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Abstract

Researchers are often interested to study in the relationships between one variable and
several other variables. Regression analysis is the statistical method for investigating such
relationship and it is one of the most commonly used statistical Methods in many scientific
fields such as financial data analysis, medicine, biology, agriculture, economics, engineering,
sociology, geology, etc. But basic form of the regression analysis, ordinary least squares
(OLS) is not suitable for actuarial applications because the relationships are often nonlinear
and the probability distribution of the response variable may be non-Gaussian distribution.
One of the method that has been successful in overcoming these challenges is the generalized
linear model (GLM), which requires that the response variable have a distribution from
the exponential family. In this research work, we study copula regression as an alternative
method to OLS and GLM. The major advantage of a copula regression is that there are no
restrictions on the probability distributions that can be used. First part of this study, we will
briefly discuss about copula regression by using several variety of marginal copula functions
and copula regression is the most appropriate method in non Gaussian variable(violated
normality assumption) regression model fitting. Also we validated our results by using real
world example data and random generated (50000 observations) data. Second part of this
study, we discussed about multiple regression model based on copula theory, and also we
derived multiple regression line equation for Multivariate Non-Exchangeable Generalized
Farlie-Gumbel-Morgenstern (FGM) copula function.

Keywords: Regression, ordinary least squares (OLS), multivariate Gaussian copula, copula
regression, generalized linear models(GLM).
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Chapter 1

Introduction

The term "Regression" and the methods for investigating the relationships between two
variables may date back to about hundred years ago. It was first introduced by Francis Galton
in 1908, the renowned British biologist, when he was engaged in the study of heredity. One
of his study was that the children of tall parents to be taller than average but not as tall as their
parents. This "Regression toward mediocrity" gave this statistical methodology as their name.
The term regression and its evolution primarily describe statistical relationship between
the variables. In particular, the simple regression is the regression method to discuss the
relationship between one response/dependent variable (y) and set of explanatory/independent
variable (x). The basic ordinary least squares (OLS) regression model presents a specific
model for the relationship. The distribution of Y given the co-variates assumed to be normal
with a variance that is constant (that is, not related to the co-variates) and a mean that is related
to the co-variates as E(Y |X1 = x1, · · ·,Xk = xk) = β0+β1x1+ · ·+βkxk. The equivalent (in this
case) techniques of maximum likelihood and least-squares are used to estimate the unknown
coefficients. In order to get more flexible approaches to apply in real problems, different
models have been proposed overcoming the less realistic assumptions of the Linear Models,
where a Gaussian distribution was assumed for the dependent variable, with a constant
variance and linear relationship between the predictor and the dependent variable. The
development of the Generalized Linear Models (GLM) McCullagh and Nelder, 1989 [29]
relaxed the distributional assumption from Gaussian to any other distributions from the
exponential family and the proposal of the Generalized Additive Models (GAM) Hastie and
Tibshirani,1990 [38]; Wood, 2006 [49] allowed to model the relation between co-variates
and the response variable in a non-linear way using additive predictors.

During a long time, researchers have been interested on the relationship between a
multivariate distribution function and its lower dimensional margins. In 1950s, M. Frechet
and G. Dallaglio studied about this matter, studying the bi-variate and tri-variate distribution
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functions with given uni variate marginal distribution. The answer to this problem for the
uni-variate marginal case was introduced by A. Sklar in 1959 [42] creating a new class of
functions which he called copulas and also he proved the useful theorem that now bears his
name; In Thomas Mikosch (2006) [30] stated that in September 2005, a Google search on
the term "copulas" yielded 650,000 results. Then, in June 2017 and April 2018, this same
query generated more than 3.81 million and 4.51 million, respectively. Given the number
of publications in scientific journals and the number of scholarly articles available on the
Internet, it is undeniable that the passion for copula theory continues to boom. The word
’copula’ is a Latin noun, which means "a link, tie or bond". In this study we deal with
the concept of copula theory and Regression that was first introduced in a mathematical or
statistical sense by Sklar (1959) [42] in a theorem that describes a copula as a mathematical
function, which joins or "couples" a multivariate distribution function to its one-dimensional
marginal distribution functions. Equivalently, a copula is defined as a multivariate distribution
function whose one-dimensional marginals uniform on the interval[0,1]. In the words of
Fisher (1997) [16] as noted in his paper in the first update volume of the Encyclopedia of
Statistical Sciences, "Copulas [are] of interest to the statistician for two main reasons: firstly,
as a way of studying scale-free measures of dependence; and secondly, as a starting point
for constructing families of bivariate distributions, sometimes with a view to simulation". In
the following chapter we will provide a short introduction of the historical development of
copulas from these two perspectives.

1.1 Objectives of the study

In this research study the following objectives were considered,

1. Comparing linear regression, Generalized linear model and Copula based regression
by using minimized AIC value. In this case we will calculate AIC values for each
situations and finally we compared that AIC values and we proposed copula regression
is best fitting method for Regression analysis when we are using OLS and GLM
assumptions violated data.

2. We propose a new multivariate copula regressions function, which is developed from
sungur (2005) [47] research paper, he studied just bi-variate case Farlie-Gumbel-
Morgenstern (FGM) family. In this study also we also consider same family but
multivariate case.
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1.2 Literature Review

Copula theory and it’s applications in statistics has been done by the scholars in different lo-
cations all over the world. Most of recently published works on the copula regression models
have been focused on analyzing fully observed data; for example, Song (2007) [44]; Czado
(2010) [9]; Joe et al. (2010) [23]; Genest et al. (2011) [20]; Masarotto et al. (2012) [28]; Acar
et al. (2012) [1].Gaussian copula regression model Song (2000) [45] is an useful probability
model for the correlated data. In 2005, Engin Sungur [47] was introduced an alternative
way of looking at regression analysis by using copula theory. We will discuss more literature
reviews in following chapter section 2.1.

1.3 Layout

The goal of this research is to show that copula regression could be extensively used in
regression analysis. The report is organized as follows. In chapter 2, we present copula
functions and some related theoretical properties, in particular the concept of dependence
properties. After we consider the theoretical results of statistical inference of copulas in
chapter 03 and discuss about copula regression theory in chapter 04. Chapter 05, includes
the main results and the interpretations of our investigation by using some useful data set and
randomly generated database. Chapter 06 presents our conclusions and some direction of
future studies.



Chapter 2

Preliminaries on Copula Theory

In this chapter we provide a brief introduction to the ever-growing copula theory the results
that are immediately usable in the subsequent chapters and to deeply discuss some useful
developments in copula theory. Moreover, it is our understanding that the inclusion of this
introductory chapter on review of copula theory makes the thesis to stand by itself. Therefore
in this chapter is as follows. In Section 2.1 we present brief history of copula theory and
Section 2.2 introduce some definitions and important properties of copulas. Describe some
extended concepts of copulas in section 2.3. In Section 2.4, we discuss various methods of
constructing copulas and in Section 2.5 we discuss several important families of copulas in
section 2.6. Section 2.7 explains with defining the notions of dependence measures in terms
of copulas such as measures of concordance, dependence and also discuss other dependence
concepts. We will discuss several methods of estimations and selection for copula models
and describe a method of simulating copulas in next chapter. The final section presents
copula model application on the bi-variate characterization of drought events aiming at the
investigation of the regression analysis.

2.1 History of copula theory

The word copula is a Latin noun that means “a link, tie, bond” (Cassell’s Latin Dictionary)
and is used in grammar and logic to describe “that part of a proposition which connects the
subject and predicate” (Oxford English Dictionary). The word copula was first employed
in a mathematical or statistical sense by Abe Sklar (1959) [42] in the theorem (which now
bears his name) describing the functions that “join together” one-dimensional distribution
functions to form multivariate distribution functions (later we will discuss that Theorem). In
(Sklar 1996) [43] we have the following account of the events leading to this use of the term
copula:
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"Féron (1956), in studying three-dimensional distributions had introduced auxiliary func-
tions, defined on the unit cube, that connected such distributions with their one-dimensional
marginals. I saw that similar functions could be defined on the unit n-cube for all n ≥ 2 and
would similarly serve to link n-dimensional distributions to their one-dimensional marginals.
Having worked out the basic properties of these functions, I wrote about them to Fréchet, in
English. He asked me to write a note about them in French. While writing this, I decided I
needed a name for these functions. Knowing the word “copula” as a grammatical term for a
word or expression that links a subject and predicate, I felt that this would make an appro-
priate name for a function that links a multidimensional distribution to its one-dimensional
margins, and used it as such. Fréchet received my note, corrected one mathematical statement,
made some minor corrections to my French, and had the note published by the Statistical
Institute of the University of Paris as Sklar (1959) [42]."

But as Sklar notes, the functions themselves predate the use of the term copula. They
appear in the work of Fréchet, Dall’Aglio, Féron, and many others in the study of multivariate
distributions with fixed univariate marginal distributions. Indeed, many of the basic results
about copulas can be traced to the early work of Wassily Hoeffding. After Hoeffding, Fréchet,
and Sklar, the functions now known as copulas were rediscovered by several other authors.
Kimeldorf and Sampson (1975b) [26] referred to them as uniform representations , and
Galambos (1978) [17] and Deheuvels (1980) [13] called them dependence functions. At
the time that Sklar wrote his 1959 paper with the term “copula,” he was collaborating with
Berthold Schweizer(1991) [39] in the development of the theory of probabilistic metric
spaces, or PM spaces. During the period from 1958 through 1976, most of the important
results concerning copulas were obtained in the course of the study of PM spaces.Though sim-
ilar ideas and results, for example, can be traced back to the works of Hoeffding (1940) [48]
who studied the link between bivariate "standardized distributions’" whose support is con-
tained in the square [−1/2,12]2 and whose margins are uniform on the interval [−1/2,12],
Sklar (1959) [42] in his break-through work answered the question about the link between
a multivariate distribution and its one-dimensional margins by introducing the concept of
copula. Schweizer (1991) [39] noted that had "Hoeffding chosen the unit square [0,1]2

instead of [−1/2,12]2for his normalization, he would have discovered copulas before Sklar".
Even after Hoeffding and Sklar, the functions now known as copulas were rediscovered by
several other authors. Kimeldorf and Sampson (1975) [26] referred to them as "uniform
representations", Galambos (1978) [17] and Deheuvels (1978) [13] called them "dependence
functions" and Cook and Johnson (1981) [7] called them "standard forms". In the 1960’s
and 70’s most of the results about copulas were obtained in the course of the development
of the probabilistic metric spaces, mainly in the study of binary operations in the space of



2.2 Definitions and properties 6

probability distribution functions. The introduction of copulas to the statistical literature has
been a recent phenomenon. In this regard Schweizer (1991) [39] in Thirty Years of Copulas
noted that "Those of us working on these matters had no formal training in Statistics. Thus,
we were only tangentially aware of possible statistical applications. Moreover, with the
notable exception of Sklar’s original paper, our results were presented in a novel context and
published in journals not generally read by statisticians. Thus the statistical community took
little note of our work...." In the last two decades remarkable advances have been made in
the field of probability distributions with given or fixed marginals that led to the organization
of four international conferences in Rome, Seattle, Prague and Barcelona in 1990, 1993,
1996 and 2000, respectively, under the main theme Distributions with Given Marginals
and Related Topics. As a result more advances have been achieved in the development
of copula theory and its broad applications in probability theory, Bio-statistics, Finance,
Insurance, Economics, Data-mining, Hydrology, Environment and many other fields. The
literature on the copula theory has kept growing as the interest in the application of copulas
increases. Many extensions have been made to the concept of copula first introduced by Sklar
(1959) [42]. Survival copula appears as a function, which relates the joint survival function of
multivariate distribution with its one-dimensional survival functions. Extreme value copulas
are discussed in Joe (1997) [22]. Time dependent or conditional copulas are introduced by
Patton (2006a, b) [35]) [34] with application in time series. Sancetta and Satchell (2004)
[37] defined Bernstein copula using Bernstein polynomial approximation. For review of
more recent developments on copulas we refer to Kolev et al. (2006) [27]. It is also noted
that along the development of copulas, their application in defining measures of dependence
between random variables appear implicitly in earlier works on dependence by many au-
thors. Hoeffding (1940) [48] used "standard distributions" to define Pearson’s coefficient of
correlation. Spearman’s rho, Hoeffding’s dependence index, and Pearson’s coefficient of
mean square contingency. Deheuvels (1979) [10] used "empirical dependence function" to
estimate the population dependence function and to construct various nonparametric tests
of independence. The earliest paper, as noted by Nelsen (2006) [32] that explicitly relating
copulas to the study of dependence among random variables appeared in Schweizer and
Wolff (1981) [40]. They defined many of the measures of dependence in terms of copulas
and also established the basic invariance

2.2 Definitions and properties

In order to keep the main ideas in focus and for sake of brevity, first we restrict our attention to
the two-dimensional case and later we provide brief note on extension to the d -dimensional
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case (d > 2). The following notations and definitions are introduced. Let X and Y be two
real-valued random variables on a common probability space (Ω,ℑ,P) with distribution
functions F(X) = P(X ≤ x) and G(y) = P(Y ≤ y), respectively and a joint distribution
function H(x,y) = P(X ≤ x,Y ≤ y). We further assume that the distribution function H has
all the first and second order derivatives. Since we will make use of quantile functions and
probability integral transforms, we give their definitions as follows.

Definition 2.1 (Quantile Function):

Let X and F be as defined above. Then the quantile function (or generalized inverse) of F is
any function F−1 such that,

F−1(t) = inf{x |F(x)≥ t} t ∈ (0,1) (2.1)

For a continuous random variable X denote the quantile function of F by F−1.

