Power Line Communication
 Input Impedance Adjustment via Network Load Measurements

Authors: Vincent Winstead, Shuai Yang
Electrical and Computer Engineering and Technology
Minnesota State University, Mankato
Presenter: Shuai Yang
Date: 05/05/2018
Big ideas. Real-world thinking.

Outline

1.Introduction
2.Network model
3.Numerical optimization
4.Simulation results
5.Conclusions

Introduction

Power line communication (PLC) is a technology by reusing existing infrastructures (i.e. power lines) whose primary purpose is the delivery of AC or DC electric power, to communicate data.

Power Lines

Network model

Transmission (ABCD) matrix of two-port network is

The ABCD matrix is defined as

$$
\left[\begin{array}{l}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \cdot\left[\begin{array}{l}
V_{2} \\
I_{2}
\end{array}\right]
$$

where

$$
\begin{aligned}
& A=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0}, B=\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}=0} \\
& C=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}=0}, D=\left.\frac{I_{1}}{I_{2}}\right|_{V_{2}=0}
\end{aligned}
$$

Network model

Cascade property of two-port networks

$$
\left[\begin{array}{ll}
A_{3} & B_{3} \\
C_{3} & D_{3}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right] \cdot\left[\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right]
$$

Network model

Original model ${ }^{[1]}$

Our model

where, we assumed a feeder load, R_{L}, which varies but can be measured.
[1] I. Cavdar (2004), "Performance Analysis of FSK Power Line Communications Systems Over the Time-Varying Channels: Measurements and Modeling", IEEE Trans. on Power Delivery, vol. 19, no. 1.

Network model

We can write the input power expression and the power transfer function in the following, respectively

$$
\begin{align*}
V_{I} \cdot I_{I} & =A C V_{O}^{2}+A D V_{O} I_{O}+B C V_{O} I_{O}+B D I_{O}^{2} \tag{1}\\
\frac{S_{O}}{S_{I}} & =\frac{V_{O} I_{O}}{(A D+B C) V_{O} I_{O}+A C V_{O}^{2}+B D I_{O}^{2}} \tag{2}
\end{align*}
$$

Then, given that $\frac{V_{O}}{I_{o}}=Z_{i}$, we have

$$
\begin{align*}
\frac{S_{O}}{S_{I}}= & \frac{\frac{V_{O}^{2}}{Z_{i}}}{(A D+B C) \frac{V_{O}^{2}}{Z_{i}}+A C V_{O}^{2}+B D \frac{V_{O}^{2}}{Z_{i}^{2}}} \tag{3}\\
= & \frac{Z_{i}}{(A D+B C) Z_{i}+A C Z_{i}^{2}+B D} \\
& =\frac{Z_{i}}{\gamma_{1} \cdot Z_{i}+\gamma_{2} \cdot Z_{i}^{2}+\gamma_{3}}
\end{align*}
$$

Network model

Generally, γ_{i} are complex so $\gamma_{i}=\gamma_{i, \mathrm{Re}}+j \cdot \gamma_{i, \mathrm{Im}}$. Expanding it, we have

$$
\begin{gathered}
\frac{S_{O}}{S_{I}}=P R_{R}+j \cdot P R_{I} \\
=\frac{Z_{i}^{2} \cdot \gamma_{1, \mathrm{Re}}+Z_{i}^{3} \cdot \gamma_{2, \mathrm{Re}}+Z_{i} \cdot \gamma_{2, \mathrm{Re}}}{b_{1}+b_{2}}-j \cdot \frac{Z_{i}^{2} \cdot \gamma_{1, \mathrm{Im}}+Z_{i}^{3} \cdot \gamma_{2, \mathrm{Im}}+Z_{i} \cdot \gamma_{2, \mathrm{Im}}}{b_{1}+b_{2}}
\end{gathered}
$$

where

$$
\begin{aligned}
& b_{1}=\left(Z_{i} \cdot \gamma_{1, \mathrm{Re}}+Z_{i}^{2} \cdot \gamma_{2, \mathrm{Re}}+\gamma_{3, \mathrm{Re}}\right)^{2} \\
& b_{2}=\left(Z_{i} \cdot \gamma_{1, \mathrm{Im}}+Z_{i}^{2} \cdot \gamma_{2, \mathrm{Im}}+\gamma_{3, \mathrm{Im}}\right)^{2}
\end{aligned}
$$

Numerical optimization

The objective function is

$$
f(x)=\frac{a x^{2}+b x^{3}+c x}{\left(a x+b x^{2}+c\right)^{2}+\left(A x+B x^{2}+C\right)^{2}}
$$

where, the only variable is x, x belongs to real number and $x>0$; other six parameters are constants.

