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Abstract One of the most important and complex tasks in power engineering is the analysis

of power systems under fault conditions. The detection and analysis of these faults are

important to guarantee that the dependability and stability of the power system does not

decline as a result of a critical event such as a fault. This thesis will conduct research on how a

power system under fault conditions behaves and will examine the various scenarios of faults

such as three-phase, single line-to-ground, line-to-line, and double line-to-ground faults. A

simplified method based on symmetrical components is used to construct the mathematical

models that calculate the fault currents and the fault voltages. A MATLAB/ Graphical

User Interface based simulation tool has been developed to use as an educational tool and

these models have been integrated into a MATLAB/ Graphical User Interface. This GUI

has an option to enter input data and select the fault type and will provide the calculation

of three-phase, single line-to-ground, line-to-line, and double line-to-ground faults on power

systems. These calculated fault currents and voltages display on a GUI screen along with

the time variations of signal. A so called ”Educational resources zone” was also added with

various text from literature and videos on power system analysis so that the students can

have a better understanding. In this way, the developed MATLAB GUI simulation tool

can be used by students to check the accuracy of the hand calculations and to observe the



transient waveforms of fault current and voltages.
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CHAPTER 1

Introduction

Faults occur in power systems when circuit insulation fails due to system over-voltages caused

by lightning or other natural events like heavy winds or snow, or due to other mechanical

causes. This will result in fault current and this current is determined by the generator

voltages and by the system impedance between the machine voltages and the fault[2]. These

fault currents can be several times higher than the normal operating currents. Because of

this, when a fault occurs in a power system, it can cause severe damage to the system which

will result in power failure, permanent damage to the equipment, personal injury or even

death.

So as to avert such an event, fault analysis of power systems was introduced. Fault

analysis is defined as the way towards assessing the system voltages and currents under

different kinds of short circuit conditions. There are several types of short circuit conditions

that can happen in a power system. a short circuit involving all phasors in contact with

each other in a three phase system is known as a symmetrical three phase fault. A Line

to Line fault occurs when only two phasors are in contact. A Single line to ground fault

happens when a phase is in contact with a ground conductor or with a neutral conductor.
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Double line to ground faults happen when two phasors are in contact with the ground or

neutral conductor[6]. Short circuit analysis or the fault analysis of a power system yields

the currents and voltages during and after the fault and these measurements can be used

to discover the required safety features and the required over-current protection system[4].

Fault analysis calculations are simplified by using the symmetrical components method.

This method provides the simplified way to analyze the unbalanced systems during faults.

It involves transforming the three phasors into a new set of components called symmetrical

components, which are defined as zero, positive and negative sequences[3].

As mentioned above, fault analysis is a main part of analysis of a power system. Some

concepts and theoretical calculations can be really complex and students can find it difficult

to understand. Using a visual tool to calculate and present the results makes the complex

concepts and theories of fault analysis more understandable. There have been many power

system analysis tools developed in the past using a Graphical User Interface (GUI) platform

to help understand and to get more accurate calculations. Graphical User Interfaces (GUI)

is one of the visual tools to provide the user with interactive visual communication with the

tasks on hand and the solution process[6]. In this thesis, a MATLAB GUI based educational

power system analysis tool has been developed to calculate the currents and voltages during

the fault conditions. This tool provides the calculation of three phase fault, Single phase to

ground, phase to phase and double phase to ground. Also it has the ability to present the

graphical transient variations of fault current and fault voltage signals during the fault on

the GUI screen. This tool also includes the ”Educational Resources Zone” which includes

series of videos and text documents.

1.1 Types of Fault

There are two types of faults which can happen on any power systems. One is symmetrical

faults and the other is asymmetrical faults. Often times faults that occur are asymmetrical

faults like single line to ground, line to line and double line to ground faults. Balanced three

phase faults can be identified as a symmetrical faults. Also, faults can be classified as shunt

14



faults and series faults. Series faults are those faults which occur in the impedance of the line

and do not involve neutral or ground, Also it does not involve any interconnection between

the phasors. Shunt faults are the most common type of fault and they involve unbalanced

faults between phasors or between the ground and phasors[7]. This thesis only considers

shunt faults. These shunt faults can be categorized into four types.

1. Single line-to-ground fault

2. Line-to-line fault

3. Double line-to-ground

4. Three-phase fault

In the analysis of power systems under fault conditions, it is necessary to make a distinction

between the types of fault to ensure the best results possible in the analysis. In a three

phase power system, the types of fault that can occur are classified by the combination of

conductors or buses that are faulted together.

1.1.1 Single line-to-ground fault

This type of fault occurs on a transmission line when one phase of any transmission line

comes in a contact with the ground or neutral conductor. There are many common reasons

for this type of failure like ice, high-speed wind, falling tree or any other incident. 70% of all

transmission lines faults fall under this category[4]. A Single line to ground fault with phase

a in contact with ground is shown in figure 1-1:

1.1.2 Line-to-line fault

This type of fault occurs when the two phasors come in contact with each other. The Most

common reasons are high winds and tree impacts. Out of all transmission line faults, 15%

are considered line-to-line faults.[4]. A Line to line fault between phase b an phase c is shown

below in Figure 1-2.
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Figure 1-1: Single Line-to-ground fault.[4]

Figure 1-2: Line-to-Line fault.[4]

1.1.3 Double line-to-ground

Double line to ground faults can occur when two phasors comes in contact with ground via

either tree impact or other incident. Unlike the Single line to ground fault, this fault involves

two of the phasors instead of one. 10% of all transmission lines faults are under this type of

fault[4].

1.1.4 Three-phase fault

A three phase bolted fault is the condition that all three phasors are in contact with each

other. While this type of fault does not happen often it is the most severe type of fault with

maximum fault current. Only 5% of all transmission lines faults are three phase faults[4]. A

general representation of a three phase fault is shown in the figure 1-4:
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Figure 1-3: Double Line-to-ground fault.[4]

Figure 1-4: Three phase fault[4]

1.2 Method of Analysis

Most of the time short circuited power systems are not the balance three phase systems and

it is either not possible or extremely difficult to solve the system using per phase analysis.

A first step requires transformation in to their symmetrical components to find the fault

currents and fault voltages.In 1918 C.L Fortescue introduced a method named symmetrical

component method to do this and analyze any unbalanced power system[3]. Using this

method, solving such unbalanced system was simplified using a balanced representation.

This symmetrical component method is considered as the basis of all traditional fault analysis

approaches to solve unbalanced power systems[3].
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CHAPTER 2

Analysis of Faulted Power System

Under typical conditions, a power system operates under balanced conditions with all com-

ponents carrying normal currents with the normal bus voltages. When a short circuit occurs

in the system, normal operation can be disturbed. A short circuit is a failure in the system

that obstructs the normal current flow. ”A short circuit fault happens when the insulation

of the system fails resulting in low impedance path either between phases or phase(s) to

ground”[5]. This failure can produce very high currents to flow in the circuit. Because of

this, when a fault occurs in a power system, it can cause severe damage to the system which

will result in power failure, permanent damage to the equipment, personal injury or even

death. So as to avert such an event, Fault analysis of power systems was introduced. Short

circuit analysis or the fault analysis of a power system presents the currents and voltages dur-

ing and after the fault. Using these currents and voltages, required over-current protection

systems can be designed.
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2.1 Symmetrical Components and Fortescue’s Theory

The symmetrical component method is basically a modeling technique that permits system-

atic analysis and design of three-phase systems. The majority of faults in power systems

are asymmetrical so obtaining a direct solution of such a circuit can be very difficult. The

Fortescue method was introduced by C.L. Fortescue in 1918[2].This method of symmetrical

components allows one to solve unbalanced systems using balanced techniques. The use of

this technique simplifies the analysis procedure of unbalanced systems and in addition helps

improve in rising the understanding of the system behavior throughout the fault conditions.

Fortescue sequestered asymmetrical 3-phase voltages and currents into three sets of symmet-

rical components. Fortescue’s theorem suggests an unbalanced system of ”n” related phasors

can be resolved into ”n” systems of balanced phasors called Symmetrical Components of the

original phasors. The “n” phasors of each set of components are equal in length, and the

angles between adjacent phasors of the set are equal. Any unbalanced fault can be converted

into three independent symmetrical components which differ in the phase sequence[6]. These

components consist of a positive sequence, negative sequence and a zero sequence.

2.1.1 Positive Sequence Components

Positive sequence components consist of three phasors with equal magnitudes and 120◦ apart

from each other. The phase sequence are in the same order of the original phasors. The

same case applies for the positive current phasors. This sequence is also called the “abc”

sequence and is usually denoted by the symbol “+” or “1” [4]. Representation of positive

sequence components are shown in figure 2-1.

2.1.2 Negative Sequence Components

Negative sequence components consists= of three phasors with equal magnitudes and 120◦

apart from each other. The phase sequence are in the opposite order of the original phasors.

The same case applies for the negative current phasors. This sequence also called the “acb”
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Figure 2-1: Positive sequence components.[4]

sequence and is usually denoted by the symbol “-” or “2”[4].Representation of negative

sequence components are shown in figure 2-2.

Figure 2-2: Negative sequence components.[4]

2.1.3 Zero Sequence Components

Zero sequence components consist of three phasors with equal magnitudes and zero phase

displacement. The phasor components are in phase with each other. This sequence is known

by the symbol “0”. Under an asymmetrical fault condition, this sequence symbolizes the
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residual electricity in the system in terms of voltages and currents where a ground or a fourth

wire exists. Zero sequence components results from ground currents entering to the power

system through any grounding point within the electrical system.

Figure 2-3: Zero sequence components.[4]

Each of the original unbalanced phasors are the sum of its symmetrical components. Here

Va, Vb and Vc are the original phase voltages and the three phasors of voltages are shown

by subscripts a, b and c . The subscripts 1, 2 and 0 refer to positive, negative and zero

sequence components, respectively.

Va = Va0 + Va1 + Va2 (2.1)

Vb = Vb0 + Vb1 + Vb2 (2.2)

Vc = Vc0 + Vc1 + Vc2 (2.3)

An ”a” operator is developed to indicate the phase difference between these phasors.

where ”a” operator is represented below a phasor with unity magnitude and a phase angle

of 120◦.[2]

a = 1 120◦ (2.4)

21



So the following equations can obtained from 2.4:

a2 = 1 −120◦ (2.5)

a3 = 1 0◦ (2.6)

Using operator ”a”, three phase components have been expressed using single phase com-

ponent. Every phase b and phase c component in equation 2.1 to 2.3 can be defined with

phase a component and operator ”a”

Vb1 = a2Va1 (2.7)

Vc1 = aVa1 (2.8)

Vb2 = aVa2 (2.9)

Vc2 = a2Va (2.10)

Vb0 = Va0 (2.11)

Vc0 = Va0 (2.12)

Substituting equations (2.7-2.12) into equations (2.1-2.3) respectively, we can get the phase

voltages.

Va = Va0 + Va1 + Va2 (2.13)

Vb = Va0 + a2Va1 + aVa2 (2.14)

Vc = Va0 + aVa1 + a2Va2 (2.15)

The equations above can be written in compact matrix form as:
Va

Vb

Vc

 =


1 1 1

1 a2 a

1 1 a2



Va0

Va1

Va2

 (2.16)
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Defining A as a 3x3 transformation matrix:

A =


1 1 1

1 a2 a

1 a a2

 (2.17)

Now the Equation 2.16 can be written as:
Va

Vb

Vc

 = A


Va0

Va1

Va2

 (2.18)

This equation matrix can be inverted in order to obtain the positive, negative and zero

sequences from the system phasors: 
Va0

Va1

Va2

 = A−1


Va

Vb

Vc

 (2.19)

Where A−1 is the inverse matrix of A:

A−1 =
1

3


1 1 1

1 a a2

1 a2 a

 (2.20)

Fault voltages and currents can be obtained by using these equations. Also, these equa-

tions can express the line currents and the line-to-line voltages of any power system under

fault conditions.
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2.2 Sequence Networks of a Power System

The sequence impedance network is described as a balanced network that is equivalent to

the balance power system under an imagined working condition so that only single sequence

components of voltage and current are present within the system. Asymmetrical faults can be

calculated using the symmetrical components at different points of a power system network.

The positive sequence network determines the load flow in power system[8].

All power systems consist of positive, negative and zero sequence networks and three

sequence currents flow through these networks. Four main different unbalanced faults can

be represented by interconnecting these three sequence currents in different ways. Actual

phase currents and phase voltages can be determined by calculating these three sequence

current and voltages during the faults.

A short circuit in the power system means that the system is no longer balanced and

in a unbalanced state of operation. This unsymmetrical position of the power system is

replaced by the balanced, positive and negative symmetrical sequence set and zero sequence

set. The post fault voltage and current are determined by the response of the system using

each component set[8].

2.2.1 Sequence Networks of a loaded Synchronous Generator

A three-phase synchronous generator with synchronous per phase impedance Zs with neutral

grounded through an impedance Zn is shown in Figure 2-4. The generator is supplying a

balanced three phase load. The generator voltages Ea, Eb and Ec are balanced. So these

voltages can be treated as positive sequence set and can be shown in the equation below[5]:

[E]abc =


1

a2

a

 [Ea] (2.21)
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Figure 2-4: Three phase synchronous generator supplying a balanced load.[5]

Using equation 2.21, one can write the following equation,

[V ]abc = [E]abc − [Z]abc[I]abc (2.22)

where,

[V ]abc are the terminal phase voltage

[I]abc are the terminal phase currents

[Z]abc represents the impedance matrix of the system

Phase components in equation (2.22) can be replaced by equivalent sequence quantities, using

the transformation equation (2.19). And is shown in equation 2.23. The current equation

can be written in the same way.

[V ]012 = [E]012 − [Z]012[I]012 (2.23)
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where, [Z]012 is generator sequence impedance Matrix and is defined as:

[Z]012 =


Zs + 3Zn 0 0

0 Zs 0

0 0 Zs

 (2.24)

E012 is the generated sequence voltage vector and is defined as


0

Ea

0

 since generated voltages

only contain the positive sequence component and are always balanced. Substituting these

two values in equation (2.23) yields,


Va0

Va1

Va2

 =


0

Ea

0

−

Z0 0 0

0 Z1 0

0 0 Z2



Ia0

Ia1

Ia2

 (2.25)

Expanding the above equation, separate equations can be written for each of the sequence

components as[5]:

Va0 = −Z0Ia0

Va1 = Ea − Z1Ia1

Va2 = −Z2Ia2

(2.26)

The three sequence networks of a synchronous generator are shown in Figure 2-5. Looking at

figure 2-5 and the equation 2.26, it is shown that the sequence components are independent

from each other which means the current of a particular sequence produces a voltage drop

in that sequence only[5].

2.2.2 Sequence networks of a transmission line

A transmission line does not have current or voltage sources present in its equivalent model

and is considered a passive device. The line behavior does not change no matter the direction
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Figure 2-5: The sequence networks of a synchronous generator.[5]

of the current. So this is also known as a bilateral device because of these qualities, the

positive sequence voltages produce the same voltage drops as negative-sequence voltages.

This means that the phase sequence of the applied voltage makes no difference. Therefore,

the impedance of a transmission line for its positive-sequence and negative-sequence are the

same[4]. Z1 = Z2.

However, the zero sequence currents are in phase and current flows through the conductors

and come back through ground wires. The zero sequence impedance Z0 is different from the

positive impedance of transmission line,Z1, and the negative impedance of transmission line,

Z2, as a result of the inclusion of the ground return path. Usually Z0 is three times larger

than Z1 or Z2[5]. Sequence networks of the transmission lines are shown in Fig 2.6

Figure 2-6: The sequence networks of a transmission line[5]
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2.2.3 Sequence networks of a transformer

Transformer leakage impedance is equaled to its positive sequence series impedance. Since a

transformer is also a static device like a transmission line, leakage impedance will not change

with the direction of the phase sequence of applied voltage. So like the transmission line,the

positive and negative sequence impedances are equal. As a result, the transformer’s negative

sequence is also equal to its leakage impedance [5], i.e

Z1 = Z2 = Zleakage (2.27)

The Zero sequence currents flow through the transformer if current paths continue in both

the primary and secondary sides of the transformer. For such cases zero sequence impedance

is also equal to positive and negative sequence impedance for the transformer Z1 = Z2 = Z0.

Again since transformer is also a static device, the positive and negative sequence net-

works are identical to the positive and negative sequence networks of the transmission line as

shown in figure 2-6. However the zero sequence network of transformer depends on the wind-

ing connections and whether the neutrals are grounded or not. One thing to keep in mind

is that an open circuit will exist on either primary or secondary sides if there is no ground

to return to for the currents. The different cases of three-phase transformer connections and

their equivalent zero-sequence networks are shown below.

1. Star-Star connections with both neutrals grounded

Since both the neutrals are grounded, paths for currents to flow exist in both primary

and secondary sides. The sum of unbalanced phasors are equal to three times the zero

sequence current[5]. Therefore, the zero sequence current flows in both primary and

secondary sides and the zero sequence equivalent circuit is shown in the figure 2-7:

2. Star-Star connections with only one neutral grounded

In the case of only one neutral grounded, the currents of the ungrounded winding should

adds up to zero, and zero sequence currents cannot exist in that winding. Therefore,
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Figure 2-7: The zero-sequence equivalent circuit of a Star-Star transformer with both neutrals
grounded.[5]

zero sequence currents cannot exists in grounded winding either. In this case, the

transformer is shown as an open circuit between the primary and secondary sides[5].

An equivalent circuit is shown in the figure 2-8:

Figure 2-8: The zero-sequence equivalent circuit of a Star-Star transformer with only one
neutral grounded.[5]

3. Star-Star connections with no neutral grounded

Similar to case 2, The phase currents should add up to zero in both the windings and

therefore the zero sequence currents can not exist in any winding. In this case, the

transformer is shown as an open circuit between the primary and secondary sides[5].

An equivalent circuit is shown in figure 2-9:

4. Star-delta connections with neutral grounded

In this case, a zero sequence current will circulate in the delta winding as a result of

the grounded star winding. Still this zero sequence current can only exist in the closed
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Figure 2-9: The zero-sequence equivalent circuit of a Star-Star transformer with both neutrals
ungrounded.[5]

delta winding and not on the line side of the winding. Because of this,an open circuit

exist between the star and the delta sides. Since the zero-sequence currents can exist

on the line-side of the grounded star winding, the zero-sequence equivalent circuit can

show as leakage impedance if the transformer is connected to ground on the star side of

the transformer and an open circuit exists between the two windings[5]. The equivalent

circuit for this connection is shown in Figure.2-10

Figure 2-10: The zero-sequence equivalent circuit of a Star-Delta transformer with Star-side
neutral grounded.[5]

5. Star-delta connections with no neutral grounded

In this case also since no neutral is grounded, no zero sequence currents can flow in

either star side or the delta side of the transformer[5]. Therefore, in this case the

transformer is shown as a open circuit between two windings in the figure.2-11 below:
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Figure 2-11: The zero-sequence equivalent circuit of a Star-Delta transformer with Star-side
neutral ungrounded.[5]

6. Delta-delta connections with no neutral grounded

Since no neutrals are grounded, zero sequence currents can only exit in closed delta

windings and not on the line side of both sides. Thus, an open circuit exits between

windings. However because of the currents circulating in the closed delta windings,

the zero sequence impedance is shown with ground[5]. The equivalent circuit for this

connection is shown in Figure 2-12.