Definition 2.2 (Probability Integral Transform):
Let X ,F and F−1 as defined above. Then,

1. For any standard uniformly distributed U ∼U(0,1) we have F−1(U)∼ F .

2. If F is continuous then the random variable F(X) is standard uniformly distributed
(F(X)∼U(0,1)),

Further, let U = F(X) and V = G(Y ) denote the probability integral transforms of X and Y ,
respectively. Now we give two equivalent definitions of copula.

Definition 2.3 (Copula):
The copula of (X ,Y ) denoted by C is the joint distribution function of U and V , i.e., a copula
is a bivariate distribution function with Uniform(0,1) margins. Alternatively, an equivalent
definition that provides some properties of a copula can be given as follows.

Definition 2.4 (Copula):
A (two-dimensional) copula is a function C : [0,1]2 → [0,1] with the following properties:

1. C is grounded, that is, C(u,0) = 0 and C(0,v) = 0 for all u,v ∈ [0,1];

2. C is such that C(u,1) = u and C(1,v) = v for all u,v ∈ [0,1];

3. C is increasing function; that is for every u1,u2,v1,v2 in [0,1] such hat u1 ≤ u2 and
v1 ≤ v2, Vc ([u1,v1]× [u2,v2])=C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1)≥ 0 where
the function Vc is called the C− volume of the rectangle [u1,v1]× [u2,v2].
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According to above definition shows that C is a bivariate distribution function on the unit
square [0,1]2 whose margins are uniform on [0,1]. Both above definitions are connected by
Sklar’s (1959) [42] via his theorem stated below, which now bears his name. In fact, the use
of copulas allows solving the fundamental problem of determining the relationship between
the joint distribution functions and their one-dimensional distributions by performing two
basic tasks. First, find out one-dimensional margins (not necessarily from the same family)
and secondly, choose a copula to link them. We now present Sklar’s theorem that justifies
such a role.
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Fig. 2.1 surface plot of the independence copula

Theorem 2.1 (Sklar’s Theorem):

Let H be a joint distribution function with margins F and G . Then there exists a copula C
such that for all (x,y) ∈ ℜ̄ (extended real line),

H(x,y) =C(F(x),G(y)) (2.2)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on(Range
of F)× (Range of G). Conversely, if C is a copula and F and G are distribution functions,
then the function H defined by (2.1) is a joint distribution function with margins F and G .
See proof in Nelsen (2006) [32]. The following corollary provides a means how to determine
a copula function from the joint distribution and the generalized inverse of its marginals, F−1

and G−1.
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Corollary 2.1 (Sklar’s Theorem):

Let H,F,G, and C be as defined above and let F−1 and G−1 be generalized inverses of F and
G , respectively. Then for any(u,v) in [0,1]2

C(u,v) = H(F−1(u),G−1(v)) (2.3)

See proof in Nelsen (2006) [32].
Note that when F and G are continuous this result provides a method of constructing

copulas from knowledge of joint and marginal distribution functions (see Section 2.5). Next,
we describe some of the basic properties of copulas. Proofs of these properties can be found,
for example, in Nelsen (2006) [32] and Cherubini et al. (2004) [6].

Property:1 The Copula C is non-decreasing in each argument

Theorem 2.2:
Let C be a copula and u1 ≤ u2 for u1,u2 ∈ [0,1] such that for all v ∈ [0,1]

C(u2,v)−C(u1,v) non decreasing on [0,1]

Similarly, for v1 ≤ v2 for v1,v2 ∈ [0,1] such that for all u ∈ [0,1]
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C(u,v2)−C(u,v1) non decreasing on [0,1]

Property:2 The Copula C is uniformly continuous in its domain.

Theorem 2.3:

Let C be a copula and for u1,u2,v1,v2 ∈ [0,1] such that u1 ≤ u2 and v1 ≤ v2 then

|C(u2,v2)−C(u1,v1)| ≤ |u2 −u1|+ |v2 − v1| (2.4)

Property:3. All partial derivatives of the copula C exists.

Let C be a copula. For any v in [0,1], the partial derivative ∂C/∂u exists for almost all
u, and for such v and u, 0 ≤ ∂C(u,v)/∂u ≤ 1. Similarly, For any u in [0,1], the partial
derivative ∂C/∂v exists for almost all v, and for such u and v, 0 ≤ ∂C(u,v)/∂v ≤ 1. The
partial derivatives of the copula can be used to define conditional distribution functions by
the relationships;

P[X ≤ x |Y = y] = ∂C(u,v)/∂vandP[Y ≤ y |X = x] = ∂C(u,v)/∂u (2.5)

where u = F(x) and v = G(y)

Property:4. The Copula C satisfies the Frechet-Hoeffding bounds.

Theorem 2.4:

Let C be a copula. Then for every (u,v) in [0,1]2

W (u,v)≤C(u,v)≤ M(u,v) (2.6)

where W (u,v) = max(u+ v−1,0) and M(u,v) = min(u,v) In the two dimensions, both the
Frechet-Hoeffding lower bound, W , and upper bound, M , are copulas. However, at higher
dimensions (d > 2) the lower bound is never a copula; see for example Nelsen (2006) [32].

Definition 2.5:

The Product copula denoted by H is given by ∏(u,v) = uv.

The product copula (∏), and the Frechet-Hoeffding bounds W and M are associated
with important statistical interpretations of random variables (see properties Property:5 and
Property:6 below). A copula that includes H, W and M is called a comprehensive copula.
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Property:5. Independence of random variables

Theorem 2.4:

Let X and Y be continuous random variables. Denote by C the copula of X and Y . Then
X and Y are independent if and only if C = ∏.

Property:6. Perfect dependence of random variables

Theorem 2.5:

Let X and Y be continuous random variables. Then the copula of X and Y is M if and only if
each of X and Y is almost surely an increasing function of the other. Similarly, the copula
of X and Y is W if and only if each of X and Y is almost surely a decreasing function of the
other.

This theorem implies that the copulas M and W are associated with perfect positive de-
pendence and perfect negative dependence, respectively. One very attractive property of
copulas is that they are invariant or change in a predictable way under strictly monotone
transformations of random variables.

Property:7. Invariance property of Copulas

Theorem 2.6 (Schweizer and Wolff, 1981 [40]):

Let X and Y be continuous random variables with copula CXY . Then

1. If α and β are strictly increasing almost surely on Range of X and Range of Y ,
respectively, then Cα(X),β (Y ) = CXY Thus CXY is invariant under strictly increasing
transformations of X and Y

2. If α and β are strictly decreasing on almost surely on Range of X and Range of Y ,
then the copulas C1,C2 and C3 of the pairs (α(X),Y ),(X ,β (Y )), and (α(X),β (Y ))
respectively, are independent of the particular choices of α and β and are given by
C1(u,v) = v−CXY (1−u,v)
C2(u,v) = u−CXY (u,1− v)
C3(u,v) = u+ v−1+CXY (1−u,1− v)

See proof in Schweizer and Wolff (1981).
This interesting invariance property of copulas is very useful. Suppose we know the form

of the copula for two variables X and Y but due to some practical reasons it is necessary to
transform the data to log(x) and log(y). Then, because of the invariance property of copulas,
the copula for the logarithm transformation log(x) and log(y) remains unchanged.
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Property:8. The copula density exists everywhere in [0,1]2.

Definition 2.6:
The copula density c(·, ·) is defined as c(u,v) = ∂ 2C(u,v)/∂u∂v .
Theorem 2.7:
The copula density c exists almost everywhere in [0,1]2 and is non negative.

Note that for continuous random variables X and Y , the copula density c can be related to the
density of the distribution functions H denoted by h and the marginal distributions F and
G with densities denoted by f and g, respectively. From the probability integral transforms
we have U = F(x) and V = G(Y ) , as a result X = F−1(U) and Y = G−1(V ). Since for
continuous random variables these transformations are strictly increasing and continuous we
have

c(u,v) = h(F−1(U),G−1(V ))∗

∣∣∣∣∣
(

∂X/∂U ∂X/∂V
∂Y/∂U ∂Y/∂V

)∣∣∣∣∣ (2.7)

=
h(F−1(U),G−1(V ))

f (F−1(U))g(G−1(V ))

It follows that,

c(F(x),G(y)) =
h(x,y)

f (x)g(y)
(2.8)

Thus, the joint density of X and Y is expressed as the product of the marginal and copula
densities:

h(x,y) = f (x)g(y)c(F(x),G(y)) (2.9)

Next we state the d-dimensional (d > 2) extension of Sklar’s theorem. Many properties
of the d -dimensional copula can be analogously defined as in the two-dimensional case.
Here we just give the d -dimensional extension of the Sklar’s theorem, further details can be
found in Nelsen (2006) [32] and Cherubini et al. (2004) [6].
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Theorem 2.8 (Sklar’s Theorem in d -dimensions ):

Let H be a d -dimensional distribution function with margins F1,F2, ...,Fd . Then there exists
a d-copula C such that for all (x1,x2, ......,xd) in ℜ̄d

H(x1,x2, ......,xd) =C(F1(x1),F2(x2), ........,Fd(xd)) (2.10)

If F1,F2, ...,Fd are all continuous, then C is unique; otherwise, C is uniquely determined on
Range F1 ×· · ·× Range Fd . Conversely, if C is a d -copula and F1,F2, ...,Fd are distribution
functions, then the function H defined by (2.3) is a d -dimensional distribution function with
margins F1,F2, ...,Fd

Corollary 2.2 (Sklar’s Theorem in d-dimensions):

Let H,C,F1,F2, ...,Fd , be as defined above and let F−1
1 ,F−1

2 , ...,F−1
d be generalized inverses

of F1,F2, ...,Fd , respectively. Then for any u1,u2, ........ud in [0,1]2

C(u1,u2, ........ud) = H(F−1
1 (u1),F−1

2 (u2), ...,F−1
d (ud)) (2.11)

2.3 Some extended concepts of copulas

In this section we summarize some important extended copula concepts, which have made
remarkable contribution towards the growing interest in copula theory.

Survival Copula

For two random variables X and Y with marginal distributions F and G , respectively and
bivariate distribution function H, the marginal survival functions F̄ and Ḡ and the bivariate
survival function H̄ are given by F̄(x) = P(X > x), Ḡ(y) = P(Y > y) and H̄(x,y) = P(X >

x,Y > y) respectively.

Definition 2.7:

The survival copula Ĉ is a function, which relates the bivariate survival function to its
marginal survival functions, i.e.,

H̄(x,y) = Ĉ(F̄(x), Ḡ(y)) (2.12)
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The survival copula Ĉ is a copula, and is related to the copula C of X and Y via the equation

Ĉ(u,v) = u+ v−1+C(1−u,1− v) (2.13)

Conditional or Time Dependent Copulas

In practice, in the presence of temporal dependence, which is a common feature of time
series data, a powerful tool to specify the underlying models is conditional information with
respect to past observations. Here we state the extended version of Sklar’s Theorem given in
Patton (2006a) [35] and Fermanian and Scaillet (2005a [15]).

Let X ,Y and W be continuous random variables with W be the conditioning variable. Let
the joint distribution of (X ,Y,W ) be HXYW , denote the conditional distribution of (X ,Y )
given W as HXY |W and let the conditional marginal distributions of X |W and Y |W be denoted
by FX |W and GY |W , respectively. Note that FX |W (x|w) = HXY |W (x,∞|w) and GY |W (y|w) =
HXY |W (∞,y|w). Assume that HXYW has all the required derivatives, and that FX |W ,GY |W , and
HXY |W are continuous.

Definition 2.8 (Conditional copula , Patton (2006a) [35]):

The conditional copula of (X ,Y )|W = w, where X |W = w ∼ FX |W (·|w) and Y |W = w ∼
GY |W (·|w)is the conditional joint distribution function of U =FX |W (X |w) and V =GY |W (Y |w)
given W = w, where the variables U and V are known as conditional probability integral
transforms of X and Y given W .

Patton (2006a) [35] has shown that the conditional copula function satisfies similar
properties as that of the unconditional copula defined by Sklar (1959) [42]. Hence, the
following version of Sklar’s theorem holds.

Sklar’s Theorem 2.9 (Conditional copula, Patton (2006a) [35]):

Let FX |W (·|w) be the conditional distribution of X |W = w,GY |W (·|w) be the conditional distri-
bution of Y |W =w,HXY |W (·|w) be the joint conditional distribution function of (X ,Y )|W =w,
and ω̄ be the support of W . Assume that FX |W (·|w) and GY |W (·|w) are continuous in
x and v for all w ∈ ω̄ . Then there exists a unique conditional copula C(·|w) such that
HXY |w =C(FX |W (x|w),GY |W (y|w)|w) for all (x,y) ∈ ℜ̄2 and each w ∈ ω̄ . (2.4) Conversely,
if we let FX |W (·|w) be the conditional distribution of X |W = w,GY |W (·|w) be the conditional
distribution of Y |W = w, and C(·|w) be a family of conditional copulas that is measurable
in w, then the function HXY |W (·|w) defined by (2.4) is a conditional bivariate distribution
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function with conditional marginal distributions FX |W (·|w) and GY |W (·|w).

