a
significant reduction in configuration overhead can be achieved
without a major loss of performance.

The rest of the paper is structured as follows. Section II intro-
duces the linear program formulation used in [20] to generate
an ”optimal” set of shortest paths, and introduces the proposed
modifications to make it compatible with existing IP routers.

2Cisco’s specification of EIGRP allows unequal load balancing across
shortest paths and nonshortest paths.

Section III presents a heuristic for approximating an optimal
traffic distribution by manipulating the set of next hops assigned
to each routing prefix. Section IV presents several experiments
that first establish the efficacy of the heuristic of Section III,
and then explore the impact on performance of lowering con-
figuration overhead. Section V provides a brief summary of the
paper’s contributions and outline directions for future work.

II. FROM OPTIMAL ROUTING TO SHORTEST PATH ROUTING

In this section, we first briefly review the classic result from
linear programming [2, ch. 17, sec. 17.3] that was cast in the
context of routing in communication networks in [20] to show
how optimal routing can be achieved using only shortest paths.
We then discuss why this result is not directly usable in current
IP networks, and finally propose solutions that allow us to im-
plement the result under the existing paradigm.

The network is modeled as a directed graph with
routers and directed links. We assume

the existence of a traffic matrix where entry
denotes the average intensity of traffic entering the network at
ingress router and exiting at egress router for commodity

. A good reference on how to construct such a traffic
matrix can be found in [6]. Assume that an optimal allocation
based on some network wide cost function yields a set of paths

for each commodity (ingress–egress router pair), so that
the total bandwidth consumed by these paths on link () is

. It can be shown that the same performance, in terms of the
bandwidth consumed on each link, can be achieved with a set of
shortest paths by formulating and solving a linear program and
its dual. The linear program can be formulated as [20]

subject to

(1)

where is the fraction of traffic for commodity that flows
through link (). Solving the linear program gives a traffic
allocation that consumes no more than amount of
bandwidth on any link (). Note that the formulation is not
dependent on the original network cost function used to ob-
tain the paths . Instead it achieves the same performance
by matching the desired bandwidths . In order to obtain link
weights for shortest path routing, the dual of the linear program
as formulated in [20] needs to be solved

subject to

236 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

(2)

The solution to the dual yields a set of link weights
, from which a set of shortest paths can be constructed.

It is however important to understand that although routing
can now be done over shortest paths, this is still quite different
from the forwarding paradigm currently deployed in existing
OSPF and IS-IS networks. The reasons are two-fold and both
can be traced to the output of the primal LP, (1), namely, the
traffic allocation . They govern the fraction of traffic for-
warded on each next-hop.

Firstly, observe that the traffic allocation is for each com-
modity or ingress–egress router pair. This means that the routing
protocol could possibly generate different set of next hops for
each ingress–egress pair on which traffic is to be forwarded. This
would impact the forwarding mechanism on the data path, as the
router would need to make decisions on the basis of both ingress
and egress routers. Clearly, this is at odds with the current par-
adigm of destination-based forwarding.

The second problem relates to the fact that current forwarding
mechanisms support only equal splitting of traffic on the set of
equal cost next hops. The linear program yields a traffic allo-
cation that is not guaranteed to obey this constraint. Modifying
the forwarding engine to support unequal splitting (see, for ex-
ample, [19]) of traffic would involve changes to the data path,
namely modification of the hash function to allow for control-
lable hash boundaries. In the next two subsections we suggest
methods that overcome both these problems.

A. Destination Based Aggregation of Traffic

The first problem of translating a traffic allocation that distin-
guishes between ingress–egress router pairs into one that only
depends on egress point is relatively straightforward. It can be
achieved simply by transforming the individual splitting ratios
of ingress–egress pairs that share a common egress router into
a possibly different splitting ratio for the aggregate traffic asso-
ciated with the common egress router. The reason this is pos-
sible is because all chosen routes are shortest paths. Shortest
paths have the property that segments of shortest paths are also
shortest paths, so that once two flows headed to the same egress
point meet at a common node they will subsequently follow the
same set of shortest paths. This means that we need not distin-
guish between these packets based on their source address, and
can make splitting and forwarding decisions simply based on
their destination address.

The aggregation of flows headed to a common egress could
either be done after the optimal traffic allocation for each com-
modity has been computed [for example, by the LP in (1)] or
in the formulation of the linear program itself. The first method
is presented in [17]. The second scheme was presented in [1]
and illustrated below. Since traffic allocation is done based only
on the egress router, we can aggregate all commodity flow vari-
ables headed toward a common egress point and then suitably
modify the conservation constraints. A re-formulation of (1) and

(2) in the destination aggregated form as presented in [1] is re-
produced below.

The primal Linear Program is given by

subject to

otherwise

where

(3)

The variables of the Primal, , represent traffic on link
headed toward egress router . Also, the flow conservation con-
straints have been modified to accommodate the aggregation,
where represents all traffic headed toward destination .

The dual can be formulated similar to (2). Let represent
the vector of node potentials for destination . Let

represents the right-hand side array in the flow conservation
constraints of the primal, (3), that is

otherwise.

The dual is given by

subject to

(4)

As before, still represent link weights for shortest
path computation. However, the traffic allocation on each link
is for an egress-router and of the form . The above for-
mulation is not only conformal to the paradigm of destination
based forwarding, but also reduces the number of variables by
a factor of through removal of information regarding
ingress–egress router pairs. This greatly improves the compu-
tation complexity involved in obtaining an optimal solution and
will be used henceforth throughout the remainder of the paper
to compute the optimal traffic allocation and link weights.

B. Approximating Unequal Split of Traffic

In the previous subsection, we saw that solving the problem
of source-destination based forwarding decisions was relatively
straightforward. Unfortunately, the same does not hold for the

SRIDHARAN et al.: ACHIEVING NEAR-OPTIMAL TRAFFIC ENGINEERING SOLUTIONS FOR CURRENT OSPF/IS-IS NETWORKS 237

uneven splitting issue, and as mentioned earlier providing such
a capability is a significant departure from current operations.
Our proposal to overcome this problem is to take advantage of
the fact that today’s routing tables are relatively large, with mul-
tiple routing prefixes associated with the same egress router. By
controlling the (sub)set of next hops that each routing prefix is
allowed to use, we can control the traffic headed toward a par-
ticular egress router(destination). In other words, instead of the
current operation that has all routing prefixes use the full set of
next hops, we propose to selectively control this choice based
on the amount of traffic associated with each routing prefix and
the desired link loads for an optimal traffic allocation.

