View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institutional Repository for Minnesota State University, Mankato

Minnesota State University, Mankato

Cornerstone: A Collection of

CORNERSTONE Scholarly and Creative Works for
Minnesota State University,
Mankato

2 MINNESOTA STATE UNIVERSITY Mankaro

All Theses, Dissertations, and Other Capstone

_ Theses, Dissertations, and Other Capstone Projects
Projects

2016

Effects of Computer Program Visualization Tools
on Student Populations

Meghan Jayne Peterson
Minnesota State University, Mankato

Follow this and additional works at: http://cornerstone.lib.mnsu.edu/etds

b Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons,

and the Engineering Education Commons

Recommended Citation

Peterson, Meghan Jayne, "Effects of Computer Program Visualization Tools on Student Populations" (2016). All Theses, Dissertations,
and Other Capstone Projects. 660.
http://cornerstone.lib.mnsu.edu/etds/660

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Other Capstone Projects at Cornerstone: A Collection of
Scholarly and Creative Works for Minnesota State University, Mankato. It has been accepted for inclusion in All Theses, Dissertations, and Other
Capstone Projects by an authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University,
Mankato.

https://core.ac.uk/display/214124038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/theses_dissertations-capstone?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1191?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/etds/660?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F660&utm_medium=PDF&utm_campaign=PDFCoverPages

Running Head: EFFECTS OF PROGRAM VISUALIZATION

EFFECTS OF COMPUTER PROGRAM VISUALIZATION TOOLS ON STUDENT
POPULATIONS

By
Meghan Peterson

A Thesis Submitted in Partial Fulfillment of the Requirements for Masters of Science
in Educational Technology In Educational Studies: K-12 and Secondary Programs

Minnesota State University, Mankato
Mankato, MN

November 2016

Running Head: EFFECTS OF PROGRAM VISUALIZATION ii

DATE: November 11, 2016

This thesis is submitted as part of the required work in the Department of Educational Studies,
K-12 and Secondary Programs, KSP 610 Scholarly Writing, at Minnesota State University
Mankao, and has been supervised, examined, and accepted by the professor.

Kathleen Foord, Ed. D, Associate
Professor

Qijie Cai, Ph. D., Assistant
Professor

Carrie Chapman, Ph. D., Associate
Professor

Running Head: EFFECTS OF PROGRAM VISUALIZATION iii

Abstract

This study examined how program visualization tools affect Advanced Placement
Computer Science students’ understanding of abstract programming concepts. A literature
review was conducted to determine if program visualization is effective and which students
benefit from it the most. The findings were used to design a causal comparative study in which
students would experience instruction with and without program visualization. The study took
place in an AP Computer Science course during the first challenging unit about an abstract
concept: loops. Participants (n = 24) were selected using convenience sampling and were
assessed before, during, and after the study took place. While it was difficult to reach to any
significant conclusions about program visualization’s effect on student understanding as a whole,
there were several conclusions that could be made about different groups of students. The results
suggested that math confidence is a factor in the effectiveness of program visualization and there
appeared to be a similar trend with ethnicity. There was also significant evidence that program
visualization is most effective for students who are not considered high or low achieving. These
results provide insight into how computer science teachers can create lessons using program

visualization that are meaningful for all students and for specific groups in particular.

Running Head: EFFECTS OF PROGRAM VISUALIZATION iv

Table of Contents
Chapter One: Introduction
INEPOAUCTION ...tiiiiieiiiecie et ettt et e st et eeab e e bt e e abe e teeeabeenbeaasseensaessseenseansseenseens 1
Statement of the ProDISIMoccuiiiiiiiiiie e et 3
IMportance Of the STUAYccooiiiiiie et ettt e e e eaee s 4
IMIEEIOMS ..ottt ettt et e e et e et e et e e s ab e e bt e e ab e et e e eabeenbeeenbeenseenabeenbeeenreenneens 6
Limitations 0f the STUAYeeiiiiiieiii et e et e e eae e e eare e e eareeeaneas 9
DefiNitions OF TEIIISoeviiiiiieiieiii ettt ettt et et et e st e et esebe e teesabeesbeessbeenseessseenseassseenseens 10
OVETVIEW ..tieitieiiteite ettt et ettt et e et e et e e tteeabe e ateeabe e seessbeeseeeabeanseeeaseenseeeaseenseeenseenseesnseanseassseenseensseenns 10
Chapter Two: Literature Review
INEEOAUCTION ...ttt ettt et e st e et e e st e e bt e e sbe e teeesbeesbeaesseenseesaseenseassseenseans 12
Effectiveness of Program ViSualiZationccccoeciieiiiiiiioniieiiieiecie ettt 13
Ineffectiveness of Program ViSualiZationccocievuieiiienieiiieiieeie ettt e e 15
Implementation Strategies of Program Visualizationccccevvieviiiienieninienieeeieseeiesee e 15
Comparing Student Populations: The “Middle Third” Theoryccccccovveeriieiiiniiiiiiniccieniceeene 18
Comparing Student Populations: Other FACIOTSc..cccouiiiiiiiiiiiiciec e 20
SUMMATY ..ottt ettt e sttt e ettt e st e e e sab e e e st eesabeeeasbeesaseeesaseeesaseeesaseeennseesnnne 20
Chapter Three: Methodology
INEEOAUCTION ...ttt ettt et e st e et e s b e e bt e e ebe e seesabeenbeassseensaessseenseasssesnseans 22
Context fOr RESEATCHc..iiiiiiiiiiie ettt et ettt 22
RESCAICH DIESIZIN ...ttt ettt et e et e e e te e e e abee e eabeeesaaeeeeaseeennseeenneas 23
Sampling Procedures and Participant CharaCteriStiCsccevieruerrierienieeiienienieeieneenieeee e 24
INEETVEIEIONtiiiiieiiieeiie ettt ettt ettt et e et e et e s et e esbeeeaaeesseesaseenseesabeenseessseenseessseenseassseenseans 24
VALIAIEY .ottt ettt et et e et e et e e bt e aaeeabeeebaeenbeeeab e et e e eabeenbeeenaeentaeenbeenbeennnas 26
CONTIAENIEIALIEY ...eeeiieiiieiieie ettt ettt ettt e et e e teeesbeeteeeabeesseeeabeenseesnseenseassseenseennseenne 27
Chapter Four: Results
INEEOAUCTION ...ttt ettt et e st e et e s it e e bt e s et e e seeeabeesbeassseensaesnseenseassseenseens 28
Data COLIECTIONiiuiiiiiiiiiieciie ettt ettt ettt et e st e et e e sabeesbeesebe e seessbeenbaassseenseesnseenseennseenseens 28
Whole Group COMPATISOMNcccuiiiiiieiieeiietieeieestie et etteeteesteeseeeseessbeesseessseeseessseeseessseenseessseesseens 29
EthniCity COMPATISOMccuiiiiieiieiiieitieeie et ie et eiteeteetteseteeteesaaeesbeesabeeseessseesseessseenseessseenseessseeseens 30
Math Confidence COMPATISONcecieriieriieriieriieeieetieeteesteesteeteesteesseessseeseessseeseessseeseessseesseens 31
Middle Third COMPATISONccuiiiiiiieeiieeetieeeieeeeieeeereeeetreeetreeeaeeeeteeesreeessseeessesessseeesnsesensseeensseas 33
Other Trends and ODSEIVATIONSc.cocvieiiierieeiiieiie et eriee et esite et esiteereesseeenbeesseesnseeseessseenseesnseenne 34
SUMMATY ..eeeiiiieeiie ettt ettt e sttt e ettt e st e e e sab e e e st eesabeeensbeesabeeesaseeesaseeenaseeennseeennne 36
Chapter Five: Conclusions
INEEOAUCTION ...ttt ettt et e st e et esateesbeesabe e seeeabeesbeassbeenseessseenseasnseenseens 37
Research QUESTION ONEooooiiiiiiiicciee ettt ettt e e e e te e e ere e e eabeeesaveeesasesesaseeennseeenseas 37
Research QUESTION TWO ..c.uiiiiiiiiiiie ettt et e et e e e re e e e abe e e eabeeesaseeesaseeenaseeenneas 38
LAMIEATIONS ..evtieiiieiieeiieeite ettt ettt e et e e sttt ebtesateesbeessseenseesaaeesseessseenseessseansaessseenseesnseenseennseenseens 40
Suggestions for Future ReSEarchccooviiiiiiiiiiicce e 41

SUMIMATY ..eeiiiiiieei ettt e ettt e ettt e s et e e e sabee e sbeesabeeeasteesabaeesabeeesabeeenaseeennseeennne 42

Running Head: EFFECTS OF PROGRAM VISUALIZATION v

RETETEICES ...ttt ettt st b et s h ettt e s bt et et e s bt enbe st e sae et 43
Appendix A Pre-Test and Intermediary TStccoecieiiieiiiiiiiieiiecie e 47
APPENAIX B POSE-TESE ..ottt ettt sttt et sb ettt b et s nas 48
APPendiX C QUESLIONMNAITEeevuieerieriieeiieriieeiteeeieeiteesteeteessaeeseessaeeseessseeseessseesseessseenseesssesnseessnes 49
APPENdIX D RUDTIC ..ottt 51
Table of Tables
Table 1 Whole Group Comparison: Pre-Test, Intermediary Test, and Post-Test Scores 30
Table 2 Ethnicity Comparison: Pre-Test, Intermediary Test, and Post-Test Scoresc..cccueen..e. 30
Table 3 Math Confidence Comparison: Pre-Test, Intermediary Test, and Post-Test Scores 31
Table 4 Middle Third Comparison: Pre-Test, Intermediary Test, and Post-Test Scores 35
Table 5 Gender Comparison: Changes iN SCOTESccccueeerieerriieeriiieeniiieeniteeeieeesieeeeireessieeesaeee e 35

Table 6 Acceleration Comparison: Changes In SCOTEScocuerviiiriieiierienieenieeeenee e 35

Running Head: EFFECTS OF PROGRAM VISUALIZATION 1

CHAPTER ONE
Introduction

In a society where computer programming is becoming a vital skill in every field, it is
reasonable to assume that Computer Science will make its way into the core curriculum within
the next few years. As it stands now, most high school programming classes are filled with
motivated, high achieving students who elected to take the class, but when programming
becomes a requirement to graduate, programming teachers will encounter students who are
unmotivated and uninterested in computer science. These teachers will be challenged to find a
way to help all students learn, not just the students who want to program. Unfortunately,
programming can be an extremely difficult concept for students who struggle with abstract ideas
and processes. Students cannot move past the novice method of programming, which involves
spending “little time testing code, and [attempting] small ‘local’ fixes rather than significantly
reformulating programs” (Robins, Rountree, & Rountree, 2003, p. 151). Novice programmers
tend to be limited to the surface knowledge of a programming language, lacking the mental
models necessary to problem solve abstractly. According to Ma, Ferguson, Roper, and Wood
(2011), students who have viable mental models, or “internal explanations of how something
works,” perform significantly better than those without mental models (p. 58). The challenge for
introductory programming teachers is determining what strategies help students build those
models.

