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Abstract 

A significant issue facing municipal wastewater treatment infrastructure (WWTI) is how 

to manage infiltration and inflow (I/I). I/I of rain and ground water permeate into WWTI after 

precipitation events, periods of groundwater table rise, and percolation from surrounding surface 

waters. This can create discharges above the infrastructure's flow capacity, increase costs for 

processing the wastewater and add undesired stress to aging wastewater networks. In an attempt 

to assess this problem cost and time inefficient approaches have commonly been applied. This 

study utilizes a new and more radical methodology to try and make WWTI management more 

efficient. This study applies ArcGIS and Geostatistical Analysis to seven counties within the 

Metropolitan Council Environmental Services (MCES) network in the Minneapolis/St. Paul 

metro area. Data is collected from rain gauges and flow meters an average ten-year flow record 

is created from this data. The data is then analyzed in ArcGIS through Kriging to interpolate and 

predict where significant rates of I/I, due to high magnitude precipitation events, are located 

throughout the study area. I/I rates for high magnitude precipitation events are estimated through 

the comparison of the max flow rate data and the ten-year average flow rate. A percentage of 

increase flow is then calculated. Results reveal spatial patterns indicating variable I/I 

susceptibility across the MCES WWTI. By collaborating with MCES it is possible to determine 

how accurately this methodology can locate areas of high-risk I/I potential within the existing 

WWTI. 
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Introduction 

The collection and treatment of wastewater is a crucial part of the infrastructure 

necessary for modern metropolitan areas. The methods used to treat wastewater have 

dramatically changed over the past 200 years to accommodate the steady increase in population 

around the world (Water Environment Federation 2010a; Metropolitan Council of the Twin 

Cities 2011). Without the treatment of wastewater, groundwater and surface water contamination 

will occur (Metropolitan Council of the Twin Cities 2007; Obeidat et al. 2007; Water 

Environment Federation 2010b; Rojas Fabro et al. 2015). Metropolitan areas worldwide have 

established protocols with the intention of reducing human disease, eliminating environmental 

pollutants, and, most importantly, attain a level of water quality that is acceptable for reuse 

(Water Environment Federation 2008, 2010a). 

In the United States of America, the quality of treated wastewater is regulated by the U.S. 

Environmental Protection Agency (EPA)  in accordance with the Clean Water Act (1977), Water 

Quality Act (1987), and the Clean Air Act (1990) (US EPA 2016a). However, each state has the 

ability to impose additional water and air quality standards upon delegation of the EPA’s 

authority (Water Environment Federation 2010a; US EPA 2016a). Table 1 briefly describes the 

various wastewater treatment processes used in metropolitan areas primarily in the developed 

world. 
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Table 1. List of wastewater treatment processes.  

Type Description References 

Preliminary Removal, reduction, or modification of 

wastewater components that may cause 

operational and equipment problems later in the 

wastewater treatment process. 

(Water Environment 

Federation 2010b) 

Secondary 

(“Primary”) 

This is the primary method of wastewater 

treatment necessary to meet the minimum 

requirements expected of all treatment facilities 

according to the U.S. EPA and other regulations. 

Except for a few countries that discern nutrient-

removal for ecological reasons, this treatment is 

currently the norm in most developed countries 

around the world.  

(Water Environment 

Federation 2008, 2010a, 

2010b; US EPA 2016a) 

Advanced This treatment type is used to attain a more 

stringent level of treatment necessary to produce 

a significant reduction in toxic pollutants. This 

form of treatment is used when there is an 

increased need for reuse of wastewater. For 

example in dry or drought stricken regions, like 

the southwestern United States and areas of 

Australia (Andersen, Lewis, and Sargent 2004).  

(Water Environment 

Federation 2008, 2010a) 

Natural 

Systems 

Wastewater treatment through natural sources 

such as wetlands (natural and constructed), soil 

absorption, ponds, land treatment, biomass 

feedstock, and floating aquatic plants. These can 

be one of the most cost effective options, but they 

are typically suited for small areas and rural 

regions because of the need for land and smaller 

output of wastewater. 

(Huddleston and Rodgers 

2008; Nelson and Gladden 

2008; Peterson and Lanning 

2009; Water Environment 

Federation 2010b; Kosse, 

Lübken, and Wichern 2015) 

 

Treating waste and stormwater is an expensive process.  The annual total cost of waste 

and stormwater collection/treatment in the United States of America was approximately 

$271 billion as of January 1, 2012 (Figure 1). This includes capital needs for publicly owned 

wastewater pipes and treatment facilities (~$197.8 billion), combined sewer overflow (CSO) 

correction (~$48.0 billion), stormwater management (~$19.2 billion), and recycled water 

treatment and distribution (~$6.1 billion) (US EPA 2016b).  
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One of the most crucial and costly aspects of the entire wastewater treatment system is 

the collection systems that transport wastewater to the facilities for processing. These collection 

systems account for 35.3 percent of the annual expenditures (~$95 billion) made towards 

collection systems according to the US EPA website (US EPA 2016c). This includes the 

installation of new collection systems as well as rehabilitating the defective pipes and 

connections. A collection system refers to a network of pipes, conduits, tunnels, equipment, and 

appurtenances used to collect, transport, and pump wastewater (Water Environment Federation 

2008). Flow of wastewater typically occurs by means of gravity-based sewer pipes that take 

advantage of natural gradients in surface topography to reach the wastewater treatment plant. Lift 

stations are placed along the network when topographic impediments to flow prohibit gravity 

flow.  The lift stations  transport wastewater from lower to higher elevations most commonly by 

means of centrifugal pumps (United States Environmental Protection Agency 2000; Water 

Environment Federation 2008). Collection systems are also broken down into three basic types: 

sanitary sewers, storm sewers, and combined sewers. Sanitary sewers transport wastewater from 

business and residential areas to the treatment facilities, as well as groundwater and storm water 

that is introduced through defects in the infrastructure and/or malfunctioning sewer pipes. Storm 

sewers direct storm water runoff and other drainage to prevent flooding within urban and city 

limits. Lastly, combined sewers transport both sanitary waste and stormwater (Water 

Environment Federation 2008). All of these sewer types can transport pollutants to surrounding 

surface and groundwater if not properly maintained, but the focus of this research will be related 

to sanitary and combined sewer networks.  
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Figure 1. Annual total capital cost for wastewater treatment plants and infrastructure (US EPA 

2016c). 

Deteriorating and malfunctioning elements of the collection system are an inevitable 

complication that all waste managing organizations encounter. There are approximately 600,000 

miles of sanitary sewer systems and wastewater treatment infrastructure in the United States 

(Shelton et al. 2011) some of which were built over 100 years ago (Fenner 2000; Wade 2000; 

Ellis 2001; Lai 2008; Staufer, Scheidegger, and Rieckermann 2012). ASCE’s 2009 report card 

gave the U.S.’s wastewater and drinking-water infrastructure a D- and since then it has raised to 

a D+ (American Society of Civil Engineers 2011). Failure to act will lead to detrimental effects 

on the nation’s economic performance as well as environmental effects associated with faulty 

systems. For more information on the issue at hand, refer to American Society of Civil Engineers 

report called “Failure to Act” (2011). Defective storm water and sanitary sewer systems lead to a 

wide variety of problems; not only for the wastewater treatment organizations, but also for the 
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communities they serve and the environment they work to protect by means of wastewater 

purification (Shelton et al. 2011; Staufer, Scheidegger, and Rieckermann 2012).  

Infiltration and Inflow 

One of the most common issues around the world, as exemplified in Table 2, is the 

introduction of undesirable water into the collection system that is transported to wastewater 

treatment facilities (WWTF). The phenomenon is generally referred to as Infiltration and Inflow 

(I/I), which is derived from precipitation and groundwater (Zhang 2005; Staufer, Scheidegger, 

and Rieckermann 2012). Infiltration refers to the unintentional seepage and leaking of water into 

sewer pipe cracks and crevices; and inflow refers to the direct addition of stormwater into foul 

sewage flows (Figure 2) (Water Environment Federation 2010b). I/I produces higher total flow 

rates while also increasing the volume of materials that need to be transported and purified 

through wastewater treatment infrastructure  (Karpf and Krebs 2011). Table 3 describes some 

factors that influence the rates of infiltration and inflow (I/I) into sewer pipes through cracks, 

crevices, and poor connections.   
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Figure 2. I/I enters the system the collection system through various means (King County 2015). 

 

Table 2. Examples of communities around the world facing the issue known as I/I. 

Case Study Area References and Issues 

France Conducted evaluation of the impact of I/I on a subcatchment scale in Yzeron 

catchment and Ecully catchment Lyon, France (De Bénédittis and Bertrand-

Krajewski 2005); Attempted to analyze the risk of sediment build-up (Fenner 

2000). 

United Kingdom 

(UK) 

Increased pumping costs due to hydraulic overloading; approximately 23% 

of sewers in the UK are classified as "critical" condition (Ellis 2001). Fenner 

(2000) found that less than 20% of the sewer system contributed to 80% of 

the economic, social, and political problems associated with I/I. 

Seattle, WA, 

USA 

Modelling and physical inspection (smoke and dye testing) revealed the 

primary contributors of I/I in Seattle, Washington was due to backfill 

trenches (Ellis 2001). 

Belgium Hydroplan procedure developed to group sewers into categories to reflect 

social and ecological policies and priorities (Fenner 2000). 

Australia Grade sewer conditions based on CCTV inspections (Fenner 2000). 

Japan Created a complex method for awarding condition grades; calculated 

predictions for when the sewer pipes will need repairs based on knowledge 

of sewer pipe type, length, materials and other sewer characteristics (Fenner 

2000). 

Phoenix, AZ, 

USA 

Large diameter unlined concrete sewers prone to hydrogen sulfide corrosion 

damage (Ellis 2001). 

Norway CCTV inspections grouped into sewer condition classes and 90% of all water 

and wastewater pipe were digitally recorded in the GIS database (Fenner 

2000). 
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Dresden, 

Germany 

Used model approach of least squares to assess the effectiveness of I/I 

rehabilitation efforts. 79% of mean I/I flow was expected in 3% of the total 

length of the sewer system (Karpf and Krebs 2011). 

Oahu, HI, USA Investigated flux stability of select chemical and biological sewage markers, 

such as caffeine, total nitrogen, total suspended solids, E. coli, and 

enterococci (Shelton et al. 2011). 

Munich, 

Germany 

Assessed the performance of rehabilitation efforts to determine if they made 

a statistical influence or not. Found that groundwater infiltration was 

reduced, but the stormwater inflow was not statistically significant (Staufer, 

Scheidegger, and Rieckermann 2012) 

 

Table 3. Factors that potentially influence the rates of infiltration and inflow depending on the 

geographic setting and setup of the underground network of pipes. 

Influential Factor Reference 

Human Activity (e.g. time of day) (De Bénédittis and Bertrand-Krajewski 2005) 

Rainfall (e.g. intensity, quantity, etc) (Karpf and Krebs 2011; Staufer, Scheidegger, and 

Rieckermann 2012) 

Groundwater Table Level (constant 

exchange of water through cracks and 

crevices in the pipe). 

(Fenner 2000; Ellis 2001; De Bénédittis and 

Bertrand-Krajewski 2005; Karpf and Krebs 2011; 

Staufer, Scheidegger, and Rieckermann 2012) 

Soil Characteristics (e.g. porosity) (Wirahadikusumah et al. 1998) 

Lack of or insufficient maintenance and 

investment into sewer pipes rehabilitation 

due to high costs. 

(Wirahadikusumah et al. 1998; Fenner 2000; Ellis 

2001; Karpf and Krebs 2011; Shelton et al. 2011) 

Poor/Outdated Construction Quality (e.g. 

failure due to clay or concrete pipes). 

(Wirahadikusumah et al. 1998; Fenner 2000; Ellis 

2001) 

Pipe Age, Size, and Length (Wirahadikusumah et al. 1998; Fenner 2000; Ellis 

2001; Shelton et al. 2011; Staufer, Scheidegger, and 

Rieckermann 2012) 

Additional/Illegal connections to the 

sewer system create vulnerable points of 

contact. 

(Fenner 2000; Ellis 2001) 

 

Staufer, Scheidegger, and Rieckermann (2012) classified I/I into three different 

components: groundwater infiltration (GWI), rain-induced infiltration (RII), and rain-derived 

inflow (RDI). Table 4 provides an overview of how the various components influence sanitary 

sewer flow rates and the methods of I/I quantification used in various case studies like Staufer, 

Scheidegger, and Rieckermann’s (2012) study. 
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Table 4. Procedures utilized to assess the different components of I/I from flow data acquired 

from hydrographs and various other sources. (Original table modified from Staufer, Scheidegger, 

and Rieckermann (2012, p. 5187)). 

I/I Component Associated Problem Quantification Methods Reference 

GWI = 

groundwater 

infiltration 

Contributes the largest annual 

volume of I/I and the potential 

lowering of the groundwater 

table. 

Average of the night-

time minima from all 

dry days for a given 

month. 

(Ellis 2001; Weiss, 

Brombach, and 

Haller 2002; De 

Bénédittis and 

Bertrand-Krajewski 

2005; Karpf and 

Krebs 2011; 

Pawlowski et al. 

2014)  

RDI* = rain-

derived inflow 

Quickest influence on peak 

flows and leads to frequent 

overloading of sanitary sewer 

systems. 

Cumulative differences 

between discharge and 

base flow from the 

beginning of the rain 

up to 4 hours after the 

end of the rainfall 

event. 

(Wright et al. 2001; 

Stevens 2002; Zhang 

2008, 2005, 2007; 

Lai 2008; Muleta 

and Boulos 2008; 

D.-J. Lee et al. 2009; 

Gustafsson et al. 

2010; Sadri and 

Graham 2011; 

Shelton et al. 2011) 

RII* = rain-

induced 

infiltration 

Provides a significant increase 

to peak flows, but has a 

significant lag time due to 

percolation through soil. 

Cumulative differences 

between discharge and 

base flow from the time 

after the end of the RDI 

until max. 24 hours 

after the end of the 

rainfall event. 

Included in the case 

studies/journals 

above referring to 

RDI. 