Figure 2-12: The zero-sequence equivalent circuit of a Delta-Delta transformer.[5]

In a special case where the neutral is grounded trough a impedance Zn, the total Z0 would

be:

Z0total = Z0 + 3Zn (2.28)

This configuration is shown in the figure below:
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Figure 2-13: The zero-sequence equivalent circuit of a Star-Delta transformer with neutral
grounded through impedance.[5]

2.3 Per unit Calculation

Per unit system is a method used in power system analysis to express the values of voltage,

current, impedance or the admittance in per unit of the base quantity. Rated values are

usually taken as the base quantity. For example,

Base voltage = rated voltage or

Base current = rated current of the machine.

The definition of the per unit system can be expressed as the ratio of actual value in any

unit and the base value of the same unit per unit values are dimensionless[4].

Per Unit V alue =
Actual value in any unit

Base value in the same unit
(2.29)

The value of base power and the base voltage were chosen first to calculate the per unit

values. Based on these values, other base values can be obtained automatically as shown

below.

Per unit KV =
Actual KV

Base KV
(2.30)

Base current IB =
KV AB
KVB

(2.31)

Per unit current Ipu =
Actual value of current

Base current
(2.32)
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By putting the base current value from equation 2.33 in equation 2.34 we get:

Per unit current Ipu =
Actual value of current

KV AB/KVB
(2.33)

Per unit current Ipu =
Actual value of current ∗KVB

KV AB
(2.34)

And

Base impedance ZB =
Base KV ∗ 1000

IB
(2.35)

Zpu =
Actual Impedance

Base Impedance
(2.36)

Now by putting the values of base impedance

Zpu =
Actual Impedance ∗KV AB

(KVB)2 ∗ 1000
(2.37)
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CHAPTER 3

Fault Calculation In Three Phase Systems

3.1 Formation of bus admittance matrix (YBUS)

In any power system, power is injected in to buses from power sources like generators. Loads

take the power away from the system. There are buses with only power generators and some

are with only loads. There may be some buses with generators and loads and some with

static capacitors for power compensation. When there is a power deficiency in a bus, surplus

power at some buses are transported through transmission lines to the bus with a power

deficiency[4]. This concept was used in forming the YBUS matrix.

Any power system with ’n’ number of buses can be represented form using the following

equation:

[IBUS] = [YBus][VBUS] (3.1)

Where,

IBUS is the injected bus currents

VBUS is the bus voltages
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YBUS is the (n x n) bus admittance matrix

This equation can be rewrite in matrix formation for ’n’ number of buses as follows:


I1

I2
...

In

 =


Y11 Y12 . . . Y1n

Y21 Y22 . . . Y2n
...

... . . .
...

Yn1 Yn2 . . . Ynn




V1

V2
...

Vn

 (3.2)

and the elements of the Y bus admittance can be calculated as below:

For i=[1,2,3,. . . ,n],

Yii= total sum of all the admittances connected to bus ”i”

Yij= if the bus ’i’ and bus ’j’ are connected together, then Yij is equal to the negative

of the total sum of all the admittances connected between bus ”i” and bus ’j’

Yij= 0, when bus ’i’ and bus ’j’ are not physically connected together.

3.1.1 Unbalanced fault analysis using impedance matrix (ZBUS)

Unbalanced faults can be calculated using the Thevenin’s equivalent networks at fault point

of three sequence networks. As discussed in previous chapters, all three sequence networks are

independent from each other and impedance matrices of these can be calculated separately

as [Z
(0)
BUS], [Z

(1)
BUS] and [Z

(2)
BUS]. The ZBUS matrix is suitable to use for fault analysis as

its diagonal elements are the Thevenin’s impedance of the network as seen from different

buses[5]. For example, if the fault occurs at the kth bus of the system, the Thevenin’s

equivalent impedances can be found from the impedance matrices as Z
(0)
kk , Z

(1)
kk and Z

(2)
kk .

Therefore, calculation of impedance matrix is a important step in the fault analysis and it

can be obtained by taking the inverse of admittance matrix [YBUS].

[ZBUS] = [YBUS]−1 (3.3)
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Therefore, equation 3.1 can be rewrite as:

[VBUS] = [ZBUS][IBUS] (3.4)

3.2 Three-phase fault

Three phase faults occur when all three phasors are in contact with each other simultane-

ously. Since all three phasors are involved, the system remains balanced during these faults.

Because of this, three phase faults are called symmetrical faults and the fault analysis are

done on per phase basis[5]. These faults can be very severe but this event does not happen

frequently. When these faults occur, it can cause serious damage to the electrical power

system even though system remains balanced. General representation of the three phase

fault is shown in figure 3-1 below.

Figure 3-1: Three phase fault.[4]

Here Zf is the fault impedance and it is applied equally to the all three phases. If Zf=0, then

the fault is known as the solid fault or the bolted fault. Fault currents reach to its maximum

value with the bolted fault. Usually, the fault is created by connecting fault impedance at

the fault location in the power system. Then, as discussed in the previous section, fault can

be solved using the Thevenin’s equivalent network as seen from the faulted bus point. This

can be obtained using the sequence network diagram. Typical sequence network diagram of
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a balanced three phase fault is shown in the figure 3-2:

Figure 3-2: Sequence network diagram of a balanced three phase fault.[4]

Looking at the figure, it can be seen that only the positive sequence network has the in-

ternal voltage and because of that, only the positive sequence current and voltage needs to

be calculated. Also, the pre-fault voltage for all the buses are taken as 1.0 0◦. Hence, the

corresponding sequence components of the currents are

Ia0 = 0

Ia1 =
1.0 0◦

Z1 + Zf

Ia2 = 0

(3.5)

and for the bolted faults, where Zf=0,

Ia1 =
1.0 0◦

Z1

(3.6)

The phase currents can be obtained using the transformation matrix in equation 2.17:


Iaf

Ibf

Icf

 =


1 1 1

1 a2 a

1 1 a2




0

Ia1

0

 (3.7)
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From figure 3.2, the equations for sequence components of the fault voltages can be obtained:

Va0 = 0

Va1 = ZfIa1

Va2 = 0

(3.8)

Same procedure as before, the phase voltages can be acquired using the transformation

matrix in equation 2.17: 
Va

Vb

Vc

 =


1 1 1

1 a2 a

1 1 a2




0

Va1

0

 (3.9)

For the bolted faults where Zf= 0,

Va = 0

Vb = 0

Vc = 0

(3.10)

3.3 Single Line to ground fault

The single line to ground fault which is commonly known as SLG fault occurs when one of

the conductors makes contact with either ground or the neutral. This is the most common

type of fault and it happens more often than the other types of fault. General representation

of the SLG fault is shown in the figure 3-3. Figure shows a fault at fault point ’F’ in the

power system through a Zf fault impedance. Phase ’a’ is usually assumed to be the faulted

phase[4].

In this case of single line to ground fault, all the sequence networks are required for the

calculation[5]. Figure 3-4 is showing the sequence network diagram for the SLG fault. Since

the generator is not loaded, line to ground currents and the line to ground voltages can be

38



Figure 3-3: Single Line-to-ground fault.[4]

Figure 3-4: Sequence network diagram of a SLG fault.[4]

obtained at the fault point F as follows:

Vaf = ZfIaf

Ibf = 0

Icf = 0

(3.11)
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Using the inverse transformation matrix A−1 in equation 2.20, the symmetrical components

of the fault currents can be obtained.
Ia0

Ia1

Ia2

 =
1

3


1 1 1

1 a a2

1 a2 a



Iaf

0

0

 (3.12)

Solving the above equation, the values of symmetrical component of fault current Iaf can be

acquired as:

Ia0 = Ia1 = Ia2 =
1

3
Iaf (3.13)

Same as above, the voltage of phase ’a’ can be expressed in regards to symmetrical compo-

nents from the equation 2.19 as:

Vaf = Va0 + Va1 + Va2 (3.14)

Substituting the equation 3.14 with values from equations 2.26-2.28 and applying Ia0 = Ia1 =

Ia2 from equation 3.13, the following can be written.

Vaf = 1.0 0◦ − (Z0 + Z1 + Z2)Ia0 (3.15)

Since Vaf = ZafIaf = 3ZafIa0, and from equations 3.11 and 3.13, equation 3.15 can be re

written as:

3ZfIa0 = 1.0 0◦ − (Z0 + Z1 + Z2)Ia0 (3.16)

Hence, the symmetrical component Ia0 of the fault current is

Ia0 =
1.0 0◦

Z0 + Z1 + Z2 + 3Zaf
(3.17)
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Therefore, the fault current can be obtained as

Iaf =
3.0 0◦

Z0 + Z1 + Z2 + 3Zaf
(3.18)

3.4 Line-to-line fault

Line to line fault is an asymmetrical fault and it occurs when two conductors makes contact

with each other. This may occur on either overhead transmission lines or underground trans-

mission lines. Figure 3-5 shows a three phase system with line to line fault representation

between phase ’b’ and phase ’c’ and with the fault impedance of Zf at the fault point F. For

the simplicity of fault calculations, we assume the Phase ’b’ and phase ’c’ to be the faulted

phases[4]. Figure 3-6 shows the sequence network of the line to line fault.

Figure 3-5: Line-to-Line fault.[4]

Figure 3-6: Sequence network diagram of a LL fault.[4]
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Since the generator is not loaded, the terminal conditions at the fault point are

Iaf = 0

Ibf + Icf = 0

Vbf − Vcf = ZfIbf

(3.19)

Substituting the terminal conditions and using the transformation matrix A−1 in equation

2.20, symmetrical components of the currents can be obtained as:
Ia0

Ia1

Ia2

 =
1

3


1 1 1

1 a a2

1 a2 a



Iaf

Ibf

−Ibf

 (3.20)

Solving this equation , the symmetrical components of current Iaf are,

Ia0 = 0

Ia1 =
1

3
(a− a2)Ibf

Ia2 = −Ia1

(3.21)

Therefore, the sequence currents can be obtained as:

Ia0 = 0

Ia1 = −Ia2

Ia2 =
1.0 0◦

Z1 + Z2 + Zf

(3.22)

Hence, the phase currents during the fault can be calculated using the equation 2.16 for

currents. 
Iaf

Ibf

Icf

 =


1 1 1

1 a2 a

1 1 a2




0

Ia1

−Ia1

 (3.23)
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Solving the above equation, the expressions for Ibf and Icf can be written as :

Iaf = 0

Ibf = (a2 − a)Ia1

Icf = −Ibf

(3.24)

3.5 Double line-to-ground

Double line to ground fault occurs when two conductors are short circuited and makes contact

with the ground. Typical representation of double line to ground fault with fault impedance

of Zf at fault point F and line to ground impedance of Zg is shown in the figure 3-7:

Figure 3-7: Double Line-to-ground fault.[4]

The sequence network of double line to ground fault is shown in figure 3-8: Since this is a

unloaded three phase generator, the terminal conditions when the fault happens at the fault

point can be obtained as:

Vbf = Vcf = ZfIf = Zf (Ibf + Icf ) (3.25)

Iaf = Ia0 + Ia1 + Ia2 = 0 (3.26)
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Figure 3-8: Sequence network diagram of a LLG fault.[4]

Using equation 2.16 phase currents Vbf and Vcf can be written as:

Vbf = Va0 + a2Va1 + aVa2

Vcf = Va0 + aVa1 + a2Va2

(3.27)

Since Vbf = Vcf from equation 3.25, following equation can be obtained,

Va1 = Va2 (3.28)

And Ibf and Icf in there sequence components form and simplifying the equation, the equa-

tion for Vbf can be written as:

Vbf = Zf (2Ia0 − (Ia1 + Ia2)) (3.29)

and applying equation 3.26 to equation 3.29

Vbf = 3ZfIa0 (3.30)

Substituting Vbf from equation 3.30 in equation 3.27 and further simplifying

3ZfIa0 = Va0 + (a2 + a)Va1

3ZfIa0 = Va0 − Va1
(3.31)

44



The zero sequence component of the phase current can be obtained by substituting the values

of Va0 and Va1 from equations 2.26-2.28

Ia0 = −(1.0 0◦ − Z1Ia1)

(Z0 + 3Zf )
(3.32)

Value of Ia2 can be obtained in the same way as:

Ia2 = −(1.0 0◦ − Z1Ia1)

Z2

(3.33)

Substituting these values in the equation 3.26, the value of the Ia1 is found as

Ia1 =
1.0 0◦

Z1 +
Z2(Z0 + 3Zf )

(Z0 + Z2 + 3Zf )

(3.34)

Furthermore, The negative and zero sequence currents can be calculated easily using current

division

Ia2 = − Z0

(Z0 + Z2)
∗ Ia1

Ia0 = − Z2

(Z0 + Z2)
∗ Ia1

(3.35)

And since Vbf=ZfIf fault current If , conclusion can be made that

If = 3Ia0 (3.36)

Finally, these symmetrical components of currents can be transform in to phase currents

using the transformation matrix in equation 2.16

3.6 Time variation of signal for transient fault currents

The transient fault currents for a power system can be analyzed by using many methods.

Some of these traditional methods includes, two reaction theory, Clarke’s components, etc[1].
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However, using these traditional methods are extremely difficult and also these methods

were not designed to analyze the power systems with a load. In this thesis, transient fault

currents were analyzed using a simplified method based on the symmetrical components of

synchronous machine in cases of three phase fault, single line to ground fault, line to line

fault and double line to ground fault. This method has the ability to calculate the fault

conditions even when there is a load present in the power system. However, in this thesis

only the non loaded power systems are considered and load current was taken as a zero.

There are few main features in this method, one is that the positive phase sequence reactance

is expressed in time varying numerical value. The other one is to express the negative

sequence value in direct axis sub-transient value also to express the source voltage of positive

sequence component as a complex value[1]. Due to the extensive information about the

derivation of the method, and since it is not the main objective of this thesis, only the

general introduction and main equations are discussed here. The fault current has three

components. AC component, DC component and the load current component. The three

phase fault current of phase a is derived from the two reaction theory and given by the

following equation[1].

Ia =

{(
1

X
′′
d

− 1

X
′
d

)
e
−
t

T
′′
d +

(
1

X
′
d

− 1

Xd

)
e
−
t

T
′
d +

1

Xd

}
√

2|E|cos(ωt+ θ − π

2
)

− 1

X
′′
d

√
2|E|cos(θ − π

2
)e

−
t

Ta + ia(l)

(3.37)

Where;

|E| : Pre-fault RMS value of phase a voltage

X
′′

d ,X
′

d,Xd : Direct-axis subtransient, transient and synchronous reactances

T
′′

d , T
′

d : Direct-axis fault subtransient and transient time constants

Ta : Armature time constant

ω: Rated angular velocity

θ: Phase angle (t=0)
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ia(l): Load current before the fault occurrence

t: Time after the fault

The parenthesized value of this equation 3.37 is equal to the positive sequence reactance and

it is denoted by X1[1]:

X1(t) =

(
1

X
′′
d

− 1

X
′
d

)
e
−
t

T
′′
d +

(
1

X
′
d

− 1

Xd

)
e
−
t

T
′
d +

1

Xd

(3.38)

And the complex voltage phase a voltage is given by,

Ea =
√

2|E|cos(ωt+ θ − π

2
) (3.39)

Using the above mentioned equations,symmetrical component theories and equivalent cir-

cuits, The transient fault currents for each phase can be calculated using the equations shown

below[1].

Three phase fault

Ia =

√
2|E|
X1(t)

sin(ωt+ θ)−
√

2|E|
X

′′
d

sinθe
−
t

Ta + ia(l)

Ib =

√
2|E|
X1(t)

sin(ωt+ θ − 2π

3
)−
√

2|E|
X

′′
d

sin(θ − 2π

3
)e

−
t

Ta + ib(l)

Ic =

√
2|E|
X1(t)

sin(ωt+ θ +
2π

3
)−
√

2|E|
X

′′
d

sin(θ +
2π

3
)e

−
t

Ta + ic(l)

(3.40)

47



Single line to ground fault

Ia =
3
√

2|E|
X1(t) + Z2 + Z0

sin(ωt+ θ)− 3
√

2|E|
X

′′
d + Z2 + Z0

sinθe
−
t

Ta + ia(l)

Ib = ib(l)

Ic = ic(l)

(3.41)

Line to line fault

Ia = ia(l)

Ib = −
√

6|E|
X1(t) + Z2

cos(ωt+ θ) +

√
6|E|

2X
′′
d

cos(θ)e
−
t

Ta + ib(l)

Ic =

√
6|E|

X1(t) + Z2

cos(ωt+ θ)−
√

6|E|
2X

′′
d

cos(θ)e
−
t

Ta + ib(l)

(3.42)

Double line to ground fault

Ia = ia(l)

Ib =

√
6|E|

Z2 + Z0

{
Z2

X1(t) + Z20

sin(ωt+ θ − 5π

6
)− Z2

X
′′
d + Z20

sin(θ − 5π

6
)e

−
t

Ta

+
Z0

X1(t) + Z20

sin(ωt+ θ − π

2
)− Z0

X
′′
d + Z20

sin(θ − π

2
)e

−
t

Ta

}
+ ib(l)

Ic = −
√

6|E|
Z2 + Z0

{
Z2

X1(t) + Z20

sin(ωt+ θ +
5π

6
)− Z2

X
′′
d + Z20

sin(θ +
5π

6
)e

−
t

Ta

+
Z0

X1(t) + Z20

sin(ωt+ θ +
π

2
)− Z0

X
′′
d + Z20

sin(θ +
π

2
)e

−
t

Ta

}
+ ic(l)

(3.43)

Where, Z20 =
Z2Z0

Z2 + Z0
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3.7 Calculation of bus voltages during unbalanced faults

The voltage of any bus during the unbalanced faults can be calculated using the following

set of equations. The pre-fault voltage is usually taken as 1.0 0◦.

Va0 = −Z(0)
ik I

(0)
k

Va1 = 1.0 0◦ − Z(1)
ik I

(1)
k

Va2 = −Z(2)
ik I

(2)
k

(3.44)

The phase voltages can be calculated using equation 2.16


Vaf

Vbf

Vcf

 =


1 1 1

1 a2 a

1 1 a2



Va0

Va1

Va2

 (3.45)

Finally, the time variation signal of the fault voltage for each phase can be obtained from

Vaf = |Vaf |cos(ωt+ V θ
af )

Vbf = |Vbf |cos(ωt+ V θ
bf )

Vcf = |Vcf |cos(ωt+ V θ
cf )

(3.46)

Where phase angle of phase a, phase b and phase c is denoted by V θ
af , V

θ
bf and V θ

cf respectively.
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CHAPTER 4

MATLAB GUI and Simulation

The MATLAB GUI also known as the graphical user interface is a point-and-click software

application. This GUI application makes the things easier for end users because it eradicates

the need to learn a language or type commands which can be very frustrating. In this thesis,

MATLAB GUI based simulation tool has been developed for students to calculate the fault

currents and voltages of a power system. This tool provides the calculation of three phase

fault, Single line to ground, line to line and double line to ground faults. Also, it has the

ability to present the graphical transient variations of fault current and fault voltage signals

during the fault on the GUI screen. A so called ”Educational resources zone” was also added

to this GUI, so the students can get a better understanding of the theories and calculations

of power system analysis.