One tool that computer science teachers sometimes use is program visualizations. These
visualizations are either static diagrams or dynamic animations that demonstrate how a program
or algorithm works. Many researchers have tried to use program visualization tools to develop

novice programmers’ mental models, but the results of the studies have been inconclusive. Some

Running Head: EFFECTS OF PROGRAM VISUALIZATION 2

researchers have found that specific visualization tools like ViLLE work well for novice
students, but not the students who are more advanced (Rajala, Laakso, Kaila, & Salakoski,
2008). Other studies have found that the influence of program visualization is not significant at
all. A meta-study conducted by Hundhausen, Douglas, and Stasko (2002) revealed that the way
visualization tools are implemented has more impact than the specific type of visualization.
When reading the existing research, it becomes clear that there is no definitive verdict on
whether or not program visualization is an effective tool to help students.

One reason the results have been so inconsistent is the variability in software,
implementation, and analysis of program visualization tools. Kehoe, Stasko, and Taylor (2001)
suggest that researchers have not focused enough on #ow animations help students. Indeed, each
study uses different software, teaching techniques, and implementation strategies to examine
programming visualizations. This turns the focus of the research to whether or not the unique
software, technique, or strategy is effective instead of how the students benefit from the
visualization activity in general. To combat this trend, some authors have chosen to focus on
comparing novice and expert programmers instead of focusing on a specific software or strategy.
For example, a study by Rajala, et al., (2008), found that a specific program visualization tool
called VIiLLE can “effectively [even] out the differences caused by previous programming
experience” (p. 29). This research study and others like it show that program visualization can be
beneficial for certain students more than others. Perhaps more research should be done to
compare the effects on different student populations instead of studying variations among

different program visualization software.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 3

Statement of the Problem

It is clear to computer science teachers and researchers that novice programmers think
about code in a drastically different way than more advanced programmers. There are traits of
novice programmers that are easy to observe, such as a tendency to change small parts of code
without considering the larger structure of a program. But underneath the surface, it is the weak
mental models that keep novices from succeeding. According to Wiedenbeck, Fix, and Scholtz
(1993), there are five abstract characteristics of mental models that novices lack: hierarchical and
multi-layered thinking processes, mappings between those different layers, recognition of
programming patterns, understanding of how the parts of a program work together, and
comprehension of the program text and structure. The struggle that teachers of introductory
programming classes face is how to develop those abstract characteristics.

Program visualization could be a valuable tool for helping beginning programmers build
mental models and develop their coding skills. More research is needed, however, in order to
understand how visualization benefits different groups of students. This study will add to
existing research by identifying how several factors like gender, ethnicity, programming
experience, and academic achievement impact the effectiveness of the program visualization.
The purpose of this research thesis is to compare Advanced Placement students’ understanding
of for loops and while loops after using program visualization tools among several different
student populations. Two primary research questions will be investigated:

1. How do program visualization tools relate to understanding of for loops and while loops

in an AP Computer Science course?

Running Head: EFFECTS OF PROGRAM VISUALIZATION 4

2. How do program visualization tools influence mastery of for loops and while loops for
different potential student populations (i.e. gender, ethnicity, programming experience,
academic achievement)?

Importance of the Study

Some high school students progress from novice programmer to beginner very
quickly. Instead of learning the structure of the basic operations like loops and conditional
statements, these students learn why their code works and investigate new applications of the
concepts learned in class. While these students become more independent and stronger in their
programming skills, others struggle to move past the very basics. It becomes increasingly
difficult for these novices to succeed in AP Computer Science because they have little prior
knowledge on which to build new concepts.

Many researchers have concluded that these novices are lacking strong mental models
which is why they tend to struggle with abstract concepts. Wiedenbeck, et al. (1993) have
identified five abstract characteristics of mental models that novices lack. The first characteristic,
hierarchical and multi-layered representations of a program, refers to the way programmers
visualize the way a program runs. The researchers found that “advanced programmers, but not
novices, used a strategy of reading a program in the order in which it would be executed” which
helped them develop hierarchical representations (Wiedenbeck, et al., 1993, p. 74). It seems
natural that some sort of visualization is necessary to help novices understand how to read a
program in the order in which it is run instead of from top to bottom.

Visualization in the form of static pictures has been a staple of textbook-based and direct
instruction for decades, but recently computing educators have developed software tools to make

these visualizations more appealing, interactive, and easier to use. Sorva, Karavirta, and Malmi

Running Head: EFFECTS OF PROGRAM VISUALIZATION 5

(2013) have analyzed over 100 studies on various software tools, concluding that many of them
can significantly help novice programmers develop their mental models. Unfortunately, most of
the software reviewed in their article “appeared to have been short-lived research prototypes that
have been soon discarded once the system had been constructed or an evaluative study carried
out” (p. 54). These studies do not provide lasting implications for computer science teachers and
researchers, since the products used in the studies are no longer available.

It is imperative, then, that future research is conducted using tools that are still in
existence and easy for computer science teachers to access. Several program visualization tools
have been maintained and updated after initial research was conducted. “One of the longest-
lasting and most-studied program visualization tools” is Jeliot, which was developed to help
students learn Java (Sorva, et al., 2013, p. 36). Jeliot is currently free and easy to download
online, making it an ideal tool for high school teachers. It has survived for almost 20 years
because the authors have frequently updated the software based on new research. There have
been many studies conducted to examine Jeliot’s effectiveness as a program visualization tool in
various situations.

The most recent study about Jeliot was conducted by Moreno, Sutinen, and Joy (2014)
who studied a version of Jeliot called Jeliot ConAn that used conflictive animations, which
intentionally show errors in the visualization that students must identify. The results, based upon
18 students in an introductory programming course, indicated that students who used the
conflictive animations improved their metacognitive skills and conceptual knowledge compared
to the control group which used the unaltered Jeliot 3 software. Another recent study of Jeliot by
Wang, Bednarik, and Moreno (2008) examined the timing of introducing program visualization

to students. The authors concluded that “explanations after animations have positive effects on

Running Head: EFFECTS OF PROGRAM VISUALIZATION 6

learning gain while explanations before have little to no effect” (p. 107). Their research
contributes to the conclusion that sow programming visualizations are implemented is just as
important as which software is used. Finally, one of the largest studies on Jeliot was conducted
by Cisar, Radosav, Pinter, and Cisar (2011). In this study, 400 students were divided into three
groups: the control group had traditional instruction while two experimental groups received
either blended instruction (PowerPoint presentations in addition to Jeliot) or completely
electronic instruction (solely Jeliot). The researchers concluded that there was a significant
difference between the non-Jeliot and Jeliot groups but there was no difference found between
the two experimental groups. This large study indicated that even a small amount of program
visualization activities could contribute to increased student understanding. Together, these three
studies show that Jeliot can be extremely beneficial for students.

Clearly there has already been extensive research on whether or not Jeliot is effective, but
little has been done to compare the effectiveness of the software on different populations.
Moreno, et al. (2014) compared students with no programming experience to those with a
background in coding and found that visualizations were more helpful for inexperienced
programmers. There are many other factors, however, that may influence the effectiveness of
program visualization tools. The goal of this study is to examine the impact that factors like
gender, ethnicity, programming experience, and mathematics skills may have on Jeliot 3’s
effectiveness. This study will add to the existing research on Jeliot by clarifying if different
groups of students benefit more or less from using program visualization tools.

Methods
Because there is great variety in both program visualization software and implementation

strategies, the investigation of the research questions stated above began with a wide search for

Running Head: EFFECTS OF PROGRAM VISUALIZATION 7

any studies about the effectiveness of program visualization tools. The Minnesota State
University, Mankato’s library databases and collections were used to find these sources. These
databases included ERIC on EBSCO and the ACM Digital Library using search terms that
included “computer science AND visualization” as well as “computer program visualization”.
The researcher also examined studies referenced in the articles found within the library
databases. All sources were evaluated using Creswell’s (2014) checklist for evaluating
quantitative and qualitative studies in order to ensure that information was accurate and relevant.
Most of the literature was published within the last 15 years, although some older studies on
mental models were included due to their in-depth definitions and exploration of terms.

To organize the information, a literature log was used to keep track of methodology, key
findings, quotes, and definitions. The studies were organized by research question and later
synthesized into themes to conduct a literature review. The literature review guided the
development of the experiment and the analysis of the results.