Remark: This version of Sklar’s theorem for conditional distributions demands that the
conditioning variable, W , must be same for both marginal distributions and the copula.
Otherwise the function HW may not be a joint conditional distribution function. Consider
X |W1,Y |W2 and CXY |w1,w2 and specify

HXY |w1,w2(x,y|w1,w2) =C
(
FX |W1(x|w1),GY |W2(y|w2)|w1,w2

)
(2.14)

Then, HXY |w1,w2(x,∞|w1,w2) = C
(
FX |W1(x|w1),1|w1,w2

)
= FX |W1(x|w1) which is the con-

ditional marginal distribution of X |W1, which is the conditional marginal distribution of
(X ,Y )|W1 . Similarly,HXY |w1,w2(∞,y|w1,w2)=C

(
1,GY |W2(y|w2)|w1,w2

)
=FY |W2(y|w2) which

is the conditional marginal distribution of Y |W2, which is the conditional marginal dis-
tribution of (X ,Y )|W2. Thus the function HXY |w1,w2 cannot be the joint distribution of
(X ,Y )|(W1,W2) . The only case HXY |W1,W2 will be joint distribution of (X ,Y )|(W1,W2) is
when FX |W1(x|w1) = FX |w1,w2(x|w1,w2) and FY |W1(y|w1) = FY |w2,w2(y|w1,w2) that is when
some conditioning variables affect the conditional distribution of one variable but not the
other.

Remark.

Corollary 2.1 can be formulated in a manner that can help to extract the conditional copula
from any bivariate conditional distribution. Fermanian and Scaillet (2005a) [15] provided
the definition of conditional copula in terms of sigma field ℑ .

Empirical Copula

Deheuvels (1979) [10] introduced empirical copulas. He called them empirical dependence
functions.
Definition 2.9: Let (xt ,yt), t = 1,2, ...,n denote a sample of size n from a continuous
bivariate distribution. The empirical copula function Cn is given by

Cn

(t1
n
,
t2
n

)
=

1
n

n

∑
t=1

I (xt ≤ xt1,yt ≤ yt2) (2.15)

where xti and yti , 1 ≤ t1 · ·· ≤ ti ≤ n are order statistics from the sample and I is the usual indi-
cator function. Note that the sample versions of several measures of dependence/association
can be expressed in terms of empirical copula analogous to the population versions of
measures of dependence that can be expressed in terms of copulas.



2.4 Methods of Constructing Copulas 16

2.4 Methods of Constructing Copulas

First we note that there are several methods of constructing copulas, see for example Nelsen
(2006) [32] and in this section we considered a few selected methods.

1. Inversion of Marginals: Let H he a two-dimensional distribution function with
known continuous marginal distributions F and G and their inverses F−1 and G−1,
respectively. Then we can find the unique copula as

C(u,v) = H(F−1(u),G−1(v)) (2.16)

Example: Gaussian Copula. Let φρ(x,y) be a standard bivariate normal distribution
function with coefficient of correlation ρ and let φ(·) represents univariate standard
normal margin. Then, the Gaussian (Normal) copula is given by

C(u,v;ρ) = φρ

(
φ
−1(u),φ−1(v)

)
(2.17)

2. Method of Frailties: The concept of frailty has been extensively used in survival anal-
ysis. Frailties can be used to construct various families of copulas (Oakes, 1989 [33]).
Denote the frailty by Z and assume that it is non negative with density f (z), distribution
function F(z), and Laplace transform LZ(t) = EZ (exp(−z)). Now, consider random
variables X and Y with survival functions SX and SY respectively. Let BX and BY . be
two continuous baseline survival functions. Assume that the random variables X and Y
are conditionally independent given the frailty Z . That is

P(X > x,Y > y|Z = z) = P(X > x|Z = z)P(Y > y|Z = z) (2.18)

= SX(x|Z = z)SY (y|Z = z) (2.19)

and the joint survival function SXY (x,y) can be derived from

SXY (x,y) =
∫

∞

0
SX(x|Z = z)SY (y|Z = z) f (z)dz (2.20)

Let us consider a special case where we assume that

SX(x|Z = z) = [BX(x)]
z and SY (y|Z = z) = [BY (y)]

z (2.21)
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such that the unconditional survival functions are given by,

SX(x) = LZ [− logBX(x)] and SY (y) = LZ [− logBY (y)] (2.22)

It follows that,
SXY (x,y) =

∫
∞

0
SX(x|Z = z)SY (y|Z = z) f (z)dz

=
∫

∞

0 [BX(x)]
z[BY (y)]

z f (z)dz

= EZ {BX(x)BY (y)
z}

= EZ {exp(z [logBX(x)+ logBY (y)])}

= LZ [−(logBX(x)+ logBY (y))]

Further we have,

− log(BX(x)) = L−1
Z (SX(x)) and − log(BY (y)) = L−1

Z (SY (y)) (2.23)

Thus, we can write the joint survival function is given by,

(SXY (x,y) = LZ
[
L−1

Z (SX(x))+L−1
Z (SY (y))

]
(2.24)

Finally, it follows that the copula is given by

C(u,v) = LZ
[
L−1

Z (u)+L−1
Z (v)

]
(2.25)

where u = SX(x) and v = SY (y)

Example: Gumbel-Hougaard Copula. Suppose the frailty Z has a positive stable
distribution with Laplace transform given by

LZ(t) = exp(−t1/δ )

Hence, using (2.8) we have the Gumbel-Hougaard family of copulas given by

C(u,v) = exp
{
−
[
(− log(u))δ +(− log(v))δ

]1/δ
}

Remark: The advantage of the frailty concept is that it allows us to interpret the
dependence of the random variables in such away that a frailty that contributes to the
dependence of the random variables may exist.These class of copulas generated by
frailty models are a subclass of the Archimedean copulas defined on a more general
functions called "Generators" discussed below.
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3. Method of Generators: Another important way of constructing copulas is using a
function φ called a "Generator" that satisfies the following properties

(a) φ : [0,1]→ [0,∞]

(b) φ is continuous and strictly decreasing function,

(c) φ is such that φ(1) = 0

The pseudo inverse of φ is the function φ [−1] [0,∞]→ [0,1] given by,

φ
[−1](t) =

{
φ−1(t) 0 ≤ t ≤ φ(0)
0 φ(0)≤ t ≤ ∞

If φ(0) = ∞, then the pseudo inverse φ [−1] = φ−1, inverse of φ .

Theorem 2.10: Let the Generator φ be as defined above and let φ [−1] be the pseudo
inverse of φ . Then, the function C from [0,1]2 → [0,1] given by

C(u,v) = φ
[−1] (φ(u)+φ(v)) (2.26)

is a copula if and only if φ is convex. Copulas of the form (2.9) are called Archimedean
copulas. Some examples and properties are discussed in subsequent sections; see
details in Nelsen (2006) [32], Chapter 4).
Example: (Frank Copula ) Suppose the generator is given by

φ(t) =−log
(

1−e−δ t

1−e−δ

)
and inverse φ−1(u) =− 1

δ
log
[
1−
(

1− e−δ

)
e−u
]

Thus, the resulting copula is the Frank’s family given by

C(u,v) =− 1
δ

log

1−

(
1− e−δu

)(
1− e−δv

)
1− e−δ


4. Polynomial Approximations to copulas Polynomials are used in the approximation

of distribution functions. To this end, Hoeffding (1940) [48] used Legendre polyno-
mials to approximate bivariate "standard distributions" later called copulas. Recently,
Sancetta and Satchell 2004 [37]) introduced Bernstein copula defined by Bernstein
polynomials that are closed under differentiation.
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Definition 2.10 (Bernstein copula, Sancetta and Satchell (2004) [37]):
Let α

(
k1
m1
, k2

m2

)
valued constant, k ∈ {1,2} such that 1 ≤ k ≤ mi, i = 1,2 and the

Bernstein polynomials given by

Pki,mi(ui) =

(
mi

ki

)
ui

k
i (1−ui)

k
i If CB : [0,1]2 → [0,1] (2.27)

where

CB(u1,u2) =
m1

∑
k1=1

m2

∑
k2=1

α

(
k1

m1
,

k2

m2

)
Pk1,m1(u1)Pk2,m2(u2) (2.28)

satisfies the properties of the copula function in Definition (2.4), then CB is called
the Bernstein copula. Some statistical properties of Bernstein copula are studied by
Sancetta and Satchell (2004) [37]. In particular, they have shown that the coefficients
of the Bernstein copula CB have a direct interpretation as the points of some arbitrary
approximated copula, C, i.e.,

α

(
k1

m1
,

k2

m2

)
=C

(
k1

m1
,

k2

m2

)
(2.29)

2.5 Important families of copulas

In the copula literature several examples of copula functions are introduced. Most of the
copulas belong to members of families with one or more real valued parameters. In this
section we present a very brief overview of some parametric families of copulas. Extensive
surveys of families of copulas can be found in Joe (1997) [22] and Nelsen (2006) [32].

2.5.1 Farlie-Gumbel-Morgenstern’s (FGM) Family

The FGM family is a symmetric and one parameter family of copulas whose functional form
is a polynomial in u and in v. That is, for δ ∈ [−1,1] then the function is given by

Cδ (u,v) = uv+δuv(1−u)(1− v) (2.30)

is the FGM family of copulas.
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2.5.2 Archimedean Copulas

The Archimedean copulas are given by the general expression

C(u,v) = φ
[−1] (φ(u)+φ(v)) (2.31)

where φ is a "Generator" defined in Section 2.5 above.
The Archimedean copulas have a wide range of applications as indicated in Nelsen (2006)
[32] because of the ease with which they can be constructed, the many parametric families
of copulas belonging to this class, the great variety of dependence structures offered by
this class and the nice properties possessed by the members of this class such as extension
to higher dimensions, convenient in developing criteria for copula model selection and
establishing relationship with nonparametric measures of associations, etc. Genest and
MacKay (1986a,b) [19] have presented many properties of this class of copulas, which made
them extremely suitable for statistical applications. Next, we present brief descriptions to
four members of Archimedean family of copulas that are used in the subsequent chapters.

1. Gumbel’s Family.
The Gumbel copula is given by

C(u,v;δ ) = exp
(
−(ũδ + ṽδ )

1
δ

)
(2.32)

where ũ =− log(u), ṽ =− log(v)
with copula density,

c(u,v;δ ) =C(u,v;δ )[uv]−1 (ũṽ)δ−1

(ũδ + ṽδ )
2− 1

δ

[
(ũδ + ṽδ )

1
δ +δ −1

]
(2.33)

This family has properties like upper tail dependence, product copula for δ = 1, Frechet-
Hoeffding upper bound copula for δ → ∞ (see Joe, 1997, Family B6, p. 142). These
properties are the subject of the next section.

2. Clayton’s (or Kimeldrof and Sampson’s) Family.
This copula is referred as Clayton’s copula, for example, in Nelsen (2006) [32] and
Kimeldrof and Sampson’s copula in Joe (1997) [22]. This copula is given by

C(u,v;δ ) = (ũδ + ṽδ )−1)
−1
δ

δ ≥ 0 (2.34)
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with copula density,

c(u,v;δ ) = (1+δ )[uv]−δ−1(ũδ + ṽδ )
−2− 1

δ (2.35)

This family has properties like lower tail dependence, product copula for δ → 0,
Frechet Hoeffding upper bound copula for δ → ∞ (see Joe, 1997 [22], Family B4, p.
141).
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Fig. 2.3 Bivariate random samples of size 250 from various Clayton copulas
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3. Frank’s Family.
The Frank copula is given by

C(u,v;δ ) =−δ
−1 log


[
(1− e−δ )− (1− e−δu)(1− e−δv)

]
(1− e−δ )

 (2.36)

with copula density,

c(u,v;δ ) =

[
δ (1− e−δ )e−δ (u+v)

]
[
(1− e−δ )− (1− e−δu)(1− e−δv)

]2 (2.37)

This family has properties like reflection symmetry, product copula for δ → 0, Frechet
Hoeffding lower and upper bound copulas for δ →−∞ and δ → ∞, respectively (see
Joe, 1997 [22], Family B3, p. 141).

4. Joe’s Family
The Joe’s copula is given by

C(u,v;δ ) = 1−
(

ūδ + v̄δ − ūδ v̄δ

)1/δ

δ ≥ 1 (2.38)

with copula density,

c(u,v;δ ) =
(

ūδ + v̄δ − ūδ v̄δ

)−2+1/δ

ūδ−1v̄δ−1
(

δ −1+ ūδ + v̄δ − ūδ v̄δ

)
(2.39)

where ū = 1−u and v̄ = 1− v This family has properties like upper tail dependence,
product copula for δ = 1, Frechet Hoeffding upper bound copula for δ → ∞ (see Joe,
1997 [22],Family B5, pp. 141-142).

2.5.3 Elliptical Copulas

Elliptical copulas are copulas associated with elliptical distributions. For definitions of
elliptical distributions see for example Embrechts et al. (2002) [14]. The Gaussian copula
and the t-copula are examples of elliptical copulas. For example, the Gaussian copula is
given by

C(u,v;δ ) = φδ

(
φ
−1(u),φ−1(v)

)
−1 ≤ ρ ≤ 1 (2.40)
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Fig. 2.4 Bivariate random samples of size 250 from various Frank copulas.
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with copula density,

c(u,v;δ ) =
1

(1−δ 2)

{
e

−1
2(1−δ2)

(X2+Y 2−2δXY)
}{

e
1
2(X2+Y 2)

}
(2.41)

where X = φ−1(u) and Y = φ−1(v) We note that multi-parametric families of copulas are
extensively discussed in Joe (1997) [22]. Here we give one example from two parametric
families of copulas.