4.1 Structure of Developed Interface

The step by step chart of the developed MATLAB GUI tool is shown in the figure below.
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Figure 4-1: step-by-step chart of the developed MATLAB GUI interface

In the start of the MATLAB GUI program, the user will have a chance to enter data of the

power system that needs to be analyzed, The program is designed to take user’s input and

adjust the questions that are provided to the user. The user will have to describe the power

system in terms of number of buses, number of generators, number of lines and number of

transformers in the system. Once the initial data has been obtained, the program will ask

for more specific questions about the each generator, line and the transformer to use for the

calculations. Data for sample 5-bus power system and sample 6-bus power system are already

integrated in to the software by default. Once all the data has been entered, the program will

read the input data and form the positive, negative and zero sequence impedance matrices

to use in the calculations. According to the user defined fault condition, the calculations
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for the fault voltages and fault current will start using the already integrated mathematical

models discussed in chapter 3. Also, the program will determine the transient signals of

currents and voltages too. Finally, the program will write the calculated fault currents and

voltages in the related boxes on the GUI and also it will draw the transient graphs on the

related axes. Figure 4-2 shows the final appearance of the developed GUI interface.

Figure 4-2: Final appearance of developed MATLAB GUI interface

4.1.1 Input Data

As it can be seen in the figure 4-2, the input data section has been created for entering the

number of buses, number of generators, number of lines and the number of transformers

of the power system. The user can also enter the information about fault in the same

”Input Data” section such as, fault impedance (Zf ) and the faulted bus number. Using the

data entry button, the user can describe the power system in more details by answering

specific question about generators, lines and transformers. These specific questions include

the following,

for each generator,
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1. What is the bus number connected to the generator?

2. What is the positive/negative sequence impedance of the generator?

3. What is the zero sequence impedance of the generator?

4. Grounding impedance of the generator and if ungrounded enter 1000

And for each line,

1. What is the starting bus number?

2. What is the ending bus number?

3. What is the positive/negative sequence impedance of the line?

4. What is the zero sequence impedance of the line?

Finally, for each transformer,

1. What is the bus number of high voltage side bus number of the transformer?

2. Please enter the connection code → 0-star grounded 1-star ungrounded 2-delta

3. What is the bus number of low voltage side bus of the transformer?

4. Please enter the connection code → 0-star grounded 1-star ungrounded 2-delta

5. What is the positive/negative sequence impedance of the transformer?

6. What is the zero sequence impedance of the transformer?

Using the answers to these specific questions, any power system can be represented. Figure

4-3 shows the Input data section with the data entry button. This program takes all the

input values as string values. But input values have to be in numeric form in order to do the

numeric calculations. Therefore after entering, all the values are converted to numeric values

using ’str2double’ command in MATLAB. The pushbutton option is used as a data entry

button and all the entered data is saved in different .txt documents separately, to access

during the calculations. For example, generator data is saved in ’Generator Data.txt’ and

transformer data is saved in ’Transformer Data.txt’
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Figure 4-3: Input data section of developed MATLAB GUI interface

4.1.2 Fault conditions

Four pushbuttons have been created for the four types of fault conditions. Once the user has

all the input data entered to the system these push buttons can be used to run the desired

calculations for the three phase fault, single line to ground fault, line to line fault and the

double line to ground fault. These pushbuttons are programmed to execute the integrated

mathematical models on button press. Figure 4-4 shows the pushbuttons for the different

fault conditions.

54



Figure 4-4: Fault conditions section of developed MATLAB GUI interface

4.1.3 Axes and dialog boxes

Axes and dialog boxes are used to draw the resulting transient graphs and to write the ob-

tained values for fault currents and fault voltages. These achieved values have been converted

back to character strings to display in the dialog boxes. All the calculations are done in per

unit system and results are also shown in per-unit. Axes and dialog boxes for displaying

results are shown in figure 4-5.

4.2 Educational Resources Zone

’Educational Resources Zone’ is a area in the developed GUI, that has a series of videos

and text documents to use as learning materials. These videos and text materials have been

selected from the internet to give the students opportunity to learn about power system

analysis as they do the calculations in the same platform. All the documents are added

using the drop down menu option in GUI. Some of the topics in the Educational resources

zone include are:
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Figure 4-5: Axes and dialog boxes of developed MATLAB GUI interface

1. Z bus matrix formation

2. Symmetrical fault analysis

3. Sequence networks

4. Fault analysis using sequence network

It has the capability to add as many as materiel to the program. Figure 4-6 shows the

Educational resources zone in the GUI application.

Figure 4-6: ”Educational Resources Area” of developed MATLAB GUI interface
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CHAPTER 5

Results and Analysis

In this section, a sample 5-bus power system is used to show the validity of the developed

MATLAB program and the accuracy of the hand calculations. Positive sequence, negative

sequence and zero sequence bus impedance matrices will be formed using the technique

discussed in section 3.1.1 and it will be used to find the Thevenin’s impedance of the network

seen from different buses. The accuracy of the hand calculations will be determined by

comparing the results with the results of developed MATLAB program. The single line

diagram of the example 5-bus system with two generators , three transmission lines and two

transformers is shown in the figure 5-1 below[5]. And values of the example 5 bus power

system parameters are listed in table 5-1.
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Figure 5-1: Single line diagram of example 5 bus power system.[5]

Table 5.1: System parameters of 5 bus power system.[5]

Component Positive sequence
impedance (pu)

Negative sequence
impedance(pu)

Zero Sequence
impedance(pu)

Generator 1 (G1) 0.2 0.2 0.05
Generator 2 (G2) 0.2 0.2 0.05
Transformer 1 (T1) 0.05 0.05 0.05
Transformer 2 (T2) 0.05 0.05 0.05
Line 1 (L1) 0.1 0.1 0.3
Line 2 (L2) 0.1 0.1 0.3
Line 3 (L3) 0.1 0.1 0.3

Pre-fault value for all the buses in the example 5 bus syetem is taken as Ei(0)= 1.0 0◦

where i=1,2,3

5.1 Three-phase fault

5.1.1 Hand calculation results

Three phase fault is tested by creating a bolted fault at bus 5. Therefore, Zf=0. For the

three phase bolted fault only the positive impedance sequence network is required. Positive

sequence bus impedance matrix was formed using the techniques discussed in the section
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3.1.1. Only the positive sequence impedances are used here.

[
Z

(1)
bus

]
=



j0.1294 j0.0706 j0.1118 j0.0882 j0.10

j0.0706 j0.1294 j0.0882 j0.1118 j0.10

j0.1118 j0.0882 j0.1397 j0.1103 j0.1250

j0.0882 j0.1118 j0.1103 j0.1397 j0.10

j0.10 j0.10 j0.1250 j0.1250 j0.1750


pu (5.1)

Since this is a bolted fault, equations 3.5 and 3.6 can be use to calculate the symmetrical

components of the phase currents.

I
(1)
5 =

1.0 0◦

Z
(1)
55

(5.2)

where Z
(1)
55 is the Thevenin’s equivalent for positive sequence impedance at faulted bus 5 and

can be obtained from equation 5.1. Therefore,

I
(1)
5 =

1.0 0◦

j0.1750

I
(1)
5 = −j5.7143pu

(5.3)

and from equation 3.5

I
(0)
5 = 0

I
(2)
5 = 0

(5.4)

The phase of the fault currents can be calculated using the transformation matrix in equation

2.17.

[
I
(abc)
5

]
=


Iaf

Ibf

Icf

 =


1 1 1

1 a2 a

1 1 a2




0

j5.7143

0

 =


5.7143 −90◦

5.7143 150◦

5.7143 30◦

 (5.5)
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The fault voltages at each bus can be calculated as shown below.

Bus 1 voltage during the fault :

V
(1)
1 = E1(0)− Z(1)

15 I
(1)
5

= 1.0 0◦ − (j0.10) ∗ (−j5.7143)

= 0.42857pu

(5.6)

and since this a balanced fault, phase voltages can be obtained as:

[
V

(abc)
1

]
=


0.42857 0◦

0.42857 −120◦

0.42857 120◦

 (5.7)

Bus 2 voltage during the fault :

V
(1)
2 = E2(0)− Z(1)

25 I
(1)
5

= 1.0 0◦ − (j0.10) ∗ (−j5.7143)

= 0.42857pu

(5.8)

and since this a balanced fault, phase voltages can be obtained as:

[
V

(abc)
2

]
=


0.42857 0◦

0.42857 −120◦

0.42857 120◦

 (5.9)
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Bus 3 voltage during the fault :

V
(1)
3 = E3(0)− Z(1)

35 I
(1)
5

= 1.0 0◦ − (j0.125) ∗ (−j5.7143)

= 0.28571pu

(5.10)

and since this a balanced fault, phase voltages can be obtained as:

[
V

(abc)
3

]
=


0.28571 0◦

0.28571 −120◦

0.28571 120◦

 (5.11)

Bus 4 voltage during the fault :

V
(1)
4 = E4(0)− Z(1)

45 I
(1)
5

= 1.0 0◦ − (j0.125) ∗ (−j5.7143)

= 0.28571pu

(5.12)

and since this a balanced fault, phase voltages can be obtained as:

[
V

(abc)
4

]
=


0.28571 0◦

0.28571 −120◦

0.28571 120◦

 (5.13)

Since this is a bolted fault and the fault impedance Zf=0, the bus voltages under faulted
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conditions at bus 5 are

[
V

(abc)
5

]
=


0

0

0

 (5.14)

5.1.2 MATLAB toolbox results

Fault analysis for the sample 5-bus system shown in the figure 5-1 was achieved using the

developed MATLAB tool box. Same system parameters entered in Table 5.1 were used to

set up the problem. Results were printed in to a .txt file and those results are shown in

figure 5-2. A screen-shot of GUI interface with fault analysis results and transient graphs of

Figure 5-2: Three Phase fault analysis from developed MATLAB tool box
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fault current and fault voltage signals are shown in figure 5-3.

Figure 5-3: Three Phase fault analysis - MATLAB tool box

In this figure, we can see that voltages dropped to zero in all three phases during the fault

at the faulted bus 5. Therefore, the fault currents are at the maximum value.

5.2 Single Line-to-ground fault

In this section, Analysis of the single line to ground fault is done using the equations discussed

in chapter 3 and also using the developed MATLAB tool box. The single line to ground

fault is tested by creating a fault at bus 5 with fault impedance Zf=0.1pu.

5.2.1 Hand calculation results

All three positive, negative and zero sequence networks are required for the analysis of the

single line to ground fault since this is a unbalanced fault. The positive sequence network and

positive impedance matrix are the same as used in three phase fault and negative impedance
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is also identical to the positive sequence network[5]. Therefore, Z
(2)
bus = Z

(1)
bus and shown below

[
Z

(1)
bus

]
=
[
Z

(2)
bus

]
=



j0.1294 j0.0706 j0.1118 j0.0882 j0.10

j0.0706 j0.1294 j0.0882 j0.1118 j0.10

j0.1118 j0.0882 j0.1397 j0.1103 j0.1250

j0.0882 j0.1118 j0.1103 j0.1397 j0.10

j0.10 j0.10 j0.1250 j0.1250 j0.1750


pu (5.15)

The zero sequence equivalent network is different from the positive and negative sequence net-

work since transformer connections and grounding and also the generator grounding comes

in to consideration. Sequence networks of transformers with different connections were dis-

cussed in the section 2.2.3. Transformer T1 has star-star connection with both neutrals

grounded and because of that the zero sequence impedance of T1 is connected between bus

1 and bus 2 as usual. But transformer T2 has two delta connections and as discussed in sec-

tion 2.2.3.6 , it is connected as a short circuited winding and zero sequence currents circulate

in the delta connected winding. Using these techniques, the zero sequence bus impedance

matrix Z
(0)
bus is obtained and it is given as :

[
Z

(0)
bus

]
=



j0.05 0.0 j0.05 j0.05 j0.05

0.0 j0.05 0.0 0.0 0.0

j0.05 0.0 j0.10 j0.10 j0.10

j0.05 0.0 j0.10 j0.30 j0.20

j0.05 0.0 j0.10 j0.20 j0.30


pu (5.16)
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Now since all the impedance matrices are obtained, the symmetrical components of fault

current can be calculated using equation 3.17 derived in chapter 3.

I
(1)
5 =

1.0 0◦

Z
(0)
55 + Z

(1)
55 + Z

(2)
55 + 3Zf

=
1.0 0◦

j0.30 + j0.175 + j0.175 + (3 ∗ j0.1)

= −j1.05263pu

(5.17)

and from the equation 3.13

I
(0)
5 = I

(1)
5 = I

(2)
5 = −j1.05263pu (5.18)

The phase components of the fault current at bus 5 can be obtained using the transformation

matrix A in equation 2.17

[
I
(abc)
5

]
=


1 1 1

1 a2 a

1 1 a2



−j1.05263

−j1.05263

−j1.05263

 =


3.1579 −90◦

0

0

 pu (5.19)

Bus voltage are calculated using equations 3.44-3.45 in chapter 3

V
(0)
i = −Z(0)

ik I
(0)
k

V
(1)
i = E

(1)
i (0)− Z(1)

ik I
(1)
k

V
(2)
i = −Z(2)

ik I
(2)
k

(5.20)

The above equations can be written in compact form as
V

(0)
i

V
(1)
i

V
(2)
i

 =


0

Vi

0

−

Z

(0)
ik 0 0

0 Z
(1)
ik 0

0 0 Z
(2)
ik



I
(0)
k

I
(1)
k

I
(2)
k

 (5.21)
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Fault voltages at bus 1 during the fault are:
V

(0)
1

V
(1)
1

V
(2)
1

 =


0

1.0

0

−

j0.05 0 0

0 j0.10 0

0 0 j0.10



−j1.05263

−j1.05263

−j1.05263

 (5.22)

Therefore,

[
V

(012)
1

]
=


−0.05263

0.894737

−0.105263

 pu (5.23)

Using the transformation matrix in equation 2.16 phase components of the voltage can be

obtained as:

[
V abc
1

]
=


1 1 1

1 a2 a

1 1 a2



−0.05263

0.894737

−0.105263

 =


0.7368 0◦

0.9747 −117.3197◦

0.9747 117.3197◦

 (5.24)

Fault voltages at bus 2 during the fault are:
V

(0)
2

V
(1)
2

V
(2)
2

 =


0

1.0

0

−


0.0 0 0

0 j0.10 0

0 0 j0.10



−j1.05263

−j1.05263

−j1.05263

 (5.25)

Therefore,

[
V

(012)
2

]
=


0

0.894737

−0.105263

 pu (5.26)
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Using the transformation matrix in equation 2.16 phase components of the voltage can be

obtained as:

[
V abc
2

]
=


1 1 1

1 a2 a

1 1 a2




0

0.894737

−0.105263

 =


0.7895 0◦

0.9517 −114.5036◦

0.9517 114.5036◦

 (5.27)

Fault voltages at bus 3 during the fault are:
V

(0)
3

V
(1)
3

V
(2)
3

 =


0

1.0

0

−

j0.10 0 0

0 j0.125 0

0 0 j0.125



−j1.05263

−j1.05263

−j1.05263

 (5.28)

Therefore,

[
V

(012)
3

]
=


−0.105263

0.868421

−0.131578

 pu (5.29)

Using the transformation matrix in equation 2.16 phase components of the voltage can be

obtained as:

[
V abc
3

]
=


1 1 1

1 a2 a

1 1 a2



−0.105263

0.868421

−0.131578

 =


0.6316 0◦

0.9871 −118.677◦

0.9871 118.677◦

 (5.30)

Fault voltages at bus 4 during the fault are:
V

(0)
4

V
(1)
4

V
(2)
4

 =


0

1.0

0

−

j0.20 0 0

0 j0.125 0

0 0 j0.125



−j1.05263

−j1.05263

−j1.05263

 (5.31)
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Therefore,

[
V

(012)
4

]
=


−0.210526

0.868421

−0.131578

 pu (5.32)

Using the transformation matrix in equation 2.16 phase components of the voltage can be

obtained as:

[
V abc
4

]
=


1 1 1

1 a2 a

1 1 a2



−0.210526

0.868421

−0.131578

 =


0.5263 0◦

1.0417 −123.76◦

1.0417 123.76◦

 (5.33)

Fault voltages at bus 5 during the fault are:
V

(0)
5

V
(1)
5

V
(2)
5

 =


0

1.0

0

−

j0.30 0 0

0 j0.175 0

0 0 j0.175



−j1.05263

−j1.05263

−j1.05263

 (5.34)

Therefore,

[
V

(012)
5

]
=


−0.315789

0.815789

−0.184210

 pu (5.35)

Using the transformation matrix in equation 2.16 phase components of the voltage can be

obtained as:

[
V abc
5

]
=


1 1 1

1 a2 a

1 1 a2



−0.315789

0.815789

−0.184210

 =


0.3158 0◦

1.0719 −126.10◦

1.0719 126.10◦

 (5.36)
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5.2.2 MATLAB toolbox results

Single line to ground fault analysis was also done using the developed MATLAB tool box and

results are shown in the figures below. Figure 5-4 shows the calculated values of impedance

matrices and figure 5-5 shows the fault currents and fault voltages at each bus and finally,

figure 5-6 shows the GUI screen with transient graphs.

Figure 5-4: Calculated impedance matrices of single line to ground fault
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Figure 5-5: Fault currents and fault voltages of single line to ground fault

Analyzing the results, it shows that fault current of phase b and phase c are zero due to the

fact that only the phase a is involved in the fault.

5.3 Line-to-line fault

Analyzing of line to line required only positive sequence network and negative sequence

network. Therefore, the same Z
(1)
bus and Z

(2)
bus are calculated for single line to ground analysis

will be used. The fault is created between phase b and phase c at bus 5 and the fault

impedance is taken as Zf = j0.1 pu.