Summary of Experiment

This study was designed to address both research questions, examining whether or not
program visualization tools are effective in teaching for loops and while loops, and if different
populations benefit differentially from their use in learning. Students were taught using
traditional methods for several days before using Jeliot to help them visualize for loops and while
loops. The students took pre-tests, intermediary tests, and post-tests, which were analyzed to see
if student understanding increased. Different populations were also examined to see if Jeliot was
more useful for some students than others. Permission for this study was obtained from the

university IRB in August 2016.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 8

Setting and Population

This study was conducted in an AP Computer Science class in a large high school in a
medium sized city in the upper Mid-West United States in the fall of 2016. The participants were
students that chose to enroll in the course. Most of these students were seniors or juniors with an
interest in a STEM career path after high school. During the second month of school, students
who were enrolled in AP Computer Science were contacted through email in order to obtain
permission for participation. Permission to conduct the study at the identified high school was
obtained in September of 2016.
Experiment Design and Data Collection

The first month of the course was designed to introduce students to the basic Java
programming concepts, including primitive types, Strings, and conditional statements. This study
began when students were introduced to for loops and while loops. The students took a pre-test
to gauge their understanding of for loops and while loops before the unit began. In the first phase
of the intervention, the students received three days of direct instruction with time for
programming exercises after which the students took an intermediary test designed to assess their
current understanding of for loops and while loops. This test was identical to the pre-test but the
questions were in a different order. During the second phase of the intervention, the participants
spent two days doing activities with Jeliot 3 while the instructor supervised. The students took a
post-test similar to the pre-test to reassess their learning, and also completed a questionnaire on
demographic information. The pre, intermediary, and post-test scores were compared to
determine how the program visualization intervention affected student understanding of for loops
and while loops. This was done in order to answer the first research question. To address the

second research question, different demographic groups of students were compared to see if the

Running Head: EFFECTS OF PROGRAM VISUALIZATION 9

program visualization intervention impacted achievement differentially for certain populations of
students.

Before data collection began, the researcher worked with the course instructor for over 10
hours in order to ensure that the content was delivered correctly. This training took place from
May to September and included some online sessions in the fall before data collection began.
The course instructor administered the pre, intermediary, and post-tests as well as supervised all
classroom activities. The researcher was not present for the pre-test, intermediary test, or post-
test, administration of the questionnaire, or for instruction.

This quantitative study examined the effect of program visualization on several different
student populations. Gender, ethnicity, programming experience, and mathematics skills were
some of the variables examined. The researcher used paired t-tests to examine differences in
understanding between these groups. Confidentiality validity, and reliability were also addressed
in the research design and are explicated in Chapter Three.

Limitations of the Study

The sample population was a convenience sample where the researcher had access to a
computer science course. Due to limitations on registration for this course, this study could only
be conducted on one section of AP Computer Science students at the selected high school. The
sample size was between 24 and 28 students. While the selected high school was a fairly good
representation of high schools in mid-sized Midwest cities, the small sample size made it
difficult to generalize results to larger populations of students. Additionally, the size of some of
the subgroups were very small, restricting the possibility for making statistical inference.

Since the unit on for loops and while loops was short (five school days and one

weekend), different pre, intermediary, and post-tests were needed so that there was no internal

Running Head: EFFECTS OF PROGRAM VISUALIZATION 10

threat to validity due to instrumentation or testing. It was important that the pre, intermediary,
and post-tests were very similar, however, so scores could be compared.

The conclusions may only apply to visualization used for for loops and while loops until
further research is conducted on other coding units. The conclusions will also be restricted to the
use of one visualization software, Jeliot 3, so generalizations to other visualization software may
not be warranted.

Definition of Terms
Mental model. According to Ma et al. (2011), mental models are “internal explanations of how
something works” (p. 58).
Program visualization. A tool that “depict[s] the steps taken by programs during execution
(Moreno, et al., 2014, p. 630). Some examples include ViLLE and Jeliot.
Program visualization strategy. A method of implementing program visualization tools. For
example, Moreno, et al. (2014) implemented a program visualization tool (Jeliot) by
intentionally showing students incorrect animations and asking students to correct them. This is a
unique strategy for implementation.
Schema. A “chunk” or information that is organized by a learner. According to Kranch (2011),
schema is “information organized according to how it will be used” (p. 293).

Overview

This study includes a literature review of the research on program visualization and its
effect on increasing student understanding of abstract concepts. Methods, procedures, and results
of the study designed to explore the impact on learning for loops and while loops as well as the

impact on differing student populations will also be discussed. Finally, a summary of the

Running Head: EFFECTS OF PROGRAM VISUALIZATION

research, conclusions, limitations, and future research topics will be examined.

11

Running Head: EFFECTS OF PROGRAM VISUALIZATION 12

CHAPTER TWO
Review of the Literature

One of the most well researched areas of computer science education is the difference
between novice and expert programmers. In a large literature review of the research on how
students learn to program, Robins, et al. (2003) found that novices tend to have fragile
programming knowledge and skills, which leads to weak mental models. Without a tool or
strategy to develop solid understanding of basic programming knowledge and skills, abstract
programming concepts are difficult for novices to master.

Many educators and researchers have tried to find a successful strategy to combat this
issue. For example, Kranch (2011) conducted a study to determine if the sequence of
programming instruction affects how much novices learn from an introductory computer science
course. A sample of 34 college students were randomly assigned to one of three programming
units, each based on a different instructional sequence (one that focused on students mastering
one concept at a time, another that gave students all the knowledge and skills required to
complete a task at once, and another that framed new concepts in terms of solutions to problems
that students then broke apart). The results showed that there was no significant difference
between the three sequences. Interestingly, novices mastered the simple syntax concepts and
struggled with complex material no matter which unit they completed. Clearly other instructional
tools and strategies need to be investigated to help novices master abstract and complex
programming concepts.

The purpose of this study is to determine if program visualization tools will help teachers
assist novice programmers. Two research questions will be investigated in this literature review.

First, the current literature will be examined to determine if program visualization tools are

Running Head: EFFECTS OF PROGRAM VISUALIZATION 13

effective in helping introductory programming students master abstract concepts. The results
from researchers have been inconclusive, so this literature review will focus on several different
conclusions that researchers have made. Rather than determining if program visualization works
for all students, the second research question deals with exploring which group of students
benefits the most from using the tool. Many studies have concluded that program visualization
does not work for every student, but is effective for certain populations, such as novice
programmers or students with high confidence levels. The review will conclude with a summary
of the main points in the existing research and an explanation of the need for this study.
Effectiveness of Program Visualization

In most introductory programming courses, students start to struggle when they learn
about loops, programming elements that repeat segments of code a certain number of times.
In a survey of 173 introductory programming students, Butler and Morgan (2007) concluded that
“the elements of the curriculum of a highly conceptual nature proved to be acknowledged as the
most challenging” (p. 106). Until students learn about loops, they only need to read a program
from top to bottom. Part of the confusion with loops comes from the fact that the flow of control,
or order of program execution, has changed. When students struggle with the idea of flow of
control, teachers often try to draw pictures to show students what is happening during a loop.
Static drawings, however, do little to convey the movement of the program because they are
static and unable to move.

Many researchers believe that program visualization tools could solve the problem of
teaching complex concepts, such as loops, because they animate the program as it is executed,
giving students a clearer picture of what is happening when they run their code. One of the

“longest-lasting and most-studied program visualization tools” is Jeliot, software that has been

Running Head: EFFECTS OF PROGRAM VISUALIZATION 14

used, edited, and adapted by educators for almost 20 years (Sorva, et al., 2013, p. 36). Several
studies have shown that students who use Jeliot score significantly better on post-assessments
than students who use traditional resources. Researchers Cisar, et al. (2011) conducted the largest
of these studies, assigning 400 introductory programming students into one of three groups: a
control group (which consisted of traditional teaching methods without Jeliot), an experimental
group (which consisted of some traditional teaching and some activities with Jeliot), and a
second experimental group (which consisted of electronic notes and Jeliot activities). They found
that there was a significant difference between the control group and the two experimental
groups (p < 0.01) with the experimental groups outperforming the control group. This massive
study demonstrates that program visualization tools can help students learn how to master
complex concepts.

Other researchers who have worked with Jeliot have found similar positive results that
show program visualizations helping students with complex ideas. For example, Hongwarittorrn
and Krairit (2010) conducted an experiment to determine if the visualization tool could help
students learn and develop positive attitudes about object oriented programming. In their quasi-
experimental study, 54 students were split into a control group (which consisted of no program
visualization tools) and an experimental group (which used Jeliot). Throughout the 15-hour
course, everything but the visualization tool usage was kept consistent between the two groups.
The researchers found that there was a significant difference in scores for the experimental
group, suggesting that Jeliot 3 could help introductory students master complex object oriented
programming tasks. Program visualization appears to aid mastery of complex concepts, but this

success may not be universal.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 15

Ineffectiveness of Program Visualization

There are some studies that have shown that program visualization is not effective at all.
In order to determine if Jeliot 3 helped students in an introductory programming course, Moreno
and Joy (2007) enlisted six undergraduate computer science students to participate in their
research. All students used Jeliot 3 in the course for two hours a week. Additionally, some
students did extra Jeliot activities outside of class. The researchers conducted interviews with
students when the course concluded and found that the students mostly used Jeliot for
debugging. There was no difference in vocabulary or understanding between the two groups,
showing that extra time with program visualization tools does not help students learn. Clearly in
some instances, program visualization is not effective.