The following example illustrates the idea behind the ap-
proach. Assume that at some node, there are four routing pre-
fixes, , , and that map to a common destination
and have traffic intensities , ,
and . Let there be three shortest paths associated
with destination , so that the routing table has 3 possible next
hops to , and assume that the optimal distribution of traffic to
the three next hops is , and . We can
then intuitively match this traffic distribution by the following
next hop assignment: , ,

and . The resulting traffic
distribution is , ,

, which matches the optimal allocation.
The advantage of the above approach is that the forwarding

mechanism on the data path remains unchanged, as packets are
still distributed evenly over the set of next hops assigned to
a routing prefix. This means that a close approximation of an
optimal traffic engineering solution might be feasible even in
the context of existing routing and forwarding technologies.
There are, however, a number of challenges that first need to
be addressed. The first is the need for traffic information at the
granularity of a routing prefix entry instead of a destination
(egress router). This in itself is not an insurmountable task as
most of the techniques currently used to gather traffic data, e.g.,
router mechanisms’ like Cisco’s Netflow or Juniper’s cflowd,
can be readily adapted to yield information at the granularity of
a routing prefix.

The second issue concerns the configuration overhead in-
volved in communicating to each router the subset of next hops
to be used for each routing prefix. This can clearly represent a
substantial amount of configuration data, as routing tables are
large and the information that needs to be conveyed is typically
different for each router. The approach we propose and study is
to identify a small set of prefixes for which careful allocation of
next hops is done and rely on default behavior for the remaining
prefixes. The tradeoff will then be in terms of how close one
can get to an optimal traffic distribution, while configuring the
smallest possible number of routing prefixes. We investigate
this tradeoff in Section IV, where we find that near optimum
performance can often be achieved by configuring only a small
number of routes (routing prefixes).

The third and last challenge is to actually formulate a method
for determining which subset of next hops to choose for each
routing prefix in order to approximate an optimal allocation.
The goal of any solution will be to minimize some metric that
measures discrepancy between the optimal traffic allocation and

the one achieved under equal-splitting constraints on any hop. In
this work, we use the maximum load on any hop as a measure of
performance, where the load on a hop is the ratio of the allocated
traffic (by the heuristic) to the optimal traffic. Details regarding
the use of another metric, the gap between optimal traffic and
allocated traffic can be found in [17].

III. HEURISTIC FOR TRAFFIC SPLITTING

Ideally, one should consider the problem of selective next-hop
allocation at the global level, that is, do a concurrent optimal
assignment of next hops for each routing prefix at each node.
However, even the single node allocation problem is NP-com-
plete [17], and hence may not be computationally tractable.
Consequently, we propose greedy heuristics that perform in-
dependent computations for each routing prefix at each node.
These computations are based only on the incoming traffic at
the node and the desired outgoing traffic profile. A potential
problem with this approach is that the traffic arriving at a node
may not match the optimal profile due to the heuristic decisions
at some upstream node. Hence, the profile of the outgoing traffic
from the node in question, could further deviate from the desired
one. However, in our experiments we observe that usually the
heuristic is able to track the optimal load profile and hence in-
coming traffic seen at any node and the resultant outgoing traffic
have a near-optimal profile. We have proposed three heuristics
that are greedy in nature and try to minimize one of the two
metrics mentioned in Section II-B. Since the heuristics are sim-
ilar in nature, we shall limit our discussion to only one of them,
namely the MIN-MAX Load heuristic, because in all our exper-
iments, this heuristic performed the best. Details regarding the
other two heuristics can be obtained from [17].

The heuristic we propose works broadly in the following
fashion. When performing computation at an arbitrary node:

1) sort routing prefixes destined to a particular egress router
in decreasing order of traffic intensity;

2) sequentially assign each routing prefix to a subset of next
hops so as to minimize the given metric.

For clarity, we use the following notation in our subsequent
discussion.

At an arbitrary router , when assigning routing prefixes as-
sociated with an arbitrary egress router (destination) to next
hops:

1) Denote the set of next hops to egress router by
.

2) Denote the desired (optimal) traffic load for egress router
on hop by .

3) Denote the collective set of the routing prefixes (at for
) that need to be assigned to next hops by . Let

. Let traffic intensity of routing prefix
be equal to .

4) Denote the traffic load on hop after heuristic has
assigned routing prefixes by . Assume for

.

A. MIN-MAX Load Heuristic

The MIN-MAX Load heuristic is similar to a work con-
serving scheduling algorithm which tries to minimize the

238 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

maximum load on any processor (the maximum makespan
problem, [10]). Heuristic MIN-MAX Load tries to minimize
the maximum ratio of assigned traffic to the optimal traffic load
over all hops. The difference now is that each task (stream)
can be split equally among multiple processors (next hops) and
the processors (next hops) can have different speeds (optimal
traffic loads).

Algorithm MIN-MAX Load:

1) Sort the set of prefixes in descending
order of traffic intensity.

2) For each prefix choose a subset of next hops
, which minimizes

Step 2) can be achieved in two stages. First, for each index
, do a virtual assignment of routing prefix

to a set of hops which yields the smallest maximum. This
can be done by simply sorting the set ,

in increasing order, re-indexing them and virtually
assigning only to the first hops.

Second, from all the such possible assignments, choose
the one with the smallest maximum for an actual assignment. In
case of a tie, choose a lexicographically smaller assignment. The
complexity of the algorithm is , where we
have set , for simplicity.

We outline our implementation of the heuristics in the
pseudo-code below :

procedure Selective Hop Allocation
Input (Link Weights , optimal
traffic allocation , Traffic Matrix
)
For each destination node do
Run Dijkstra’s algorithm with weights

For each node in order of de-
creasing distance from do
Apply the MIN-MAX Load heuristic to the

set of routing prefixes to determine,
for each routing prefix , the set of next
hops
For each routing prefix do
Update the intensity of the corre-

sponding routing prefix at each node

done
done
done

It can be shown that in the single-node case, the MIN-MAX
Load heuristic achieves a load ratio that is within a factor of
() of the ratio achieved by an optimum allocation

Fig. 1. Evolution of cost function � (f ; C) as a function of link load
f .