[
Z

(1)
bus

]
=
[
Z

(2)
bus

]
=



j0.1294 j0.0706 j0.1118 j0.0882 j0.10

j0.0706 j0.1294 j0.0882 j0.1118 j0.10

j0.1118 j0.0882 j0.1397 j0.1103 j0.1250

j0.0882 j0.1118 j0.1103 j0.1397 j0.10

j0.10 j0.10 j0.1250 j0.1250 j0.1750


pu (5.37)
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Figure 5-6: Single line to ground fault analysis - MATLAB tool box

5.3.1 Hand calculation results

Since there is no ground path, zero sequence currents can not flow. Therefore, from equation

3.19

I
(1)
5 =

1.0 0◦

Z
(1)
55 + Z

(2)
55 + Zf

=
1.0 0◦

j0.175 + j0.175 + j0.1

= −j2.222 pu

(5.38)

Negative sequence current can be obtained from equation 3.21

I
(2)
5 = −I(1)5 = j2.222 pu (5.39)
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The phase components of the fault current at bus 5 can be obtained using the transformation

matrix A in equation 2.17

[
I
(abc)
5

]
=


1 1 1

1 a2 a

1 1 a2




0

−j2.222

j2.222

 =


0

−3.849

3.849

 pu (5.40)

Bus voltages during fault can be calculated using equation 5.20 as

For bus 1,

zero sequence voltage is zero

V
(0)
1 = 0 (5.41)

Positive and negative sequence voltage at bus 1 can be calculated as

V
(1)
1 = E

(1)
1 − Z

(1)
15 I

(1)
5

= 1.0− j0.10 ∗ (−j2.222)

= 0.7778 pu

(5.42)

V
(2)
1 = −Z(2)

15 I
(2)
5

= −j0.10 ∗ (j2.222)

= 0.2222 pu

(5.43)

Using the transformation matrix in equation 2.16 phase components of the voltage can be

obtained as:

[
V abc
1

]
=


1 1 1

1 a2 a

1 1 a2




0

0.7778

0.2222

 =


1 0◦

0.6938 −135.998◦

0.6938 135.998◦

 (5.44)

Given that bus 2 zero sequence voltage is zero,

V
(0)
2 = 0 (5.45)
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positive and negative sequence voltages at bus 2 can be calculated as

V
(1)
2 = E

(1)
2 − Z

(1)
25 I

(1)
5

= 1.0− j0.10 ∗ (−j2.222)

= 0.7778 pu

(5.46)

V
(2)
2 = −Z(2)

25 I
(2)
5

= −j0.10 ∗ (j2.222)

= 0.2222 pu

(5.47)

Using the transformation matrix in equation 2.16, phase components of the voltage can be

obtained as:

[
V abc
1

]
=


1 1 1

1 a2 a

1 1 a2




0

0.7778

0.2222

 =


1 0◦

0.6938 −135.998◦

0.6938 135.998◦

 (5.48)

For bus 3,

zero sequence voltage is zero

V
(0)
3 = 0 (5.49)

positive and negative sequence voltage at bus 3 can be calculated as

V
(1)
3 = E

(1)
3 − Z

(1)
35 I

(1)
5

= 1.0− j0.125 ∗ (−j2.222)

= 0.7222 pu

(5.50)

V
(2)
3 = −Z(2)

35 I
(2)
5

= −j0.125 ∗ (j2.222)

= 0.2778 pu

(5.51)
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Using the transformation matrix in equation 2.16, phase components of the voltage can be

obtained as:

[
V abc
1

]
=


1 1 1

1 a2 a

1 1 a2




0

0.7222

0.2778

 =


1 0◦

0.6309 −142.410◦

0.6309 142.410◦

 (5.52)

For bus 4,

zero sequence voltage is zero

V
(0)
4 = 0 (5.53)

positive and negative sequence voltage at bus 4 can be calculated as

V
(1)
4 = E

(1)
1 − Z

(1)
45 I

(1)
5

= 1.0− j0.125 ∗ (−j2.222)

= 0.7222 pu

(5.54)

V
(2)
4 = −Z(2)

45 I
(2)
5

= −j0.125 ∗ (j2.222)

= 0.2778 pu

(5.55)

Using the transformation matrix in equation 2.16, phase components of the voltage can be

obtained as:

[
V abc
4

]
=


1 1 1

1 a2 a

1 1 a2




0

0.7222

0.2778

 =


1 0◦

0.6309 −142.410◦

0.6309 142.410◦

 (5.56)

For bus 5,

zero sequence voltage is zero

V
(0)
5 = 0 (5.57)
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positive and negative sequence voltage at bus 5 can be calculated as

V
(1)
5 = E

(1)
5 − Z

(1)
55 I

(1)
5

= 1.0− j0.175 ∗ (−j2.222)

= 0.6111 pu

(5.58)

V
(2)
5 = −Z(2)

55 I
(2)
5

= −j0.175 ∗ (j2.222)

= 0.3889 pu

(5.59)

Using the transformation matrix in equation 2.16, phase components of the voltage can be

obtained as:

[
V abc
5

]
=


1 1 1

1 a2 a

1 1 a2




0

0.6111

0.3889

 =


1 0◦

0.5357 −158.953◦

0.5357 158.953◦

 (5.60)

5.3.2 MATLAB toolbox results

Line to line fault analysis results from the developed MATLAB tool box are shown in the

figures below. Figure 5-7 shows the calculated values of impedance matrices and figure 5-8

shows the fault currents and fault voltages at each bus and finally, figure 5-9 shows the GUI

screen with transient graphs.
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Figure 5-7: Calculated impedance matrices of line to line fault
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Figure 5-8: Fault currents and fault voltages of line to line fault

Figure 5-9: Line to line fault analysis - MATLAB tool box

line to line analysis of the fault conditions shows that fault current at phase a is zero

and voltage at phase a is unchanged. Also voltages at both phase b and phase c are equal.

Reason for this is that the fault is between phase b and phase c and they are in contact with

each other. Also, the fault does not involve phase a.
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5.4 Double line-to-ground

5.4.1 Hand calculation results

All three positive, negative and zero sequence networks are needed to do the calculations for

the double line to ground fault. Therefore, the same Z(1)bus , Z(2)bus and Z(2)bus calculated be-

fore will be used. The fault is created involving phase ’b’ and phase ’c’ with fault impedance

of Zf = 0.

[
Z

(1)
bus

]
=
[
Z

(2)
bus

]
=



j0.1294 j0.0706 j0.1118 j0.0882 j0.10

j0.0706 j0.1294 j0.0882 j0.1118 j0.10

j0.1118 j0.0882 j0.1397 j0.1103 j0.1250

j0.0882 j0.1118 j0.1103 j0.1397 j0.10

j0.10 j0.10 j0.1250 j0.1250 j0.1750


pu (5.61)

[
Z

(0)
bus

]
=



j0.05 0.0 j0.05 j0.05 j0.05

0.0 j0.05 0.0 0.0 0.0

j0.05 0.0 j0.10 j0.10 j0.10

j0.05 0.0 j0.10 j0.30 j0.20

j0.05 0.0 j0.10 j0.20 j0.30


pu (5.62)

Positive sequence current of double line to ground fault is calculated using equation 3.34

I
(1)
5 =

1.0

j0.175 +
j0.175(j0.30 + 3 ∗ 0)

(j0.30 + j0.175 + 3 ∗ 0)

= −j3.5023

(5.63)
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The negative and zero sequence currents are calculated using current division as in equation

3.35.

I
(2)
5 = − j0.30

(j0.30 + j0.175)
∗ −j3.5023

= j2.212 pu

(5.64)

I
(0)
5 = − j0.175

(j0.30 + j0.175)
∗ −j3.5023

= j1.2903 pu

(5.65)

Therefore, The phase components of the fault current at bus 5 can be obtained using the

transformation matrix A in equation 2.17.

[
I
(abc)
5

]
=


1 1 1

1 a2 a

1 1 a2



j1.2903

−j3.503

j2.212

 =


0

5.313 158.64◦

5.313 21.36◦

 pu (5.66)

Bus voltage are calculated using the equation 3.36 in chapter 3.

V
(0)
i = −Z(0)

ik I
(0)
k

V
(1)
i = E

(1)
i (0)− Z(1)

ik I
(1)
k

V
(2)
i = −Z(2)

ik I
(2)
k

(5.67)

The above equations can be written in compact form as
V

(0)
i

V
(1)
i

V
(2)
i

 =


0

Vi

0

−

Z

(0)
ik 0 0

0 Z
(1)
ik 0

0 0 Z
(2)
ik



I
(0)
k

I
(1)
k

I
(2)
k

 (5.68)
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The Fault voltages at bus 1 are:
V

(0)
1

V
(1)
1

V
(2)
1

 =


0

1.0

0

−

j0.05 0 0

0 j0.10 0

0 0 j0.10



j1.290

−j3.503

j2.212

 (5.69)

Therefore,

[
V

(012)
1

]
=


0.0645

0.6497

0.2212

 pu (5.70)

Using the transformation matrix in equation 2.16, phase components of the voltage can be

obtained as:

[
V abc
1

]
=


1 1 1

1 a2 a

1 1 a2




0.0645

0.6497

0.2212

 =


0.9355 0◦

0.5248 −134.99◦

0.5248 134.99◦

 (5.71)

Fault voltages at bus 2 are:
V

(0)
2

V
(1)
2

V
(2)
2

 =


0

1.0

0

−


0 0 0

0 j0.10 0

0 0 j0.10



j1.290

−j3.503

j2.212

 (5.72)

Therefore,

[
V

(012)
2

]
=


0

0.6497

0.2212

 pu (5.73)

Using the transformation matrix in equation 2.16, phase components of the voltage can be

obtained as:

[
V abc
2

]
=


1 1 1

1 a2 a

1 1 a2




0

0.6497

0.2212

 =


0.8710 0◦

0.5722 −139.56◦

0.5722 139.56◦

 (5.74)
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The fault voltages at bus 3 are:
V

(0)
3

V
(1)
3

V
(2)
3

 =


0

1.0

0

−

j0.10 0 0

0 j0.125 0

0 0 j0.125



j1.290

−j3.503

j2.212

 (5.75)

Therefore,

[
V

(012)
3

]
=


0.1290

0.5622

0.2765

 pu (5.76)

Using the transformation matrix in equation 2.16, phase components of the voltage can be

obtained as:

[
V abc
3

]
=


1 1 1

1 a2 a

1 1 a2




0.1290

0.5622

0.2765

 =


0.9766 0◦

0.3815 −139.56◦

0.3815 139.56◦

 (5.77)

Fault voltages at bus 4 are:
V

(0)
4

V
(1)
4

V
(2)
4

 =


0

1.0

0

−

j0.20 0 0

0 j0.125 0

0 0 j0.125



j1.290

−j3.503

j2.212

 (5.78)

Therefore,

[
V

(012)
4

]
=


0.2581

0.5622

0.2765

 pu (5.79)

Using the transformation matrix in equation 2.16, phase components of the voltage can be

obtained as:

[
V abc
4

]
=


1 1 1

1 a2 a

1 1 a2




0.2581

0.5622

0.2765

 =


1.0968 0◦

0.2954 −123.10◦

0.2954 123.10◦

 (5.80)
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Fault voltages at bus 5 are:
V

(0)
5

V
(1)
5

V
(2)
5

 =


0

1.0

0

−

j0.30 0 0

0 j0.175 0

0 0 j0.175



j1.290

−j3.503

j2.212

 (5.81)

Therefore,

[
V

(012)
5

]
=


0.3871

0.3871

0.3871

 pu (5.82)

Using the transformation matrix in equation 2.16, phase components of the voltage can be

obtained as:

[
V abc
5

]
=


1 1 1

1 a2 a

1 1 a2




0.3871

0.3871

0.3871

 =


1.1613 0◦

0

0

 (5.83)

5.4.2 MATLAB toolbox results

Double line to ground fault analysis was also done using the developed MATLAB tool box

and results are shown in the figures below. Figure 5-10 shows the GUI screen with transient

graphs and figure 5-11 shows the fault currents and fault voltages at each bus. Finally,

figure 5-12 shows the calculated values of impedance matrices. Analysis shows that the

phase voltages for phase b and phase c are zero. These phases are in contact with ground

and fault current is only flowing through faulted phases only. Double line to ground fault

analysis shows that the phase voltages for phase b and phase c are zero. These phases are

in contact with ground and fault current is only flowing through faulted phases only.
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Figure 5-10: Double line to ground fault analysis - MATLAB tool box

Figure 5-11: Fault currents and fault voltages of double line to ground fault
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Figure 5-12: Calculated impedance matrices of double line to ground fault
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CHAPTER 6

Conclusion

In this thesis, MATLAB based educational tool box has been developed to analyze and help

students with the short circuit faults in power systems. The symmetrical component method

was used to set up the mathematical models to calculate the three phase fault, single line

to ground fault, line to line fault and the double line to ground fault in a power systems.

Developed MATLAB tool box has a user friendly graphical user interface to help students

with calculating fault conditions without having to learn a language or type commands. Data

of two different power systems already entered in the software by default for students to learn

and compare their results with the software results. And, the student has the ability to enter

data for new power system to perform the analysis. After entering the system parameters

to the input data section of the software and by choosing the fault type, all the calculations

are performed. All the results are displayed in the graphical user interface with transients

graphs for fault currents and post fault voltages. Also, all the calculated results are printed

to .txt file and student can open it by pressing the ”Complete Analysis file” button on

the interface. A so called ”Educational resources zone ” also included in the software with

series of educational videos and text documents on power system analysis to help student
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understand theories while they do the calculations. A sample system of non loaded 5 bus

power system with two generators, two transformers and three transmission lines has been

implemented to show the validity of the developed educational toolbox. The software has

been operated using the values listed in table 5.1 and results were compared with the hand

calculations to validate the accuracy of hand calculation results. The fault were created at

the bus 5 of the system. All the hand calculated results for each type of faults agreed with

software results and validity of the software has been verified.

Some observations have been made based on the analysis.In a three phase bolted fault

where Zf=0, fault currents are at the maximum value and the voltages dropped in all three

phases to zero during the fault at the faulted bus. Also, analysis for single line to ground

shows that the fault current of phase b and phase c are zero due to the fact that only the

phase a is involved in the fault. In the line to line analysis of the fault conditions shows

that fault current at phase a is zero and voltage at phase a is unchanged. Also voltages at

both phase b and phase c are equal. Reason for this is that the fault is between phase b and

phase c and they are in contact with each other. Also, the fault does not involve phase a.

Double line to ground fault analysis shows that the phase voltages for phase b and phase c

are zero. These phases are in contact with ground and fault current is only flowing through

faulted phases only.

Looking at the transient graphs for fault current for each fault, one can observe that there

are three sections in the graph. First period is the sub transient period and fault current

is very large and it falls rapidly during this period. Second sections is the transient period

and fault current falls at a slower rate than the sub transient period. Finally the current

reaches the steady value and this section is known as the steady state period. Usually, the

sub transient fault current can be as much as ten times the steady state current and transient

current can be five times the steady state current.
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APPENDIX A

MATLAB Code

A.1 MATLAB code for the main fault analysis tool

box

1 function varargout = Fault Analys i s GUI ( vararg in )

2

3 g u i S i n g l e t o n = 1 ;

4 g u i S t a t e = s t r u c t ( ’ gui Name ’ , mfilename , . . .

5 ’ g u i S i n g l e t o n ’ , gu i S ing l e t on , . . .

6 ’ gui OpeningFcn ’ , @Gui OpeningFcn , . . .

7 ’ gui OutputFcn ’ , @Gui OutputFcn , . . .

8 ’ gui LayoutFcn ’ , [ ] , . . .

9 ’ gu i Ca l lback ’ , [ ] ) ;

10 i f nargin && i s c h a r ( vara rg in {1})

11 g u i S t a t e . gu i Ca l lback = s t r 2 f u n c ( vararg in {1}) ;
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12 end

13

14 i f nargout

15 [ varargout {1 :nargout } ] = gui main fcn ( gu i S ta te , vara rg in { :} ) ;

16 else

17 gui main fcn ( gu i S ta te , vara rg in { :} ) ;

18 end

19

20

21 function Gui OpeningFcn ( hObject , ˜ , handles , va ra rg in )

22

23 handles . output = hObject ;

24

25 guidata ( hObject , handles ) ;

26

27 function popupmenu5 CreateFcn ( vara rg in )

28 function popupmenu4 CreateFcn ( vara rg in )

29 function axes6 CreateFcn ( vararg in )

30 function ed i t32 CreateFcn ( vararg in )

31 function ed i t19 CreateFcn ( vararg in )

32 function ed i t19 De l e teFcn ( vara rg in )

33

34

35

36 % −−− Outputs from t h i s f unc t i on are re turned to the command l i n e .

37 function varargout = Gui OutputFcn ( hObject , eventdata , handles )

38

39 varargout {1} = handles . output ;
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40

41 axes ( handles . axes6 )

42 matlabImage = imread ( ’ bc . jpg ’ ) ;

43 image ( matlabImage )

44 axis o f f

45 axis image

46 axes ( handles . axes8 )

47 matlabImage = imread ( ’ educat ion . jpg ’ ) ;

48 image ( matlabImage )

49 axis o f f

50 axis image

51

52

53 %−−−−−Input data−−−−%

54

55 function Input nb Cal lback ( hObject , eventdata , handles )

56 nbuses= st r2doub l e (get ( handles . Input nb , ’ S t r ing ’ ) )

57

58 i f nbuses==5

59 axes ( handles . axes6 )

60 matlabImage = imread ( ’ 5bus .JPG ’ ) ;

61 image ( matlabImage )

62 axis o f f

63 axis image

64

65 e l s e i f nbuses==6

66 axes ( handles . axes6 )

67 matlabImage = imread ( ’ 6bus .JPG ’ ) ;
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68 image ( matlabImage )

69 axis o f f

70 axis image

71 else

72 axes ( handles . axes6 )

73 matlabImage = imread ( ’ bc . jpg ’ ) ;

74 image ( matlabImage )

75 axis o f f

76 axis image

77 end

78

79

80 function Input ng Cal lback ( hObject , eventdata , handles )

81 ngen= st r2doub l e (get ( handles . Input ng , ’ S t r ing ’ ) )

82

83 function Input nt Ca l lback ( hObject , eventdata , handles )

84 nxfmrs = st r2doub l e (get ( handles . Input nt , ’ S t r ing ’ ) )

85

86 function Input n l Ca l l back ( hObject , eventdata , handles )

87 n l i n e s = st r2doub l e (get ( handles . Input n l , ’ S t r ing ’ ) )

88

89 function ed i t 18 Ca l l back ( hObject , eventdata , handles )

90 f au l t imp= st r2doub l e (get ( handles . ed i t18 , ’ S t r ing ’ ) )

91

92 function ed i t 19 Ca l l back ( hObject , eventdata , handles )

93 f a u l t b u s= st r2doub l e (get ( handles . ed i t19 , ’ S t r ing ’ ) )

94

95 nbuses= st r2doub l e (get ( handles . Input nb , ’ S t r ing ’ ) )
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96

97 i f nbuses==5

98 i f f a u l t b u s==1

99 for k=1:5

100 axes ( handles . axes6 )

101 matlabImage = imread ( ’ 5bus .JPG ’ ) ;

102 image ( matlabImage )

103 axis o f f

104 axis image

105 pause ( 0 . 5 )

106 axes ( handles . axes6 )

107 matlabImage = imread ( ’ 5bus1 .JPG ’ ) ;

108 image ( matlabImage )

109 axis o f f

110 axis image

111 pause ( 0 . 5 )

112

113 end

114

115

116 end

117

118 i f f a u l t b u s==2

119 for k=1:5

120 axes ( handles . axes6 )

121 matlabImage = imread ( ’ 5bus .JPG ’ ) ;

122 image ( matlabImage )

123 axis o f f
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124 axis image

125 pause ( 0 . 5 )

126 axes ( handles . axes6 )

