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Abstract 

     Conversion of native land cover to row crop agriculture and anthropogenically 

modified hydrology, correlates with increases in peak discharge, annual discharge, 

sediment and nutrient loads in agricultural land-use dominated watersheds within the 

Mississippi River basin. This results in environmental issues related to turbidity, 

eutrophication-hypoxia, loss of biodiversity, natural resource degradation, reduction in 

tourism, and more. In no place is this more obvious than the ever-growing “Dead Zone” 

in the Gulf of Mexico. The Minnesota River basin, the largest tributary to the Mississippi 

River in Minnesota, is a disproportionately large contributor of sediment (~80-90%), 

nitrogen (~56%), and phosphorus (~45%) to the upper Mississippi River watershed above 

riverine Lake Pepin. More broadly, despite being 1.34% of the surface area of the 

Mississippi basin, it contributes 5-7% of the nitrate load to the Gulf of Mexico. 

     Two agricultural drainage basins, approximately 4 km apart in the Le Sueur River 

watershed, a Minnesota River tributary, provide a unique opportunity to compare County 

Ditch 57, recently reengineered to include a suite of structural mitigation practices (surge 

pond and wetland, two-stage ditch, buffer strips, rate control weir), to a lesser modified 

Little Beauford Ditch (LBD).  The efficacy of CD 57 was evaluated over two years 

(2016-2017), with monitoring stations bounding each mitigation structure. The surge 

pond and wetland were efficient reducers of peak discharge, sediment and nitrogen loads, 

during low magnitude events. However, net increases in discharge, sediment and nutrient 

loads were still consistently observed. LBD exhibited higher peak discharge, sediment, 

and total phosphorus than CD 57. CD 57 surpassed LBD in nitrogen.  Overall, these 
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results suggest that CD 57 mitigation structures reduce peak discharge, sediment and 

phosphorous loads/total yields at low-flow events, but are overwhelmed in frequently 

observed high-magnitude events. This suggests the size/scale of these structures are 

inefficient for the watershed hydrology.   Reduction in peak discharge is promising for 

limiting peak flows and erosion of bluffs/banks within the knickzone downstream, if 

similar structures are emplaced throughout the upper watershed.  Determining the spatial 

scale, economic viability, and necessary size of the structures to truly make a broader 

impact should be the subject of future study.  
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Chapter 1: Literature Review 

1.1 Introduction 

     Approximately 12% of the surface of the planet is used for agricultural cultivation 

(Leff et al., 2004). To maintain production rates it is common practice to apply fertilizers 

that provide nutrients during crop development to help increase yields. Over the last 55 

years, there has been a global 6.78-fold increase in nitrogen fertilizer application and 

3.48-fold increase in phosphorus fertilizer application (Tilman, 1999). Furthermore, 

drainage basins in agricultural regions throughout the world are being modified to help 

efficiently drain water from the land. These systems have been primarily modified 

through channelization and the installation of subsurface tile drains to achieve quick and 

efficient drainage (Blann et al., 2009). However, with such an increase in cultivated 

lands, fertilizer application, and drainage modification, global waters have been put at 

jeopardy for a number of water quality issues. Among those issues, eutrophication 

(accelerated production of aquatic plants) and hypoxia (low dissolved oxygen within a 

waterbody) are among the most prominent (Petrolia and Gowda, 2006; Alexander et al., 

2008; Blann et al., 2009). Such waterbodies include the Black Sea (Rabalais et al., 2002), 

Northern Adriatic Sea (Diaz, 2001) Seto Inland Sea in Japan (Diaz, 2001), Chesapeake 

Bay in the United States (Rabalais, 1998), Northeast Pacific Coast of the United States 

(Grantham et al., 2004), and the Gulf of Mexico (Rabalais et al., 2002; Dodds, 2006b; 

Petrolia and Gowda, 2006; Rabalais et al., 2007; Porter et al., 2015). These conditions 

can have vast and negative effects on local aquaculture, fishing, and recreation and are 
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only increasing in size, distribution, and frequency (Diaz, 2001; Donner et al., 2004; 

Alexander et al., 2008; Hofmann et al., 2011; NOAA, 2017). 

     In the largest watershed in the United States, the Mississippi-Atchafalaya River Basin 

(MARB), which encompasses ~40% of the contiguous U.S., ~15% of the basin is used 

for corn (Zea mays L.) and soybean (Glycine soja. or Glycine max) cultivation, alone 

(Donner et al., 2004). Over the last 115 years the amount of drained land within the 

MARB has increased from ~24,000 to ~283,000 km2 (Mitsch et al., 2001a). Associated 

with this land use and hydrologic change is an increase in nitrogen and phosphorous 

loading, with ~70% of the nitrogen and phosphorus load in the MARB originating from 

agricultural sources (Carpenter et al., 1998; Tilman, 1999; Smith et al., 2003; Donner et 

al., 2004; Alexander et al., 2008; Galloway et al., 2008; Canfield Jr. et al., 2010). While 

natural “background” concentrations range from ~0.02-0.5 mg/L for total nitrogen and 

~0.006-0.08 mg/L for total phosphorus in the United States (Smith et al., 2003), modern 

concentrations are closer to ~0.72-7.57 mg/L for total nitrogen and ~0.042-0.990 mg/L 

for total phosphorus (Goolsby et al., 1999). Agricultural practices involving corn and 

soybean cultivation are the largest contributors (Donner et al., 2004; Alexander et al., 

2008).  

     The Minnesota River basin (MRB) of southern Minnesota, a tributary watershed to the 

MARB (Figure 1.1 and Figure 1.2) exhibits greater changes in land use, nutrient 

concentrations, and hydrologic regimes. The MRB has seen an 80-90% reduction of the 

native land cover (primarily tall-grass prairies, wetlands, and hardwood deciduous 

forests) and currently utilizes 78-80% of the basin for row-crop agriculture (Mulla and 
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Sekely, 2009; Musser et al., 2009; Belmont et al., 2011). In addition, the MRB is a 

disproportionate contributor of nutrients to the MARB, responsible for 3-7% of the 

nitrate load deposited in the Gulf of Mexico (Magdalene, 2004; Steil, 2007), despite only 

representing 1.34% of the drainage area of the MARB. On a more regional scale, 

drainages within the MRB are a significant source of sediment (~80-90%) and nutrient 

loading (~45% of phosphorus; ~56% of nitrogen) to Lake Pepin, a riverine lake of the 

Upper Mississippi River (UMR) (Figure 1.3) (Kelley and Nater, 2000a; Engstrom et al., 

2009; Mulla and Sekely, 2009; Belmont et al., 2011; Blumentritt et al., 2013; MPCA, 

2013). Given these conditions, ~40% of Minnesota’s lakes and streams are currently 

impaired for “conventional pollutants” under section 303(d) of the Clean Water Act 

(MPCA, 2016), include turbidity, nitrogen, and phosphorus loading. 

 

Figure 1.1. Digital elevation map of the Mississippi-Atchafalaya River Basin with the 

Minnesota River Basin and County Ditch 57 shown. 
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Figure 1.2. Digital elevation map of the Minnesota and Greater Blue Earth River Basins. 

Prominent glacial features including the Big Stone Moraine, glacial Lake Agassiz, glacial 

Lake Benson, and glacial Lake Minnesota are included (Leverington and Teller, 2003; 

Jennings, 2007). 

 
Figure 1.3. Location of Lake Pepin, between Wisconsin and Minnesota, showing the 

three major contributing basins to the watershed and a satellite image of the lake. 
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     Of all the MRB tributaries, the greater Blue Earth River Basin (GBERB), comprised 

of the Blue Earth, Le Sueur, and Watonwan Rivers, contributes some of the highest 

concentrations of sediment, nitrogen, and phosphorus to the MRB and Lake Pepin 

watersheds continuing into the Mississippi River and Gulf of Mexico (Figure 1.2 and 

Figure 1.4). The Le Sueur River (LSR) is listed as impaired for turbidity, dissolved 

oxygen, e coli, and nutrient/eutrophication biological indicators and will be a focus 

within this study (Belmont et al., 2010; MPCA, 2015a; MPCA, 2016). Land in the LSR is 

primarily devoted to row crop agriculture, which takes up ~80-84% of the watershed 

(Gran et al., 2011). Given the land use and hydrologic tendencies of the LSR, and the fact 

that agricultural watersheds have been identified as regions in which a better 

understanding of sediment and nutrient loading needs to be developed (Gentry et al., 

2000; Borah et al., 2003; Birgand et al., 2007; Herzon and Helenius, 2008; Kröger et al., 

2008b; Smith, 2009), the LSR and its tributaries serve as an ideal study area to better 

understand these issues. A comprehensive analysis of agricultural drainages is imperative 

for creating better management strategies that reduce downstream sediment and nutrient 

loading. In addition, current drainage modification practices and best management 

practices in these watersheds need to be evaluated to determine their effectiveness. Best 

management practices refer to installed features that have been vetted as a means to 

reduce specific parameter (i.e. nitrogen, suspended solids, peak discharge) (Miller et al., 

2012). 
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Figure 1.4. Total suspended solids, total phosphorus, and nitrate-N loads for the Minnesota River Basin, from MRBDC (2018). 

The GBERB, and specifically the LSR, will be of primary focus in this study. 
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     County Ditch (CD) 57 is a 6.6 km drainage ditch flowing into the Cobb River, a 

tributary of the LSR (Figure 1.5). The Cobb River watershed is located in the 

southeastern extent of the physiographic region known as the prairie pothole region; 

which is characterized by fertile soils and abundant wetlands (Lenhart et al., 2012). 

Attempts to mitigate the influx of total suspended solids, nitrate-N, total phosphorus, and 

orthophosphates have led to the construction of weirs, a two-stage ditch, a surge pond, 

and a wetland basin within the CD 57 watershed in 2010-11. These structures are 

designed to reduce flow velocity to allow suspended solids to settle out and nutrients to 

be taken up by aquatic and riparian vegetation. 

     Water quality and flow monitoring stations were positioned upstream and downstream 

of each mitigation structure to assess their efficiency. This research seeks to better 

understand the effectiveness of best management practices at reducing sediment and 

nutrient loads and their impact on water quality within agricultural watersheds. This was 

accomplished by analyzing drainage tendencies, water quality, and rainfall totals and 

intensity throughout the year. Furthermore, results from CD 57 were compared to a 

control watershed, County Ditch 58, (hereafter referred to as Little Beauford Ditch), 

located in Beauford, MN. Little Beauford Ditch is a 7.3 km drainage ditch that also drains 

into the Cobb River and is ~4 km northeast and downstream of CD 57. Little Beauford 

Ditch has been intermittently monitored for almost twenty years and has not yet had any 

management practices installed within the ditch. Sediment and nutrient loads and 

discharge from 2016 were compared between the two watersheds to better understand the 

overall efficiency of management practices in CD 57 and to determine expected outputs 
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typical from headwater agricultural watersheds in the region. This research addresses the 

following questions: 

     Question 1. What are the characteristics of sediment and nutrient loads (total 

suspended solids, total phosphorus, orthophosphate, and nitrate+nitrite as N) and flow 

characteristics upstream and downstream of the structural practices (surge 

pond/wetland, two-stage ditch, rate control weir) during high flow events? How 

efficiently do the structures reduce loads across each event and in total over the 

monitoring seasons? How do results in the County Ditch 57 watershed impact the larger 

regional system? 

     Question 2. How do loads of total suspended solids, total phosphorus, nitrate+nitrite 

as N, monthly volumetric discharge, and peak discharge in County Ditch 57 compare to 

Little Beauford Ditch and previous studies in the region? How can result from these two 

modified agricultural watersheds inform on concerns downstream? 

 
Figure 1.5. Le Sueur River watershed with major rivers, the Maple, Cobb, Little Cobb, 

and Le Sueur shown. The County Ditch 57 and Little Beauford Ditch watersheds are also 

shown. 
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1.2 Geomorphic History of Southern Minnesota 

1.2.1 Glacial History of the Minnesota River Valley 

     To best understand modern drainage issues in southern Minnesota, one must first 

understand the evolution of the natural landscape before anthropogenic activities 

drastically altered land use and hydrology in this region (Gran et al., 2009; Belmont et al., 

2010; Belmont, 2011; Belmont et al., 2011; Gran et al., 2013; Schottler et al., 2014; Kelly 

et al., 2017). The Quaternary landscape of southern Minnesota is characterized by 

landscape response to the advance and retreat of the Des Moines Lobe of the Laurentide 

Ice Sheet during Late Wisconsinan glaciation (Patterson and Wright Jr., 1998; Gran et al., 

2013). In the upper Midwestern United States, the Des Moines Lobe of the Laurentide Ice 

Sheet reached its maximum extent between ~17.3-16.25 ka (Clayton and Moran, 1982; 

Bettis III et al., 1996; Lowell et al., 1999). However, starting around 18 ka glaciers were 

already retreating back across Minnesota (Lepper et al., 2007). Radiocarbon ages from 

samples collected in the Big Stone Moraine in west-central Minnesota require that glacial 

activity at the moraine would have ended by ~13.95 ka (Lepper et al., 2007) (Figure 1.6). 

An aggradational period followed after glacial recession, where 50-60 meters of 

interbedded glacial tills and glaciofluvial sand and gravel were deposited around present 

day Mankato, MN (Belmont et al., 2011). The packages of glacial till are described as 

semiconsolidated to overconsolidated, erodible, and fine to coarse-grained (Belmont et 

al., 2011; Schottler, 2012) (Figure 1.6). South of Mankato, MN, 1-3 meters of 

glaciolacustrine silts and clays overlie the till (Jennings, 2007). This package was 

deposited by proglacial Lake Minnesota, a collective series of proglacial lakes formed 
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during the retreat of the Des Moines Lobe (Figure 1.7) (Matsch and Ojakangas, 1982). 

Two radiocarbon ages from wood found at the contact of lake sediment and glacial till in 

the glacial Lake Minnesota basin indicate that the lake is not older than 14.46-13.88 ka 

and that it still existed in some basins around 12.04-11.27 ka (Jennings et al., 2012). 

Modern agricultural tillage practices have disturbed much of the upper few meters of the 

soil, making the collection of other samples even more problematic. 

     The morphology of the modern Minnesota River valley preserves a record of 65 m of 

landscape incision (Johnson et al., 1998). This incision primarily resulted from large 

pulses of glacial meltwater originating from moraine dam failure or moraine dam 

overflow of glacial Lake Agassiz (GLA) (Upham, 1895a; Upham, 1895b; Fisher, 2003; 

Fisher, 2004; Breckenridge, 2013; Faulkner et al., 2016). Glacial Lake Agassiz occupied 

present day Minnesota and North Dakota, USA, and parts of the Canadian provinces of 

Saskatchewan, Manitoba, Ontario, Quebec, and Nunavut, occupying ~1,500,000 km2  
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Figure 1.6. Maximum extent of the Laurentide Ice Sheet during Late Wisconsinan 

Glaciation (Garrity and Soller, 2009). Map adapted from Faulkner et al. (2016). Data for 

extent of glacial Lake Agassiz adapted from Leverington and Teller (2003). 
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from 13.6–8.5 ka (Matsch and Wright Jr., 1967; Fenton et al., 1983; Matsch, 1983; Teller 

and Leverington, 2004) (Figure 1.2 and Figure 1.6). Initial incision of the Upper 

Mississippi River, supported by radiocarbon and OSL dates, occurred ~18-16 ka, however 

the causal mechanism for this incision is unclear (Knox, 1996; Knox, 2007; Loope et al., 

2012; Faulkner et al., 2016). The next recorded incision event most likely originated as a 

large pulse of glacial meltwater when the southern outlet of GLA “catastrophically” 

drained around 13.4 ka, developing glacial River Warren (the modern Minnesota River 

valley) as the spillway for future meltwater pulses through the southern outlet (Fisher, 

2003; Fisher, 2004). As a result, the modern Minnesota River valley is a 65-70 m deep 

trench near Mankato, MN (Blumentritt et al., 2009; Gran et al., 2009; Belmont et al., 

2011; Gran et al., 2013).   

     Through time, the primary outlet of GLA changed and occupied various spillways 

based upon the advance/retreat of lobes of the LIS and isostatic adjustment as the weight 

of the ice sheet was removed from portions of the landscape (Teller, 2001; Fisher, 2003; 

Fisher, 2004). A final episode of flow through the southern outlet occurred ~10.7-10.3 ka, 

based on radiocarbon ages from material below valley bottom alluvial fan (Hudak and 

Hajic, 2002) and in Big Stone Lake in the Big Stone Moraine, however it is believed this 

episode did not produce discernible incision in the MRB (Aharon, 2003; Fisher, 2003). 

Regionally, other glacial meltwater outflows occurred while GLA existed. Examples 

include glacial Lake Wrenshall, present ~11.9 ka, and glacial Lake Duluth, present ~10.8 
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Figure 1.7. Bluff featuring exposed glacial tills and glaciofluvial sediment packages near 

Mankato, MN (photo from Kelly and Belmont, 2018). 

ka, though their overall influence on the incision history of the UMR and, more by 

extension, the MRB is virtually unknown (Breckenridge, 2013; Faulkner et al., 2016). The 

result of this complex history of episodic and significant incision of the major drainages in 

the region, especially into underlying highly erodible glacial, glaciofluvial and 

glaciolacustrine sediments, leaves the UMR and MRB systems as inherently unstable and 

highly susceptible to erosion and sediment loading (Gran et al., 2009; Belmont, 2011; 

Belmont et al., 2011; Gran et al., 2013; Schottler et al., 2014). Indeed, the postglacial 

landscape in the UMR, including the MRB, can generally be characterized by accelerated 

erosion as tributary streams exist in a state of disequilibrium still responding to incision of 

the major drainages like the Mississippi and Minnesota River (Mason and Knox, 1997).  

     The UMR has shown to be particularly susceptible to erosion during changes in flow 

regimes (Knox, 1985; Knox, 2000). Throughout the Holocene, modal floods varied 
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greatly, coinciding with shifting climates (Knox, 1985; Knox, 2000). In a landscape that is 

dominantly underlain by erodible sediments, like the UMR, these climatic shifts from 

warm/dry to cool/wet can destabilize fluvial system and lead to accelerated erosion 

throughout the landscape. The highly sensitive nature of paleofloods to climate change is 

associated not only with large climatic shifts, but also with modest climatic shifts (Knox, 

2000). The ability to understand the climatic interactions with this geomorphically 

unstable landscape is particularly pertinent now, given a regional increase in precipitation 

intensity and total yearly precipitation in southern Minnesota (Novotny and Stefan, 2007; 

Kelly et al., 2017). 

1.2.2 Sediment Budgets and Loading 

     Measuring sediment, phosphorus, and nitrogen loads and establishing sediment and 

nutrient budgets throughout the UMR is critical to understand how best to manage 

environmental issues plaguing the watershed (Beach, 1994; Payne, 1994; Kelley and 

Nater, 2000a; Thoma et al., 2005; Engstrom, 2009; Mulla and Sekely, 2009; Belmont et 

al., 2010; Folle, 2010; Hansen et al., 2010; Schottler et al., 2010; Gran et al., 2011; 

Maalim and Melesse, 2013; Lauer et al., 2017). Much of the UMR is impaired by high 

suspended sediment loads and elevated trophic states from nutrient loading (Payne, 1994; 

Magdalene, 2004; Petrolia and Gowda, 2006; James and Larson, 2008; Mulla and Sekely, 

2009; Musser et al., 2009; Wilcock, 2009; Belmont et al., 2011; Gran et al., 2011; 

Schottler et al., 2014; Belmont and Foufoula-Georgiou, 2017; Yuan et al., 2017). 

     One local example of this is Lake Pepin (Figure 1.3), as Lake Pepin serves as a 

regional sediment and nutrient sink within the UMR valley. The current understanding of 
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nutrient and sediment loading in Lake Pepin has focused on coring into the sediments 

underlying the lake to best understand pre- and post-settlement rates of accumulation 

(Engstrom et al., 2009; Blumentritt et al., 2013). Just after Euro-American settlement (ca. 

1860) sediment accumulation rates in the lake were ~152,000 Mg/year, while total 

phosphorus rates were ~111 Mg/year (Engstrom et al., 2009). Modern sediment 

accumulation rates (from 1996-2008) range from ~772,000 to 858,000 Mg/year, while 

total phosphorus accumulation is ~845-920 Mg/year (Engstrom et al., 2009; Blumentritt et 

al., 2013) (Figure 1.8). This dramatic change correlates to regional increases in modified  

 

Figure 1.8. Graph denoting sediment and total phosphorus accumulation in Lake Pepin 

from 1500-2010 (Blumentritt et al., 2013). While changes to wastewater treatment (ca 

1970s) helped to reduce phosphorus levels, they remain high from inputs by agricultural 

watersheds. 
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agricultural drainages, annual discharge, land use conversion to agriculture, and 

precipitation totals and intensities (Schottler et al., 2014; Kelly et al., 2017). 

     In the last 50 years, the UMR watershed that contributes to Lake Pepin has seen 

significant decreases in phosphorus loading from wastewater treatment facilities and urban 

areas (Kelley and Nater, 2000a; Kelley et al., 2006; James and Larson, 2008; Engstrom et 

al., 2009; Mulla and Sekely, 2009; Belmont et al., 2011; Blumentritt et al., 2013). 

However, there has not been a significant decrease in total phosphorus and agricultural 

output from livestock and commercial fertilizer applications have increased (Mulla and 

Sekely, 2009; Blumentritt et al., 2013). In addition, the MRB contributes disproportionate 

sediment and nutrient loads to the Lake Pepin watershed, with ~85% of sediment 

accumulation and 45% of the total phosphorus accumulation originating from it (Mulla 

and Sekely, 2009). Thus, the MRB has been the primary focus of research and mitigation 

efforts to address environmental impairments (Payne, 1994; Magdalene, 2004; Petrolia 

and Gowda, 2006; James and Larson, 2008; Mulla and Sekely, 2009; Musser et al., 2009; 

Wilcock, 2009; Gran et al., 2011; Schottler et al., 2014; Belmont and Foufoula-Georgiou, 

2017; Yuan et al., 2017). 

     Sediment and nutrient accumulation rates can be difficult to reconstruct, however the 

use of geochemical tracers, or “fingerprinting,” allows for constrained estimates to be 

developed (Schottler et al., 2010; Willenbring and von Blanckenburg, 2010; Belmont et 

al., 2011; Gran et al., 2011). Geochemical fingerprinting in the MRB has used a 

combination of the radioisotopes Cesium-137 (137Cs), Lead-210 (210Pb), and meteoric 

Beryllium-10 (10Be) to differentiate between various point sources for sediment (Schottler 
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et al., 2010; Belmont et al., 2011; Gran et al., 2011). The radioisotopes 10Be and 210Pb are 

perpetually produced in the atmosphere and are delivered to the surface by dry 

(particulate) deposition or during precipitation events (Schottler et al., 2010; Belmont et 

al., 2011; Gran et al., 2011). However, 210Pb concentrations have been enriched by 

humans through industrial activities since the mid-1800s (Church, 2010). In comparison, 

137Cs is also deposited via atmospheric deposition, similar to 10Be and 210Pb, but the 

primary source for 137Cs stem from above ground nuclear testing from between ~1955-

1963 (Robbins et al., 2000; Schottler et al., 2010). 

     Depths of penetration in natural systems vary between isotopes, however they 

primarily occupy the upper portions of the soil column (Willenbring and von 

Blanckenburg, 2010; Belmont, 2012). When determining source apportionment, 

concentrations for these isotopes are prominent in upland soils where low gradient 

surfaces retain more deposition (Walling and Woodward, 1992; Schottler et al., 2010; 

Belmont et al., 2011; Gran et al., 2011). The isotopes are generally lacking, however, in 

bluffs, banks, and ravines (near channel sources), where deeper sediment packages are 

exposed at a more vertical slope (Schottler et al., 2010; Belmont et al., 2011). The half-

lives vary greatly between the three isotopes, at 1.4 million years for 10Be, 30 years for 

137Cs, and 22.3 years for 210Pb. The differences between the 137Cs and 210Pb isotopes help 

constrain minimum and maximum ages of sediment deposition (Schottler et al., 2010; 

Belmont et al., 2011). When developing sediment budgets and source apportionment, 

sediments derived from upland sources should have much higher concentration of isotopes 

than near channel sources (Schottler et al., 2010). By comparing minimum and maximum 
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concentrations to overall deposition, for example throughout a sediment core, source 

apportionment is calculated (Schottler et al., 2010). 

     This method was applied in the LSR watershed, which exists in a state of 

disequilibrium following incision by the glacial River Warren (Schottler et al., 2010; 

Belmont et al., 2011; Gran et al., 2011). Holocene fine sediment budgets for the LSR were 

primarily supplied by bluff, bank, and ravine erosion and totaled ~55,000 Mg/yr (Belmont 

et al., 2011). This was almost entirely from the active zone of incision within the 

watershed, where 60,000 Mg/yr were eroded, but 5,000 Mg/yr were deposited in the 

floodplain (Belmont, 2011; Gran et al., 2011). Contributions were negligible in uplands 

below the knickzone and all areas upstream of the knickzone. Comparatively, between 

2000-2010, fine sediment budgets for the LSR increased to 225,000 Mg/yr, where 

sediment budgets below the knickzone were ~170,000 Mg/yr, with the largest source 

being bluffs (107,000 Mg/yr) and uplands (23,000 Mg/yr) (Belmont et al., 2011). 

Upstream of the knickzone the opposite was true, where uplands contributed the largest 

amount of fine sediment (45,000 Mg/yr) and bluffs contributed the second highest (26,000 

Mg/yr) (Belmont et al., 2011). As with Lake Pepin, sediment budgets for the LSR 

correlate to increases in modified agricultural drainages, annual discharge, land use 

conversion to agriculture, and precipitation totals and intensities (Schottler et al., 2014; 

Kelly et al., 2017) (Figure 1.9 and Figure 1.10). 

     These increased budgets can be indicative of channel widening, increased nutrient 

concentrations through entrainment of floodplain sediments, and increased discharge from 

subsurface tiling (Belmont et al., 2011; Gran et al., 2011; Schottler et al., 2014). Aside 
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from geochemical fingerprinting, yearly sediment and nutrient budgets can be developed 

through computer models, like the Soil and Water Assessment Tool (SWAT) in ArcGIS 

(Folle, 2010) or by frequent water quality sampling where concentrations are coupled with 

stream discharge to develop loads (Kalkhoff et al., 2016). The SWAT model includes data 

for hydrology, weather, erosion, soil temperature, crop growth, nutrients, pesticides, and 

agricultural management practices and generates predicted changes in sediment and 

nutrient loads with changing conditions within the watershed (Folle, 2010). Models were 

calibrated from 2000-2006 in Little Beauford Ditch and estimated annual loads of 1,060 

kg/ha for total suspended solids, 1.0 kg/ha of total phosphorus, and 18.0 kg/ha of nitrate-N 

 
Figure 1.9. Graph showing estimated sedimentation rates from the Minnesota River (dark 

green) and the combined sedimentation of the Mississippi and St. Croix Rivers (tan) 

(from Engstrom et al., 2009; modified by Belmont and Foufoula-Georgiou, 2017). 
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Figure 1.10. Sediment budgets for fine-grained (silt/clay) material for the Le Sueur River. 

Values given in 103 Mg/yr (from Belmont et al., 2011). While Holocene sediment 

budgets were driven bluff and bank erosion, modern (2000-2010) sediment budgets are 

driven by bluff erosion below the knickzone and upland erosion above the knickzone. 

were produced (Folle, 2010). Finally, recent findings in the Little Cobb River watershed, a 

tributary of the Cobb River and Le Sueur Rivers, used in situ monitoring to calculate 

annual exports of 21.3 kg/ha of nitrate-N and 0.51 kg/ha of total phosphorus (Kalkhoff et 

al., 2016). 

     A review of yields across the MARB and its six major subbasins help put these 

numbers in better perspective (Turner and Rabalais, 2004). Annual yields delivered to the 

Gulf of Mexico ranged between ~340-654 kg/ha for suspended solids, ~0.32-0.45 kg/ha 

for total phosphorus, and 2.44-3.02 kg/ha for nitrate-N (Turner and Rabalais, 2004). 

Estimates from the Little Cobb River (Kalkhoff et al., 2016), south fork of the Iowa River 

(Kalkhoff et al., 2016), and LSR (Folle, 2010) at least double yields averaged across the 

entire MARB. These studies support the need for further research on loading within 
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agricultural watersheds in the MRB and are particularly useful in the context of this 

research project. CD 57 and Little Beauford Ditch, subbasins of the LSR, are within close 

proximity (~4 km) to the Little Cobb River gauging station used in the Kalkhoff et al. 

(2016) and Folle (2010) studies and share many of the same qualities (Figure 1.11). 

Similar parameters are being examined in CD 57 and Little Beauford Ditch as were 

examined in Kalkhoff et al. (2016) and (Folle, 2010) (total suspended solids, nitrate-N, 

total phosphorus, and average discharge). 
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Figure 1.11. Location of the monitoring station from Kalkhoff et al. (2016), in relation to 

monitoring stations positioned at the mouths of County Ditch 57 and Little Beauford 

Ditch. 
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1.2.3 Post-Settlement Climate Shifts 

     Increases in peak discharge and total discharge have been cited as significant drivers of 

landscape changes in southern Minnesota, since the mid-1900s (Knox, 2000; Zhang and 

Schilling, 2006; Novotny and Stefan, 2007; Nangia et al., 2010; Schottler et al., 2014; 

Gupta et al., 2015; Belmont et al., 2016; Kelly et al., 2017). Increases in total discharge 

have been observed since the 1940s through the present (Zhang and Schilling, 2006; 

Novotny and Stefan, 2007; Kelly et al., 2017) and are being attributed to increased 

precipitation and storm intensity and/or to large scale conversion of land cover to row crop 

agriculture, which exposes bare soil for much of the year and leads to increases in surface 

runoff. Intense debate currently exists regarding the driving factor of this increase in 

annual discharge (Gupta et al., 2015; Belmont et al., 2016; Dingbao, 2016; Foufoula-

Georgiou et al., 2016; Gupta et al., 2016a; Gupta et al., 2016b; Gupta et al., 2016c; Gupta 

et al., 2016d; Gupta et al., 2016e; Schilling, 2016; Schottler et al., 2016). Some argue that 

it is primarily driven by a changing climate and that the effect of land cover conversion is 

negligible (Gupta et al., 2015; Gupta et al., 2016a; Gupta et al., 2016b; Gupta et al., 

2016c; Gupta et al., 2016d; Gupta et al., 2016e). Others suggest that a combined changing 

climate, large reduction in native vegetation in favor or row crop agriculture, and a 

significant increase in soybean cultivation all contribute to this documented increase 

(Novotny and Stefan, 2007; Schottler et al., 2014; Belmont et al., 2016; Dingbao, 2016; 

Foufoula-Georgiou et al., 2016; Schilling, 2016; Schottler et al., 2016; Kelly et al., 2017). 