(under the equal splitting constraint). Due to space constraints,
the proof has been omitted from text. The interested reader is
referred to [17] for details of the proof.

IV. EXPERIMENTS

In order to evaluate the effectiveness of our approach, we con-
ducted two sets of experiments on artificially generated topolo-
gies as well as on an actual ISP topology, namely the Sprint
Backbone. In the first set we studied the performance of our
heuristic when compared against optimal routing. In the second
set of experiments we studied the tradeoff between performance
and configuration overhead by varying the number of routing
prefixes for which we controlled the set of next hops they were
assigned.

For purposes of comparison, we solved a linear multicom-
modity flow routing problem with the same piecewise linear cost
function used in [7]. The only constraint in the routing problem
is flow conservation and consequently it provides a lower bound
on the performance of any routing scheme, for the same metric.
Hence forth, we shall refer to this problem as the optimal routing
problem and its solution as the optimal routing solution. The so-
lution to this problem is a set of paths (traffic allocation) for each
commodity (or destination node) which yields , the band-
width consumed on each link ().

We reproduce the optimal allocation problem with regard to
this cost function below for completeness. Let the flow to des-
tination node on link () be denoted by . Let the total
flow on link () be and the capacity is

. Denote the cost of link () by , which is
a piecewise linear function that approximates an exponentially
growing curve [the exact pieces of the function are presented in
(6)]. The cost grows as the traffic on the link increases and the
rate of growth accelerates with increasing utilization. Evolution

SRIDHARAN et al.: ACHIEVING NEAR-OPTIMAL TRAFFIC ENGINEERING SOLUTIONS FOR CURRENT OSPF/IS-IS NETWORKS 239

of the cost function with link load is shown in Fig. 1. The op-
timal routing problem may then be formulated as

subject to

otherwise
(5)

(6)

where, as before

(7)

Note that the approaches presented in [7] and [20] are not lim-
ited to any particular cost function. We simply chose this cost
function as an example. Also note that the above formulation
is based on the idea of destination based aggregation [1] pre-
sented in Section II-A and was used for computation because of
its lower complexity. In the rest of the section, we explain our
experimental set up and discuss our observations regarding per-
formance and complexity tradeoff.

A. Experimental Set Up

For our experiments, the artificial topologies were generated
using the Georgia Tech [21] and BRITE [13] topology gener-
ators.3 The topologies constructed using the generators were
random graphs chosen from a grid using either a uniform or
Waxman distribution. The link capacities were either set uni-
formly to 500 Mb/s in some cases, or chosen randomly from a
uniform distribution in other cases. Actual physical link capac-
ities were used for the topology based on the Sprint backbone.

For the artificially generated topologies, we present results
for random traffic matrices that were generated by picking the
traffic intensity of each routing prefix from a pareto or uniform

3BRITE allows several options for generating topologies: AS Level, Hierar-
chical and router level. We chose the router level option.

distribution. The choice of a pareto distribution was motivated
by measurements taken from several routers on the Sprint back-
bone. We also experimented with other distributions, e.g. uni-
form, bimodal, exponential and gaussian. Of these, we present
results for the uniform distribution since it is representative of
the others.

The other parameter of importance is the number of routing
prefix associated with each egress router, that is, the granu-
larity of the matrix. For this, we again used both uniform and
pareto distributions, as it gives a reasonable coverage for the
possible difference in the number of available routing prefixes
to a given egress router. The Sprint traffic matrix was based on
actual traffic traces downloaded from access links to two of the
Sprint backbone routers. The traces was measured at the gran-
ularity of the routing table entries4 and gives us two rows of
the traffic matrix. The routing prefix intensities in the remaining
rows were generated artificially using a pareto distribution for
both intensity and granularity. Details of how the entire Sprint
traffic matrix was constructed can be found in [18].

Each experiment was conducted in the following fashion.

1) For each network topology, we generated random traffic
matrices, varying both the total number of routing prefixes
and distribution5 from which the ingress traffic intensity of
each routing prefix was picked.

2) Hot spots were introduced in the traffic matrix by ran-
domly selecting elements from the traffic matrix and
scaling them to create several instances of the traffic
matrix. We tested cases where only some of the traffic
elements were chosen and also cases where all entries
were chosen. In the latter case, this involves scaling the
entire traffic matrix.

3) The optimal routing problem (7) was then solved for each
such instance (topology and traffic matrix).

4) The linear program, (3), with the optimal link bandwidths
from the optimal routing solution as input, was solved
to obtain the traffic allocation (which was aggregated
based on destination, ref. Section II-A) and the set of link
weights.

5) Finally, our heuristic was run over the network with the
link weights and traffic flows from the previous step
(please refer to pseudo-code) in order to approximate the
optimal load profile of (3).

We used ILOG CPLEX to solve the optimal routing problem
and the linear program. On a Dell 1500 1 GHz machine, it took
about 2 hours to solve the optimal routing problem and 10 min
for the linear program and our heuristic on the largest networks.

B. Performance Comparison Against Optimal Routing

We now present and discuss the results of our experiments.
In Fig. 2 we plot cost versus total traffic for the MIN-MAX
Load heuristic and the optimal routing solution for the Sprint
topology. The horizontal lines represent various levels of
maximum average link utilization over all links for optimal
routing. The entire traffic matrix was scaled for the experiments
involving the Sprint backbone. From the figure, we see that

4The routing prefix intensities are averages over 10 hours.
5Except in the case of the Sprint traffic matrix.

240 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

Fig. 2. Sprint backbone: Performance of heuristic versus optimal routing.

in all the cases, the heuristic is very near the optimal solution
indicating that it is able to match the optimal traffic split very
closely.