2.5.4 Frechet’s Family

The Frechet’s family is a two-parameter family of copulas given as a convex linear combina-
tion of the copulas π,W and M , i.e.,

Cαβ (u,v) = αM(u,v)+(1−α −β )π(u,v)+βW (u,v) (2.42)

where α,β ∈ [0,1] with α +β ≤ 1

2.6 Dependence Measures

In this section we deal with different ways in which copulas can be used in the study
of dependence between random variables. There are a variety of ways to describe and
measure the dependence or association between random variables. The multivariate normal
distribution and linear correlation have been the basis for most dependence modeling in
practice. In fact, linear correlation is a good measure of dependence in the context of
multivariate normal distributions or elliptical distributions in general but it has several
problems if applied to distributions other than elliptical distributions (Embrechts et al,
2002 [14]). Alternative measures of dependence using nonparametric methods are also
common in practice. Copulas are capable of describing these measures of dependence
and also capturing any form of dependence structure. Many measures of dependence
have been introduced and studied in the literature. Among them the most widely used
measures are: the Pearson’s coefficient of correlation (r) , Spearman’s rho (ρs) introduced by
Spearman(1904) [46], and Kendall’s tau (τ)introduced by kendall (1938) [25]. Definitions
of these measures and their relation to copulas can be found, for example, in Nelsen (2006)
[32] and Joe (1997) [22]. Let X and Y be two random variables and let F,G,H, and C be
defined as in Section 2.2.
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Pearson correlation coefficient

r(x,y) =
1

σ(x)σ(y)

∫
∞

−∞

∫
∞

−∞

[H(x,y)−F(x)G(y)]dxdy (2.43)

where σ(·) represent for standard deviation.
Spearman’s rho

ρ(x,y) = 12
∫

∞

−∞

∫
∞

−∞

[H(x,y)−F(x)G(y)]dF(x)dG(y) (2.44)

Kendall’s tau

τ(x,y) = 4
[∫

∞

−∞

∫
∞

−∞

H(x,y)dH(x,y)
]
−1 (2.45)

Moreover, Schweizer and Wolff (1981) studied the following three nonparametric measures
of association σSW ,γ and K based on L1,L2 and L∞ distances, respectively. These measures
are given by,

1. σSW (X ,Y ) =
∫

∞

−∞

∫
∞

−∞

|H(x,y)−F(x)G(y)|dF(x)dG(y)

2. γ(X ,Y ) =
(

90
∫

∞

−∞

∫
∞

−∞

[H(x,y)−F(x)G(y)]2dF(x)dG(y)
) 1

2

3. κ(X ,Y ) = 4 sup
x,y∈R

|H(x,y)−F(x)G(y)|

Now, it is important to note that these measures of dependence can be expressed in terms
of copulas (see Schweizer and Wolff, 1981 [40]). Let U = F(X) and V = G(Y )be probability
integral transformations. Using Sklar’s framework [H(x,y) =C(F(X),G(y))] we have

• r(X ,Y ) =
1

σ(X)σ(Y )

∫ 1

0

∫ 1

0
[C(u,v)−uv]dF−1(u)dG−1(v)

• ρ(X ,Y ) = 12
∫ 1

0

∫ 1

0
[C(u,v)−uv]dudv

• τ(X ,Y ) = 4
∫ 1

0

∫ 1

0
C(u,v)dC(u,v)−1

• σSW (X ,Y ) =
∫ 1

0

∫ 1

0
|C(u,v)−uv|dudv

• γ(X ,Y ) =
(

90
∫ 1

0

∫ 1

0
[C(u,v)−uv]2dudv

) 1
2
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• κ(X ,Y ) = 4 sup
x,y∈R

|C(u,v)−uv|

Remark:Using the copula transformations at least two things are apparent. First, integrals
over the plane are transformed into integrals in the unit square. Second, the nonparametric
measures, ρS,τ,σSW ,γ and κ , distinguished from the coefficient of correlation, r, in that they
are functions of the copula alone, i.e., it is only the coefficient of correlation that depends on
the marginals but all others are scale free measures.

Furthermore, in the study of properties of Archimedean copulas, Genest and Mac Kay
(1986b [19]) provided a simplified version of Kendall’s tau, which is stated in the following
theorem.

Theorem 2.11 (Kendall’s Tau for Archimedean Copulas, Genest and MacKay
(1986b) [19]):

Let X and Y be random variables with an Archimedean copula C having generator φ .The
population version of Kendall’s tau , r, for the random variables X and Y is given by

τ = 1+4
∫ 1

0

φ(t)
φ ′(t)

dt (2.46)

where φ ′ is the first derivative of φ . See Genest and MacKay (1986b) [19] for proof.
Example: Consider the Clayton copula with generator φ(t) = t−δ−1

δ
for δ > 0. Then,

Kendall’s tau for this copula is

τ = 1+4
∫ 1

0

tδ +1
δ

dt =
δ

δ +2
(2.47)

2.6.1 Measure of concordance

Definition: (Nelsen (2006) [32], page 136) A numeric measure of association between two
continuous random variables X and Y whose copula is C is a measure of concordance if it
satisfies the following properties:

1. κ is defined for every pair X ,Y of continuous random variables;

2. −1 = κX ,−X ≤ κC ≤ κX ,X = 1;

3. κX ,Y = κY,X

4. if X and Y are independent, then κX ,Y = κC⊥ = 0;

5. κ−X ,Y = κX ,−Y =−κX ,Y ;
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6. if C1 ≺C2 then κC1 ≤ κC2 ;

7. if {(Xn,Yn)}is a sequence of continuous random variables with copulas Cn, and if {Cn}
converges point wise to C, then lim

n→∞
κCn = κC

Among all the measures of concordance, three famous measures play an important role
in non-parametric statistics: the Kendall’s tau, the Spearman’s rho and the Gini indice.
They could all be written with copulas, and we have (Schweitzer and Wolff [1981] [40])
Nelsen [1998] [31] presents some relationships between the measures τ and ρ , that can be
summarized by a bounding region. In Figure 2.6 , we have plotted the links between τ and ρ

for normal copulas. We note that the relationships are similar. However, some copulas do not
cover the entire range [−1,1] of the possible values for concordance measures. For example,
Kimeldorf-Sampson, Gumbel, Galambos and Hausler-Reiss copulas do not allow negative
dependence.
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Fig. 2.6 Spearman’s rho and Kendall’s tau for normal copulas.
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2.6.2 Measure of dependence

Definition 2.10: (Nelsen (1998) [31] A numeric measure of association between two contin-
uous random variables X and Y whose copula is C is a measure of dependence if it satisfies
the following properties:

1. δ is defined for every pair X ,Y of continuous random variables;

2. 0 = δC⊥ ≤ δC ≤ δC+ = 1

3. δX ,Y = δY,X

4. δX ,Y = δC⊥ = 0 if and only if X and Y are independent;

5. δX ,Y = δC+ = 1 if and only if each of X and Y almost surely a strictly monotone
function of the other;

6. if h1 and h2 are almost surely strictly monotone functions on Im(X) and Im(Y ) respec-
tively, then

δh1(x),h2(y) = δX ,Y

7. if {(Xn,Yn)}is a sequence of continuous random variables with copulas Cn, and if {Cn}
converges point wise to C, then lim

n→∞
δCn = δC

2.6.3 Tail Dependence

Tail dependence measure refers to the dependence that arises between random variables
from extreme observations. Upper tail dependence exists when large extreme values occur
jointly, while lower tail dependence exists when small extreme values occur jointly. Another
important feature of copulas is that the upper and lower tail dependence measures can be
expressed in terms of copulas.

Definition 2.11: (Upper tail dependence):

Let X and Y be two continuous random variables with marginal distribution functions F
and G, and copula C. Then the coefficient of upper tail dependence of X and Y is:

λu = lim
u→1−

Pr
[
X > F−1(u)|Y > G−1(u)

]
(2.48)

provided that a limit λu ∈ (0,1] exists. If λu ∈ (0,1], X and Y are said to be asymptotically
dependent in the upper tail; if λu = 0, X and Y are said to be asymptotically independent
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in the upper tail. Using the probability integral transforms U = F(X) and V = G(Y ) the
coefficient of upper tail dependence can be rewritten as

λu = lim
u→1−

Pr [U > u|V > v] (2.49)

Further, this can be expressed in terms of copulas as follows:

λu = lim
u→1−

1−2u−C(u,u)
1−u

(2.50)

Definition 2.12: (Lower tail dependence):

Let X and Y be two continuous random variables with marginal distribution functions F and
G, and copula C. Then the coefficient of lower tail dependence of X and Y is:

λL = lim
u→0+

Pr
[
X ≤ F−1(u)|Y ≤ G−1(u)

]
= lim

u→0+
Pr [U ≤ u|V ≤ v] (2.51)

provided that a limit λL ∈ (0,1] exists. If λL ∈ (0,1], X and Y are said to be asymptotically
dependent in the lower tail; if λL = 0, X and Y are said to be asymptotically independent in
the lower tail.This can be expressed using copulas as

λL = lim
u→0+

C(u,u)
u

(2.52)

Independence

The most commonly used dependence property is the assumption that there is no dependence
that is the random variables are independent. If two continuous random variables are
independent, then their copula is the product copula, n , see Section (2.2) property 5.

Perfect Dependence

We have seen in Section (2.2) property 6 that one function is almost surely a monotone
function of the other (perfect dependence) whenever the copula is either W or M . We
note that other dependence forms that lie between the extremes independence and perfect
dependence and their relationship with copulas are discussed in Joe (1997) [22] and Nelsen
(2006) [32].



Chapter 3

Statistical inference of copulas

3.1 Estimation and Asymptotic Properties

In this section we present various methods related to estimation of copulas. Consider a
correctly specified copula that belongs to a parametric family C = {C(·,δ ),δ ∈ ℜ}. Consis-
tent and asymptotically normally distributed estimates can be obtained through maximum
likelihood methods (one-stage or two-stages) mainly using a fully parametric or a semi-
parametric approach, see for details in Joe (1997) [22], Genest et al. (1995) [18] and Shih
and Louis (1995) [41]. Alternatively, one can estimate copulas by nonparametric methods
using empirical copula (Deheuvels, 1979) [10]. Recently, for multivariate time series models
Patton (2006a, b) [35] [34] employed two-stage maximum likelihood estimation for con-
ditional copulas. Similarly, Chen and Fan (2006) [4] have studied the two-stage approach
for a Markov time series under the semiparametric setup. We now give a survey of various
approaches of estimation suggested in the literature for the i.i.d. multivariate setup. Consider
a random sample of d variables and n number of observations represented by the vector
x = (x1t ,x2t , .....xdt), t = l, ...,n. Consider a copula-based model for the random vector X ,
with distribution function

H(x1,x2......xd;θ1, ....θd,δ ) =C(F1(x1,θ1), .....Fd(xd,θd);δ ) (3.1)

where θi, i = l, ...,d, each being scalar or vector of parameter(s) of the marginal distributions
Fi, i = 1,2, ...,d and δ is a scalar or vector of the copula parameter(s). Let η = (θ1, .....θd,δ )

be the parameter vector to be estimated.
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3.1.1 Maximum likelihood Estimation (MLE)

Consider the log-likelihood function based on (2.2), that is given by :

l (η ;x) =
n

∑
j=1

d

∑
i=1

log fi(xit ;θi)+
n

∑
i=1

logc(F1(x1i,θ1), ......Fd(xdi,θd);δ ) (3.2)

Thus, the maximum likelihood estimator η̂ of the parameter vector η is the solution of

∂ l(η ,x)
∂η

= 0

Let η0 be the true value of η . Under standard regularity conditions, consistency and asymp-
totic normality properties of the estimator η̂ have been established; see, for example, Joe
(1997) [22]. That is,

√
n(−η0)→ N(0, I−1) in distribution,

where I is the Fisher Information matrix.

The estimation of Maximum likelihood Estimation (MLE) can be carried out by using R
program’s codes which is include in Appendix section,then that corresponding out put given
below.

> summary(mle)

Call: fitMvdc(data = X, mvdc = mcc, start = start)

Maximum Likelihood estimation based on 2000

2-dimensional observations.

Copula: claytonCopula

Margin 1 :

Estimate Std. Error

m1.mean 0.004963 0.018

m1.sd 0.990165 0.007

Margin 2 :

Estimate Std. Error

m2.rate 0.9853 0.021

Clayton copula, dim. d = 2

Estimate Std. Error

alpha 4.99 0.124

The maximized loglikelihood is -2923

Optimization converged

Number of loglikelihood evaluations:
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function gradient

78 16

Note that as the number of parameters increases computational problems may arise when
using MLE method. An alternative approach that helps to reduce computational problem is
the use of two-stage method discussed below.

3.1.2 Inference Functions for Margins (IFM ) method

For copula-based models this method is first followed by Joe and Xu (1996) [24], in order
to exploit the fundamental idea of copula theory that allow the separation of the univariate
margins from the dependence structure or copula. This method consists of estimating the
model parameter by finding solutions for conveniently defined set of inference (estimating)
functions. In this method the score functions of the margins and the copula constitute the set
of inference functions. Thus, according to the two-stage estimation method, the parameters
of the marginal distributions are estimated separately from the parameters of the copula. In
other words, the estimation process is divided into two steps:
Step 1.
Estimating the parameters θi, i = 1,2, ...d, using maximum likelihood method from the
respective marginal log-likelihoods, i.e., consider the marginal log-likelihoods

li(θi;xi) =
n

∑
j=1

log fi(xi j;θi) (3.3)

Then, the maximum likelihood estimator θ̃i of the parameter vector θi is the solution of
Thus, we have the estimates θ̃1, ......θ̃d for the marginal parameters

Step 2.
To Estimate the vector of copula parameters δ , first substitute the marginal estimates
θ̃1, ......θ̃d to the copula log-likelihood

lc(δ ;x, θ̃1, ......θ̃d) =
n

∑
t=1

logc
(
F1(x1t ; θ̃1), .....Fd(xdt ; θ̃d);δ

)
(3.4)

Then, the pseudo maximum likelihood estimator S of the parameter vector δ̃ is the solution
to

∂ lc
(
δ ;x, θ̄1, ......θ̄d

)
∂δ

= 0 (3.5)
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Therefore, the estimator η̄ =
(

θ̃1, ......θ̃d, δ̃
)

is referred as the two-stage maximum likelihood
estimator of η = (θ1, ..........θd,δ ). Joe and Xu (1996) [24] established asymptotic normality
of this estimator. Let the inference functions be denote by the vector g(x,η) :

The estimation of Inference Functions for Margins (IFM ) can be carried out by using R
program’s codes which is include in Appendix section,then that corresponding out put given
below.