Differences aside, the general consensus agrees that precipitation and discharge are both 

increasing across the region. 
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1.3 Global and National Trends 

1.3.1 Altered Hydrologic Regimes 

     The artificial enhancement of drainage systems through channelization and the 

development of drainage ditches has been under continued examination to determine its 

environmental impacts (Pavelis, 1987; Skaggs et al., 1994; Correll, 1998; Birgand et al., 

2007; Needelman et al., 2007; Herzon and Helenius, 2008; Blann et al., 2009). Drainage 

modification is not only isolated to the United States, as at least 34% of northwestern 

European farmland, 50% of Scottish farmland, 4% of southeastern Asian farmland, and 

2% of Iranian farmland are also artificially drained (Abbot and Leeds-Harrison, 1998; 

Sohrabi et al., 1998; Blann et al., 2009). Furthermore, in poorly drained regions, it has 

become common practice to install subsurface tile drainage to expand agricultural fields 

and increase yields (Schottler, 2012; Maalim and Melesse, 2013). Tiling is most 

frequently used to drain water from natural depressions, increase infiltration rates, lower 

the water table, and create a more hospitable growing climate for crops (Blann et al., 

2009; Schottler et al., 2014). The tile, usually a permeable PVC or ceramic pipe of 

varying diameter, is buried a meter or two below the surface and plow line, quickly 

intercepting water and flushing it into a nearby ditch or body of water (Maalim and 

Melesse, 2013). However, these practices lead to flashier hydrologic systems, increased 

peak discharge, increased erosivity in larger streams/rivers, and an increase in severe 

flooding events (Figure 1.12) (EEA, 1996; Knox, 2001; Blann et al., 2009; Schottler et 

al., 2014). These flashier systems are capable of entraining larger quantities of sediment 
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and nutrients and transporting them downstream (Belmont et al., 2011; Schottler et al., 

2014; Kelly et al., 2017). 

     Estimates of land drained by surface and subsurface drainage are poorly constrained 

(Sugg, 2007; Naz et al., 2009), however, by 1987 more than 17% of U.S. cropland had 

been altered by surface or subsurface drainage (Pavelis, 1987; Blann et al., 2009). In the 

largest watershed in the United States, the MARB, the amount of land artificially drained 

has increased from ~24,000 to ~280,000 km2 from 1901-2001 (Mitsch et al., 2001). 

Similarly, the MRB has seen an increase from ~19% watershed area drained by 

 

Figure 1.12. Graph showing difference in expected hydrographs between natural 

drainages and modified agricultural drainages. 
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tile in 1940 to ~35% in 2012, while the watershed area drained by ditches increased from 

~7% in 1940 to ~10% in 2012 (Kelly et al., 2017). In south-central Minnesota, tile 

drainage networks are particularly dense within the GBERB and LSR watershed. In 

nineteen watersheds within the LSR, around 71% of the cultivated land is classified as 

“poorly drained” and has had an estimated 141 meters per hectare of tile drainage 

installed (Schottler, 2012).  

1.3.2 Changes to Land Use and Land Cover 

     As the population of the world nears 7.5 billion people (Census.gov, 2018), there is 

continued need for growth in agricultural production rates. Approximately 12% of the 

planet’s land surface is used for agricultural cultivation (Leff et al., 2004). In North 

America more than 98% of the native prairie and vast forested regions have been 

replaced with cropland (Blann et al., 2009). Corn and soybeans, for example, account for 

28.0% and 23.9% of cropland use in the contiguous United States (Leff et al., 2004; 

Blann et al., 2009) (Figure 1.13). In the MARB, land use and land cover changes within 

the basin have resulted in 8.8% of the basin used for corn growth (~284,643 km2) and 

6.1% for soybeans (~197,309 km2) in 1992 (Donner et al., 2004). In the MRB, ~78% of 

the landscape (34,236 km2) is used for agricultural purposes (Musser et al., 2009). 

     With such a large conversion of land use and land cover to conventional row crop 

agriculture, the amount of fertilizer used on fields can be problematic. Over the last 55 

years there has been a 6.78-fold increase in nitrogen fertilizer application, 3.48-fold 

increase in phosphorus fertilizer application, 1.68-fold increase in irrigated cropland, and 

1.1-fold increase in cultivated land, globally (Tilman, 1999). In the MARB, ~70% of the 



21 

 

nitrogen and phosphorus delivered to the Gulf of Mexico originated from agricultural 

sources (Donner et al., 2004; Alexander et al., 2008). The other 30% is primarily 

attributed to urban sources (such as wastewater treatment facilities, septic systems, and 

deposition from power plant and vehicular emissions) and atmospheric deposition (falling 

to earth as rain, snow, particles, or vapors) (Lawrence et al., 2000; Donner et al., 2004; 

Alexander et al., 2008; Engstrom et al., 2009; Mulla and Sekely, 2009). Overall, 52% of 

the nitrogen load and 25% of the phosphorus load deposited in the Gulf of Mexico are 

attributed to corn and soybean cultivation (Figure 1.14 and Figure 1.15). The quantity of 

nitrogen per unit area in the MARB has tripled to 4.97 kg/ha over the last forty years 

 

Figure 1.13. Maize (top) and soybean (bottom) coverage throughout the world (Leff et 

al., 2004). 
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(Goolsby et al., 2000; Goolsby and Battaglin, 2001; Goolsby et al., 2001). Out of the 4.97 

kg/ha, 61% is in the form of nitrate, 37% is in the form of organic nitrogen, and 2% is in 

the form of ammonium. Such increases result in a variety of environmental and economic 

implications within the MARB. Two of the most well publicized impacts of excessive 

nutrient loading are eutrophication and hypoxia, which are the result of accelerated 

aquatic plant production resulting in low oxygen conditions (Diaz, 2001).  

  

 

Figure 1.14. Pie charts showing the approximate breakdown of the contributing sources 

of phosphorus (left) and nitrogen (right) loading to the Gulf of Mexico (from USGS, 

2014). These charts were adapted from data by Alexander et al. (2008). 
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Figure 1.15. Percentage of nutrient load delivered by streams to the Gulf of Mexico from 

incremental drainages of the MARB (from Alexander et al., 2008). 

 

     Land use tendencies in the MRB tend to reflect those in the MARB. The basin, which 

was originally dominated by tall-grass prairies, wetlands, and deciduous hardwood 

forests, has undergone an 80-90% reduction in native vegetation (Mulla and Sekely, 

2009; Musser et al., 2009; Belmont et al., 2011). Currently, 78-80% of the watershed is 

used for row-crop agriculture (Mulla and Sekely, 2009; Musser et al., 2009; Belmont et 

al., 2011). In 2017, 78.5% of the LSR was used for corn and soybean cultivation (USDA, 

2018). While basin-wide fertilizer estimates for the MRB or many of its tributaries are 

not available, estimates for some subbasins do exist. Farmers in the Little Cobb River 

watershed, a tributary of the Cobb River and part of the LSR watershed, applied ~69 

kg/ha of nitrogen per year and ~12 kg/ha of phosphorus per year between 1987-2006 

(Kalkhoff et al., 2016). Some farmers within the CD 57 watershed used around ~146 

kg/ha of nitrogen fertilizer in 2016-17 growing season (Duncanson, personal 

communication, 2017). 
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1.4 Effects of Sediment and Nutrient Loading 

     Many of the waterbodies within the United States are already considered impaired 

under Section 303(d) of the Clean Water Act of 1972 for excessive sediment and nutrient 

loads (Clean Water Act, 2015). Section 303(d) requires individual states to maintain and 

update a list of impaired waters that require a Total Maximum Daily Load (TMDL) study 

(Anderson et al., 2017). This list is updated every two years and is presented to the 

Environmental Protection Agency for approval. In Minnesota, the proposed 2018 draft of 

the TMDL/impaired waters list includes 2,727 accounts of waters requiring a TMDL 

study and 5,085 accounts of impaired waters (which include those in the TMDL list). The 

MRB contains the highest number of impaired waters (1,397 out of 5,085). In all basins, 

nutrient/eutrophication is the second highest impairment listing (694 out of 5,085) and 

total suspended solids and turbidity are the sixth highest (371 out of 5,085).  

1.4.1 Eutrophication and Hypoxia 

     Eutrophication and hypoxia are states within waterbodies brought about by 

accelerated primary production of aquatic flora (Diaz, 2001). Eutrophication is a natural 

process in which a waterbody moves towards an accelerated trophic state with enhanced 

plant production capabilities (Anderson et al., 2002; Dodds, 2006a; Dodds, 2006b; 

Dodds, 2007). This is often seen as an increase in the growth rates of algae, or as algal 

blooms (Smith, 2003). Eutrophication is commonly tied to increases in nitrogen and 

phosphorus loading, attributable to contemporary agricultural practices (Anderson et al., 

2002; Smith, 2003; Dodds, 2006a; Dodds, 2006b; Dodds, 2007; Kröger and Moore, 

2011). Eutrophic states are characterized by poor water quality, toxic algal blooms, low 
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dissolved oxygen concentrations, and decreased ecosystem health (Rabalais et al., 2007). 

Toxic algal blooms (known as cyanobacteria or blue-green algae) are capable of killing 

wildlife and poisoning humans through seafood ingestion or prolonged exposure at very 

low concentrations (Repavich et al., 1990; Anderson et al., 2002). Eutrophic states are 

often found in agricultural drainage ditches, given high, readily available concentrations 

of nitrogen and phosphorus throughout the system, but can be found in any other body of 

water with appropriate conditions (Figure 1.16) (Janse and Van Puijenbroek, 1998; Blann 

et al., 2009). 

  

Figure 1.16. Eutrophic conditions in surge pond in County Ditch 57, supplied with 

nutrients by surrounding fields. In lower flow, as seen in the picture, higher residence 

times are able to remove more nutrients, but this can result in increased plant 

productivity. 
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     Hypoxia is a state within a waterbody where dissolved oxygen concentrations are 

below 2 mg/L (Dodds, 2006b; Petrolia and Gowda, 2006). Hypoxic conditions are the 

result of stratification within a water column because of differing densities of water (such 

as freshwater over saltwater) or differing temperatures of water, and phytoplankton 

decomposition (Rabalais et al., 2002). As algal blooms resulting from eutrophication 

begin to die off, they sink to the bottom of the water column. Once at the bottom, they are 

decomposed by the microbial community, a process which consumes dissolved oxygen 

faster than it can be replaced (Dodds, 2006b). The decreased dissolved oxygen 

concentrations are problematic for benthic organisms that are unable to migrate away 

from the hypoxic region, such as shrimp, crabs, and bottom dwelling fish, eventually 

leading to suffocation (Petrolia and Gowda, 2006). Hypoxia does exhibit seasonal 

characteristics and is most severe from June through August (in the northern 

hemisphere), following the inundation of nutrient-rich waters from the spring thaw. The 

Gulf of Mexico and Chesapeake Bay are two of the more famous regions in the 

contiguous United States that struggle with hypoxic conditions (Figure 1.17) (Mitsch et 

al., 2001a; Donner et al., 2004; Alexander et al., 2008). As with eutrophication, nutrient-

rich waters originating in agricultural regions are the main contributor to hypoxic 

conditions as they allow eutrophic states to develop resulting in algal growth and 

subsequent decay (Goolsby and Battaglin, 2001; Mitsch et al., 2001a; Rabalais et al., 

2002; Donner et al., 2004; Dodds, 2006b; Rabalais et al., 2007; Alexander et al., 2008; 

Porter et al., 2015). Such conditions reinforce the need to better understand agricultural 

field and tile drainage outputs on a more local scale (Petrolia and Gowda, 2006). 
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     Lake Pepin experiences many of the issues associated with excessive sediment and 

nutrient loading and serves as a local example of these trends in the upper Midwest. Lake 

Pepin was placed on the Minnesota 303(d) impaired waters list in 2002 for “nutrient 

impairment” (Heiskary and Wasley, 2011). The Lake Pepin watershed is comprised of 

the Mississippi River, Minnesota River, and St. Croix River (Figure 1.3). Nutrient and 

sediment loads from these rivers are not equally proportional, with 75-90% of the 

sediment load arriving at Lake Pepin derived from the MRB (Kelley and Nater, 2000b; 

Engstrom et al., 2009; Mulla and Sekely, 2009; Belmont et al., 2011; Blumentritt et al., 

2013). As mentioned previously, sediment and phosphorus accumulation in the lake have 

greatly increased (Engstrom et al., 2009; Mulla and Sekely, 2009; Belmont et al., 2011; 

Blumentritt et al., 2013). At the current rate of sedimentation the lake would fill in after  

 

 

Figure 1.17. Extent of the hypoxic “Dead Zone” in the Gulf of Mexico at the mouth of 

the Mississippi-Atchafalaya River basin. The hypoxic zone reached a maximum extent of 

22,730 km2, the largest ever recorded. (NOAA, 2017). 



28 

 

approximately 340 years (Engstrom et al., 2009). In comparison, naturally reconstructed 

presettlement rates indicate that it should take closer to 4,000 years to fill the lake  

(Engstrom et al., 2009). Lake Pepin is also experiencing nearly five times the natural rate 

of annual phosphorus accumulation (Blumentritt et al., 2009; Blumentritt et al., 2013). 

From 1977-1996, approximately 60% of total phosphorus supplied to Lake Pepin 

originated in the MRB (Mulla and Sekely, 2009). The nutrient load to Lake Pepin has 

resulted in eutrophication, cyanobacterial blooms, a reduction in recreational visitors, and 

an update to eutrophication measuring criteria within the state of Minnesota (James et al., 

1995; Lung and Larson, 1995; Kelley and Nater, 2000a; James and Larson, 2008; 

Triplett, 2008; Engstrom et al., 2009; Lafrancois et al., 2009; Heiskary and Wasley, 2011; 

Blumentritt et al., 2013).  

1.4.2 Total Suspended Solids and Turbidity 

     Total suspended solids are a measure of the suspended organic and inorganic material 

(silts, clays, plankton, algae, organic debris, and other particulate matter) that have been 

entrained through turbulence and are generally greater than 2 microns in diameter (Bilotta 

and Brazier, 2008). Turbidity is a measure of relative clarity within a liquid (usually 

referred to as cloudiness) and is measured in nephelometric turbidity units (NTU) (Figure 

1.18) (Perlman, 2016b). Suspended solids can originate from various sources, including 

surface runoff, bank slumping, channel scouring, ravine erosion, and organic materials 

(Gran et al., 2011). Agricultural sources, characterized by exposed soils, tillage practices, 

and tile drainage, are a primary contributor of suspended solids to streams in the United 

States (Lee et al., 1985). Total suspended solid concentrations vary seasonally in natural 
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systems. In agricultural systems, excessive loads are common in the early spring when 

crops are being planted and in late fall after harvest because fields are often bare at these 

times (Danz et al., 2013). It is estimated that the largest 10% of loading events in a year 

can account for 73-97% of the annual total suspended solids load, more than half of 

which can occur in a single event (Danz et al., 2013). In Minnesota, the water quality 

standard for total suspended solids in Class 2 waters (waters used for aquatic life or 

recreation) is 65 mg/L and can range between 10-25 NTUs for turbidity, depending on 

the specific use of the water (Minnesota Office of the Revisor of Statutes 2016). 

     Total suspended solids and turbidity have widespread effects on ecosystem health, 

functionality, and water quality (Table 1.1). Dissolved oxygen is largely affected by 

increased suspended solids loads and higher turbidity (Bilotta and Brazier, 2008).  

 

Figure 1.18. Example of water samples with varying degrees of total suspended solids. In 

this case, the darker bottles towards the left side of the picture have suspended solids 

concentrations than the bottles towards the right side of the picture. The darker colored 

bottles are immediately clustered around the peak of a hydrograph encompassing a late 

May runoff event. 
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Sediment rich waters retain more heat because of darker colors and more particulate 

matter absorbing heat, allowing for warmer waters and decreased dissolved oxygen 

(Dodds, 2007; Garvey et al., 2007; Bilotta and Brazier, 2008; Blann et al., 2009; EPA, 

2012). Fish and other invertebrates are at risk where high concentrations of total 

suspended solids and turbidity exist. Such conditions can clog gills, smother eggs, reduce 

success rates when feeding, decrease growth rates, decrease activity within certain fish 

species, and alter the food availability and habitat structure for invertebrates (Gardner, 

1981; Kramer, 1987; Murphy, 2007; Verdonschot et al., 2011; EPA, 2012). Plants can 

also suffer when suspended solids/turbidity rates are high through reduction of sunlight 

reaching aquatic plant life and prohibiting photosynthesis (Figueroa-Nieves et al., 2006; 

Chesapeake Bay Program, 2012). 

     Economically, higher suspended solids can also reduce revenue from tourism and 

recreational activities because many see the water as aesthetically unappealing (Perlman, 

2016b). They are also indicative of severe erosion upstream, which can lead to higher 

costs for water treatment, reduce the navigability of waterways, and reduce the amount of 

time a dam or reservoir can be utilized before maintenance is required. (Ryan, 1991; 

Butcher et al., 1993; Verstraeten and Poesen, 2000; Wood, 2014; Kentucky Water Watch, 

2016). Finally, dredging operations may be required to maintain boating and barge 

operations and may require considerable time, manpower, and resources (Jennings, 2016; 

Nigbor, 2016; Rogers, 2017). 
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Table 1.1. Ways in which total suspended solids and turbidity affect humans, the 

economy, and the environment. 

Maximum Levels Impact Effect Author 

Suggested ~0.2-5 

NTU 

(Osmond et al., 

1995; EPA, 2009; 

WHO, n.d.). 

 

~6.36 NTU for 

Aggregate 

Ecosystem VI for 

Rivers and Streams 

(EPA, 2016) 

 

< 10 NTU in 

streams, lakes, or 

reservoirs 

designated as trout 

waters and < 25 

NTU for those not 

designated as trout 

waters 

(North Carolina 

Code, 2002; 

Minnesota Office 

of the Revisor of 

Statutes, 2016) 

 

< 50 NTU in 

streams not 

designated as trout 

waters 

(North Carolina 

Code, 2002) 

Human 

Aesthetically unappealing Perlman (2016b) 

Can provide environment for 

various levels of protozoa, 

bacteria, and viruses. 

Osmond et al. 

(1995) 

Can provide environment for 

various series of waterborne 

diseases. 

Arizona 

Department of 

Health Services 

(2014) 

Economy 

Reduce navigability for ships 

and boats. 
Wood (2014) 

Higher costs of water 

treatment. 
Ryan (1991) 

Shorter lifespan for dams and 

reservoirs 

Butcher et al. 

(1993); 

Verstraeten and 

Poesen (2000) 

Environment 

Increase in water temperatures 

and decrease in dissolved 

oxygen 

EPA (2012) 

Decreased photosynthetic 

processes and plant 

productivity 

Chesapeake Bay 

Program (2012) 

Indication of increased erosion 

of stream banks 

Kentucky Water 

Watch (2016) 

Dissolved metals and 

pathogens can attach to 

suspended particulates 

decreasing water quality 

Perlman (2016b) 

Can clog fish gills, suffocate 

benthic organisms and eggs, 

and affect growth rates 

EPA (2012); 

MDEQ (n.d.) 

Can obscure vision of aquatic 

life, reducing their ability to 

locate food 

Murphy (2007) 
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1.4.3 Nutrients – Nitrogen and Phosphorous 

     Nitrogen and phosphorous are beneficial to plants, but differ in how they are 

transported, utilized by plants, and how they affect their surroundings. Nitrogen and 

phosphorus increase plant development and productivity (Dodds, 2006a; Nolte, 2010). 

Much like total suspended solids, phosphorus and nitrogen concentrations are driven by 

seasonal runoff events, such as spring snowmelt and storm water runoff (Pionke et al., 

1999; Borah et al., 2003; Fink and Mitsch, 2004; Sharpley et al., 2008; Jiang et al., 2010; 

Corriveau et al., 2013; Danz et al., 2013). As much as 60% of nitrogen fertilizer applied 

in the spring is washed away and not utilized by crops, instead finding its way into 

waterbodies downslope/downstream (Smith, 2003; Simpson et al., 2008; Porter et al., 

2015). In the Red River of the North, 42-92% of the annual total phosphorus load and 41-

81% of the annual total nitrogen load originate during spring snowmelt (Corriveau et al., 

2013). Much of this load comes from post-harvest fertilizer application in October-

November of the preceding year (Kalkhoff et al., 2016). Between 64-88% of the total 

phosphorus load originates from the top 10% of loading events throughout the year (Danz 

et al., 2013). Nutrients like nitrogen and phosphorus are generally considered to be 

“limiting agents” within a waterbody, meaning that their presence or lack of presence 

affects primary production of aquatic flora (Correll, 1998). Their role as a limiting agent 

can reduce biodiversity if there is not enough for flora to consume, but it can also lead to 

a monoculture, overproduction and degraded conditions in ecosystems with excessive 

loading (Correll, 1998; Dodds, 2006a; Hoellein et al., 2007).  
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     Nitrogen, while essential for healthy plant growth, is among the most mobile 

compounds in the soil-plant-atmosphere system and can be difficult to manage or contain 

(Follett and Delgado, 2002). Nitrogen is readily taken up by aquatic macrophytes and 

algae throughout the year as a principle source of food (Ehrlich and Slack, 1969; Birgand 

et al., 2007). The rate of uptake can be subdued if the region is shaded or the current is 

too fast (Butcher, 1933; Canfield Jr. and Hoyer, 1988; Birgand et al., 2007). Uptake is 

also affected by the source of the nitrogen. For example, nitrate is much more abundant 

than ammonia or organic nitrogen, but ammonia is easier for a plant to convert into food 

(Omernik, 1977; Syrett, 1981; Duda and Finan, 1983; Heathwaite et al., 1996; Birgand et 

al., 2007). The nitrogen cycle fluctuates seasonally, where summer months exhibit the 

lowest nitrogen levels in water as crops are utilizing much of the nitrogen as a food 

source and are removing it from the soil. Nitrogen is highest in the early spring and fall 

when crops are not utilizing the nitrogen and it is carried off of fields or through 

decomposing organic matter (Birgand et al., 2007). Concentrations in water also vary 

with precipitation intensity and annual precipitation within a watershed (Borah et al., 

2003). Nitrogen concentrations are heavily regulated in waterbodies and high 

concentrations can have health repercussions for humans (Table 1.2). The Environmental 

Protection Agency (EPA) and Minnesota Office of the Revisor (2016) list the maximum 

safe drinking level for nitrogen concentration at 10 mg/L (Mueller and Helsel, 2013a). 
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Table 1.2. Ways in which nitrogen affects humans, the economy, and the environments. 

Maximum Levels Impact Effect Author 

~2.18 mg/L for 

Aggregate 

Ecosystem VI for 

Rivers and 

Streams 

(EPA, 2016) 

 

10 mg/L for 

human 

consumption 

(Mueller and 

Helsel, 2013a) 

 

90 mg/L for 

freshwater fish 

(Osmond et al., 

1995) 

Human 

Fatalities from 

methemoglobinemia, or “blue 

baby syndrome” from 

restriction of oxygen transport 

in bloodstream 

Mueller and Helsel 

(2013a) 

Economy 

Algae can clog water intakes Perlman (2016a) 

Eutrophication can lead to 

economic losses of more than 

$1,000,000 per event and 

monitoring efforts can cost up 

to $50,000 annually in 

affected regions 

Corrales and 

Maclean (1995) 

Environment 

Overstimulation of growth of 

aquatic plants and algae 

leading to depleted oxygen 

levels 

Perlman (2016a) 

Eutrophic and hypoxic 

conditions can form given 

excessive loading 

Dodds (2006b) 
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     Phosphorus dynamics within waterbodies pertain mainly to their role as a 

macronutrient source for plants and are not considered particularly harmful to humans 

(Table 1.3) (James and Larson, 2008; Bigelow et al., 2009; Oram, 2014). High levels of 

phosphorus in soil following long-term fertilizer/manure application can lead to 

mobilization of phosphorus in dissolved or sediment-bound forms, such as 

orthophosphates, organic phosphate esters, and organic phosphonates (Correll, 1998; 

Bundy and Sturgul, 2001; Andraski and Bundy, 2003; Ebeling et al., 2003). In the 

MARB, phosphorus dynamics are primarily driven by agricultural practices. In one study, 

phosphorus was found to enter into drainage systems merely through exposure to high 

concentrations of phosphorus-rich agricultural sediment and/or ditch sediment, or through 

surface runoff (Kröger and Moore, 2011). Many researchers warn that better attention 

should be paid to phosphorus loading within agricultural drainage systems, suggesting a 

tendency for them to move from being a sink of phosphorus to a source, through 

prolonged exposure and eventual oversaturation (Fennessy et al., 1994; Baker et al., 

2004; Kröger et al., 2008b; Blann et al., 2009; Baker et al., 2018). Such interactions can 

greatly change nutrient dynamics and loading within a ditch, creating an environment 

where the channel and channel banks act more like a source of phosphorus loading when 

sediments are entrained. High phosphorus concentrations do not necessarily impact 

humans in the same way high nitrogen concentrations do, but still acts as a limiting factor 

for macrophyte and algae development and can lead to eutrophic and/or hypoxic 

conditions (Table 1.2 and Table 1.3). To prevent eutrophication, the Minnesota Office of 

the Revisor of Statutes (2016) limits the amount of total phosphorus to 30 µg/L. 
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Table 1.3. Ways in which phosphorus affects humans, the economy, and the 

environment. 

 

 

 

 

Maximum 

Levels 

Impact Effect Author 

0.025 mg/L 

within 

lake/reservoir. 

(EPA, 1986) 

 

0.05 mg/L in 

stream at a point 

where it enters a 

lake/reservoir 

(EPA, 1986) 

 

~0.07625 mg/L 

for Aggregate 

Ecosystem VI 

for Rivers and 

Streams 

(EPA, 2016) 

 

0.1 mg/L in 

streams that do 

not discharge 

directly into a 

lake/reservoir. 

(EPA, 1986) 

Human 

Not generally toxic to 

people/animals unless in 

extremely high levels 

(which can lead to digestive 

issues) 

Oram (2014) 

Economy 

Algae can clog water 

intakes 
Perlman (2016a) 

Eutrophication can lead to 

economic losses of more 

than $1,000,000 per event 

and monitoring efforts can 

cost up to $50,000 annually 

in affected regions 

Corrales and Maclean 

(1995) 

Environment 

Overstimulation of growth 

of aquatic plants and algae 

leading to depleted oxygen 

levels 

Perlman (2016a) 

Eutrophic and hypoxic 

conditions can form given 

excessive loading (0.08-0.1 

mg/L) 

Dodds (2006a) 

Osmond et al. (1995) 

Dunne and Leopold 

(1978) 

Bioaccumulation and 

concentration within fish 

tissue (>/= 0.001 mg/L) 

EPA (1986) 
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1.5 Best Management Practices for Sediment and Nutrient Loading 

     Best management practices refer to sediment and nutrient mitigation structures and 

strategies that have been researched and are widely accepted as efficient ways to reduce 

certain parameters within waterbodies. While a considerable number of reduction 

strategies and mitigation structures are considered best management practices, focus in 

this section will be given to the in-channel practices used in the CD 57 watershed to 

assess their potential efficacy and possible issues associated with them. These include a 

surge pond, wetland, two-stage ditch, and rate control weir. 

1.5.1 Surge Ponds and Wetlands 

     Surge ponds, ponds designed to control the influx of storm water and slowly drain it, 

and wetlands, saturated basins filled with aquatic and riparian vegetation, can be used in 

tandem (as in the CD 57 watershed) or as separate best management practices (Figure 

1.19). Their primary purpose is to reduce flow velocity and allow sediment and nutrients 

to settle out or be taken up by aquatic or riparian vegetation (Kovacic et al., 2000; Hey et 

al., 2012; Fehling et al., 2014). Research has confirmed the ability of surge ponds and 

wetlands to reduce peak discharge as well as overall nitrogen, phosphorus, and total 

suspended solid loading (Fennessy et al., 1994; Kovacic et al., 2000; Verstraeten and 

Poesen, 2000; Woltemade, 2000; Fink and Mitsch, 2004; Hey et al., 2012; Kröger et al., 

2012; Fehling et al., 2014; Roley et al., 2016). However, there is a wide variety of 

opinions as to how effective these structures can really be.  
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Figure 1.19. County Ditch 57 surge pond and wetland showing lowest monitored, typical, 

and highest monitored levels on inundation. 

     The biggest factor affecting the performance of wetlands is generally residence time, 

or the amount of time a molecule of water resides in a particular body until moving to the 

next (Woltemade, 2000; Kröger et al., 2012). Water that is in contact with a wetland or 

surge pond experiences greater treatment times and the amount of sediment and nutrients 

has more time to be reduced. However, performance and reported results differ greatly 

between studied wetlands. For example, wetlands examined in Illinois were capable of 

removing nitrogen from the water, but did not exhibit evidence of enhanced phosphorus 

removal (Kovacic et al., 2000) while studied wetlands in Mississippi were found to be 

capable of reducing the bioavailability of phosphorus through prolonged residence times 
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(Kröger et al., 2012). Further examples in Maryland, Illinois, and Iowa were capable of 

removing up to 68% of nitrate-N and 43% of phosphorus (Woltemade, 2000). However, 

those results varied when comparing wetlands of differing sizes or wetlands that 

intercepted different percentages of the overall discharge of the watershed. Also, 

phosphorus tends to be a much harder nutrient to mitigate or reduce because, unlike 

nitrogen, it exists without a permanent gaseous phase as a pathway for removal (Kröger 

et al., 2012). Recent research in the MRB has provided local examples of wetland 

efficiency rates. An average of fifty-three different riverine sites (over 200 in total) were 

monitored across four years and seven different runoff events of various sizes (Hansen et 

al., 2018). Wetlands were found to be five times more capable at reducing riverine 

nitrogen than any other land-based strategies (including cover crops and retiring 

agricultural land) during moderate to high streamflow conditions (flows with exceedance 

probabilities between 0-25%) (Hansen et al., 2018). Relationships between wetland 

connectivity and wetland position were also compared. Wetlands that were ephemeral 

and only inundated during runoff were most effective during high flow conditions. Also, 

similar to wetlands in Maryland, Illinois, and Iowa (Woltemade, 2000), wetlands 

positioned lower in the watershed that intercepted higher percentages of flow were more 

efficient at reducing nitrate (Hansen et al., 2018). 

     As beneficial as these structures have the capacity to be there are a number of issues 

that have been examined regarding how they function. The amount of time that a 

wetland/surge pond remains effective is still a matter of discussion. There is a point in the 

“lifespan” of a surge pond/wetland where oversaturation of sediment and nutrients turns 
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it from a sink to a source (Verstraeten and Poesen, 2000; Fink and Mitsch, 2004). In the 

Illinois example mentioned previously (Kovacic et al., 2000), wetlands were capable of 

sinking nitrogen but were unable to retain or reduce phosphorus or organic carbon. 