For comparison, we have also shown the performance of stan-
dard OSPF forwarding that requires traffic to be split equally
over all equal cost next hops. The link weights are computed
using our implementation of the heuristic proposed in [7] (de-
noted by “F&T Heuristic” in the graph). The heuristic uses local
search techniques to determine the best OSPF weight setting.
Specifically, it searches the neighborhood of a given weight set-
ting by performing random link weight changes in order to de-
termine a better weight setting. It then repeats the search in the
neighborhood of the new weight setting. A unique feature of
the heuristic is its use of hash tables to avoid cycling as well
as re-computation of same routings under different weight set-
tings. In order to avoid getting trapped in local minima valleys,
the heuristic performs diversification by randomly selecting a
new neighborhood, again by weight perturbation. Similar to [7]
we run the heuristic for a fixed number of iterations (5000) and
retain the best weight setting.

In our experiments, we found the heuristic to perform quite
well, closely tracking the optimal cost for utilizations below
75%. However, instances in [7] show that the heuristic can de-
viate significantly from the optimal routing even at low utiliza-
tions. Furthermore, we note our heuristics can be used to im-
prove the performance of the Fortz and Thorup heuristic (see
Section IV-D).

In Fig. 3, we plot the % deviation of the MIN-MAX Load
heuristic from the optimal. The maximum deviation of the
heuristic is well within 1% of the optimal, highlighting the
ability of the heuristic to approximate the desired (optimum)
load very closely.

Next, we look at four artificially generated topologies that we
used in our experiments. In Fig. 4, we plot Cost versus Total
Traffic for the heuristic, optimal routing as well as standard
OSPF routing, on a 50 node 200 edge topology with a gran-
ularity of 26 500 routing prefixes per node. This number was
chosen simply as an approximation of the number of routing

Fig. 3. Sprint backbone: % Deviation of the heuristic from optimal routing.

Fig. 4. 50 node 200 edge graph (BRITE generated): Performance of heuristic
versus optimal routing.

prefixes in a backbone router. We have conducted experiments
with up to 100 000 routing prefixes and as few as 500 routing
prefixes without any significant change in performance of the
heuristic. The topology was generated using the BRITE gen-
erator and all links were set to a capacity of 500 Mb/s. The
number of prefixes for each node-pair were chosen from a uni-
form distribution and the intensity of the entries in the traffic
matrix for this experiment were generated from a pareto distri-
bution. Hot-spots were generated by scaling 70% of the traffic
elements. We note from Fig. 4, that the heuristic closely tracks
the optimal. An alternate view is provided in Fig. 5 where we
plot the % deviation of the heuristic from the optimal. The low
percentage deviation (0.2%–1%) from the optimal value again
highlights the effectiveness of the heuristic.

For the remaining three topologies, the traffic matrix granu-
larity as well as intensities were chosen from a uniform distri-
bution. Hot spots were created by scaling 50% of the node-pairs
in the traffic matrix. Cost and % deviation curves for a 60 node

SRIDHARAN et al.: ACHIEVING NEAR-OPTIMAL TRAFFIC ENGINEERING SOLUTIONS FOR CURRENT OSPF/IS-IS NETWORKS 241

Fig. 5. 50 node 200 edge graph (BRITE generated): % Deviation of the
heuristic from optimal routing.

Fig. 6. 60 node 250 edge graph (GT topology generator): Performance of the
heuristic versus optimal routing.

250 edge topology are shown in Figs. 6 and 7, respectively. Re-
sults for a 50 node 154 edge random topology are presented in
Figs. 8 and 9. Both topologies were generated by the Georgia
Tech topology generator using the uniform distribution and their
link capacities were set to 500 Mb/s. Finally, the cost and % de-
viation graphs for a 50 node 206 edge random topology gener-
ated using the Waxman-1 distribution are shown in Figs. 10 and
11. The link capacities for this topology were randomly chosen
from a uniform distribution. We note that for all three topolo-
gies, the heuristic performs very well, closely tracking the op-
timal cost.

C. Noninteger Link Weights

We should point out that the dual of the linear program, (4), is
not guaranteed to yield exact integer solutions for link weights.
In practice, routing protocols like OSPF and IS-IS have a finite

Fig. 7. 60 node 250 edge graph (GT topology generator): % Deviation of the
heuristic from optimal routing.

Fig. 8. 50 node 154 edge graph (GT topology generator): Performance of the
heuristic versus optimal routing.

field width for link weight information [11], [16]. If the link
weights obtained from the linear program are not exact inte-
gers, truncating them to fit within the provided field length can
affect performance. This is because the modified link weights
can result in routings that are different from the optimal routing.
Hence it is important to study how errors in link weights influ-
ence performance.

There are two factors that can introduce inaccuracies in link
weights. First of course is the loss of precision in rounding
off link weights, especially in the presence of recurring frac-
tions, e.g., 2/3. The second factor is the nonzero tolerance re-
quired by optimizers to converge to feasible solutions. This im-
plies that the optimal link weights (and path costs) are accurate
only within a certain tolerance. For example, two path costs are
treated to be equal by the optimizer if the difference in costs is
less than the specified tolerance. In our experiments, the toler-
ance limit was set to . The presence of recurring fractions

242 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

Fig. 9. 50 node 154 edge graph (GT topology generator): % Deviation of the
heuristic from optimal routing.

Fig. 10. 50 node 206 edge Waxman graph (GT topology generator):
Performance of the heuristic versus optimal routing.

and nonzero tolerance limits means that even with large preci-
sion integer representations, these errors still persist and in fact
are exacerbated as the integer precision decreases.6

Fig. 12 shows the impact of the length of the link weight field
on % deviation of the heuristic from optimal cost for the 50 node
206 edge Waxman graph. The link weights are treated as exact
integers with precision governed by the field length. We plot
curves with field lengths of 8, 16 and 24 bits. Observe that the
field-length has little impact on performance till link utilizations
start increasing. This is because, in all our experiments, at low
utilizations (), the link weights are almost always exact
integers.7 At higher utilizations, errors due to nonzero tolerances

6Note that since the computer is a finite precision machine, these errors are
already present in the link weights obtained from the solution of (4).

7At low utilizations, the optimizer can easily find feasible solutions and hence
the tolerance limits are not enforced.

Fig. 11. 50 node 206 edge Waxman graph (GT topology generator): %
Deviation of the heuristic from optimal routing.