*Combined to determine the volume of I/I during significant precipitation events.  

 

Ground Water Infiltration (GWI) 

GWI refers to groundwater that enters sanitary sewer systems at a constant rate through 

defects in the piping (Weiss, Brombach, and Haller 2002; Staufer, Scheidegger, and 

Rieckermann 2012). Infiltration into the collection system occurs when the soil around the 

infrastructure is saturated by either a high water table or surface water within a close enough 

proximity (deMonsabert and Thornton 1997; Staufer, Scheidegger, and Rieckermann 2012). 

These saturated soils are directly correlated with seasonal and meteorological variability; 
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therefore the groundwater table increases or decreases in height based on the average annual 

precipitation or seasonal variability (Ellis 2001; Karpf and Krebs 2011, 2013; Staufer, 

Scheidegger, and Rieckermann 2012). The groundwater table may also be impacted by 

anthropogenic depletion through overconsumption and, in these instances, GWI is not a factor to 

consider (Helland 2004; Jossi 2013; Vainu and Terasmaa 2016). Overall, GWI has the highest 

average infiltration rates, but does not have a noticeable impact on hydrographs, since it slowly 

percolates into the collection system (Bertrand-Krajewski et al. 2005; Staufer, Scheidegger, and 

Rieckermann 2012).   

Rain-Derived Infiltration and Inflow (RDII) 

Most studies of I/I focus on the periods of drastic variability in hydrographs associated 

with precipitation; commonly referred to as rain-derived infiltration and inflow (RDII) (e.g. 

Zhang 2007; Staufer, Scheidegger, and Rieckermann 2012). RDII can be further broken down 

into two subcategories of rain-induced infiltration (RII) and rain-derived inflow (RDI).  

Rain-Induced Infiltration (RII) 

RII pertains to precipitation that permeates through the vadose zone (the unsaturated soil 

between the surface and groundwater table) until it reaches the collection system where it is able 

to infiltrate cracks, holes, or collapses found along the wastewater infrastructure (Figure 2) 

(deMonsabert and Thornton 1997; Staufer, Scheidegger, and Rieckermann 2012). The primary 

factors that directly affect the rate at which storm water can infiltrate the ground is strongly 

correlated with the magnitude and duration of precipitation (Zhang 2005, 2007; Lai 2008), as 

well as the soil type, geologic characteristics and land use practice (Staufer, Scheidegger, and 

Rieckermann 2012). Due to these factors, RII has the second most-noticeable impact on 
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hydrographs during rainfall. This is due to its considerable lag time as observed in Figure 3 

(Staufer, Scheidegger, and Rieckermann 2012). The lag time can vary depending on the region’s 

geologic and soil makeup, but generally RII is more similar to GWI since they are both 

influenced by the permeability of the soil (Staufer, Scheidegger, and Rieckermann 2012).  

 
Figure 3. A visual representation of the properties of RDII, foul sewage (FS), and GWI in 

relations to precipitation (Staufer, Scheidegger, and Rieckermann 2012, p. 5187). 

 

Rain-Derived Inflow (RDI) 

RDI describes storm water that enters sanitary sewer systems through surface 

connections that were poorly secured or, in some cases, illegally connected (Figure 2) (Staufer, 

Scheidegger, and Rieckermann 2012). Out of all the I/I components, RDI has the shortest lag 

time and directly affects hydrographs and flow at an exponential rate compared to the other two 

components (Staufer, Scheidegger, and Rieckermann 2012). This dramatic increase is only 

possible due to the direct connection to the sanitary sewer network. These direct inlets to 

collection systems (e.g. combined and sanitary sewer systems) include open or poorly sealed 

manhole covers, direct connections from street drains, roof and yard drains, foundation drains, 
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gully pots, basement sump pumps, overflow from storm drains, and various other types of illegal 

connections into the subsurface wastewater network (Ellis 2001; Staufer, Scheidegger, and 

Rieckermann 2012). 

Influence of I/I on Wastewater Treatment Facilities Performance 

The introduction of I/I decrease wastewater treatment facilities’ performance because of 

the increased volume of sewage that needs to be processed. Excess flow produces a greater strain 

on the equipment which reduces the hydraulic efficiency of a WWTF. Decreased hydraulic 

efficiency tends to produce more frequent sanitary sewer overflows (SSO) (De Bénédittis and 

Bertrand-Krajewski 2005; Zhang 2007; Lai 2008; Shelton et al. 2011; Staufer, Scheidegger, and 

Rieckermann 2012) and can also reduce effectiveness of the foul sewage treatment (Ellis 2001; 

Karpf and Krebs 2011). Furthermore, the increased discharge and infiltration of water will lead 

to increased deterioration rates of sanitary sewer systems (De Bénédittis and Bertrand-Krajewski 

2005); 75% of sanitary sewer systems are performing at 50% of their optimal capacity according 

to Shelton et al. (2011). 

Environmental Impact due to I/I 

The infiltration of rain water into the sewer system also means that the exfiltration of raw 

sewage can occur under the right conditions (Ellis 2001; Bertrand-Krajewski et al. 2005; De 

Bénédittis and Bertrand-Krajewski 2005; Rutsch, Rieckermann, and Krebs 2006; Rutsch et al. 

2008; Nikpay, Lazik, and Krebs 2015). Generally speaking, exfiltration will occur during 

intervals of reduced external pressure when the soil encompassing the sanitary sewer systems is 

no longer saturated via a high groundwater table. Pollution of soils and groundwater ensues 

when foul sewage has escaped the sewer pipes and can ultimately lead to contaminated drinking 

water supply (Ellis 2001; De Bénédittis and Bertrand-Krajewski 2005). Apart from pollution, 
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other detrimental impacts include a reduction of the groundwater table due to GWI into the 

sewer defects and SSO. The reduction can reach the point to where it can impact surface waters 

and soil moisture  (Gustafsson 2000; Karpf and Krebs 2011). 

I/I is a strong contributor to both environmental and community concerns that stem from 

SSO (Zhang 2005; McLellan et al. 2007; Lai 2008) and back flooding into buildings, public and 

private property, neighborhood lawns, basements, driveways, streets and even surface waters 

(Zhang 2005; Karpf and Krebs 2011; Staufer, Scheidegger, and Rieckermann 2012). One 

common contaminant found in wastewater is Escherichia coli and McLellan et al. (2007) 

examined the distribution caused by SSO and combined sewer overflows (CSO). These events 

occur during heavy rainfall when the wastewater treatment plants become hydraulically 

encumbered and back up or when rain water directly intermingles with foul sewage which leads 

to overflows. This is the primary cause of human fecal pollution of surface waters (Zhang 2005; 

McLellan et al. 2007; Lai 2008). Through the use of sampling around the city shore of Lake, 

Michigan McLellan et al. (2007) found that E. Coli samples drastically increased after rainfall 

events, but the dilution rates tend to reduce the spread of E. Coli contamination as it moves 

farther from the harbor and shore (McLellan et al. 2007). The aforementioned environmental 

problems associated with I/I are financially demanding for both the community and wastewater 

treatment organizations. 

Economic Influence of I/I 

In order to process and purify an increased volume of wastewater, more energy must be 

consumed. High energy consumption increases expenditures for the wastewater treatment 

facilities and the communities they service (deMonsabert and Thornton 1997; Zhang 2007; 

American Society of Civil Engineers 2011; Karpf and Krebs 2011; Staufer, Scheidegger, and 
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Rieckermann 2012). Not only does the cost to purify the wastewater increase, but the reduction 

of I/I through various rehabilitation methods is very expensive as well (Ellis 2001; Staufer, 

Scheidegger, and Rieckermann 2012). During the time of Ellis’ (2001) study, it was estimated 

that I/I mitigation cost wastewater treatment organization a capital sum of £100 - £150 million 

for the mitigation of I/I in highly populated areas. According to Lai (2008), it is estimated to cost 

approximately $1-2 trillion to replace the entire sanitary sewer systems of the United States of 

America. This includes the entire I/I rehabilitation process, from surveying for defects to the 

completion of repairs on the sewer piping. Just the surveying itself can be expensive, time 

consuming and labor intensive (Lee 2005; Roper and Blanco 2016). The various methods used to 

assess I/I range from physical inspections to more modern GIS based approaches. 

A Review of Methods Which Assess I/I 

In order to proactively prevent sanitary sewer deterioration, organizations must take a 

variety of measures necessary to find the problem before they reach a critical level of severity. 

All methods used to investigate conditions of I/I are used to assess the structural condition of the 

sewer network, to predict the financial investment necessary to maintain efficiency, and to see if 

the rehabilitation efforts have a significant effect in reducing I/I (Staufer et. al., 2012). To do so 

engineers’ tend to use a variety of monitoring methods to investigate and pinpoint I/I locations 

along the sewer network. A majority of engineer’s research tend to be geared towards optimizing 

methods of I/I measurement through various means like statistics (De Bénédittis and Bertrand-

Krajewski 2005; Zhang 2005, 2007). However, traditional methods are still used in 

municipalities all over the world due to a lack of knowledge of the various methods at their 

disposal, limited awareness of international sewer rehabilitation efforts, or just a lack of 
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capabilities to complete some of the more complex I/I assessments (De Bénédittis and Bertrand-

Krajewski 2005). A wide variety of monitoring methods are used to assess the condition of 

wastewater treatment infrastructure, to estimate potential investments necessary to maintain 

services, and to determine the effectiveness of rehabilitation projects throughout the network 

(Bennett 1999; Bertrand-Krajewski et al. 2005; Staufer, Scheidegger, and Rieckermann 2012).  

Sewer Assessment Methodology 

Traditionally used methods include visual inspections, such as smoke tests, dye tests, and 

closed circuit television (CCTV) (Wirahadikusumah et al. 1998; Zhang 2007; Metropolitan 

Council of the Twin Cities 2009). Technological advances have allowed flow measurements to 

be monitored and utilized to calculate I/I more effectively  (Wirahadikusumah et al. 1998; Zhang 

2007; J. H. Lee et al. 2009; Staufer, Scheidegger, and Rieckermann 2012). The Metropolitan 

Council of the Twin Cities is an example of a wastewater treatment organization that uses a 

variety of methods to monitor the conditions of their sanitary sewer systems, which include: 

floatable cameras also known as CCTVs, and the use of dye and smoke tests that allow the 

engineers to assess and rate each section of piping based on its severity (Wirahadikusumah et al. 

1998; Lee 2005; Zhang 2007; Metropolitan Council of the Twin Cities 2009, 2011). These 

physical methods are commonly practiced throughout the world, but remain costly, time 

intensive, and/or inefficient in appropriately assessing spatial zones of vulnerability within a 

wastewater treatment network (Shelton et al. 2011). Upon completion of surveys with methods 

like CCTV, the sewer systems are ranked based on their severity which is used to prioritize 

rehabilitation efforts (Karpf and Krebs 2011; Shelton et al. 2011). Also by knowing the year 

sewer sections were installed and the height of the water table in the region, it is possible to 

estimate areas more susceptible to I/I (Karpf and Krebs 2011). 
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Modern monitoring of RDII is estimated through the use of monitoring methods based on 

volume of flow, but as mentioned by Zhang (2007) most of these methods are “ad hoc” in 

practice and do not calculate the statistical relevance of the measured flows. Monitoring of 

inflow is most commonly accomplished through the comparison of sewer discharge data 

collected from the exit of a catchment or sub-basin against concurrent rainfall measurements 

(Bennett 1999; Zhang 2007, 2008; Staufer, Scheidegger, and Rieckermann 2012). 

Only a limited number of countries have ever completed a comparative study of the I/I 

assessment methods used around the world (De Bénédittis and Bertrand-Krajewski 2005). A few 

studies have been conducted to compare multiple types of monitoring methods used to assess the 

severity of RDII including Fenner (2000), Ellis (2001), and De Bénédittis and Bertrand-

Krajewski (2005). It has been observed that at this time there are not any methods that 

encompass all of the components of I/I (De Bénédittis and Bertrand-Krajewski 2005). 

There are two categories of modern I/I monitoring methods: (i) flow rate methods that are 

based off hydrographs produced through spectrometers and other various monitoring systems, 

and (ii) chemical based methods that measure the dilution of the wastewater from clean water 

(De Bénédittis and Bertrand-Krajewski 2005; Shelton et al. 2011). In order to monitor large 

sewer systems it is necessary to have properly established assessment tools in various locations 

along the network, but this can be extremely expensive to implement (Shelton et al. 2011).  

RDII can typically be measured by industries through the collection and analysis of 

rainfall and flow data at various locations along the wastewater network (Zhang 2005). This data 

provides the information necessary to calculate the ratio of total rainfall that enters the system at 

various locations; this ratio is commonly referred to as the “I/I ratio” (Zhang, 2005, 1). The I/I 
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ratio has be used to make several key management decisions when it comes to evaluating the 

severity of sewer deterioration which is discussed more in depth by Zhang (2005, 1). Obtaining 

accurate flow measurements of RDII from direct flow rates comes with inherent error in the data 

due to various conditions including SSO (Shelton et al. 2011) and high velocity flows that are 

not accurately measured due to the limitations of the spectrometer used (Zhang 2005). 

Night-time minimum flows are a simpler method used for monitoring I/I because it 

provides the least amount of fluctuations in the data from day to day. Generally, night-time 

minimum flows only measures one day of dry weather instead of a statistically significant 

amount of cases to provide an acceptable margin of uncertainties for day time datasets (De 

Bénédittis and Bertrand-Krajewski 2005; Staufer, Scheidegger, and Rieckermann 2012). 

Hydrological fluctuations during the day can change by the hour due to significant times of day 

such as breakfast, lunch, dinner, weekdays, weekends, etc. Each of these periods will provide a 

different amount of flow based on the local populace’s routine.  

There are a variety of studies that attempt to integrate stochastic approaches to overcome 

the major flaws of conventional methods that lack statistical significance of flow rate, RDII, and 

I/I reduction measurements (De Bénédittis and Bertrand-Krajewski 2005; Zhang 2005, 2007, 

2008; Karpf and Krebs 2011; Shelton et al. 2011; Staufer, Scheidegger, and Rieckermann 2012). 