127 matlabImage = imread ( ’ 5bus2 .JPG ’ ) ;

128 image ( matlabImage )

129 axis o f f

130 axis image

131 pause ( 0 . 5 )

132

133 end

134

135

136 end

137 i f f a u l t b u s==3

138 for k=1:5

139 axes ( handles . axes6 )

140 matlabImage = imread ( ’ 5bus .JPG ’ ) ;

141 image ( matlabImage )

142 axis o f f

143 axis image

144 pause ( 0 . 5 )

145 axes ( handles . axes6 )

146 matlabImage = imread ( ’ 5bus3 .JPG ’ ) ;

147 image ( matlabImage )

148 axis o f f

149 axis image

150 pause ( 0 . 5 )

151
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152 end

153

154

155 end

156 i f f a u l t b u s==4

157 for k=1:5

158 axes ( handles . axes6 )

159 matlabImage = imread ( ’ 5bus .JPG ’ ) ;

160 image ( matlabImage )

161 axis o f f

162 axis image

163 pause ( 0 . 5 )

164 axes ( handles . axes6 )

165 matlabImage = imread ( ’ 5bus4 .JPG ’ ) ;

166 image ( matlabImage )

167 axis o f f

168 axis image

169 pause ( 0 . 5 )

170

171 end

172

173

174 end

175

176 i f f a u l t b u s==5

177 for k=1:5

178 axes ( handles . axes6 )

179 matlabImage = imread ( ’ 5bus .JPG ’ ) ;
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180 image ( matlabImage )

181 axis o f f

182 axis image

183 pause ( 0 . 5 )

184 axes ( handles . axes6 )

185 matlabImage = imread ( ’ 5bus5 .JPG ’ ) ;

186 image ( matlabImage )

187 axis o f f

188 axis image

189 pause ( 0 . 5 )

190

191 end

192 end

193 end

194

195 i f nbuses==6

196 i f f a u l t b u s==1

197 for k=1:5

198 axes ( handles . axes6 )

199 matlabImage = imread ( ’ 6bus .JPG ’ ) ;

200 image ( matlabImage )

201 axis o f f

202 axis image

203 pause ( 0 . 5 )

204 axes ( handles . axes6 )

205 matlabImage = imread ( ’ 6bus1 .JPG ’ ) ;

206 image ( matlabImage )

207 axis o f f
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208 axis image

209 pause ( 0 . 5 )

210

211 end

212

213

214 end

215

216 i f f a u l t b u s==2

217 for k=1:5

218 axes ( handles . axes6 )

219 matlabImage = imread ( ’ 6bus .JPG ’ ) ;

220 image ( matlabImage )

221 axis o f f

222 axis image

223 pause ( 0 . 5 )

224 axes ( handles . axes6 )

225 matlabImage = imread ( ’ 6bus2 .JPG ’ ) ;

226 image ( matlabImage )

227 axis o f f

228 axis image

229 pause ( 0 . 5 )

230

231 end

232

233

234 end

235 i f f a u l t b u s==3
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236 for k=1:5

237 axes ( handles . axes6 )

238 matlabImage = imread ( ’ 6bus .JPG ’ ) ;

239 image ( matlabImage )

240 axis o f f

241 axis image

242 pause ( 0 . 5 )

243 axes ( handles . axes6 )

244 matlabImage = imread ( ’ 6bus3 .JPG ’ ) ;

245 image ( matlabImage )

246 axis o f f

247 axis image

248 pause ( 0 . 5 )

249

250 end

251

252

253 end

254 i f f a u l t b u s==4

255 for k=1:5

256 axes ( handles . axes6 )

257 matlabImage = imread ( ’ 6bus .JPG ’ ) ;

258 image ( matlabImage )

259 axis o f f

260 axis image

261 pause ( 0 . 5 )

262 axes ( handles . axes6 )

263 matlabImage = imread ( ’ 6bus4 .JPG ’ ) ;
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264 image ( matlabImage )

265 axis o f f

266 axis image

267 pause ( 0 . 5 )

268

269 end

270

271

272 end

273 i f f a u l t b u s==5

274 for k=1:5

275 axes ( handles . axes6 )

276 matlabImage = imread ( ’ 6bus .JPG ’ ) ;

277 image ( matlabImage )

278 axis o f f

279 axis image

280 pause ( 0 . 5 )

281 axes ( handles . axes6 )

282 matlabImage = imread ( ’ 6bus5 .JPG ’ ) ;

283 image ( matlabImage )

284 axis o f f

285 axis image

286 pause ( 0 . 5 )

287

288 end

289

290

291
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292 end

293 i f f a u l t b u s==6

294 for k=1:5

295 axes ( handles . axes6 )

296 matlabImage = imread ( ’ 6bus .JPG ’ ) ;

297 image ( matlabImage )

298 axis o f f

299 axis image

300 pause ( 0 . 5 )

301 axes ( handles . axes6 )

302 matlabImage = imread ( ’ 6bus6 .JPG ’ ) ;

303 image ( matlabImage )

304 axis o f f

305 axis image

306 pause ( 0 . 5 )

307

308 end

309 else

310

311 for k=1:5

312 axes ( handles . axes6 )

313 matlabImage = imread ( ’ 6bus .JPG ’ ) ;

314 image ( matlabImage )

315 axis o f f

316 axis image

317 pause ( 0 . 5 )

318 axes ( handles . axes6 )

319 matlabImage = imread ( ’ 6 buse .JPG ’ ) ;
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320 image ( matlabImage )

321 axis o f f

322 axis image

323 pause ( 0 . 5 )

324 end

325

326 end

327 end

328

329

330 % −−− Executes on but ton pre s s in S i n g l e l i n e t o g r o u n d f a u l t .

331 function s l g f a u l t C a l l b a c k ( hObject , eventdata , handles )

332 nbuses= st r2doub l e (get ( handles . Input nb , ’ S t r ing ’ ) ) ;

333 nxfmrs = st r2doub l e (get ( handles . Input nt , ’ S t r ing ’ ) ) ;

334 n l i n e s = st r2doub l e (get ( handles . Input n l , ’ S t r ing ’ ) ) ;

335 ngen= st r2doub l e (get ( handles . Input ng , ’ S t r ing ’ ) ) ;

336 f au l t imp= st r2doub l e (get ( handles . ed i t18 , ’ S t r ing ’ ) ) ; ;

337 f a u l t b u s= st r2doub l e (get ( handles . ed i t19 , ’ S t r ing ’ ) ) ;

338 Yp=Po i s t i v e ybus ( nbuses , ngen , n l i n e s , nxfmrs ) ;

339 Yz=Zero ybus ( nbuses , ngen , n l i n e s , nxfmrs ) ;

340 Zp=inv (Yp) ;

341 Zn=Zp ;

342 check=diag (Yz) ;

343 k=find ( check==0) ;

344 i f length ( k )==0

345 Zz=inv (Yz) ;

346 end

347 i f length ( k )˜=0
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348 Zz=pinv (Yz) ;

349 end

350 % pre−f a u l t v o l t a g e v e c t o r s

351 vector1=ones ( nbuses ) ;

352 V 1=vector1 ( : , 1 ) ;

353 vector0=zeros ( nbuses ) ;

354 V 2=vector0 ( : , 1 ) ;

355 V 0=V 2 ;

356 %ca l c u l a t i o n o f f a u l t curren t

357 I 1=V 1 ( f a u l t b u s ) / ( ( Zp( f au l t bu s , f a u l t b u s )+Zn( f au l t bu s ,

f a u l t b u s )+Zz ( f au l t bu s , f a u l t b u s )+3∗ f au l t imp ) ∗1 i ) ; ;

358 I 2=I 1 ; ;

359 I 0=I 1 ; ;

360 a=−0.5+(0.866025∗1 i ) ; ;

361 i 012 =[ I 0 ; I 1 ; I 2 ] ; ;

362 p=[1 1 1 ;1 aˆ2 a ; 1 a a ˆ 2 ] ; ;

363 i abc=p∗ i 012 ;

364 i a=round ( iabc (1 ) ,5 ) ;

365 ib=round ( iabc (2 ) ,5 ) ;

366 i c=round ( iabc (3 ) ,5 ) ;

367 set ( handles . I 1 e d i t , ’ S t r ing ’ , num2str( i a ) ) ;

368 set ( handles . I 2 e d i t , ’ S t r ing ’ , num2str( ib ) ) ;

369 set ( handles . I 0 e d i t , ’ S t r ing ’ , num2str( i c ) ) ;

370 %For time va r i a t i on o f f a u l t curren t and v o l t a g e s i g n a l

371 cla ( ( handles . F a u l t c u r r e n t a x e s ) )

372 axes ( handles . F a u l t c u r r e n t a x e s ) ;

373 xd2=Zp( f au l t bu s , f a u l t b u s )∗ j ;

374 xd1=0.35 j ;
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375 xd=0.5 j ;

376 z2 =0.175 j ;

377 z0 =0.30 j ;

378 z f=fau l t imp ∗ j ;

379 td2 =0.035;

380 td1 =0.5 ;

381 Ta=0.17;

382 w=2∗pi ∗50 ;

383 q=0;

384 t = 0 : 0 . 0 0 0 1 : 0 . 3 ;

385 xp =(((( (1/ xd2 )−(1/xd1 ) ) .∗exp(−t / td2 ) ) +(((1/ xd1 )−(1/xd ) ) .∗exp(−t /

td1 ) ) +(1/xd ) ) ) ;

386 x1=(xp.ˆ−1) ;

387 i a =3∗(1./( x1+z2+z0+(3∗ z f ) ) .∗ sin (2∗pi ∗50∗ t+(q ) ) ) ;−(1./ xd2 ) .∗ sin (pi

/2)∗exp(−t /Ta) ;

388 ib=t ∗0 ;

389 i c=t ∗0 ;

390 hold on

391 plot ( t , imag( i a ) , ’ r ’ )

392 plot ( t , imag( ib ) , ’b ’ )

393 plot ( t , imag( i c ) , ’ g ’ )

394 t i t l e ( ’ Fault Current vs Time ’ )

395 xlabel ( ’Time ( s ) ’ )

396 ylabel ( ’ Fault Current (pu) ’ )

397 legend ( ’ Ia ’ , ’ Ib ’ , ’ I c ’ ) ;

398

399 %pos t f a u l t v o l t a g e c a l c u l a t i o n s

400 for i =1: nbuses
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401

402 V 1p ( i )=V 1 ( i )−(Zp( i , f a u l t b u s )∗ I 1 ∗ j ) ;

403 V 2p ( i )=V 2 ( i )−Zn( i , f a u l t b u s )∗ I 2 ∗ j ;

404 V 0p ( i )=V 0 ( i )−Zz ( i , f a u l t b u s )∗ I 0 ∗ j ;

405 end

406 V 1p mag=abs ( V 1p ) ;

407 V 1p phase=angle ( V 1p ) ;

408 V 2p mag=abs ( V 2p ) ;

409 V 2p phase=angle ( V 2p ) ;

410 V 0p mag=abs ( V 0p ) ;

411 V 0p phase=angle ( V 0p ) ;

412

413 V012=[V 0p ( f a u l t b u s ) ; V 1p ( f a u l t b u s ) ; V 2p ( f a u l t b u s ) ]

414 p=[1 1 1 ;1 aˆ2 a ; 1 a a ˆ 2 ] ;

415 Vabc=p∗V012

416 V 1 ( i )

417 set ( handles . V1 edit , ’ S t r ing ’ , num2str(Vabc (1 ) ) )

418 set ( handles . V2 edit , ’ S t r ing ’ , num2str(Vabc (2 ) ) )

419 set ( handles . V0 edit , ’ S t r ing ’ , num2str(Vabc (3 ) ) )

420

421 Va=abs (Vabc (1 ) )∗cos (w∗ t+angle (Vabc (1 ) ) ) ;

422 Vb=abs (Vabc (2 ) )∗cos (w∗ t+angle (Vabc (2 ) ) ) ;

423 Vc=abs (Vabc (3 ) )∗cos (w∗ t+angle (Vabc (3 ) ) ) ;

424 cla ( ( handles . F a u l t v o l t a g e s a x e s ) )

425 axes ( handles . F a u l t v o l t a g e s a x e s ) ;

426 hold on

427 plot ( t , Va , ’ r ’ )

428 plot ( t ,Vb, ’b ’ )
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429 plot ( t , Vc , ’ g ’ )

430 t i t l e ( ’ Post Fault Voltage vs Time ’ )

431 xlabel ( ’Time ( s ) ’ )

432 ylabel ( ’ Fault Voltage (pu) ’ )

433 legend ( ’Va ’ , ’Vb ’ , ’Vc ’ ) ;

434

435 %data entry in t o output f i l e

436 f i d=fopen ( ’ output . txt ’ , ’w ’ ) ;

437 fpr intf ( f i d , ’The p o s i t i v e sequence Ybus\n\n ’ ) ;

438 for i =1: nbuses

439 for k=1: nbuses

440 fpr intf ( f i d , ’%−10.3 f \ t ’ ,Yp( i , k ) ) ;

441 end

442 fpr intf ( f i d , ’\n\n ’ ) ;

443 end

444 fpr intf ( f i d , ’The p o s i t i v e sequence Zbus\n\n ’ ) ;

445 for i =1: nbuses

446 for k=1: nbuses

447 fpr intf ( f i d , ’%−10.3 f \ t ’ ,Zp( i , k ) ) ;

448 end

449 fpr intf ( f i d , ’\n\n ’ ) ;

450 end

451

452 fpr intf ( f i d , ’The zero sequence Ybus\n\n ’ ) ;

453 for i =1: nbuses

454 for k=1: nbuses

455 fpr intf ( f i d , ’%−10.3 f \ t ’ ,Yz( i , k ) ) ;

456 end
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457 fpr intf ( f i d , ’\n\n ’ ) ;

458 end

459 fpr intf ( f i d , ’The zero sequence Zbus\n\n ’ ) ;

460 for i =1: nbuses

461 for k=1: nbuses

462 fpr intf ( f i d , ’%−10.3 f \ t ’ , Zz ( i , k ) ) ;

463 end

464 fpr intf ( f i d , ’\n\n ’ ) ;

465 end

466

467 fpr intf ( f i d , ’ Fault cur r ent \n\n ’ ) ;

468 fpr intf ( f i d , ’ Magnitude Angle ( rad ians )\n ’ ) ;

469 fpr intf ( f i d , ’ I1 \n ’ ) ;

470 fpr intf ( f i d , ’%−10.3 f %−10.3 f \n\n ’ ,abs ( I 1 ) , angle ( I 1 ) ) ;

471 fpr intf ( f i d , ’ I2 \n ’ ) ;

472 fpr intf ( f i d , ’%−10.3 f %−10.3 f \n\n ’ ,abs ( I 2 ) , angle ( I 2 ) ) ;

473 fpr intf ( f i d , ’ I0 \n ’ ) ;

474 fpr intf ( f i d , ’%−10.3 f %−10.3 f \n\n ’ ,abs ( I 0 ) , angle ( I 0 ) ) ;

475 fpr intf ( f i d , ’ Pr in t ing o f sequence components\n ’ ) ;

476 fpr intf ( f i d , ’ Post Fault Voltages \n\n ’ ) ;

477 fpr intf ( f i d , ’Bus−number Pos−seq−Magnitude Pos−seq−Angle ( rad ians )

Neg−seq−Magnitude Neg−seq−Angle ( rad ians ) Zero−seq−Magnitude

Zero−seq−Angle ( rad ians )\n ’ ) ;

478 for i =1: length ( V 1p )

479 fpr intf ( f i d , ’%−10.3 f %−10.3 f %−10.3 f %−10.3 f %−10.3 f

%−10.3 f %−10.3 f \n ’ , i , abs ( V 1p ( i ) ) , V 1p phase ( i ) ,abs ( V 2p ( i

) ) , V 2p phase ( i ) ,abs ( V 0p ( i ) ) , angle ( V 0p ( i ) ) ) ;

480 end
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481 fpr intf ( f i d , ’\n\n ’ ) ;

482 fc lose ( ’ a l l ’ ) ;

483 clc

484

485

486

487 % −−− Executes on but ton pre s s in L ine t o L ine Fau l t .

488 function l l f a u l t C a l l b a c k ( hObject , eventdata , handles )

489 nbuses= st r2doub l e (get ( handles . Input nb , ’ S t r ing ’ ) ) ;

490 nxfmrs = st r2doub l e (get ( handles . Input nt , ’ S t r ing ’ ) ) ;

491 n l i n e s = st r2doub l e (get ( handles . Input n l , ’ S t r ing ’ ) ) ;

492 ngen= st r2doub l e (get ( handles . Input ng , ’ S t r ing ’ ) ) ;

493 f au l t imp= st r2doub l e (get ( handles . ed i t18 , ’ S t r ing ’ ) ) ;

494 f a u l t b u s= st r2doub l e (get ( handles . ed i t19 , ’ S t r ing ’ ) ) ;

495 Yp=Po i s t i v e ybus ( nbuses , ngen , n l i n e s , nxfmrs ) ;

496 Yz=Zero ybus ( nbuses , ngen , n l i n e s , nxfmrs ) ;

497 Zp=inv (Yp) ;

498 Zn=Zp ;

499 check=diag (Yz) ;

500 k=find ( check==0) ;

501 i f length ( k )==0

502 Zz=inv (Yz) ;

503 end

504 i f length ( k )˜=0

505 Zz=pinv (Yz) ;

506 end

507 %prepara t ion o f pre−f a u l t v o l t a g e v e c t o r s

508 vector1=ones ( nbuses ) ;
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509 V 1=vector1 ( : , 1 ) ;

510 vector0=zeros ( nbuses ) ;

511 V 2=vector0 ( : , 1 ) ;

512 V 0=V 2 ;

513 %ca l c u l a t i o n o f f a u l t curren t

514 I 1=V 1 ( f a u l t b u s ) / ( ( Zp( f au l t bu s , f a u l t b u s )+Zn( f au l t bu s ,

f a u l t b u s )+fau l t imp )∗ j ) ;

515 I 2=−I 1 ;

516 I 0 =0;

517 a=−0.5+(0.866025∗1 i )

518 i 012 =[ I 0 ; I 1 ; I 2 ]

519 p=[1 1 1 ;1 aˆ2 a ; 1 a a ˆ2 ]

520 i abc=p∗ i 012

521 i a=round ( iabc (1 ) ,5 )

522 ib=round ( iabc (2 ) ,5 )

523 i c=round ( iabc (3 ) ,5 )

524 set ( handles . I 1 e d i t , ’ S t r ing ’ , num2str( i a ) )

525 set ( handles . I 2 e d i t , ’ S t r ing ’ , num2str( ib ) )

526 set ( handles . I 0 e d i t , ’ S t r ing ’ , num2str( i c ) )

527 %For time va r i a t i on o f f a u l t curren t and v o l t a g e s i g n a l

528 cla ( ( handles . F a u l t c u r r e n t a x e s ) )

529 axes ( handles . F a u l t c u r r e n t a x e s ) ;

530 xd2=Zp( f au l t bu s , f a u l t b u s )∗ j

531 xd1=0.35 j ;