Fig. 12. 50 node 206 edge Waxman topology: Impact of integer weights on
performance.

and noninteger link weights come into play so that the perfor-
mance starts to deviate significantly. Note that even with a 24-bit
field length, performance is off by at least 50%, indicating that
precision is not the dominant issue. Instead the errors are caused
by the inherent inaccuracy in link weights due to nonzero toler-
ances and noninteger fractions. When treated as exact integers,
regardless of the precision used, this produces different routings.

In order to avoid problems due to such errors, we use an ap-
proach similar to that used by the optimizer. We treat path costs
be to be equal, whenever they differ by less than the specified
tolerance thus allowing for inaccuracies. This explains the much
better performance (within 3%) seen for the same instance in
Fig. 11.

D. Applications of the Next Hop Allocation Technique

Although we have presented our technique for next hop al-
location within the framework of shortest path routing as com-
puted by the Linear Program, (3), it is also applicable to paths

SRIDHARAN et al.: ACHIEVING NEAR-OPTIMAL TRAFFIC ENGINEERING SOLUTIONS FOR CURRENT OSPF/IS-IS NETWORKS 243

Fig. 13. 60 node 250 edge topology: Impact of MIN-MAX Load heuristic on
load balancing with weights computed using Fortz and Thorup heuristic.

computed through other methods. Given a set of paths com-
puted using any other technique, we can find the optimal dis-
tribution of traffic over the set of pre-computed paths and then
use our next hop allocation technique to match this profile. If
the constraining factor is a poor set of paths, then modifying
the traffic profile may not offer much improvement. However,
if the deciding factor is coarse granularity of load balancing
over the paths, significant improvement may be obtained with
our heuristic. As an example, one could compute shortest paths
using the heuristic proposed by Fortz et al. [7]. However, in-
stead of splitting traffic equally over all equal cost next hops,
it could be distributed in an “optimal fashion” over the com-
puted paths using the next hop allocation technique presented
in this paper. In order to achieve this, we first solve the optimal
routing problem but with traffic now constrained to flow only on
paths computed using the link weights obtained from the F&T
heuristic. The MIN-MAX Load heuristic is then run to shape
the allocated traffic to match the optimal load. We present an
example of this procedure for the 60 node 250 edge graph in
Fig. 13, were we show the performance improvement of traffic
allocation with the MIN-MAX Load heuristic over equal split-
ting. Note that for both curves, the same set of paths were used,
but the MIN-MAX Load heuristic allows for finer load bal-
ancing. In other words, the improvement afforded over the stan-
dard F&T heuristic by the use of the MIN-MAX Load heuristic
can be solely attributed to its ability to better match optimal
traffic loads by distributing traffic unevenly. We revisit this issue
in the next section, where we explore the impact of the number
of equal cost paths (next hops) generated by the routing algo-
rithm.

E. Equal Cost Paths

One of the key features of OSPF/ISIS discussed in this paper
is the ability to balance traffic across multiple equal cost paths.
In this section, we examine the effectiveness of this feature in
improving performance. In other words, how is routing perfor-
mance dependent on its ability to send traffic on more than one

TABLE I
NUMBER OF EQUAL COST NEXT HOPS FOR EACH INGRESS–EGRESS PAIR

Fig. 14. Impact of equal cost paths on performance for the 60 node 250 edge
graph.

path. Intuitively, optimal routing is more likely to use multiple
paths to balance traffic at higher loads rather than when ca-
pacity is plentiful. Hence, we focus on reasonably high utiliza-
tion scenarios, albeit less that 100% link loads, for which we
compute statistics regarding the number of equal cost next hops
used by optimal routing. Table I shows the average and max-
imum number of equal cost next hops computed by the optimal
formulation across all nodes and for all destinations for several
network configurations.

We observe that the number of equal cost next hops used
by the optimal formulation in order to balance load (although
the distribution of traffic across them need not be uniform)
varies with the topology. In other words, the benefit of routing
over multiple equal cost paths is a function of how the logical
topology is designed and also how well the traffic is matched to
the topology. To emphasize the dependence of benefits of using
equal cost paths on the topology, we evaluate performance
when no splitting of traffic is allowed. The “SINGLE HOP”
heuristic chooses exactly one next hop, the one with largest
“optimal traffic, ”, for each destination at each node. In all
other aspects it functions exactly like the MIN-MAX Load
heuristic.

Fig. 14 shows performance curves for the SINGLE HOP
heuristic the MIN-MAX Load heuristic on the 60 node 250
edge graph. Observe the near-optimal performance of the
SINGLE HOP heuristic, indicating that multiple equal cost
paths have little impact on performance. The average number of
next hops for the graph in Table I is close to 1, which confirms

244 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

Fig. 15. Impact of equal cost paths on performance for the Sprint backbone.

Fig. 16. Cumulative contribution of routing prefixes at a Sprint router sorted
in decreasing order of intensity.

our observation. Note that this configuration is the same as
that of Fig. 13 that illustrated the improvement that could be
achieved by the MIN-MAX Load heuristic over the standard
F&T heuristic. This is because whenever the F&T heuristic
computes multiple paths, it ends-up allocating traffic equally
across them, even when an optimal solution calls for a very
uneven traffic allocation. The MIN-MAX Load heuristic, even
if it is constrained to using the same paths, is able to generate
the uneven loads the optimal routing solution calls for.

In contrast, performance on the Sprint network (Fig. 15) is
significantly enhanced by distributing traffic across multiple
next hops, and as a result the SINGLE HOP heuristic performs
quite poorly. The average number of equal cost next hops for
the Sprint network from Table I is close to 2, reflecting this
behavior. Indeed, some major ISPs specifically design their
logical topologies to increase the number of equal cost paths,
especially between geographical hubs, for purposes of both
load balancing (as explained in Section I) as well as robustness.

Fig. 17. BRITE 50 node 200 edge topology: Performance as a function of
configuration overhead.

TABLE II
CONFIGURATION OVERHEAD: 50 NODE 200 EDGE TOPOLOGY;

ALL ENTRIES ARE PER NODE

Fig. 18. Sprint backbone: Performance as a function of configuration
overhead.

We expect load balancing over equal cost multiple paths to
markedly improve performance in these dense networks.