> summary(ifme)

Call: fitCopula(copula, data = data, method = "ml")

Fit based on "maximum likelihood" and 2000 2-dimensional observations.

Clayton copula, dim. d = 2

Estimate Std. Error

alpha 4.932 0.116

The maximized loglikelihood is 1886

Optimization converged

Number of loglikelihood evaluations:

function gradient

4 4

3.1.3 Canonical Maximum Likelihood (CML) method

Both the MLE and IFM methods are based on some specified parametric form of the univariate
margins. The choice of the best possible fit distributions for the margins is of course crucial.
Hence, to avoid the risk involved in choosing parametric marginal models and without much
information loss on the dependence structure, one can consider non-parametric marginal
models. The semi parametric copula-based model estimation procedure also involves two
steps:
Step 1.
Transform the observed data vector xt = (x1t , , , ...,xdt), t = 1,2, ...,n into uniform values
called pseudo-observations using rescaled empirical distributions defined by

Fin(x) =
1
n

n

∑
t=1

[Xit ≤ x] for i = 1,2, .....d (3.6)

where 1[·] represents indicator function. Let the transformed observation be denoted by
(ũ1, ...., ũdt) = (F1n(x1t), .......,Fdn(xdt)) for t = 1, ...n.
Step 2.
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To Estimate the vector of copula parameters δ , first substitute the transformed observations
(ũ1, ...., ũdt) into the copula log-likelihood

lc(δ ; ũ1, ...., ũdt) =
n

∑
t=1

logc(ũ1, ...., ũdt ;δ ) (3.7)

Step 3. Then, the pseudo maximum likelihood estimator δ̃ of the parameter vector δ is
the solution to

∂ lc
∂δ

= 0 (3.8)

Genest et al. (1995) established consistency and asymptotic normality of the semi-parametric
estimator δ̃n.

The estimation of the Canonical Maximum Likelihood (CML) can be carried out by using R
program’s codes which is include in Appendix section,then that corresponding out put given
below.

summary(CML)

Call: fitCopula(copula, data = data, method = "mpl")

Fit based on "maximum pseudo-likelihood" and 2000

2-dimensional observations.

Clayton copula, dim. d = 2

Estimate Std. Error

alpha 4.932 0.173

The maximized loglikelihood is 1886

Optimization converged

Number of loglikelihood evaluations:

function gradient

4 4

3.1.4 Nonparametric estimation

Nonparametric estimation of copulas can be obtained by using the empirical copula discussed
in Section (2.5.3). Here we present how the empirical copulas can be used to estimate
dependence measures like Spearman’s ρs and Kendall’s τ and how these in turn can be used
to estimate the copula parameter. The sample version of Spearman’s rho ρs in terms of the
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empirical copula Cn, is

ρ̂s =
12

n2 −1

n

∑
t1=1

n

∑
t2=1

{
Cn

(t1
n
,
t2
n

)
− t1t2

n2

}
(3.9)

Similarly, the sample version of Kendall’s τ is

τ̄ =
2n

n−1

n

∑
t1=1

n

∑
t2=1

{
Cn

(t1
n
,
t2
n

)
Cn

(
t1 −1

n
,
t2 −1

n

)
−Cn

(
t1 −1

n
,
t2
n

)
Cn

(
t1
n
,
t2 −1

n

)}
(3.10)

Thus, using the relationship between the copula parameter and the population versions of
either Kendall’s tau or Spearman’s rho, we can obtain nonparametric estimate for the copula
parameter. For example, in the case of Clayton copula, a nonparametric estimator of the
copula parameter d can be obtained from the sample version of Kendall’s tau τ̄ a.s δ̄ = 2τ̄

(1−τ̄) .

The Nonparametric estimation of the copulas based on Kendall’s tau can be carried out
by using R program’s codes which is include in Appendix section,then that corresponding
out put given below.

Call: fitCopula(copula, data = data, method = "itau")

Fit based on "inversion of Kendall's tau" and 1000

2-dimensional observations.

Clayton copula, dim. d = 2

Estimate Std. Error

alpha 4.842 0.274

The Nonparametric estimation of the copulas based on Spearman’s rho can be carried out
by using R program’s codes which is include in Appendix section,then that corresponding
out put given below.

Call: fitCopula(copula, data = data, method = "irho")

Fit based on "inversion of Spearman's rho" and 1000

2-dimensional observations.

Clayton copula, dim. d = 2

Estimate Std. Error

alpha 4.961 0.294
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3.2 Choice of Copula Model

Several varieties of copula models exist in the literature. An important issue in the imple-
mentation of any copula model in practice is the choice of an appropriate parametric copula.
Several studies have attempted to provide graphical and formal statistical model selection
procedures. Breymann, et al. (2003) [2] applied the Akaike Information Criterion (AIC) to
several parametric copulas and selected the one with the minimum AIC value. Genest and
Rivest (1993) [21] proposed a method based on the distribution function of the copula in
order to select the best possible fit copula model among the Archimedean copulas. Chen et al.
(2004) [5] proposed simple tests for models of dependence between multiple financial time
series. Chen and Fan (2005) [3] used pseudo likelihood ratio tests for copula selection for
semi-parametric copula-based multivariate models under copula misspecification. Fermanian
(2005) [15] and Dobric and Schmid (2005) [12] proposed goodness of fit tests for copula
models. Next, we present two procedures that are used for choosing the best-fit copula model.

1. Graphical approach based on the distribution function of the copula
Genest and Rivest (1993) [21] proposed copula selection for Archimedean copulas
based on parametric and nonparametric estimates of the distribution function of copulas.
The idea is to choose among the Archimedean copulas, the one that most closely
resembles the nonparametric copula estimate.

The Parametric Estimate: Let the parametric distribution function of a copula, K, be
given by K(w) = P1 [C(u,v;δ )≤ w] for we w ∈ (0,1). For Archimedean copulas this
can be expressed in terms of the generator φ , as

K(w) = w− φ(w)
φ ′(w)

(see Genest and Rivest, 1993 [21]). (3.11)

Letting λ (w) = φ(w)
φ ′(w) we have λ (w) = w−K(w)

Then, the estimated distribution function for the copula is given by

K̂(w) = Pr
[
C(u,v; δ̂ )≤ w

]
, w ∈ (0,1) such that λ̂ (w) = w− K̂(w) (3.12)

where δ̂ can be obtained by any one of the methods discussed in Section 2.4 Note that
the parametric estimate λ̂ (·) can be computed for several Archimedean copulas.

The Nonparametric Estimate: A nonparametric distribution function estimate, Kn

of K can be obtained using the procedure proposed by Genest and Rivest (1993) [21]
in two steps:
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(a) Let Wi be defined for the bivariate data (xt ,yt), t = 1, ...,n , as follows:

Wt =
#{(xs,ys):xs<xt ,ys<yt}

n+1 1 ≤ t ≤ n

(b) The nonparametric distribution function estimate Kn is then given by

Kn(w) =
∑

n
t=1 1 [w−Wt ]

n
, w ∈ (0,1)

Similarly, a nonparametric estimate of λ (·) is given by

λn(w) = w−Kn(w)

Then, plot the parameter estimates λ̂ (w) for several Archimedean copulas and
the non-parameter estimate λn(w) against w and choose the copula that provides
a curve closely resemble to the nonparametric case (see for further details and
example in Genest and Rivest, 1993 [21]).

2. Akaike Information Criterion (AIC)
In case where maximum likelihood estimation is used the choice of the best possible fit
copula can be done by comparing the likelihood contributions of the various copulas
under consideration, using the Akaike information Criterion (AIC). The AIC is given
by

AIC = 2(−loglikelihood)/n+2p/n,

where p is the number of parameters in the model. Thus, one can choose the "best" fit
copula that corresponds to the minimum AIC.

3. Bayesian Information Criterion (BIC)
BIC is another criteria based on log-likelihood and is often used to choose between a
finite set of models. Kole et al (2006) [27]. used BIC to asses the likelihood of their
copula model. Tibishrani et al. define BIC as

BIC = k log(n)−2l

where k is the number of parameters of the model, l is the log-likelihood of the fitted
model and n is the number of observations. Evidently, if the BIC is chosen, the penalty
for two parameter families is stronger than when using the AIC.
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3.3 Simulation from Copulas

In this section, we present one simulation algorithm that helps to generate bivariate obser-
vations from a copula-based distribution function with given marginals. Other algorithms
can be found, for example, in Nelsen (2006) [32]. Thus, the algorithm to simulate from a
two-dimensional copula is as follows:

1. First generate two independent Uniform(0,1) random variates v1 and v2;

2. Set u1 = v1 ;

3. Compute u2 =C−1
2|1(v2|u1), where C−1

2|1(·|u1) is the inverse of C−1
2|1(·|u1). In many cases

closed forms for C−1
2|1(·|u1) are not available. Hence, a numerical solution for MT is

required from v2C−1
2|1(u2|u1).

4. Then (u1,u2) is the simulated value from the copula C.

5. Repeat I-IV, say n times, to obtain n bivariate uniform observations (U1t ,U2t)
′t =

l, ...,n, from the copula C .Furthermore, to simulate from a copula-based bivariate dis-
tribution function H with given marginal distributions F, , i = l,2, one more additional
step is required. That is,

6. Invert each w(·), using the marginal distributions as

xit = F−1
i (uit) i = 1,2 and t = 1, .....n

Thus, (x1t ,x2t), t = l, ...,n are n bivariate observations from a copula-based distribution
function H.



Chapter 4

Copula Regression Theory

In this chapter, we will briefly discuss about theoretical results of copula regression and some
important properties.Nelsen (2006) [32]provides an excellent overview of recent theoretical
results on the study of copulas in his text book. One of the other researches in this area
closest to copula regression analysis in the work of Cuadras (1992) [8]. In Cuadras (1992) [8]
research study, he proposed a method of constructing multivariate distributions where both
univariate marginals and a correlation matrix are given. The proposed method yields totally
linear regressive family of distributions. Recently, Engin A. Sungur(2005) [47] studied
about copula regression theoretical ideas and he proposed a deeper meaning to regression
equation than a simple functional form.

Definition 4.1. LetU,V be a random variables with uniform marginals on the[0,1] and copula

C. We will call EC(V |U = u) copula regression function of V on U and denote it by rc(u).

Definition 4.2

Suppose that X and Y are continuous with marginal distribution functions F and G, re-
spectively, joint distribution function H, and copula C. Then U = F(X) and V = G(Y ) are
uniform (0,1) random variables with joint distribution function C. Here are some facts that
we will use in the rest of this article:

1. The conditional distribution function for V given U = u, say Cu(v) is:

P(V 6 v|U = u) =
∂C(u,v)

∂u
=Cu(v) (4.1)

2. The conditional distribution function for Y given X = x is

P(Y 6 y|X = x) = P(V 6 G(y)|U = F(x)) =
∂C(u,v)

∂u
=Cu(v) (4.2)
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3. The copula regression function of V on U is:

EC(V |U = u) = rc(u) = 1−
∫ 1

0
Cu(v)dv (4.3)

4. The regression function of Y on X is:

E[Y |X = x] = ŷ = G−1(1−
∫ 1

0
Cu(v)dv) = G−1rc(F(x)) (4.4)

where G−1 is the inverse distribution function of Y .

For the facts (4.1) and (4.2), please see Cherubini et al. (2004, pp. 177–178, 182) [6]. Facts
(4.3) and (4.4) follow directly from application of integration by parts on the definition of
expectation. Note that any monotone strictly increasing transformation of X and Y will only
change the marginal distribution, leaving the joint behavior of X and Y untouched. The
structure of the article is as follows. First we provide basic properties of the copula regression
function. In the last section we discuss some of the implications of our findings in application,
such as transformation for the linearity.

4.1 Properties of Copula Regression function

In this section, we have to state some important properties of Copula regression function
those are important for our future proof.

Theorem:4.1 We define the two- dimensional independence copula C0(u,v) is the CDF of d
mutually independent Uniform (0,1) random variables.The two-dimensional co-monotonicity
copula C+(u,v) characterizes perfect positive dependence. The two-dimensional counter-
monotonicity copula C−(u,v) is defined as the CDF of (u,1−u), which has perfect negative
dependence. Then,

1. If C0(u,v) = uv then r0(u) = 1/2

2. If C+(u,v) = min(uv) then r+(u) = u

3. If C−(u,v) = max(u+ v−1,0) then r−(u) = 1−u

Proof.
From above result equation 4.3, when we substitute corresponding copula functions C0(u,v),C+(u,v)
and C−(u,v), after integrate with respect to v then we will get above results such as
r0(u) = 1/2,r+(u) = u and r−(u) = 1−u.
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Theorem:4.2

1. rC(u) = EC(u) = 1−
∫ 1

0

[
Cu0(ν)+

n−1

∑
l=1

Cl
u0(ν)

(l)
(u−u0)

l

]
dν

where Cl
u0(ν) =

∂ lCu(ν)
∂ul |u=u0 and ur is an interior point to the interval joining u and

u0.

2. rC(u) = EC(Vu)≥ r(1−Cu(r)) for any r ∈ (0,1]

3. E(V ) =
∫ 1

0 EC(Vu)du =
∫ 1

0 rC(u)du = 1
2

4. ρC = 3
{

1−4
∫ 1

0 [
∫ u

0 rC(w)dw]du
}

where ρC is the Pearson’s correlation.