They are briefly discussed below: 

De Bénédittis and Bertrand-Krajewski (2005) compared fourteen methods of infiltration 

measurement at two study sites in Lyon, France: (i) the first study was at the Yzeron catchment 

as a temporary monitoring station set up for the sake of a diagnostic; (ii) whereas the study at the 

Ecully catchment used the permanent monitoring station at that location. Due to the setup and 
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calibration errors, temporary monitoring stations are not as reliable due to insignificant use to 

conclude that the device is accurately recording consistent data. On the other hand, permanent 

stations are usually properly equipped to estimate the uncertainty in the wastewater discharge 

rates and have a long enough record to show any discrepancies in the measurements (De 

Bénédittis and Bertrand-Krajewski 2005). 

De Bénédittis and Bertrand-Krajewski (2005, 2) described the various data and 

calculation techniques used in order to predict theoretic strict wastewater flows as:  

“(i) a mean daily strict wastewater flow based on the annual drinking water consumption 

on the studied catchment, (ii) the number of inhabitants on the studied catchment and 

references values of sewage discharge per capita, (iii) the number of inhabitants on the 

studied catchment or wastewater flow measurements in low water period for the 

estimation of a residual night flow and (iv) the continuous or daily measurements of 

pollutants concentration (COD, BOD, ammonia, etc.) at the outlet of the studied 

catchment and reference values of pollutant discharges per capita.”  

The introduction of flow data and a better understanding of chemical and biological 

attributes of wastewater have led to more sophisticated methods of monitoring I/I. For example 

dynamic pollutographs and stable environmental isotopes (Karpf and Krebs 2011; Staufer, 

Scheidegger, and Rieckermann 2012). The examination of multiple isotopes at specific 

controlled locations to measure the amount of I/I being induced in certain areas (Houhou et al. 

2010) and biological sewage markers (Shelton et al. 2011; Staufer, Scheidegger, and 

Rieckermann 2012) provide an innovative method for measuring I/I.  
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Ultraviolet (UV) sensors are placed on pontoons or within bypass flumes and allow 

spectrometer sensors to measure various aspects of the water quality, ranging from ‘ultra-pure 

waters’ to ‘highly concentrated wastewaters’ by assessing chemical oxygen demand, total 

suspended solids, and nitrate levels in the flow (Gruber et al. 2005; Shelton et al. 2011). 

Chemical and biological analyses of wastewater dilution is a more cost effective method and can 

be automated to assess an entire system with ease compared to direct flow measurements 

(Shelton et al. 2011). Markers used for analyses of I/I by Shelton et. al. (2011, p.8684) included, 

“fecal bacteria such as Escherichia coli and enterococci, caffeine, total nitrogen, and total 

suspended solids (TSS).” Shelton et. al. (2011) found that concentrations of total nitrogen (TN) 

were the most optimal indicators due to their outstanding stability throughout the day; caffeine 

and TSS concentrations provided practical patterns, but were still secondary to TN when it came 

to regularity. In conclusion it was found that the biological markers are a lot less stable than the 

physiochemical markers due to larger fluctuations in the concentrations over time (Shelton et al. 

2011).  

Drawbacks 

I/I is fundamentally difficult to accurately estimate due to the vast amount of variability 

found across an entire region, and even at the same location. This occurs from inaccurate and 

incomplete data for rainfall and runoff, as well as climatic influences such as groundwater tables 

height, which all contribute to the increased discharge of foul sewage (Zhang 2005; Staufer, 

Scheidegger, and Rieckermann 2012). 

Three major shortcomings that make current I/I assessment unreliable include the 

stability of the reference base, variation in the precipitation events duration, and limitation of the 

data processing capabilities (Zhang 2005). More specifically when referring to reference base 
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stability, Zhang (2005) is referring to the typical comparison of average dry weather flow rates to 

precipitation event baseline and max flows. Wastewater flow rates can drastically fluctuate from 

day to day (De Bénédittis and Bertrand-Krajewski 2005) or even a weekday compared to a 

weekend day (Zhang 2005; Shelton et al. 2011); these fluctuations are strongly governed by the 

daily routines of residents in each sewershed. Therefore a single days values are not significant 

enough to provide a compelling conclusion; in order to attain optimal estimations conclusions 

should be based on several successive dry weather days (De Bénédittis and Bertrand-Krajewski 

2005).  

The I/I ratio previously discussed have been used to estimate various rain events with a 

large range of flows based on the duration and intensity of each event which inevitably creates an 

impractical comparison of the data leaving no real stochastic structure (Zhang 2005, 2007). 

Lastly, as mentioned before the limitations of the devices used are not able to accurately detect 

flow rates once discharge velocity reaches the photometric device’s detection limits; as a result 

the data produces, “missing values, measurement errors, serial correlation, and 

heteroscedasticity,” according to Zhang (2005), but if the flow data is properly modeled these 

complications can be overcome as discussed in detail by Zhang (2005, 2007, 2008). 

According to Staufer, Scheidegger, and Rieckermann (2012), a lot of money is spent 

rehabilitating sewer systems, but very little effort goes in to the assessment of how effective the 

projects are at reducing I/I. This is important since most engineers generally use fairly ad-hoc 

comparisons of average I/I before and after the completion of their rehabilitation projects, but 

this quantitative assessment can lead to an inaccurate portrayal of I/I reduction by not having an 

equal amount of measured events before and after (Zhang 2005; Staufer, Scheidegger, and 

Rieckermann 2012).  



20 

 

Most traditional methods do not take into consideration the margin of error that comes 

from underlying assumptions and general principles used for monitoring I/I (De Bénédittis and 

Bertrand-Krajewski 2005). Proper understanding of uncertainty is a vital practice that needs to be 

implemented when dealing with expensive sewer rehabilitation projects. According to Zhang 

(2005), engineers tend to throw percentages in their reports after rehabilitation projects are 

complete, but they forget to include a margin of error that is inherently found in any 

measurements. Without this proper use of statistics, a high percentage decrease in I/I therefore 

has no statistical validity to the estimates provided.  

For example, in Muetzenich, Germany, the city attempted to reduce I/I by sealing air 

holes on manhole covers, disconnecting surface drainage pipes that were directly connected to 

the sewers, constructed hillside drainage, roadside ditches which in turn redirected rainfall runoff 

on roads into drainage ditches (Staufer, Scheidegger, and Rieckermann 2012). From Staufer et. 

al.’s (2012) regression analysis these methods did not make a statistically significant impact on 

the reduction of I/I. However, the efforts to mitigate GWI were been found to be “successful” 

with a reduction of groundwater infiltration by 23.9% , but the reduction of I/I from precipitation 

was found to not be statistically significant even though estimates of 35.7% decrease in flow 

after the projects were complete (Staufer, Scheidegger, and Rieckermann 2012). By 

understanding the statistical significance of the rehabilitation efforts they put in place, managers 

can potentially improve the methods used to reduce otherwise inefficient measures. 

 I/I into combined and sanitary sewers is a phenomenon that occurs all throughout the 

world. It can be detrimental to municipalities’ infrastructure, the surrounding environment and 

the economic status of wastewater organizations and the communities they serve. Inherently 

populations have developed methods to mitigate this problem, but in order to repair defects in the 
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sewer system they first need to locate these areas vulnerable to I/I. Traditionally this was 

completed through labor intensive, time consuming, and expensive means (Lee 2005; Roper and 

Blanco 2016), but with the advancement of technology they have produced more efficient 

methods of monitoring I/I. With the introduction of flow rate data and even the use of 

biological/chemical markers, they have greatly improved rehabilitation efforts, but it has been 

revealed that inadequate understanding of statistical validity can lead to unreliable results. In 

order to improve rehabilitation efforts, analyses of I/I must be properly modeled or else the level 

of uncertainty will leave the output statistically irrelevant and therefore misleading to the actual 

effectiveness of I/I reduction.  

Overall trends are following a pattern of assessing I/I through the use of flow rates and 

other data, but none of the previously discussed methods utilize a geospatial approach to assess 

I/I issues in a particular location.  

It is clear that understanding wastewater infrastructure vulnerability is becoming an 

increasingly pressing issue in many cities and the methods applied vary a great deal.  Many 

methods remain costly, time intensive and/or inefficient in appropriately assessing spatial zones 

of vulnerability within a wastewater treatment network. The first step in addressing the I/I issues 

in any municipality is locating the piping that has the highest I/I risk and treating those first. But, 

this is a significant hurdle when there are hundreds of miles of piping to be considered. It can 

take years to visually inspect an entire system using the normal methods outlined earlier. In this 

work an new method is proposed focusing on geospatial and geostatistical analysis by utilizing 

ArcGIS and kriging methodologies to assess vulnerability within a wastewater treatment 

network. 
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Geospatial Approach 

The Concept of Interpolation 

Real world problems often span large areas of interest at varying scales. It often is not 

possible to identify variations in different phenomenon across a large study area within the finite 

time and resource limitations of a particular study (Knotters, Brus, and Oude Voshaar 1995; 

Einax and Soldt 1999; Bao et al. 2014; Omuto and Vargas 2014; Kang, Jin, and Li 2015). 

Sometimes it is necessary to estimate unknown values of phenomenon that vary across broad 

spatial extents. In order to analyze these variables across these large study reaches, it is possible 

to take a limited number of sample points and create a continuous surface by interpolating the 

values in between them (Figure 4). Through the use of sample points in an area of interest, you 

can statistically interpolate the values at locations not measured throughout the landscape. This is 

a valuable resource in predicting locations of interest with greater accuracy than ever before 

(Oliver and Webster 1990; Johnston et al. 2001; Milillo and Gardella 2008; Hengl 2009; Meng, 

Liu, and Borders 2013; Curtarelli et al. 2015).  We can interpolate data across space through the 

use of various spatial analysis methods that have become available through the use of 

Geographic Information Systems (GIS). This is an exceptionally useful tool for a variety of 

fields and originally was used to predict the locations of ore for mining purposes (Einax and 

Soldt 1999).   
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Figure 4. This is a simplified version of the interpolation process. Each point is given a weight, 

which is the number next to each black dot. The hollow dot is the unknown location that is 

determined based off the known values surrounding it. Overall, the black point with a 6 will have 

the greatest influence on that unknown points value, but in geostatistical methods like kriging, 

they would use cross validation to measure the accuracy of the model. This would be completed 

by taking awawy the 6 and attempting to estimate the value at that known location until it is as 

close as possible without distorting the entire model (Hengl, Heuvelink, and Rossiter 2007). 

Interpolation Methods 

There are two types of interpolation methods: deterministic and stochastic 

(geostatistical). They both take scattered point data or aerial imagery and use them to create a 

continuous surface that fills in values for the all unknown locations through mathematical means. 

Deterministic methods mathematically compute values across a continuous surface. Stochastic 

methods take into consideration both statistical and mathematical functions in order to 

interpolate a surface with values for unknown locations and then compute a margin of error that 

is generated from the smoothing process (Johnston et al. 2001). The most commonly used 

deterministic product is an elevation surface created from a variety of sample points that have z 

values, also known as a digital elevation model (DEM) (Johnston et al. 2001). These 

interpolation methods are based around the fundamental principle of Geography that describes 
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variables that are closer together tend to be more alike than variables that are farther apart 

(Tobler 1970; Johnston et al. 2001; Hengl 2009).  

When using deterministic methods, a continuous surface is created by mathematically 

calculating the weight of predicted points based on their distance from measured points. In 

theory, the closer the sample points are to one another the higher the accuracy of the predicted 

values (Johnston et al. 2001). Even with sample points neatly clustered together, there can still be 

a margin of error when it comes to calculating the unknown values because phenomena in the 

real world can be random. So geostatistical methods are available in an attempt to counteract this 

problem with the lowest residual error possible (Johnston et al. 2001). They are able to estimate 

the statistical relationship between measured points, referred to as spatial autocorrelation, as well 

as the mathematical functions of a typical deterministic method in order to produce a measure of 

uncertainty (Mitas and Mitasova 1999; Johnston et al. 2001).  

Geostatistical Workflow and Kriging 

The most commonly used geostatistical interpolation method in GIS is kriging, a process 

that uses random functions to assume that the surface or values created follow a pattern of spatial 

covariance. Random variables that vary in the same direction produce a positive correlation 

between two random values, or they may follow opposite directions which will produce a 

negative correlation between sample points (Mitas and Mitasova 1999). The overall process 

behind kriging was derived from the Regionalized Variable theory which takes into 

consideration stochastic variables such as trends, correlated variations, and uncorrelated 

variations (Oliver and Webster 1990). Two major tasks make up the kriging process: First 

analyzing and determining spatial patterns of the data and second inputting those to create a 

prediction product. 
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The first aspect of the statistical analysis is to explore the spatial data to see if there are 

any noticeable patterns, such as spatial variability, global trends, or how dependent each sample 

point is on one another after acquiring measured sample points (Johnston et al. 2001). Once the 

sample data has been analyzed for statistical patterns through the use of various spatial data 

exploration tools and statistical programs geostatistical analysis can be conducted (Hengl, 

Heuvelink, and Rossiter 2007). This consists of modeling the semivariogram or covariance to 

measure the surface qualities and begin the kriging process.  

A semivariogram is a visual representation of the relationship between the various input 

attributes to determine spatial correlation (Einax and Soldt 1999). They should follow a generally 

normal distribution as seen in Einax and Soldt’s (1999) semivariogram (Figure 5). As the line 

moves toward the upper right corner of the graph, the distance and the difference in values 

should become greater compared to the lower left corner where the values should be clustered 

and have similar values. 