532 xd=0.5 j ;

533 z2 =0.175 j ;

534 z0 =0.30 j ;

535 z f=fau l t imp ∗ j ;
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536 td2 =0.035;

537 td1 =0.5 ;

538 Ta=0.17;

539 w=2∗pi ∗50 ;

540 q=pi /2 ;

541 t = 0 : 0 . 0 0 0 1 : 0 . 3 ;

542 xp =(((( (1/ xd2 )−(1/xd1 ) ) .∗exp(−t / td2 ) ) +(((1/ xd1 )−(1/xd ) ) .∗exp(−t /

td1 ) ) +(1/xd ) ) ) ;

543 x1=(xp.ˆ−1) ;

544 IB= ( 1 . / ( x1+z2+z f ) ) ∗ ( ( a ˆ2)−a ) ;

545 IB (1 )

546 IC=−IB ;

547 IC (1)

548 i a=t ∗0 ;

549 ib=IB .∗ cos (w∗ t+(q ) ) ;

550 i c=−IB .∗ cos (w∗ t+(q ) ) ;

551 hold on

552 plot ( t , real ( i a ) , ’ r ’ )

553 plot ( t , real ( ib ) , ’b ’ )

554 plot ( t , real ( i c ) , ’ g ’ )

555 t i t l e ( ’ Fault Current vs Time ’ )

556 xlabel ( ’Time ( s ) ’ )

557 ylabel ( ’ Fault Current (pu) ’ )

558 legend ( ’ Ia ’ , ’ Ib ’ , ’ I c ’ ) ;

559

560 %pos t f a u l t v o l t a g e c a l c u l a t i o n s

561 for i =1: nbuses

562 V 1p ( i )=V 1 ( i )−Zp( i , f a u l t b u s )∗ I 1 ∗ j ;
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563 V 2p ( i )=V 2 ( i )−Zn( i , f a u l t b u s )∗ I 2 ∗ j ;

564 V 0p ( i )=V 0 ( i )−Zz ( i , f a u l t b u s )∗ I 0 ∗ j ;

565 end

566 V 1p mag=abs ( V 1p ) ;

567 V 1p phase=angle ( V 1p ) ;

568 V 2p mag=abs ( V 2p ) ;

569 V 2p phase=angle ( V 2p ) ;

570 V 0p mag=abs ( V 0p ) ;

571 V 0p phase=angle ( V 0p ) ;

572

573 V012=[V 0p ( f a u l t b u s ) ; V 1p ( f a u l t b u s ) ; V 2p ( f a u l t b u s ) ] ;

574 p=[1 1 1 ;1 aˆ2 a ; 1 a a ˆ 2 ] ;

575 Vabc=p∗V012 ;

576

577 set ( handles . V1 edit , ’ S t r ing ’ , num2str(Vabc (1 ) ) )

578 set ( handles . V2 edit , ’ S t r ing ’ , num2str(Vabc (2 ) ) )

579 set ( handles . V0 edit , ’ S t r ing ’ , num2str(Vabc (3 ) ) )

580 Va=abs (Vabc (1 ) )∗cos (w∗ t+angle (Vabc (1 ) ) ) ;

581 Vb=abs (Vabc (2 ) )∗cos (w∗ t+angle (Vabc (2 ) ) ) ;

582 Vc=abs (Vabc (3 ) )∗cos (w∗ t+angle (Vabc (3 ) ) ) ;

583 cla ( ( handles . F a u l t v o l t a g e s a x e s ) )

584 axes ( handles . F a u l t v o l t a g e s a x e s ) ;

585 hold on

586 plot ( t , Va , ’ r ’ )

587 plot ( t ,Vb, ’b ’ )

588 plot ( t , Vc , ’ g ’ )

589 t i t l e ( ’ Post Fault Voltage vs Time ’ )

590 xlabel ( ’Time ( s ) ’ )
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591 ylabel ( ’ Fault Voltage (pu) ’ )

592 legend ( ’Va ’ , ’Vb ’ , ’Vc ’ ) ;

593

594 %data entry in t o output f i l e

595 f i d=fopen ( ’ output . txt ’ , ’w ’ ) ;

596 fpr intf ( f i d , ’The p o s i t i v e sequence Ybus\n\n ’ ) ;

597 for i =1: nbuses

598 for k=1: nbuses

599 fpr intf ( f i d , ’%−10.3 f \ t ’ ,Yp( i , k ) ) ;

600 end

601 fpr intf ( f i d , ’\n\n ’ ) ;

602 end

603 fpr intf ( f i d , ’The p o s i t i v e sequence Zbus\n\n ’ ) ;

604 for i =1: nbuses

605 for k=1: nbuses

606 fpr intf ( f i d , ’%−10.3 f \ t ’ ,Zp( i , k ) ) ;

607 end

608 fpr intf ( f i d , ’\n\n ’ ) ;

609 end

610

611 fpr intf ( f i d , ’The zero sequence Ybus\n\n ’ ) ;

612 for i =1: nbuses

613 for k=1: nbuses

614 fpr intf ( f i d , ’%−10.3 f \ t ’ ,Yz( i , k ) ) ;

615 end

616 fpr intf ( f i d , ’\n\n ’ ) ;

617 end

618 fpr intf ( f i d , ’The zero sequence Zbus\n\n ’ ) ;

109



619 for i =1: nbuses

620 for k=1: nbuses

621 fpr intf ( f i d , ’%−10.3 f \ t ’ , Zz ( i , k ) ) ;

622 end

623 fpr intf ( f i d , ’\n\n ’ ) ;

624 end

625

626 fpr intf ( f i d , ’ Fault cur r ent \n\n ’ ) ;

627 fpr intf ( f i d , ’ Magnitude Angle ( rad ians )\n ’ ) ;

628 fpr intf ( f i d , ’ I1 \n ’ ) ;

629 fpr intf ( f i d , ’%−10.3 f %−10.3 f \n\n ’ ,abs ( I 1 ) , angle ( I 1 ) ) ;

630 fpr intf ( f i d , ’ I2 \n ’ ) ;

631 fpr intf ( f i d , ’%−10.3 f %−10.3 f \n\n ’ ,abs ( I 2 ) , angle ( I 2 ) ) ;

632 fpr intf ( f i d , ’ I0 \n ’ ) ;

633 fpr intf ( f i d , ’%−10.3 f %−10.3 f \n\n ’ ,abs ( I 0 ) , angle ( I 0 ) ) ;

634 fpr intf ( f i d , ’ Pr in t ing o f sequence components\n ’ ) ;

635 fpr intf ( f i d , ’ Post Fault Voltages \n\n ’ ) ;

636 fpr intf ( f i d , ’Bus−number Pos−seq−Magnitude Pos−seq−Angle ( rad ians )

Neg−seq−Magnitude Neg−seq−Angle ( rad ians ) Zero−seq−Magnitude

Zero−seq−Angle ( rad ians )\n ’ ) ;

637 for i =1: length ( V 1p )

638 fpr intf ( f i d , ’%−10.3 f %−10.3 f %−10.3 f %−10.3 f %−10.3 f

%−10.3 f %−10.3 f \n ’ , i , abs ( V 1p ( i ) ) , V 1p phase ( i ) ,abs ( V 2p ( i

) ) , V 2p phase ( i ) ,abs ( V 0p ( i ) ) , angle ( V 0p ( i ) ) ) ;

639 end

640

641 fpr intf ( f i d , ’\n\n ’ ) ;

642 fc lose ( ’ a l l ’ ) ;
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643 clc

644

645 % −−− Executes on but ton pre s s in Dou b l e l i n e t o g r o und f a u l t .

646 function l l g f a u l t C a l l b a c k ( hObject , eventdata , handles )

647 nbuses= st r2doub l e (get ( handles . Input nb , ’ S t r ing ’ ) ) ;

648 nxfmrs = st r2doub l e (get ( handles . Input nt , ’ S t r ing ’ ) ) ;

649 n l i n e s = st r2doub l e (get ( handles . Input n l , ’ S t r ing ’ ) ) ;

650 ngen= st r2doub l e (get ( handles . Input ng , ’ S t r ing ’ ) ) ;

651 f au l t imp= st r2doub l e (get ( handles . ed i t18 , ’ S t r ing ’ ) ) ;

652 f a u l t b u s= st r2doub l e (get ( handles . ed i t19 , ’ S t r ing ’ ) ) ;

653 Yp=Po i s t i v e ybus ( nbuses , ngen , n l i n e s , nxfmrs ) ;

654 Yz=Zero ybus ( nbuses , ngen , n l i n e s , nxfmrs ) ;

655 Zp=inv (Yp) ;

656 Zn=Zp ;

657 check=diag (Yz) ;

658 k=find ( check==0) ;

659 i f length ( k )==0

660 Zz=inv (Yz) ;

661 end

662 i f length ( k )˜=0

663 Zz=pinv (Yz) ;

664 end

665 %prepara t ion o f pre−f a u l t v o l t a g e v e c t o r s

666 vector1=ones ( nbuses ) ;

667 V 1=vector1 ( : , 1 ) ;

668 vector0=zeros ( nbuses ) ;

669 V 2=vector0 ( : , 1 ) ;

670 V 0=V 2 ;
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671 %ca l c u l a t i o n o f f a u l t curren t

672 Zth=((Zz ( f au l t bu s , f a u l t b u s )+3∗ f au l t imp )∗ j ∗Zn( f au l t bu s ,

f a u l t b u s )∗ j / ( ( Zz ( f au l t bu s , f a u l t b u s )+3∗ f au l t imp+Zn( f au l t bu s

, f a u l t b u s ) )∗ j ) )+Zp( f au l t bu s , f a u l t b u s )∗ j ;

673 I 1=V 1 ( f a u l t b u s ) /Zth

674 I 2=−I 1 ∗( Zz ( f au l t bu s , f a u l t b u s )+3∗ f au l t imp )∗ j / ( ( Zz ( f au l t bu s ,

f a u l t b u s )+3∗ f au l t imp+Zn( f au l t bu s , f a u l t b u s ) )∗ j )

675 I 0=−I 1 ∗(Zn( f au l t bu s , f a u l t b u s ) )∗ j / ( ( Zz ( f au l t bu s , f a u l t b u s )+3∗

f au l t imp+Zn( f au l t bu s , f a u l t b u s ) )∗ j )

676 a=−0.5+(0.866025∗1 i ) ;

677 i 012 =[ I 0 ; I 1 ; I 2 ] ;

678 p=[1 1 1 ;1 aˆ2 a ; 1 a a ˆ 2 ] ;

679 i abc=p∗ i 012 ;

680 i a=round( iabc (1 ) ,5 ) ;

681 ib=iabc (2 ) ;

682 i c=iabc (3 ) ;

683 set ( handles . I 1 e d i t , ’ S t r ing ’ , num2str( i a ) ) ;

684 set ( handles . I 2 e d i t , ’ S t r ing ’ , num2str( ib ) ) ;

685 set ( handles . I 0 e d i t , ’ S t r ing ’ , num2str( i c ) ) ;

686 cla ( ( handles . F a u l t c u r r e n t a x e s ) ) ;

687 axes ( handles . F a u l t c u r r e n t a x e s ) ;

688 xd2=Zp( f au l t bu s , f a u l t b u s )∗ j ;

689 xd1=0.35 j ;

690 xd=0.5 j ;

691 z2 =0.175 j ;

692 z0 =0.30 j ;

693 z f=fau l t imp ∗ j ;

694 td2 =0.035;
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695 td1 =0.5 ;

696 Ta=0.17;

697 w=2∗pi ∗50 ;

698 q=pi /2 ;

699 t = 0 : 0 . 0 0 0 1 : 0 . 3 ;

700 xp =(((( (1/ xd2 )−(1/xd1 ) ) .∗exp(−t / td2 ) ) +(((1/ xd1 )−(1/xd ) ) .∗exp(−t /

td1 ) ) +(1/xd ) ) ) ;

701 x1=(xp.ˆ−1) ;

702 x20=Zn( f au l t bu s , f a u l t b u s )∗Zz ( f au l t bu s , f a u l t b u s ) /(Zn( f au l t bu s ,

f a u l t b u s )+Zz ( f au l t bu s , f a u l t b u s ) ) ;

703 i a=t ∗0 ;

704 ib= 1 . / ( Zn( f au l t bu s , f a u l t b u s )+Zz ( f au l t bu s , f a u l t b u s ) ) . ∗ ( ( Zn(

f au l t bu s , f a u l t b u s ) . / ( x1+x20 ) .∗ sin ( (w.∗ t )+(q−5/6∗pi ) ) ) +((Zz (

f au l t bu s , f a u l t b u s ) . / ( x1+x20 ) .∗ sin ( (w∗ t )+(q−pi . / 2 ) ) ) ) ) ;

705 i c =1./(Zn( f au l t bu s , f a u l t b u s )+Zz ( f au l t bu s , f a u l t b u s ) ) . ∗ ( ( Zz (

f au l t bu s , f a u l t b u s ) . / ( x1+x20 ) .∗ sin ( (w.∗ t )+(q−5/6∗pi ) ) ) +((Zn(

f au l t bu s , f a u l t b u s ) . / ( x1+x20 ) .∗ sin ( (w∗ t )+(q−pi . / 2 ) ) ) ) ) ;

706 x20=Zn( f au l t bu s , f a u l t b u s )∗Zz ( f au l t bu s , f a u l t b u s ) /(Zn( f au l t bu s ,

f a u l t b u s )+Zz ( f au l t bu s , f a u l t b u s ) ) ;

707 hold on

708 plot ( t , imag( i a ) , ’ r ’ )

709 plot ( t , imag( ib ) , ’b ’ )

710 plot ( t , imag( i c ) , ’ g ’ )

711 t i t l e ( ’ Fault Current vs Time ’ )

712 xlabel ( ’Time ( s ) ’ )

713 ylabel ( ’ Fault Current (pu) ’ )

714 legend ( ’ Ia ’ , ’ Ib ’ , ’ I c ’ ) ;

715 %pos t f a u l t v o l t a g e c a l c u l a t i o n s
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716 for i =1: nbuses

717 V 1p ( i )=V 1 ( i )−Zp( i , f a u l t b u s )∗ I 1 ∗ j ;

718 V 2p ( i )=V 2 ( i )−Zn( i , f a u l t b u s )∗ I 2 ∗ j ;

719 V 0p ( i )=V 0 ( i )−Zz ( i , f a u l t b u s )∗ I 0 ∗ j ;

720 end

721 V 1p mag=abs ( V 1p ) ;

722 V 1p phase=angle ( V 1p ) ;

723 V 2p mag=abs ( V 2p ) ;

724 V 2p phase=angle ( V 2p ) ;

725 V 0p mag=abs ( V 0p ) ;

726 V 0p phase=angle ( V 0p ) ;

727 V012=[V 0p ( f a u l t b u s ) ; V 1p ( f a u l t b u s ) ; V 2p ( f a u l t b u s ) ] ;

728 p=[1 1 1 ;1 aˆ2 a ; 1 a a ˆ 2 ] ;

729 Vabc=p∗V012 ;

730 set ( handles . V1 edit , ’ S t r ing ’ , num2str(round(Vabc (1 ) ,5 ) ) )

731 set ( handles . V2 edit , ’ S t r ing ’ , num2str(round(Vabc (2 ) ,5 ) ) )

732 set ( handles . V0 edit , ’ S t r ing ’ , num2str(round(Vabc (3 ) ,5 ) ) )

733 Va=abs (Vabc (1 ) )∗cos (w∗ t+angle (Vabc (1 ) ) ) ;

734 Vb=abs (Vabc (2 ) )∗cos (w∗ t+angle (Vabc (2 ) ) ) ;

735 Vc=abs (Vabc (3 ) )∗cos (w∗ t+angle (Vabc (3 ) ) ) ;

736 cla ( ( handles . F a u l t v o l t a g e s a x e s ) )

737 axes ( handles . F a u l t v o l t a g e s a x e s ) ;

738 hold on

739 plot ( t , Va , ’ r ’ )

740 plot ( t ,Vb, ’b ’ )

741 plot ( t , Vc , ’ g ’ )

742 t i t l e ( ’ Post Fault Voltage vs Time ’ )

743 xlabel ( ’Time ( s ) ’ )
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744 ylabel ( ’ Fault Voltage (pu) ’ )

745 legend ( ’Va ’ , ’Vb ’ , ’Vc ’ ) ;

746

747

748 %data entry in t o output f i l e

749 f i d=fopen ( ’ output . txt ’ , ’w ’ ) ;

750 fpr intf ( f i d , ’The p o s i t i v e sequence Ybus\n\n ’ ) ;

751 for i =1: nbuses

752 for k=1: nbuses

753 fpr intf ( f i d , ’%−10.3 f \ t ’ ,Yp( i , k ) ) ;

754 end

755 fpr intf ( f i d , ’\n\n ’ ) ;

756 end

757 fpr intf ( f i d , ’The p o s i t i v e sequence Zbus\n\n ’ ) ;

758 for i =1: nbuses

759 for k=1: nbuses

760 fpr intf ( f i d , ’%−10.3 f \ t ’ ,Zp( i , k ) ) ;

761 end

762 fpr intf ( f i d , ’\n\n ’ ) ;

763 end

764

765 fpr intf ( f i d , ’The zero sequence Ybus\n\n ’ ) ;

766 for i =1: nbuses

767 for k=1: nbuses

768 fpr intf ( f i d , ’%−10.3 f \ t ’ ,Yz( i , k ) ) ;

769 end

770 fpr intf ( f i d , ’\n\n ’ ) ;

771 end
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772 fpr intf ( f i d , ’The zero sequence Zbus\n\n ’ ) ;

773 for i =1: nbuses

774 for k=1: nbuses

775 fpr intf ( f i d , ’%−10.3 f \ t ’ , Zz ( i , k ) ) ;

776 end

777 fpr intf ( f i d , ’\n\n ’ ) ;

778 end

779

780 fpr intf ( f i d , ’ Fault cur r ent \n\n ’ ) ;

781 fpr intf ( f i d , ’ Magnitude Angle ( rad ians )\n ’ ) ;

782 fpr intf ( f i d , ’ I1 \n ’ ) ;

783 fpr intf ( f i d , ’%−10.3 f %−10.3 f \n\n ’ ,abs ( I 1 ) , angle ( I 1 ) ) ;

784 fpr intf ( f i d , ’ I2 \n ’ ) ;

785 fpr intf ( f i d , ’%−10.3 f %−10.3 f \n\n ’ ,abs ( I 2 ) , angle ( I 2 ) ) ;

786 fpr intf ( f i d , ’ I0 \n ’ ) ;

787 fpr intf ( f i d , ’%−10.3 f %−10.3 f \n\n ’ ,abs ( I 0 ) , angle ( I 0 ) ) ;

788 fpr intf ( f i d , ’ Pr in t ing o f sequence components\n ’ ) ;

789 fpr intf ( f i d , ’ Post Fault Voltages \n\n ’ ) ;

790 fpr intf ( f i d , ’Bus−number Pos−seq−Magnitude Pos−seq−Angle ( rad ians )

Neg−seq−Magnitude Neg−seq−Angle ( rad ians ) Zero−seq−Magnitude

Zero−seq−Angle ( rad ians )\n ’ ) ;

791 for i =1: length ( V 1p )

792 fpr intf ( f i d , ’%−10.3 f %−10.3 f %−10.3 f %−10.3 f %−10.3 f

%−10.3 f %−10.3 f \n ’ , i , abs ( V 1p ( i ) ) , V 1p phase ( i ) ,abs ( V 2p ( i

) ) , V 2p phase ( i ) ,abs ( V 0p ( i ) ) , angle ( V 0p ( i ) ) ) ;

793 end

794

795
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796 fpr intf ( f i d , ’\n\n ’ ) ;

797 fc lose ( ’ a l l ’ ) ;

798 done=1;

799 clc

800

801 % −−− Executes on but ton pre s s in t h r e e p h f a u l t 1 .