Our goal is that for maximizing above function, we seek an optimization solution x^{*}. This requirement can be met when the first-order derivative of function $f(x)$ equal to 0 , i.e.

$$
f^{\prime}\left(x^{*}\right)=0
$$

Numerical optimization

Figure: Plot of f demonstrating the global maximum of the function.

Simulation results

Assuming, we have a typical power signal (at 60 Hz) and multiplex it with a data signal as follows

$$
V_{S}(t)=120 \cdot \sqrt{2} \cdot \cos (377 t)+v_{d}(t) \cos (2 \pi \cdot 1000 t)
$$

where

$$
v_{d}(t)=\left\{\begin{array}{l}
12 ; \text { if } v_{d}(n \cdot t)=12 \text { and }(n \cdot \Delta t \leq t \leq(n+1) \Delta t) \\
0 . \text { otherwise }
\end{array}\right.
$$

That is, v_{d} function is a continuous function constructed from a sequence of scaled discrete pulses with duration t and occurring at steps $n \cdot \Delta t$ with.

Simulation results

Figure: The diagram of circuit simulation.

Simulation results

Figure: Po with $\mathrm{Zi}=10$ for the solid curve and $\mathrm{Zi}=\mathrm{Zi}^{*}$ for the dashed curve.

Conclusions

We presented a methodology to optimize signal power transfer through a PLC network.

Input impedance can be adjusted at the receiver end of the network in response to feeder load changes between the transmission side and receiver side.

We expected this methodology can be used at where feeder loads are measureable and can be reported in near real-time to the receiver end of the network.

Thank you for your listening!

§ Minnesota State University mankto

Q\&A_1 How to get the ABCD

$$
\begin{gathered}
A=1+\frac{Z_{1}}{Z_{3}} \\
B=Z_{1}+Z_{2}+\frac{Z_{1} Z_{2}}{Z_{3}} \\
C=\frac{1}{Z_{3}} \\
D=1+\frac{Z_{2}}{Z_{3}}
\end{gathered}
$$

Q\&A_2 The minus sign in Equation (4)

Based on

$$
\begin{gathered}
\frac{a}{b+j \cdot c}=\frac{a \cdot(b-j \cdot c)}{(b+j \cdot c) \cdot(b-j \cdot c)} \\
\quad=\frac{a b}{b^{2}+c^{2}}-j \cdot \frac{a c}{b^{2}+c^{2}}
\end{gathered}
$$

We have

$$
\begin{gathered}
\frac{S_{O}}{S_{I}}=\frac{Z_{i}}{\gamma_{1} \cdot Z_{i}+\gamma_{2} \cdot Z_{i}^{2}+\gamma_{3}} \\
=\frac{Z_{i}^{2} \cdot \gamma_{1, \mathrm{Re}}+Z_{i}^{3} \cdot \gamma_{2, \mathrm{Re}}+Z_{i} \cdot \gamma_{2, \mathrm{Re}}}{b_{1}+b_{2}}-j \cdot \frac{Z_{i}^{2} \cdot \gamma_{1, \mathrm{Im}}+Z_{i}^{3} \cdot \gamma_{2, \mathrm{Im}}+Z_{i} \cdot \gamma_{2, \mathrm{Im}}}{b_{1}+b_{2}}
\end{gathered}
$$

Q\&A_3 The final power transfer expression

$$
\begin{aligned}
\frac{S_{O}}{S_{I}} & =\frac{P_{O}+j Q_{O}}{P_{I}+j Q_{I}} \\
& =\frac{\left(P_{O}+j Q_{O}\right)\left(P_{I}-j Q_{I}\right)}{\left(P_{I}+j Q_{I}\right)\left(P_{I}-j Q_{I}\right)} \\
& =\frac{P_{O} P_{I}+Q_{O} Q_{I}}{P_{I}{ }^{2}+Q_{I}{ }^{2}}-j \frac{P_{O} Q_{I}-Q_{O} P_{I}}{P_{I}^{2}+Q_{I}{ }^{2}}
\end{aligned}
$$

When QI \& QO is small enough, the real part of power transfer function is equal to active power ratio.