Proof:

1. By using Taylor’s expansion we can get

EC(Vu) = EC(Vu0)+
n−1

∑
l=1

E(l)
C[Vu0]

l!
(u−u0)

l +
E(n)

C[Vur]

n!
(u−ur)

n

where ur is an interior point to the interval joining u and u0, and

E(l)
C[Vu0] =

dlEC[Vu]
dul |u=u0

The remainder term will be represented by

Rn−1 =
E(n)

C[Vur]

n!
(u−ur)

n

From(3)

EC[Vu] = rC(u) = 1−
∫ 1

0
Cu0(ν)dν −

n−1

∑
l=1

∫ 1
0 Cl

u0(ν)

l!
(u−u0)

l −
∫ 1

0 Cn
ur(ν)

n!
(u−ur)

n

= 1−
∫ 1

0

[
Cu0(ν)+

n−1

∑
l=1

Cl
u0(ν)

(l)
(u−u0)

l

]
dν

where

Cl
u0(ν) =

∂ lCu(ν)

∂ul |u=u0

2. Directly follows from the Markov’s inequality, see Dudewicz and Mishra (1988, p.
296).

3. Directly follows from the fact thatE[V ] = E[EC(Vu)].

4. See the appendices.

Note that for the polynomial regression is
∫ 1

0 Ci
u0(ν)

i!
dν the coefficient of ui.
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4.2 Linear Copula Regression Functions

Now let us take a closer look at linear copula regression functions (Sungur (2005) [47]) by
using two families:

1. C(u,v) = uv[1+θ(1−u)(1− v)], θ ∈ [−1,1]

(Farlie−Gumbel−Morgenstern,F−G−M). (4.5)

2. C(u,v) = θ1 min{u,v}+(1−θ1 −θ2)uv+θ2 max{u+ v−1,0}

θ1,θ2 ∈ [0,1]andθ1 +θ2 ≤ 1(Frechet and Mardia, F−M) (4.6)

The following table provides the form of the copula regression function both in terms of
dependence parameter and in terms of the intercept parameter of the regression equation,
referred as the modified , and the Pearson’s correlation:

Table 4.1 Parameter Estimation

Example 2.1: F-G-M family Example 2.2: F-M family
rC(u) 3−θ

6 + θ

3 u 1−θ1+θ2
2 +(θ1 −θ2)u

Modified rC(u) α +(1−2α)u,α = 3−θ

6 α +(1−2α)u,α = 1−θ1+θ2
2

Pearson’s correlation θ

3 θ1 −θ2

The patterns that can be observed in these two examples could be generalized. Let ξL be
class of copulas with linear copula regression functions, i.e.,

ξL =

{
C : 1−

∫ 1

0

∂C(u,v)
∂u

dv = α +βu
}

Note that,

1−
∫ 1

0

∂C(u,v)
∂u

dv = α +βu

⇒ ∂

∂u

∫ 1

0
C(u,v)dv = 1−α −βu

⇒
∫ 1

0
C(u,v)dv = (1−α)u−β

u2

2
+ k

Since
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∫ 1

0
C(1,v)dv =

∫ 1

0
vdv =

1
2
= (1−α)−β

1
2
+ k

⇒ k =
1
2
− (1−α)+

β

2

On the other hand, by using (3),

E(V ) =
∫ 1

0
EC[Vu]du =

1
2

⇒
∫ 1

0

[
1−

∫ 1

0
Cu(v)dv

]
du =

1
2

⇒
∫ 1

0

∫ 1

0
Cu(v)dvdu =

1
2
=
∫ 1

0
(1−α −βu)du

⇒ 1−α − β

2
=

1
2

⇒ β = 1−2α

Therefore, we can write∫ 1

0
C(u,v) = (1−α)u− (1−2α)

u2

2
and EC[Vu] = α +(1−2α)u

Theorem:4.3

A copula has a linear regression function, i.e., C ∈ ξL, if and only if rC(u) = α +(1−2α)u
or rC(u) =

1−β

2 +βu. Note that the particular relationship between the intercept and slope
coefficient for the linear copula regression functions provides a way of testing for linearity.
In statistically linear copula regression functions the coefficients will be related with the
Pearson’s correlation.

Theorem:4.4

If C ∈ ξL then Pearson’s correlation ρC = 1−2α and rC(u) =
1−ρC

2 +ρCu
Proof:

Suppose we assume that C ∈ ξL. Since
∫ 1

0
C(u,v)dv = (1−α)u− (1−2α)

u2

2

ρC = 12
∫ 1

0

∫ 1

0
[C(u,v)−uv]dudv = 12

∫ 1

0

∫ 1

0
C(u,v)dudv−3

= 12
∫ 1

0

[∫ 1

0
C(u,v)dv

]
du−3

= 12
∫ 1

0

[
(1−α)u− (1−2α)

u2

2

]
du−3 = 1−2α
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Suppose rC(0) =
1−ρC

2 ,rC(1/2) = 1
2 and rC(1) =

1+ρC
2 .Therefore, one can observe the

strength of linear relationship by checking the intercept.Suppose that C(u,v : θ) and T (u,v :
α) are two copulas with linear regression functions. Define a function h(·) such that ρC(θ) =

ρT (h(θ)) then rC(u;θ) = rT (u;h(θ)) . One important implication of this observation on
dependence model building is the following. Suppose that one wants to predict V given
U = u. The optimal solution is to use regression function of the copula C that minimizes
mean squared error MSE = E[V −g(U)]2. This scheme has a practical limitation, since it
requires the knowledge of the C. Under the assumption of linear copula regression function
it is enough to work with any target copula with linear regression function. This approach
does not require a complete knowledge on the form of the copula. The needed value of the
Pearson’s correlation coefficient can be estimated easily from the data.

4.3 Multiple linear Copula Regression Function

In 2005, Sungur [47] developed the approach to the directional dependence by using bi-
variate copula based linear regression, But in practically most of the regression analysis has
more than one regressors so in this study we are going to discuss about multivariate copula
based regression. In this upcoming section, we will expand Sungur’s (2005) [47] bivariate
result to multivariate case.

Definition 4.3 (Extended definition from Definition 4.2):

If C(u0,u1,u2 · · · ·ud) of U0 and U with U = (U1,U2 · · · ·Uk)
T then we define multivariate

copula regression of U0 on U = u is given by

rC
U0|U(u) = E(U0|U = u) =

∫ 1

0
u0

c(u0,u1,u2 · · · ·ud)

CU(u)
du0

= 1− 1
cU(u)

∫ 1

0
CU0|U(u0)du0 (4.7)

where CU(u) =C(1,u1,u2 · · · ·ud) is the marginal distribution of U and

c(u0,u1,u2 · · · ·ud) =
∂ k+1C(u0,u1 · ··k)
∂u0,∂u1 · · · ·∂uk

cU(u) =
∂ kCU(u)

∂u1 · · · ·∂uk
are the joint copula density function of U0 and U,

the marginal copula density of Uand the conditional copula distribution of U0 given U is
given by,
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CU0|U(u0) =
∂ kC(u0,u1,u2 · · · ·ud)

∂u1 · · · ·∂uk
(4.8)

Similarly we can extend the theorem 4.2 for multivariate case,such as expected value of
multivariate copula regression function E

[
rC
U0|U(u)

]
= 1

2 . In following section we propose
two new multivariate copula regressions function, which is developed from sungur (2005)
[47] research paper, he studied just bi-variate case Farlie-Gumbel-Morgenstern (FGM) family.
In this study also we will consider same families but multivariate case.

4.4 Multivariate Non-Exchangeable FGM Copula

Úbeda-Flores et al (2005) [36] proposed an asymmetric bivariate copulas, which generalizes
several families such as the known Farlie–Gumbel–Morgenstern (FGM) family of copulas
and others. In this study we will discuss u0 as response variable and u1,u2 are regressors
(trivariate extension) as follows.

Theorem:4.5 -Extended theorm 2.3 in Úbeda-Flores et al (2005) [36]

Let f0, f1 and f2 be a real non zero functions defined on uniform [0,1] and C be a function
on [0,1]3 given by

C(u0,u1,u2) = u0u1u2 + f0(u0) f1(u1)u2 + f0(u0) f2(u2)u1 + f1(u1) f2(u2)u0 (4.9)

Then C is a copula if and only if

1. fi(0) = fi(1) = 0 for all i = 0,1,2

2. fi absolutely continuous for all i = 0,1,2 and

3. min(α0β1 +α0β2 +α1β2,α1β0 +α0β2 +α1β2,α0β1 +α2β0 +α1β2,α0β1 +α0β2 +

α1β1,α1β0 +α2β0 +α1β2,α1β0 +α0β2 +α2β1,α0β1 +α2β0 +α1β2,α1β0 +α2β0 +

α2β1)≥−1

where αi = inf( f ′i (ui);ui ∈ Ai)< 0 and βi = sup( f ′i (ui);ui ∈ Ai)> 0 with Ai = {ui ∈ I; f ′i (ui)exist}
for all i = 0,1,2.

Proof: The proof is straight forward,Bivariate case proof given in Úbeda-Flores et al
(2005) [36] paper, in this case similarly we have to proof (follow same procedures) trivariate
case.

By using the generalized Farlie–Gumbel–Morgenstern (FGM) family of copulas, given above
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equation 4.9 and results from definition 4.3, we can derive copula based regression function,
which is given below

Since the copula distribution function is given by,

C(u0,u1,u2) = u0u1u2 + f0(u0) f1(u1)u2 + f0(u0) f2(u2)u1 + f1(u1) f2(u2)u0

In this we are going to consider, u0 as response variable and u1,u2 are regressors. Then,

CU(u) =C(1,u1,u2) = u1u2 + f0(1) f1(u1)u2 + f0(1) f2(u2)u1 + f1(u1) f2(u2)1

= u1u2 + f1(u1) f2(u2)

cU(u) =
∂ 2CU(u)
∂u1∂u2

=
∂ 2C(1,u1,u2)

∂u1∂u2
= 1+ f ′1(u1) f ′2(u2)

Now we consider,

CU0|U(u0) =
∂ 2C(u0,u1,u2)

∂u1∂u2

=
∂ 2 (u0u1u2 + f0(u0) f1(u1)u2 + f0(u0) f2(u2)u1 + f1(u1) f2(u2)u0)

∂u1∂u2

= u0 + f0(u0) f ′1(u1)+ f0(u0) f ′2(u2)+u0 f ′1(u1) f ′2(u2)

Then we consider,∫ 1

0
CU0|U(u0)du0 =

∫ 1

0

(
u0 + f0(u0) f ′1(u1)+ f0(u0) f ′2(u2)+u0 f ′1(u1) f ′2(u2)

)
du0

=
1
2
+
(

f ′1(u1)+ f ′2(u2)
)∫ 1

0
f0(u0)du0 + f ′1(u1) f ′2(u2)

1
2

=
1
2
(
1+ f ′1(u1) f ′2(u2)

)
+
(

f ′1(u1)+ f ′2(u2)
)∫ 1

0
f0(u0)du0

Then multivariate(trivariate) copula regression of U0 on U = u is given by

rC
U0|U(u) = E(U0|U = u) = 1− 1

cU(u)

∫ 1

0
CU0|U(u0)du0

= 1−
1
2 (1+ f ′1(u1) f ′2(u2))+( f ′1(u1)+ f ′2(u2))

∫ 1
0 f0(u0)du0

1+ f ′1(u1) f ′2(u2)

rC
U0|U(u) = 1−

1
2 (1+ f ′1(u1) f ′2(u2))+( f ′1(u1)+ f ′2(u2))

∫ 1
0 f0(u0)du0

1+ f ′1(u1) f ′2(u2)
(4.10)

Similarly we can derive multivariate copula based regression line equation for other families
such that and Frechet and Mardia (FM) family, Archimedean family etc.
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4.5 Gaussian copula marginal regression models

In very general terms, a regression model is expressed as

yi = f (xi,εi;λ )

where f (·) is a suitable function of the regressors xi and of an unobserved stochastic variable
εi, commonly denoted as the error component. It is assumed that the regression model is
known up to a vector of parameters λ . Among the possible specifications for the function
f (·), a useful choice is,

yi = F−1
i (φ(εi);λ ) i = 1, · · ·,n,

where εi is a standard normal variable and Fi(·;λ ) = F(·|xi;λ ) and are the cumulative distri-
bution functions of yi given xi and of a standard normal variate, respectively. By the integral
transformation theorem, the regression model ensures the desired marginal distribution for
the response yi and specifies εi in the familiar terms of a normal error. Specification includes
all possible parametric regression models for continuous and noncontinuous responses. For
example, the Gaussian linear regression model yi = xi

T β

4.6 Implementation by using R Programming

In this study, we are going to use gcmr package in R programming. The package gcmr()

which allows to fit Gaussian copula models by using maximum likelihood in the continuous
case and by maximum simulated likelihood in the discrete case. The arguments of gcmr()
are the following

gcmr(formula, data, subset, offset, marginal, cormat, start,

fixed, options = gcmr.options(...), model = TRUE, ...)

The function has standard arguments for model-frame specification (Chambers and Hastie
1993) such as a formula, the possibility to restrict the analysis to a subset of the data, to set
an offset, or to fix contrasts for factors. The specific arguments of gcmr() include the two
key arguments marginal and cormat, which specify the marginal part of the model and
the copula correlation matrix, respectively. Finally, there are three optional arguments to
supply starting values (start), fix the values of some parameters (fixed) and set the fitting
options (options). The rest of this section describes the components of gcmr() and the
related methods. According to Guido Masarotto et al (2012) [28] briefly discussed about
this package usage in regression analysis.