802 function th r e eph f au l t 1 Ca l l back ( hObject , eventdata , handles )

803 nbuses= st r2doub l e (get ( handles . Input nb , ’ S t r ing ’ ) ) ;

804 nxfmrs = st r2doub l e (get ( handles . Input nt , ’ S t r ing ’ ) ) ;

805 n l i n e s = st r2doub l e (get ( handles . Input n l , ’ S t r ing ’ ) ) ;

806 ngen= st r2doub l e (get ( handles . Input ng , ’ S t r ing ’ ) ) ;

807 f au l t imp= st r2doub l e (get ( handles . ed i t18 , ’ S t r ing ’ ) ) ;

808 f a u l t b u s= st r2doub l e (get ( handles . ed i t19 , ’ S t r ing ’ ) ) ;

809 Yp=Po i s t i v e ybus ( nbuses , ngen , n l i n e s , nxfmrs ) ;

810 Zbus=inv (Yp) ;

811 vector1=ones ( nbuses ) ;

812 V 1=vector1 ( : , 1 ) ;

813 vector1=ones ( nbuses ) ;

814 V 1=vector1 ( : , 1 ) ;

815 %ca l c u l a t i o n o f f a u l t curren t

816 I 1=V 1 ( f a u l t b u s ) / ( ( Zbus ( f au l t bu s , f a u l t b u s )+fau l t imp )∗ j ) ;

817 I 0 =0;

818 I 2 =0;

819 a=−0.5+(0.866025∗1 i ) ;

820 i 012 =[ I 0 ; I 1 ; I 2 ] ;

821 p=[1 1 1 ;1 aˆ2 a ; 1 a a ˆ2 ]

822 i abc=p∗ i 012 ;

823 i a=iabc (1 ) ;

117



824 ib=iabc (2 ) ;

825 i c=iabc (3 ) ;

826 set ( handles . I 1 e d i t , ’ S t r ing ’ , num2str( i a ) )

827 set ( handles . I 2 e d i t , ’ S t r ing ’ , num2str( ib ) )

828 set ( handles . I 0 e d i t , ’ S t r ing ’ , num2str( i c ) )

829

830 cla ( ( handles . F a u l t c u r r e n t a x e s ) )

831 axes ( handles . F a u l t c u r r e n t a x e s ) ;

832 xd2=(Zbus ( f au l t bu s , f a u l t b u s ) )∗ j

833 xd1=0.35 j ;

834 xd=0.5 j ;

835 z2 =0.175 j ;

836 z0 =0.30 j ;

837 z f=fau l t imp ∗ j ;

838 td2 =0.035;

839 td1 =0.5 ;

840 Ta=0.17;

841 w=2∗pi ∗50 ;

842 q=0;

843 t = 0 : 0 . 0 0 0 1 : 0 . 3 ;

844 xp =(((( (1/ xd2 )−(1/xd1 ) ) .∗exp(−t / td2 ) ) +(((1/ xd1 )−(1/xd ) ) .∗exp(−t /

td1 ) ) +(1/xd ) ) ) ;

845 x1=(xp.ˆ−1) ;

846 i a =((1./ x1 ) .∗ sin ( ( (w∗ t )+(q ) ) ) ) ;

847 ib =((1./ x1 ) .∗ sin ( ( (w∗ t )+(q−2.0944) ) ) ) ;

848 i c =((1./ x1 ) .∗ sin ( ( (w∗ t )+(q+2.094400006763) ) ) ) ;

849 hold on

850 plot ( t , imag( i a ) , ’ r ’ )
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851 plot ( t , imag( ib ) , ’b ’ )

852 plot ( t , imag( i c ) , ’ g ’ )

853 t i t l e ( ’ Fault Current vs Time ’ )

854 xlabel ( ’Time ( s ) ’ )

855 ylabel ( ’ Fault Current (pu) ’ )

856 legend ( ’ Ia ’ , ’ Ib ’ , ’ I c ’ ) ;

857

858 %pos t f a u l t v o l t a g e c a l c u l a t i o n s

859 for i =1: length ( V 1 )

860 V 1p ( i )=V 1 ( i )−Zbus ( i , f a u l t b u s )∗ I 1 ∗ j ;

861 end

862 V 1p mag=abs ( V 1p ) ;

863 V 1p phase=angle ( V 1p ) ;

864 % v f 2 = V 1p mag .∗ exp ( i ∗V 1p phase ) ;

865 V012 =[0; V 1p ( i ) ; 0 ] ;

866 p=[1 1 1 ;1 aˆ2 a ; 1 a a ˆ 2 ] ;

867 Vabc=p∗V012 ;

868 set ( handles . V1 edit , ’ S t r ing ’ , num2str(Vabc (1 ) ) )

869 set ( handles . V2 edit , ’ S t r ing ’ , num2str(Vabc (2 ) ) )

870 set ( handles . V0 edit , ’ S t r ing ’ , num2str(Vabc (3 ) ) )

871 Va=abs (Vabc (1 ) )∗cos (w∗ t+angle (Vabc (1 ) ) ) ;

872 Vb=abs (Vabc (2 ) )∗cos (w∗ t+angle (Vabc (2 ) ) ) ;

873 Vc=abs (Vabc (3 ) )∗cos (w∗ t+angle (Vabc (3 ) ) ) ;

874 cla ( ( handles . F a u l t v o l t a g e s a x e s ) )

875 axes ( handles . F a u l t v o l t a g e s a x e s ) ;

876 hold on

877 plot ( t , Va , ’ r ’ )

878 plot ( t ,Vb, ’b ’ )
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879 plot ( t , Vc , ’ g ’ )

880 t i t l e ( ’ Fault Voltage vs Time ’ )

881 xlabel ( ’Time ( s ) ’ )

882 ylabel ( ’ Post Fault Voltage (pu) ’ )

883 legend ( ’Va ’ , ’Vb ’ , ’Vc ’ ) ;

884 %

885 %data entry in t o output f i l e

886 f i d=fopen ( ’ output . txt ’ , ’w ’ ) ;

887 fpr intf ( f i d , ’The Ybus\n\n ’ ) ;

888 for i =1: nbuses

889 for k=1: nbuses

890 fpr intf ( f i d , ’%−10.3 f \ t ’ ,Yp( i , k ) ) ;

891 end

892 fpr intf ( f i d , ’\n\n ’ ) ;

893 end

894 fpr intf ( f i d , ’The Zbus\n\n ’ ) ;

895 for i =1: nbuses

896 for k=1: nbuses

897 fpr intf ( f i d , ’%−10.3 f \ t ’ , Zbus ( i , k ) ) ;

898 end

899 fpr intf ( f i d , ’\n\n ’ ) ;

900 end

901 fpr intf ( f i d , ’ Fault cur r ent \n\n ’ ) ;

902 fpr intf ( f i d , ’ Magnitude Angle ( rad ians )\n ’ ) ;

903 fpr intf ( f i d , ’%−10.3 f %−10.3 f \n\n ’ ,abs ( I 1 ) , angle ( I 1 ) ) ;

904 fpr intf ( f i d , ’ Post Fault Voltages \n\n ’ ) ;

905 fpr intf ( f i d , ’Bus−number Magnitude Angle ( rad ians )\n ’ ) ;

906 for i =1: length ( V 1p )
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907 fpr intf ( f i d , ’%−10.3 f %−10.3 f %−10.3 f \n ’ , i , V 1p mag ( i ) ,

V 1p phase ( i ) ) ;

908 end

909 fpr intf ( f i d , ’\n\n ’ ) ;

910 fc lose ( ’ a l l ’ ) ;

911 clc

912

913

914

915 % −−− Executes on but ton pre s s in Complete ana l y s i s f i l e .

916 function pushbutton9 Cal lback ( hObject , eventdata , handles )

917

918 winopen ( ’ output . txt ’ )

919

920

921 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l

p r o p e r t i e s .

922 function ed i t28 CreateFcn ( hObject , eventdata , handles )

923

924 i f i s p c && i s e q u a l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

925 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

926 end

927

928

929 % −−− Executes on but ton pre s s in Reset .

930 function pushbutton10 Cal lback ( hObject , eventdata , handles )

931
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932

933 set ( f i n d o b j ( handles . f i gu r e1 , ’ s t y l e ’ , ’ e d i t ’ ) , ’ s t r i n g ’ , ’ ’ )

934 axes ( handles . axes6 )

935 matlabImage = imread ( ’ bc . jpg ’ ) ;

936 image ( matlabImage )

937 axis o f f

938 axis image

939 axes ( handles . F a u l t c u r r e n t a x e s )

940 cla

941 axes ( handles . F a u l t v o l t a g e s a x e s )

942 cla

943 set ( handles . popupmenu5 , ’ Value ’ , 1) ;

944 set ( handles . popupmenu4 , ’ Value ’ , 1) ;

945 clc

946

947 % −−− Executes on but ton pre s s in Data entry .

948 function pushbutton13 Cal lback ( hObject , eventdata , handles )

949 nbuses= st r2doub l e (get ( handles . Input nb , ’ S t r ing ’ ) )

950 nxfmrs = st r2doub l e (get ( handles . Input nt , ’ S t r ing ’ ) )

951 n l i n e s = st r2doub l e (get ( handles . Input n l , ’ S t r ing ’ ) )

952 ngen= st r2doub l e (get ( handles . Input ng , ’ S t r ing ’ ) )

953 clc

954 commandwindow

955 % entry o f genera tor data

956 for i =1:ngen

957 disp ( ’ data entry f o r genera to r ’ ) ;

958 disp ( i ) ;

959 gen bus ( i )=input ( ’ en te r the f a u l t b u s number at which the
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genera to r i s connected ’ ) ;

960 pos gen ( i )=input ( ’ en te r the p o s i t i v e / negat ive sequence

impedance o f the genera to r ’ ) ;

961 ze ro gen ( i )=input ( ’ en te r the zero sequence impedance o f the

genera to r ’ ) ;

962 gen ground ( i )=input ( ’ i f the genera to r i s grounded ente r the

grounding impedance and i f ungrounded ente r 1000 ’ ) ;

963 end

964 gen=[ gen bus ’ pos gen ’ zero gen ’ gen ground ’ ] ;

965 gen=gen ’ ;

966 f i d=fopen ( ’ Generator Data . txt ’ , ’w ’ ) ;

967 fpr intf ( f i d , ’ %6.2 f %6.2 f %6.2 f %6.2 f \n ’ , gen ) ;

968 fc lose ( f i d ) ;

969 %entry o f l i n e data

970 for i =1: n l i n e s

971 disp ( ’ P lease ente r data f o r l i n e ’ ) ;

972 disp ( i ) ;

973 s t a r t b u s ( i )=input ( ’What i s the s t a r t i n g bus number ’ ) ;

974 end bus ( i )=input ( ’What i s the ending bus number ’ ) ;

975 p o s l i n e ( i )=input ( ’What i s the p o s i t i v e / negat ive sequence

impedance o f the l i n e ’ ) ;

976 z e r o l i n e ( i )=input ( ’What i s the zero sequence impedance o f the

l i n e ’ ) ;

977 r e a l t a p l i n e ( i )=input ( ’What i s the r e a l part o f o f f nominal

tap o f the l i n e ’ ) ;

978 imagtap l in e ( i )=input ( ’What i s the imaginary part o f o f f

nominal tap o f the l i n e ’ ) ;

979 end
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980 l i n e d a t a =[ s ta r t bus ’ end bus ’ p o s l i n e ’ z e r o l i n e ’ r e a l t a p l i n e ’

imagtap l ine ’ ] ;

981 l i n e d a t a=l inedata ’ ;

982 f i d=fopen ( ’ Line Data . txt ’ , ’w ’ ) ;

983 fpr intf ( f i d , ’ %6.2 f %6.2 f %6.2 f %6.2 f %6.2 f %6.2 f \n ’ , l i n e d a t a ) ;

984 fc lose ( f i d ) ;

985 %entry o f t rans former data

986 for i =1: nxfmrs

987 disp ( ’ P lease ente r data f o r t rans fo rmer ’ ) ;

988 disp ( i )

989 hv bus ( i )=input ( ’What i s the bus number o f high vo l tage s i d e

bus number o f the t rans fo rmer ’ ) ;

990 hv code ( i )=input ( ’ P lease ente r the connect ion code −−> 0− s t a r

grounded 1− s t a r ungrounded 2−de l t a ’ ) ;

991 l v bus ( i )=input ( ’What i s the bus number o f low vo l tage s i d e

bus o f the t rans fo rmer ’ ) ;

992 l v code ( i )=input ( ’ P lease ente r the connect ion code −−> 0− s t a r

grounded 1− s t a r ungrounded 2−de l t a ’ ) ;

993 pos t r an s ( i )=input ( ’What i s the p o s i t i v e / negat ive sequence

impedance o f the t rans fo rmer ’ ) ;

994 z e r o t r a n s ( i )=input ( ’What i s the zero sequence impedance o f

the t rans fo rmer ’ ) ;

995 end

996 t ransdata =[hv bus ’ hv code ’ lv bus ’ lv code ’ pos t rans ’ z e ro t r an s

’ ] ;

997 t ransdata=transdata ’ ;

998 f i d=fopen ( ’ Transformer Data . txt ’ , ’w ’ ) ;

999 fpr intf ( f i d , ’ %6.2 f %6.2 f %6.2 f %6.2 f %6.2 f %6.2 f \n ’ , t ransdata ) ;
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1000 fc lose ( f i d ) ;

1001

1002

1003 % −−− Executes on s e l e c t i o n change in popupmenu4 .

1004 function popupmenu4 Callback ( hObject , eventdata , handles )

1005 v = get ( handles . popupmenu4 , ’ Value ’ ) ;

1006 i f v == 1

1007

1008 e l s e i f v == 2

1009 winopen ( ’ Power System Analys is−per un i t r eac tance diagram .mp4 ’

) ;

1010 e l s e i f v == 3

1011 winopen ( ’ Unbalanced Fault Ana lys i s .mp4 ’ ) ;

1012 e l s e i f v == 4

1013 winopen ( ’ Sequence Networks − Transformer , Generator ,

Transmiss ion l i n e .mp4 ’ ) ;

1014 e l s e i f v == 5

1015 winopen ( ’ Power System Analys i s ( f a u l t a n a l y s i s )−1.mp4 ’ ) ;

1016

1017 end

1018

1019

1020 % −−− Executes on s e l e c t i o n change in popupmenu5 .

1021 function popupmenu5 Callback ( hObject , eventdata , handles )

1022 v = get ( handles . popupmenu5 , ’ Value ’ ) ;

1023 i f v == 1

1024

1025 e l s e i f v == 2
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1026 winopen ( ’ Zbus1 . pdf ’ ) ;

1027 e l s e i f v == 3

1028 winopen ( ’ Zbus2 . pdf ’ ) ;

1029 e l s e i f v == 4

1030 winopen ( ’ Zbus3 . pdf ’ ) ;

1031 e l s e i f v == 5

1032 winopen ( ’ Symmet r i ca l f au l t s . pdf ’ ) ;

1033 e l s e i f v == 6

1034 winopen ( ’ Sequence Networks . pdf ’ ) ;

1035 e l s e i f v == 7

1036 winopen ( ’ Fault a n a l y s i s us ing sequence network . pdf ’ ) ;

1037 e l s e i f v == 8

1038 winopen ( ’ Unbalanced f a u l t a n a l y s i s . pdf ’ ) ;

1039 e l s e i f v == 9

1040 winopen ( ’ Example o f f a u l t c a l c u l a t i o n . pdf ’ ) ;

1041 e l s e i f v == 10

1042 winopen ( ’ Example o f f a u l t c a l c u l a t i o n 2 . pdf ’ ) ;

1043 end

1044

1045

1046 % −−− Executes on but ton pre s s in pushbut ton14 .

1047 function pushbutton14 Cal lback ( hObject , eventdata , handles )

1048 % hObject handle to pushbut ton14 ( see GCBO)

1049 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1050 % hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

1051

1052
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1053 % −−− Executes on but ton pre s s in pushbut ton15 .

1054 function pushbutton15 Cal lback ( hObject , eventdata , handles )

1055 % hObject handle to pushbut ton15 ( see GCBO)

1056 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1057 % hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

1058

1059

1060 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l

p r o p e r t i e s .

1061 function Input nb CreateFcn ( hObject , eventdata , handles )

1062 % hObject handle to Input nb ( see GCBO)

1063 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1064 % hand les empty − hand les not c rea t ed u n t i l a f t e r a l l

CreateFcns c a l l e d

1065

1066 % Hint : e d i t c on t r o l s u s u a l l y have a whi te background on Windows .

1067 % See ISPC and COMPUTER.

1068 i f i s p c && i s e q u a l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

1069 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

1070 end

1071

1072

1073 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l

p r o p e r t i e s .

1074 function Input ng CreateFcn ( hObject , eventdata , handles )
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1075 % hObject handle to Input ng ( see GCBO)

1076 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1077 % hand les empty − hand les not c rea t ed u n t i l a f t e r a l l

CreateFcns c a l l e d

1078

1079 % Hint : e d i t c on t r o l s u s u a l l y have a whi te background on Windows .

1080 % See ISPC and COMPUTER.

1081 i f i s p c && i s e q u a l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

1082 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

1083 end

1084

1085

1086 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l

p r o p e r t i e s .

1087 function Input n l CreateFcn ( hObject , eventdata , handles )

1088 % hObject handle to Inpu t n l ( see GCBO)

1089 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1090 % hand les empty − hand les not c rea t ed u n t i l a f t e r a l l

CreateFcns c a l l e d

1091

1092 % Hint : e d i t c on t r o l s u s u a l l y have a whi te background on Windows .

1093 % See ISPC and COMPUTER.

1094 i f i s p c && i s e q u a l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

1095 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;
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1096 end

1097

1098

1099 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l

p r o p e r t i e s .

1100 function Input nt CreateFcn ( hObject , eventdata , handles )

1101 % hObject handle to Inpu t n t ( see GCBO)

1102 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1103 % hand les empty − hand les not c rea t ed u n t i l a f t e r a l l

CreateFcns c a l l e d

1104

1105 % Hint : e d i t c on t r o l s u s u a l l y have a whi te background on Windows .

1106 % See ISPC and COMPUTER.