F. Lowering Configuration Overhead

Our other goal was to investigate the tradeoff between con-
figuration overhead and performance. Recall that in the original

SRIDHARAN et al.: ACHIEVING NEAR-OPTIMAL TRAFFIC ENGINEERING SOLUTIONS FOR CURRENT OSPF/IS-IS NETWORKS 245

TABLE III
CONFIGURATION OVERHEAD: SPRINT BACKBONE, ALL ENTRIES ARE PER NODE

Fig. 19. GT-ITM 60 node 250 edge topology: Performance as a function of
configuration overhead.

TABLE IV
CONFIGURATION OVERHEAD: 60 NODE 250 EDGE TOPOLOGY (GT TOPOLOGY

GENERATOR), ALL ENTRIES ARE PER NODE

approach the heuristic decides the subset of next hops assigned
to every routing prefix. However, it has been observed that in
practice [3], a large fraction of the traffic is distributed over a
relatively small number of routing prefixes. Our analysis of the
backbone traces obtained from the Sprint router show that 95%
of the total traffic was accounted for by only 10% of the routing
prefixes, confirming the results reported in [3]. Fig. 16 high-
lights this observation, where we have plotted the cumulative
traffic intensity as a function of the number of routing prefixes
sorted in decreasing order of their traffic intensities. We can po-
tentially exploit such a phenomenon by configuring the set of
next hops for only a few selective routing prefixes that carry
most of the traffic and allowing the default assignment of all next
hops for the remaining routing prefixes. This has the advantage
of lowering configuration overhead, but raises the question of
how it impacts performance.

Fig. 20. 50 node 154 edge topology: Performance as a function of
configuration overhead.

TABLE V
CONFIGURATION OVERHEAD: 50 NODE 154 EDGE TOPOLOGY;

ALL ENTRIES ARE PER NODE

We carried out a systematic study of such a tradeoff on all the
previous topologies. In each instance, we configured the set of
next hops at each node for only a certain set of routing prefixes
that were selected based on the amount of traffic they carried.
The remaining routing prefixes were split equally over the en-
tire set of next hops as would happen with default OSPF/IS-IS
behavior. The set of configured routing prefixes was then pro-
gressively increased in each experiment to determine the evolu-
tion of the impact on performance. In all cases, the MIN-MAX
Load heuristic was used when configuring the set of next hops.

The resulting performance curves for the 50 node 200 edge
topology are shown in Fig. 17 and the number of configured
routing prefixes are shown in Table II. Each curve on the plot is
referenced by the amount of traffic that was accounted for by the
configured routing prefixes. This can be cross-referenced from
the table against the number of routing prefixes that were config-
ured. We observe that on an average, by configuring about 165
routing prefixes per router (which accounts for about 20% of
the traffic), we get good performance till about 50% maximum
link utilization. If we configure next hops for about 17% of all
routing prefixes, or 4500 entries, at a router, we account for ap-
proximately 75% of the traffic and the resulting performance is
quite close to that of optimal routing.

Experiments conducted on the Sprint Backbone (Fig. 18,
Table III) yield similarly encouraging results. We get good
performance up to approximately 50%–60% maximum link

246 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 13, NO. 2, APRIL 2005

TABLE VI
CONFIGURATION OVERHEAD: 50 NODE 206 EDGE WAXMAN TOPOLOGY;

ALL ENTRIES ARE PER NODE

Fig. 21. 50 node 206 edge Waxman topology: Performance as function of
configuration overhead.

utilization, by configuring only 200 routing prefixes per router
and up to more than 70% link utilization if we configure 600
routing prefixes per router.

The 60 node 250 edge topology (Fig. 19, Table IV) and the 50
node 154 edge topology (Fig. 20, Table V) present an interesting
case in that by carefully configuring only 3%–5% of the prefixes
we get close to optimal performance over a very wide range of
link utilizations. We do not get quite such dramatic results for
the 50 node 206 edge Waxman topology (Table VI, Fig. 21),
but even in this case, we get good performance by configuring
around a quarter of the prefixes (50% of the traffic).

V. CONCLUSION

In this paper, we have described and evaluated an approach
that offers the benefits of traffic engineering to IP networks
without requiring changes to either the routing protocols or the
forwarding mechanisms.

Our contribution is threefold. First, we devised a solution for
closely approximating optimal link loads using routing proto-
cols and packet forwarding mechanisms, as they exist today.
Second, we proposed a simple heuristic with a provable per-
formance bound (see the Appendix) to implement our solution.
We performed several experiments in which the heuristic consis-
tently matched the optimal load profile. We believe the heuristic

and those presented in [17] to be general enough to be poten-
tially useful in their own right. Finally, we showed, using actual
traffic traces, that configuration overhead can be vastly reduced
without significant loss of performance. Specifically, by only
configuring next hops for a small set of prefixes, we were able
to obtain near-optimal performance for link loads of up to 70%.
This is obviously an important aspect for the practical deploy-
ment of our traffic engineering solution.

Overall, we believe that the paper provides initial arguments
in favor of evolving the current infrastructure to support traffic
engineering, if and when needed, rather than embark on a migra-
tion to a rather different technology. There may be justifications
for such a migration, e.g., better support for policies or VPNs,
but traffic engineering does not appear to be one of them, and
we hope that the results of this paper can help clarify this issue.

There are several directions in which this work can be
extended and further improved. One of them is in dealing
with noninteger link weights as discussed in Section IV-C.
Although we have been able to successfully deal with this issue
by coupling the computational tolerance of the optimizer with
the available precision of link weights, we are investigating
more general solutions to the problem. Another direction we
are currently pursuing is that of making our traffic engineering
solution robust to unexpected changes in network topology,
e.g., link or router failures. This is obviously an important as-
pect. One that has been considered by both traffic engineering
solutions that rely on new forwarding technologies such as
MPLS, e.g., [12], and solutions targeting current IP networks,
e.g., [8].

REFERENCES

[1] H. Abrahamsson, B. Ahlgren, J. Alonso, A. Andersson, and P. Kreuger,
“A multi path routing algorithm for IP networks based on flow optimiza-
tion,” in Int. Workshop on Quality of Future Internet Services (QofIS’02),
Zurich, Switzerland, Oct. 2002.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows. Engle-
wood Cliffs, NJ: Prentice-Hall, 1990, ch. 17, sec. 17.2.