However, other work has suggested that the amount of time until wetlands start adding 

more sediment and nutrients is hard to determine and depends primarily on saturation and 

overall discharge (Fink and Mitsch, 2004). For example, the effectiveness of the Illinois 

wetlands may be explained by the fact that they were assessed immediately after their 

construction for a four year period, during a time when the wetlands may have still been 

capable of reducing sediment and nutrient loads (Kovacic et al., 2000).  

     High rates of productivity can also result in greenhouse gas production and is a 

concern as more wetlands are being constructed. While constructed wetlands are 

designed to remove and take up nutrients moving through a watershed they also allow 

accelerated growth of aquatic and riparian vegetation (de Klein and van der Werf, 2014; 

Anderson et al., 2016; Maucieri et al., 2017). Gases of primary concern are carbon 

dioxide, methane, and nitrous oxide (de Klein and van der Werf, 2014; Anderson et al., 

2016; Maucieri et al., 2017). As the vegetation produced in wetlands decays or converts 

nitrogen to its gaseous form they supply further gases to the atmosphere (de Klein and 

van der Werf, 2014; Anderson et al., 2016; Maucieri et al., 2017). 

     Finally, one study examined the economic viability and cost-effectiveness of cover 

crops, wetlands, and two-stage ditches in the MARB (Roley et al., 2016). Cost-

effectiveness was defined as the cost of reducing one transportable kilogram of nitrogen. 

Wetlands were the most cost-effective option in terms of dollars per kilograms of 
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nitrogen per year removed over both a ten and fifty year timespan. However, higher costs 

required to construct a wetland reduced cost effectiveness over the ten year interval 

($2.91 kilograms of nitrogen per year) compared to the fifty year interval ($2.04 

kilograms of nitrogen per year). 

1.5.2 Two-Stage Ditches 

     A two-stage ditch is characterized by wider shoulders, a wider base, and is constructed 

with flat benches to simulate a natural floodplain (Figure 1.20) (Powell et al., 2007b; 

Kröger et al., 2013; Mahl et al., 2015; Roley et al., 2016). They are designed with these 

characteristics to better simulate natural, low-order streams in stable conditions (Ward et 

al., 2004; D'Ambrosio et al., 2015). When constructed, two-stage ditches are most 

effective where conventional ditches are unstable, and can sometimes form on their own 

through bank failure within conventional ditches (Kramer, 2011). Two-stage ditches, 

though a relatively new practice, have been shown to reduce sediment and nutrient loads 

and are being considered as a best management practice (Powell et al., 2007a; Powell et 

al., 2007b; Roley et al., 2012; Kröger et al., 2013; Mahl et al., 2015; Roley et al., 

2016).They can facilitate denitrification primarily through uptake by riparian vegetation 

(Roley et al., 2012). Phosphorus, which is harder to manage than nitrogen (Kröger et al., 

2012), is most capably managed when bound with sediment and intercepted by 

vegetation on the benches, however more focus needs to be given to how efficient this 

can be (Kröger et al., 2013). Two-stage ditches from Indiana, Michigan, and Ohio were 

capable of increasing nitrogen removal rates (3-24 times), reducing turbidity (15-82%),  
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Figure 1.20. Diagram showing the dimensions of a two-stage ditch, conventional ditch, 

and oversteepened ditch. 

and reducing soluble reactive phosphorus (3-53%) during base flow conditions (Mahl et 

al., 2015). Other two-staged ditches in Ohio were capable of reducing suspended solids 

(22-50%) and total phosphorus (40-50%) (Hodaj, 2015). Other two-stage ditches in 

Indiana were able to reduce turbidity, total suspended solids, soluble reactive phosphorus, 

total phosphorus, nitrate, and ammonium in low flow conditions or with low 

concentrations, but reduction across all parameters was reduced if residence times were 

too short (Davis et al., 2015). While these number are highly variable and many local 

factors determine the efficiency of a two-stage ditch, the reduction rates reported by Mahl 

et al. (2015), Kröger et al. (2013), Davis et al. (2015), and Hodaj (2015) demonstrate that 

two-stage ditches can efficiently remove sediment and nutrients. 

     Geomorphic evaluations of two-stage ditches have confirmed that, aside from 

improving water quality, they also increase channel stability (Ward et al., 2004; Powell et 

al., 2007a; Powell et al., 2007b; D'Ambrosio et al., 2015; Davis et al., 2015; Krider et al., 

2017). Furthermore, based on their construction, pool-riffle sequences tend to form in 

two-stage ditches as they would in a natural channel (Powell et al., 2007b; Hodaj, 2015; 
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Krider et al., 2017). These pool-riffle sequences provide protection and habitat for fish 

and macroinvertebrates, strengthening the biological integrity of the ditch (Lau et al., 

2006; Krider et al., 2017). In Mower County, MN (approximately 100 km southeast of 

the CD 57 study area) a conventional ditch (Figure 1.20) was converted to a two-stage 

ditch in 2009 (Krider et al., 2017). After this conversion, the reach was found to have a 

twelve-fold increase in pool-riffle formation, a 10% increase in bankfull width, and an 

~18% increase in bankfull depth, while maintaining channel stability (Krider et al., 

2017). A Modified Pfankuch Channel Stability Rating was performed to assess bank and 

channel erosivity and both metrics were found to be highly stable and at low risk of 

erosion (Krider et al., 2017). Modified Pfankuch Channel Stability Ratings contain a 

series of primarily qualitative channel assessments that examine a variety of in situ 

characteristics and assign a quality rating for the channel (Rosgen, 2008). This increased 

stability can decrease erosion rates and allow for higher control over sediment budgets, 

which can also increase denitrification and reduce phosphorus loads (Ward et al., 2004; 

Powell et al., 2007a; Powell et al., 2007b; D'Ambrosio et al., 2015; Davis et al., 2015; 

Krider et al., 2017).  

     Finally, the cost-efficiency study (Roley et al., 2016) that looked at wetlands, two-

stage ditches, and cover crops determined that two-stage ditches were the second most 

cost-effective method over the fifty year interval ($4.61 kilograms of nitrogen per year) 

and last out of the three methods examined over the ten year interval ($11.63 kilograms 

of nitrogen per year). The lack of cost-efficiency over the ten year period is attributable to 

higher startup costs in the first year of installation that are offset by consistent removal 
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capabilities over longer intervals (Roley et al., 2016). For example, an engineering firm 

in southern Minnesota spends $58.22 per meter more constructing a two-stage ditch than 

a conventional ditch (Brandel, 2017). 

1.5.3 Weirs 

     Weirs are low-lying “check” dams designed to slow, control, or divert flow (Figure 

1.21) (Kröger et al., 2008a; Littlejohn et al., 2014). A preliminary study on low-grade 

weirs suggest their use an alternative control for drainage mitigation strategies (Kröger et 

al., 2008a). Low-grade weirs are defined as earthen dams situated in channel that are 

covered with a woven filtration fabric and covered in riprap (Littlejohn et al., 2014). 

While this weir design differs from the weir in the CD 57 watershed, weirs, like surge 

ponds, wetlands, and two-stage ditches, can increase residence times and allow for 

further reduction on nutrients and sediment (Kröger et al., 2008a; Kröger et al., 2011; 

Littlejohn et al., 2014). Removal rates of 14% of dissolved inorganic phosphorus and 6% 

of ammonium and nitrite were observed for low-grade weirs in Mississippi (Littlejohn et 

al., 2014). While not necessarily listed as a best management practices in Minnesota 

(Miller et al., 2012), Littlejohn et al. (2014) suggested that weirs could be considered a 

best management practice, but that additional research was recommended to better 

understand the dynamics of nitrogen interactions related to weir construction within the 

water. 
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Figure 1.21. County Ditch 57 diversionary weir (A) and rate control weir (B). The 

diversionary in this watershed is designed to slow discharge and allow sediment to settle 

on the channel bottom. It also diverts water into a surge pond for further treatment. The 

rate control weir is designed to reduce the amount of water leaving the watershed and 

also to slow discharge upstream to allow sediment to settle on the channel bottom. 

1.6 Ecological Functions within Agricultural Drainage Ditches 

     While most tend to consider agricultural drainage ditches as merely a way to move 

water away from fields, they can provide a very unique ecosystem. Herzon and Helenius 

(2008) provided a comprehensive review of the functional ecosystem of drainage ditches 

that examined plants, invertebrates, fish, amphibians, birds, mammals, habitat 

availability, natural water purification, nutrient cycling, and erosion control. Ditches 

represent a chemically different, slow-flowing system that support a variety of ecological 

niches, or specialized communities, that larger, faster bodies of water cannot support 

(Armitage et al., 2003). In northwestern Europe, the biodiversity of invertebrates and 

other aquatic species in drainage ditches, including uncommon or rare species, was 

similar to a small lake (Verdonschot et al., 2011). Ditches can serve as a significant 

habitat for these invertebrates, but the influx of nutrients, common in agricultural 
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drainages, can alter food availability, change habitat structure, and deplete oxygen 

(Verdonschot et al., 2011). A biological survey and analysis of species richness (overall 

abundance and diversity) in headwater agricultural drainages west of Lake Erie found 

that ditches were capable of a high amount of species richness if a balance between 

management and efficient drainage was maintained (Crail et al., 2011). On the contrary, 

given the interconnectedness of natural and modified agricultural systems, the conversion 

of natural drainages to agricultural drainages is a detriment to the many species that 

inhabit them (Figure 1.22) For example, the reduction of pool and riffle sequences, which 

are common in natural streams, significantly reduce fish habitat after channelization (Lau 

et al., 2006). Nutrient inputs and hydrologic modification, both common in agricultural 

drainage ditches, represent two of the top three threats to 135 organisms, including 

species of fish, crayfish, dragonflies, damselflies, mussels, and amphibians in the United 

States alone (Richter et al., 1996; Stein and Flack, 1997; Blann et al., 2009). Furthermore, 

increases in nutrient loads aid in the development of eutrophic conditions, which alters 

interactions in the water column through reduced penetration of sunlight, warming 

temperatures, and dissolved oxygen depletion (Sand-Jensen and Søndergaard, 1981; 

Bloemendaal and Roelofs, 1988; Janse and Van Puijenbroek, 1998). 

     Research on fish in ditches has focused on the response of fish communities to 

changes in water quality, through nutrient loading or increases in turbidity. Increases in 

turbidity were found to decrease success in feeding rates of bluegills by reducing 

visibility (Gardner, 1981). Experiments with turbidities of 0 NTU, 60 NTU, 120 NTU, 
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and 190 NTU decreased average three minute feeding success rates from fourteen prey to 

eleven, ten, and seven, respectively (Gardner, 1981). Water temperature and sediment 

loads were both potential limiting factors in the abundance of trout, a popular sport 

fishing species (Halverson, 2008), within streams in southwestern Minnesota 

(Zimmerman et al., 2003). Additionally, elevated levels of suspended solids and turbidity 

clog the gills of fish, suffocate benthic organisms and fish eggs, decrease growth rates, 

and decrease the quantity of dissolved oxygen and fish activity (Kramer, 1987; Murphy, 

2007; EPA, 2012).  
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Figure 1.22. Conceptual relationships involving subsurface and surface drainage within an aquatic ecosystem (from Blann et 

al., 2009). The watersheds examined in this study feature both surface and subsurface drainage interactions. 
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Chapter 2: Reduction Capabilities of Structural Practices in County 

Ditch 57, Blue Earth River Watershed 

2.1 Introduction 

     As Earth’s population nears as estimated 7.5 billion people it is necessary to improve 

agricultural yields to meet food demands (Census.gov, 2018). Unfortunately, with 

increasing yields comes an increasing need for fertilizer application and the modification 

of agricultural landscapes (Tilman, 1999; Blann et al., 2009). Increases in nitrogen and 

phosphorus fertilizer stem mainly from agricultural sources and have widespread impact 

on ecosystem health, as they can serve as a primary food source and growth accelerant 

for aquatic and riparian vegetation (Alexander et al., 2008; Blann et al., 2009; Canfield 

Jr. et al., 2010). Global waters are in jeopardy as instances of eutrophication (accelerated 

production of aquatic plants) and hypoxia (low dissolved oxygen within a waterbody) are 

increasing in size, distribution, and frequency (Figure 1.16 and Figure 1.17) (Petrolia and 

Gowda, 2006; Alexander et al., 2008; Blann et al., 2009). These conditions can have vast 

and negative effects on local aquaculture, fishing, and recreation (Table 1.2 and Table 

1.3) (Diaz, 2001; Donner et al., 2004; Alexander et al., 2008; Hofmann et al., 2011; 

NOAA, 2017). 

     To help improve crop yields it has become common practice to modify drainages to 

meet the needs of those in the area (Blann et al., 2009). Drained lands in the Mississippi-

Atchafalaya River basin (MARB) of the United States have increased from ~24,000 to 

~280,000 km2 over the last 115 years (Mitsch et al., 2001a). Drainage modifications 
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come generally in the form of ditches (surface) or tile drainage (subsurface) (Armitage et 

al., 2003; Herzon and Helenius, 2008; Blann et al., 2009). Tiling is primarily used to 

drain water from natural depressions, increase infiltration rates, lower the water table, and 

create a more hospitable growing climate for crops (Blann et al., 2009; Schottler et al., 

2014). The tile, usually a permeable PVC or ceramic pipe of varying diameter, is buried a 

meter or two below the surface and plow line, quickly intercepting water and flushing it 

into a nearby ditch or body of water (Maalim and Melesse, 2013). However, these 

practices lead to flashier hydrologic systems, increased peak discharge, increased 

erosivity in larger streams/rivers, and an increase in severe flooding events (Figure 1.12) 

(EEA, 1996; Knox, 2001; Blann et al., 2009; Schottler et al., 2014). These flashier 

systems are capable of entraining larger quantities of sediment and nutrients and 

transporting them downstream (Belmont et al., 2011; Schottler et al., 2014; Kelly et al., 

2017). 

     The Minnesota River basin (MRB) of southern Minnesota is a tributary to the MARB 

and exhibits greater changes, relative to basin size, in land use, nutrient concentrations, 

and hydrologic regimes than the MARB (Figure 1.1). Native land cover (primarily tall-

grass prairies, wetlands, and hardwood deciduous forests) has been reduced ~80-90% to 

accommodate a modern basin that uses 78-80% for row-crop agriculture, primarily corn 

and soybeans (Mulla and Sekely, 2009; Musser et al., 2009; Belmont et al., 2011). In 

terms of hydrologic changes, the MRB has seen an increase from ~19% watershed area 

drained by tile in 1940 to ~35% in 2012, while the watershed area drained by ditches 

increased from ~7% in 1940 to ~10% in 2012 (Kelly et al., 2017). In south-central 
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Minnesota, tile drainage networks are particularly dense within the greater Blue Earth 

River basin (GBERB). In nineteen watersheds within the Le Sueur River (LSR) basin, a 

tributary of the Blue Earth, around 71% of the cultivated land is classified as “poorly 

drained” and has had an estimated 141 meters per hectare of tile drainage installed 

(Schottler, 2012). These changes in hydrology and land cover result in a disproportionate 

contribution of nutrient and sediment loads to the MARB, providing ~3-7% of the nitrate 

load to the Gulf of Mexico while only comprising 1.34% of the drainage area 

(Magdalene, 2004; Steil, 2007).  

     One of the largest contributors to sediment and nutrient loads to the MRB is the 

GBERB, comprised of the Blue Earth, Le Sueur, and Watonwan Rivers (Figure 1.2). 

Flow-weighted mean concentrations for total phosphorus for the Watonwan, Blue Earth, 

and Le Sueur Rivers are around 0.26 mg/L, 0.32 mg/L, and 0.48 mg/L, respectively 

(MRBDC, 2018). Flow-weighted mean concentrations for nitrate-nitrogen averaged 10.7 

mg/L for the Watonwan and Le Sueur, and 10.3 mg/L for the Blue Earth. 

Comparatively, natural “background” concentrations for nutrients in the Mississippi-

Atchafalaya River basin (MARB) ranged from ~0.006-0.08 mg/L for total phosphorus 

and ~0.02-0.5 mg/L for total nitrogen (Smith et al., 2003), while modern concentrations 

are closer to ~0.042-0.990 mg/L for total phosphorus and ~0.72-7.57 mg/L for total 

nitrogen (Goolsby et al., 1999). 

     Efforts to improve water quality in the GBERB are focusing on implementing best 

management practices in a variety of landscape positions (Miller et al., 2012). Weirs, 

surge ponds, wetlands, and two-stage ditches are of particular interest to this study, as 
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they have been employed within the study area. Weirs are low-lying “check” dams that 

are designed to slow, control, or divert flow (Figure 1.21) (Kröger et al., 2008a; 

Littlejohn et al., 2014). Weirs are able to increase the residence time of water by slowing 

or controlling discharge which can allow sediments to settle out and nutrients to be taken 

up by aquatic and riparian vegetation (Kröger et al., 2008a; Kröger et al., 2011; Littlejohn 

et al., 2014). While not necessarily listed as a best management practices in Minnesota 

(Miller et al., 2012), Littlejohn et al. (2014) suggested that weirs could be considered a 

best management practice, but that additional research was recommended to better 

understand the dynamics of nitrogen interactions related to weir construction within the 

water. 

     Surge ponds and wetlands are used to slow flow velocity while allowing sediment and 

nutrients to settle out or be taken up by aquatic or riparian vegetation (Figure 1.19) 

(Kovacic et al., 2000; Hey et al., 2012; Fehling et al., 2014). Surge ponds and wetlands 

have been shown to reduce peak discharge, nitrogen, phosphorus, and total suspended 

solids (Fennessy et al., 1994; Kovacic et al., 2000; Verstraeten and Poesen, 2000; 

Woltemade, 2000; Fink and Mitsch, 2004; Hey et al., 2012; Kröger et al., 2012; Fehling 

et al., 2014; Roley et al., 2016). However, they are not without issue. Effective reduction 

has been shown to require sufficient residence times for water moving through the basin 

(Woltemade, 2000; Kröger et al., 2012). Constructed wetlands have also shown to be 

contributors to carbon dioxide, methane, and nitrous oxide concentrations because of 

high primary production rates (de Klein and van der Werf, 2014; Anderson et al., 2016; 

Maucieri et al., 2017). There is also a point in the “lifespan” of a surge pond or wetland 
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in which the structure becomes too saturated and reduction efficiency slackens or the 

structure can become a source for sediment and/or nutrients (Verstraeten and Poesen, 

2000; Fink and Mitsch, 2004). 

     Two-stage ditches are characterized by wider shoulders, a wider base, and are 

constructed with flat benches that act to simulate a natural floodplain (Figure 1.20) 

(Powell et al., 2007b; Kröger et al., 2013; Mahl et al., 2015; Roley et al., 2016). They are 

designed with these characteristics to better simulate natural, low-order streams in stable 

conditions (Ward et al., 2004; D'Ambrosio et al., 2015). When constructed, two-stage 

ditches are most effective where conventional ditches are unstable, and can sometimes 

form on their own through bank failure and floodplain widening (Kramer, 2011). Two-

stage ditches have been shown to reduce sediment and nutrient loads and are being 

considered as a best management practice (Powell et al., 2007a; Powell et al., 2007b; 

Roley et al., 2012; Kröger et al., 2013; Mahl et al., 2015; Roley et al., 2016). Other 

evaluations of two-stage ditches have supported their ability to increase channel stability, 

generate pool-riffle sequences that would form naturally, provide protection and habitat 

for fish and macroinvertebrates, and strengthen the biological integrity of the stream 

(Ward et al., 2004; Lau et al., 2006; Powell et al., 2007a; Powell et al., 2007b; 

D'Ambrosio et al., 2015; Davis et al., 2015; Hodaj, 2015; Krider et al., 2017). Two-stage 

ditches are not without their drawbacks, however. Similar to surge ponds and wetlands, if 

residence times within the ditches are not prolonged enough the ability to treat the water 

decreases (Davis et al., 2015). Their width is also much greater than a conventional ditch, 

which removes more farm land from production. Finally, startup costs for two-stage 
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ditches are generally higher than surge ponds and therefore are not as efficient or cost 

effective over shorter timescales (1-10 years) as surge ponds tend to be (Roley et al., 

2016). 

2.2 Study Area and History of County Ditch 57 

2.2.1 Study Area 

     The County Ditch (CD) 57 watershed covers 25.2 km2 of undulating, upland 

topography in south-central Blue Earth County, south-central Minnesota (Figure 1.2). 

The watershed is underlain by glacial till, glaciofluvial sands and gravels, and finer 

glaciolacustrine sediments deposited as the Des Moines Lobe of the Laurentide Ice Sheet 

receded and from deposition of glacial Lake Minnesota (Belmont et al., 2011). Modern 

soils within the watershed are dominantly mollisols (68.13%), rich soils with thick, dark 

A horizons that formed under grassland or savanna conditions, and vertisols (28.54%), 

dark soils formed in semi-arid grasslands or savannas that are very clay-rich and crack in 

the dry season  Figure 2.1) (Schaetzl and Anderson, 2005; NRCS, 2016). Hydrologic soil 

classifications are dominantly C/D soils (66.22%) or C soils (28.88%) (NRCS, 2016). 

C/D soils are characterized by moderately high runoff potential when saturated and 

throughflow that is somewhat restricted in drained regions and soils with high runoff 

potential when saturated and throughflow that is restricted to very restricted in undrained 

regions (NRCS, 2007). C soils are characterized by moderately high runoff potential 

when saturated and throughflow that is somewhat restricted (NRCS, 2007). Soil texture 

throughout the watershed is dominantly silty clay loams (52.20%) and clays (26.66%) 

(NRCS, 2016). Finally, while 88.33% of the watershed is comprised of soils designated 
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as “Prime Farmland if Drained,” 53.36% and 15.21% of the watershed is designated as 

“Poorly Drained” or “Very Poorly Drained” (NRCS, 2016). 

2.2.2 County Ditch 57 History (1907-2006) 

     CD 57 was originally constructed between 1907 and 1921 and was primarily a tiled 

system that connected private tile lines with an open channel (Morrison, 2013). At that 

time, the open channel portion extended about a quarter of its present-day length (Figure 

2.2-2.4). Extensive improvement projects in the 1970s addressed widespread 

infrastructure failure throughout the system (ISG, 2015a). These improvements included 

extending the open channel two more miles to the south-southeast and a new open 

channel in the southern portion of the watershed, both following original locations of 

tiling (ISG, 2015). Both open channels remained connected by two tile lines which 

included an existing concrete main line and a supplemental corrugated metal line. The 

open channel transitioned to a 1.37 m pipe, which was upgraded from the original 1.02 m 

pipe, immediately west of the city municipal ponds (Brandel, personal communication, 

2017). Expansion of the city of Mapleton led to further issues within the CD 57 system, 

as tile was either abandoned or integrated into the city municipal storm water system 

(ISG, 2015). 
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Figure 2.1. A) Taxonomic order map of soils within the CD 57 watershed. Mollisols are the primary taxonomic order 

throughout CD 57. B) Farmland class map of CD 57 soils. The primary designation is “prime farmland if drained.” C) Soil 

texture map for the CD 57 watershed. Silty clay loams are the primary soil texture. D) Hydrologic soil group map of the CD 57 

watershed. C/D hydrologic soils are the dominant group.

C D 
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Figure 2.2. Black and white aerial image of the County Ditch 57 watershed.  
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Figure 2.3. Extension of the County Ditch 57 watershed, as shown by channel length, 

from ~1910 to the present (Morrison, 2013; ISG, 2015a; Brandel, 2017). The original 

channel drained a wetland that was noted by the original surveyors in the region. 
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Figure 2.4. Tile map of County Ditch 57. The pattern tile inventory was conducted in 

2009 by the MNSU Water Resources Center. Inventory created from aerial imagery, 

LiDAR, and personal communication. 
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2.2.3 County Ditch 57 History (2007-2014) 

     From 2007 to 2014 the Mankato-based engineering firm I+S Group (ISG) handled 

development, management, and monitoring of the County Ditch 57 watershed. In 2007, 

in response to decaying and failing infrastructure and significant flooding issues, 

landowners approached the Blue Earth County Ditch Authority to address their needs. 

Improvements needed to include changes in the upstream (southern) regions of the 

watershed to better mitigate flooding while not overloading the capacity of the 

downstream (northeastern) regions (Morrison, 2013; ISG, 2015b; ISG, 2015a; Brandel, 

2017). ISG conducted a feasibility study to determine what would be necessary to 

improve CD 57 so that all areas saw improvement. The final design included an open 

channel throughout the system, two surge ponds for added storage in the southern portion 

of the watershed, named the City Pond and the Klein Pond, the development of a two-

stage ditch, buffer strips throughout the watershed, and upsizing many of the culverts 

throughout the watershed.  

     The chosen and implemented structural practices were opportunistically distributed 

within the watershed and included buffer strips, an oversteepened channel reach designed 

to quickly and efficiently move flow to the surge pond (Figure 1.20), a diversionary weir 

that channeled water into the surge pond (Klein Pond), which was installed alongside a 

wetland in a 1.21 hectare basin, a two-stage ditch, and a notched, rate control weir 

upstream of the mouth of the watershed. These structures were designed to reduce peak 

discharge while simultaneously reducing sediment and nutrient loads. The project was 

approved and was awarded a $485,000 grant through the Minnesota Environment and 



62 

 

Natural Resources Trust Fund. With further landowner contributions, funding sufficiently 

incorporated the desired storage and structural practices within the watershed. Without 

these funding sources the project would not have been cost effective enough to meet 

regulatory requirements for drainage projects (ISG, 2015a). Construction began in 

November 2010 beginning with the two-stage ditch, the over-steepened reach, grading 

the two storage ponds, constructing the rate control weir, seeding the buffer strips, 

installing the pipe under County Highway 22, and connecting the two open ditch 

segments (ISG 2015a). Heavy precipitation in the fall through the spring of 2010-2011 

impeded progress, but the project was completed by December 2011. 

     The economic impact for each of the three main structural practices (Klein Pond, two-

stage ditch, and rate-control weir) was recorded and reported in the final reports for the 

project (ISG, 2015b; ISG, 2015a). The total cost to construct the Klein Pond came to 

$148,320, or $4.57 per cubic meter of storage. The pond can store 32,440 m3 of water 

and 4,320 m3 of sediment. The incremental cost for the two-stage ditch totaled $26,920, 

or $58.22 extra per meter, relative to a conventional ditch construction project (Figure 

1.20). The two-stage ditch extends 430 m and has the capacity to store 1,357 m3 of 

sediment. The rate control weir near the mouth of the watershed took $12,500 to 

construct and led to additional storage capacity of 7,400 m3 of water. 

     There were two different stages of monitoring between 2007 and 2014 which included 

monitoring before and after construction of the structural practices. The preliminary 

monitoring took place, intermittently, from March to October in 2009-2011. Many of 

these measurements and samples were recorded during base flow conditions and did not 



63 

 

incorporate runoff event samples (ISG, 2015b). Post-installation monitoring was 

conducted in collaboration with the Minnesota State University, Mankato Department of 

Civil and Mechanical Engineering and the Department of Chemistry and Geology. 

Monitoring took place from March to October in 2012-2014. Base flow samples were 

recorded monthly during this time and increased sampling was carried out following 

precipitation events of 2.54 cm or greater.  

     Originally, results reported in 2014 suggested that removal rates comparative to pre-

installation were positive (ISG, 2014). The Klein Pond was reported to reduce 77% of the 

peak discharge (when comparing peak discharge from the pond inlet to the pond outlet), 

47% of the total suspended solids load, 63% of the phosphorus load, and 60% of the 

nitrogen load. This was equated to 195.10 metric tons ($3.68/kg) of total suspended 

solids, 0.73 metric tons ($974/kg) of phosphorus, and 40.82 metric tons ($17.20/kg) of 

nitrogen. The two-stage ditch was reportedly reducing 10.5% of the total suspended 

solids load, 8.0% of the phosphorus load, and 18.9% of the nitrogen load. The equated to 

131.5 metric tons ($0.97/kg) of total suspended solids, 0.11 metric tons ($1179/kg) of 

phosphorus, and 2.72 metric tons ($49.38/kg) of nitrogen. Reductions for the rate control 

weir were not originally calculated. These numbers were revisited and revised after 

expressed concern from the Minnesota Department of Agriculture and the Minnesota 

Department of Natural Resources. 

     In the final reports (ISG, 2015b; ISG, 2015a), the Klein pond was attributed with 

annually reducing 28% of the average peak discharge, 25% of the total suspended solids 

load, 19% of the phosphorus load, and 23% of the nitrogen load. This equated to 104.3 
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metric tons of total suspended solids, 0.19 metric tons of phosphorus, and 10.4 metric 

tons of nitrogen. The two-stage ditch was attributed with reducing 5% of the total 

suspended solids load, 10% of the phosphorus load, and 4% of the nitrogen load. The rate 

control weir was attributed with annually reducing 6% of the average peak discharge, 6% 

of the total suspended solids load, 6% of the phosphorus load, and none of the nitrogen 

load. Loads (in mass) were not provided for the two-stage ditch or rate control weir. 

2.2.4 County Ditch 57 History (2015-2018) 

     Following the initial 2014 reports from ISG regarding the efficiency of the structural 

practices within CD 57 further observation and research was requested by the Minnesota 

Department of Agriculture. The goal of this stage of research was to better characterize 

discharge and contaminant load tendencies within the watershed, while collecting 

continuous records of conditions throughout the watershed. 

     Most of the equipment installation took place during the 2015 monitoring season. Site 

selection followed recommendations outlined by the USGS in Wilde (2005). Naming 

conventions for the sites were formatted CD00X. Sites CD007, CD006, CD005, CD004, 

CD003, and CD002 were installed in summer of 2015 (Figure 2.5 and Figure 2.6; Table 

2.1 and Table 2.2). CD007 was placed in a 1.22 m concrete culvert under State Highway 

30, 237 m downstream of the upstream extent of the open channel. CD006 was placed in 

a 1.22 m concrete culvert that diverted water from the channel into the surge pond. This 

culvert is next to the diversionary weir that redirects water into the pond during low flow 

conditions and allows water pass over it during high flow conditions. CD005 was placed 

in submerged outlet of the surge pond. CD004 was immediately downstream of CD005 
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and was placed in a 1.52 m corrugated metal culvert just to the northeast of the surge 

pond basin. CD003 was installed in what had previously been a county tile main line at 

the end of the two-stage ditch. This line was thought to have contributed flow at the end 

of the two-stage ditch. After reviewing the discharge results measured for four and a half 

months over the 2015 and 2016 monitoring seasons it was determined that there were no 

significant contributions to flow at the end of the two-stage ditch from this previous 

county tile main and the site was removed in April 2016. CD002 was placed at the end of 

the two-stage ditch in a 1.37 m concrete culvert at the beginning of a 560 m subsurface 

stretch that flows to the east, underneath County Highway 22. 