1107 i f i s p c && i s e q u a l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

1108 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

1109 end

1110

1111

1112 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l

p r o p e r t i e s .

1113 function I 1 ed i t Crea t eFcn ( hObject , eventdata , handles )

1114 % hObject handle to I 1 e d i t ( see GCBO)

1115 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1116 % hand les empty − hand les not c rea t ed u n t i l a f t e r a l l

CreateFcns c a l l e d
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1117

1118 % Hint : e d i t c on t r o l s u s u a l l y have a whi te background on Windows .

1119 % See ISPC and COMPUTER.

1120 i f i s p c && i s e q u a l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

1121 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

1122 end

1123

1124

1125 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l

p r o p e r t i e s .

1126 function I 2 ed i t Crea t eFcn ( hObject , eventdata , handles )

1127 % hObject handle to I 2 e d i t ( see GCBO)

1128 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1129 % hand les empty − hand les not c rea t ed u n t i l a f t e r a l l

CreateFcns c a l l e d

1130

1131 % Hint : e d i t c on t r o l s u s u a l l y have a whi te background on Windows .

1132 % See ISPC and COMPUTER.

1133 i f i s p c && i s e q u a l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

1134 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

1135 end

1136

1137

1138 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l

p r o p e r t i e s .
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1139 function I 0 ed i t Crea t eFcn ( hObject , eventdata , handles )

1140 % hObject handle to I 0 e d i t ( see GCBO)

1141 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1142 % hand les empty − hand les not c rea t ed u n t i l a f t e r a l l

CreateFcns c a l l e d

1143

1144 % Hint : e d i t c on t r o l s u s u a l l y have a whi te background on Windows .

1145 % See ISPC and COMPUTER.

1146 i f i s p c && i s e q u a l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

1147 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

1148 end

1149

1150

1151 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l

p r o p e r t i e s .

1152 function V1 edit CreateFcn ( hObject , eventdata , handles )

1153 % hObject handle to V1 edi t ( see GCBO)

1154 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1155 % hand les empty − hand les not c rea t ed u n t i l a f t e r a l l

CreateFcns c a l l e d

1156

1157 % Hint : e d i t c on t r o l s u s u a l l y have a whi te background on Windows .

1158 % See ISPC and COMPUTER.

1159 i f i s p c && i s e q u a l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )
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1160 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

1161 end

1162

1163

1164 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l

p r o p e r t i e s .

1165 function V2 edit CreateFcn ( hObject , eventdata , handles )

1166 % hObject handle to V2 edi t ( see GCBO)

1167 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1168 % hand les empty − hand les not c rea t ed u n t i l a f t e r a l l

CreateFcns c a l l e d

1169

1170 % Hint : e d i t c on t r o l s u s u a l l y have a whi te background on Windows .

1171 % See ISPC and COMPUTER.

1172 i f i s p c && i s e q u a l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

1173 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

1174 end

1175

1176

1177 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l

p r o p e r t i e s .

1178 function V0 edit CreateFcn ( hObject , eventdata , handles )

1179 % hObject handle to V0 edi t ( see GCBO)

1180 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1181 % hand les empty − hand les not c rea t ed u n t i l a f t e r a l l
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CreateFcns c a l l e d

1182

1183 % Hint : e d i t c on t r o l s u s u a l l y have a whi te background on Windows .

1184 % See ISPC and COMPUTER.

1185 i f i s p c && i s e q u a l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

1186 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

1187 end

1188

1189

1190 % −−− Executes during o b j e c t d e l e t i on , b e f o r e d e s t r oy in g

p r o p e r t i e s .

1191 function V0 edit De leteFcn ( hObject , eventdata , handles )

1192 % hObject handle to V0 edi t ( see GCBO)

1193 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1194 % hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

1195

1196

1197 % −−− Executes during o b j e c t d e l e t i on , b e f o r e d e s t r oy in g

p r o p e r t i e s .

1198 function ed i t18 De l e teFcn ( hObject , eventdata , handles )

1199 % hObject handle to ed i t 18 ( see GCBO)

1200 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1201 % hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

1202

1203
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1204 % −−− Executes during o b j e c t crea t ion , a f t e r s e t t i n g a l l

p r o p e r t i e s .

1205 function ed i t18 CreateFcn ( hObject , eventdata , handles )

1206 % hObject handle to ed i t 18 ( see GCBO)

1207 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1208 % hand les empty − hand les not c rea t ed u n t i l a f t e r a l l

CreateFcns c a l l e d

1209

1210 % Hint : e d i t c on t r o l s u s u a l l y have a whi te background on Windows .

1211 % See ISPC and COMPUTER.

1212 i f i s p c && i s e q u a l (get ( hObject , ’ BackgroundColor ’ ) , get (0 , ’

de fau l tUicontro lBackgroundColor ’ ) )

1213 set ( hObject , ’ BackgroundColor ’ , ’ white ’ ) ;

1214 end

1215

1216

1217 % −−− Executes when f i g u r e 1 i s r e s i z e d .

1218 function f igure1 SizeChangedFcn ( hObject , eventdata , handles )

1219 % hObject handle to f i g u r e 1 ( see GCBO)

1220 % eventda ta re s e rved − to be de f ined in a f u t u r e ve r s i on o f

MATLAB

1221 % hand les s t r u c t u r e wi th hand les and user data ( see GUIDATA)

A.2 Formation of positive sequence impedance matrix

1 function Yp=Ypos i t ive ( nbuses , ngen , n l i n e s , nxfmrs )

2

3
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4 Yp=zeros ( nbuses ) ;

5 %s e t t i n g up d e f a u l t 5 bus and 6 bus power system data

6 i f nbuses==5

7 f i d=fopen ( ’ 5 Line Data . txt ’ , ’ r ’ ) ;

8 read= text r ead ( ’ 5 Line Data . txt ’ ) ;

9 fc lose ( f i d ) ;

10 else i f nbuses==6

11 f i d=fopen ( ’ 6 Line Data . txt ’ , ’ r ’ ) ;

12 read= text r ead ( ’ 6 Line Data . txt ’ ) ;

13 fc lose ( f i d ) ;

14 else

15 f i d=fopen ( ’ Line Data . txt ’ , ’ r ’ ) ;

16 read= text r ead ( ’ Line Data . txt ’ ) ;

17 fc lose ( f i d ) ;

18 end

19 end

20

21 %From Line data

22 x=read ( : , 1 ) ; %s t a r t i n g bus

23 y=read ( : , 2 ) ; %ending bus

24 zp=read ( : , 3 ) ; %Pos i t i v e seq imp

25 for i =1: length ( x )

26 xx=(1/( zp ( i ) ) ) ;

27 xy=(−1/(zp ( i ) ) ) ;

28 yx=(−1/(zp ( i ) ) ) ;

29 yy=(1/( zp ( i ) ) ) ;

30 Yp( x ( i ) , x ( i ) )=Yp( x ( i ) , x ( i ) )+xx ;

31 Yp( y ( i ) , y ( i ) )=Yp( y ( i ) , y ( i ) )+yy ;
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32 Yp( x ( i ) , y ( i ) )=Yp( x ( i ) , y ( i ) )+xy ;

33 Yp( y ( i ) , x ( i ) )=Yp( y ( i ) , x ( i ) )+yx ;

34 end

35

36 %From Generator

37 i f nbuses==5

38 f i d=fopen ( ’ 5 Generator Data . txt ’ , ’ r ’ ) ;

39 read=text read ( ’ 5 Generator Data . txt ’ ) ;

40 fc lose ( f i d ) ;

41 else i f nbuses==6

42 f i d=fopen ( ’ 6 Generator Data . txt ’ , ’ r ’ ) ;

43 read=text read ( ’ 6 Generator Data . txt ’ ) ;

44 fc lose ( f i d ) ;

45

46 else

47 f i d=fopen ( ’ Generator Data . txt ’ , ’ r ’ ) ;

48 read=text read ( ’ Generator Data . txt ’ ) ;

49 fc lose ( f i d ) ;

50 end

51 end

52

53 x=read ( : , 1 ) ; %genera tor bus

54 y=read ( : , 2 ) ; %Pos i t i v e seq imp

55 for i =1: length ( x )

56 Yp( x ( i ) , x ( i ) )=Yp( x ( i ) , x ( i ) ) +(1/y ( i ) ) ;

57 end

58

59 %From Transformer
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60 i f nbuses==5

61 f i d=fopen ( ’ 5 Transformer Data . txt ’ , ’ r ’ ) ;

62 read=text read ( ’ 5 Transformer Data . txt ’ ) ;

63 fc lose ( f i d ) ;

64 else i f nbuses==6

65 f i d=fopen ( ’ 6 Transformer Data . txt ’ , ’ r ’ ) ;

66 read=text read ( ’ 6 Transformer Data . txt ’ ) ;

67 fc lose ( f i d ) ;

68

69 else

70 f i d=fopen ( ’ Transformer Data . txt ’ , ’ r ’ ) ;

71 read=text read ( ’ Transformer Data . txt ’ ) ;

72 fc lose ( f i d ) ;

73

74 end

75 end

76

77

78 x=read ( : , 1 ) ; %HV bus

79 y=read ( : , 3 ) ; %LV bus

80 z=read ( : , 5 ) ; %Pos i t i v e seq imp

81 for i =1: length ( x )

82 Yp( x ( i ) , x ( i ) )=Yp( x ( i ) , x ( i ) )+1/z ( i ) ;

83 Yp( y ( i ) , y ( i ) )=Yp( y ( i ) , y ( i ) )+1/z ( i ) ;

84 Yp( x ( i ) , y ( i ) )=Yp( x ( i ) , y ( i ) )+(−1)/z ( i ) ;

85 Yp( y ( i ) , x ( i ) )=Yp( y ( i ) , x ( i ) )+(−1)/z ( i ) ;

86 end

87 zp=inv (Yp) ;
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A.3 Formation of zero sequence impedance matrix

1 function Yz=Yzero ( nbuses , ngen , n l i n e s , nxfmrs )

2

3 Yz=zeros ( nbuses ) ;

4 %From Line

5 i f nbuses==5

6 %From Line

7 f i d=fopen ( ’ 5 Line Data . txt ’ , ’ r ’ ) ;

8 read= text r ead ( ’ 5 Line Data . txt ’ ) ;

9 fc lose ( f i d ) ;

10 else i f nbuses==6

11 f i d=fopen ( ’ 6 Line Data . txt ’ , ’ r ’ ) ;

12 read= text r ead ( ’ 6 Line Data . txt ’ ) ;

13 fc lose ( f i d ) ;

14 else

15 f i d=fopen ( ’ Line Data . txt ’ , ’ r ’ ) ;

16 read= text r ead ( ’ Line Data . txt ’ ) ;

17 fc lose ( f i d ) ;

18 end

19 end

20

21

22 x=read ( : , 1 ) ;

23 y=read ( : , 2 ) ;

24 zp=read ( : , 4 ) ;

25 for i =1: length ( x )

26 xx=(1/( zp ( i ) ) ) ;

27 xy=(−1/(zp ( i ) ) ) ;
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28 yx=(−1/(zp ( i ) ) ) ;

29 yy=(1/( zp ( i ) ) ) ;

30 Yz( x ( i ) , x ( i ) )=Yz( x ( i ) , x ( i ) )+xx ;

31 Yz( y ( i ) , y ( i ) )=Yz( y ( i ) , y ( i ) )+yy ;

32 Yz( x ( i ) , y ( i ) )=Yz( x ( i ) , y ( i ) )+xy ;

33 Yz( y ( i ) , x ( i ) )=Yz( y ( i ) , x ( i ) )+yx ;

34 end

35

36 %From Transformer

37 i f nbuses==5

38 f i d=fopen ( ’ 5 Transformer Data . txt ’ , ’ r ’ ) ;

39 read=text read ( ’ 5 Transformer Data . txt ’ ) ;

40 fc lose ( f i d ) ;

41 else i f nbuses==6

42 f i d=fopen ( ’ 6 Transformer Data . txt ’ , ’ r ’ ) ;

43 read=text read ( ’ 6 Transformer Data . txt ’ ) ;

44 fc lose ( f i d ) ;

45

46 else

47 f i d=fopen ( ’ Transformer Data . txt ’ , ’ r ’ ) ;

48 read=text read ( ’ Transformer Data . txt ’ ) ;

49 fc lose ( f i d ) ;

50

51 end

52 end

53

54

55 x=read ( : , 1 ) ;
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56 y=read ( : , 3 ) ;

57 hvx=read ( : , 2 ) ;

58 lvx=read ( : , 4 ) ;

59 z=read ( : , 6 ) ;

60 for i =1: length ( x )

61 i f hvx ( i )==0 & lvx ( i )==0 %repr e s en t s the case o f grounded s t a r

at both ends

62 Yz( x ( i ) , x ( i ) )=Yz( x ( i ) , x ( i ) )+1/z ( i ) ;

63 Yz( y ( i ) , y ( i ) )=Yz( y ( i ) , y ( i ) )+1/z ( i ) ;

64 Yz( x ( i ) , y ( i ) )=Yz( x ( i ) , y ( i ) )+(−1)∗1/ z ( i ) ;

65 Yz( y ( i ) , x ( i ) )=Yz( y ( i ) , x ( i ) )+(−1)∗1/ z ( i ) ;

66 end

67

68 i f hvx ( i )==0 & lvx ( i )==1 %repr e s en t s the case o f grounded s t a r

and ungrounded s t a r

69 Yz( x ( i ) , x ( i ) )=Yz( x ( i ) , x ( i ) ) +0;

70 Yz( y ( i ) , y ( i ) )=Yz( y ( i ) , y ( i ) ) +0;

71 Yz( x ( i ) , y ( i ) )=Yz( x ( i ) , y ( i ) ) +0;

72 Yz( y ( i ) , x ( i ) )=Yz( y ( i ) , x ( i ) ) +0;

73 end

74

75 i f hvx ( i )==0 & lvx ( i )==2 %repr e s en t s the case o f grounded s t a r

and d e l t a

76 Yz( x ( i ) , x ( i ) )=Yz( x ( i ) , x ( i ) )+1/z ( i ) ;

77 Yz( y ( i ) , y ( i ) )=Yz( y ( i ) , y ( i ) ) +0;

78 Yz( x ( i ) , y ( i ) )=Yz( x ( i ) , y ( i ) ) +0;

79 Yz( y ( i ) , x ( i ) )=Yz( y ( i ) , x ( i ) ) +0;

80 end
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81

82 i f hvx ( i )==1 & lvx ( i )==0 %repr e s en t s the case o f ungrounded

s t a r and grounded s t a r

83 Yz( x ( i ) , x ( i ) )=Yz( x ( i ) , x ( i ) ) +0;

84 Yz( y ( i ) , y ( i ) )=Yz( y ( i ) , y ( i ) ) +0;

85 Yz( x ( i ) , y ( i ) )=Yz( x ( i ) , y ( i ) ) +0;

86 Yz( y ( i ) , x ( i ) )=Yz( y ( i ) , x ( i ) ) +0;

87 end

88

89 i f hvx ( i )==1 & lvx ( i )==1 %repr e s en t s the case o f ungrounded

s t a r at both ends

90 Yz( x ( i ) , x ( i ) )=Yz( x ( i ) , x ( i ) ) +0;

91 Yz( y ( i ) , y ( i ) )=Yz( y ( i ) , y ( i ) ) +0;

92 Yz( x ( i ) , y ( i ) )=Yz( x ( i ) , y ( i ) ) +0;

93 Yz( y ( i ) , x ( i ) )=Yz( y ( i ) , x ( i ) ) +0;

94 end

95

96 i f hvx ( i )==1 & lvx ( i )==2 %repr e s en t s the case o f ungrounded

s t a r and d e l t a

97 Yz( x ( i ) , x ( i ) )=Yz( x ( i ) , x ( i ) ) +0;

98 Yz( y ( i ) , y ( i ) )=Yz( y ( i ) , y ( i ) ) +0;

99 Yz( x ( i ) , y ( i ) )=Yz( x ( i ) , y ( i ) ) +0;

100 Yz( y ( i ) , x ( i ) )=Yz( y ( i ) , x ( i ) ) +0;

101 end

102

103 i f hvx ( i )==2 & lvx ( i )==0 %repr e s en t s the case o f d e l t a and

grounded s t a r

104 Yz( x ( i ) , x ( i ) )=Yz( x ( i ) , x ( i ) ) +0;
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105 Yz( y ( i ) , y ( i ) )=Yz( y ( i ) , y ( i ) ) +0;

106 Yz( x ( i ) , y ( i ) )=Yz( x ( i ) , y ( i ) ) +0;

107 Yz( y ( i ) , x ( i ) )=Yz( y ( i ) , x ( i ) )+1/z ( i ) ;

108 end

109

110 i f hvx ( i )==2 & lvx ( i )==1 %repr e s en t s the case o f d e l t a and

ungrounded s t a r

111 Yz( x ( i ) , x ( i ) )=Yz( x ( i ) , x ( i ) ) +0;

112 Yz( y ( i ) , y ( i ) )=Yz( y ( i ) , y ( i ) ) +0;

113 Yz( x ( i ) , y ( i ) )=Yz( x ( i ) , y ( i ) ) +0;

114 Yz( y ( i ) , x ( i ) )=Yz( y ( i ) , x ( i ) ) +0;

115 end

116

117 i f hvx ( i )==2 & lvx ( i )==2 %repr e s en t s the case o f d e l t a at both

ends

118 Yz( x ( i ) , x ( i ) )=Yz( x ( i ) , x ( i ) ) +0;

119 Yz( y ( i ) , y ( i ) )=Yz( y ( i ) , y ( i ) ) +0;

120 Yz( x ( i ) , y ( i ) )=Yz( x ( i ) , y ( i ) ) +0;

121 Yz( y ( i ) , x ( i ) )=Yz( y ( i ) , x ( i ) ) +0;

122 end

123 end

124

125 %From Generator

126 i f nbuses==5

127 f i d=fopen ( ’ 5 Generator Data . txt ’ , ’ r ’ ) ;

128 read=text read ( ’ 5 Generator Data . txt ’ ) ;

129 fc lose ( f i d ) ;

130 else i f nbuses==6
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131 f i d=fopen ( ’ 6 Generator Data . txt ’ , ’ r ’ ) ;

132 read=text read ( ’ 6 Generator Data . txt ’ ) ;

133 fc lose ( f i d ) ;

134

135 else

136 f i d=fopen ( ’ Generator Data . txt ’ , ’ r ’ ) ;

137 read=text read ( ’ Generator Data . txt ’ ) ;

138 fc lose ( f i d ) ;

139 end

140 end

141

142

143 x=read ( : , 1 ) ;

144 z=read ( : , 3 ) ;

145 gnd=read ( : , 4 ) ;

146 for i =1: length ( x )

147 i f gnd ( i )==1000

148 Yz( x ( i ) , x ( i ) )=Yz( x ( i ) , x ( i ) ) +0;

149 end

150 i f gnd ( i ) ˜=1000

151 Yz( x ( i ) , x ( i ) )=Yz( x ( i ) , x ( i ) ) +1/(z ( i )+3∗gnd ( i ) ) ;

152 end

153 end
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