 
Figure 5. Semivariograms are used to determine a datasets trend so the geostatistical processes 

can more accurately predict unknown values during interpolation. It is optimal for the curve to 

follow the trend of the sample points. (Einax and Soldt 1999) 
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A strong modelling of the spatial covariance through the use of semivariogram models 

can either make or break the validity of the output prediction (Oliver and Webster 2014). The 

semivariogram is a vital part to set up the rest of the geostatistical process and accurately model 

the dataset. This is a recurring topic discussed in a variety of studies on how important it is to 

properly model the semivariogram to match the trends of the sample region (Clark 1977; White 

and Ayyub 1990; Zimmerman and Zimmerman 1991; Yamamoto 2005; Zhang and Zimmerman 

2007; Goovaerts 2008; Chiles and Delfiner 2009; Pardo-Igúzquiza et al. 2009; Sakata, Ashida, 

and Tanaka 2010). This can be the difference between accurate and reliable output prediction 

maps versus products that produce large margins of error. It is important to understand the 

similarities and differences among several semivariogram estimators since they determine the 

accuracy of the output prediction map (Zimmerman and Zimmerman 1991). Next, users must 

understand the different types of methods so that they can pick the appropriate method for their 

analysis.  

Various methods of Kriging 

The kriging process itself has a variety of different methods including Ordinary Kriging 

(OK), Simple Kriging (SK), Universal Kriging (UK), Co-Kriging (CK), Probability Kriging 

(PK), Indicator Kriging (IK) and Disjunctive Kriging (DK). These are a few of the mainstream 

methods mentioned by Johnston et al. (2001), but more studies have brought to light a variety of 

more specialized methods used to solve specific problems. 

All of the geostatistical methods previously mentioned are able to provide a measurement 

of error through the use of cross-validation (Johnston et al. 2001; Lado, Hengl, and Reuter 2008; 

Hengl 2009). The cross-validation process assesses the accuracy of the created continuous 

surface by temporarily removing one measured sample point at a time and uses the remaining 
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sample points within the specified proximity area to the predict the value at the removed sample 

points location. Depending on the accuracy of the predicted value to the actual measurement, it 

can statistically calculate the amount of error found in that location and adjust the interpolated 

surface accordingly and it continues this process for every point throughout the map to assess the 

level of uncertainty (Mitas and Mitasova 1999; Johnston et al. 2001). Upon completion it 

provides the user with a root mean square (RMS) of error. By assessing the error provided with 

the end product, analysts can better adjust and validate their results to create highly accurate 

prediction products.  

One of the simplest forms of kriging is “OK”, which uses an unknown constant mean as 

the deterministic trend for the prediction process. This is a flexible process to use when there are 

no scientific reasons to reject a constant mean as a possibility (Johnston et al. 2001). It is 

strongly recommended that the sample points follow a strong autocorrelated pattern continuous 

throughout space. Simple Kriging uses a known constant mean, which is generally unrealistic in 

most cases, but in a scenario where the estimated error of the sample points is known it is 

possible to predict the constant mean trend (Johnston et al. 2001; Hengl 2009).  

Universal Kriging follows a more deterministic trend that attempts to determine error 

based on a polynomial regression instead of the constant mean used in OK and SK (Johnston et 

al. 2001). In terms of the semivariogram, UK curves the mean to the trend instead of taking the 

average as the base line across the graph. Ordinary Kriging interpolates based off of the mean 

value, while universal kriging is adjustable to fit varying spatial trends (Wang and Zhu 2015). 

One drawback to the complexity of this process is the need for a highly adequate understanding 

of the data provided. This is necessary for proper adjustment of the semivariogram model to fit 

the trends of the sample data.  
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Indicator Kriging uses an unknown constant and a binary variable to separate points into 

two groups (Johnston et al. 2001). Values that fall above the threshold are marked as 1 and those 

that fall below are marked as 0. This method is more often used in determining probability of a 

value falling into the group classifications (Johnston et al. 2001). Probability Kriging attempts to 

do the same thing as indicator kriging, but by using two error values it can do a better job 

through autocorrelation and cross validation of those two error values. Disjunctive Kriging can 

be used to predict the indicator or the value that will create the threshold between points 

(Johnston et al. 2001).  

Cokriging takes into consideration multiple variables to create a more accurate prediction 

model. The main variable is both autocorrelated and then cross-correlated with the other 

variables to potentially provide better predictions (Johnston et al. 2001). On the other hand, more 

variables can lead to greater variability and not necessarily better results. According to Meng, 

Liu, and Border (2013), CK depends on how well the variables correlate, which can vary case by 

case on whether it is significantly effective or not compared to the other stochastic and even 

deterministic methods. It was also discussed that cokriging has an inherent risk of outliers 

depending on the weights of the auxiliary variables which most of the time are small enough to 

where the variables do not impact the interpolation process very much (Meng, Liu, and Borders 

2013). 

Lastly, one method that is not as commonly mentioned in tutorial guides is Regression 

Kriging (RK) which combines multivariate regression and kriging in order to produce a more 

accurate prediction model. Similar to cokriging in its ability to apply multiple variables to the 

variable of interest, but different due to the strong correlation between an auxiliary variable and 

the variable of interest, and the unbiased spatial estimation with minimized variance (Meng, Liu, 
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and Borders 2013). Unlike CK, regression kriging needs a sound correlation between the main 

variable and the auxiliary variable prior to interpolation.  

Focus 

In general, geostatistics is described by Johnston et al. (2001) as producing maps with 

kriging predicted values, standard error of those predicted values, probability (whether or not 

critical thresholds were exceeded), and quantiles for a predetermined level of probability. 

Kriging has a vast amount of applications, but how well does it equate to other methods when it 

comes to solving problems and analyzing phenomena? Does it have a specific specialty? Could it 

produce results for a wide variety of dilemmas? Does it have any flaws or limitations that need to 

be considered? These are all questions that need to be answered. 

For a more in depth understanding of the behind the scenes processes of each 

methodology refer to these sources (Burrough 2001; Johnston et al. 2001; Esri 2006; Hengl 

2009; Morari, Castrignanò, and Pagliarin 2009; Oliver and Webster 2014; Environmental 

Systems Research Institute 2016). Instead the focus will be on the different types of interpolation 

methods utilized, any limitations the geostatistical processes pose, and a summary of case studies 

pertinent to constructing a holistic picture of the optimal kriging strategy. 

Geostatistical Applicability 

When spatially interpolating scattered sample point data it can be hard to find a process 

that is absolutely sound. Careful consideration of the various kriging types need to be speculated 

before completing the process or else it could lead to false representation of the data. Kriging’s 

strengths lie in the fact that it leads to statistically unbiased prediction and is capable of 

predicting the level of error and uncertainty found throughout the sample region. Kriging is often 
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used in the mining and petroleum industries, geochemistry, geology, soil science and ecology, 

where its statistical properties are of great value (Mitas and Mitasova 1999).  In other situations 

it is not as capable of working out local geometric variations across the surface on a localized 

scale and is not the most competent methodology out there for maximizing smoothness of the 

surface (Mitas and Mitasova 1999) which is referring to the generalization of unknown point 

values based off of measured sample points.  

Hengl (2009) described the results of his research which showed the top ten fields that 

use geostatistical methods as geosciences, water resources, environmental sciences, agriculture 

and soil sciences, mathematics and statistics, ecology, civil engineering, petroleum engineering, 

and limnology. These results will obviously vary location to location depending where you are in 

the world since different countries pursue different interests based on their needs. Table 5 depicts 

some common environmental variables that are analyzed using Geostatistics and provides the 

reader with a great idea of how they are analyzed. The table displays how the various aspects of 

interest are analyzed, whether they focus on variability vertically, temporally, locally, density 

among the sample sites, or how detectable variations are with remote sensing imagery. Most of 

the variables reviewed in other articles tend to fit into one of the categories found in Table 5 

(Hengl 2009).  
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Table 5. Some common environmental variables of interest to decision making and their properties: SRV 
– short-range variability; TV – temporal variability; VV – vertical variability; SSD – standard 

sampling density; RSD – remote-sensing detectability;  - high,  - medium, - - low or non-

existent. Approximated by Hengl (2009). 
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Trends 

So far kriging has been used for a variety of scenarios and disciplines, but in many 

different ways, depending on the questions trying to be answered and the variables being 

analyzed. A consistent trend is that most applications of geostatistics apply multiple interpolation 

methods, both deterministic and stochastic, to each case study to compare their strengths and 

limitations (Table 6) (Lam 1983; Zimmerman and Zimmerman 1991; Hengl, Heuvelink, and 

Stein 2003).  
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Table 6. Based off Hengl (2009) environmental features and topics table. The various ways 

geostatistical methods are used for a wide variety of topics and interests. Along with supporting 

case studies for each type. 

Study Focus/Topic Methods Used Reference 
Freshwater resources and water 

quality 

Ordinary Kriging, Universal 

Kriging, Indicator Kriging, 
Factorial Kriging 

(Gundogdu and Guney 2007; 

Adhikary et al. 2011; Hassan and 
Atkins 2011; Arslan 2012; 
Blanco et al. 2013; Narany et al. 
2013; Machiwal and Jha 2015)  

Soil fertility, productivity, and 
management 

Regression Kriging, Ordinary 
Kriging, Indicator Kriging, 
Disjunctive Kriging, Block 
Kriging, Ordinary Kriging 
integrated with land-use type 
(OK_LU or CoKriging), soil land 
inference model (SoLIM) 

(Knotters, Brus, and Oude 
Voshaar 1995; Zhang and 
McGrath 2004; Hengl 2006; 
Morari, Castrignanò, and 
Pagliarin 2009; Dafonte et al. 
2010; Bao et al. 2014; Wen et al. 
2014; Chen et al. 2015) 

Soil Pollution (e.g. heavy metals, 
magnetic susceptibility, acid 
mine drainage) 
 

 

Regression Kriging, Factorial 
Kriging, Indicator Kriging, 
CoKriging, Universal Kriging, 
External Drift Kriging, 
Lognormal Kriging, Directional 

Variogram, Penalized Regression 
Splines and Tensor Product 
Smooths 

(Einax and Soldt 1999; Oldak, 
Jackson, and Pachepsky 2002; 
Lin et al. 2002; Mueller et al. 
2004; Zhang and McGrath 2004; 
Diodato and Ceccarelli 2004; 

Hengl, Heuvelink, and Stein 
2004; Liu, Wu, and Xu 2006; 
Pebesma 2006; Minasny and 
McBratney 2007; Tavares, 
Sousa, and Abreu 2008; Lado, 
Hengl, and Reuter 2008; Dafonte 
et al. 2010; Amirinejad et al. 

2011; Sun et al. 2013; Zhang et 
al. 2013; Dindaroğlu 2014; 
Zawadzki et al. 2015; Ihl et al. 
2015; Lee and Toscas 2015) 

Climatic conditions and changes  (Ahrens 2005; Ashiq et al. 2010; 

Chen et al. 2010; Chappell et al. 
2013; Sajid, Rudra, and 
Systematic 2013; Ahmed, 
Shahid, and Harun 2014; Pereira, 
Oliva, and Misiune 2015; Seo, 
Kim, and Singh 2015) 

Air quality in urban areas Ordinary Kriging, Inverse 
Distance Weighted, Lidar, 

(Matějíček, Engst, and Jaňour 
2006; Wang, Li, and Christakos 
2009; Shiode and Shiode 2011) 
(Liao et al. 2006; Matějíček, 
Engst, and Jaňour 2006; Guo, 
Guo, and Thiart 2007; Pearce et 

al. 2009; Shad et al. 2009; 
Mercer et al. 2011; Shiode and 
Shiode 2011; Liu et al. 2014) 

Health and Disease Mapping Ordinary Kriging, Universal 

Kriging 

(Berke 2004) 
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Case Studies 

A comparison of kriging methods for spatial estimation and spatial regression revealed 

kriging was superior to traditional methods when it comes to modeling spatial data (Calderón 

2009). Fernández-Avilés Calderón (2009) focused on crime analysis of Columbus, Ohio as a 

subject to compare model-driven and data-driven spatial analysis approaches and concluded that 

spatial interpolation methods produced a smaller margin of error. 

As previously mentioned, many case studies use different interpolations not only to test 

strengths and flaws, but also to compare different methods as a way of examining which method 

is the best fit for their specific study. From the research of Meng, Liu, and Borders (2013), three 

case studies were used to test seven different interpolation methods. They discovered that little 

evidence supported the theory that OK, UK, and CK were any better at outputting predictions 

versus the simple deterministic methods. The only noticeable advantage to the geostatistical 

methods is that they took into consideration a standard deviation of error, but depending on the 

purpose of the analysis the deterministic interpolation methods are relatively easy to use and 

understand compared to the kriging methods. As previously discussed, cokriging can provide 

noticeable results depending on the scenario, which was the result of the third case study. 

Overall, the strongest evidence pointed to RK as a superior method to the other six interpolation 

processes.  

Regression kriging has been used to analyze a variety of other scenarios, but this one was 

a prime example of its advantages. Through the use of both quantitative and qualitative results, 

Meng, Liu, and Borders (2013) were able to produce strong evidence that RK is by far the most 

accurate interpolation method if used with an auxiliary variable that strongly correlates with the 

main variable of interest. Through proper analysis using three case studies, it was possible to 



35 

 

show that RK and UK are very different for more reasons than the amount of variables input into 

the process. Also it is strongly recommended that one use RK over CK if they wish to use 

multivariate interpolation methods. The three case studies showed a strong, medium, and weak 

correlation, respectively, between the variable of interest and the auxiliary variable. Strong 

correlation used 4 meter resolution Ikonos imagery and attempted to interpolate a continuous 

surface using band 2 and 3 image pixels and resulted in an almost identical accuracy with RK, 

whereas as the other six interpolation methods were distorted. The second case study compared 

temperatures with elevation data as the auxiliary variable to provide an example of a medium 

correlation. In this scenario, RK provided the prediction model with the lowest standard 

deviation of error. Lastly, they created an example of a weak correlation by using Landsat TM 

band 1 and 6 with band 6 being the main variable of interest. Once again RK produced the least 

amount of error, but this time CK was more accurate according to the Bayes Factor. In support of 

these results, Hengl (2009) has come to the same conclusion about RK: It is by far the Best 

Linear Unbiased Predictor (BLUP) of spatial data.  