     Equipment was installed in four other locations during the 2015 monitoring season. A 

Vaisala WXT520 weather and telemetry station and YSI 6600V2-4 Multiprobe were 

installed in the northwest corner of the city municipal ponds, named MUN001. In the 

2016 monitoring season the YSI 6600V2-4 Multiprobe had to be removed for extensive 

repairs and it was not redeployed. Three Onset RG3 Rain Gauges were installed at 

various locations to provide precipitation measurements across the entirety of the 

watershed. These sites, named for nearby locations, were referred to as WFS001, 

TYS002, and NIE003 (Figure 2.5). WFS001 was placed in a parking lot belonging to the 

company WFS (later the Central Farm Service). This rain gauge was damaged beyond 

repair and removed following collision with an agricultural weed sprayer in the 2017 

monitoring season. TYS002 was placed in the parking lot of the Tyson Fresh Meats hog 

barn in the northern extent of the watershed. NIE003 was placed on a post along a field 

boundary, and was named after the landowners. 
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Figure 2.5. Digital elevation map and site map (pictures of sites in Figure 2.7) of the 

County Ditch 57 watershed. CD001-008 discharge and sampling sites within the ditch. 

Sites WFS001, TYS002, NIE003 refer to Onset RG3 rain gauging stations. Site MUN001 

refers to the Nexsens weather station. 
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Figure 2.6. Pictures of each of the sites stationed in the ditch (see map in Figure 2.5). 

CD008 measures discharge from a 1m tile culvert. CD007 is stationed furthest upstream 

and measures discharge and water quality. CD006 monitors discharge at the surge basin 

inlet. CD004/005 monitor discharge and water quality from the surge basin. CD002 

monitors discharge and water quality from the two-stage ditch. CD57 Outlet validates 

discharge measurements at the site immediately downstream (CD001). CD001 is the 

most downstream site in the watershed and monitors discharge and water quality leaving 

the watershed. 
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Table 2.1. Equipment distribution across each site. 

 

Table 2.2. Monitoring capabilities across each site. 
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     Between the 2016 and 2017 monitoring seasons three additional sites were installed. 

CD001 was installed prior to the start of the 2016 monitoring season in the rate control 

weir, 620 m upstream from the confluence of CD 57 and the Cobb River. Following an 

interagency meeting it was determined that another location was required within a 0.91 m 

tile line that discharged immediately downstream of the CD007 monitoring equipment. 

Sufficient discharge was observed coming from this tile line, though it was supposed to 

have been inactive. This station, CD008, is on the south side of State Highway 30 and the 

tile line runs north, adjacent to the open channel of CD 57. Finally, a monitoring station 

was placed on the north side of County Road 4, 220 m upstream of CD001. This site was 

installed to develop better composite samples, following continued issues with 

intermittent velocity measurements at CD001. This site was installed in March 2017 and 

was called CD57 Outlet. 

     Throughout the 2016 and 2017 monitoring seasons, land use was determined by 

classifying RapidEye (5 m) satellite imagery. Corn and soybeans were the dominant land 

uses in both years, with more corn throughout the watershed in 2016 and a more even 

distribution of corn and soybeans in 2017 (Figure 2.7). 

     Some relatively larger events within the watershed compromised the integrity of 

certain channel reaches and required attention during the monitoring process. The 

oversteepened reach, for example, has seen significant bank sloughing related to the 

peaty nature of the soils leading to widespread instability and increased sediment 

transport into the ditch (Brandel, personal communication, 2017) (Figure 2.8). In 2015, 

the rate control weir was bypassed on the north side after eddying flow had cut around 
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the weirs. Fabric, soil, and riprap were installed to secure the bank (Figure 2.9). Further 

concern, regarding the rate control weir, focused on improper angling of the weir’s notch. 

In high discharge conditions, water directed through the notch flows directly into the 

downstream banks or eddies along the sides of the channel, resulting in bank undercutting 

and sluffing (Figure 2.10). Finally, in late September 2016, the largest measured runoff 

event during the MNSU monitoring project caused considerable flooding and damage 

throughout the CD 57 system. The main impact was on the downstream end of the box 

culvert that the CD57 Outlet site was later installed in. Backflow from the Cobb River 

undercut the banks on the north side of County Road 4. This led to the collapse of a 

significant portion of the aged wooden box culvert under the road (Figure 2.11). The 

downstream section of the culvert was completely replaced and the road was repaved. 
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Figure 2.7. Land use and land cover differences between 2016 and 2017. Overall, 2016 

had more corn within the watershed compared to 2017, which was more evenly corn-

soybeans. 

 



72 

 

 

Figure 2.8. Maps showing the oversteepened channel reach within County Ditch 57. This 

region, between CD007 and CD006, sees increased erosion resulting from steeper banks 

and insufficient bank armoring. 

 

 

Figure 2.9. Pictures showing bank failure and repairs at CD001. The left image is from 

June 2015, while the right image is from May 2016. 
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Figure 2.10. Picture showing bank failure on both sides of the channel, immediately 

downstream of CD001. A slump can be seen circled on the left side of the image, while 

the right bank has experienced undercutting and is susceptible to slumping. 

 

Figure 2.11. Picture (October 2016) showing failure of the box culvert under County 

Road 4, immediately upstream of CD001. 
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2.3 Methods 

2.3.1 Precipitation and Temperature Data 

     Precipitation and temperature data were collected to better understand the relationship 

between precipitation and discharge within CD 57. Data were collected by a NexSens 

iSIC 3100 Data Logger with a Vaisala Weather Transmitter WXT520 rain gauge. This 

unit collects wind direction, wind speed, maximum wind speed, air temperature, relative 

humidity, barometric pressure, daily rainfall, rainfall intensity, and sunlight intensity. It 

was equipped with a YSI 6600 OMS-4 Multi-Parameter Water Quality Sonde for a brief 

period of time during the 2016 monitoring season and additionally measured water 

temperature, specific conductivity, conductivity, turbidity, pH, dissolved oxygen, oxygen 

redox potential, and chlorophyll. Further precipitation data were collected by three 

Teledyne Isco 674 Tipping Bucket Rain Gauges and three Onset RG3 Hobo Data-

Logging Rain Gauges opportunistically dispersed throughout the watershed. The 

multitude of precipitation measuring sites was used to build isohyetal maps of rainfall 

throughout the watershed to account for discrepancies in discharge data from site to site, 

if needed. 

2.3.2 Hydrologic Data 

     Hydrologic data needed to be acquired and accurately represented to calculate loads of 

the various measured parameters over runoff event and annual intervals. Water levels and 

velocity were recorded at continuous five minute intervals throughout the monitoring 

season. This was achieved through the use of Isco 2150 Area Velocity Modules 

(measuring level, velocity, and discharge), Isco 720 Submerged Probe Flow Modules 
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(level only), and Isco 750 Area Velocity Flow Modules (level, velocity, and discharge). 

These data were validated through use of an Acoustic Doppler Current Profiler (ADCP) 

and wading rod nearly once a month by the Minnesota Department of Natural Resources 

and was supplemented between collections by MNSU personnel at the same locations 

through the use of a Marsh-McBirney Flo-Mate 2000 Portable Velocity Flow Meter and 

wading rod. In total, MNDNR ADCP measurements were collected five times in 2015, 

seven to eight times in 2016 (site-dependent), and six times in 2017, at sites CD001, 

CD004, and CD007. MNSU Flo-Mate measurements were collected seventeen to twenty-

seven times in 2016 and eleven to fourteen times in 2017, at sites CD001, CD002, 

CD004, and CD007 (Appendix D and Appendix E). Measurements by MNSU varied in 

2016 because of high stages and high velocity conditions making data collection 

hazardous. After each season, level and discharge data were then processed and corrected 

by a Minnesota Department of Agriculture hydrologist using the software Stream Trac 

(Forest Technology Services). The output of this data was used to generate loads for the 

various measured parameters. 

     In some cases, corrections had to be made to data that was too low quality to use. 

CD001 had particular issues with this because of highly variable velocities and the 

location of the probe in the notch of the weir. For 2016, CD001 had to be extrapolated off 

of data from CD002, scaled by upstream area, and fit to the FloMate recordings. When 

comparing the 2016 extrapolations to records from 2017 when the data did not need 

extrapolation the relationship of between average discharges at these two sites was 

proportional. Furthermore, corrections had to be made when flow rose over the top of rate 
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control weir. These corrections were made by measuring flow across the top of the weir 

and within the notch of the weir and shifting the hydrographs appropriately. 

2.3.3 Water Quality Sampling 

     Water quality samples were collected to use in combination with discharge data to 

create loads of the measured parameters. They were collected by a Teledyne Isco 6712 

Full-Size Portable Sampler, equipped with twenty-four one liter bottles. The 6712 

samplers were programmed to trigger after water levels rose by 10-20% of the current 

water level. Water levels were monitored with Isco 2150 Area Velocity Modules, Isco 

720 Submerged Probe Flow Modules, and Isco 750 Area Velocity Flow Modules and 

were used to trigger the samplers to initiate sampling (Table 2.1 and Table 2.2). Once 

sampling initiated, the sampler purged the line, pulled one liter of water, purged the 

sample line again, and then moved the distributor arm of the sampler to the next bottle. 

This process repeated every two hours until the twenty-four bottles were filled. Once the 

program completed, samples were collected within one to two days and brought back to 

the Minnesota State University, Mankato laboratory to create a discharge-based 

composite sample. This sample typically represented the duration of the storm 

hydrograph until conditions returned to base flow. Base flow was approximated by 

employing the constant-slope method developed by Linsley Jr. et al. (1975) where: 

𝐷 = 0.827𝐴0.2    Equation 1. 

Where 

D is the number of days between the peak of the storm and the end of overland 

flow 
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A is the area of the watershed in square miles 

     This sample was then sent to certified laboratory, Minnesota Valley Testing 

Laboratory in New Ulm, MN, within two days of the program finishing, ensuring that the 

sample was refrigerated until it reached the laboratory to reduce any organic activity 

(Appendix A and Appendix B). Lab procedures followed USGS protocol 1-3765-85 and 

EPA protocols 365.1 and 353.2 for TSS, TP and PO4, and NO3+NO2-N, respectively 

(USGS, 1985; EPA, 1993a; EPA, 1993b). The collection bottle for TP, PO4, and 

NO3+NO2-N contained 1 ml of sulfuric acid (H2SO4) per 500 ml bottle. The rest of the 

composite sample was used to collect values for specific conductivity (Hach 

Sension156), dissolved oxygen (Oakton Waterproof Data Meter DO 300 Series), 

turbidity (Hach 2100P Turbidimeter), pH, and temperature (Oakton pH 6 Acorn series) in 

the MNSU laboratory. When base flow samples were collected, the Isco 6712 samplers 

were programmed to immediately fill two one liter bottles, to ensure that all samples 

were originating under the same sampling conditions. To ensure samples were not being 

cross contaminated and that the laboratory was consistent in their practices quality 

assurance samples in the form of duplicates and blanks often accompanied regular sample 

water (Mueller et al., 1997).  

2.3.4 Calculating Loads 

     After discharge data were finalized for each season it was combined with 

concentration results to generate approximate loads for each event or for base flow 

conditions (Appendix D). This was accomplished through the use of a spreadsheet 

created by the Minnesota Department of Agriculture to generate composite sample loads. 
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This spreadsheet converted discharge to liters and then multiplied the liters by the 

parameter concentration (in mg/L) to determine the load of the entire five minute interval. 

Then, this load was summed to generate a cumulative load for each event, month, or year.  

     In some instances, it was necessary to fill gaps in data because of equipment 

malfunctions or improper trigger levels. In the case of base flow conditions, preceding 

and succeeding base flow concentrations were averaged and input into the load model. 

Gaps in runoff events were most prominent at sites CD002 and CD001. To develop load 

ranges that accurately represented in situ conditions a number of approaches were utilized 

to create an acceptable range. One method compared the cumulative discharge of the 

event to the total calculated load at the site where the gap existed to develop a best fit 

relationship. The next two methods used sites CD004 and CD007 to scale their loads to 

CD002 and CD001, based on discharge. Finally, where possible, a relationship between 

turbidity and flow-weighted mean concentrations for total suspended solids was 

developed. This relationship was then used to generate total suspended solids loads based 

on turbidity readings gathered every fifteen minutes. To ensure that the loads used were 

accurately representing potential loads, ranges were used in the case of missed runoff 

events. The minimum and maximum estimates were selected if they fell within one and a 

half times the interquartile range. The interquartile range was used, as it is a smaller 

constraint than using the first standard deviation. In larger events, where the estimate fell 

outside of one and a half times the interquartile range, but within the first standard 

deviation, the number was used, but noted. This generated annual estimates to compare 

loads between all sites. 
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2.3.5 Uncertainty and Possible Errors 

     Uncertainty and error was considered across the sampling techniques, lab results, and 

load calculations, to better characterize a range of loads that were possible. Possible error 

was first calculated for discharge for the final hydrographs compared to the ADCP and 

Marsh-McBirney FloMate field measurements. Sample duplicates across all sites were 

then used to determine a range of error for each of the parameters. Minimum and 

maximum discharges and concentrations were then calculated based on the possible error 

within the measurement. Finally, loads were calculated using the minimum and 

maximum values to determine the range of error for each load at each site (Table 2.3). 

The noticeable higher error ranges from CD001 are based in the discharge error range. 

Discharge here was collected in an open channel, as opposed to a concrete culvert. 

Elevated error of total phosphorus and orthophosphate was generated by one duplicate 

sample that had an elevated total phosphorus and orthophosphate concentration. 

However, total suspended solids and nitrate+nitrite as nitrogen matched very well within 

the same sample as the elevated total phosphorus so the values did not seem to be errant. 

Table 2.3. Average error calculated from minimum and maximum error ranges of 

discharge and concentrations, also the percentage of discharge represented by the running 

autosampler at each site, compared to the total event discharge. 

 

TSS Avg 

Load 

Error

TP Avg 

Load 

Error

PO4 Avg 

Load 

Error

NO3+NO2 

as N Avg 

Load Error

Percent of 

Sampled Event 

Discharge

CD007 ±3.26% ±7.47% ±7.47% ±2.33% 87.86%

CD004 ±10.16% ±14.37% ±14.37% ±9.23% 77.02%

CD002 ±6.01% ±10.22% ±10.22% ±2.66% 61.58%

CD001 ±21.49% ±25.70% ±25.70% ±10.35% 45.99%
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     Finally, cumulative discharge during when the samplers were running was compared 

to overall event discharge to determine where issues in misrepresented concentrations 

may exist (Table 2.3). Overall, the samplers at CD007 and CD004 best represented the 

reported concentrations, representing 87.86% and 77.02%, respectively, of the discharge 

from all monitored runoff events. Equipment malfunctions/damage at CD002 and CD001 

resulted in samplers at those sites representing the least amount of overall storm runoff 

(61.58% and 45.99%, respectively). 

2.3.6 Principal Component Analysis 

     Principal component analysis is a method of statistical analysis that attempts to 

simplify complex datasets by developing trends or “components” within the data (Lever 

et al., 2017). The goal of the analysis is to extract variables that most accurately describe 

differences between values to provide a list of variables that are impacting the dataset the 

most. In the CD 57 watershed, principal component analysis was utilized to identify how 

various factors within the watershed were influencing discharge and loads. Data should 

be selected so that it did not overlap with other variables. Primary outputs include a 

correlation matrix, table showing total variance explained by the model, component 

matrix, and rotated component matrix. The correlation matrix contains Pearson 

correlation coefficients (r) values that describes the linear relationship between two 

datasets. The total variance explained table provides eigenvalues, which describe the 

variance explained by the newly developed components. The component matrix shows 

how well each variable fits the generated component (trend) in the data. Finally, the 
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rotated component matrix is a final correction that rotates the axes to better fit and 

explain the trends. 

     Three different principal component analyses were conducted for this study and were 

modeled after Meshram and Sharma (2017). The first compared sampleshed size, total 

discharge, total rainfall, average slope, urban land cover, corn coverage, soybean 

coverage, and the amount of C/D soils for the entire monitoring period. The second 

compared peak discharge, total rainfall, sampleshed size, urban land cover, corn 

coverage, soybean coverage, total suspended solid loads, and nitrate+nitrite as nitrogen 

loads on an event basis, between the months of July through September for 2016 and 

2017. This timespan was selected because corn and soybean vegetation was near or at full 

canopy coverage by July and crops were not harvested by the end of September, 

providing a much larger sample size to compare (n=68). The third analysis examined 

total suspended solid and nitrate+nitrite as nitrogen load differences between upstream 

and downstream sampling stations, unique watershed size (not overlapping or 

accumulating with other samplesheds), peak discharge, total rainfall by event, and rainfall 

intensity by event. This final analysis was conducted to isolate values based on exclusive 

sampleshed characteristics. 

2.4 Results 

2.4.1 Precipitation and Temperature Data 

     The 2016 and 2017 monitoring years provided two very different sampling seasons to 

assess. In terms of temperature, minimum and average monthly temperatures were 

warmer than the 1981-2010 climate normals for both 2016 and 2017, while maximum 
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monthly temperatures were only marginally higher in 2016 and cooler in 2017 (Table 

2.4) (NOAA, 2018). Precipitation was recorded across seven different locations dispersed 

throughout the watershed or on the edge of the watershed. Monthly measurements were 

compared to 1981-2010 climate normal averages and totals gathered by the Minnesota 

State Climatology Office (MSCO, 2018; NOAA, 2018). Values from the Minnesota State 

Climatology Office were generated through the interpolation of a network of professional 

and certified amateur precipitation collection stations (MSCO, 2018). Values from rain 

gauges stationed throughout the CD 57 watershed were averaged across all active sites 

(Table 2.4 and Figures 2.12-2.14). 

     For the first half of the 2016 monitoring season (March-June) the CD 57 watershed 

experienced climate normal conditions, based on the 1981-2010 climate data and all other 

comparisons (Table 2.4) (MSCO, 2018; NOAA, 2018). However, the remainder of the 

monitoring seasons (July-October) saw totals doubling climate normals for those months 

(Table 2.4). Six different storms brought average rainfall totals of over 40 mm, while a 

late September storm averaged 95 mm across the watershed, with some stations recording 

as much as 105 mm of rainfall. This September storm brought the largest single total for 

an event during both monitoring seasons. A series of mid-August storms recorded the 

highest rainfall intensities over the duration of the project, with an average of 24 mm of 

rainfall in approximately 30 minutes and then another 16 mm in approximately 30 

minutes, with average rainfall intensities of 48.6 mm/hr and 24.57 mm/hr, respectively. 

     The 2017 monitoring season more closely resembled climate normal conditions in 

terms of total precipitation during the monitoring months, but monthly totals exhibited 
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some differences. Rainfall measuring began at the beginning of April for most of the CD 

57 watershed. Rainfall totals closely compared to the 1981-2010 rainfall averages from 

April through August (MSCO, 2018; NOAA, 2018). September rainfall totals were 20-30 

mm below average conditions, while October rainfall totals were 90-130 mm above 

average (Table 2.4) (MSCO, 2018; NOAA, 2018). The 2016 monitoring season exceeded 

rainfall totals of the 2017 season by up to 335 mm (MSCO, 2018). 

 

Table 2.4. Observed monthly temperatures and precipitation averages for Mapleton, MN 

with 1981-2010 climate normal averages for Mankato, MN. 
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Figure 2.12. Monthly precipitation graph for 2016 and 2017, with climate normal data included. 
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Figure 2.13. 2016 cumulative rainfall totals for each site in the CD 57 watershed.  
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Figure 2.14. 2017 cumulative rainfall totals for each site in the CD 57 watershed.
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2.4.2 Hydrologic Data 

     Monitored discharge for 2016 commenced in early March and continued until early 

November. This record captured all rainfall during that year except for a series of late 

November to early December storms totaling ~45 mm over a two and a half week period. 

Discharge totals from storms ranged by site from 7.4x106 liters at CD007, during a runoff 

event in mid-July, to 1.55x109 liters at CD001, during a late September runoff event 

(Table 2.5). The month of July, while it was the third highest month for rainfall totals that 

year, was the lowest month for discharge in 2016. September featured the largest storm 

total during both 2016 and 2017, the most precipitation during a single month, and the 

highest discharge totals for any month during the project (Table 2.5, Figure 2.15-22, and 

Figure 2.23). 
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Figure 2.15. Stage and discharge hydrographs for CD007, the most upstream monitoring station, in 2016. The highest peak 

discharge at this site was recorded in late September (1,940 L/s). 
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Figure 2.16. Stage and discharge hydrographs for CD007, the most upstream monitoring station, in 2017. In August and 

September, discharge dropped to 0 L/s. The highest peak discharge was recorded in late April (825 L/s) 
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Figure 2.17. Stage and discharge hydrographs for CD004, at the downstream end of the surge basin, in 2016. The highest peak 

discharge was recorded in late September (1,736 L/s). 
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Figure 2.18. Stage and discharge hydrographs for CD004, at the downstream end of the surge basin, in 2017. In August and 

September, discharge dropped to 0 L/s. The highest peak discharge was recorded in mid-May (710 L/s) 
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Figure 2.19. Stage and discharge hydrographs for CD002, at the downstream end of the two-stage ditch, in 2016. The highest 

peak discharge was recorded in late September (2,341 L/s). 
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Figure 2.20. Stage and discharge hydrographs for CD002, at the downstream end of the two-stage ditch, in 2017. In August 

and September, discharge dropped to 0 L/s. The highest peak discharge was recorded in late April (868 L/s). This stage 

hydrograph features periods during which the area-velocity probe was damaged and can be seen near Jul-17. 
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Figure 2.21. Stage and discharge hydrographs for CD001, at the rate control weir, in 2016. The highest peak discharge was 

recorded in late September (7,439 L/s). 
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Figure 2.22. Stage and discharge hydrographs for CD001, at the rate control weir, in 2017. In August and September, 

discharge dropped to 0 L/s. The highest peak discharge was recorded in late April (2,105 L/s). This stage hydrograph features 

periods where the collection probe was damaged and level data was not collected (~May-June) 
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     Peak discharge values for each event were recorded for each sampling location and 

compared to determine whether the structural practice could effectively reduce peak 

discharge (Figure 2.24, Table 2.5, and Table 2.6). In 2016, the surge basin exhibited the 

highest efficiency rates at reducing peak discharge below the rate of the upstream site 

87% of the time (Figure 2.23). The surge basin also effectively delayed the peak from 

CD007 to CD004 in every runoff event by at least 2 hours and by an average of 9 hours 

(Table 2.5). Neither the two-stage ditch nor the rate control weir exhibited reduction rates 

below the upstream site. The two-stage ditch did delay peak rates ~70% of the time, by at 

least 2.5 hours. However, ~30% of the time, peak rates were measured in the two-stage 

ditch prior to the surge basin. Peak discharge ranged from 77 L/s, recorded at the 

downstream end of the surge basin in early June, to 7,439 L/s, interpolated at the rate 

control weir during late September. 

     Discharge monitoring started later in 2017 (between late March and early April) 

because of late season snowfall and below freezing temperatures (Table 2.6). Up to ~43 

mm of rainfall was missed from March 1st to April 14th when the last equipment was 

installed. Discharge totals from storms ranged from 1.91x106 liters at CD007, during a 

runoff event in mid-August, to 2.94x108 liters at CD001, during a late April to early May 

runoff event. Monthly discharge was lowest for all sites in September, which also had the 

lowest rainfall totals, despite having the third lowest rainfall totals during the monitoring 

season. 

     Similar to the 2016 season, the surge basin effectively reduced peak discharge 88% of 

the time in 2017 (Table 2.6). It also achieved peak discharge delays by at least 0.42 hours 
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and by an average of 3.33 hours. The two-stage ditch effectively reduced peak discharge 

41% of the time, while prolonging the peak by at least 0.67 hours and an average of 1.01 

hours. Peak discharge was lower at the rate control weir during one August event, while 

the peak was delayed 65% of the time by at least 0.08 hours and on average 2.42 hours. 

Peak discharge ranged from 34 L/s in the two-stage ditch in early October, to 2,105 L/s at 

the rate control weir at the end of April. 

 

Figure 2.23. Cumulative discharge for all sites from 2016 and 2017. Typically, discharge 

increased downstream, but in some cases there was loss of discharge after a structural 

practice. 
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Figure 2.24. Example of typical hydrographs seen from the four water quality monitoring 

stations in County Ditch 57. This example comes from a late October storm in 2016. 

CD007, the site furthest upstream, feature flashy discharge. CD004, the site downstream 

of the surge basin, almost always saw a reduction and elongated peak. CD002, the site 

downstream of the two-stage ditch, typically saw an increase in discharge rates, but did 

not always exceed those seen at CD007. CD001, the site at the rate control weir, typically 

did not see an elongated peak, unless the Cobb River was controlling the local base level.  
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Table 2.5. Runoff event discharge parameters for the 2016 monitoring season. Peak delay calculations not available for 

CD001, given required extrapolation of data from CD002 to CD001. Shaded cells signify reductions. 
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Table 2.6. Runoff event discharge parameters for the 2017 monitoring season. Shaded cells signify reductions. 
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2.4.3 Total Suspended Solids 

     Loads for total suspended solids in 2016 exhibited variable reduction, depended on the 

structural practice (Figure 2.25 and Appendix C). However, while the surge basin 

reduced loads 65% of the time, overall exports during events supplied 22,263 kg more 

than the upstream station. This is attributable, in part, to the storm in late September, 

during which 23,004 kg of total suspended solids were added by the surge basin. The 

next largest instance of suspended solids being added by the pond was 2,620 kg during a 

runoff event in late April. The largest instance of storage within the surge basin occurred 

during a late March event, where 1,889 kg were removed. Total event loads and event 

averages both increased moving downstream while reduction capability decreased. The 

two-stage ditch reduced loads in 22% of the monitored events, while the rate control weir 

reduced loads only 9% of the monitored events. The largest addition of suspended solids 

from the two-stage ditch came during a late August event, where 4,948 kg were added, 

while the largest storage came during the late April event, where 2,724 kg were stored. 

Water that moved through the primary treatment region (the surge basin and the two-

stage ditch) was reduced during seven events, while net exports totaled 36,025 kg (Figure 

2.27). Water leaving the watershed was reduced from the two-stage ditch to the rate 

control weir on two occasions, with an additional 311,633 kg being added. A series of 

storms in in mid-May resulted in 3,357 kg of storage, the only instance during 2016. 

However, this is offset by a mid-June event where 119,247 kg were added by the time it 

left the watershed. 
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Figure 2.25. Total suspended solid event load comparisons for 2016. 
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     Trends in load reduction for 2017 varied moderately from flow-weighted mean 

concentrations. The surge basin removed suspended solid loads 82% of the time, while 

the total load supplied downstream of the surge basin resulted in a net reduction of 1,890 

kg of suspended solids (Figure 2.26 and Appendix C). The greatest addition of solids 

from the surge basin to the downstream watershed was 1,042 kg from a late April event, 

while the greatest removal of 1,515 kg came from a mid-May event. On average, the 

surge basin removed 111 kg of sediment during each event. The two-stage ditch reduced 

suspended solids 12-18% of the time and contributed between 189-563 kg more during 

each event. The biggest addition from the two-stage ditch was from a late October storm 

and ranged from 1,882-3,747 kg. The largest removal by the two-stage ditch came during 

a late April event, where 541 kg of solids were removed, however an early October event 

ranged from 4-734 kg removed. On average, the two-stage ditch supplied 189-563 kg of 

suspended solids each event. After the primary treatment region, the load increased by 

between 1,322-7,685 kg (Figure 2.28). Water leaving the watershed at the rate control 

weir had reduced suspended solids in 12% of events and exported between 90,380-

159,154 kg of suspended solids. Averages of 5,316-9,362 kg of additional sediment were 

supplied between the rate control weir and the two-stage ditch. 
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Figure 2.26. Total suspended solid event load comparisons for 2017. 
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Figure 2.27. CD007 total suspended solid loads compared to CD002 total suspended solid 

loads for 2016. 

 
Figure 2.28. CD007 total suspended solid loads compared to CD002 total suspended solid 

loads for 2017. 
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2.4.4 Nitrate and Nitrite as N 

     Load reduction and concentration reduction differed greatly in 2016 (Figure 2.29). 

The surge basin only reduced loads from events 35% of the time, while providing an 

additional 1,877 kg (an average of 82 kg per event) of nitrate+nitrite as nitrogen to the 

downstream watershed. The two-stage ditch reduced loads 13% of the time, while 

providing a total of 3,178 kg (138 kg per event) to the downstream watershed. Water 

passing through the primary treatment region were reduced in two events, resulting in an 

overall addition of ~5,055 kg (Figure 2.31). Loads were never decreased moving through 

the rate control weir, while 88,900 kg (3,865 kg per event) extra were added. Final loads 

leaving the rate control weir amounted to 108,216 kg. 

     The 2017 reduction capability matched more closely to the concentration reduction 

than 2016 (Figure 2.30). The surge basin reduced loads in 71% of events and removed 

630 kg (37.1 kg per event). The largest removal in 2017 was by the surge basin during a 

late October event, where 368.2 kg were stored by the basin. The two-stage ditch reduced 

loads 29% of the time, while adding 1,142 kg (67.2 kg per event). Loads within the 

primary treatment region were reduced 41% of the time, but still resulted in a net addition 

of 511 kg of nitrate+nitrite as nitrogen to the downstream watershed (Figure 2.32). Loads 

moving through the rate control weir were reduced 18% of the time, but amounted to 

13,973 kg more (822 kg per event). Final event loads leaving the watershed at the rate 

control weir amounted to 18,533, nearly six times less than 2016.  
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Figure 2.29. Nitrate+nitrite as nitrogen event load comparisons for 2016. 
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Figure 2.30. Nitrate+nitrite as nitrogen event load comparisons for 2017. 
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Figure 2.31. CD007 nitrate+nitrite as nitrogen loads compared to CD002 nitrate+nitrite as 

nitrogen loads for 2016. 

 

Figure 2.32. CD007 nitrate+nitrite as nitrogen loads compared to CD002 nitrate+nitrite as 

nitrogen loads for 2017. 
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2.4.5 Total Phosphorus and Orthophosphate 

     Total phosphorus and orthophosphate loads for 2016 did not see significant reduction 

(Figure 2.33 and Figure 2.34). The surge basin reduced loads in 26% of events, resulting 

in a net addition of 128 kg of total phosphorus downstream. Orthophosphate loads were 

reduced 9% of events, while still contributed 81 kg more downstream. The two stage 

ditch and the rate control weir reduced loads only 4% of the time. In comparison to the 

surge basin, the two-stage ditch contributed another 109 kg of total phosphorus, 16 kg 

less than the surge basin. The watershed between the rate control weir and two-stage 

ditch added 1,165 kg of total phosphorus more than the two-stage ditch. The two-stage 

ditch reduced loads of orthophosphate in 26% of events, the most frequent between the 

structures, while contributing 47 kg more downstream, nearly half that of the surge basin. 