Similar results have been found with other program visualization tools. For example,
Rajala, et al. (2008) conducted research with 72 first year college students to determine if
VILLE, a tool that is very similar to Jeliot, was effective. They split the students into two groups:
one that used traditional text material to learn concepts and another that used VILLE, which
animates code in any language. The researchers concluded that there was not significant
evidence that VILLE was better than no visualization tool. The wide variety of results between
different researchers and studies suggests that there might be something else, perhaps
implementation strategies that affects whether or not program visualization tools benefit
students.

Implementation Strategies of Program Visualization

Some recent studies have tried to determine if implementation strategy is the hidden

factor in whether or not program visualization tools are effective. One of the most studied

strategies revolves around cognitive dissonance. Ma, et al. (2011) conducted three studies,

Running Head: EFFECTS OF PROGRAM VISUALIZATION 16

involving sample sizes of 43-66 college students in which some participants worked with
unaltered program visualization tools while others were given cognitive conflict activities.
Essentially, these activities presented students with incorrect animations and tasked the learners
with finding the error. Pre-tests and post-tests were used to determine the effectiveness of both
learning methods. The researchers concluded that “visualization alone appeared to help with
more straightforward concepts whereas a combination of cognitive conflict and visualization
showed more promise for more demanding concepts” (p. 58). Although the tool was not as
effective for simple concepts, the fact that it helped learners with more complex tasks is good
evidence that program visualization is a worthwhile tool for teachers to use. The essential
additional variable for success appears to be the addition of cognitive dissonance.

The way in which program visualization is used seems to determine the impact on
learning. Moreno, et al. (2014) also conducted a study to address the connection between
cognitive dissonance and program visualizations. While the control group used Jeliot to learn
programming concepts, the researchers intentionally gave their experimental group animations
that were incorrect with the modified software Jeliot ConAn. These students had to determine
what was wrong with the animations while the students in the control group watched correct
animations. The researchers found that the conflictive animations helped students learn
programming concepts, although the results were not significant due to the small sample size.
Still, the authors pointed out that “the content of the visualizations are not as decisive for
learning as the intended use of the visualization” (p. 629). This study suggests that the method of
program visualization implementation is more important than the choice of software being used

or even the content presented in the software.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 17

In order to investigate how implementation practices impacted student learning, a
working group of 11 computer science instructors reached out to many programming teachers
through an online survey to determine if programing visualization tools help students learn
complex programming concepts. In their conclusions, Naps, et al. (2002) stated that technology
does little to help students unless it is integrated in the form of active learning. The researchers
determined that most often visualizations are used for demonstrations or as optional additional
practice, but that a visualization is “of little educational value unless it engages learners in an
active learning activity” (p. 131). They categorized the implementation methods according to
Bloom’s Taxonomy and concluded that the integration methods with active learning were more
effective at helping students learn. This study provides more evidence that the way program
visualization tools are implemented can influence their effectiveness.

Other studies have identified different factors such as placement and level of integration
that influence the effectiveness of program visualization tools. Wang, et al. (2012) chose to
examine whether the placement of animation explanations was one of these factors. In their
study, 18 participants were split into two groups; one group took a programming course where
animations in Jeliot were shown before an explanation while the other group saw explanations
before animations. The researchers concluded that there was a significant improvement in the
learning of the animation-first group, but no difference for the explanation-first group, showing
that the implementation placement could be the key factor to whether or not program
visualization is effective. Another factor that has been investigated is the level of program
visualization tool integration into existing course materials. Researchers Lahtinen, Ahoniemi,
and Salo (2007) conducted research to determine if integrated program visualization could help

students learn in an introductory programming course. The 302 participants in their study were

Running Head: EFFECTS OF PROGRAM VISUALIZATION 18

given optional pre-exercises that were integrated into printed material and website resources for
the course. The findings suggested that program visualization was more helpful for abstract
concepts, but only for some students. The placement and level of integration of program
visualization tools is yet another factor that might influence how effective these tools really are.

Clearly the effectiveness of program visualization tools has created a research tension
that compels additional clarification. This could be due to the fact that each study implemented
the tool using a slightly different strategy. It is still unclear if program visualization is beneficial
only in certain conditions or for certain students.

Comparing Student Populations: The ‘“Middle Third”’ Theory

While some studies focus on whether or not visualization works for all students, several
groups of researchers have concluded that it is only effective for certain groups of students. In
one of the only studies about how special education students learn to program, researchers Ebel
and Ben-Ari (2006) examined students’ behaviors while using program visualization tools. They
observed 10 special education students during an introductory programming course and found
that “bad behaviors” such as being off task were non-existent when program visualization was
used in class. The researchers named this the “middle third effect”, a theory that states that
program visualization is most beneficial for students whose skills are neither strong nor weak
(Ebel & Ben-Ari, 2006, p. 4). This theory was originally proposed by Ben-Bassat Levy, et al
(2002). One of the authors taught two parallel introductory programming courses to high school
students. In one class, students used Jeliot 2000 (a slightly older version of Jeliot 3 with similar
functionality) while the control group used no program visualization tools. The researchers found
that the group of students who benefited the most was the group that they called “mediocre”

(Ben-Bassat Levy, et al., 2002, p. 10). For strong and weak students, the program visualization

Running Head: EFFECTS OF PROGRAM VISUALIZATION 19

did not have an effect, but the students who were struggling yet not at the bottom of their class
benefited greatly from the tool. This theory points out the fact that not all students will benefit
from the same method of instruction.

Confirmation of this “middle third” theory has been found in other research. The “middle
third” theory was also supported by the findings of Lahtinen, Jarvinen, and Melakoski-Vistbacka
(2007), who analyzed survey results from over 300 introductory programming students around
Europe. The researchers chose to ignore different implementation strategies of program
visualization tools and instead determine how the tools were used to help students learn. They
found that program visualization was most helpful for the students that thought programming
was challenging but knew they could still learn, noting that “the biggest user group of
visualizations are students who find the course challenging but not too difficult to pass” (p. 260).
Students who were overwhelmed in their course found no help from program visualization and
students who did not struggle to learn had no need for the program visualization tools. A similar
result was reached in the Rajala, et al. (2008) study previously described above. Although they
did not find any significant evidence that ViLLE was better than no use of a visualization tool,
they were able to conclude that ViLLE was significantly more effective for novices than
experienced programmers. The researchers noted “the learners’ short exposure to the tool makes
the result even more remarkable” (p. 29). Although these studies showed that program
visualization did not work for all students, most teachers would agree that a tool that helps even
some students to be more successful could still be considered useful. The use of program
visualization may be one factor in assuring greater student success, but are there other factors

that could influence student success in using program visualization?

Running Head: EFFECTS OF PROGRAM VISUALIZATION 20

Comparing Student Populations: Other Factors

In addition to examining the difference between novices and experts, some researchers
have chosen to examine additional factors that might help predict student success in learning
programming. Rountree, Rountree, and Robins (2002) conducted a large study of 472 first year
college students to determine if certain factors can predict student success. They found that
students who expected to do well in the class were more likely to be successful. They concluded
that “a positive attitude is more important than having the right background, and that students are
fairly good at estimating their own ability” (p. 124). This means that a positive attitude and
accurate estimates of ability can be more beneficial than programming experience or good grades
in math classes. In another similar study, Bergin and Reilly (2005) analyzed 15 different factors
that could potentially influence a student’s ability to learn how to code. They used a test and
questionnaire to determine which of the 15 factors was most influential among 96 first year
college students. Their results showed that comfort level with the course material as well as math
and science scores had the strongest correlation with performance. Clearly there are other student
characteristics that can help teachers determine how much scaffolding and support the students
will require. These factors, when attended to by teachers, might influence which students find
program visualization beneficial.

Summary

While the existing research offers no clear conclusion on whether or not program
visualization tools are effective at helping all students master abstract concepts, there has been
some evidence that it is helpful for at least some groups of learners. This study aims to add to the
existing research by determining if program visualization helps students master for loops and

while loops, the first abstract concept that Advanced Placement Computer Science students face.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 21

While most of the existing research has taken place in international college courses, this study
will take place in a high school setting in the United States. This study will also seek to
determine if program visualization is more effective for a certain group of students. Results of
the study will be used to help AP Computer Science teachers create lessons that help students

learn the complex concepts with which students traditionally struggle.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 22

CHAPTER THREE
Methodology

This study was conducted to gain more insight into whether or not program visualization

tools are helpful for high school students in an introductory programming course.
There were two research questions that guided the research:
1. How do program visualization tools relate to understanding of for loops and while
loops in an AP Computer Science course?
2. How do program visualization tools influence mastery of for loops and while loops
for different potential student populations (i.e. gender, ethnicity, programming
experience, academic achievement)?
This chapter will discuss the context for research, the research design, the sample
characteristics, the intervention, and the validity of the study.
Context for Research

Advanced Placement Computer Science is a relatively new course at the high school
selected for this research. It was offered for three years prior to the beginning of this study.
Enrollment in the course varies from 25 to 50 students each year. Although non-AP computer
science classes were offered in the past, AP Computer Science was the only computer science
course being offered when the study took place. This meant that the students in the course had a
wide variety of programming abilities; some of the students already knew a programming
language and others knew nothing about code.