Both the strengths and limitations of regression kriging are discussed by Hengl, 

Heuvelink, and Rossiter (2007). Three case studies are used to illustrate these aspects of RK and 

included the mapping of soil organic matter, the presence and absence of yew, and land surface 

temperatures. RK’s strength lies in the fact that it allows for a broader spectrum of regression 

techniques to be used with the method and also allows the separation of two interpolated 

components for better interpolation. A limitation found with RK is that the analyst must 

construct the prediction map through the use of a variety of different software environments, GIS 

and stochastic (Hengl, Heuvelink, and Rossiter 2007).  
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Goovaerts (1999) used multiple kriging methods to map soil’s erosive values based on 

monthly and annual rainfall data with three kriging methods: “simple kriging with varying local 

means (SKlm), kriging with an external drift (KED), and collocated cokriging (CK)” (Goovaerts 

1999, 227). All of the different geostatistical algorithms used in this study had their pros and 

cons, but with the introduction of elevation data into the interpolation process the cokriging 

method was found to provide the best results. Through the proper use of the semivariogram 

model within CK, the elevation data can be directly integrated into the continuous surface 

instead of computing them separately (Goovaerts 1999). 

In order to account for the limitations brought up by previously discussed journals, Wang 

and Zhu (2015) used various kriging methods and a multi-fractal analysis to compensate for 

kriging’s inability to analyze local trend variations due to average smoothing effects. So with the 

use of spatial autocorrelation, cross-validation, and multi-fractal analysis they were able to depict 

local anomalies with greater accuracy (Wang and Zhu 2015). For the sake of this experiment, 

boreholes of soil were used as the sample sites for the analysis. A variety of kriging methods 

were used, but the multi-fractal kriging had an advantage at more accurately evaluating the local 

abnormalities. Among the traditional methods of kriging, cokriging was found to produce greater 

results due to the high-inter-correlation.  

Another adapted kriging method is presented by Skøien, Merz, and Blöschl (2005) as a 

method that can be used to interpolate streamflow-related variables called Top-kriging, also 

known as topological kriging. This method is tested on the 100-year flood scenario for two 

Austrian regions and allows them to conclude the practicality of this method on stream-flow 

related variables such as flow temperature, mean annual discharge, flood characteristics, low 

flow characteristics, concentrations, and turbidity. 
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From the various case studies discussed it is apparent that alone, kriging has limitations 

such as smoothing, which leads to local variation discrepancies. However, studies have revealed 

possible ways of compensating for limitations by combining GIS methods with traditional 

statistical models and external programs, such as SPSS and R (Knotters, Brus, and Oude Voshaar 

1995; Goovaerts 1999; Hengl, Heuvelink, and Stein 2003, 2004; Skøien, Merz, and Blöschl 

2005; Hengl, Heuvelink, and Rossiter 2007; Liu, Kyriakidis, and Goodchild 2008; Calderón 

2009; Wang, Li, and Christakos 2009; Hengl et al. 2009; Zhang et al. 2013; Meng, Liu, and 

Borders 2013; Seo, Kim, and Singh 2015).  

One particular form of this combined endeavor is known as regression kriging and has 

been used throughout a variety of case studies and articles to more accurately produce 

interpolated surfaces (Knotters, Brus, and Oude Voshaar 1995; Hengl, Heuvelink, and Stein 

2003, 2004; Hengl, Heuvelink, and Rossiter 2007; Liu, Kyriakidis, and Goodchild 2008; 

Calderón 2009; Hengl et al. 2009; Meng, Liu, and Borders 2013; Zhang et al. 2013; Seo, Kim, 

and Singh 2015). Without the multivariate regression applied to the kriging process it was 

assessed that deterministic interpolation methods provide a much easier to use and interpret 

output compared to the more complex stochastic interpolation methods such as OK, UK, and CK 

(Meng, Liu, and Borders 2013).  

Testing a New Geospatial Kriging Methodology to Detect I/I  

This thesis proposes a new method utilizing geospatial and geostatistical analysis through 

kriging to identify potential locations of vulnerability within a wastewater treatment 

network/collection system. This study will focus on the Minneapolis-St. Paul metropolitan area 

in Minnesota to test the proposed method (Figure 6). For 75 years the Metropolitan Council 
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Environmental Services (MCES) has been treating wastewater in Minneapolis and St. Paul. The 

MCES consists of seven Wastewater Treatment Facilities (WWTF) and over 600 miles of sewer 

pipes, they referred to as interceptors, that intersect 107 communities sewer networks around the 

metro area. These plants and sewer systems transport 251 million gallons of wastewater per day 

and treat approximately 75% of the metro areas wastewater (Metropolitan Council of the Twin 

Cities 2011). The vast area and age of the sewers has often led to problematic issues related to 

I/I, which are now in need of a more effective way to focus rehabilitation efforts of the sanitary 

sewers.  Over the course of the next 20 years, wastewater infrastructure repair could cost 

upwards of 4.1 billion dollars in Minneapolis-St.Paul Metropolitan area (Metropolitan Council of 

the Twin Cities 2011). 

On a positive note, infiltration and inflow derived from precipitation can be an indicator 

of sewer deterioration or can provide insight into the severity of sewer system defects (Zhang 

2007, 2008; Shelton et al. 2011). By properly understanding and utilizing RDII, it is possible to 

be proactive with rehabilitation efforts to increase sewer system functionality, prevent sanitary 

sewer overflows (SSO), and reduce substantial expenditures (Zhang 2005, 2007, 2008; Karpf 

and Krebs 2011; Shelton et al. 2011). 
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Figure 6. The Metropolitan Council Environmental Service is accountable for the seven county 
metro area of the Twin Cities, MN (Metropolitan Council of the Twin Cities 2011). 

The MCES has used CCTV for most of their interceptor system and has done inch-by-

inch inspection for I/I. In addition, engineers assess and score every section of pipe by 

conducting dye and smoke testing, as well as monitoring flow conditions by comparing rainfall 

data versus average and max discharge measurements. However, MCES does not have detailed 

information on the cities collection systems that connect to their interceptors and this can be a 

major contributor to I/I. The use of ArcGIS and geostatistics can potentially assist in identifying 

areas of high I/I risk, as there is a need to prioritize high-risk areas before they become extremely 

damaging and the price of repair increases (Shelton et. al., 2011). If successful, the method tested 

in this thesis provides a geospatial/geostatistical means for identifying I/I prone areas of the 



40 

 

collection systems that are not monitored, determining where I/I is occurring, and determining 

the magnitude of I/I is in those areas.  

A variety of interpolation methods can be used to create these continuous surfaces and 

one in particular, kriging, stands out among the rest (Johnston et al. 2001; Hengl 2009; Oliver 

and Webster 2014). Kriging is not like most interpolation methods as it produces a surface based 

off of mathematical and stochastic functions that deterministic methods overlook (Johnston et al. 

2001; Hengl, Heuvelink, and Rossiter 2007; Hengl 2009). From this stochastic approach, kriging 

is able to assess uncertainty in the values produced from the analytical process (Mitas and 

Mitasova 1999; Johnston et al. 2001; Hengl 2009; Oliver and Webster 2014). Kriging provides a 

large potential for analysis and has a wide array of applications, but the true limitations of its 

capabilities are still up for debate. We seek to assess the potential of this method by researching 

and answering these questions: 

1) Is it practical, efficient, and effective to assess spatial patterns of infiltration and 

inflow of rain water by creating a continuous surface to analyze a network of 

subterranean linear features?  

2) Can kriging be modelled to accurately assess small changes in variation across the 

landscape or does the interpolation mask small variability?  

3) Does Kriging provide accurate insight into the I/I problem as a whole or what aspect 

of I/I is being displayed in the Twin Cities Metro area case study?  

These questions will allow me to evaluate whether or not kriging and geospatial analysis can 

more efficiently identify spatial variability of I/I problems in wastewater infrastructure. 

It is also necessary for a defined interval between rainfall events to accurately 

differentiate the various components of I/I as completed by Staufer, Scheidegger, and 
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Rieckermann (2012). In their case study they separated rainfall events based on the length of the 

dry periods, and the minimum duration necessary to be classified as a dry period was four hours.  

Overall various stochastic methods, including linear regression (Zhang 2005; Staufer, 

Scheidegger, and Rieckermann 2012), least squares (Karpf and Krebs 2011), and other equations 

(De Bénédittis and Bertrand-Krajewski 2005; Zhang 2007, 2008) have been used to identify I/I 

and estimate its quantity. Zhang (2005) mentions that for an optimal analysis of I/I one must 

consider the data size being used, the time/season in which the data was collected, wetness index 

of the soil, groundwater level, and a few other stochastic variables that can all greatly alter the 

results of how much I/I enters the system. In order to further develop improved monitoring 

methods for locating areas of I/I susceptibility, proper use of these variables and innovative ways 

to implement them into various other disciplines is the next step. This is a never ending problem 

with the inevitable deterioration of wastewater water treatment infrastructure, but these methods 

help to locate and reduce to the negative effects I/I can have on the surrounding infrastructure, 

environment, and economies. 

Methods 

To begin the analysis the Meter shapefile and the July 13, 2013 I/I Flow Exception 

Report were acquired from the Metropolitan Council Environmental Services (MCES). Included 

in these datasets were readings from every flow meter in the seven county metropolitan areas. 

The data included Community Name, Average Flow, Max Flow Time, Max Flow (MGD: million 

gallons per day), Allowable Peak, Pct (Percent) Cap Used, and Rainfall. MCES changed max 

flow (MGD) to max flow (GPM: gallons per minute) in the 2016 I/I Flow Exception Reports. 

Each meter’s average annual flow is based off of ten year average flow rates and each meter 
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provides peak flows that occur at different times during the rainfall period. It is also important to 

note percent cap used is the percentage of each municipalities allotted “I/I goal” used, which is 

calculated using past flow data (10 year average), is adjusted for growth, and allows for standard 

peaking factor. The major precipitation event from July 11-13, 2013 was used to optimize the 

workflow and kriging process in ArcMap 10.3 to determine the ideal method properties, 

semivariogram modeling, searching neighborhood, and scale (Figure 7). 

 

Figure 7. The Geostatistical Analysis workflow for this case study. 

 

Preliminary Data Processing 

Max Flow (MGD) and Average Flow were the primary values used to calculate the 

effects of I/I using an Excel spreadsheet. There were originally 202 meters in the meter shapefile, 

but after joining with the flow data for each rainfall event in ArcMap that number decrease. Five 
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meters and three effluent meters were permanently excluded from the original sample because 

they were on small isolated Wastewater Treatment Facilities (WWTF) networks that are over 

eight miles from any other meter. These meters were removed to prevent the lack of data in these 

regions from skewing the surface result predictions. 

Flow data from a large precipitation event was recorded on July 11-13, 2013 and was 

utilized as a case study for this analysis. It must be noted that out of the 202 meters in the meter 

shapefile, only 136 meters were utilized when processing the July 13, 2013 I/I Flow Exception 

Report. This decrease resulted from meter discrepancies, performance meters not used in the I/I 

program, the occurrence of multiple meters at the same location, and manual adjustments made 

by the MCES’s Data Analyst. Flow data discrepancies include meter malfunctioning, overflow, 

or calibration issues.  

The MCES’s Data Analyst reviewed the I/I Flow Exception Report for discrepancies and 

created a table that was compatible with ArcGIS. A new “Meter” label field was added to the 

table document in order to join the table data to the Meter shapefile via the meter shapefile’s 

label field. Lastly, all of the I/I equations were processed in the table before joining the table and 

the Meter shapefile in ArcMap. Four new fields were created: Flow Increase, Percentage Flow 

Increase, RDII (Rain-Derived Infiltration and Inflow) Contribution, and RDII Severity.  

Flow increase was calculated by dividing the Max Flow (MGD) by the Average Flow. 

The output signified how much the flow surged during the rainfall event compared to the ten 

year average flow. If the results displayed anything greater than one, then there was an increase 

in flow from the average ten year flow. If the results were one or less, then it signified reduced 
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flow from the average flow. Percentage Flow Increase is the flow increase times 100 to produce 

the percentage of the flow increase. 

Shelton et al. (2011) compared dry day flows to wet day flows to determine the ratio, 

contribution, and severity of Rain-Derived Infiltration and Inflow (RDII). This equation was also 

utilized to determine if their flux stability equations would provide different geostatistical results. 

Using the data provided, it was possible to replicate their work using Max Flow (wet day flows) 

and the Average Flows (which consist of dry and wet days). RDII Contribution was derived from 

Max Flow (MGD) minus Average Flow. Then RDII Severity was derived from RDII 

Contribution divided by Average Flow. 

Finally, the Meter shapefile was joined to the I/I Flow Exception Report excel in ArcMap 

and “only keep matching records” was selected to remove the zero values on the kriging process. 

A new Meter shapefile was created from this to have a permanent shapefile with the flow data 

included. The western and metro WWTF networks were queried from the new Meter shapefile 

and exported so analysis could be done to determine local trends in those regions. There are three 

key steps to the geostatistical process: exploratory spatial data analysis, structural analysis, and 

surface prediction and assessment of results. 

Spatial Data Exploration 

Before using the Geostatistical Wizard, it is crucial to understand the dataset by using the 

exploratory spatial data analysis tools within the Geostatistical Analyst extension in ArcMap. 

Exploring the data allows the analyst to observe any errors in the sample dataset, global and local 

outliers, distribution of the points, identification of potential trends, and spatial autocorrelation. 
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The following attributes from the Meter shapefile were used in the exploratory tools: 

Flow_Increase, Percentage Flow Increase, and RDII_Severity. 

First, a histogram was created to determine whether the data was normally distributed or 

skewed. Important features on a histogram include the dissemination of the central values, 

spread, and symmetry. A bell curve (or close mean and median values) indicates the data is 

normally distributed and will provide the best results for most interpolation methods, especially 

for deterministic methods (Figure 8). However, if the data is skewed, a histogram can be used to 

test transformations to normalize the dataset. The three transformations found in geostatistics 

include Box-Cox, arcsine, and log transformations (Johnston et al. 2001). Most kriging methods 

can make accurate predictions using randomly distributed data due to the cross validation 

process. On the other hand, the dataset must be normally distributed for quantile and probability 

kriging. Another Meter shapefile was created for the interpolation process based on the removal 

of major outliers higher than the 4
th

 quantile in the histogram. This was used to reveal the 

influence of the 11 anomalies’ excessive values on the prediction surface.  