The rate control weir never recorded reductions in orthophosphate loads and contributed 

613 kg more downstream than the two-stage ditch. Total phosphorus loads after the 

primary treatment region were reduced in one of the events, and 237 kg were added to the 

watershed (Figure 2.37).Orthophosphate loads after the primary treatment region were 

reduced in two events, adding 128 kg to the watershed (Figure 2.37). 

     Load reductions in 2017 were, overall, more efficient than 2016 (Figure 2.35 and 

Figure 2.36). The surge basin recorded reductions in 41% of events, while contributing a 

net addition of 10 kg downstream. Orthophosphate was reduced 24% of events and 

contributed 4 kg downstream, the lowest out of the structures. The two-stage ditch 

removed total phosphorus 6-24% of the time, while contributing 22-38 kg downstream. 

Orthophosphate was reduced 12-24% of the time, adding 10-17 kg downstream. The 
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watershed between the rate control weir and the two-stage ditch reduced loads 6-12% of 

events, adding 439-670 kg of total phosphorus downstream. Orthophosphates were 

reduced 12-18% of the time, contributing 209-309 kg to the downstream watershed. Total 

phosphorus loads within the primary treatment region were reduced 5-18% of the time 

and resulted in additions of 31-48 kg downstream (Figure 2.37). Orthophosphate loads 

within the primary treatment region were reduced in 12-17% of events, while 

contributing 14-21 kg downstream (Figure 2.37). 
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Figure 2.33. Total phosphorus event load comparisons for 2016. 
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Figure 2.34. Orthophosphate event load comparisons for 2016. 
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Figure 2.35. Total phosphorus event load comparisons for 2017. 



115 

 

 
Figure 2.36. Orthophosphate event load comparisons for 2017. 
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Figure 2.37. Total phosphorus and orthophosphate event load comparisons for 2016. 
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Figure 2.38. Total phosphorus and orthophosphate event load comparisons for 2017. 
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2.4.6 Principal Component Analysis 

     Outputs of the principal component analysis included a correlation matrix, total 

variance explained table, component matrix, and rotated component matrix. The first 

principal component analysis compared sampleshed size, discharge, rainfall, average 

slope, C/D hydrologic soils, and urban, corn, and soybean land covers (Tables 2.7 -2.10). 

It should be noted that rainfall intensity was utilized in previous models, but was 

removed because it was not a significant factor. The first two components generated 

eigenvalues higher than 1, accounting for 84.77% of the total variance between the 

variables (Table 2.8). A third component that was just below an eigenvalue of 1 (0.969) 

was also included, and raised the explained variance to 97.64% (Table 2.8). The first 

component in the unrotated component matrix shows very strong (0.80-1.0) positive 

correlations with urban area, C/D soils, sampleshed size, corn coverage, soybean 

coverage, and discharge (Table 2.9) (Evans, 1996). The other two variables, total rainfall 

and average slope, had very weak (0.00-0.19) positive and weak (0.20-0.39) negative 

correlations. The second component had a single very strong positive correlation with 

total rainfall, a moderate positive correlation with discharge, weak negative correlation 

with soybean coverage, and very weak positive and negative correlations with the other 

variables. The third component also featured a single very strong positive correlation to 

average slope and very weak positive and negative correlations with the other variables. 

     The first component of the rotated component matrix is very strongly positively 

correlated to C/D soils, sampleshed size, urban area, corn coverage, and soybean 

coverage, strongly (0.60-0.79) positively correlated to discharge, and very weakly 
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negatively correlated to total rainfall and average slope (Table 2.10). The second 

component is very strongly positively correlated to total rainfall, with strong positive 

correlation to discharge, weak positive correlation to urban area, and very weak positive 

and negative correlation with the other variables. Finally, the third component is very 

strongly positively correlated to average slope, and very weakly positively and negatively 

correlated to all other variables. 

     This analysis primarily compared annual watershed parameters like land cover, 

rainfall, discharge, and slope. The first of the three generated components in the rotated 

component matrix can be deemed an area component. An increase in the size of the 

sampleshed correlated very strongly or strongly with C/D soils, urban area, corn 

coverage, soybean coverage, and discharge. All of those variables increased in hectares 

or liters as the size of the sampleshed increased. Total rainfall and average slope were 

independent of sampleshed size and were very weakly negatively correlated to the 

component. The second component showed very strong and strong positive correlations 

to rainfall and discharge, respectively, and show that increasing discharge and increasing 

rainfall are connected. The third component is a component explaining slope and shows 

that no other compared variable was impacting the slope of the watershed. 

     The second principal component analysis compared total suspended solid loads, 

nitrate+nitrite as nitrogen loads, peak discharge, total rainfall, sampleshed size, urban 

area, corn coverage, and soybean coverage on a runoff event basis between July and 

September for both 2016 and 2017 (Tables 2.11-2.14). Two components were generated 

with eigenvalues greater than 1, which accounted for 90.50% of the variance within the 
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components (Table 2.12). The first component in the unrotated component matrix 

features very strong, positive correlations with urban area, corn coverage, and 

sampleshed size, strong positive correlations to soybean coverage, peak discharge, total 

suspended solids loads, and nitrate+nitrite as nitrogen loads, and weak positive 

correlation with total rainfall (Table 2.13). The second component exhibited strong 

positive correlations to total suspended solid loads and total rainfall by event, moderate 

positive correlations to peak discharge and nitrate+nitrite as nitrogen loads, and moderate 

negative correlations to all other variables (Table 2.13).  

     The rotated component matrix featured some distinct differences when compared to 

the unrotated matrix. The first component features very strong positive correlations to 

sampleshed size, urban area, corn coverage, and soybean coverage, with weak positive 

correlations to peak discharge and nitrate+nitrite as nitrogen loads, very weak positive 

correlations to total suspended solids loads, and very weak negative correlation to total 

rainfall (Table 2.14). The second component was very strongly positively correlated to 

total suspended solids loads, nitrate+nitrite as nitrogen loads, and peak discharge, strong 

positive correlations to total rainfall, weak positive correlations to urban area and corn 

coverage, and very weakly positively correlated to sampleshed size and soybean coverage 

(Table 2.14). 

     The second principal component analysis compared sites by land use, rainfall, 

discharge parameters, and total suspended solid loads. The first of the two components in 

the rotated component matrix is positively correlated to all variables except total rainfall, 

but given very strong correlations to urban area, corn coverage, sampleshed size, C/D 
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soils, and soybeans, this component can be deemed an area component, similar to the 

annual parameters component analysis. Moderate correlations to peak discharge, total 

suspended solid loads, and total discharge also support this component, as each of those 

parameters should increase with area. Total rainfall is independent of size, therefore it is 

the weakest correlation within the first component. The second component was very 

strongly positively correlated to discharge, peak discharge, total rainfall and total 

suspended solid loads. This component shows that as one of those variables increase, the 

rest tend to as well. As discharge increases, peak discharge and total suspended solid 

loads should as well, while this is most likely because of increasing total rainfall.  

     The third analysis attempted to isolate the comparison to unique differences between 

samplesheds (Tables 2.15-2.18). It explained 71.47% of the variance with two generated 

components (Table 2.16). The first component featured very strong positive correlations 

to differences in total suspended solid loads, nitrate+nitrite as nitrogen loads, and peak 

discharge, strong positive correlation to total rainfall, weak positive correlation to unique 

sampleshed area, and very weak negative correlation to rainfall intensity (Figure 2.17). 

The second component featured strong positive correlation to unique sampleshed size, 

weak positive correlation to rainfall intensity and differences in nitrate+nitrite as nitrogen 

loads, very weak positive correlation to differences in total suspended solid loads, weak 

negative correlation to peak discharge, and moderate negative correlation to total rainfall. 

     The first component of the rotated component matrix featured very strong positive 

correlation to differences in total suspended solid loads, differences in nitrate+nitrite as 

nitrogen loads, peak discharge, and total rainfall, weak positive correlation to unique 
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sampleshed area, and very weak negative correlation to rainfall intensity (Figure 2.18). 

The second component featured strong positive correlation to unique sampleshed area, 

weak positive correlation to rainfall intensity and differences in nitrate+nitrite as nitrogen 

loads, very weak positive correlation to differences in total suspended solid loads, weak 

negative correlation to peak discharge, and moderate negative correlation to total rainfall. 

     The third component analysis helped to determine which compared values were not 

contributing to changes in the compared parameters. The first component featured strong 

relationships between differences in total suspended solid loads, nitrate+nitrite as 

nitrogen loads, peak discharge, and total rainfall by event, and could be deemed a 

reduction component. Reductions in peak discharge, total suspended solids, and 

nitrate+nitrite as nitrogen loads were more likely to occur together and these differences 

would relate to the amount of rain falling on the watershed. The second component 

feature weaker relationships with unique sampleshed size and rainfall intensity 

correlating more strongly than the other variables. However, rainfall intensity did not 

correlate strongly within the component and unique sampleshed size did not relate to any 

other variables, suggesting that both of these variables were ineffective and did not 

contribute to differences in loads. 

     The first two component analyses suggest that there is a weak relationship between 

land use and in-channel parameters. In both rotated component matrices the 

discharge/rainfall relationship is best explained by the second component, and only 

weakly correlates to land use tendencies within the watershed. However, when examining 

the components that explain in-channel parameters it is interesting to note that corn and 
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urban coverage are the most highly correlated of the “size” variables. This is true in both 

the annual and event-based component analyses. Soybean coverage, on the other hand, is 

very weakly negatively correlated in the annual analysis and very weakly positively 

correlated in the event analysis, suggesting that soybean cultivation in the watershed has 

no effect on in-channel tendencies. The third component analysis helps single out 

parameters that played more (i.e. peak discharge or total rainfall) or less (i.e. unique 

sampleshed size or rainfall intensity) of a role in changing loads. 
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Table 2.7. Correlation matrix for the first principal component analysis that examined annual parameters for both years. 

 

Table 2.8. Total variance explained showing how well the generated components were able to explain the variables. 
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Table 2.9. Component matrix showing the three generated components used to explain 

and clump variables. 

 

Table 2.10. Rotated component matrix showing how well the variables are explained 

when the axes are rotated to better fit the variables. 
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Table 2.11. Correlation matrix for the second principal component analysis that focused on events from July to September of 

both years. 

 

Table 2.12. Total variance explained showing how well the generated components were able to explain the variables. 
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Table 2.13. Component matrix showing the two generated components used to explain 

and clump variables. 

 

Table 2.14. Rotated component matrix showing how well the variables are explained 

when the axes are rotated to better fit the variables. 
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Table 2.15. Correlation matrix for the third principal component analysis that focused on event differences from July to 

September of both years. 

 

Table 2.16. Total variance explained showing how well the generated components were able to explain the variables. 
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Table 2.17. Component matrix showing the two generated components used to explain 

and clump variables. 

 

Table 2.18. Rotated component matrix showing how well the variables are explained 

when the axes are rotated to better fit the variables. 
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2.5 Discussion 

2.5.1 Discharge, Precipitation, Loads and Yields 

     The efficacy of the structural practices in the CD 57 watershed at reducing peak 

discharge, sediment loads, and nutrient loads varied throughout the monitoring extent. As 

a whole, peak discharge and contaminant loads were little altered, though individual 

structures may have had increased capacity for reduction. The two monitored years 

represented quite different hydrologic regimes (Table 2.4 and Table 2.5). The 2016 

monitoring season was far wetter than 2017, with nearly 300 mm more rainfall (Table 

2.4). This difference was consistent across discharge totals and peak discharge, with 

~2.5-3.0 times more annual discharge at each site in 2016, compared to 2017. However, 

it is not unlikely that similar years will become more common as increases in total 

precipitation, precipitation intensity, and total discharge are recorded across southern 

Minnesota (Novotny and Stefan, 2007; Schottler et al., 2014; Gupta et al., 2015; Kelly et 

al., 2017). 

     Although 2016 may represent a wetter year, compared to a typical climate year, it 

shows that the structural practices were capable of regularly exporting sediment and 

nutrient loads. Peak discharge was consistently reduced within the surge basin, however 

this did not translate to reduced loads, overall. Comparatively, 2017 represented a more 

climate normal year in terms of total rainfall, but net export or no change (within the 

range of error) in loads was observed throughout the structures. In 2017, peak discharge 

was reduced with greater frequency within both the surge basin and two-stage ditch, but 

this did result in an improved ability to reduced overall loads. This suggests that reducing 
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peak discharge, one of the main goals of the structural practices, does not result in 

improving load reduction, and that other forces are driving loads throughout the 

watershed. 

     In the case of the CD 57 surge basin, peak discharge, total suspended solids, and 

nitrate+nitrite as nitrogen loads saw the most consistent reduction. In 2017, nitrate+nitrite 

as nitrogen loads were reduced most often in the surge basin, where lengthier residence 

times allowed for greater removal by riparian and aquatic vegetation. However, total 

phosphorus and orthophosphate loads were less likely to be reduced throughout the surge 

basin. This supports findings in Kröger et al. (2012) that suggest that phosphorus is not as 

easy to mitigate as nitrogen, as it does not exist in a gaseous state. Furthermore, Hansen 

et al. (2018) suggests that wetland/basin placement can be a key factor in mitigation 

efficiency. When placed further downstream, in a location that captures more of the 

watershed, wetlands were shown to be more efficient at reducing nutrients than if they 

were placed further upstream (Hansen et al., 2018). The CD 57 surge basin is near the top 

of the watershed and, therefore, does not treat as much water as it could if it had been 

placed further downstream. While the upper portion of the watershed features the 

majority of the structural practices, a section of open channel exists for nearly 4 km that 

is only treated by buffer strips. This could serve as a prime location for further structural 

practices while serving to add temporary storage in the middle portion of the watershed 

and alleviating pressure on the rate control weir downstream. Finally, the surge basin 

(1.21 ha in size) is positioned to treat water from 732 ha. Throughout the monitoring 

project, the diversionary weir that redirects water into the surge basin was overtopped on 
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eleven separate occasions. This would suggest that the pond is undersized for the amount 

of water it is required to treat. A previous wetland, mapped by the first surveyors in the 

region, did exist and was ~135 ha in size. A wetland this size would most likely be able 

to help mitigate peak discharges loads to a higher degree, but the wetland has been 

drained and the open channel of the ditch now runs through where the wetland used to be. 

     The two-stage ditch was also highly variable in its ability to reduce the measured 

parameters. It never reduced peak discharge in 2016 and did so less than half of the time 

in 2017. It did not consistently reduce total suspended solid loads during events in either 

year, only reducing them 12-22% of the time. The two-stage ditch did not generate 

considerable reduction in any of the other parameters during runoff event periods in 

either year. Residence times can be key to reducing sediment and nutrients within these 

structures (Woltemade, 2000; Kröger et al., 2012). Given lengthier residence times 

during base flow conditions, it would appear that the two-stage ditch is more capable at 

reducing the measured parameters, however load transport is not occurring in elevated 

levels during base flow. While more time in the two-stage ditch may lower loads, to a 

degree, it does not currently impact loads throughout the season. 

     It should be noted that two-stage ditch in the CD 57 watershed does not exhibit the 

typical characteristics of other two-stage ditches in the region (MNDNR, 2016). As 

described previously, a two-stage ditch is characterized by wider shoulders, a wider base, 

and is constructed with flat benches that simulate a natural floodplain (Figure 1.20) 

(Powell et al., 2007b; Kröger et al., 2013; Mahl et al., 2015; Roley et al., 2016). Based on 

an unpublished 2014 Minnesota Department of Natural Resources geomorphic survey of 
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the CD 57 two-stage ditch, they concluded that the channel is oversized, the bench is too 

narrow, it lacks sinuosity, and it does not feature an effective floodplain (MNDNR, 

2016). With time, a more stable floodplain and channel could form, but until then the 

structure does not exhibit the correct characteristics of a two-stage ditch. In their report, 

they also note up to a meter of fine sediments on top of the hard bottom of the channel. 

This suggests that much of the sediment moving through the two-stage ditch is being 

temporarily stored within the channel, instead of being deposited on a floodplain. Load 

reductions through the two-stage ditch are most likely attributable by an undersized 

culvert (1.4 m) that constricts flow and results in ponding that extends upstream, 

potentially as far as the surge basin. 

2.5.2 Flow-Weighted Mean Concentrations vs. Loads/Yeilds 

     Flow-weighted mean concentrations and loads for each of the parameters featured key 

differences between them (Figures 2.39-2.42). In 2016 and 2017, reduced concentrations 

did not necessarily lead to reduced loads. While a number of parameters saw consistent 

average reductions in flow-weighted mean concentrations during event runoff, positive 

exports were frequently observed. Loads may have been reduced during individual 

events, but not enough to result in a net reduction. In 2017, the surge basin potentially 

resulted in net reductions of total suspended solid loads and nitrate+nitrite as nitrogen 

loads, similar to concentration reductions. This reduction is most likely in the form of 

temporary storage within the basin. The MNDNR (2016) report notes the presence of a 

source of sediment and nutrients in the form of fine-grained muck throughout the channel 
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bottom. This sediment is easily disturbed, mobilized, and entrained and may be a primary 

settling location for temporarily stored sediments. 

     While the 2016 monitoring season exhibited multiple parameters with reduced 

concentration averages, the net export from every site is most likely a product of the 

entrainment of this temporarily stored sediment package. As the sediment is remobilized, 

decayed organic matter, silts, and clays are also mobilized. The larger storms from the 

2016 monitoring season were able to entrain and move increased quantities of the 

measured parameters, scouring the channel, and resulting in the net export, rather than net 

reduction. Noted increases in peak discharge, total discharge, and precipitation since the 

1940s would suggest that this trend will continue (Knox, 2000; Zhang and Schilling, 

2006; Novotny and Stefan, 2007; Nangia et al., 2010; Schottler et al., 2014; Gupta et al., 

2015; Belmont et al., 2016; Kelly et al., 2017). Furthermore, increases in erosivity given 

flashier hydrologic regimes (Schottler et al., 2014) would have a higher capability to 

further incise and entrain temporarily store sediments and nutrients. 

     Relatively larger runoff events, like the mid-June, mid-August, and late September 

events in 2016 and the mid-July and early October events in 2017, dominated loads 

across most of the parameters. For example, in all instances where the surge basin 

reduced total suspended solid loads in 2016, net reduction totaled -5,570 kg. However, 

the late September storm resulted in a net export of 23,004 kg of total suspended solids, 

completely offsetting any stored sediments. This was similar for all other parameters 

within the surge basin and leaving the watershed at the rate control weir. This varied in 

the two-stage ditch, with some total suspended load storage during the September event, 
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but followed the previous trend for all other parameters. In 2017, these trends were not 

consistent. The largest event, a late April to early May event, did not export nearly as 

much as the September 2016 event and the 2017 watershed was not nearly as saturated as 

the 2016 watershed. Therefore, water was more likely to be contained within the main 

channel and did not scour as often or mobilize temporary sediment and nutrients stored 

on the banks or in the channel as often. These differences between years shows that CD 

57 can be overwhelmed by larger runoff events and that concentration reduction does not 

translate to load reduction over longer (multi-event or multi-annual) temporal scales. 

     One other factor to consider is tile influence within the samplesheds (Figure 2.39 and 

Figure 2.40). While tiles were not directly monitored for water quality, their overall 

impact on each sampleshed should be considered. Tile is densely laid within the southern 

and eastern portions of the watershed, but exists throughout the entire watershed. Tile 

lines are typically larger contributors to forms of nitrogen, such as nitrate+nitrite, within 

watersheds (Blann et al., 2009). The CD001 and CD007 watersheds consistently exhibit 

higher event and annual concentrations, yields, and loads for nitrate+nitrite as nitrogen. 

These samplesheds feature densely tiled regions draining agricultural fields. When 

comparing tile drainage location to the parameters assessed in the study, nitrate+nitrite as 

nitrogen does not exhibit trends of increasing concentrations, loads, or yields that most of 

the other parameters do. Previous work within the watershed alluded to increased 

concentrations of nitrate+nitrite as nitrogen downstream of where tile discharged into the 

watershed (ISG, 2015b) and this is consistent with concentration results from this study. 
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Figure 2.39. Annual yields and concentrations with county main and pattern tile (2016) 

Total suspended solid concentrations and yields increased downstream, while 

nitrate+nitrite as nitrogen concentrations and yields were highest in the CD007 and 

CD001 watersheds. 
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Figure 2.40. Annual yields and concentrations with county main and pattern tile (2017). 

Similar to 2016, total suspended solid yields and concentrations tended to increase 

downstream, with the exception of elevated levels within the CD004 watershed, 

downstream of the surge basin. Unlike 2016, however, the upper portions of the 

watershed (CD004 and CD007, above the surge basin) featured the highest 

concentrations, while the CD007 and CD001 watersheds exhibited the highest yields. 
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Figure 2.41. Annual water quality results for each sampleshed in the CD 57 watershed for 

2016.  
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Figure 2.42.Annual water quality results for each sampleshed in the CD 57 watershed for 

2017. 
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2.5.3 Economic and Management Implications 

     The total cost to reengineer CD 57 was ~$1,311,600 in 2010-11, $485,000 of which 

came from funds set aside by taxpayers of Minnesota. The total cost to construct the 

surge basin came to $148,320, or $4.57 per cubic meter of storage (ISG, 2015a). The 

incremental cost for the two-stage ditch totaled $26,920, or $58.22 extra per meter, 

relative to a conventional ditch construction project (ISG, 2015a). These structures were 

designed primarily to reduce peak discharge. While peak discharge may have been 

reduced within the pond, it did not impact the overall water quality downstream. This 

suggest that the surge basin is not cost-effective and that the cost to maintain and clean 

the pond could readily outweigh its benefits. The two-stage ditch, which is not 

characteristic of a two-stage ditch, would need extensive alterations to meet the required 

conditions or would need to be left alone and uncleaned so it could build a floodplain. 

This suggests that the two-stage ditch is also cost-ineffective and that the cost to fix/clean 

the ditch would quickly outweigh any benefits. With ~70 similar projects planned by a 

single engineering firm, as of 2015 (ISG, 2015a), the observed tendencies of the CD 57 

structural practices suggest that current structural practices in the area need to be 

reevaluated to determine their cost-effectiveness. 

     A primary option to achieve the potentially desired reductions would be to upscale the 

various structural practices so that they could better handle larger discharges, more 

sediment, and more nutrients (Hansen et al., 2018). However, such increases require 

more land potentially removed from agricultural use and would also require considerably 

more funding, to a point where the cost could potentially exceeds what landowners are 
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able to support. As mentioned, a considerable number of other projects are planned for 

south-central Minnesota. This could result in hundreds of millions of dollars in required 

funding to achieve the desired results. Also, it is difficult to say whether the current plan 

for distribution and scale of these structures is sufficient to meet the needs for peak 

discharge and contaminant reduction where concern is the greatest, within the GBERB. 

For the LSR, which struggles with flashy flows and increased sediment loads, primarily 

from bluff erosion, increased storage in the uplands may be a preferable option (MPCA, 

2015b). Decreases in peak discharge, which the CD 57 surge basin has shown itself 

capable of achieving to a degree, would help to release water more slowly to the 

downstream watersheds and could help reduce bluff erosion. However, in the case of CD 

57, the placement of the pond and the length of open channel between the two-stage ditch 

and the rate control weir consistently allow discharge to increase again. A series of surge 

basins, positioned throughout the watershed, could potentially help to mitigate this issue, 

but cost and landowner collaboration would have to be considered (Mitchell, 2015). 

2.5.4 Future Considerations 

     The structural practices of CD 57 have the potential for influence over a much longer 

time period than the structures may last. These structures may exist as sinks of sediment 

and nutrients currently, but will most likely continue to be a source of elevated sediments 

and nutrients over an extended time. The sediment and nutrients stored in the surge basin 

or two-stage ditch will continue to be stored there until it is either manually cleaned and 

the sediment removed or it is remobilized during runoff events. While it is stored in those 

structures there is a potential for nutrient uptake, but there is also a potential for the 
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nutrients to move into the groundwater supply and cause further concern elsewhere. 

However, while it is difficult to estimate how long such a supply could last in the soil and 

groundwater, it is a factor that should be considered when implementing practices like 

those seen in CD 57. Anthropogenic influences to hydrology, land use, and climate need 

to be considered in the present and the future to determine whether the current suite of 

best management practices really is the best. Managing current and future water quality 

issues from county ditches to the regional rivers will depend on the ability to install 

appropriate practices for in the most effective ways. 

2.6 Conclusion 

     The 2016 and 2017 monitoring seasons provided very different examples of how the 

structures within County Ditch 57 could perform. Over runoff event conditions, the surge 

basin in the CD 57 watershed was capable of removing the most nutrient and sediment 

from the watershed. It was also the most capable at reducing peak discharge. The two-

stage ditch could see increased ability to reduce peak discharge and loads, but it does not 

currently exhibit the characteristics of a typical two-stage ditch and lacks many of the 

features that make them more successful. With a multitude of water quality improvement 

projects being constructed across southern Minnesota and across the Midwest, the results 

from these two years of monitoring help to show positive and negative aspects of each of 

the examined structures. This project can help inform watershed management practices, 

provide examples for potential structural efficiency in similar watersheds, and serve as a 

case study for typical modified agricultural drainages in this region of the world.  
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Chapter 3: Comparing Modified Agricultural Drainages in the Greater 

Blue Earth River Basin 

3.1 Background 

3.1.1 Regional Characteristics 

     Modified agricultural drainages, watersheds that have been reengineered to effectively 

control the flow of water, has seen widespread increases over the last century to maintain 

high crop yields (Pavelis, 1987; Skaggs et al., 1994; Mitsch et al., 2001b; Needelman et 

al., 2007; Herzon and Helenius, 2008; Blann et al., 2009; Schottler et al., 2014; Kelly et 

al., 2017). The amount of drained lands in the Mississippi-Atchafalaya River basin 

(MARB) of the United States has increased from approximately 24,000 to 280,000 km2 

over the last 115 years (Mitsch et al., 2001b). This increase matches well with increases 

in erosivity, sediment loads, nutrient loads, and poor water quality conditions such as 

eutrophication and hypoxia (Carpenter et al., 1998; Goolsby et al., 1999; Tilman, 1999; 

Goolsby et al., 2000; Lawrence et al., 2000; Goolsby and Battaglin, 2001; Goolsby et al., 

2001; Smith et al., 2003; Alexander et al., 2008; Schottler et al., 2014). 

     The Minnesota River basin (MRB) of southern Minnesota, a tributary to the MARB, 

(Figure 1.2) has experienced increases in suspended sediment loads, nutrient loads, and 

annual discharge (Payne, 1994; Magdalene, 2004; Petrolia and Gowda, 2006; James and 

Larson, 2008; Mulla and Sekely, 2009; Musser et al., 2009; Wilcock, 2009; Belmont et 

al., 2011; Gran et al., 2011; Schottler et al., 2014; Belmont and Foufoula-Georgiou, 2017; 

Yuan et al., 2017). The MRB has seen an 80-90% reduction of the native land cover 

(primarily tall-grass prairies, wetlands, and hardwood deciduous forests) and the modern 
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basin has 78-80% in row-crop agriculture (Mulla and Sekely, 2009; Musser et al., 2009; 

Belmont et al., 2011). Nationally, the MRB is a disproportionate contributor of nutrients 

to the MARB, responsible for 3-7% of the nitrate load deposited in the Gulf of Mexico 

(Magdalene, 2004; Steil, 2007), while only representing 1.34% of the drainage area of the 

MARB. On a more regional scale, watersheds within the MRB are a significant source of 

sediment (~80-90%) and nutrient loading (~45% of phosphorus; ~56% of nitrogen) to 

Lake Pepin, a riverine lake of the Upper Mississippi River (UMR) (Figure 1.3) (Kelley 

and Nater, 2000a; Engstrom et al., 2009; Mulla and Sekely, 2009; Belmont et al., 2011; 

Blumentritt et al., 2013; MPCA, 2013). Given these trends, ~40% of Minnesota’s lakes 

and streams are currently impaired for “conventional pollutants” under section 303(d) of 

the Clean Water Act (MPCA, 2016), include turbidity, nitrogen, and phosphorus loading. 

     The Greater Blue Earth River basin (GBERB), which is comprised of the Blue Earth, 

Watonwan, and Le Sueur Rivers, is one of the biggest contributors to sediment (~44%), 

nitrogen (~63%), and phosphorus (~37%)  loads in the MRB, to Lake Pepin, and to the 

Upper Mississippi River watershed (Figure 1.2 and Figure 1.4) (Mulla and Mallawatantri, 

2002). The Le Sueur River (LSR), which makes up ~7% of the area of the MRB, was 

shown to contribute 24-30% of the total suspended solid load to the MRB (MPCA, 

2007b; Gran et al., 2011). The LSR and other rivers of the GBERB are listed as impaired 

for turbidity, dissolved oxygen, e coli, and nutrient/eutrophication biological indicators 

(MPCA, 2016). 
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3.1.2 A Landscape Primed For Erosion 

     Geomorphic events in the GBERB primed the landscape for increased sediment loads. 

The top 1-3 meters of the subsurface are dominantly glaciolacustrine silts and clays 

(Matsch and Ojakangas, 1982; Jennings, 2007; Jennings et al., 2012). This sediment was 

deposited by a series of proglacial lakes, collectively named glacial Lake Minnesota, 

somewhere between ~14.46-11.27 ka (thousand years before the present) (Matsch and 

Ojakangas, 1982; Jennings, 2007; Jennings et al., 2012). These estimates are based on 

radiocarbon ages from buried wood found at a contact between till and lake sediments 

(Jennings, 2007; Jennings et al., 2012). Beneath the glaciolacustrine sediment lies 

interbedded glacial till and glaciofluvial sediment that reach a depth of 50-60 meters near 

Mankato, MN (Figure 1.2). 