[3] S. Bhattacharya, C. Diot, J. Jetcheva, and N. Taft, “POP-level and access-
link level traffic dynamics in a tier-1 POP,” in Proc. ACM SIGCOMM
Workshop on Internet Measurement (IMW 2001), Nov. 2001, pp. 39–53.

[4] R. Callon, “Use of OSI IS-IS for routing in TCP/IP and dual environ-
ments,” Internet Engineering Task Force, Request For Comments (Stan-
dard) RFC 1195, 1990.

[5] Z. Cao, Z. Wang, and E. Zegura, “Performance of hashing-based
schemes for Internet load balancing,” in Proc. IEEE INFOCOM, vol.
1, Mar. 2000, pp. 332–241.

[6] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and F.
True, “Deriving traffic demands for operational IP networks: Method-
ology and experience,” IEEE/ACM Trans. Netw., vol. 9, no. 3, pp.
265–280, Jun. 2001.

[7] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proc. IEEE INFOCOM, vol. 2, Mar. 2000, pp.
519–528.

[8] , “OSPF/IS-IS weights in a changing world,” IEEE J. Select. Areas
Commun., vol. 4, no. 2, pp. 756–767, Feb. 2002.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco, CA: W. H.
Freeman, 1979.

[10] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM J.
Appl. Mathemat., vol. 17, Mar. 1969.

[11] D. Katz, D. Yeung, and K. Kompella. (2002) Traffic Engineering Ex-
tensions to OSPF Version 2. [Online]. Available: draft-katz-yeung-ospf-
traffic-09.txt

[12] M. Kodialam and T. V. Lakshman, “Dynamic routing of bandwidth guar-
anteed tunnels with restoration,” in Proc. IEEE INFOCOM, vol. 2, Mar.
2000, pp. 902–911.

SRIDHARAN et al.: ACHIEVING NEAR-OPTIMAL TRAFFIC ENGINEERING SOLUTIONS FOR CURRENT OSPF/IS-IS NETWORKS 247

[13] A. Medina, A. Lakhina, I. Matta, and J. Byers. (2001) BRITE:
Boston University Representative Internet Topology Generator
(Software). Boston Univ., Boston, MA. [Online]. Available:
http://cs-www.bu.edu/brite

[14] J. Moy, “OSPF Version 2,” Internet Engineering Task Force, Request For
Comments (Standard) RFC 2328, 1998.

[15] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label
Switching Architecture,” Internet Engineering Task Force, Request For
Comments (Standards Track) RFC 3031, 2001.

[16] H. Smit. (2002) IS-IS Extensions for Traffic Engineering. [Online].
Available: draft-ietf-isis-traffic-04.txt

[17] A. Sridharan, R. Guérin, and C. Diot. (2002) Achieving Near-Optimal
Traffic Engineering Solutions for Current OSPF/IS-IS Networks Tech-
nical Report. Univ. of Pennsylvania, Philadelphia, PA. [Online]. Avail-
able: http://einstein.seas.upenn.edu/publications.html

[18] A. Sridharan, J. Jetcheva, S. Bhattacharyya, C. Diot, R. Guérin, and N.
Taft, “On the impact of traffic aggregation on traffic aware routing,” in
Proc. 17th Int. Teletraffic Congress, Brazil, Dec. 2001.

[19] C. Villamizar. (1997) OSPF Optimized Multipath (OSPF-OMP). [On-
line]. Available: http://www.fictitious.org/omp

[20] Z. Wang, Y. Wang, and L. Zhang, “Internet traffic engineering without
full mesh overlaying,” in Proc. IEEE INFOCOM, vol. 1, Apr. 2001, pp.
565–571.

[21] E. W. Zegura. (1996) GT-ITM: Georgia Tech Internetwork
Topology Models (Software). Georgia Tech. [Online]. Available:
http://www.cc.gatech.edu/fac/ellen.zegura/gt-itm/gt-itm/tar.gz

Ashwin Sridharan (S’99) received the Bachelors
degree in electronic engineering from the Regional
Engineering College, Nagpur, India, in 1997 and the
M.E. degree from the Indian Institute of Science,
Bangalore, in 1999. He is currently pursuing the
doctoral degree at the University of Pennsylvania,
Philadelphia.

His research interests include traffic engineering
and routing algorithms with emphasis on enhancing
their performance in existing frameworks.

Roch Guérin (S’85–M’86–SM’91–F’01) received
the Engineer degree from ENST, Paris, France, in
1983, and the M.S. and Ph.D. degrees in electrical
engineering from the California Institute of Tech-
nology, Pasadena, in 1984 and 1986, respectively.

He joined the Electrical and System Engineering
Department, University of Pennsylvania, Philadel-
phia, in 1998, where he is the Alfred Fitler Moore
Professor of Telecommunications Networks. Before
joining the University of Pennsylvania, he spent
over 12 years at the IBM T. J. Watson Research

Center in a variety of technical and management positions. From 2001 to
2004, he was on partial leave from the University of Pennsylvania, starting a
company, Ipsum Networks, that pioneered the concept of protocol participation
in managing IP networks. He is on the Technical Advisory Board of France
Telecom and Samsung Electronics, and has consulted for numerous companies
in the networking area. His research has been in the general area of networking,
with a recent focus on developing routing and traffic engineering solutions that
are both lightweight and robust across a broad range of operating conditions.

Dr. Guérin served as the editor of the ACM SIGCOMM technical newsletter,
CCR, from 1998 to 2001. He chaired the IEEE Technical Committee on
Computer Communications from 1997 to 1999, and was an editor for the
Journal of Computer Networks, the IEEE Communications Surveys, the
IEEE/ACM TRANSACTIONS ON NETWORKING, the IEEE TRANSACTIONS ON

COMMUNICATIONS, and the IEEE Communications Magazine, and a guest
editor of a IEEE JOURNAL On SELECTED AREAS IN COMMUNICATIONS issue
on Internet QoS published in December 2000. He served as member-at-large
of the Board of Governors of the IEEE Communications Society from 2000
to 2002, as General Chair of the IEEE INFOCOM’98 conference, and as
Technical Program co-chair of the ACM SIGCOMM 2001 conference. In 1994
he received an IBM Outstanding Innovation Award for his work on traffic
management in the Broad-Band Services Network Architecture. He has been a
member of the Association for Computing Machinery (ACM) since 1998.