The instructor of AP Computer Science had taught at the high school in this study for 12

years and taught at a different school for two years before that. This was his first year teaching

computer science. The researcher acted as his mentor as he transitioned into his new position.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 23

Five months before the study began, the researcher and the instructor met to discuss course
material, lesson plans, and instructional strategies. This initial meeting was for eight hours, and
the primary focus was to familiarize the instructor with Java. A second meeting was held four
months before the study began. During this meeting, the researcher assisted the instructor in
completing all of the lab exercises that students would be doing during the first semester. In the
weeks leading up to the study, the researcher and instructor exchanged emails nearly every day
to discuss course content and lesson plans. The researcher shared the research intervention
materials with the course instructor two weeks before the study began and included detailed
instructions with daily lesson plans for the nine-day study. These conversations between the
instructor and the researcher ensured the validity of the interventions described below.
Research Design

This research was a causal comparative study conducted to determine if Jeliot 3 makes a
significant impact on students’ understanding of for loops and while loops and to determine if
Jeliot 3 is more effective for certain populations of students. A pre-test, intermediate test, and
post-test was used to examine achievement over time. The research design was influenced by
the fact that instruction had to be identical for every student. Because of this restriction, it was
impossible to design an intervention that consisted of a control group with no program
visualization and a treatment group with program visualization. The resulting intervention
consisted of students learning without program visualization first and learning with program
visualization second. This made it difficult to draw conclusions about whether or not program
visualization was the reason for improvement, but it did allow for meaningful analysis of which

groups of students benefited from the tool.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 24

Sampling Procedures and Participant Characteristics

This research was conducted using a convenience sample of 24 students of a possible 25
students enrolled in Advanced Placement Computer Science at the selected high school. A
convenience sample was chosen because of the researcher’s connection to the school and the
program; the researcher helped develop the AP Computer Science curriculum, and thus had a
thorough understanding of what students would be expected to know and do. As explained
above, this class was the only programming course available at the high school selected, so the
programming experience and ability varied greatly among the students in the course. Five of the
24 participants were girls. The sample consisted of 14 seniors, 9 juniors, and 1 sophomore.
Sixteen students identified as white, 6 identified as Asian, 1 identified as Hispanic, and 1
identified as “other”. The students ranged in programming experience with 9 having no
experience and 15 having some programming experience.

Intervention

The nine-day study consisted of the following intervention plan. On the first day of the
study, which was a Tuesday, the instructor administered a pre-test (Appendix A), which was
designed to assess students’ initial understanding of for loops and while loops. The pre-test
consisted of three questions:

1. A question that asked students to use a while loop to print numbers that increased by six
after each iteration of the loop. This question was designed to assess whether or not
students could use a loop to iterate through several numbers.

2. A question that asked students to use nested for loops to print a pattern with asterisks and
commas. This question was designed to assess students’ understanding of nested loops (a

loop within a loop).

Running Head: EFFECTS OF PROGRAM VISUALIZATION 25

3. A question that asked students to use both a for loop and a while loop to count the
number of appearances of a letter in a word. This question was designed to assess
student’s understanding of the accumulator algorithm.

After administering the pre-test, the instructor directed students to a website that the
researcher created to host all of the materials for the study. The instructor showed a video on the
website that was created by the researcher. The video was about while loops. This video was
projected on the screen in the front of the room. Students watched the video together. The
instructor paused the video at certain points so that students could experiment with some code.
This style of teaching is a traditional instructional practice that involves no program visualization
tools, only a few static pictures and verbal explanations.

On the second day, the instructor played another video on the screen in the front of the
room, this time about for loops. The researcher also created this video, and it once again included
points at which the students stopped and experimented.

On the third and fourth day, the instructor helped students as they worked on lab
assignments. These assignments were short programming problems that the students worked on
individually or with their classmates. The problems were designed to be very similar to the pre-
test questions.

On the fifth day (which was a Monday and meant that students had a gap of two days in
between original learning and assessment), the instructor administered the intermediary test. The
intermediary test consisted of the same three questions from the pre-test in a different order
(Appendix A). After completing the intermediary test, students watched a video about how to use
Jeliot 3, a program visualization tool, and then began working on the visualization lab. As with

the first lab assignment, the students could work on their own or with their peers. The instructor

Running Head: EFFECTS OF PROGRAM VISUALIZATION 26

helped students as needed. The sixth and seventh day was more work time for this visualization
lab.

On the eighth day (which was a Monday after a four day weekend), the students had
another day to work with Jeliot. On the ninth day, they took a post-test (Appendix B). This test
consisted of three questions that were very similar to the pre-test and intermediary test. The
students also completed a questionnaire about their demographics (Appendix C).

Throughout the nine-day study, the instructor and the researcher emailed every day to
assess and discuss the students’ progress. The original plan was to complete the study in six
days, but changes were made to the schedule to accommodate some unforeseen timing and
scheduling issues. The researcher did not factor in the time it would take experienced
programmers to finish the pre-test. Additionally, many students were gone during a workday for
the PSAT. Both of these issues resulted in the need for a more days.

Validity

Careful consideration was given to the approval process, making sure that all district and
research requirements were met. After the student investigator obtained permission from the
university Institutional Review Board and the school board of the school selected for the research
study, the instructor of the course (not the researcher) sent an email to the parents and guardians
of all 25 students in the AP Computer Science course explaining the research study. The email
highlighted the fact that all students would be participating in the class activities whether they
participated in the research or not. Choosing to participate in the research only meant submitting
their assessments and questionnaire answers. The email from the instructor assured parents and
guardians that the researcher would never know the names of the students participating. Instead,

each student would be given a number for identification. The instructor then emailed the

Running Head: EFFECTS OF PROGRAM VISUALIZATION 27

parent/guardian consent forms and sent paper copies home with the students. He also distributed
paper copies of the student assent form in class. The instructor only explained what was on the
consent and assent forms to the students; he did not give out any other information about the
study. All of these steps ensured that students understood the necessary information about the
study without knowing intricate details that could affect their performance in the experiment.

The researcher maintained construct validity by basing the assessments and
questionnaires on past AP Computer Science assessments, which have been examined for both
validity and reliability in scoring, as well as the current literature. The pre-test, intermediary test,
and post-test were designed to represent three common applications of for loops and while loops
(See appendix A and B for the test questions and appendix D for the scoring rubric). The pre-test
and intermediary test featured identical questions in a different order. The post-test consisted of
similar questions with slight differences that did not affect the nature of the questions. The
researcher created the questionnaire to determine what populations were represented in the
sample. This document changed as the current literature was reviewed in order to include
populations that have already been studied by other researchers.

Confidentiality

The instructor created a list of student names matched with random ID numbers. After
administering the pre-test, intermediary test, post-test, and questionnaire, the instructor replaced
names on documents with ID numbers. The list matching ID numbers with student names was
never shown to the researcher, thus student identity remained completely anonymous throughout

the entire study.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 28

CHAPTER FOUR
Results
This study was conducted to gain more insight into whether or not program visualization
tools are helpful for high school students in an introductory programming course. There were
two research questions that guided this study:

1. How do program visualization tools relate to understanding of for loops and while loops
in an AP Computer Science course?

2. How do program visualization tools influence mastery of for loops and while loops for
different potential student populations (i.e. gender, ethnicity, programming experience,
academic achievement)?

The results presented in this chapter will begin to answer both of these questions.

Data Collection

The researcher created a rubric (Appendix D) to assess each problem of the pre-test,
intermediary test, and post-test (Appendix A and B). The rubric was the same for each version of
the assessment, although the problems were in different orders. The rubric was created so that
students could get 50% by knowing the basic idea of a for loop or while loop without being able
to execute it correctly. For example, if a student attempted to write the three parts of a for loop
(initialization, condition, and increment) but these led to incorrect answers, the student would
receive 50%.

The researcher wanted the scores to reflect students’ knowledge of for loops and while
loops, so points were not deducted for syntax errors such as misplaced brackets, combined lines

of code, and other minor mistakes. The researcher also did not differentiate between the equals

Running Head: EFFECTS OF PROGRAM VISUALIZATION 29

method and the equals operator (==) even though the difference would affect the outcome of the
code.

Some of the categories in the questionnaire to explore demographic differences
(Appendix C) required a protocol for interpretation. When collecting the data on “programming
experience”, for example, the researcher gave the students one point for each item they checked
off on the list. For example, a student who checked none of the boxes was given a programming
experience score of 0. A student who checked four boxes received a programming experience
score of 4. For “years accelerated” the students received a 0 if they were on the standard track
(Intermediate Algebra in 9th grade, Geometry in 10th grade, and Algebra 2 in 11th grade). The
student received a 1 if they were one year advanced (Geometry in 9th grade and Algebra 2 in
11th grade). The student received a 2 if they were two years advanced and so on. Classes after
Algebra 2 are electives, and thus did not affect the student's “years accelerated” rating.

Whole Group Comparison

To answer the first research question, the pre-test and post-test scores from the entire
sample were compared. The mean score increased from 3.083 on the pre-test (out of 38 points) to
20.083 on the post-test. A dependent t-test was conducted with the alternative hypothesis that the
mean pre-test score was less than the mean post-test score. This produced a t score of -6.013 and
a p value of less than 0.0001, demonstrating that the mean pre-test score was significantly less
than the mean post-test score. Next, the mean intermediary test score of 16.208 was examined by
conducting another t-test. This test, which compared the mean intermediary test score and the
mean post-test score, revealed that the mean intermediary score was not significantly less than
the post-test score (p = 0.15). There was, however, improvement overall from one assessment to

the next, as evidenced by the mean scores displayed in Table 1.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 30

Table 1

Whole Group Comparison

Whole Group
Mean Pre-Test Score 3.083
Mean Intermediary Score 16.208
Mean Post-Test Score 20.083

Ethnicity Comparison

To answer the second research question, different groups of students were compared to
see if the program visualization tools were more effective for certain populations. First, the
researcher investigated ethnicity. There were eight students that identified as something other
than “white” (six Asian students, one Hispanic student, and one that identified as “other”).
Because there were only eight “non-white” students, the researcher drew a random sample of
eight students who identified as “white” to compare to the “non-white” group. The random
sample was created using a random number generator. The pre-test, intermediary test, and post-

test scores are displayed in Table 2.