     Much has been done to quantify erosion rates and determine source apportionment 

above and below a documented knickzone throughout the GBERB (Thoma et al., 2005; 

Gran et al., 2009; Belmont et al., 2010; Schottler et al., 2010; Belmont, 2011; Belmont et 

al., 2011; Gran et al., 2011; Gran et al., 2013; Bevis, 2015). This knickzone originated 

from the initial carving of the modern Minnesota River valley by the glacial River 

Warren, which served as the southern outlet for glacial Lake Agassiz around ~13.4 ka 

and 10.3 ka (Gran et al., 2009; Gran et al., 2011; Gran et al., 2013). This work has been 

aided by geochemical fingerprinting, which uses radioisotopic tracers, in this case 

Cesium-137 (137Cs), Lead-210 (210Pb), and meteoric Beryllium-10 (10Be), to differentiate 

between various point sources for sediment (Schottler et al., 2010; Belmont et al., 2011; 

Gran et al., 2011). These isotopes exist naturally in the atmosphere to a degree, though 
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increased levels of 137Cs exist following above ground nuclear testing between ~1955 and 

1963 (Robbins et al., 2000; Schottler et al., 2010). Depths of penetration in natural 

systems vary between isotopes, however they primarily occupy the top few meters of the 

soil column  (Willenbring and von Blanckenburg, 2010; Belmont, 2012). Concentrations 

for these isotopes are prominent in upland soils where low gradient surfaces retain more 

deposition (Walling and Woodward, 1992; Schottler et al., 2010; Belmont et al., 2011; 

Gran et al., 2011). The isotopes are generally lacking, however, in bluffs, banks, and 

ravines (near channel sources), where deeper sediment packages are exposed at a more 

vertical slope (Schottler et al., 2010; Belmont et al., 2011). 

     Geochemical fingerprinting was used in the LSR watershed, which exists in a state of 

disequilibrium following incision by the glacial River Warren (Table 3.1) (Schottler et al., 

2010; Belmont et al., 2011; Gran et al., 2011). Holocene fine sediment budgets for the 

LSR were primarily supplied by bluff, bank, and ravine erosion and totaled ~55,000 Mg/yr 

(Belmont et al., 2011). This was almost entirely from the active zone of incision within the 

watershed, where 60,000 Mg/yr were eroded, but 5,000 Mg/yr were deposited in the 

floodplain (Belmont, 2011; Gran et al., 2011). Contributions were negligible in uplands 

below the knickzone and all areas upstream of the knickzone. By comparison, fine-

sediment budgets for 2000-2010 show 225,000 Mg/yr exported, where sediment budgets 

below the knickzone were ~170,000 Mg/yr, with the largest source being bluffs (107,000 

Mg/yr) and uplands (23,000 Mg/yr) (Belmont et al., 2011). Upstream of the knickzone the 

opposite was observed, where uplands contributed the largest amount of fine sediment 

(45,000 Mg/yr) and bluffs contributed the second highest 
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Table 3.1. Source of sediment loads in the Le Sueur River (modified from Belmont et. al, 

2011). 

 

 (26,000 Mg/yr) (Belmont et al., 2011). As with Lake Pepin, sediment budgets for the LSR 

correlate to increases in modified agricultural drainages, annual discharge, land use 

conversion to agriculture, and precipitation totals and intensities (Schottler et al., 2014; 

Kelly et al., 2017) (Figure 1.9 and Figure 1.10). 

     Rates of sediment loading in the LSR coincide with increases in peak discharge and 

total discharge throughout southern Minnesota. These increases have been observed since 

the 1940s and continue through the present (Zhang and Schilling, 2006; Novotny and 

Stefan, 2007; Kelly et al., 2017). They are being attributed to increased precipitation and 

storm intensity and/or to large scale conversion of land cover to row crop agriculture, 

which exposes bare soil for much of the year and leads to increases in surface runoff. 

Intense debate currently exists regarding the driving factor of this increase in annual 

discharge (Gupta et al., 2015; Belmont et al., 2016; Dingbao, 2016; Foufoula-Georgiou et 
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al., 2016; Gupta et al., 2016a; Gupta et al., 2016b; Gupta et al., 2016c; Gupta et al., 

2016d; Gupta et al., 2016e; Schilling, 2016; Schottler et al., 2016). While a clear 

consensus has not yet been reached for the driving mechanism behind this shift, a general 

consensus agrees that both precipitation and discharge are increasing across the region. 

This increase, coupled with increases in peak discharge and greater erosivity (Schottler et 

al., 2014), highlight the need for further research across southern Minnesota to assess the 

impact of small, headwater watersheds as contributors to discharge and sediment loads. 

3.2 Study Area 

     County Ditch (CD) 57 and Little Beauford Ditch (LBD) are both tributaries to the Big 

Cobb River watershed and part of the larger LSR and Blue Earth River watersheds 

(Figure 1.5 and Figure 3.1). LBD is located ~4 km northeast and downstream of the CD 

57 watershed. Both watersheds have served as the focus for water quality monitoring 

projects in recent decades. LBD has been monitored, intermittently from 1994-2017 by 

the Minnesota Department of Agriculture, Minnesota Department of Natural Resources, 

Minnesota Pollution Control Agency, United States Geological Survey, and the 

Minnesota State University, Mankato Water Resources Center. CD 57 has been the focus 

of monitoring from 2010-2018, by Minnesota State University, Mankato researchers to 

assess the efficacy of a suite of structural practices that have been installed to help 

primarily reduce peak discharge, and also total suspended solids, total phosphorus, 

orthophosphate, and nitrate+nitrite as nitrogen. The watershed was reengineered from 

2010-11 to include a surge pond/wetland basin, two-stage ditch, buffer strips along the  
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Figure 3.1. Digital elevation map (left) and tile map (right) of County Ditch 86 (Little 

Beauford Ditch) and County Ditch 57. The inventory used to create the tile map was 

generated in 2009 and incorporated landowner communication, LiDAR, and aerial 

imagery interpretation. 

 

extent of the open channel, and a rate control weir just upstream of the confluence of CD 

57and the Big Cobb River. While LBD has a small pond and wetland in place within the 

watershed, it has not been the subject of a basin-wide reengineering project like CD 57. 

     Surge basins, such as the one in CD 57, are designed to reduce flow velocity and 

create a larger wetted perimeter reduce peak discharge, settle out sediment, and allow 
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nutrients to be taken up by aquatic and riparian vegetation (Fennessy et al., 1994; 

Kovacic et al., 2000; Verstraeten and Poesen, 2000; Woltemade, 2000; Fink and Mitsch, 

2004; Hey et al., 2012; Kröger et al., 2012; Fehling et al., 2014; Roley et al., 2016). 

Increased residence times have been touted as a primary factor in surge basins efficiency 

(Woltemade, 2000; Kröger et al., 2012). However, varying landscapes, basin location 

within the watershed, and basin size can all impact how effectively they can function 

(Kovacic et al., 2000; Woltemade, 2000; Fink and Mitsch, 2004; Kröger et al., 2012; 

Hansen et al., 2018). It is also of note that there is a potential for surge basins to fluctuate 

between being a sink and source for sediment and nutrient loads, based on flow 

conditions. (Verstraeten and Poesen, 2000; Fink and Mitsch, 2004). Furthermore, given 

high rates of plant productivity, surge basins can be contributors to greenhouse gases like 

carbon dioxide, methane, and nitrous oxide (de Klein and van der Werf, 2014; Anderson 

et al., 2016; Maucieri et al., 2017). 

     Two-stage ditches have emerged as a promising best management practices in recent 

years and act to simulate low-order streams with active meandering and floodplains 

(Figure 1.20) (Powell et al., 2007a; Powell et al., 2007b; Roley et al., 2012; Kröger et al., 

2013; Mahl et al., 2015; Roley et al., 2016). When properly constructed, two-stage 

ditches feature pool-riffle sequences, active lateral migration, overbank sedimentation, 

and greater channel stability (Ward et al., 2004; Powell et al., 2007a; Powell et al., 

2007b; D'Ambrosio et al., 2015; Davis et al., 2015; Krider et al., 2017). Two-stage 

ditches can also form in conventional ditches if the channel is unstable and left to form 

without interference (Kramer, 2011). Their ability to reduce sediment and nutrient 
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concentrations is typically dependent on residence times within the channel (Davis et al., 

2015).  

     Weirs, low-lying check dams, also serve to reduce flow velocity, increase residence 

times, allow sediments to settle out, and allow vegetation to take up nutrients (Kröger et 

al., 2008a; Kröger et al., 2011; Littlejohn et al., 2014). Although they are not listed as a 

best management practices in Minnesota (Miller et al., 2012) they do show potential but 

more research is needed (Littlejohn et al., 2014). 

     Agricultural watersheds have been identified as regions in need of better management 

of sediment and nutrients (Gentry et al., 2000; Borah et al., 2003; Birgand et al., 2007; 

Herzon and Helenius, 2008; Kröger et al., 2008b; Smith, 2009). Given a myriad of water 

quality concerns within the GBERB (MPCA, 2007a; Belmont et al., 2011; Gran et al., 

2011; MPCA, 2013; MPCA, 2015a; MPCA, 2016), CD 57 and LBD serve as case studies 

for typical modified agricultural watersheds within the region. Similar hydrology, land 

use tendencies (Figure 3.2), size, and proximity to one another provide a unique 

opportunity to compare a watershed redesigned with a suite of structural practices to 

reduce peak discharge and contaminant loads to one that has not undergone a similar 

transformation. Further assessment of other watersheds throughout the GBERB aims to 

understand how flow-weighted mean concentrations and yields from regional watersheds 

compare to CD 57 and LBD. This research investigates the characteristics of 

hydrologically modified headwater drainages within larger fluvial systems and how the 

implementation of structural practices could help mitigate peak discharges, sediment 

loads, and nutrient loads, using CD 57 and LBD (in 2016) as case studies to better 
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understand such systems. In CD 57, the station located at the outlet of the watershed 

(CD001) will be compared to a similarly positioned station in LBD (Figure 3.1). 

 

 
Figure 3.2. Land use and land cover map (2016) of County Ditch 86 (Little Beauford 

Ditch) and County Ditch 57. Land used for corn and soybeans were dominant within both 

watersheds. Urban lands make up more of the CD 57 watershed because of the city of 

Mapleton, MN, while only the small township of Beauford, MN is within the LBD 

watershed. 
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3.3 Methods 

3.3.1 Precipitation Data 

     Precipitation data were collected at CD 57 and LBD to compare total precipitation 

across each watershed with discharge results. In CD 57, rainfall was measured by a 

NexSens iSIC 3100 Data Logger with a Vaisala Weather Transmitter WXT520 rain 

gauge. This unit collects wind direction, wind speed, maximum wind speed, air 

temperature, relative humidity, barometric pressure, daily rainfall, rainfall intensity, and 

sunlight intensity. Further precipitation data were collected by three Teledyne Isco 674 

Tipping Bucket Rain Gauges and three Onset RG3 Hobo Data-Logging Rain Gauges 

opportunistically dispersed throughout the watershed. These data were averaged across 

the watershed to determine total rainfall for the year. Precipitation data for LBD were 

collected using a Campbell TE525 tipping bucket rain gauge stationed at the sampling 

location. Monthly averages were compared to 1981-2010 climate normal averages from 

Mankato, MN and totals gathered by the Minnesota State Climatology Office (MSCO, 

2018; NOAA, 2018). Values from the Minnesota State Climatology Office were 

generated through the interpolation of a network of professional and certified amateur 

precipitation collection stations (MSCO, 2018). 

3.3.2 Hydrology 

     Water level and velocity data were recorded at continuous five minute intervals 

through the monitoring season at CD 57 site CD001, located near the mouth of the 

watershed (Figure 3.1). Isco 720 Submerged Probe Flow Modules (level only) and Isco 

750 Area Velocity Flow Modules (level, velocity, and discharge) were stationed in the 



154 

 

rate control weir to monitor flow conditions. Water levels at LBD were collected at 

fifteen minute intervals through use of a Campbell CS650 Pressure Transducer. Both 

sites were corrected and validated with measurements by an Acoustic Doppler Current 

Profiler (ADCP) and wading rod approximately once a month by the Minnesota 

Department of Natural Resources. Measurements from CD 57 were corrected and 

validated further through use of a Marsh-McBirney Flo-Mate 2000 Portable Velocity 

Flow Meter and wading rod. After each season, level and discharge data were then 

processed and corrected by a Minnesota Department of Agriculture hydrologist using the 

software Stream Trac (Forest Technology Services). The output of this data were used to 

generate loads for the various measured parameters. 

     In some cases, corrections had to be made to data that were too low quality to use or if 

an event was missed. CD001 had particular issues with this because of highly variable 

velocities and the location of the probe in the notch of the weir. For 2016, CD001 had to 

be extrapolated off of data from an upstream site, scaled by sampleshed area, and fit to 

the FloMate recordings. When comparing the 2016 extrapolations to records from 2017 

when the data did not need extrapolation the relationship between average discharges at 

these two sites was proportional. Furthermore, corrections had to be made when flow 

rose over the top of rate control weir. These corrections were made by measuring flow 

across the top of the weir and within the notch of the weir and shifting the hydrographs 

appropriately. 
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3.3.3 Water Quality Sampling 

          Water quality samples for CD 57 were collected by a Teledyne Isco 6712 Full-Size 

Portable Sampler, equipped with twenty-four one liter bottles. The 6712 sampler was 

programmed to trigger after water levels rose by 10-20% of the current water level.  

Samples were collected within one to two days and brought back to the Minnesota State 

University, Mankato laboratory to create a discharge-based composite sample. This 

typically represented the duration of the storm hydrograph until conditions returned to 

base flow. Base flow was approximated by employing the constant-slope method 

developed by Linsley Jr. et al. (1975) where: 

𝐷 = 0.827𝐴0.2 

Where 

D is the number of days between the peak of the storm and the end of overland 

flow 

A is the area of the watershed in square miles 

     This sample was then sent to certified laboratory, Minnesota Valley Testing 

Laboratory in New Ulm, MN, within two days of the program finishing, ensuring that the 

sample was refrigerated until it reached the laboratory to reduce any organic activity. At 

the lab, procedures followed USGS protocol 1-3765-85 and EPA protocols 365.1 and 

353.2 for TSS, TP and PO4, and NO3+NO2-N, respectively (USGS, 1985; EPA, 1993a; 

EPA, 1993b). The collection bottle for TP, PO4, and NO3+NO2-N contained 1 ml of 

sulfuric acid (H2SO4) per 500 ml bottle.  



156 

 

     Water quality samples at LBD were also collected by an Isco 6712 Full-Size Portable 

Sampler. This sampler was equipped with a 9.5 liter jar that collected up to 96 pulses of 

water, based on a developed relationship between water levels and flow. Sample 

durations represented as little as two days and as much as two weeks of water, 

encompassing both storm runoff and base flow periods, therefore it is not possible to 

compare CD 57 and LBD by single events and they will be compared monthly. This 

method captured 79% of the flow volume for the year. These samples were collected and 

processed at a certified laboratory to determine concentrations for nitrate+nitrite as 

nitrogen, total phosphorus, orthophosphate, total suspended solids, and total Kjeldahl 

nitrogen. 

3.3.4 Load Calculations 

     After discharge data were finalized for each season it was combined with 

concentration results to generate loads for runoff event and base flow conditions. This 

was accomplished through the use of a spreadsheet created by the Minnesota Department 

of Agriculture to generate composite sample loads. This spreadsheet converted discharge 

to liters and then multiplied the liters by the parameter concentration (in mg/L) to 

determine the load of the entire five or fifteen minute interval. Then, this load was totaled 

to generate a cumulative load for each event, month, or year. 

     In some instances, it was necessary to fill gaps in data because of equipment 

malfunctions or improper trigger levels. In the case of CD 57 base flow conditions, 

preceding and succeeding base flow concentrations were averaged and input into the 

model. In the case of a missed event, it was necessary to develop a range of values to 
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encompass all possible conditions, utilizing a number of approaches were utilized to 

create an acceptable range. One method compared the cumulative discharge of the event 

to the total calculated load at the site where the gap existed to develop a best fit 

relationship. The next two methods used two upstream sites to scale their loads the outlet 

site, based on discharge. Finally, where possible, a relationship between turbidity and 

flow-weighted mean concentrations for total suspended solids was developed. This 

relationship was then used to generate total suspended solids loads based on turbidity 

readings gathered every fifteen minutes. To ensure that the loads used were accurately 

representing potential loads, ranges were used in the case of missed runoff events. The 

minimum and maximum estimates were selected if they fell within one and a half times 

the interquartile range. The interquartile range was used, as it is a smaller constraint than 

using the first standard deviation. In larger events, where the estimate fell outside of one 

and a half times the interquartile range, but within the first standard deviation, the number 

was used, but noted. This generated event and annual estimates to compare loads between 

CD 57 and LBD. In 2016, five of the twenty-three events were missed and estimates were 

developed for these events. 

3.4 Results and Discussion 

3.4.1 Precipitation 

     Precipitation in both CD 57 and LBD in the 2016 monitoring year exceeded climate 

normal averages (~700 mm) by up to 400 mm (NOAA, 2018). Overall, LBD saw ~70 

mm more rainfall that CD 57 (MSCO, 2018). While May, June, and October exhibited 

normal climate conditions July-September experienced 2-3 times the average rainfall for  
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Table 3.2. Monthly precipitation values for May-October for County Ditch 57 and Little 

Beauford Ditch in the 2016 monitoring year, compared to the 1981-2010 climate normal 

values from Mankato, MN. 

 
 

each month (Table 3.3). The largest storm during the 2016 monitoring season was 

recorded in late September, with rainfall averaging 95-105 mm across the CD 57 and 

LBD watersheds. In total, six storms in CD 57 and four storms in LBD brought rainfall 

totals over 40 mm. A series of mid-August storms brought the highest rainfall intensities 

in CD 57 during the 2016 season with an average of 24 mm of rainfall in approximately 

30 minutes and then another 16 mm in approximately 30 minutes, with average rainfall 

intensities of 48.6 mm/hr and 24.57 mm/hr, respectively. An early August storm in LBD 

brought the highest rainfall intensity, with 43 mm of rain falling over the course of 45 

minutes (57 mm/hr). 
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3.4.2 Hydrology 

     Increased rainfall totals resulted in increased monthly discharge across both 

watersheds. The CD 57 watershed discharged ~7.09x108 liters more than LBD overall in 

2016, however July and August were both higher in LBD (Table 3.4 and Figure 3.3). 

Discharge was greatest in September for both sites, as a result of the late September 

storm that supplied ~95-105 mm of water across both watersheds. Monthly peak 

discharge was higher for LBD in all months except April and October. The highest peak 

discharge for CD 57 and LBD came during the September storm, where CD 57 peaked at 

~7,439 L/s at the rate control weir and LBD peaked at 7,538 L/s (Table 3.5). Overall, 

peak discharge at CD 57 averaged 2,181 L/s while averaging 2,357 L/s at LBD.  

     The structural practices within the CD 57 watershed were designed to control 

discharge by slowing velocities and adding more storage capacity. Average discharge at 

CD 57 was 553 L/s compared to 510 L/s at LBD over the same monitoring period. Even 

though more water flowed through CD 57, peak discharge rates were almost always 

smaller than at LBD. This supports the desired impact of the structural practices in the 

CD 57 watershed to reduce peak discharge. As water is temporarily stored in the two-

stage ditch, surge basin, or behind the rate control weir it releases water through the 

watershed more slowly than in LBD. However, in cases where water exceeds the height 

of the rate control weir, higher peak discharges can still be observed, as in the case of the 

6/14, 7/17. And 9/22 events (Table 3.5). 
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Table 3.3. Hydrologic parameters of discharge and peak discharge for the CD 57 and 

LBD from April to October in 2015. April represents a partial month, starting on the 

4/21. Peak discharge was not always from the same event, but rather represents the 

monthly peak discharge from each site. Shaded cells denote the smaller value. 

 

 

Table 3.4. A selection of comparable peak discharge measurement from runoff events in 

2016. Shaded cells denote the smaller value. 
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Figure 3.3. Hydrograph comparison between County Ditch 57 and Little Beauford Ditch in 2016. While more water was 

discharged from CD 57 at the rate control weir than at the LBD watershed, higher peaks were still observed in LBD. 
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3.4.3 Flow-Weighted Mean Concentrations 

     Flow-weighted mean concentrations for total suspended solids were higher at LBD 

than at CD 57 during every month monitored (Table 3.6). Total averages for suspended 

solids over the duration of the monitoring period were 109 mg/L at LBD and 42 mg/L at 

CD 57. Highest concentrations in LBD were observed from May-July, with June 

featuring the highest monthly average in LBD (263 mg/L). June also featured the highest 

monthly total in CD 57, though May and July were among the lowest observed averages. 

Overall, heightened discharge and heightened concentrations at LBD would suggest that 

the CD 57 structural practices are helping reduce sediment concentrations. 

     Total phosphorus concentrations were also dominantly higher in the LBD watershed, 

for all months except April and May. Late April through October flow-weighted mean 

concentrations at LBD averaged 0.379 mg/L, while averaging 0.240 mg/L at CD 57 

(Table 3.6). Both of these concentrations far exceed the Minnesota Office of the Revisor 

of Statutes (2016) limit on total phosphorus for preventing the development of eutrophic 

conditions at 0.030 mg/L. Concentrations at levels seen in LBD and CD 57 pose threats 

to the development of eutrophic conditions within their respective waterbodies. However, 

lower concentrations of total phosphorus at CD 57, along with lower concentrations of 

total suspended solids, would suggest that sediment-bound phosphorus is settling out with 

suspended solids, increasing residence times and uptake by vegetation. 

     The largest difference in flow-weighted mean concentrations between the two ditches 

is seen in nitrate+nitrite as nitrogen concentrations. CD 57, while generally lower in both 

total suspended solids and total phosphorus, far exceeds average values seen in LBD for  
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Table 3.5. Flow-weighted mean concentrations for total suspended solids (TSS), total 

phosphorus (TP), and nitrate+nitrite as nitrogen (NO3+NO2). Shaded cells denote 

smaller values. 

 

 

nitrate+nitrite as nitrogen concentrations by nearly double (17.72 mg/L vs. 9.96 mg/L). 

While concentrations at LBD tended to decrease through the growing season, as more 

vegetation was taking up nitrate+nitrite as nitrogen, CD 57 observed similar trends, but 

maintained much higher concentrations overall. During the months of April through July 

in LBD and April through October in CD 57, concentrations exceeded EPA maximum 

contaminant for human consumption (10 mg/L) and posed threats to the development of 

eutrophic conditions within their respective watersheds (Mueller and Helsel, 2013b). 

     While it is not possible to directly compare LBD and CD 57 on an event basis, a small 

subset (n=11) of events offer some comparable concentrations (Table 3.7). It is of interest 

to note that, while most of the LBD samples were composed of base flow and event 

runoff, concentrations of total suspended solids and total phosphorus are almost always 

Month

LBD TSS 

FWMC 

(mg/L)

CD 57 TSS 

FWMC 

(mg/L)

LBD TP 

FWMC 

(mg/L)

CD 57 TP 

FWMC 

(mg/L)

LBD 

NO3+NO2 

FWMC 

(mg/L)

CD 57 

NO3+NO2 

FWMC 

(mg/L)

April 55 29 0.148 0.160 19.00 22.74

May 171 13 0.212 0.227 19.56 21.11

June 263 131 0.438 0.326 15.04 21.40

July 121 10 0.309 0.173 14.37 17.70

August 84 34 0.462 0.232 9.96 15.61

September 91 50 0.378 0.280 4.95 17.24

October 24 9 0.409 0.151 8.41 13.92

Total Avg 109 42 0.379 0.240 9.96 17.72

Standard 

Level
N/A

0.025-0.100    

(Dependent on use)

10.00                         

(for Human 

Consumption)
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higher at LBD. However, when comparing nitrate+nitrite as nitrogen, flow-weighted 

mean concentrations at CD 57 far exceed those seen at LBD. These high concentrations 

are not apparent before the rate control weir site in the CD 57 watershed. Average 

concentrations across all runoff events over the course of the monitoring season (March-

October 2016) from the CD 57 two-stage ditch were the lowest in the top half of the 

watershed (14.72 mg/L), while flow-weighted mean concentrations jumped to 21.36 

mg/L at the rate control weir (Appendix C). This increase could be stemming from excess 

application of manure/fertilizer farther downstream of the two-stage ditch, after the major 

in-channel hydrology-based structural practices within the watershed.
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Table 3.6. Subset of events during the 2016 monitoring year, where concentrations between CD 57 and LBD were comparable 

to one another, based on similar collection times. 
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     The watershed of the two-stage ditch does not seem to be where the majority of the 

concentration is coming from, suggesting that the urban influence of the city of Mapleton 

is not a dominant factor. There are a series of municipal water treatment ponds in the CD 

57 watershed, downstream of the two-stage ditch monitoring station. Water from these 

ponds is released a few times each year. These ponds could also be contributing to the 

increase in nitrate flow-weighed mean concentrations, but when examining composite 

samples that were concurrent with the discharging of the ponds there seems to be no 

discernible increase that elevates these nitrate+nitrite as nitrogen flow-weighted mean 

concentrations above proximal runoff event flow-weighted mean concentrations at the 

rate control weir. Unpublished flow-weighted mean concentrations from a previous study 

within CD 57 (2013-14) and flow-weighted mean concentrations from this study suggest 

that the watershed between the rate control weir and the two-stage ditch, which is 

dominantly tiled and used for row crop agriculture, is the source of elevated levels 

leaving the watershed. The eastern portion of the watershed, which features dense pattern 

tile throughout, discharges downstream of the two-stage ditch and should be examined 

further to understand its influence on loads of nitrate+nitrite as nitrogen (Figure 3.1). 

3.4.4 Loads and Yields 

     Loads during the 2016 monitoring season closely mirrored trends in concentrations 

between CD 57 and LBD (Table 3.8). Total suspended solid loads are higher at LBD than 

CD 57 for every month except April, when discharge at CD 57 doubled that of LBD. 

However, concentrations in LBD (55 mg/L) still exceeded concentrations from CD 57  
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Table 3.7. Monthly load (kg) totals for total suspended solids, total phosphorus, and 

nitrate+nitrite as nitrogen for LBD and CD 57 in 2016. Shaded cells denote smaller 

values. 

 

 

(29 mg/L). During the extent of the monitoring season, total suspended solid loads from 

LBD more than doubled those from CD 57.  

     Total phosphorus loads and nitrate+nitrite as nitrogen loads both follow the same 

trend as the flow-weighted mean concentrations. Total phosphorus was higher from CD 

57 in April and May, but higher for LBD the rest of the year. Nitrate+nitrite as nitrogen 

was higher in every month for CD 57, with exports of nearly double from the CD 57 

watershed. The largest monthly total for nitrate+nitrite as nitrogen was exported in 

September, with CD 57 loads greater than triple those calculated from LBD. 

     Yields for the two watersheds also exhibited trends similar to those seen in loads and 

flow-weighted concentrations (Table 3.9). September featured the highest yields across 

all nutrient and sediment parameters in both watersheds. Total suspended solids in LBD 

totaled 445 kg/ha over the monitoring period, while CD 57 totaled 157 kg/ha (Table 3.9). 
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Table 3.8. Yields for total suspended solids, total phosphorus, and nitrate+nitrite as 

nitrogen for 2016. Shaded cells denote smaller values. 

 

 

Total phosphorus amounted to 1.548 kg/ha in LBD with 36% of the yield being supplied 

in September (0.558 kg/ha). CD 57 transported much less total phosphorus in terms of 

yields, with 0.887 kg/ha leaving the watershed and 41% of that occurring in September. 

Nitrate+nitrite as nitrogen yields closely mirrored load trends, with CD 57 transporting 

160% more than LBD. A third of the CD 57 yield, and over half of the LBD monitored 

total yield, occurred during September, with 22.35 kg/ha of nitrate+nitrite as nitrogen 

being transported out of the watershed. The main contributor to this load was the late 

September 2016 storm, where 12.45 kg/ha were transported out of the CD 57 watershed, 

compared to LBD, which transported ~5.00 kg/ha. 

3.4.5 Comparing County Ditch 57 to Little Beauford Ditch 

     The location, size, and monitoring extent of the CD 57 and LBD watersheds provided 

a unique opportunity to compare two proximal, hydrologically modified, agricultural 
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watersheds. However, differences between the watersheds may make them less 

comparable than desired. The monitoring station of CD 57 is stationed in the rate control 

weir at the outlet of the watershed. This base level of this station (CD001) is primarily 

controlled by the stage of the Big Cobb River, subjecting it to potential issues in 

backflowing water. The LBD station is position on the upstream side of a culvert that has 

a small drop on its downstream extent, reducing the possibility that the LBD monitoring 

station is influenced by backflow. While the LBD and CD 57 watersheds do exhibit 

similar land use and land cover tendencies, soil characteristics, and drainage 

modifications, there seem to be some substantial differences between them. 

Unfortunately, without full-scale monitoring of both of the watersheds (in-channel and 

tile) it would be difficult to say where the biggest differences in hydrology and water 

quality stem from. Even though they are similar in many ways, key differences exist that 

make the ability to compare these two watersheds somewhat questionable and more data 

and more concurrent years of monitoring would be needed to rectify this concern. 

3.4.6 Regional Comparisons 

     The 2016 monitoring season for the CD 57 and LBD watersheds serve as a case study 

for agricultural watersheds within the GBERB. However, while they provide a strong 

context for nutrient and sediment transport within headwater agricultural systems, they 

also represent an atypically wet year. To better assess these watersheds and their 

contribution to the GBERB and MRB it is necessary to examine other proximal 

watersheds of varying size to understand typical flow-weighted mean concentrations 

throughout the region. CD 57 and LBD are also part of larger projects that span more 
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than just one year. LBD has been intermittently monitored for a wide array of sediment, 

nutrient, and chemical parameters, with measurements from 1994-2016. CD 57 was 

monitored at four different locations from 2016-17, to assess the efficacy of structural 

practices within the watershed. A final year of monitoring in CD 57 will culminate in 

2018. To better understand how these watersheds function across more averaged time 

scales, flow-weighted mean concentrations and yield data from CD 57 (2016-17) and 

LBD (2009-15) will be compared to a number of regional watersheds within the UMR 

and MRB. Data from a series of MPCA monitoring projects will be utilized to provide a 

holistic context to the region. 

     Of the three major watersheds above Lake Pepin, the UMR, MRB, and St. Croix, the 

MRB maintains the highest annual flow-weighted mean concentrations and yields of total 

suspended solids, total phosphorus, and nitrate+nitrite as nitrogen (Figure 3.4). Total 

suspended solid concentrations and yields almost triple the next highest watershed, which 

is the Mississippi River at Lock and Dam #3, after water from all three major basins have 

converged (MPCA, 2018). The same trend continues for total phosphorus and 

nitrate+nitrite as nitrogen, which both nearly double values seen at Lock and Dam #3. 