Christophe Diot received the Ph.D. degree in com-
puter science from INP, Grenoble, France, in 1991.

From 1993 to 1998, he was a research scientist
at INRIA, Sophia Antipolis, France, working on
new Internet architecture and protocols. From 1998
to 2003, he created and managed the IP research
group at Sprint Advanced Technology Labora-
tory, Burlingame, CA. He recently moved to Intel
Research, Cambridge, U.K. He is active in the
measurement community, and he has a growing
interest in understanding how the Internet will

survive mobility and wireless technology.
Dr. Diot has been a member of the Association for Computing Machinery

(ACM) since 1996. He has been an Associate Editor for the IEEE/ACM
TRANSACTIONS ON NETWORKING.

	University of Pennsylvania
	ScholarlyCommons
	April 2005

	Achieving Near-Optimal Traffic Engineering Solutions for Current OSPF/IS-IS Networks
	Ashwin Sridharan
	Roch A. Guérin
	Christophe Diot
	Recommended Citation

	Achieving Near-Optimal Traffic Engineering Solutions for Current OSPF/IS-IS Networks
	Abstract
	Keywords
	Comments

	toc
	Achieving Near-Optimal Traffic Engineering Solutions for Current
	Ashwin Sridharan, Student Member, IEEE, Roch Guérin, Fellow, IEE
	I. I NTRODUCTION
	II. F ROM O PTIMAL R OUTING TO S HORTEST P ATH R OUTING
	A. Destination Based Aggregation of Traffic
	B. Approximating Unequal Split of Traffic

	III. H EURISTIC FOR T RAFFIC S PLITTING
	A. MIN-MAX Load Heuristic

	Fig. 1. Evolution of cost function $\Phi _{i,j}(f_{i,j},C_{i,j})
	IV. E XPERIMENTS
	A. Experimental Set Up
	B. Performance Comparison Against Optimal Routing

	Fig.€2. Sprint backbone: Performance of heuristic versus optimal
	Fig.€3. Sprint backbone: % Deviation of the heuristic from optim
	Fig.€4. 50 node 200 edge graph (BRITE generated): Performance of
	Fig.€5. 50 node 200 edge graph (BRITE generated): % Deviation of
	Fig.€6. 60 node 250 edge graph (GT topology generator): Performa
	C. Noninteger Link Weights

	Fig.€7. 60 node 250 edge graph (GT topology generator): % Deviat
	Fig.€8. 50 node 154 edge graph (GT topology generator): Performa
	Fig.€9. 50 node 154 edge graph (GT topology generator): % Deviat
	Fig.€10. 50 node 206 edge Waxman graph (GT topology generator):
	Fig.€11. 50 node 206 edge Waxman graph (GT topology generator):
	Fig.€12. 50 node 206 edge Waxman topology: Impact of integer wei
	D. Applications of the Next Hop Allocation Technique

	Fig.€13. 60 node 250 edge topology: Impact of MIN-MAX Load heuri
	E. Equal Cost Paths

	TABLE I N UMBER OF E QUAL C OST N EXT H OPS FOR E ACH I NGRESS E
	Fig.€14. Impact of equal cost paths on performance for the 60 no
	Fig.€15. Impact of equal cost paths on performance for the Sprin
	Fig.€16. Cumulative contribution of routing prefixes at a Sprint
	Fig.€17. BRITE 50 node 200 edge topology: Performance as a funct
	TABLE II C ONFIGURATION O VERHEAD: 50 N ODE 200 E DGE T OPOLOGY;
	Fig.€18. Sprint backbone: Performance as a function of configura
	F. Lowering Configuration Overhead

	TABLE III C ONFIGURATION O VERHEAD: S PRINT B ACKBONE, A LL E NT
	Fig.€19. GT-ITM 60 node 250 edge topology: Performance as a func
	TABLE IV C ONFIGURATION O VERHEAD: 60 N ODE 250 E DGE T OPOLOGY
	Fig.€20. 50 node 154 edge topology: Performance as a function of
	TABLE V C ONFIGURATION O VERHEAD: 50 N ODE 154 E DGE T OPOLOGY;
	TABLE VI C ONFIGURATION O VERHEAD: 50 N ODE 206 E DGE W AXMAN T
	Fig.€21. 50 node 206 edge Waxman topology: Performance as functi
	V. C ONCLUSION
	H. Abrahamsson, B. Ahlgren, J. Alonso, A. Andersson, and P. Kreu
	R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows . En
	S. Bhattacharya, C. Diot, J. Jetcheva, and N. Taft, POP-level an
	R. Callon, Use of OSI IS-IS for routing in TCP/IP and dual envir
	Z. Cao, Z. Wang, and E. Zegura, Performance of hashing-based sch
	A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and
	B. Fortz and M. Thorup, Internet traffic engineering by optimizi
	M. R. Garey and D. S. Johnson, Computers and Intractability: A G
	R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J
	D. Katz, D. Yeung, and K. Kompella . (2002) Traffic Engineering
	M. Kodialam and T. V. Lakshman, Dynamic routing of bandwidth gua
	A. Medina, A. Lakhina, I. Matta, and J. Byers . (2001) BRITE: Bo
	J. Moy, OSPF Version 2, Internet Engineering Task Force, Request
	E. Rosen, A. Viswanathan, and R. Callon, Multiprotocol Label Swi
	H. Smit . (2002) IS-IS Extensions for Traffic Engineering . [Onl
	A. Sridharan, R. Guérin, and C. Diot . (2002) Achieving Near-Opt
	A. Sridharan, J. Jetcheva, S. Bhattacharyya, C. Diot, R. Guérin,
	C. Villamizar . (1997) OSPF Optimized Multipath (OSPF-OMP) . [On
	Z. Wang, Y. Wang, and L. Zhang, Internet traffic engineering wit
	E. W. Zegura . (1996) GT-ITM: Georgia Tech Internetwork Topology