Table 2

Ethnicity Comparison: Pre-Test, Intermediary Test, and Post-Test Scores

“White” Group “Non-White Group”
Mean Pre-Test Score 4.125 1
Mean Intermediary Score 12.125 11.5

Mean Post-Test Score 18.375 16.25

Running Head: EFFECTS OF PROGRAM VISUALIZATION 31

Before analysis could take place, a t-test was conducted to confirm that there was no
statistical difference between the mean pre-test scores of the two groups. This ensured that the
groups were comparable. The alternative hypothesis was that the mean pre-test score of the
“non-white” students was not equal to the mean pre-test score of the “white” students. This test
resulted in a t score of -0.4903 and a p value of 0.63, which is not significant. This means that
there was no statistical difference between the groups at the start of the study.

Next, the researcher conducted a t-test using the alternative hypothesis that the mean
intermediary test score of the “non-white” students was not equal to the mean intermediary test
score of the “white” students. The null hypothesis could not be rejected (p = 0.92). There was no
statistical difference between the two groups on the intermediary test. This suggests that the
instruction that involved no program-visualization was equally effective for the two groups.

Finally, another t-test was conducted to compare the post-test scores of the two groups.
This also resulted in failing to reject the null hypothesis; there was no statistical difference
between the two groups on the post-test. The p value, however, was much smaller than the p
value from the previous test (p = 0.081). So although it cannot be concluded that program
visualization was more effective for white students, these results do suggest that it might have
had more influence on this group than the non-white group.

Math Confidence Comparison

The next factor examined was math confidence, which was measured by self-selected
scores on the questionnaire (Appendix C). The question to assess math confidence read, “On a
scale of 1-5, how would you rate your confidence level in math classes?” The choices were 1
(“Never confident”), 2 (“Confident less than half the time”), 3 (“Confident about half the time”),

4 (“Confident more than half the time”), or 5 (“Always confident”). For this comparison, “high

Running Head: EFFECTS OF PROGRAM VISUALIZATION 32

confidence” was a score of 4 or 5. In other words, students who said they are confident in math
class more than half the time. The “low confidence” was students with scores of 1,2, or 3. In
other words, students who said they are confident in math class half the time or less.

There were 10 students who identified their math confidence as low (a score of 1, 2, or
3). A random sample of students who identified their math confidence as high (a score of 4 or 5)
was drawn to achieve the same sample size for testing. The random sample was created using a

random number generator. The pre-test, intermediary test, and post-test scores are displayed in

Table 3.

Table 3

Math Confidence Comparison: Pre-Test, Intermediary Test, and Post-Test Scores

High Confidence Low Confidence
Mean Pre-Test Score 2.8 3.8
Mean Intermediary Score 20.6 13.5
Mean Post-Test Score 26.7 14.4

Once again, a t-test was conducted to confirm that there was no statistical difference
between the mean pre-test scores of the two groups. The alternative hypothesis was that the mean
pre-test score of the high confidence group was not equal to the mean pre-test score of the low
confidence group. This test resulted in a t score of -0.1754 and a p value of 0.86. This means that
there was no statistical difference between the groups at the start of the study.

Two t-tests were conducted to compare intermediary tests and post-tests between the two

groups. There was no statistical difference between mean intermediary scores for the high

Running Head: EFFECTS OF PROGRAM VISUALIZATION

confidence group and low confidence group (p = 0.23). There was, however, a statistical
difference between the mean post-test scores (p = 0.047), which suggests that there was a
difference in how effective program visualization was for students with high confidence and
students with low confidence. As seen in Table 3, it appears as though students with more
confidence in math classes benefited from Jeliot more than the students with low confidence.
Middle Third Comparison

The current literature references a “middle third” theory that states the middle third of
students benefit the most from program visualization tools (Ebel & Ben-Ari, 2006, p. 4). Other
researchers have noticed that high achieving students do not need program visualization to
succeed and low achieving students are so far behind that the program visualization is not
helpful. To test this theory in this research, the participants were divided into thirds based on
intermediary test scores (because there was so little difference in scores on the pre-test). The
means scores of each group can be seen in Table 4. Using the intermediary test scores provided a

clear delineation of the sample into three equal groups of eight participants. A t-test was

conducted to confirm that there were no significant differences before instruction (p = 0.94). This

allowed for more tests to be conducted.

To determine if the middle third of students benefited more from program visualization, a
t-test was conducted to compare the intermediary test scores. The alternative hypothesis was that
the mean intermediary test score for the middle third of students was greater than the mean
intermediary test score for the lower third of students. This test produced a t score of 1.569 and a
p value of 0.071, meaning that the mean score for middle third students was not significantly
greater than the lower third students. A second t-test was conduced to determine if the mean

post-test score for the middle third of students was greater than the mean post-test score for the

Running Head: EFFECTS OF PROGRAM VISUALIZATION 34

lower third of students. This test resulted in a t score of 2.079 and a p value of 0.03, meaning that
mean post-test score for the middle third of students was significantly greater than the mean
post-test score for the lower third of students. These results appear to confirm the middle third

theory revealed in the literature review, and as discussed further in Chapter Five.

Table 4

Middle Third Comparison: Pre-Test, Intermediary Test, and Post-Test Scores

“Upper Third” Group “Middle Third” Group “Lower Third” Group

Mean Pre-Test Score 7.875 0.875 0.5
Mean Intermediary Score 32.625 12.5 3.5
Mean Post-Test Score 33 20.25 7

Other Trends and Observations
There were some trends in the data that were noted without formal statistical analysis due
to the small sample size. For example, males appeared to improve more than females during the
non-program visualization instruction (represented by the intermediary test) while females
appeared to improve more than males during the program-visualization instruction (represented
by the post-test). This can be seen in Table 5. This trend suggests that program visualization was
more effective for female students, although a statistical analysis cannot be conducted due to the

small number of female students in the study (n =5).

Running Head: EFFECTS OF PROGRAM VISUALIZATION

Table 5

Gender Comparison: Changes in Scores

Female Male
Mean Intermediary Score — 11.2 13.63
Mean Pre-Test Score
Mean Post-Test Score — Mean 6 3.32

Intermediary Score

Other trends found in the data appear to support the “middle third” theory discussed
above. For example, Table 6 shows that the non-program visualization instruction (represented
by the intermediary test) helped most students improve their understanding. The program
visualization instruction (represented by the post-test), however, helped the un-accelerated
students more than the accelerated students. This suggests the students who are not usually
considered to be in the “upper third” benefited more from the program visualization than the

students who normally excel.

Table 6

Acceleration Comparison: Changes in Scores

35

0 Years 1 Year 2 Years 3 Years
Accelerated Accelerated Accelerated Accelerated
Mean Intermediary Score — 17.6 10.42 10.25 18
Mean Pre-Test Score
Mean Post-Test Score — 8 4.29 1.63 2.5

Mean Intermediary Score

Running Head: EFFECTS OF PROGRAM VISUALIZATION 36

Although no formal qualitative research was conducted, there were some relevant
observations gathered throughout the study. One participant noted on the post-test that the
program visualization was not as helpful as the normal Java compiler used in the non-program
visualization instruction, saying “I wrote most of my code in Dr. Java and learned from compile
errors, not Jeliot.” This student received a nearly perfect score (35/38) on the intermediary test,
leaving little room for improvement. His comment further demonstrates the “middle third”
theory; the high-achieving students are able to grasp abstract concepts through traditional
instruction and therefore show no improvement when given a tool like Jeliot.

Summary

The quantitative results of this case study suggest that the program visualization part of
the instruction did not significantly affect the whole group’s understanding of for loops and while
loops. The results do point to several differences in mean scores that suggest that program
visualization might have a different effect on certain groups of students. The analysis suggests
that white students might benefit differently by demonstrating increased achievement from tools
like Jeliot than students who are not white. Additionally, students who feel confident in math
class more than half the time might also find benefit from Jeliot differently than students with
low confidence. This research added evidence to the middle third theory, showing that program
visualization is most helpful for students who are neither high nor low achievers. All of this
analysis could be strengthened by larger sample sizes, but overall, these results suggest that

program visualization tools could be helpful for certain groups of students.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 37

CHAPTER FIVE
Conclusions

This study was conducted to gain more insight into whether or not program visualization
tools are helpful for high school students in an introductory programming course. There were
two research questions that guided this study:

1. How do program visualization tools relate to understanding of for loops and while loops
in an AP Computer Science course?

2. How do program visualization tools influence mastery of for loops and while loops for
different potential student populations (i.e. gender, ethnicity, programming experience,
academic achievement)?

This chapter will examine the conclusions that can be made based on the literature review
and the results outlined in Chapter Four. Limitations of this study and suggestions for future
research will also be discussed.

Research Question One

The nature of this research design made the first question difficult to answer, since it is
hard to tell if students’ scores improved because of exposure to Jeliot or simply from more time
working with for loops and while loops. Despite this, some conclusions can be made from the
results. The mean scores clearly increased after each form of instruction, although the mean post-
test scores were not significantly higher than the intermediary test scores. This is, in part, due to
the number of students who scored nearly all of the points on the intermediary test; these
students had very little room for improvement, resulting in a small difference between the
intermediary tests and post-tests. Overall, the results do not provide convincing evidence that

program visualization is beneficial for all students, as it is clear that some student did not need it

Running Head: EFFECTS OF PROGRAM VISUALIZATION 38

and some students did not learn from it. This research study, then, will better address the second
research question about which groups of students benefit from program visualization.
Research Question Two

Even though Jeliot was not effective for a// students, there are still many meaningful
conclusions to be made when comparing different student populations. Although the t-test
comparing white and non-white students did not show a significant difference between the
groups, there was a dramatic decrease in p values between the comparisons of the intermediary
tests (0.92) and the post-tests (0.081). This is clearly approaching significance, suggesting that
ethnicity may play a role in whether or not program visualization is effective. This is extremely
important for computer science teachers to consider as they look for ways to accommodate all
students in a field that is typically predominantly white. Clearly differentiation is needed to help
teachers reach all students, whether students benefit from program visualization or not.