Given such elevated concentrations and yields, it is clear from these results and previous 

research in the basin (Kelley and Nater, 2000b; Magdalene, 2004; MPCA, 2007b; Steil, 

2007; Engstrom et al., 2009; Mulla and Sekely, 2009; Belmont et al., 2011; Blumentritt et 

al., 2013; MPCA, 2013), that conditions within the MRB are contributing far more to 

flow-weighted mean concentrations and yields of total suspended solids, total 

phosphorus, and nitrate+nitrite as nitrogen than the UMR and St. Croix Rivers. 
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Figure 3.4. Regional scale watersheds of the Upper Mississippi River, above the riverine 

Lake Pepin (MPCA, 2018). 
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     It has been well documented that the GBERB is among the largest contributor to 

nutrient and sediment flow-weighted mean concentrations and yields within the MRB 

(Belmont et al., 2010; Folle, 2010; Belmont et al., 2011; Gran et al., 2011; Maalim and 

Melesse, 2013; MPCA, 2014; Bevis, 2015; MPCA, 2015a; Kalkhoff et al., 2016; Baker et 

al., 2018). Within the GBERB, the Blue Earth, Le Sueur, and Watonwan each contribute 

flow-weighted mean concentrations or yields that exceed those from the MRB at its 

outlet (MPCA, 2018). While the Blue Earth and Watonwan both exhibit elevated values 

similar to the other regional watersheds examined, the LSR is the dominant contributor 

across all parameters within the watershed. Total phosphorus and nitrate+nitrite as 

nitrogen flow-weighted mean concentrations and yields within the LSR are the highest of 

all regional watersheds, with the exception of Seven Mile Creek, a ravine near St. Peter, 

MN (Figure 3.5). Flow-weighted mean concentrations of total suspended solids in the 

LSR (256 mg/L) are greater than flow-weighted mean concentrations of the Blue Earth 

and Watonwan, while yields in the LSR are the highest from all examined watersheds 

except for Seven Mile Creek. Elevated suspended solids throughout the GBERB support 

the need for ongoing research focusing on quantifying erosion rates and developing 

source apportionment within the basin (Belmont et al., 2010; Belmont et al., 2011; Gran 

et al., 2011; Kelly et al., 2017; Treat, 2017; Baker et al., 2018; Kelly and Belmont, 2018). 
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Figure 3.5. Closer look at select basins in the southern extent of the Minnesota River 

watershed (MPCA, 2018). 
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     Finally, focusing on the major watersheds of the greater LSR, the Maple, and Cobb, 

and Le Sueur, provide further insight to loading tendencies within the watershed and 

region (Figure 3.6). The knickzone within the LSR is documented roughly 30-40 km 

upstream of the mouth of the watershed within the three major tributaries (Belmont et al., 

2010; Belmont et al., 2011; Gran et al., 2011). Suspended sediment loads downstream of 

the knickzone are dominated by bluff erosion which consistutes 107,000 Mg of the 

overall 225,000 Mg (~48%) of fine-grained sediment exported from the LSR, annually 

averaged over 2000-2010 (Belmont et al., 2011; Gran et al., 2011). Upstream of the 

knickzone, upland erosion is the dominant transport mechanism, supplying 45,000 Mg 

(20%) to the overall load (Belmont et al., 2011; Gran et al., 2011).  

     The two LSR stations near Rapidan, the Maple River near Rapidan, and the Big Cobb 

near Beauford are within the knickzone (Figure 3.6). The LSR at St. Clair, Maple at 

Sterling Center, Little Cobb near Beauford, CD 57, and LBD are above the knickzone, 

and would represent upland topography (Figure 3.6). When comparing the sites within 

the knickzone to those above the knickzone, it is clear that annual flow-weighted mean 

concentrations and yields for suspended solids are much higher within the knickzone 

(Figure 3.7). The Big Cobb site, which is situated near the upstream extent of the 

knickzone, averages total suspended solid flow-weighted mean concentrations of 120 

mg/L. By the time water reaches the mouth of the LSR, concentrations double to 256 

mg/L. Yields follow a similar trend and range from 254 kg/ha in the Big Cobb to 713 

kg/ha at the mouth of the LSR. The main stem of the LSR, before the confluences with 

the Maple and Cobb Rivers, exhibits the highest flow-weighted mean concentrations (283 
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mg/L) and yields(662 kg/ha) of all the major watersheds of the LSR. Above the 

knickzone, the LSR contributes the highest total suspended solid flow-weighted mean 

concentrations (130 mg/L). The Little Cobb contributes similar flow-weighted mean 

concentrations (122 mg/L) to its downstream counterpart at the mouth of the Big Cobb 

(120 mg/L) (Kalkhoff et al., 2016). The Maple River at Sterling Center, CD 57, and LBD 

featured the lowest of the total suspended solid flow-weighted mean concentrations, with 

concentrations in the Maple at 66 mg/L, CD 57 between 28-63 mg/L, and LBD at 73 

mg/L. Yields were not provided for the Little Cobb, but based on flow-weighted mean 

concentrations and average annual discharge yields would be ~247 kg/ha (Kalkhoff et al., 

2016). Yields at CD 57 were between 100-119 kg/ha and yields at LBD were 142 kg/ha 

(MPCA, 2018). Differences in sediment sources agree with previous SWAT modeling 

within the watershed that locations further downstream, below the knickzone, are 

contributing larger flow-weighted mean concentrations (Folle, 2010). 

     Annual total phosphorus flow-weighted mean concentrations did exhibit some 

differences from upstream of the knickzone to downstream of it (Figure 3.6 and Figure 

3.7). The highest concentration (0.380 mg/L) was observed at the mouth of the LSR, 

while the other sites in the knickzone ranged from 0.284-0.379 mg/L. Sites above the 

knickzone ranged from 0.187 mg/L (the minimum extent of the CD 57 range), to 0.314 

mg/L at LBD. Yields exhibited similar tendencies to concentrations, however the Little 

Cobb produced the smallest yields (0.510 kg/ha) with CD 57 producing the next smallest 

yields (0.611-0.635 kg/ha). The highest yields were recorded at the mouth of the LSR, 

where yields averaged 1.027 kg/ha. 
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Figure 3.6. Map of the Le Sueur River watershed, its three major watersheds (the Le 

Sueur, Maple, and Cobb), County Ditch 57, and Little Beauford Ditch (MPCA, 2018). 
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Figure 3.7. Flow-weighted mean concentrations and yields for total suspended solids 

(TSS), total phosphorus (TP), and nitrate+nitrite as nitrogen (NO3+NO2 as N) of the 

monitoring stations in Figure 3.6, compared to distance from the mouth of the LSR. The 

black box denotes the region that is potentially within the knickzone (30-40 km upstream 

from the mouth of the LSR. 
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     Finally, annual nitrate+nitrite as nitrogen flow-weighted mean concentrations tended 

to follow different trends than all other parameters examined. The larger suppliers of 

nitrate+nitrite as nitrogen in terms of flow-weighted mean concentrations and yields were 

the smaller watersheds, such as CD 57, LBD, and Seven Mile Creek (Figure 3.5-3.7). The 

largest flow-weighted mean concentrations within the knickzone came from the Big 

Cobb (10.46 mg/L) and the LSR before the confluence (9.79 mg/L). Above the 

knickzone, flow-weighted mean concentrations at CD 57 and LBD were much higher 

than the surrounding watersheds, at 13.35 mg/L and 14.42 mg/L, respectfully. The LSR 

near St. Clair (10.00 mg/L) and Maple River near Sterling Center (9.90 mg/L) exhibited 

higher averages than their downstream counterparts, however the relationship was not as 

strong as seen in total suspended solids and total phosphorus (Figure 3.7). The largest 

observed yields came from the 2016-17 monitoring seasons at CD 57, where average 

yields were 46.88 kg/ha. Yields at LBD were the next highest, at 25.75 kg/ha, which 

represented seven years of data from 2009-15. LBD yields during the 2016 monitoring 

season were not included in those averages, but 40.72 kg/ha were recorded. This is 

supported by the previous SWAT model, which denotes larger concentrations of 

nitrate+nitrite as nitrogen originating from uplands within the LSR (Folle, 2010). 

     Average nitrogen applications in the Little Cobb watershed were approximated based 

on county-level estimates. The Little Cobb applies an estimated 121 kg/ha of nitrogen, 

typically during the fall, with over 60% in the form of fertilizer and animal manure 

(Kalkhoff et al., 2016). In CD 57, nitrogen application in the upper third of the watershed 

averaged ~146 kg/ha (Duncanson, personal communication, 2017). If rates of 
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atmospheric nitrogen deposition at CD 57 are similar to those in the Little Cobb, an 

additional 5.4 kg/ha can be added (Kalkhoff et al., 2016). If application rates are 

considered constant across the CD 57 watershed then it is possible that up to 30% of the 

nitrogen applied to fields is seen in exported loads, compared to ~19% in the Little Cobb.  

3.4.7 Watershed-Scale Geomorphic and Hydrologic Considerations 

     County Ditch 57 and Little Beauford Ditch may not be the largest contributors to 

discharge, sediment loads, or nutrient loads. However, there are ~120 HUC-08 

watersheds in the LSR that are similar in size to CD 57 and LBD. The LSR is primarily 

struggling with erosion of bluffs in the downstream reaches of the river, below the 

knickzone. If best management practices were distributed within each of those 120 

watersheds, then there is a much greater potential to achieve the desired effects of peak 

discharge reduction downstream (MPCA, 2015b). However, that could end up costing 

billions of dollars and would require significant external funding to alleviate pressure on 

the landowners. The CD 57 project cost ~$1,300,000 in 2010-11. As mentioned in the 

previous chapter, the surge basin that was constructed (~1.21 ha) is a fraction of the size 

of the original wetland (~136 ha). Wetland placement and distribution has been shown to 

be large factors in the effectiveness of a wetland to reduce nitrate loads a watershed scale 

(Hansen et al., 2018). However, further construction and distribution of wetlands 

throughout the watershed would allow for better control of discharge and peak discharge, 

while providing more opportunity for sediment and nutrient removal. This, in turn, would 

help to decrease peak discharge in the larger watersheds downstream. The CD 57 surge 

pond and wetland are located in the upper reaches of the system and have the potential to 
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be overwhelmed when runoff is sufficient enough (~40-50 mm rainfall). The surge basin 

in CD 57 would need to be upsized to better handle high magnitude flow events. If the 

basin was upsized to even a tenth of the size of the original wetland the cost for the basin 

alone would be ~$1,650,000, exceeding the final cost of the original project by 

~$350,000. To expand similar practices to the 120 HUC-08 watersheds of the LSR would 

require an enormous amount of money.  

     Finally, the knickzone in the LSR is not static. Eventually, it will move past LBD and 

CD 57 and increased incision will begin within the watersheds. Present management 

decisions need to account for a future landscape. Increases in erosivity are already well 

documented originating from agricultural watersheds (Schottler et al., 2014). Current 

hydrologic modification will exacerbate an already incising watershed (the LSR). Better 

controlling water within the headwater watersheds, like CD 57 and LBD, would best 

serve watersheds downstream and help protect them from increased bluff erosion and 

rapid incision. As precipitation, precipitation intensity, and total discharge are increasing 

throughout the region (Knox, 2000; Zhang and Schilling, 2006; Novotny and Stefan, 

2007; Nangia et al., 2010; Schottler et al., 2014; Gupta et al., 2015; Belmont et al., 2016; 

Kelly et al., 2017) it will be increasingly necessary to manage water where it was 

originally stored, within headwater, upland basins.  

3.5 Conclusion 

     Overall, the LSR watershed dominates flow-weighted mean concentrations and yields 

for total suspended solids, total phosphorus, and nitrate+nitrite as nitrogen in watersheds 

examined within the Upper Mississippi River above Lake Pepin. Within the LSR, the 
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largest sediment supply originates from rivers that encompass the knickzone moving 

through the watershed. These regions are shown to be dominated by bluff erosion, while 

regions upstream of the knickzone are eroding upland farm fields (Belmont et al., 2010; 

Belmont et al., 2011; Gran et al., 2011; Kelly et al., 2017; Kelly and Belmont, 2018). 

Above the knickzone modified agricultural watersheds contribute smaller amounts of 

total phosphorus than watersheds downstream, but contribute disproportionate 

concentrations of nitrate+nitrite as nitrogen. 

     CD 57 and LBD do contribute to the overall suspended solids and total phosphorus, 

however these contributions are far exceeded by those from within the knickzone. 

Nitrate+nitrite as nitrogen contributions are higher coming from CD 57 and LBD, which 

could be attributed to higher local application of nitrogen to meet the demands of row 

crops like corn and soybeans. Furthermore, when comparing CD 57 and LBD it is 

apparent that total suspended solids and total phosphorus are less at CD 57, despite 

higher monitored discharge. Given the suite of structural practices employed within the 

CD 57 watershed (surge basin, two-stage ditch, buffer strips, and a rate control weir) it 

would appear that appear that they can help reduce peak discharge and sediment, but 

have variable efficiency reducing nutrients. However, while flow-weighted mean 

concentrations are often reduced, loads are dominated by larger precipitation events in 

the season, where previous or future storage is almost always exceeded by exported 

loads. 

     These two modified agricultural watersheds serve as valuable case studies for similar 

watersheds throughout the region. Implications for future drainage management can be 
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drawn by focusing more attention on the discharge, sediment, and nutrient tendencies 

observed within these basins. Efforts exerted here could help protect downstream 

landowners while still maintaining a more natural system. 
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Appendices 

Appendix A. 2016 Water Quality Reports from MVTL 

Minnesota Valley Testing Laboratories Water Quality Results 2016 

Site 
Sample 

Type 
Date 

Sampled 
Date 

Analyzed 
Parameter Attn Result Unit 

Method 
RL 

Method 
Reference 

Comments 

CD007 Base 3/22/2016 3/23/2016 TSS < 2 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 3/22/2016 3/24/2016 PO4   0.036 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 3/22/2016 3/28/2016 NO2/NO3 ~ 22.40 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD007 Base 3/22/2016 3/29/2016 TP   0.036 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 3/22/2016 3/23/2016 TSS   15 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 3/22/2016 3/24/2016 PO4   0.047 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 3/22/2016 3/28/2016 NO2/NO3 ~ 22.10 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD004 Base 3/22/2016 3/29/2016 TP   0.039 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Base 3/22/2016 3/23/2016 TSS < 2 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 3/22/2016 3/24/2016 PO4   0.024 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 3/22/2016 3/28/2016 NO2/NO3 ~ 20.80 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD002 Base 3/22/2016 3/29/2016 TP   0.024 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 3/22/2016 3/23/2016 TSS   2 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 3/22/2016 3/24/2016 PO4   0.019 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 3/22/2016 3/28/2016 NO2/NO3 ~ 24.10 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD001 Base 3/22/2016 3/29/2016 TP   0.023 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 3/30/2016 3/31/2016 TSS   102 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 3/30/2016 3/31/2016 PO4   0.031 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Composite 3/30/2016 4/1/2016 NO2/NO3   18.70 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 3/30/2016 4/5/2016 TP   0.229 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 3/30/2016 3/31/2016 TSS   27 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 3/30/2016 3/31/2016 PO4   0.048 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 3/30/2016 4/1/2016 NO2/NO3   19.60 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 3/30/2016 4/5/2016 TP   0.118 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 3/30/2016 3/31/2016 TSS   7 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 3/30/2016 3/31/2016 PO4   0.028 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 3/30/2016 4/1/2016 NO2/NO3   18.70 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 3/30/2016 4/5/2016 TP   0.055 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 3/30/2016 3/31/2016 TSS   15 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 3/30/2016 3/31/2016 PO4   0.035 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD001 Composite 3/30/2016 4/1/2016 NO2/NO3 ~ 20.40 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD001 Composite 3/30/2016 4/5/2016 TP   0.099 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001DUP Composite 3/30/2016 3/31/2016 TSS   15 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001DUP Composite 3/30/2016 3/31/2016 PO4   0.069 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001DUP Composite 3/30/2016 4/1/2016 NO2/NO3 ~ 20.30 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD001DUP Composite 3/30/2016 4/5/2016 TP   0.158 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/1/2016 4/5/2016 TSS   16 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/1/2016 4/5/2016 PO4 * 0.051 mg/L 0.005 EPA 365.1 

Holding time exceeded, 
samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/1/2016 4/8/2016 NO2/NO3 ~ 20.80 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 
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CD007 Composite 4/1/2016 4/12/2016 TP   0.198 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/1/2016 4/5/2016 TSS   6 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/1/2016 4/5/2016 PO4 * 0.066 mg/L 0.005 EPA 365.1 

Holding time exceeded, 
samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/1/2016 4/8/2016 NO2/NO3 ~ 20.10 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD004 Composite 4/1/2016 4/12/2016 TP   0.110 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/1/2016 4/5/2016 TSS   19 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/1/2016 4/5/2016 PO4 * 0.057 mg/L 0.005 EPA 365.1 

Holding time exceeded, 
samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/1/2016 4/8/2016 NO2/NO3   19.20 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/1/2016 4/12/2016 TP   0.180 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/1/2016 4/5/2016 TSS   20 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/1/2016 4/5/2016 PO4 * 0.081 mg/L 0.005 EPA 365.1 
Holding time exceeded, 
samples filtered in lab for 
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soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/1/2016 4/8/2016 NO2/NO3 ~ 23.50 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD001 Composite 4/1/2016 4/12/2016 TP   0.181 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 4/12/2016 4/13/2016 TSS   6 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 4/12/2016 4/13/2016 PO4   0.038 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 4/12/2016 4/13/2016 NO2/NO3 ~ 21.60 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD007 Base 4/12/2016 4/19/2016 TP   0.033 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 4/12/2016 4/13/2016 TSS   6 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 4/12/2016 4/13/2016 PO4   0.025 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 4/12/2016 4/13/2016 NO2/NO3 ~ 20.60 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
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ortho phosphorus prior to 
analysis 

CD004 Base 4/12/2016 4/19/2016 TP   0.045 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 4/12/2016 4/13/2016 TSS   5 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 4/12/2016 4/13/2016 PO4   0.020 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 4/12/2016 4/13/2016 NO2/NO3 ~ 19.90 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD002 Base 4/12/2016 4/19/2016 TP   0.025 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 4/12/2016 4/13/2016 TSS   12 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 4/12/2016 4/13/2016 PO4   0.308 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 4/12/2016 4/13/2016 NO2/NO3   12.00 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 4/12/2016 4/19/2016 TP ~ 0.550 mg/L 0.005 EPA 365.1 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 
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CD007 Composite 4/26/2016 4/27/2016 TSS   29 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/26/2016 4/27/2016 PO4   0.062 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/26/2016 4/27/2016 NO2/NO3   19.00 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/26/2016 5/2/2016 TP   0.156 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/26/2016 4/27/2016 TSS   21 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/26/2016 4/27/2016 PO4   0.078 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/26/2016 4/27/2016 NO2/NO3   15.80 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/26/2016 5/2/2016 TP   0.201 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 
DUP 

Composite 4/26/2016 4/27/2016 TSS   43 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 
DUP 

Composite 4/26/2016 4/27/2016 PO4   0.082 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 
DUP 

Composite 4/26/2016 4/27/2016 NO2/NO3   15.30 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 
DUP 

Composite 4/26/2016 5/2/2016 TP   0.215 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Composite 4/26/2016 4/27/2016 TSS   4 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/26/2016 4/27/2016 PO4   0.043 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/26/2016 4/27/2016 NO2/NO3   18.60 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/26/2016 5/2/2016 TP   0.210 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/26/2016 4/27/2016 TSS   4 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/26/2016 4/27/2016 PO4   0.059 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/26/2016 4/27/2016 NO2/NO3 ~ 20.70 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD001 Composite 4/26/2016 5/2/2016 TP   0.091 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/28/2016 4/29/2016 TSS   42 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/28/2016 4/29/2016 PO4   0.047 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/28/2016 5/2/2016 NO2/NO3 ~ 20.60 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
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ortho phosphorus prior to 
analysis 

CD007 Composite 4/28/2016 5/3/2016 TP   0.366 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/28/2016 4/29/2016 TSS   11 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/28/2016 4/29/2016 PO4   0.060 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/28/2016 5/2/2016 NO2/NO3   19.10 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/28/2016 5/3/2016 TP   0.114 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 
DUP 

Composite 4/28/2016 4/29/2016 TSS   9 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 
DUP 

Composite 4/28/2016 4/29/2016 PO4   0.056 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 
DUP 

Composite 4/28/2016 5/2/2016 NO2/NO3   19.30 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 
DUP 

Composite 4/28/2016 5/3/2016 TP   0.119 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/28/2016 4/29/2016 TSS   36 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/28/2016 4/29/2016 PO4   0.032 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Composite 4/28/2016 5/2/2016 NO2/NO3   16.80 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/28/2016 5/3/2016 TP   0.237 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/28/2016 4/29/2016 TSS   12 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/28/2016 4/29/2016 PO4   0.091 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/28/2016 5/2/2016 NO2/NO3 ~ 22.50 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD001 Composite 4/28/2016 5/3/2016 TP   0.152 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/29/2016 5/3/2016 TSS   16 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/29/2016 5/4/2016 PO4 * 0.046 mg/L 0.005 EPA 365.1 

Holding time exceeded, 
samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/29/2016 5/4/2016 NO2/NO3 ~ 23.60 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD007 Composite 4/29/2016 5/10/2016 TP   0.109 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 



210 

 

CD004 Composite 4/29/2016 5/3/2016 TSS   93 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/29/2016 5/4/2016 PO4 * 0.051 mg/L 0.005 EPA 365.1 

Holding time exceeded, 
samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/29/2016 5/4/2016 NO2/NO3 ~ 22.90 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD004 Composite 4/29/2016 5/10/2016 TP   0.078 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/29/2016 5/3/2016 TSS   9 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/29/2016 5/4/2016 PO4 * 0.030 mg/L 0.005 EPA 365.1 

Holding time exceeded, 
samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/29/2016 5/4/2016 NO2/NO3 ~ 22.40 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD002 Composite 4/29/2016 5/10/2016 TP   0.075 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/29/2016 5/3/2016 TSS   71 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/29/2016 5/4/2016 PO4 * 0.063 mg/L 0.005 EPA 365.1 
Holding time exceeded, 
samples filtered in lab for 
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soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/29/2016 5/4/2016 NO2/NO3 ~ 26.80 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD001 Composite 4/29/2016 5/10/2016 TP   0.090 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/2/2016 5/3/2016 TSS   30 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/2/2016 5/4/2016 PO4   0.048 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/2/2016 5/4/2016 NO2/NO3 ~ 23.60 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD007 Composite 5/2/2016 5/10/2016 TP   0.178 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/2/2016 5/3/2016 TSS   8 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/2/2016 5/4/2016 PO4   0.054 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/2/2016 5/4/2016 NO2/NO3 ~ 22.40 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
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ortho phosphorus prior to 
analysis 

CD004 Composite 5/2/2016 5/10/2016 TP   0.124 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/2/2016 5/3/2016 TSS   6 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/2/2016 5/4/2016 PO4   0.063 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/2/2016 5/4/2016 NO2/NO3 ~ 22.90 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD002 Composite 5/2/2016 5/10/2016 TP   0.146 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/2/2016 5/3/2016 TSS   15 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/2/2016 5/4/2016 PO4   0.083 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/2/2016 5/4/2016 NO2/NO3 ~ 26.20 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD001 Composite 5/2/2016 5/10/2016 TP   0.152 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Composite 5/13/2016 5/13/2016 TSS   10 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/13/2016 5/13/2016 PO4   0.035 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/13/2016 5/18/2016 NO2/NO3   21.30 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD007 Composite 5/13/2016 5/17/2016 TP ~ 0.068 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/13/2016 5/13/2016 TSS   6 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/13/2016 5/13/2016 PO4   0.042 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/13/2016 5/18/2016 NO2/NO3   20.80 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD004 Composite 5/13/2016 5/17/2016 TP   0.069 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/13/2016 5/13/2016 TSS ~ 27 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/13/2016 5/13/2016 PO4   0.029 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Composite 5/13/2016 5/18/2016 NO2/NO3   19.70 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD002 Composite 5/13/2016 5/17/2016 TP   0.174 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 
DUP 

Composite 5/13/2016 5/13/2016 TSS   27 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 
DUP 

Composite 5/13/2016 5/13/2016 PO4 ~ 0.028 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 
DUP 

Composite 5/13/2016 5/18/2016 NO2/NO3   19.90 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD002 
DUP 

Composite 5/13/2016 5/17/2016 TP   0.148 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/13/2016 5/13/2016 TSS   8 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/13/2016 5/13/2016 PO4   0.043 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/13/2016 5/18/2016 NO2/NO3 ~ 23.80 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 
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CD001 Composite 5/13/2016 5/17/2016 TP   0.070 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/15/2016 5/17/2016 TSS   13 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/15/2016 5/17/2016 PO4   0.040 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/15/2016 5/18/2016 NO2/NO3 ~ 23.70 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD007 Composite 5/15/2016 5/24/2016 TP   0.071 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/15/2016 5/17/2016 TSS   14 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/15/2016 5/17/2016 PO4   0.045 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/15/2016 5/18/2016 NO2/NO3 ~ 22.60 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD004 Composite 5/15/2016 5/24/2016 TP   0.082 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/15/2016 5/17/2016 TSS   115 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Composite 5/15/2016 5/17/2016 PO4   0.020 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/15/2016 5/18/2016 NO2/NO3 ~ 21.90 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD002 Composite 5/15/2016 5/24/2016 TP   0.446 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/15/2016 5/17/2016 TSS   7 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/15/2016 5/17/2016 PO4   0.047 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/15/2016 5/18/2016 NO2/NO3 ~ 25.40 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD001 Composite 5/15/2016 5/24/2016 TP   0.077 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/27/2016 6/8/2016 TSS   18 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/27/2016 5/27/2016 PO4   0.038 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/27/2016 6/1/2016 NO2/NO3   19.60 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Composite 5/27/2016 6/7/2016 TP   0.114 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/27/2016 6/8/2016 TSS   14 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/27/2016 5/27/2016 PO4   0.068 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/27/2016 6/1/2016 NO2/NO3   18.30 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/27/2016 6/7/2016 TP   0.140 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/27/2016 6/8/2016 TSS   135 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/27/2016 5/27/2016 PO4   0.058 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/27/2016 6/1/2016 NO2/NO3   16.90 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/27/2016 6/7/2016 TP   0.462 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/27/2016 6/8/2016 TSS   77 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/27/2016 5/27/2016 PO4   0.087 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/27/2016 6/1/2016 NO2/NO3   29.60 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD001 Composite 5/27/2016 6/7/2016 TP   0.235 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 
DUP 

Composite 5/27/2016 6/8/2016 TSS   74 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 
DUP 

Composite 5/27/2016 5/27/2016 PO4   0.102 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 
DUP 

Composite 5/27/2016 6/1/2016 NO2/NO3   28.20 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 
DUP 

Composite 5/27/2016 6/7/2016 TP   0.226 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/5/2016 6/7/2016 TSS   9 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/5/2016 6/8/2016 NO2/NO3   19.000 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/5/2016 6/14/2016 TP   0.10 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/5/2016 6/7/2016 TSS   7.000 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/5/2016 6/8/2016 NO2/NO3   18 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/5/2016 6/14/2016 TP   0.123 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/13/2016 6/14/2016 TSS   27.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Composite 6/13/2016 6/14/2016 PO4   0.066 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/13/2016 6/14/2016 NO2/NO3   19 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/13/2016 6/21/2016 TP   0.199 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/13/2016 6/14/2016 TSS   15.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/13/2016 6/14/2016 PO4   0.097 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/13/2016 6/14/2016 NO2/NO3   17 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/13/2016 6/21/2016 TP   0.182 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/13/2016 6/14/2016 TSS   23.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/13/2016 6/14/2016 PO4   0.120 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/13/2016 6/14/2016 NO2/NO3   15 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/13/2016 6/21/2016 TP   0.181 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/16/2016 6/19/2016 TSS   27.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Composite 6/16/2016 6/17/2016 PO4   0.149 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/16/2016 6/22/2016 NO2/NO3 ~ 22 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD007 Composite 6/16/2016 6/21/2016 TP   0.286 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 
DUP 

Composite 6/16/2016 6/19/2016 TSS   31.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 
DUP 

Composite 6/16/2016 6/17/2016 PO4   0.142 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 
DUP 

Composite 6/16/2016 6/22/2016 NO2/NO3 ~ 22 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD007 
DUP 

Composite 6/16/2016 6/21/2016 TP   0.280 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/16/2016 6/19/2016 TSS   40.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/16/2016 6/17/2016 PO4   0.169 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/16/2016 6/22/2016 NO2/NO3 ~ 21 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
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ortho phosphorus prior to 
analysis 

CD004 Composite 6/16/2016 6/21/2016 TP   0.340 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/16/2016 6/19/2016 TSS   53.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/16/2016 6/17/2016 PO4   0.179 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/16/2016 6/22/2016 NO2/NO3 ~ 20 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD002 Composite 6/16/2016 6/21/2016 TP   0.364 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 6/16/2016 6/19/2016 TSS   268.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 6/16/2016 6/17/2016 PO4   0.259 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 6/16/2016 6/22/2016 NO2/NO3 ~ 20 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD001 Composite 6/16/2016 6/21/2016 TP   0.530 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Base 6/29/2016 6/28/2016 TSS   9.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 6/29/2016 6/28/2016 PO4   0.045 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 6/29/2016 7/1/2016 NO2/NO3 ~ 25 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD007 Base 6/29/2016 7/12/2016 TP   0.075 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 6/29/2016 6/28/2016 TSS   5.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 6/29/2016 6/28/2016 PO4   0.061 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 6/29/2016 7/1/2016 NO2/NO3 ~ 23 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD004 Base 6/29/2016 7/12/2016 TP   0.127 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 6/29/2016 6/28/2016 TSS   4.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 6/29/2016 6/28/2016 PO4   0.067 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Base 6/29/2016 7/1/2016 NO2/NO3 ~ 20 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD002 Base 6/29/2016 7/12/2016 TP   0.123 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 6/29/2016 6/28/2016 TSS   5.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 6/29/2016 6/28/2016 PO4   0.028 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 6/29/2016 7/1/2016 NO2/NO3 ~ 23 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD001 Base 6/29/2016 7/12/2016 TP   0.058 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/11/2016 7/12/2016 TSS   28.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/11/2016 7/11/2016 PO4   0.088 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/11/2016 7/13/2016 NO2/NO3   18 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/11/2016 7/19/2016 TP   0.150 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD004 Composite 7/11/2016 7/12/2016 TSS   7.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/11/2016 7/11/2016 PO4   0.114 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/11/2016 7/13/2016 NO2/NO3   13 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/11/2016 7/19/2016 TP   0.184 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/11/2016 7/12/2016 TSS   9.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/11/2016 7/11/2016 PO4   0.087 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/11/2016 7/13/2016 NO2/NO3   11 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/11/2016 7/19/2016 TP   0.165 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/11/2016 7/12/2016 TSS   9.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/11/2016 7/11/2016 PO4   0.090 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/11/2016 7/13/2016 NO2/NO3   16 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/11/2016 7/19/2016 TP   0.157 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Composite 7/12/2016 7/19/2016 TSS   4.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/12/2016 7/19/2016 PO4 * 0.100 mg/L 0.005 EPA 365.1 