46 

 

 

Figure 8.  A histogram with normal distribution (or bell curve) (ArcGIS 10.3.1 Help). 

The second method involved a Normal QQPlot that is used to determine how close the 

distribution of the dataset is to the standard normal distribution (Johnston et al., 2001) Points 

clustering around the line in a QQPlot indicate the level of distribution. So the closer the points 

follow the average line the better the normal distribution and the further they curve away from 

the average line the more randomly distributed the dataset (Figure 9).  The histogram and 

QQPlot allow for easy identification of outliers in the dataset for further investigation. This can 

be accomplished by highlighting the outliers on the graphs and it will highlight them in ArcMap.   
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Figure 9.  A Normal QQPlot with standard normal distribution (ArcGIS 10.3.1 Help). 

Next, a Global Trend Analysis was performed to determine if the data follows a global 

(nonrandom) trend that could potentially influence the primary focus, such as the slope of a 

valley (Johnston et al., 2001). Removal of the global trend leaves only the residual trends to be 

modelled and reapplied after interpolation, further enhancing the interpolation process. This 

allowed for the analysis of short-range variations in the output surface without overall trend 

influence, which creates a more realistic prediction. The Global Trend Analysis, as seen in 

Figure 10, depicts a vertical stick at varying heights that are attuned to that data point’s value. 

Along the east-west and north-south planes, lines will project any trends found in the data. 

Rotation of the planes is also possible to better grasp directional influences of the data also 

known as anisotropy.  
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Figure 10. A Global Trend Analysis with a strong trend on both the north-south and east-west 

planes creating an inverted “U” shape (ArcGIS 10.3.1 Help). 

Lastly, it was necessary to understand the spatial autocorrelation between each sample 

point in the dataset, which was possible by observing the Semivariogram/Covariance Cloud. 

Spatial autocorrelation assumes that points closer to one another are more alike and as the 

distance between sample points increases so does the difference in their values (Johnston et al., 

2001). The semivariogram/covariance cloud depicts this trend by pairing every point in the 

analysis and measuring their distance from one another (x-axis) compared with their similarity in 

values (y-axis) (Figure 11). This is known as binning and depending on the lag size and number 

of lags it can affect the influence on each point on one another when modeling the data. The lag 

size has a significant impact on the semivariogram because it is the line that separates two 

locations. If it is too large then small autocorrelation may be overlooked; whereas if the lag size 

is too small then it will not correctly portray the averages of the bins. For an irregular or random 
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sampling scheme, the Average Nearest Neighbor tool can be used to determine a good lag size. 

Then the number of lags can be set to half the largest distance among all sample points. The 

semivariogram cloud should be clustered together towards the left side of the x-axis (the closest 

distance between points) and the bottom of the y-axis (greatest similarity between the points). 

Search direction can be selected to verify directional influences found in the Global Trend 

Analysis.  

 

Figure 11. A Semivariogram/Covariance Cloud with a strong spatial autocorrelation towards the 

left x-axis and bottom of the y-axis. Every point represents the relationship between two point 

distance (x-axis) from one another and difference in values (y-axis) (ArcGIS 10.3.1 Help). 

Geostatistical Wizard 

The first step after exploring the spatial data for influential factors like global trends and 

normal or random distribution was to complete a structural analysis. This part pertained to 

creating a model that would produce minimal residual error based on the assumptions we can 
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make about the data. The modeling was completed in ArcMap’s Geostatistical Wizard, which is 

a user friendly interface designed to help novice to advanced geostatistical users create accurate 

interpolated surfaces. By using sample points from a variety of locations in an area of interest, it 

is possible to examine the relationship between each point and create a continuous surface that 

accurately portrays real world aspects. However, unlike deterministic methods, the Geostatistical 

Wizard produces standard errors or uncertainty results for the interpolated surface, so it is 

possible to gauge the accuracy of the model. 

The creation of a continuous modeled surface using default settings within the 

Geostatistical Wizard is a straightforward process. Initially, default prediction surface maps of 

the July 13, 2013 precipitation event were created by running the Geostatistical Wizard through 

multiple iterations utilizing the meter shapefile as the “Source Dataset” along with Flow Increase 

as the “Data Field” (Figure 12). Ordinary Kriging and Universal Kriging were used to create the 

default prediction surfaces. No adjustments were made to the model so a comparison between 

the generic prediction surface and modelled prediction surface could be conducted.  
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Figure 12.  Step 1 of Geostatistical wizard involves selection of the interpolation method, the 

source dataset, and data field. 

Next, the interpolation process was modelled to take into consideration any trends or 

directional influences found in the phenomenon. This was based off the information derived 

from the previous spatial data exploration. The second step after selecting the source dataset and 

data field was to select the kriging type, output surface type, and select any transformations or 

order of trend removals necessary based on the data exploration (Figure 13). Universal kriging 

follows a more deterministic trend that attempts to determine error based on a polynomial 

regression; whereas ordinary kriging follows an unknown constant mean in the data (Johnston et 

al., 2001). For this case study universal kriging and ordinary kriging were used in this study to 

compare which model would provide the best prediction.  
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Figure 13.  Step 2 of Geostatistical wizard involves the selection of the Kriging Type, Output 

Surface Type, and any transformations or trend removal.  

The following transformations and trends were used during the various iterations to 

produce the best results. Flow Increase was the only attribute transformed using a lognormal 

transformation due to the results of the exploratory analysis whereas RDII Severity was not able 

to be transformed. Ordinary kriging was processed using the second order polynomial trend 

removal compared to no trend removal. Universal kriging separately tested the application of 

first order and second order polynomial trend removals, while also transforming the data with a 

lognormal transformation.  

The next step in the kriging process was to adjust the Method Properties, which was only 

an option for universal kriging (Figure 14). This step was used as a way to preview the final 

output before completing the model. No adjustments were made during the first iteration, while 
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the second iteration took into account the cross validation statistics process. The optimize model 

tool for the method properties step determines the best Bandwidths, Spatial Condition Number, 

and Search Neighborhood based on cross validation statistics of the dataset.  

 

Figure 14.  Step 3 of Universal Kriging in the Geostatistical wizard: Method Properties. 

Provides a preview screen of the output prediction surface.  

Following the Method Properties step was the Semivariogram/Covariance Modeling step 

of the kriging process (Figure 15). This was crucial to determine the best fit of the model so that 

the line passes through a majority of the points in the semivariogram (Johnston et al., 2001). The 

Semivariogram/Covariance requires trial and error by adjusting key parameters in order to create 

the best model. This is necessary to accurately depict the autocorrelation of the datasets values 

versus the distance between them. Important parameters to understand for the semivariogram 

include anisotropy, range, sill, partial sill, nugget, and lag size (Johnston et al. 2001) (Figure 16 

displaying these key parameters).  
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Figure 15. Step 4 of Geostatistical Wizard: Semivariogram Modelling includes key parameters, 

like anisotropy, range, sill, partial sill, nugget, and lag size, can be adjusted to create an optimal 

Semivariogram model. 

 

Figure 16.  Key parameters of the semivariogram: anisotropy, range, sill, partial sill, nugget, and 

lag size. All these values directly affect the semivariogram and the output prediction surface 

(ArcGIS 10.3.1 Help). 
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Anisotropy is defined as spatial dependence (autocorrelation) of both distance and 

direction between locations found in data or spatial processes (Johnston et al. 2001). The range 

in a semivariogram/covariance model is a distance beyond which little to no autocorrelation 

exists between variables. Sill represents the value where the distance between points is too far 

apart for the model. Nugget represents details that are too fine to detect and may be smoothed out 

leading to independent error, measurement error, and/or microscale variations (Johnston et al. 

2001). Lastly, an optimal lag size is necessary to group pairs of locations so that the number of 

possible combinations is reduced. This is also referred to as binning and can greatly assist in 

revealing spatial correlations. The first iteration was left to the default parameters, while the 

second iterations utilized the optimize model tool again. However, for the 

semivariogram/covariance modeling it optimized the key parameters via cross validation to 

select the best range parameter for the model. Other attempts adjusted the anisotropy, lag size, 

and number of lag sizes to try and create a more accurate model based off of numbers tested in 

exploratory analysis of the semivariogram.  

The last adjustable step is the Searching Neighborhood step which allows the user to 

adjust the influential weight of each point on the surrounding points (Figure 17). The Cross 

Validation interface that follows the Searching Neighborhood step breaks down the prediction 

errors of the model for estimating unknown values (Figure 18). The term “prediction errors” 

refers to how well the model estimates omitted known values using the surrounding known 

values via interpolation. This cross validation process reveals how much error is found in the 

prediction. The Geostatistical Wizard allows for going back and forth between steps to reduce 

the error in the model. On the Cross Validation screen, optimal mean error should be near zero, 

root-mean-square (RMS) error and average standard error should be as small as possible relative 
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to other models, and root-mean-square standardized should be as close to one as possible. It is 

important to note that the negative values for mean error and various others are a script error that 

causes the sign to flip in the case of a loss function where low is good. 

 

Figure 17. Step 5 of Geostatistical wizard: Search Neighborhood. This step allows the user to 

adjust the influential radius of each point’s value on interpolation process. 
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Figure 18. Step 6 of Geostatistical Wizard: Cross Validation Prediction Error Report. This step 

calculates prediction error due to cross validation to determine the effectiveness of the output 

prediction surface.   

After the prediction error was deemed suitable to produce an accurate output the model 

was finished and then the final stage could begin: surface prediction and assessment of the 

results. It is possible to compare prediction errors between each prediction surface by right 

clicking on the kriging output you want to compare in the table of contents and selecting 

“Compare…”. This opens a new user interface that allows easy comparison of models one at a 

time, side by side (Figure 19). When comparing models, it is important to have the optimal 

prediction error values previously discussed, except when comparing models the smaller RMS 

and the average standard error that is closer to RMS error is the better model (Johnston et al. 

2001).  
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Figure 19. Cross Validation Comparison of two model’s prediction errors to determine which 

one has the best statistical results for the interpolation process. 

Alternate Analysis 

The previous workflow was employed for the Rainfall attribute to create continuous 

prediction surfaces for a visual correlation between Flow Increase prediction surfaces and the 

Rainfall prediction surfaces. The overall workflow was completed for 14 precipitation events 

that were tracked during 2016 rainfall. Flow Increase was the primary attribute of interpolation 

with Rainfall maps for reference. 

Cokriging and Probability (Threshold) Kriging were also considered as ways to better 

display the I/I dilemma. Cokriging utilized Flow Increase as the primary variable of interest and 

Rainfall as the secondary variable. The Probability Kriging utilized the Percent Cap Used 

attribute that MCES uses as a gauge based each municipality’s I/I goal.  
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 Cokriging follows the same procedure previously discussed via the Geostatistical wizard. 

The cokriging process is known to have more options for customization since it takes in to 

consideration multiple variables when modelling and creating a prediction surface. Optimal 

settings were selected for cokriging based on the previous exploratory analysis and universal 

kriging process. The first iteration utilized default setting and the second iteration consisted of 

trial and error to reduce prediction error.  

 Probability Kriging was considered since MCES already has a threshold (%) designated 

for each community. The meter shapefile for July 13, 2013 was selected as the input and the 

Percent Cap Used was selected for the Data Field. Step two consisted of selecting Universal as 

the Kriging Type, Output Surface Type was changed from Prediction to Probability, 

transformation type was set to a log transformation type to normalize the distribution, and the 

threshold value was set to indicate variables if they exceed 100% of their Percent Cap Used 

(Figure 20). Default settings were selected for the first iteration and the second iteration was 

optimized using the optimize model buttons for step three and four.  



60 

 

 

Figure 20. Probability kriging setup step is used to designate any transformations or trend 

removal, but more importantly designate the threshold for the binary split of the dataset.  

Results 

Exploratory Spatial Data Analysis 

The use of the histogram revealed a random distribution of the points and data values for 

the July 13, 2013 flow data with a majority of the data falling in the first quantile of the dataset 

(Figure 21). The symmetrical distribution of the data observed in Figure 21 was positively 

skewed since there was a long right tail of quantiles due to the major outliers. All of the flow 

meters had at some amount of flow increase during the rainfall event, but this may be due to a 

variety of factors (Table 3). The majority of the dataset fell into the first three quantiles, while 

the rest were outliers in the quantiles four to ten. These major outliers are the values related to 
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the drastic increase in flow at their respective flow meter. They are a vital part to the analysis as 

they represent areas susceptible to I/I. 

 

Figure 21. The histogram for the July 13, 2013 Flow Increase attribute revealed a random 

distribution due to positively skewed long right tail of quantiles.  

 Due to the heavily skewed histogram, the data could be lognormally transformed to 

make the variances more constant and attempt to normalize the distribution (Figure 22). 

Lognormal transformation produced a mean and median that was approximately the same value, 

the data is nearly normally distributed. However, kriging is proficient at interpolating data that is 

randomly distributed so the Flow Increase value along with RDII Contribution and Severity were 

examined as well. It was observed that all three variables without transformation follow the same 

right tail skew because of those outliers (Figure 21).  
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Figure 22. Lognormal transformation was used to attempt to normalize the distribution, but still 

depicts a strong right tail skew for the July 13, 2013 Flow Increase attribute.  

In addition to the histogram, the QQPlot revealed a large fluctuation in the data along the 

straight line. In this case, the log transformed flow increase attribute was the closest to being a 

generally straight line, but the dataset distribution slopes from the lower flow values until it 

reaches the higher values that are almost off the chart (Figure 23). 
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Figure 23. Normal QQPlot of July 13, 2013 Flow Increase with (bottom)/without (top) 

lognormal transformations. If the points follow the solid line then the dataset is normally 

distributed. In this case the dataset is randomly distributed.  
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 Global Trend Analysis used the three main attributes of the July 2013 meter shapefile to 

reveal that there was no trend for both the east-west and north-south directions since the lines are 

almost straight with a minimal slope (Figure 24). When rotating the angle to 40 degrees as 

shown in Figure 25, it is apparent that there displayed a slight northeast-southwest trend. This 

trend is most likely related to the pattern of the rainfall, but is not influential enough to detrend 

the dataset before the geostatistical analysis. However, with the removal of the anomalies the 

trend was strong enough to try a first order polynomial. This was selected because it can remove 

a slight global trend from the analysis and provided the best prediction error for the universal 

kriging with no anomalies prediction map. A first order polynomial trend removal can measure 

the error by subtracting each measured point from its predicted values on the plane, squaring it, 

and adding the results together. While a second order polynomial is used to allow for one bend 

trend. Second order would only work for the meters shapefile that removed major outliers 

because it created a more distinct “U” shape trend in the global trend analysis (Figure 26).  
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Figure 24. Global Trend Analysis of July 13, 2013 Flow Increase attribute at 0 degrees. No 

global trend observed from this angle.  