The comparison between math confidence groups also provides insight into how teachers
can better accommodate students of all ability levels and backgrounds. There was no significant
difference between the high confidence and low confidence groups after the non-programming
visualization instruction, suggesting that this form of instruction had comparable impact
regardless of how confident the students felt about math. The post-tests, however, were
significantly different, meaning the program visualization had more of an impact on the students
with high math confidence than the students with low math confidence. This might mean that
teachers need to differentiate when implementing technology like Jeliot so that students will
succeed no matter their confidence level in math. Extra scaffolding, for example, might be
needed to help those students who are not confident to be able to benefit from program

visualization tools.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 39

There are other trends in the results that could impact the way that teachers implement
program visualization tools in the classroom. For example, it appears that females improved their
scores more than males when using Jeliot, but males improved more than females when using
non-program visualization tools. Computer science teachers may want to consider this as they
plan activities for students, perhaps offering a choice of Jeliot or non-Jeliot programming
exercises so that students can learn with the method they prefer. The trends in the data also
suggest that students who are not accelerated benefit the most from program visualization.
Differentiating lessons for students based on previous math experience could make program
visualization more meaningful for some students. Clearly it is important that students are given
options as they work on abstract concepts, as some will find program visualization extremely
helpful while others will find other methods of instruction more meaningful.

The results of this study provide more evidence for the “middle third” theory from the
literature which states that the students who find program visualization most meaningful are the
students who are neither low nor high achievers. The middle third and lower third of students
started out statistically similar before the study began, and remained statistically similar after
non-program visualization instruction. After using Jeliot, however, the middle third scored
significantly better than the lower third of students. This uncovers several important
considerations for computer science teachers who are trying to reach students who are falling
behind. First of all, these results serve as a reminder of the importance of differentiation to help
all students succeed; a tool that makes a significant impact on one group of students could have
no impact on another group. It is imperative, then, that computer science teachers are using
multiple representations of abstract concepts so that every student can succeed. Second, the

middle third theory suggests that a different tool or strategy is needed to reach students who fall

Running Head: EFFECTS OF PROGRAM VISUALIZATION 40

behind when the programming concepts become more abstract. For students who are already
struggling with basic syntax, program visualization will be more confusing than clarifying. The
middle third theory is an important reminder that differentiation and scaffolding are absolutely
necessary to help all students succeed.

Limitations

The biggest limitation of this study was the small sample size. Unfortunately enrollment
in AP Computer Science was low when this study took place, resulting in a sample of only 24
students with even smaller subgroups. For example, a comparison of male and female students
was impossible to conduct because only five female students participated in the study. The small
sample size also prevents any conclusions from being generalized to the population of all AP
Computer Science students.

The method of instruction also created some limitations. The researcher provided
instruction through videos, which allowed for no interaction with the students. The instructor
was able to answer questions on the practice assignments, but could not adapt the video recorded
instruction to meet the needs of students like a live teacher would do. The instructor noted that
the students were engaged, but it was difficult to tell if they were confused or had questions
because the instruction was recorded. Ideally, the researcher would have been present in the class
to present the lessons instead of presenting via video.

Another limitation of the study was the design of the study. Students took the post-test
after using a program visualization tool, but it is difficult to tell if an improvement in their scores
is due to the tool or the extra time spent on for loops and while loops. It was impossible,

however, to design the experiment with a control group, as all students had to learn the same

Running Head: EFFECTS OF PROGRAM VISUALIZATION 41

content in the same manner. This research also only used one kind of program visualization tool,
which limits the results to conclusions about Jeliot, not program visualization as a whole.
Suggestions For Future Research

This research design combined with qualitative data would make the results much richer
and more helpful for teachers. Because the researcher was not present for the instruction, there
were no direct observations made about the students’ engagement with or opinion of Jeliot.
Comments from the instructor were noted, but more qualitative evidence could help answer more
specific questions about the students’ experiences using Jeliot. Future studies could include
direct observations or feedback from students to create a mixed methods design.

A different research design might lead to results that could more accurately answer the
first research question. Future research should be designed to include a control group of students
that learn abstract concepts without program visualization tools. An experimental group would
learn the same material while using program visualization tools. Comparing the learning
between these two groups would produce better conclusions about whether or not program
visualization helps students learn because the variable of extra time would not be a factor. This
type of research design was implemented in much of the existing literature, but rarely at the high
school level.

Replication with larger sample sizes could add more evidence to the effectiveness of
program visualization on different groups of students. The small sample size of this study made
analysis difficult. Future research could examine the difference in understanding of females vs.
males and experienced programmers vs. non-experienced programmers, as well as investigate
other factors such as career interest and post-high school plans. This information could help

computer science teachers create lessons that are meaningful for every group of students.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 42

The evidence this study provides of the middle third theory exposes the importance of
finding an intervention for the “lower third” of students who are so far behind that program
visualization does not help them. Future research should investigate other tools, teaching
strategies, and interventions that could help this population of students who struggle with the
basics of programming. By differentiating instruction with different tools and interventions,
teachers can reach more students and help them succeed regardless of their previous experience
in the class.

Summary

This study examined the effectiveness of program visualization on students’
understanding of for loops and while loops and determined if certain groups of students
experienced varying effects of the program visualization tool being used. The results for the
whole group of students were not significant, leading to no conclusion on whether or not
program visualization helps students understand for loops and while loops. There were, however,
some significant differences between some populations of students. It can be concluded that
math confidence is a factor that influences the effectiveness of program visualization, and it
appears as though ethnicity may be a factor as well. Additionally, there was significant evidence
that students the middle third of students benefit the most from program visualization. All of
these conclusions stress the importance of differentiation so that all students can understand
abstract concepts and suggest that other interventions need to be investigated to help the students

who do not benefit from program visualization.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 43

References

Ben-Bassat Levy, R., Ben-Ari, M., Uronen, P. A. (2003). The jeliot 2000 program animation
system. Computers & Education (40), 1-15.

Bergin, S. & Reilly, R. (2005). Programming: Factors that influence success. Proceedings of the
36th SIGCSE Technical Symposium on Computer Science Education,4111-415. Doi:
10.1145/1047344.1047480

Butler, M. & Morgan, M. (2007). Learning challenges faced by novice programming students
studying high level and low feedback concepts. Proceedings of ascilite Singapore, 99-
107. Retrieved from http://www .ascilite.org/conferences/singapore07/procs/butler.pdf

Cisar, S. M., Radosav, D, Pinter, R., & Cisar, P. (2011). Effectiveness of program visualization
in learning java: A case study with jeliot 3. International Journal of Computers,
Communications & Control, (6), 668 — 680.

Creswell,J. W. (2014). Educational research: Planning, conducting, and evaluating qualitative
and quantitative research (5th ed.). Los Angeles: Sage.

Ebel, G. & Ben-Ari, M. (2006) Affective effects of program visualization. Proceedings of the
Second International Workshop on Computing Education Research, 1-5. Doi:
10.1145/1151588.1151590

Hongwarittorrn, N. & Krairit, D. (2010). Effects of program visualization (Jeliot3) on students’
performance and attitudes towards Java programming. Paper presented at the spring 8th
International conference on Computing, Communication and Control Technologies,
Orlando, Florida, USA. Retrieved from

http://www iiis.org/CDs2010/CD2010IMC/CCCT_2010/PapersPdf/TA750PM.pdf

Running Head: EFFECTS OF PROGRAM VISUALIZATION 44

Hundhausen, C. D., Douglas, S. A., & Stasko, J. T. (2002). A meta-study of algorithm
visualization effectiveness. Journal of Visual Languages and Computing, (13),259-290.
Doi: 10.1006/S1045-926X(09)00028-9

Kehoe, C., Stasko, J., & Taylor, A. (2001). Rethinking the evaluation of algorithm animations as
learning aids: An observational study. International Journal of Human-Computer
Studies, 54,265 - 284. Doi: 10.1006/ijhc.2000.0409

Kranch, D. A. (2011). Teaching the novice programmer: A study of instructional sequences and
perception. Education and Information Technologies, 17,291-313. Doi: 10.1007/x10639-
011-9158-8

Lahtinen, E., Jarvinen, H., & Melakoski-Vistbacka, S. (2007) Targeting program visualizations.
Proceedings of the 12th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education, 256-260. Doi: 10.1145/1268784.1268858

Lahtinen, E., Ahoniemi, T., & Salo, A. (2007). Effectiveness of integrating program
visualizations to a programming course. Proceedings of the Seventh Baltic Sea
Conference on Computing Education Research (88), 195-198.

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the models of
programming concepts held by novice programmers. Computer Science Education, 21
(1), 57-80. Doi: 10.1080/08993408.2011.554722

Moreno, A., & Joy, M. S. (2007). Jeliot 3 in a demanding educational setting. Electronic Notes
in Theoretical Computer Science (178),51-59.

Moreno, A.., Sutinen, E., & Joy, M. (2014). Defining and evaluating conflictive animations for

programming education: The case of Jeliot ConAn. Proceedings of the 45th ACM

Running Head: EFFECTS OF PROGRAM VISUALIZATION 45

Technical Symposium on Computer Science Education, 629-634. Doi:
10.1145/2538862.2538888

Naps, T.L., Rossling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A.,
Malmi, L., McNally, M., Rodger, S., & Valezquez-Iturbide, J. A. (2002) Exploring the
role of visualization and engagement in computer science education. Working Group
Reports from ITiCSE on Innovation and Technology in Science Education, 131-152. Doi:
10.1145/960568.782998.