The fitting options in gcmr() are set by argument options or by a direct call to function,
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gcmr.options(seed = round(runif(1, 1, 1e+05)), nrep = c(100, 1000),

no.se = FALSE, method = c("BFGS", "Nelder-Mead", "CG"), ...)

The quantile residuals are computed by method

residuals.gcmr(object, type = c("conditional", "marginal"),

method = c("random", "mid"), ...)

The profile log-likelihood can be obtained with a call to method

profile.gcmr(fitted, which, low, up, npoints = 10, display = TRUE,

alpha = 0.05, progress.bar = TRUE, ...)

Table 4.2 Marginals models available in gcmr with the default link function.

marginal.gcmr Distribution Dispersion
beta.marg(link = "logit") beta yes
binomial.marg(link = "logit") binomial no
Gamma.marg(link = "inverse") gamma yes
gaussian.marg(link = "identity") Gaussian yes
negbin.marg(link = "log") negative binomial yes
poisson.marg(link = "log") Poisson no
weibull.marg(link = "log") Weibull yes

Table 4.3 Correlation models available in gcmr package.

cormat.gcmr Correlation
arma.cormat(p, q) ARMA(p,q)
cluster.cormat(id, type) longitudinal/clustered data
ind.cormat() independence
matern.cormat(D, alpha) Matern correlation

In following chapter we will use this R package for comparing copula based regression
with OLS and GLM model and also we will provide all R programming codes and output in
next section.
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Table 4.4 Functions and methods available for objects of class gcmr.

Function Description
print() simple printed display of coefficient estimates
summary() standard regression output
coef() coefficient estimates
vcov() covariance matrix of coefficient estimates
fitted() fitted means for observed data
residuals() quantile residuals
estfun() estimating functions for sandwich estimators
bread() bread matrix for sandwich estimators
terms() terms of model components
model.frame() model frame
model.matrix() model matrix
logLik() maximized log-likelihood
plot() diagnostic plots of quantile residuals
profile() profile likelihood for focus coefficients
coeftest() partial Wald tests of coefficients
waldtest() Wald tests of nested models
lrtest() likelihood ratio tests of nested models
AIC() information criteria



Chapter 5

Results and Discussions

In this chapter,we attempt to provide a deeper explanation to copula regression than a simple
functional form and propose our new theoretical results. We will use R-package gcmr

implements maximum likelihood inference for Gaussian copula marginal regression.

5.1 Comparing copula,OLS and GLM Regressions

The example 01 considers the well-known longitudinal study on epileptic seizures described
in Diggle et al. (2013) [11]:

R> data("epilepsy", package = "gcmr")

The data comprise information about 59 individuals observed at five different occasions each.
The baseline observation consists of the number of epileptic seizures in a eight-week interval,
followed by four measurements collected at subsequent visits every two weeks. Available
variables are the patient identifier id, the patient age, the indicator trt whether the patient
is treated with progabide (trt = 1) or not (trt = 0), the number of epileptic seizures
counts, the observation period time in weeks, that is time = 8 for baseline and time = 2

for subsequent visits, and the indicator visit whether the observation corresponds to a visit
(visit = 1) or the baseline (visit = 0). Diggle et al. (2013) [11] analyzed the seizure
data with the method of generalized estimating equations assuming a log-linear regression
model for counts with the logarithm of time used as offset and covariates trt, visit and their
interaction. Moreover, Diggle et al. (2013) [11] suggested to omit an "outlier" patient - here
corresponding to patient id = 49 - with an extremely high seizure count at baseline (151
counts) that even double after treatment (302 counts after 8 weeks of measurement). Indeed,
estimated model coefficients vary considerably if this patient is set aside. The corresponding
Gaussian copula analysis described below assumes a negative binomial marginal distribution
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with mean specified as in Diggle et al. (2013) [11]. We start the analysis assuming a working
independence correlation matrix for the Gaussian copula:

> names(epilepsy)

[1] "id" "age" "trt" "counts" "time" "visit"

> str(epilepsy)

'data.frame': 295 obs. of 6 variables:

$ id : int 1 1 1 1 1 2 2 2 2 2 ...

$ age : int 31 31 31 31 31 30 30 30 30 30 ...

$ trt : int 0 0 0 0 0 0 0 0 0 0 ...

$ counts: int 11 5 3 3 3 11 3 5 3 3 ...

$ time : num 8 2 2 2 2 8 2 2 2 2 ...

$ visit : num 0 1 1 1 1 0 1 1 1 1 ...

> library(gcmr)

> library(stats)

> #***************************************************************

> data("epilepsy", package = "gcmr")

>

> Gaussiancouplamodel <- gcmr(counts ~ offset(log(time)) + visit + trt

+visit:trt+count,data = epilepsy, subset = (id != 49),

marginal = gaussian.marg,+ cormat = cluster.cormat(id, type = "ind"))

Error in eval(predvars, data, env) : object 'count' not found

> OLSmodel <-lm(counts~ offset(log(time)) + visit + trt + visit:trt,

data = epilepsy)

> GLMmodel <-glm(counts~ offset(log(time)) + visit + trt + visit:trt,

family = gaussian,data = epilepsy)

>

> summary(Gaussiancouplamodel)

Call:

gcmr(formula = counts ~ offset(log(time)) + visit + trt + visit:trt,

data = epilepsy, subset = (id != 49), marginal = negbin.marg,

cormat = cluster.cormat(id, type = "ind"))

Coefficients marginal model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.34759 0.16649 8.094 5.77e-16 ***
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visit 0.11187 0.18802 0.595 0.552

trt -0.10685 0.23057 -0.463 0.643

visit:trt -0.30237 0.26118 -1.158 0.247

dispersion 0.73421 0.07153 10.264 < 2e-16 ***

No coefficients in the Gaussian copula

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log likelihood = 948.06, AIC = 1906.1

> summary(OLSmodel)

Call:

lm(formula = counts ~ offset(log(time)) + visit + trt + visit:trt,

data = epilepsy)

Residuals:

Min 1Q Median 3Q Max

-24.786 -6.607 -3.968 2.032 119.355

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.7063 3.0890 9.293 < 2e-16 ***

visit -20.7923 3.4536 -6.020 5.23e-09 ***

trt 0.8594 4.2615 0.202 0.840

visit:trt -1.4988 4.7645 -0.315 0.753

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 16.35 on 291 degrees of freedom

Multiple R-squared: 0.2428, Adjusted R-squared: 0.235

F-statistic: 31.1 on 3 and 291 DF, p-value: < 2.2e-16

> summary(GLMmodel)

Call:
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glm(formula = counts ~ offset(log(time)) + visit + trt + visit:trt,

family = gaussian, data = epilepsy)

Deviance Residuals:

Min 1Q Median 3Q Max

-24.786 -6.607 -3.968 2.032 119.355

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.7063 3.0890 9.293 < 2e-16 ***

visit -20.7923 3.4536 -6.020 5.23e-09 ***

trt 0.8594 4.2615 0.202 0.840

visit:trt -1.4988 4.7645 -0.315 0.753

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for gaussian family taken to be 267.1697)

Null deviance: 99762 on 294 degrees of freedom

Residual deviance: 77746 on 291 degrees of freedom

AIC: 2491.6

Number of Fisher Scoring iterations: 2

>

> res1 <- residuals(Gaussiancouplamodel)\% Usual residual

> res2 <- residuals(OLSmodel) \% Usual residual

> res3 <- residuals(GLMmodel) \% Quantile residual

>

> sum(res1*res1) \% Quantile residual sum of square

[1] 295.1503

> sum(res2*res2) \% Usual residual sum of square

[1] 77746.4

> sum(res3*res3) \% Usual residual sum of square

[1] 77746.4

>
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>

> AIC(Gaussiancouplamodel)

[1] 1906.128

> AIC(OLSmodel)

[1] 2491.572

> AIC(GLMmodel)

[1] 2491.572

>

>

> BIC(Gaussiancouplamodel)

[1] NA

> BIC(OLSmodel)

[1] 2510.007

> BIC(GLMmodel)

[1] 2510.007

>

>

Table 5.1 Parameter Estimations for Example 1

Description OLS Model GLM Model Copula Model
Coefficients
Intercept 28.7063 28.7063 1.34759
visit -20.7923 -20.7923 0.11187
trt 0.8594 0.8594 -0.10685
visit:trt -1.4988 -1.4988 -0.30237
AIC 2491.572 2491.572 1906.128

According to above table 5.1, Copula based regression model has low AIC value and
other two models(OLS and GLM) has same AIC value. So we can say if we use copula
model is more appropriate method in this regression analysis. In this case we used Gaussian
as marginal distribution in copula regression model. Next example 02, we are going to
consider general random generated data set, each data sets contains 50000 observations.
Here we consider x3 as a response variable which is generated from Poisson distribution and
x1,x2,x4,x5,x6 as regressors generated from different distributions. Also in this example,
our model has no interaction term just only consider regressors. Similarly we can consider
any data sets with any distributions (Most of the real world databases violated normality
assumption)
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> #**********************************************************

> x1<-cbind(rpois(50000,6))

> x2<-cbind(rgamma(50000,2,1))

> x3<-cbind(rnorm(50000,5,8))

> x4<-cbind(rexp(50000,6))

> x5<-cbind(rexp(50000,3))

> x6<-cbind(rexp(50000,2))

>

> modelcoupula1 <- gcmr(x1 ~ x2+x3+x4+x5+x6, marginal = poisson.marg,

cormat = cluster.cormat(id, type= "ind"))

> modelsimple1 <-lm(x1 ~ x2+x3+x4+x5+x6)

> modelglm1 <-glm(x1 ~ x2+x3+x4+x5+x6,family = poisson)

>

> summary(modelcoupula1)

Call:

gcmr(formula = x1 ~ x2 + x3 + x4 + x5 + x6, marginal = poisson.marg,

cormat = cluster.cormat(id, type = "ind"))

Coefficients marginal model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.7908410 0.0046041 388.964 <2e-16 ***

x2 -0.0001669 0.0012889 -0.129 0.897

x3 0.0001294 0.0002278 0.568 0.570

x4 -0.0111978 0.0110000 -1.018 0.309

x5 0.0003424 0.0054662 0.063 0.950

x6 0.0018186 0.0036301 0.501 0.616

No coefficients in the Gaussian copula

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log likelihood = 1.149e+05, AIC = 229808

> summary(modelsimple1)
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Call:

lm(formula = x1 ~ x2 + x3 + x4 + x5 + x6)

Residuals:

Min 1Q Median 3Q Max

-6.0171 -1.9850 0.0018 1.9893 11.9928

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.9944805 0.0275575 217.526 <2e-16 ***

x2 -0.0009996 0.0077147 -0.130 0.897

x3 0.0007754 0.0013639 0.569 0.570

x4 -0.0669637 0.0657214 -1.019 0.308

x5 0.0020516 0.0327242 0.063 0.950

x6 0.0109068 0.0217507 0.501 0.616

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 2.446 on 49994 degrees of freedom

Multiple R-squared: 3.253e-05, Adjusted R-squared: -6.748e-05

F-statistic: 0.3253 on 5 and 49994 DF, p-value: 0.898

> summary(modelglm1)

Call:

glm(formula = x1 ~ x2 + x3 + x4 + x5 + x6, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.4690 -0.8639 0.0007 0.7719 3.9397

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.7908410 0.0046041 388.966 <2e-16 ***

x2 -0.0001669 0.0012890 -0.129 0.897

x3 0.0001294 0.0002278 0.568 0.570
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x4 -0.0111978 0.0109999 -1.018 0.309

x5 0.0003424 0.0054663 0.063 0.950

x6 0.0018186 0.0036301 0.501 0.616

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 51762 on 49999 degrees of freedom

Residual deviance: 51760 on 49994 degrees of freedom

AIC: 229808

Number of Fisher Scoring iterations: 4

> residualcop <- residuals(modelcoupula1) \% Quantile residual

> residualsim <- residuals(modelsimple1) \% Usual residual

> residualglm <- residuals(modelglm1) \% Usual residual

> sum(residualcop*residualcop) \% Quantile residual sum of square

[1] 49905.47

> sum(residualsim*residualsim) \% Usual residual sum of square

[1] 299000.6

> sum(residualglm*residualglm) \% Usual residual sum of square

[1] 51760.12

> AIC(modelcoupula1)

[1] 229808.1

> AIC(modelsimple1)

[1] 231329

> AIC(modelglm1)

[1] 229808.1

According to below table 5.2, GLM model and Copula based model has same AIC value
and OLS model has high AIC value but in data analysis if we found any model has lower
AIC then it is best fitting model. So we can conclude that GLM or Copula Models are better
than OLS in this example. Next example 03, we are going to consider four Gaussian random
variables each contains 50000 observations.
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Table 5.2 Parameter Estimations for Example 2

Description OLS Model GLM Model Copula Model
Coefficients
Intercept 5.9944805 1.7908410 1.7908410
x2 -0.0009996 -0.0001669 -0.0001669
x3 0.0007754 0.0001294 0.0001294
x4 -0.0669637 -0.0111978 -0.0111978
x5 0.0020516 0.0003424 0.0003424
x6 0.019068 0.0018186 0.0018186
AIC 231329 22908.1 22908.1

> #**************************************************************

> x1<-cbind(rnorm(50000,6))

> x2<-cbind(rnorm(50000,5,6))

> x3<-cbind(rnorm(50000,6,8))

> x4<-cbind(rnorm(50000,2,9))

>

> modelcoup1 <- gcmr(x3 ~ x1+x2+x1:x2+x4, marginal = gaussian.marg,

cormat = cluster.cormat(id, type= "ind"))