 

Figure 25. Global Trend Analysis of July 13, 2013 Flow Increase attribute at 40 degrees with 

slight northeast-southwest trend. 
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Figure 26.  Global Trend Analysis with a very slight “U” shape trend due to the removal of 

major outliers from the analysis. There is a slight north-south trend that could influence the 

prediction results.   

The Semivariogram/Covariance Cloud produced from the flow meter’s data is randomly 

distributed across the chart (Figure 27). Major outliers are found on both ends of the cloud which 

means there are points in close proximity that have large difference in their values and points that 

are far apart that have similar values. For the July 13, 2013 case study, this is most likely related 

to the eleven major outliers found during the spatial data exploration. Flow increase, PFI, and 

RDII Severity all exhibited the same random pattern during exploration. Flow increase was 

determined to be the best option for the rest of the iterations because it is the simplest equation of 

the three input attributes. According to the Average Nearest Neighbor tool discussed in the 

methods, the best lag size for the prediction model should have been around 2100 for the July 13, 

2013 event. The number of lags was adjusted from 12-20 for varying results. All of the extra data 

exploration figures can be found in Appendix A. 
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Figure 27. Semivariogram/Covariance Cloud of July 13, 2013 Flow Increase revealed a random 

spatial autocorrelation between the points. 

Structural Analysis 

Selection of the correct kriging type was an important part of creating the prediction 

surface and ordinary kriging was not the best option for this case study due to the nature of the 

dataset. This study relies on the major outliers created from a drastic increase in flow from 

rainfall which is used to identify locations susceptible to I/I. However, ordinary kriging assumes 

an unknown mean constant and in this case, the influence of the major outliers on the unknown 

mean constant was not an accurate form of prediction. Universal kriging follows a deterministic 

function and was found to be the best method since it can be modelled based off of the 

surrounding points influence instead of an inherent mean constant in the dataset. When compared 
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to iterations of ordinary kriging and cokriging, universal kriging was the most statistically sound 

(Figure 31 & 32). 

Surface Prediction 

The surface prediction results included a continuous surface for the variety of 

interpolation parameters selected, comparison of standard errors (uncertainty) of predictions, and 

probability surfaces that reveal critical thresholds that are exceeded. The first step after creating 

all of the kriging surfaces was to compare them using the “Compare…” option. All of the 

comparisons can be found in Appendix B. See Figure 28 to Figure 37 for comparison and surface 

prediction results. A common assumption would be that the introduction of additional variables 

into the interpolation process would improve the prediction surface, but it was found that 

universal kriging with just the flow increase attribute provided more statistically significant 

results compared to cokriging (Figure 32). 

 
Figure 28. The comparison of prediction error reports revealed that universal kriging and 

ordinary kriging both using default settings resulted in the exact same prediction error values. 
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Figure 29. A comparison of all universal kriging without anomalies revealed that default settings 

with a first order polynomial trend removal produced the best prediction error results. 

 
Figure 30. Lognormal kriging with default settings had the lowest mean error out of all the error 

reports. Overall it did not produce better results than universal kriging with optimal settings.  
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Figure 31. The most accurate prediction error compared to every other iteration attempted was 

universal kriging with optimal settings. 

 
Figure 32. Universal kriging with optimal settings provided better prediction error results when 

compared to cokriging with optimal setting utilizing both rainfall and flow increase data. 
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Figure 33. MCES Metershed Shapefile with PCT Cap Used as the displayed attribute. Areas that 

exceed their 100% I/I Goal are depicted in red. This is a simpler method of displaying each 

municipality’s Percent Cap Used for each Metershed. 
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Figure 34. Rainfall kriging prediction surface for July 13, 2013 event. The kriging output for 

RDII Severity and Flow Increase positively correlates with the rainfall pattern. 
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Figure 35. Lognormal kriging with optimal settings provided one of the prediction error results, 

but universal kriging with optimal settings was better. The output kriging surface for flow 

increase and RDII severity were very similar, but a lognormal transformation of flow increase 

modified the shape of the hotspot locations. 
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Figure 36. This prediction map was created using universal kriging without anomalies using 

default settings and a first order polynomials trend removal. Multiple iterations with varying 

parameters were attempted, but the above output had the best prediction errors for models using 

the no anomalies dataset. Removal of major outliers more adequately depicts the underlying flow 

increase trend of areas susceptible to I/I instead of being masked by the major outliers. However, 

all the prediction maps tend to designate a similar pattern of trouble areas compared to one 

another. 
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Figure 37. Western region large scale kriging map. This area displayed the highest flow increase 

during the July 13, 2013 rainfall event so it was used for scale variation in this study. Results 

reveal that anomalies mask overall trend from the rest of the points in the network area when 

interpolation is conducted for a larger area at a smaller scale. 

The kriging outputs for RDII Severity and Flow Increase exhibited the same positive 

correlation to the rainfall event’s prediction surface. The results revealed that areas with more 

rainfall generally had higher flow rates except for one outlier in the middle of the metropolitan 
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area for the July 13, 2013 precipitation event. This meter would require further investigation to 

determine if it is a faulty meter or if there is a huge influence from minimal rainfall in the area.  

The lognormal transformation of Flow Increase did not adjust the data enough to make it 

a normally distributed bell curve (Figure 22). This is why the lognormal kriging prediction error 

was not better than the optimal or even default settings of universal and ordinary kriging (Figure 

30). However, it is not necessary to normalize the distribution when using these kriging methods. 

Kriging is the best interpolation method to use for this case study due to the random distribution 

of the dataset values.  

The following prediction surfaces (Figure 38 to Figure 43) displayed unique prediction 

errors and had the best prediction errors out of all the compared models for their unique 

attributes.  The fourteen prediction products created from 2016 precipitation events can be found 

in Appendix C, whereas the fourteen interpolated rainfall maps from 2016 can be found in 

Appendix D. 
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Figure 38.  The prediction surface above was created using universal kriging with optimized 

method properties and semivariogram modelling. This model provided the best prediction error 

results compared to the all other iterations.  
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Figure 39. The prediction surface above was created using ordinary kriging with optimized 

settings. It provided low prediction error, but the RMS and RMS standardized are not as close as 

with Universal Kriging. 
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Figure 40. Lognormal kriging using default settings. 
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Figure 41. The prediction surface displayed above was created using CoKriging with optimal 

settings. Flow Increase and Rainfall were the two variables used. It did not have better prediction 

error than the interpolation of flow increase utilizing universal kriging with optimal settings. 
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Figure 42. Metro large scale interpolation using universal kriging. 
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Figure 43. Probability map of PCT Cap Used attribute. The values represent the probability of 

that region exceeding their 100% limit for each municipalities “I/I goal”. 

Discussion 

This research has attempted to answer three primary questions regarding testing of this 

novel methodology in predicting I/I vulnerable locations within wastewater infrastructure.  The 
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remainder of this section will address each of these questions as it relates to the results produced 

from this methodological test and then conclude with an overall assessment of the results. 

Is it practical, efficient, and effective to assess spatial patterns of infiltration and inflow of 

rain water by creating a continuous surface to analyze a network of subterranean linear 

features? 

First, it must be understood that this geostatistical/geospatial analysis of I/I does not 

conduct a network analysis of the sewer system’s susceptibility to I/I. Instead this analysis 

creates a continuous prediction surface that attempts to locate “hotspot” areas of increased flow 

rates during rainfall events (e.g. Figure 38). By cross referencing the prediction surface with the 

sewer network shapefile, this method has the potential to identify areas most likely to be 

susceptible to I/I, and in turn, help to narrow the search area for maintenance crews to locate I/I 

in the field. Furthermore, more comprehensive field based research into the “hotspot” areas may 

lead to a better understanding of what factors play a vital role in introducing I/I into certain areas. 

Whether these “hotspots” represent locations with faulty flow meters, poorly maintained sewer 

systems, variations in porosity of the soil, specific pipe characteristics (size/shape/age/type) 

resulting in high flow, topographic variability, land use practices, the level of the groundwater 

table in the region, or some other factor(s) is yet to be discerned.  

The fundamental purpose of this work is to create a visual representation of the I/I 

problem via flow increase prediction surfaces with the hope that they can be a useful tool for 

decision makers. This method provides a statistical means to validate the results of the prediction 

surface and to quantify residual error after the creation of the prediction surface during the last 

step of the geostatistical wizard (Figure 18).  The cross validation comparison (Figure 19) is also 

very important for determining which model is the best for the analysis and therefore provides us 
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with a way to produce the most effective prediction surface. However, until visual inspections of 

this method’s results are conducted in future studies, the full effectiveness of this methodology is 

not known.  What is understood is that this methodology becomes increasingly effective when 

comparing the high flow prediction surfaces to their respective rainfall prediction surfaces (e.g. 

Figure 34). In appendix C and D, most of the prediction models exhibited a positive correlation 

between rainfall and increased flow. However, from one prediction surface to the next, flow 

increase was inconsistent in the same areas most likely due to the location and intensity of the 

rainfall and/or the completion of maintenance to the sewer network to reduce I/I between rainfall 

events (Figure 44).  
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Figure 44. Two similar rainfall events from June 09, 2016 and August 16, 2016 (left column) 

resulted in different prediction surfaces (right column). Most likely the result of varying intensity 

of rainfall and/or completion of maintenance to the pipes to reduce I/I in those areas. 

It is pertinent to reference each prediction surface with its corresponding rainfall event 

map. The 07/27/16, 08/30/16, and 09/15/16 rainfall events from appendix C and D identified 

locations of interest for further inspection due to high flow increase occurring at corresponding 

locations with low rainfall (Figure 45). The location of rainfall in the study area affects what 

locations will be influenced by the event. For example, if only one county is affected by rainfall, 
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then the prediction surface may provide a false assessment of the areas with little to no rain as 

seen in the southern portion of Figure 46.  However, a location of high flow distant from the 

most intense rain, may also represent a location in need of repair. Less intense precipitation may 

be generating high flows in these locations due to relatively high I/I.  It must also be considered 

that between rainfall events, MCES may be conducting maintenance to their pipes, which may 

lead to changes in the amount of flow increase from one rainfall event to the next (Figure 44).  

Therefore, in applying this method we must coordinate our work with maintenance records. This 

was beyond the scope of this study and was not recognized as significant in the testing of this 

methodology.  However, this provides another opportunity for the practical application of this 

method to determine the effectiveness of rehabilitation to the sewer networks. If the rainfall 

location and intensity are not the issue then the problem most likely stems from either poor 

rehabilitation of pipes and/or I/I entering the sewers through another source like the local 

community’s sewer networks. 
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Figure 45. Comparison of areas with contradicting increase in rainfall and flow. Map A is the 

precipitation map and Map B is the flow increase prediction map. Each map represents their 

respective values from red (high values) to blue (low values). This comparison is of the rainfall 

event from August 30, 2016. 

 
Figure 46. Heavy rainfall on one part of the map may skew the prediction surface making it 

appear that certain areas are in good condition even if they are not. This demonstrates the 

significance of looking at the rainfall prediction maps. Map A is the precipitation map and Map 

B is the flow increase prediction map. Each map represents their corresponding values from red 

(high values) to blue (low values). This comparison is of a rainfall event from July 27, 2016. 
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Although the overall impact and effectiveness of this method is still uncertain, it is 

evident that this method has potential to be more practical and efficient compared to the sewer 

inspection methods currently used like CCTV inspections, dye tests, and smoke tests. Those 

methods are time consuming, costly, and require workers to go out in the field and assess every 

inch of the sewer networks for faults (Metropolitan Council of the Twin Cities 2009; American 

Society of Civil Engineers 2011; Shelton et al. 2011).  In addition, multiple studies have 

attempted to use GIS to locate failing or deteriorating sewer pipes before they reached the point 

of critical failure, but none of them have used flow meter data to attempt a prediction map on this 

scale (e.g. Koo and Ariaratnam 2006; Halfawy, Dridi, and Baker 2008; Younis and Knight 2010; 

Boersma 2012). This analysis provides a practical and efficient five step workflow (Figure 7) 

that only requires one GIS user to explore the spatial data and adjust the model to create the best 

prediction surface possible. The most important feature required for this workflow is accurate 

input data produced by the flow meters. From this data, the GIS user can assess which results are 

the most statistically sound (Figure 19) and can create the final prediction surface like in Figure 

38. 

Can kriging be modelled to accurately assess small changes in variation across the 

landscape or does the interpolation mask small variability?  

Kriging can be utilized to assess changes in variation across a large study area through 

interpolation (Johnston et al. 2001). However, each sample point’s value has the strongest 

influence on the interpolated prediction surface surrounding that point’s location (Figure 47). 

Therefore, distribution of the sample points and how the semivariogram is modelled inherently 

lead to some form of measurement error and data variation (Krivoruchko 2004). Most 

measurements in spatial data contain errors both in attribute values and in locations, but this 
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should not limit the use of the data for decision-making. The final results are prediction surfaces 

and therefore it should be understood that they are not an exact representation of the subject’s 

trends, but the most accurate estimate using the available data. 