Rajala, T., Laakso, M., Kaila, E., & Salakoski, T. (2008). Effectiveness of program visualization:
A case study with the VIiLLE tool. Journal of Information Technology Education, 7, 15-
32.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review
and discussion. Computer Science Education, 13 (2), 137-172. Doi:
10.1076/csed.13.2.137.14200

Rountree, N., Rountree, J., & Robins, A. (2002). Predictors of success and failure in a CS1
course. ACM SIGCSE Bulletin, 121-124. Doi: 10.1145/820127.820182.

Sorva, J., Karavirta, V., & Malmi, L. (2013). A review of generic program visualization systems
for introductory programming education. ACM Transactions on Computing Education,
13 (4), 1-64. Doi: 10.1145/2490822

Wang, P., Bednarik, R., & Moreno, A. (2008). During automatic program animation,
explanations after animations have greater impact than before animations. Proceedings of
the 12" Koli Calling International Conference on Computing Education Research, 100 —

109. Doi: 10.1145/2401796.2401808

Running Head: EFFECTS OF PROGRAM VISUALIZATION

Wiedenbeck, S., Fix, V., & Scholtz, J. (1993). Mental representations of programs by novices
and experts. Proceedings of the INTERACT 93 and CHI *93 Conference on Human

Factors in Computing Systems, 74-79. Doi: 10.1145/169059.169088

46

Running Head: EFFECTS OF PROGRAM VISUALIZATION 47

Appendix A
Pre-Test and Intermediary Test
1) Write a code fragment that prints multiples of 6 from 12 up to 60 (including both 12 and 60).

Each number should appear on a separate line. Do this using a while loop.

2) Write a code fragment that prints the following:

299 b

2999

Do this using nested for loops.

3) Assume that the following code has already been executed:

String letter = "t";

Write a code fragment that determines and prints the number of times that letter appears in a
String object called word. Assume that word has already been declared and assigned a String

value. Do this twice; once with a for loop and once with a while loop.

Use a for loop and a while loop.

Running Head: EFFECTS OF PROGRAM VISUALIZATION 48

Appendix B
Post-Test

1) Write a code fragment that prints multiples of 7 backwards from 77 to 14 (including both 77
and 14). Each number should appear on a separate line. Do this using a while loop.

2) Write a code fragment that prints the following:

2999

* %k

999
kok ok
599
kok ok ok
L)
kok ok ok o3k
’

K sk sk sk ook ok

Do this using nested for loops.

3) Assume that the following code has already been executed:

String smWord = "as";

Write a code fragment that determines and prints the number of times that smWord appears in a
String object called word. Assume that word has already been declared and assigned a String

value. Do this twice; once with a for loop and once with a while loop.

Use a for loop and a while loop

Running Head: EFFECTS OF PROGRAM VISUALIZATION 49

Appendix C
Questionnaire

What grade level are you currently in? (circle one)

9th grade

10th grade

11th grade

12th grade
How old are you?
What is your gender?
What is your race? (circle one)
American Indian . Black or African Native Hawaiian or)
or Alaskan Native Asian American Other Pacific Islander White Other

Are you of Hispanic, Latino, or Spanish origin? (circle one)
Yes
No

Which of the following programming-related activities had you done before this semester?
(check all that apply)

e Started a programming tutorial on Code.org but did not finish
¢ Completed one or more programming tutorials on Code.org
e Started a programming tutorial on Codecademy but did not finish
¢ Completed one or more programming tutorials on Codecademy
e Started a programming tutorial on a different website
o write it here:
* Completed one or more programming tutorials on a different website
o write it here:
* Taken a class on programming
* Read a book about programming
* Watched YouTube videos about programming
* Learned a programming language well enough to write code
o which language or languages?

e Other:

Running Head: EFFECTS OF PROGRAM VISUALIZATION 50

How many classes are you taking this semester that are honors or AP (including AP Computer
Science)? Include any honors-options you intend to complete.

How many classes are you taking this semester that are non-honors?
Next to each grade, write the math class (or classes) you took that year. If you didn’t take a math
class that year or if you haven’t reached that grade yet, write an “x” in the blank.

Grade Math Class(es) Taken That Year

9th Grade

10th Grade

11th Grade

12th Grade

On a scale of 1-5, how would you rate your confidence level in math classes?

1 2 3 4 5

Never Confident less Confident about half Confident more than | Always
confident than half the time | the time half the time confident

Running Head: EFFECTS OF PROGRAM VISUALIZATION

51

Appendix D
Rubric
Question 1: Printing Multiples
2 1 0
A variable is initialized that | A variable is initialized that | There is no initialization of a
keeps track of the number keeps track of the number variable to keep track of the
Initialization of times through the loop. of times through the loop. number of times through the
Ex:inti=12; loop.
The initialization leads to The initialization leads to
the correct answer. an incorrect answer.
The while loop includes a The while loop includes a There is not condition for the
Condition condition for the initialized condition for the initialized initialized variable.
Ex: while (i variable. variable.
<=60) The condition leads to the The condition leads to an
correct answer. incorrect answer.
The initialized variable is The initialized variable is There is no increment for the
incremented before the incremented before the initialized variable.
Increment loop restarts. loop restarts.
Ex: i+, The increment is in the The increment is in the
correct place that leads to wrong place that leads to
the correct answer. the correct answer.
. The content of the while The content of the while There is no content of the
While Loop ; g ;
Content loop is correct and leads to | loop is incorrect and leads | while loop.
the correct answer. to an incorrect answer.
Question 2: Nested For Loops
2 1 0
Outer Loo The outer loop consists of all | The outer loop consists of all There is no outer loop.
) 0P three parts of the for loop. three parts of the for loop.
Ex: for (int
r=1-r<= 6 Or the outer loop does
r++) ’ The outer loop leads to the The outer loop leads to an not consist of all three
correct answer. incorrect answer. parts of the for loop.
Inner Loo The inner loop consists of all | The inner loop consists of all There is no inner loop.
) op three parts of the for loop. three parts of the for loop.
Ex: for (int o .
c=1- c<=6: r the inner loop does
c++) ’ The inner loop leads to the The inner loop leads to an not consist of all three
correct answer. incorrect answer. parts of the for loop.
The content of the nested for | The content of the nested for There is no content of
Nested For

Loop Content

loops is correct and leads to
the correct answer.

loops is incorrect and leads to
an incorrect answer.

the nested for loops.

Running Head: EFFECTS OF PROGRAM VISUALIZATION

Question 3: The accumulator algorithm

52

For Loop: 2 1 0
o A variable is initialized that keeps track | A variable is initialized that keeps track | There is no initialization of a
Initialization of the number of times through the of the number of times through the variable to keep track of the
loop. The initialization leads to the loop. The initialization leads to an number of times through the
correct answer. incorrect answer. loop.
Counter A counter is initialized to keep track of A counter is initialized to keep track of There is no counter
o _ | the number of letters. The counter the number of letters. The counter initialized.
Ex:inttotal = |~ .. o .
0 initialization leads to the correct initialization leads to an incorrect
’ answer. answer.
Condition The while loop includes a condition for The while loop includes a condition for There is not condition for the
the initialized variable. The condition the initialized variable. The condition initialized variable.
leads to the correct answer. leads to an incorrect answer.
Counter The counter is incremented whenever a | The counter is incremented whenever a | There is no increment of the
Increment letter is found. This counter increment letter is found. This counter increment counter.
Ex: total = leads to the correct answer. leads to an incorrect answer.
total + 1;
The initialized variable is incremented The initialized variable is incremented There is no increment for the
Increment before the loop restarts. The increment | before the loop restarts. The increment | initialized variable.
is in the correct place that leads to the is in the wrong place that leads to the
correct answer. correct answer.
For Loop The content of the for loop is correct The content of the for loop is incorrect There is no content of the for
Content and leads to the correct answer. and leads to an incorrect answer. loop.
While Loop: 2 1 0
A variable is initialized that keeps A variable is initialized that keeps There is no initialization of a
Initialization track of the number of times through track of the number of times through variable to keep track of the
Ex:inti=0; the loop. The initialization leads to the | the loop. The initialization leads to an number of times through the
correct answer. incorrect answer. loop.
A counter is initialized to keep track of | A counter is initialized to keep track of | There is no counter
Counter the number of letters. The counter the number of letters. The counter initialized.

Ex: int total = 0;

initialization leads to the correct
answer.

initialization leads to an incorrect
answer.

Condition The while loop includes a condition for | The while loop includes a condition for | There is not condition for the
Ex: while the initialized variable. The condition the initialized variable. The condition initialized variable.
(i<word.length) leads to the correct answer. leads to an incorrect answer.

Counter The counter is incremented whenever | The counter is incremented whenever | There is no increment of the
Increment a letter is found. This counter a letter is found. This counter counter.

Ex: total = total +
1’.

increment leads to the correct answer.

increment leads to an incorrect
answer.

The initialized variable is incremented

The initialized variable is incremented

There is no increment for the

Increment before the loop restarts. The before the loop restarts. The initialized variable.
Ex: i++; increment is in the correct place that increment is in the wrong place that
leads to the correct answer. leads to the correct answer.
. The content of the while loop is The content of the while loop is There is no content of the
While Loop . : :
Content correct and leads to the correct incorrect and leads to an incorrect while loop.

answer.

answer.

	Minnesota State University, Mankato
	Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato
	2016

	Effects of Computer Program Visualization Tools on Student Populations
	Meghan Jayne Peterson
	Recommended Citation

	Microsoft Word - Thesis - Meghan Peterson - Final Draft.docx