> modelsim1 <-lm(x3 ~ x1+x2+x1:x2+x4)

> modelglm <-glm(x3 ~ x1+x2+x1:x2+x4,family = gaussian)

>

> summary(modelcoup1)

Call:

gcmr(formula = x3 ~ x1 + x2 + x1:x2 + x4, marginal = gaussian.marg,

cormat = cluster.cormat(id,

type = "ind"))

Coefficients marginal model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.9491964 0.2803725 21.219 <2e-16 ***

x1 0.0034283 0.0461106 0.074 0.941

x2 0.0091333 0.0355422 0.257 0.797

x4 0.0048751 0.0039652 1.229 0.219

x1:x2 -0.0009964 0.0058525 -0.170 0.865
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sigma 7.9607947 0.0251745 316.225 <2e-16 ***

No coefficients in the Gaussian copula

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log likelihood = 1.7467e+05, AIC = 349358

> summary(modelsim1)

Call:

lm(formula = x3 ~ x1 + x2 + x1:x2 + x4)

Residuals:

Min 1Q Median 3Q Max

-31.136 -5.415 -0.031 5.405 38.162

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.9491964 0.2803850 21.218 <2e-16 ***

x1 0.0034283 0.0461126 0.074 0.941

x2 0.0091333 0.0355439 0.257 0.797

x4 0.0048751 0.0039654 1.229 0.219

x1:x2 -0.0009964 0.0058527 -0.170 0.865

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 7.961 on 49995 degrees of freedom

Multiple R-squared: 3.672e-05, Adjusted R-squared: -4.328e-05

F-statistic: 0.459 on 4 and 49995 DF, p-value: 0.7659

> summary(modelglm)

Call:

glm(formula = x3 ~ x1 + x2 + x1:x2 + x4, family = gaussian)

Deviance Residuals:
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Min 1Q Median 3Q Max

-31.136 -5.415 -0.031 5.405 38.162

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.9491964 0.2803850 21.218 <2e-16 ***

x1 0.0034283 0.0461126 0.074 0.941

x2 0.0091333 0.0355439 0.257 0.797

x4 0.0048751 0.0039654 1.229 0.219

x1:x2 -0.0009964 0.0058527 -0.170 0.865

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for gaussian family taken to be 63.37996)

Null deviance: 3168798 on 49999 degrees of freedom

Residual deviance: 3168681 on 49995 degrees of freedom

AIC: 349358

Number of Fisher Scoring iterations: 2

> res <- residuals(modelcoup1)

> res1 <- residuals(modelsim1)

> res2 <- residuals(modelglm)

>

> sum(res*res)\% Quantile residual sum of square

[1] 49999.5

> sum(res1*res1)\% Usual residual sum of square

[1] 3168681

> sum(res2*res2)\% Usual residual sum of square

[1] 3168681

>

> AIC(modelcoup1)

[1] 349358.2

> AIC(modelsim1)

[1] 349358.2
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> AIC(modelglm)

[1] 349358.2

>

>

Table 5.3 Parameter Estimations for Example 3

Description OLS Model GLM Model Copula Model
Coefficients
Intercept 5.9491964 5.9491964 5.9491964
x1 0.0034283 0.0034283 0.0034283
x2 0.0091333 0.0091333 0.0091333
x4 0.0048751 0.0048751 0.0048751
x1 : x2 -0.0009964 -0.0009964 -0.0009964
AIC 349358.2 349358.2 349358.2

According to above table 5.3, all model has same AIC values(349358.2) and satisfied
normality assumption. In this data, we can choose any regression model. We can conclude
that, if response variable follows any non exponential family distributions(violated GLM
model assumption) or non Gaussian distribution (violated OLS model assumption), copula
based regression is the best fitting model in regression analysis.
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Chapter 6

Conclusions and Future study

In this section we are going to propose our results of this study, Firstly we are going to
propose our application result (Model Comparison- copula with OLS and GLM). Basic
form of the regression analysis, ordinary least squares (OLS) is not suitable for actuarial
applications because the relationships are often nonlinear and the probability distribution of
the response variable may be non-Gaussian distribution. One of the method that has been
successful in overcoming these challenges is the generalized linear model (GLM), which
requires that the response variable have a distribution from the exponential family. In this
research study, we study copula regression as an alternative method to OLS and GLM. The
major advantage of a copula regression is that there are no restrictions on the probability
distributions that can be used. We briefly discussed about copula regression by using several
variety of marginal copula functions and copula regression is the most appropriate method
in non Gaussian variable(violated normality assumption) regression model fitting. Also
we validated our results by using real world example data and random generated (50000
observations) data. By using a simulated data set and other collected data, we found that
the copula based regression approach performs well for OLS and GLM model assumption
violated data and also copula based regression model has SSE (we don’t have direct option in
this R package, residual command provided Quantile residual), AIC and BIC values. We can
conclude that, if response variable follows any non exponential family distributions(violated
GLM model assumption) or non Gaussian distribution(violated OLS model assumption),
copula based regression approach is the best model fitting in regression analysis.

Secondly, we are going to propose our theoretical result such as we proposed multiple
regression line equation for Multivariate Non-Exchangeable Generalized Farlie-Gumbel-
Morgenstern (FGM) copula function. In 2005, Sungur [47] developed the approach to
the directional dependence by using bi-variate copula based linear regression, But in prac-
tically most of the regression analysis has more than one regressors so in this study we
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discussed about multivariate copula based regression.We found,Multivariate (trivariate) Non-
Exchangeable Generalized Farlie-Gumbel-Morgenstern (FGM) copula regression of U0 on
U = u is given by

rC
U0|U(u) = 1−

1
2 (1+ f ′1(u1) f ′2(u2))+( f ′1(u1)+ f ′2(u2))

∫ 1
0 f0(u0)du0

1+ f ′1(u1) f ′2(u2)

There are many possibilities for extending the study domain as a part of future work. We
can extend our result to copula based Ridge and Lasso regressions, there are no research
works available in that topic. We couldn’t find any literature related that topic. Ongoing
research is focused on defining a new theoretical results such as copula based Ridge and
Lasso regressions.
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Appendix A

Programming codes

*******************Bivariate random samples of size 200 from various

Frank copulas.**************

set.seed(5640)

delta = c(-100, -50, -10, -1, 0, 5, 20, 50, 500)

par(mfrow=c(3,3), cex.axis=1.2, cex.lab=1.2, cex.main=1.2)

for(i in 1:9){

U = rCopula(n=200,

copula=archmCopula(family="frank", param=delta[i]))

plot(U, xlab=expression(u[1]), ylab=expression(u[2]),

main=eval(substitute(expression(paste(delta," = ",j)),

list(j = as.character(theta[i])))))

}

*********************************Bivariate random samples of size 200

from various Clayton copulas.************

set.seed(5640)

delta = c(-0.95, -0.75, -0.25, -0.10, 0.10, 1, 5, 15, 200)

par(mfrow=c(3,3), cex.axis=1.2, cex.lab=1.2, cex.main=1.2)

for(i in 1:9){

U = rCopula(n=200,

copula=archmCopula(family="clayton", param=delta[i]))

plot(U, xlab=expression(u[1]), ylab=expression(u[2]),

main=eval(substitute(expression(paste(delta," = ",j)),

list(j = as.character(delta[i])))))

}
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*******************************Bivariate random samples of size 200 from

various gumbel copulas.

set.seed(5640)

delta = c(1.0, 1.5, 2, 6, 10, 50)

par(mfrow=c(2,3), cex.axis=1.2, cex.lab=1.2, cex.main=1.2)

for(i in 1:6){

U = rCopula(n=200,

copula=archmCopula(family="gumbel", param=delta[i]))

plot(U, xlab=expression(u[1]), ylab=expression(u[2]),

main=eval(substitute(expression(paste(delta," = ",j)),

list(j = as.character(delta[i])))))

}

*******************************Bivariate random samples of size 200 from

various joe copulas.

set.seed(5640)

delta = c(1.0, 1.5, 2, 6, 10, 50)

par(mfrow=c(2,3), cex.axis=1.2, cex.lab=1.2, cex.main=1.2)

for(i in 1:6){

U = rCopula(n=200,

copula=archmCopula(family="joe", param=delta[i]))

plot(U, xlab=expression(u[1]), ylab=expression(u[2]),

main=eval(substitute(expression(paste(delta," = ",j)),

list(j = as.character(delta[i])))))

}

*****************************Coefficients of tail dependence for bivariate

t-copulas as functions of ? for ? = 1, 4, 25, and 250.**

rho = seq(-1,1, by=0.01)

df = c(1, 5, 25, 100,250,500)

x1 = -sqrt((df[1]+1)*(1-rho)/(1+rho))

lambda1 = 2*pt(x1,df[1]+1)

x5 = -sqrt((df[2]+1)*(1-rho)/(1+rho))

lambda5 = 2*pt(x5,df[2]+1)

x25 = -sqrt((df[3]+1)*(1-rho)/(1+rho))
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lambda25 = 2*pt(x25,df[3]+1)

x100 = -sqrt((df[4]+1)*(1-rho)/(1+rho))

lambda100 = 2*pt(x100,df[4]+1)

x250 = -sqrt((df[5]+1)*(1-rho)/(1+rho))

lambda250 = 2*pt(x250,df[4]+1)

x500 = -sqrt((df[6]+1)*(1-rho)/(1+rho))

lambda500 = 2*pt(x500,df[4]+1)

par(mfrow=c(1,1), lwd=2, cex.axis=1.2, cex.lab=1.2)

plot(rho, lambda1, type="l", lty=1, xlab=expression(rho),ylab=expression

(lambda[l]==lambda[u]))

lines(rho, lambda5, lty=2)

lines(rho, lambda25, lty=3)

lines(rho, lambda100, lty=4)

lines(rho, lambda250, lty=5)

lines(rho, lambda500, lty=6)

legend("topleft", c(expression(nu==1), expression(nu==5),

expression(nu==25), expression(nu==100), expression(nu==250),

expression(nu==500)), lty=1:6)

*********************Chapter 03*************************

### Estimation of copula parameters by using the MLE Method

## The "unknown" copula (a 2-dim. Clayton copula with parameter 5)

cc <- claytonCopula(5)

## The "unknown" distribution (N(0,1), Exp(6) margins)

mcc <- mvdc(cc, margins = c("norm", "exp"),

paramMargins = list(list(mean = 0, sd = 1),

list(rate = 1)))

## Generate the "observed" sample

set.seed(712)

n <- 2000

X <- rMvdc(n, mvdc = mcc)

## The function fitMvdc() estimates all the parameters of the mvdc object

## mcc. Starting values need to be provided.

start <- c(mu0 = mean(X[,1]), sig0 = sd(X[,1]), lam0 = 1 / mean(X[,2]),
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th0 = 2)

mle <- fitMvdc(X, mvdc = mcc, start = start)

summary(mle)

### Estimation of copula parameters via the IFM Method

## Parametric pseudo-observations obtained from X by marginal MLE

U <- cbind(pnorm(X[,1], mean = mean(X[,1]),

sd = sqrt((n - 1) / n) * sd(X[,1])),

pexp(X[,2], rate = 1 / mean(X[,2])))

ifme <- fitCopula(claytonCopula(), data = U, method = "ml")

summary(ifme)

### Estimation of copula parameters via the CML Method

CML <- fitCopula(claytonCopula(), data = U, method = "mpl")

summary(CML)

##Estimation of copula parameters via the method of moments based on

Kendall's tau

## The "unknown" copula (a 2-dim. clayton copula with parameter 5)

gc <- claytonCopula(5)

## The "unknown" distribution (N(0,1) margins)

mgc <- mvdc(gc, margins = c("norm", "norm"),

paramMargins = list(list(mean = 0, sd = 1),

list(mean = 0, sd = 1)))

## Generate the "observed" sample

set.seed(49)

X <- rMvdc(1000, mvdc = mgc)

## The sample version of Kendall's tau

tau.n <- cor(X[,1], X[,2], method = "kendall")

## The corresponding copula parameter estimate

(itau <- iTau(gc, tau = tau.n))
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stopifnot(all.equal(itau, 1 / (1 - tau.n))) # the same

## The same but with a standard error

summary(fitCopula(claytonCopula(), data = pobs(X), method = "itau"))

### Estimation of copula parameters via the method of moments based on

Spearman's rho

## The "unknown" copula (a 2-dim. normal copula with parameter 0.5)

nc <- claytonCopula(5)

## Generate the "observed" sample

set.seed(314)

X <- rCopula(1000, nc)

## The sample estimate of Spearman's rho

rho.n <- cor(X[,1], X[,2], method = "spearman")

## The corresponding copula parameter estimate

(irho <- iRho(nc, rho = rho.n))

stopifnot(all.equal(irho, 2 * sin(pi * rho.n / 6))) # the same

## The same but with a standard error

summary(fitCopula(claytonCopula(), data = pobs(X), method = "irho"))

### Spearman's rho and Kendall's tau for normal copulas

rho <- seq(-1, 1, by = 0.01) # correlation parameters of normal copulas

rho.s <- (6/pi) * asin(rho/2) # corresponding Spearman's rho

tau <- (2/pi) * asin(rho) # corresponding Kendall's tau

plot(rho, rho.s, type = "l", col = 3, lwd = 2,

xlab = expression("Correlation parameter of normal copula"),

ylab = expression(~rho[s]~"and"~tau))

abline(a = 0, b = 1, col = 2, lty = 2, lwd = 2)

lines(rho, tau, col = 4, lwd = 2)

legend("topleft", bty = "n", col = 2:4, lty = c(2, 1, 1), lwd = 2,

legend = c("Diagonal", expression(rho[s]), expression(tau)))
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