 
Figure 47. Close up of the hotspot around the corresponding meter and the related metershed 

highlighted. The effect of each sample point’s value has the most noticeable influence on the 

surrounding interpolated surface when zoomed in to a large scale map as shown above.  
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Fundamentally, it should be understood that some errors and anomalies in the kriging 

process are due to the spatial distribution of data points throughout the study reach and as this 

distribution is related to the nugget and the sill. The nugget and sill are two key parameters of the 

semivariogram that relate to changes in distribution across the landscape (Figure 16). The sill 

parameter of the semivariogram is a value that represents distances that are too large between 

points to be significant (Johnston et al. 2001; Krivoruchko 2004; Oliver and Webster 2014). At 

large distances the points are no longer spatially correlated. Therefore, the sill is equal to the 

variance of random variables or, in the case of this work, the flow meters that have excessive 

flow (Figure 49). The nugget parameter of the semivariogram represents independent error, 

measurement error, and/or microscale variations at spatial scales that are too fine to detect 

(Johnston et al. 2001; Krivoruchko 2004). Therefore, the nugget is seen as the discontinuity at 

the starting point of the semivariogram or covariance model’s slope (Figure 15 & 16).  

The nugget and sill help to understand how the distances between the sample points in 

the interpolation process influence the final result. Interpolation provides the best results when 

more points are within close proximity of one another, but if some points are isolated this can 

lead to gaps in the dataset that the interpolation process attempts to fill based on the data that is 

available (Figure 50) and, therefore, a higher degree of uncertainty in that portion of the 

prediction surface. Scale plays a crucial role in the interpolation process as well. Figure 48 

compares the same location when interpolating only the Blue Lake WWTF network and when 

interpolating the entire MCES interceptor network. This revealed that the major outliers in the 

area mask the meters in the western region that did not have drastic increases in flow during the 

July 13, 2013 rainfall event. Figure 36 represents the interpolation surface without major outliers 
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in the interpolation process and it created a more generalized prediction surface around the 

trouble areas due to the removal of the major outliers when compared with Figure 38. 

 
Figure 48. Comparison of the western region on the small-scale Blue Lake WWTF prediction 

map and the same location on the large-scale prediction map to show how variation in scale 

affects the interpolated surface and how each point influences the rest of the dataset.  
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Figure 49. Major outliers from the July 13, 2013 rainfall event.  
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Figure 50. A comparison between an interpolated surface from clustered data points (A) and an 

interpolated surface from sparse data points (B). Each meter in the example B are about 10 miles 

apart. Most of the meters in example A are at no more than 5 miles apart which creates a better 

prediction in those areas. The above images are from the July 13, 2013 rainfall event. 
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Does Kriging provide accurate insight into the I/I problem as a whole or what aspect of 

I/I is being displayed in the Twin Cities Metro area case study?  

The influence of I/I on flow increase in the sewer system was calculated using the max 

flow rate during the rainfall event and the average 10 year flow at each flow meter. This was the 

primary dataset used for the prediction surface to determine the impact of I/I on the study area. 

When cross-referenced with the sewer network shapefile in ArcMap, it provided a visual 

representation of which MCES interceptors capture areas of significant flow increase, which is 

significant when a small amount of rain occurred in that area (Figure 45). However, these 

“hotspots” do not represent the I/I problem as a whole, but instead represents one of the three I/I 

components: GWI, RII, or RDI. 

This geostatistical analysis of I/I using ArcGIS does not measure the three components of 

I/I (GWI, RII, and RDI), but utilizes the maximum peaks on hydrographs related to RDI (Figure 

2). This means that this methodology does not, specifically, detect GWI, because it does not have 

a noticeable impact on hydrograph peak flows due to its slow infiltration into the collection 

system (Staufer, Scheidegger, and Rieckermann 2012). Lastly, peak flows identified on the 

hydrograph represent areas that are susceptible to RDI instead of RII, because RII has a 

significant lag time before it registers on hydrographs and is not nearly as aggressive with entry 

in to the sewer system as RDI.  

Assessment of the Results 

Clearly, kriging is a powerful spatial interpolation method that can be used to interpolate 

sampled variables from a series of known data points that are distributed throughout an area of 

interest. This is a very useful technique to determine the value of unsampled locations 

throughout a study reach through the use of these known data points and interpolating values 
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between these points where no known data exists. The overarching benefit of kriging is that it 

has the potential to save time, money, and manpower necessary for intensive field-based surveys 

to collect data. However, kriging is not without its limitations and it has, to my knowledge, never 

been used in research focusing on increased flow from meters within waste water infrastructure.  

Therefore, in evaluating kriging’s effectiveness, applicability and future potential in work such 

as this, a discussion of limitations in this work must be presented. Those limitations as they apply 

to this case study are as follows: First, the prediction surface results may not accurately represent 

the I/I issue of each flow meter and metershed that reside in the “hotspots.” Second, the inherent 

error found in the interpolation process lead to discrepancies in the prediction surface. Lastly, the 

overall quality of this method and a positive perspective on how these limitations may produce 

unexpected results.  

Prediction Surface Inconsistencies 

The primary purpose of this analysis is to create “hotspots” on the map to identify I/I, but 

it is important to speculate what is actually being represented by the final prediction surface. The 

“hotspots” can be used for multiple reasons: to identify flow meters that need maintenance, to 

find flow meters that have faulty data, or to identify what areas are in need of an I/I inspection to 

determine if there is potentially faulty sewer pipes in that area.  

Currently, this method is focusing the “hotspots” around the flow meters instead of their 

respective metershed (Figure 47), which are the boundaries of each city’s sewer network that 

flows through the flow meter at the edge of their city (Figure 51). This may lead to an incorrect 

representation of the issue since the excess flow comes from upstream of the flow meters and not 

in a perfect circumference around the flow meter. Also, this case study is currently only 

depicting MCES’s interceptor sewer pipes and not the municipality’s sewer pipes that connect to 
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the interceptors (Figure 47). This begs the question of whether or not MCES’s sewers are in 

pristine condition or if the communities they service are actually introducing I/I into MCES’s 

sewer pipes resulting in spiked flow on their hydrographs. Further investigation will be required 

to determine which is true.   

 
Figure 51. Close up of flow meters and their Metersheds color coordinated.  
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Lastly, the interpolation of increased flow around the flow meter may be misrepresenting 

the I/I issue since the exit point from each municipality is from one metershed (Figure 47). It 

would potentially be more accurate to create a centroid (center point) for each community’s 

metershed and interpolate from that point, which would possibly give a better representation of 

where the flow issues really reside. This is assuming that the community’s sewer networks are 

the reason I/I is occurring in the MCES’s interceptors. 

Spatial Interpolation Defects 

Another issue to consider in this analysis is how the density of the dataset affects the 

interpolation process. Inherent biases in the dataset due to fixed locations of the flow meters does 

not allow for random sampling of the points. This also leads to the radical gaps between meters 

(Figure 50). These gaps lead to generalization and streaking of the dataset in some areas as seen 

in the southwest portion of the Blue Lake WWTF Prediction Map (Figure 37). During 

interpolation, clustering of the dataset can create a more accurate prediction surface (Figure 50) 

whereas sparsely placed sample points leads to a lack of data resulting in anomalies like 

streaking or generalization of the data (Figure 52). Streaking occurs when extrapolation of the 

dataset goes beyond the sampled region and there is not a strong enough trend to create a valid 

prediction. The July 13, 2013 rainfall prediction map was effectively extrapolated to the seven 

county boundaries without streaking (Figure 34), because the rainfall had a strong spatial 

autocorrelation unlike the flow meters that are random due to varying flow increase. Error due to 

sparsely distributed sample points in this study area could be remedied by adding flow meters to 

the landscape. The spatial distribution of the meters plays an important role that must be 

considered and areas with sparse data will need to be evaluated and compensated for by other 

means. 
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Figure 52. Close up of a streak due to lack of data in the region and the kriging processes 

attempt at extrapolating the dataset from the last known sample points into the abyss. Carver 

County and Hennepin County July 13, 2013. 

This analysis provides a practical and efficient five step workflow (Figure 7) that only 

requires one GIS user to explore the spatial data and adjust the parameters in the geostatistical 

wizard to create the best prediction surface possible. The most important feature required for this 

workflow is accurate input data produced by the flow meters. This case study is a testament to 

the significance of flow monitoring and metering. The interpolation process reflects any residual 

error found in the data (Lam 1983; Mitas and Mitasova 1999; Johnston et al. 2001; Li and Heap 

2011; Oliver and Webster 2014), so more accurate flow data will lead to better results. It is 

possible to refine the method for addressing metering data issues by collaborating with agencies 

like MCES. Metering data issues refers to the 200 flow meters owned by MCES and the limited 

use of only 136 of those meters for the July 13, 2013 analysis (Figure 49) due to meter 

discrepancies, performance meters not used in the I/I program, the occurrence of multiple meters 
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at the same location, and manual adjustments made by the MCES’s Data Analyst.  It is possible 

to see these gaps in the metershed when observing Figure 33.  

This process appears to be a statistical and visual success for locating areas susceptible to 

I/I based on the basic parameters of rainfall and flow increase. It does pose the inherent flaw of 

generalizing the “hotspots” around each flow meter if there are not enough points within the 

search neighborhood (Figure 47), but this flaw can be remedied by adding more flow meters to 

the area of interest. Many case studies have added temporary flow meters to their study areas to 

improve the overall equation, but this would require research in to the cost and effectiveness of 

the extra flow meters (Metropolitan Council of the Twin Cities 2009; Shelton et al. 2011; 

Staufer, Scheidegger, and Rieckermann 2012).  

Additional flow meter locations along the MCES’s interceptors and along each 

municipality’s sewer networks would provide a more accurate prediction surface. Over 200 flow 

meters are currently used to provide MCES with a means to monitor flow rates and flow influx, 

but with more data input into this method it would be possible to better locate weaknesses in all 

sewer networks in the metropolitan area. Access to each municipality’s sewer data would also 

show the complete density of the network in the metropolitan area. Currently the MCES’s 

interceptors appear to be the only problem to fix, but they are just the junction for all cities pipes 

to reach the WWTF.  

Applicability/Best Use of this Method 

Despite these limitations, this method presents a promising approach to narrow the focus 

of work in wastewater infrastructure maintenance.  Kriging methods presented in this thesis 

provide both a visual and statistical representation of an interpolated dataset across the spatial 

extent of the wastewater infrastructure, which can be utilized by a GIS user and decision makers 
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to potentially identify areas at risk of I/I or identify malfunctioning meters. Assuming the 

organization concerned with maintaining the wastewater treatment infrastructure is similar to the 

MCES, they can produce this analysis using flow meter data and follow the workflow presented 

here with ease. To complete this analysis, this organization would need flow meters distributed 

throughout the area of interest and GIS users who can process the flow meter data to create the 

prediction surface.  

That said, the broad assessment of the results of this work can best be described as 

demonstrating a high degree of potential for applicability. But, this method requires more field-

based testing, that was beyond the scope of this thesis research, to evaluate the true applicability 

in a study reach or in multiple, varied study reaches (e.g. across varied municipalities. Future 

work should investigate I/I “hotspots” presented by this method through more intensive 

techniques (as discussed in the introduction) to verify how accurate/precise this method can be.   

Overall, the results of the fourteen rainfall events and their respective flow increase 

prediction maps revealed a consistent correlation between Rainfall and Flow Increase (Appendix 

C and D). Therefore, the interpolation method is positively identifying areas of increase flow that 

correlate to the rainfall in that region. Further inspection may find other environmental and 

anthropogenic factors play a role in the results of the prediction surfaces. However, a few events 

did depict areas with low precipitation and a high flow increase (Figure 45). This potentially 

indicates that the methodology has effectively located areas that are susceptible to I/I, but 

requires ground-truthing via collaboration with agencies like MCES to validate its effectiveness. 
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Conclusion 

This work presents the use of ArcGIS and geostatistics in assisting with the identification 

of areas susceptible to I/I during rainfall. There is a need to prioritize high-risk areas before they 

reach critical failure and the price of repairs increases (Shelton et. al., 2011). Geospatial and 

geostatistical analysis provides the potential for identifying I/I prone areas of the collection 

systems that are not monitored, determining where I/I is occurring, and determining the 

magnitude of I/I in those areas. This case study provides a practical and efficient five step 

workflow (Figure 7) that only requires one GIS user to explore the spatial data and adjust the 

kriging model to create the best prediction surface possible.  

The vast area and age of the Metropolitan Council Environmental Services (MCES) 

sewers has often led to problematic issues related to I/I, which are now in need of a more 

effective way to focus rehabilitation efforts of the sanitary sewers.  Over the course of the next 

20 years, wastewater infrastructure repair are estimated to cost upwards of 4.1 billion dollars in 

Minneapolis-St. Paul Metropolitan area (Metropolitan Council of the Twin Cities 2011). The 

MCES has used CCTV for most of their interceptor system and has done inch-by-inch inspection 

for corrosion (Metropolitan Council of the Twin Cities 2009). In addition, engineers assess and 

score every section of pipe by conducting dye and smoke testing, as well as monitoring flow 

conditions by comparing rainfall data versus average and max discharge measurements. 

However, MCES does not have detailed information on the cities collection systems that connect 

to their interceptors and this can be a major contributor of I/I. Overall, MCES would benefit from 

kriging prediction maps to locate high risk areas of I/I. 

By collaborating with MCES it is possible to determine how accurately this methodology 

can locate areas susceptible to I/I or if it is actually depicting some other characteristic of the 
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WWTF collection system like malfunctioning flow meters. MCES could provide more insight 

into this method and what is being represented by using the geostatistical analysis of I/I in their 

identification process. Whether the I/I problem is directly related to faulty flow meters, poorly 

maintained sewer systems, variations in porosity of the soil, specific pipe characteristics 

(size/shape/age/type) resulting in high flow, topographic variability, land use practices, the level 

of the groundwater table in the region, or some other factor(s) is yet to be revealed. 

Metropolitan areas worldwide struggle with maintaining wastewater treatment 

infrastructure and preventing I/I from impacting their wastewater treatment facilities, 

environments, and economy. The application of kriging to identify areas of high risk to I/I may 

become an instrument to provide economic justice for smaller municipalities who do not have 

the funds to investigate the I/I problem themselves. Overall, this may be a major contribution to 

I/I identification process and the wastewater treatment industry around the world, but the 

limitations discussed should be addressed in the future to test the effectiveness of this method 

with helping identify the real world scenario.  
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Appendix B. Cross Validation Comparisons 
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Appendix C. 2016 Flow Increase Prediction Products 
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Appendix D. 2016 Rainfall Prediction Products 
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