Holding Time Exceeded. 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/12/2016 7/20/2016 NO2/NO3   19 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/12/2016 7/26/2016 TP   0.154 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/12/2016 7/19/2016 TSS   4.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/12/2016 7/19/2016 PO4 * 0.138 mg/L 0.005 EPA 365.1 

Holding Time Exceeded. 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/12/2016 7/20/2016 NO2/NO3   15 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/12/2016 7/26/2016 TP   0.175 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/12/2016 7/19/2016 TSS   5.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/12/2016 7/19/2016 PO4 * 0.133 mg/L 0.005 EPA 365.1 

Holding Time Exceeded. 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/12/2016 7/20/2016 NO2/NO3   14 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Composite 7/12/2016 7/26/2016 TP   0.164 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/12/2016 7/19/2016 TSS   11.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/12/2016 7/19/2016 PO4 * 0.141 mg/L 0.005 EPA 365.1 

Holding Time Exceeded. 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/12/2016 7/20/2016 NO2/NO3   18 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/12/2016 7/26/2016 TP   0.186 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/19/2016 7/20/2016 TSS   13.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/19/2016 7/20/2016 PO4   0.103 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/19/2016 7/26/2016 NO2/NO3   17 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/19/2016 7/27/2016 TP   0.140 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 
DUP 

Composite 7/19/2016 7/20/2016 TSS   12.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 
DUP 

Composite 7/19/2016 7/20/2016 PO4   0.111 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 
DUP 

Composite 7/19/2016 7/26/2016 NO2/NO3   17 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 
DUP 

Composite 7/19/2016 7/27/2016 TP   0.139 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/19/2016 7/20/2016 TSS   8.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/19/2016 7/20/2016 PO4   0.156 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/19/2016 7/26/2016 NO2/NO3   16 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/19/2016 7/27/2016 TP   0.186 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/19/2016 7/20/2016 TSS   14.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/19/2016 7/20/2016 PO4   0.167 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/19/2016 7/26/2016 NO2/NO3   14 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/19/2016 7/27/2016 TP   0.208 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/19/2016 7/20/2016 TSS   17.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/19/2016 7/20/2016 PO4   0.185 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/19/2016 7/26/2016 NO2/NO3   17 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD001 Composite 7/19/2016 7/27/2016 TP   0.212 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/25/2016 7/26/2016 TSS   10.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/25/2016 7/25/2016 PO4   0.105 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/25/2016 7/26/2016 NO2/NO3   15 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/25/2016 8/4/2016 TP   0.149 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/25/2016 7/26/2016 TSS   3.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/25/2016 7/25/2016 PO4   0.155 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/25/2016 7/26/2016 NO2/NO3   12 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/25/2016 8/4/2016 TP   0.233 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/25/2016 7/26/2016 TSS   8.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/25/2016 7/25/2016 PO4   0.148 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/25/2016 7/26/2016 NO2/NO3   12 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Composite 7/25/2016 8/4/2016 TP   0.218 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 8/7/2016 8/9/2016 TSS   7.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 8/7/2016 8/9/2016 PO4   0.112 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 8/7/2016 8/9/2016 NO2/NO3 ~ 20 
mg/L 
as N 

0.05 353.2 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD007 Base 8/7/2016 8/16/2016 TP   0.138 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 8/7/2016 8/9/2016 TSS   8.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 8/7/2016 8/9/2016 PO4   0.089 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 8/7/2016 8/9/2016 NO2/NO3   11 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 8/7/2016 8/16/2016 TP   0.138 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 8/7/2016 8/9/2016 TSS   5.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 8/7/2016 8/9/2016 PO4   0.091 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Base 8/7/2016 8/9/2016 NO2/NO3   8 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 8/7/2016 8/16/2016 TP   0.143 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 8/7/2016 8/9/2016 TSS   5.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 8/7/2016 8/9/2016 PO4   0.146 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 8/7/2016 8/9/2016 NO2/NO3   11 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 8/7/2016 8/16/2016 TP   0.219 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD0099 Blank 8/7/2016 8/9/2016 TSS < 2.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD0099 Blank 8/7/2016 8/9/2016 PO4 < 0.005 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD0099 Blank 8/7/2016 8/9/2016 NO2/NO3 < 0 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD0099 Blank 8/7/2016 8/16/2016 TP < 0.005 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/11/2016 8/12/2016 TSS   16.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/11/2016 8/12/2016 PO4   0.139 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Composite 8/11/2016 8/16/2016 NO2/NO3   7 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/11/2016 8/16/2016 TP   0.315 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/11/2016 8/12/2016 TSS   8.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/11/2016 8/12/2016 PO4   0.135 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/11/2016 8/16/2016 NO2/NO3   8 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/11/2016 8/16/2016 TP   0.210 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/11/2016 8/12/2016 TSS   12.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/11/2016 8/12/2016 PO4   0.144 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/11/2016 8/16/2016 NO2/NO3   7 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/11/2016 8/16/2016 TP   0.219 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 8/14/2016 8/16/2016 TSS   13.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 8/14/2016 8/15/2016 PO4   0.130 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Base 8/14/2016 8/16/2016 NO2/NO3   11 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 8/14/2016 8/23/2016 TP   0.233 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 8/14/2016 8/16/2016 TSS   13.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 8/14/2016 8/15/2016 PO4   0.245 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 8/14/2016 8/16/2016 NO2/NO3   9 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 8/14/2016 8/23/2016 TP   0.345 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 8/14/2016 8/16/2016 TSS   25.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 8/14/2016 8/15/2016 PO4   0.213 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 8/14/2016 8/16/2016 NO2/NO3   11 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 8/14/2016 8/23/2016 TP   0.324 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 8/14/2016 8/16/2016 TSS   72.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 8/14/2016 8/15/2016 PO4   0.233 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD001 Base 8/14/2016 8/16/2016 NO2/NO3   17 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 8/14/2016 8/23/2016 TP   0.399 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/18/2016 8/19/2016 TSS   19.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/18/2016 8/19/2016 PO4   0.127 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/18/2016 8/24/2016 NO2/NO3   14 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/18/2016 8/25/2016 TP   0.193 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/18/2016 8/19/2016 TSS   12.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/18/2016 8/19/2016 PO4   0.209 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/18/2016 8/24/2016 NO2/NO3   12 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/18/2016 8/25/2016 TP   0.293 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/18/2016 8/19/2016 TSS   25.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/18/2016 8/19/2016 PO4   0.210 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Composite 8/18/2016 8/24/2016 NO2/NO3   12 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/18/2016 8/25/2016 TP   0.301 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/22/2016 8/23/2016 TSS   12.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/22/2016 8/23/2016 PO4   0.102 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/22/2016 8/24/2016 NO2/NO3   15 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/22/2016 8/30/2016 TP   0.135 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/22/2016 8/23/2016 TSS   9.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/22/2016 8/23/2016 PO4   0.180 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/22/2016 8/24/2016 NO2/NO3   14 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/22/2016 8/30/2016 TP   0.206 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/22/2016 8/23/2016 TSS   12.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/22/2016 8/23/2016 PO4   0.181 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Composite 8/22/2016 8/24/2016 NO2/NO3   14 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/22/2016 8/30/2016 TP   0.205 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 8/22/2016 8/23/2016 TSS   19.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 8/22/2016 8/23/2016 PO4   0.112 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 8/22/2016 8/24/2016 NO2/NO3   17 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 8/22/2016 8/30/2016 TP   0.155 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/25/2016 8/26/2016 TSS   17.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/25/2016 8/26/2016 PO4   0.114 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/25/2016 8/31/2016 NO2/NO3   13 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/25/2016 8/30/2016 TP   0.232 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 
DUP 

Composite 8/25/2016 8/26/2016 TSS   16.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 
DUP 

Composite 8/25/2016 8/26/2016 PO4   0.139 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 
DUP 

Composite 8/25/2016 8/31/2016 NO2/NO3   13 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 
DUP 

Composite 8/25/2016 8/30/2016 TP   0.230 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/25/2016 8/26/2016 TSS   19.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/25/2016 8/26/2016 PO4   0.213 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/25/2016 8/31/2016 NO2/NO3   13 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/25/2016 8/30/2016 TP   0.286 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/25/2016 8/26/2016 TSS   56.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/25/2016 8/26/2016 PO4   0.193 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/25/2016 8/31/2016 NO2/NO3   11 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/25/2016 8/30/2016 TP   0.312 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 8/25/2016 8/26/2016 TSS   69.00 mg/L 1.005 EPA 365.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 8/25/2016 8/26/2016 PO4   0.170 mg/L 2.005 EPA 365.3 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 



237 

 

CD001 Composite 8/25/2016 8/31/2016 NO2/NO3   17 mg/L 3.005 EPA 365.4 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 8/25/2016 8/30/2016 TP   0.293 mg/L 4.005 EPA 365.5 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 9/8/2016 9/9/2016 TSS   23.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 9/8/2016 9/9/2016 PO4   0.116 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 9/8/2016 9/16/2016 NO2/NO3   15 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 9/8/2016 9/13/2016 TP   0.184 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 9/8/2016 9/9/2016 TSS   29.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 9/8/2016 9/9/2016 PO4   0.104 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 9/8/2016 9/16/2016 NO2/NO3   13 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 9/8/2016 9/13/2016 TP   0.251 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 9/8/2016 9/9/2016 TSS   34.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 9/8/2016 9/9/2016 PO4   0.137 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Composite 9/8/2016 9/16/2016 NO2/NO3   13 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 9/8/2016 9/13/2016 TP   0.262 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 9/8/2016 9/9/2016 TSS   13.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 9/8/2016 9/9/2016 PO4   0.126 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 9/8/2016 9/16/2016 NO2/NO3   19 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 9/8/2016 9/13/2016 TP   0.226 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 9/18/2016 9/20/2016 TSS   27.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 9/18/2016 9/20/2016 PO4   0.146 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 9/18/2016 9/21/2016 NO2/NO3   13 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 9/18/2016 9/27/2016 TP   0.214 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 9/18/2016 9/20/2016 TSS   24.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 9/18/2016 9/20/2016 PO4   0.148 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD004 Composite 9/18/2016 9/21/2016 NO2/NO3   13 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 9/18/2016 9/27/2016 TP   0.269 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 9/18/2016 9/20/2016 TSS   26.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 9/18/2016 9/20/2016 PO4   0.147 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 9/18/2016 9/21/2016 NO2/NO3   12 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 9/18/2016 9/27/2016 TP   0.271 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 
DUP 

Composite 9/18/2016 9/20/2016 TSS   27.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 
DUP 

Composite 9/18/2016 9/20/2016 PO4   0.149 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 
DUP 

Composite 9/18/2016 9/21/2016 NO2/NO3   12 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 
DUP 

Composite 9/18/2016 9/27/2016 TP   0.278 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 9/18/2016 9/20/2016 TP   94.00 mg/L 1.005 EPA 365.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 9/18/2016 9/20/2016 TP   0.159 mg/L 2.005 EPA 365.3 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD001 Composite 9/18/2016 9/21/2016 TP   15 mg/L 3.005 EPA 365.4 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 9/18/2016 9/27/2016 TP   0.353 mg/L 4.005 EPA 365.5 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 9/25/2016 9/27/2016 TSS   52.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 9/25/2016 9/27/2016 PO4   0.227 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 9/25/2016 9/28/2016 NO2/NO3   5 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 9/25/2016 9/4/2016 TP ~ 0.389 mg/L 0.005 EPA 365.1 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD004 Composite 9/25/2016 9/27/2016 TSS   80.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 9/25/2016 9/27/2016 PO4   0.240 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 9/25/2016 9/28/2016 NO2/NO3   4 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 9/25/2016 9/4/2016 TP ~ 0.440 mg/L 0.005 EPA 365.1 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 
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CD002 Composite 9/25/2016 9/27/2016 TSS   68.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 9/25/2016 9/27/2016 PO4   0.240 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 9/25/2016 9/28/2016 NO2/NO3   5 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 9/25/2016 9/4/2016 TP ~ 0.415 mg/L 0.005 EPA 365.1 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD001 Composite 9/25/2016 9/27/2016 TSS   534.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 9/25/2016 9/27/2016 PO4   0.322 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 9/25/2016 9/28/2016 NO2/NO3   7 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 9/25/2016 9/4/2016 TP ~ 0.809 mg/L 0.005 EPA 365.1 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD007 Base 10/20/2016 10/21/2016 TSS   3.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 10/20/2016 10/21/2016 PO4   0.044 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Base 10/20/2016 10/28/2016 NO2/NO3   14 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 10/20/2016 10/25/2016 TP   0.057 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 10/20/2016 10/21/2016 TSS   3.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 10/20/2016 10/21/2016 PO4   0.045 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 10/20/2016 10/28/2016 NO2/NO3   13 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 10/20/2016 10/25/2016 TP   0.084 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 10/20/2016 10/21/2016 TSS   2.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 10/20/2016 10/21/2016 PO4   0.044 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 10/20/2016 10/28/2016 NO2/NO3   12 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 10/20/2016 10/25/2016 TP   0.086 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 10/20/2016 10/21/2016 TSS < 2.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 10/20/2016 10/21/2016 PO4   0.062 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD001 Base 10/20/2016 10/28/2016 NO2/NO3   14 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 10/20/2016 10/25/2016 TP   0.074 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 10/28/2016 11/1/2016 TSS   44.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 10/28/2016 11/2/2016 PO4 * 0.387 mg/L 0.005 EPA 365.1 

Holding time exceeded, 
samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 10/28/2016 11/2/2016 NO2/NO3   11 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 10/28/2016 11/8/2016 TP ~ 0.530 mg/L 0.005 EPA 365.1 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD004 Composite 10/28/2016 11/1/2016 TSS   32.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 10/28/2016 11/2/2016 PO4 * 0.369 mg/L 0.005 EPA 365.1 

Holding time exceeded, 
samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 10/28/2016 11/2/2016 NO2/NO3   11 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 10/28/2016 11/8/2016 TP ~ 0.490 mg/L 0.005 EPA 365.1 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 
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CD002 Composite 10/28/2016 11/1/2016 TSS   30.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 10/28/2016 11/2/2016 PO4 * 0.300 mg/L 0.005 EPA 365.1 

Holding time exceeded, 
samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 10/28/2016 11/2/2016 NO2/NO3   10 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 10/28/2016 11/8/2016 TP ~ 0.480 mg/L 0.005 EPA 365.1 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD001 Composite 10/28/2016 11/1/2016 TSS   34.00 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 10/28/2016 11/2/2016 PO4 * 0.230 mg/L 0.005 EPA 365.1 

Holding time exceeded, 
samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 10/28/2016 11/2/2016 NO2/NO3   13 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 10/28/2016 11/8/2016 TP ~ 0.389 mg/L 0.005 EPA 365.1 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

Appendix B. 2017 Water Quality Reports from MVTL 

Minnesota Valley Testing Laboratories Water Quality Results 2017 
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Site 
Sample 

Type 
Date 

Sampled 
Date 

Analyzed 
Parameter Attn Result Unit 

Method 
RL 

Method 
Reference 

Comments 

CD007 Base 4/4/2017 4/5/2017 TSS   5 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 4/4/2017 4/5/2017 PO4   0.038 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 4/4/2017 4/7/2017 NO2/NO3   12.30 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 4/4/2017 4/11/2017 TP   0.053 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 4/4/2017 4/5/2017 TSS   5 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 4/4/2017 4/5/2017 PO4   0.036 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 4/4/2017 4/7/2017 NO2/NO3   11.20 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 4/4/2017 4/11/2017 TP   0.061 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 4/4/2017 4/5/2017 TSS   3 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 4/4/2017 4/5/2017 PO4   0.027 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 4/4/2017 4/7/2017 NO2/NO3   7.08 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 4/4/2017 4/11/2017 TP   0.298 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD001 Base 4/4/2017 4/5/2017 TSS   9 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 4/4/2017 4/5/2017 PO4   0.179 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 4/4/2017 4/7/2017 NO2/NO3   9.99 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 4/4/2017 4/11/2017 TP   0.056 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/22/2017 4/26/2017 TSS   12 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/22/2017 4/24/2017 PO4   0.048 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/22/2017 5/2/2017 NO2/NO3   13.90 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/22/2017 4/25/2017 TP   0.064 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/22/2017 4/26/2017 TSS   13 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/22/2017 4/24/2017 PO4   0.048 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/22/2017 5/2/2017 NO2/NO3   13.30 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/22/2017 4/25/2017 TP   0.082 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Composite 4/28/2017 4/28/2017 TSS   5 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/28/2017 4/28/2017 PO4   0.030 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/28/2017 5/2/2017 NO2/NO3   13.80 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 4/28/2017 5/2/2017 TP   0.059 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/28/2017 4/28/2017 TSS   44 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/28/2017 4/28/2017 PO4   0.033 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/28/2017 5/2/2017 NO2/NO3   13.20 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 4/28/2017 5/2/2017 TP   0.126 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/28/2017 4/28/2017 TSS   19 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/28/2017 4/28/2017 PO4   0.041 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/28/2017 5/2/2017 NO2/NO3   12.40 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 4/28/2017 5/2/2017 TP   0.160 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD001 Composite 4/28/2017 4/28/2017 TSS   42 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/28/2017 4/28/2017 PO4   0.032 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/28/2017 5/2/2017 NO2/NO3   13.50 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 4/28/2017 5/2/2017 TP   0.174 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/2/2017 5/3/2017 TSS   32 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/2/2017 5/3/2017 PO4   0.054 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/2/2017 5/10/2017 NO2/NO3   15.30 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/2/2017 5/9/2017 TP   0.123 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/2/2017 5/3/2017 TSS   40 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/2/2017 5/3/2017 PO4   0.068 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/2/2017 5/10/2017 NO2/NO3   15.20 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/2/2017 5/9/2017 TP   0.179 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 
RISE 

Composite 5/2/2017 5/3/2017 TSS   116 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 
RISE 

Composite 5/2/2017 5/3/2017 PO4   0.049 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 
RISE 

Composite 5/2/2017 5/10/2017 NO2/NO3   10.00 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 
RISE 

Composite 5/2/2017 5/9/2017 TP   0.432 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/22/2017 5/23/2017 TSS   35 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/22/2017 5/22/2017 PO4   0.051 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/22/2017 5/24/2017 NO2/NO3   18.20 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 5/22/2017 5/30/2017 TP   0.176 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/22/2017 5/23/2017 TSS   11 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/22/2017 5/22/2017 PO4   0.061 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/22/2017 5/24/2017 NO2/NO3   17.80 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 5/22/2017 5/30/2017 TP   0.133 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Composite 5/22/2017 5/23/2017 TSS   21 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/22/2017 5/22/2017 PO4   0.068 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/22/2017 5/24/2017 NO2/NO3   16.50 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 5/22/2017 5/30/2017 TP   0.176 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/22/2017 5/23/2017 TSS   48 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/22/2017 5/22/2017 PO4   0.052 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/22/2017 5/24/2017 NO2/NO3   12.20 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 5/22/2017 5/30/2017 TP - 0.490 mg/L 0.005 EPA 365.1 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD0099 Composite 5/22/2017 5/23/2017 TSS < 2 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD0099 Composite 5/22/2017 5/22/2017 PO4 < 0.005 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD0099 Composite 5/22/2017 5/24/2017 NO2/NO3 < 0.05 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD0099 Composite 5/22/2017 5/30/2017 TP < 0.005 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 6/2/2017 6/2/2017 TSS   4 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 6/2/2017 6/2/2017 PO4   0.023 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 6/2/2017 6/6/2017 NO2/NO3   14.70 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 6/2/2017 6/6/2017 TP   0.042 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 6/2/2017 6/2/2017 TSS   4 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 6/2/2017 6/2/2017 PO4   0.016 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 6/2/2017 6/6/2017 NO2/NO3   14.10 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 6/2/2017 6/6/2017 TP   0.034 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 6/2/2017 6/2/2017 TSS   2 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 6/2/2017 6/2/2017 PO4   0.019 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 6/2/2017 6/6/2017 NO2/NO3   13.40 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Base 6/2/2017 6/6/2017 TP   0.034 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 6/2/2017 6/2/2017 TSS   2 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 6/2/2017 6/2/2017 PO4   0.010 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 6/2/2017 6/6/2017 NO2/NO3   14.50 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 6/2/2017 6/6/2017 TP   0.019 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/14/2017 6/15/2017 TSS   10 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/14/2017 6/15/2017 PO4   0.047 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/14/2017 6/16/2017 NO2/NO3   13.90 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/14/2017 6/20/2017 TP   0.089 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/14/2017 6/15/2017 TSS   5 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/14/2017 6/15/2017 PO4   0.044 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/14/2017 6/16/2017 NO2/NO3   13.60 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD004 Composite 6/14/2017 6/20/2017 TP   0.086 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/14/2017 6/15/2017 TSS   33 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/14/2017 6/15/2017 PO4   0.099 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/14/2017 6/16/2017 NO2/NO3   11.80 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/14/2017 6/20/2017 TP   0.253 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 6/14/2017 6/15/2017 TSS   12 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 6/14/2017 6/15/2017 PO4   0.057 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 6/14/2017 6/16/2017 NO2/NO3   17.10 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 6/14/2017 6/20/2017 TP - 0.085 mg/L 0.005 EPA 365.1 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

CD007 Composite 6/29/2017 6/30/2017 TSS   17 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/29/2017 6/30/2017 PO4   0.066 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Composite 6/29/2017 7/7/2017 NO2/NO3   10.20 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 6/29/2017 7/5/2017 TP   0.121 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/29/2017 6/30/2017 TSS   7 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/29/2017 6/30/2017 PO4   0.067 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/29/2017 7/7/2017 NO2/NO3   12.00 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 6/29/2017 7/5/2017 TP   0.124 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/29/2017 6/30/2017 TSS   30 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/29/2017 6/30/2017 PO4   0.077 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/29/2017 7/7/2017 NO2/NO3   9.78 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 6/29/2017 7/5/2017 TP   0.171 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 6/29/2017 6/30/2017 TSS   14 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 6/29/2017 6/30/2017 PO4   0.050 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD001 Composite 6/29/2017 7/7/2017 NO2/NO3   14.10 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 6/29/2017 7/5/2017 TP   0.112 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/11/2017 7/13/2017 TSS   42 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/11/2017 7/13/2017 PO4   0.072 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/11/2017 7/21/2017 NO2/NO3   7.76 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/11/2017 7/18/2017 TP   0.178 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 
DUP 

Composite 7/11/2017 7/13/2017 TSS   45 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 
DUP 

Composite 7/11/2017 7/13/2017 PO4   0.070 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 
DUP 

Composite 7/11/2017 7/21/2017 NO2/NO3   7.84 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 
DUP 

Composite 7/11/2017 7/18/2017 TP   0.172 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/11/2017 7/13/2017 TSS   20 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/11/2017 7/13/2017 PO4   0.098 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD004 Composite 7/11/2017 7/21/2017 NO2/NO3   6.32 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/11/2017 7/18/2017 TP   0.191 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/11/2017 7/13/2017 TSS   21 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/11/2017 7/13/2017 PO4   0.075 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/11/2017 7/21/2017 NO2/NO3   5.97 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/11/2017 7/18/2017 TP   0.165 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/11/2017 7/13/2017 TSS   102 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/11/2017 7/13/2017 PO4   0.092 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/11/2017 7/21/2017 NO2/NO3   13.20 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/11/2017 7/18/2017 TP   0.214 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/20/2017 7/25/2017 TSS   74 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/20/2017 7/21/2017 PO4   0.095 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 



257 

 

CD007 Composite 7/20/2017 7/26/2017 NO2/NO3   5.51 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/20/2017 7/25/2017 TP   0.293 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/20/2017 7/25/2017 TSS   21 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/20/2017 7/21/2017 PO4   0.092 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/20/2017 7/26/2017 NO2/NO3   4.46 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/20/2017 7/25/2017 TP   0.185 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/20/2017 7/25/2017 TSS   97 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/20/2017 7/21/2017 PO4   0.040 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/20/2017 7/26/2017 NO2/NO3   6.35 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/20/2017 7/25/2017 TP   0.440 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/20/2017 7/25/2017 TSS   20 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/20/2017 7/21/2017 PO4   0.084 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD001 Composite 7/20/2017 7/26/2017 NO2/NO3   9.66 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/20/2017 7/25/2017 TP   0.127 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/23/2017 7/25/2017 TSS   67 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/23/2017 7/25/2017 PO4   0.110 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/23/2017 7/26/2017 NO2/NO3   6.98 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 7/23/2017 8/1/2017 TP   0.234 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/23/2017 7/25/2017 TSS   24 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/23/2017 7/25/2017 PO4   0.138 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/23/2017 7/26/2017 NO2/NO3   5.80 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 7/23/2017 8/1/2017 TP   0.231 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/23/2017 7/25/2017 TSS   30 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/23/2017 7/25/2017 PO4   0.151 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 



259 

 

CD002 Composite 7/23/2017 7/26/2017 NO2/NO3   4.81 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 7/23/2017 8/1/2017 TP   0.273 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/23/2017 7/25/2017 TSS   20 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/23/2017 7/25/2017 PO4   0.113 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/23/2017 7/26/2017 NO2/NO3   8.01 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Composite 7/23/2017 8/1/2017 TP   0.195 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 8/1/2017 8/2/2017 TSS   4 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 8/1/2017 8/2/2017 PO4   0.070 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 8/1/2017 8/4/2017 NO2/NO3   11.50 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Base 8/1/2017 8/8/2017 TP   0.088 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 8/1/2017 8/2/2017 TSS   8 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 8/1/2017 8/2/2017 PO4   0.069 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD004 Base 8/1/2017 8/4/2017 NO2/NO3   8.44 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Base 8/1/2017 8/8/2017 TP   0.101 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 8/1/2017 8/2/2017 TSS   94 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 8/1/2017 8/2/2017 PO4   0.041 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 8/1/2017 8/4/2017 NO2/NO3   4.22 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Base 8/1/2017 8/8/2017 TP   0.204 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 8/1/2017 8/2/2017 TSS   6 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 8/1/2017 8/2/2017 PO4   0.079 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 8/1/2017 8/4/2017 NO2/NO3   7.15 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD001 Base 8/1/2017 8/8/2017 TP   0.106 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/17/2017 8/18/2017 TSS   83 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/17/2017 8/18/2017 PO4   0.075 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Composite 8/17/2017 8/23/2017 NO2/NO3   1.93 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/17/2017 8/22/2017 TP   0.248 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/17/2017 8/18/2017 TSS   27 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/17/2017 8/18/2017 PO4   0.226 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/17/2017 8/23/2017 NO2/NO3   1.94 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/17/2017 8/22/2017 TP   0.373 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/17/2017 8/18/2017 TSS   173 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/17/2017 8/18/2017 PO4   0.237 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/17/2017 8/23/2017 NO2/NO3   1.98 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/17/2017 8/22/2017 TP   0.498 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/23/2017 8/24/2017 TSS   37 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/23/2017 8/24/2017 PO4   0.084 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD007 Composite 8/23/2017 8/25/2017 NO2/NO3   2.38 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD007 Composite 8/23/2017 8/29/2017 TP   0.242 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/23/2017 8/24/2017 TSS   19 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/23/2017 8/24/2017 PO4   0.291 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/23/2017 8/25/2017 NO2/NO3   2.17 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 Composite 8/23/2017 8/29/2017 TP   0.463 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 
DUP 

Composite 8/23/2017 8/24/2017 TSS   18 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 
DUP 

Composite 8/23/2017 8/24/2017 PO4   0.245 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 
DUP 

Composite 8/23/2017 8/25/2017 NO2/NO3   2.17 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD004 
DUP 

Composite 8/23/2017 8/29/2017 TP   0.452 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/23/2017 8/24/2017 TSS   79 mg/L 2 USGS 1-3765-85 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/23/2017 8/24/2017 PO4   0.360 mg/L 0.005 EPA 365.1 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 
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CD002 Composite 8/23/2017 8/25/2017 NO2/NO3   1.99 
mg/L 
as N 

0.05 353.2 
Samples filtered in lab for 
soluble ortho phosphorus 
prior to analysis 

CD002 Composite 8/23/2017 8/29/2017 TP - 0.630 mg/L 0.005 EPA 365.1 

Sample diluted due to 
result above calibration of 
linear range, samples 
filtered in lab for soluble 
ortho phosphorus prior to 
analysis 

Appendix C. Load, yield, and flow-weighted mean concentrations for County Ditch 57 in 2016 and 2017. 
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Total suspended solid loads for sampling sites in 2016. 
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Total suspended solid yields for sampling sites in 2016. 
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Total suspended solid flow-weighted mean concentrations for sampling sites in 2016. 
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Total phosphorus loads for sampling sites in 2016. 
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Total phosphorus yields for sampling sites in 2016. 
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Total phosphorus flow-weighted mean concentrations for sampling sites in 2016. 
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Orthophosphate loads for sampling sites in 2016. 
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Orthophosphate yields for sampling sites in 2016. 
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Orthophosphate flow-weighted mean concentrations for sampling sites in 2016. 
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Nitrate+nitrite as nitrogen loads for sampling sites in 2016. 
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Nitrate+nitrite as nitrogen yields for sampling sites in 2016. 
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Nitrate+nitrite as nitrogen flow-weighted mean concentrations for sampling sites in 2016. 
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Base flow flow-weighted mean concentrations for total suspended solids, total phosphorus, orthophosphates, and nitrate+nitrite 

as nitrogen for 2016. 
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Total suspended solid loads for sampling sites in 2017. 
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Total suspended solid yields for sampling sites in 2017. 
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Total suspended solid flow-weighted mean concentrations for sampling sites in 2017. 
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Total phosphorus loads for sampling sites in 2017. 
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Total phosphorus yields for sampling sites in 2017. 
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Total phosphorus flow-weighted mean concentrations for sampling sites in 2017. 
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Orthophosphate loads for sampling sites in 2017. 
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Orthophosphate yields for sampling sites in 2017. 
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Orthophosphate flow-weighted mean concentrations for sampling sites in 2017. 
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Nitrate+nitrite as nitrogen loads for sampling sites in 2017. 
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Nitrate+nitrite as nitrogen yields for sampling sites in 2017. 



288 

 

 
Nitrate+nitrite as nitrogen flow-weighted mean concentrations for sampling sites in 2017. 
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Base flow flow-weighted mean concentrations for total suspended solids, total phosphorus, orthophosphates, and nitrate+nitrite 

as nitrogen for 2016.
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Appendix D. Stage, discharge, and sampling coverage graphs 
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Appendix E. Rating curve stage and discharge comparisons 
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Appendix F. Duplicate sample flow-weighted mean concentration comparison. 
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Appendix G. Event concentration comparison graphs. 
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