
Minnesota State University, Mankato
Cornerstone: A Collection of

Scholarly and Creative Works for
Minnesota State University,

Mankato
All Theses, Dissertations, and Other Capstone
Projects Theses, Dissertations, and Other Capstone Projects

2015

Model-Based Verification for SIMULINK Design
Victor Oke
Minnesota State University - Mankato

Follow this and additional works at: http://cornerstone.lib.mnsu.edu/etds

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Other Capstone Projects at Cornerstone: A Collection of
Scholarly and Creative Works for Minnesota State University, Mankato. It has been accepted for inclusion in All Theses, Dissertations, and Other
Capstone Projects by an authorized administrator of Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University,
Mankato.

Recommended Citation
Oke, Victor, "Model-Based Verification for SIMULINK Design" (2015). All Theses, Dissertations, and Other Capstone Projects. Paper
517.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository for Minnesota State University, Mankato

https://core.ac.uk/display/214121861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/theses_dissertations-capstone?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/etds?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cornerstone.lib.mnsu.edu/etds/517?utm_source=cornerstone.lib.mnsu.edu%2Fetds%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages

 Model-Based Verification for SIMULINK Design

 By

 Victor Oke

Master’s Thesis submitted in partial fulfillment of the requirements for the degree

of Masters of Science in Engineering.

 Department of Electrical and Computer

 Engineering and Technology

 Minnesota State University, Mankato

 Mankato, Minnesota

 December 2015

Advisor: Dr. Nannan He

Model-Based Verification for SIMULINK Design

Victor Oke

This thesis has been examined and approved by the following members of the student’s

committee.

 Dr. Nannan He, Advisor

 Dr. Vincent Winstead

 Dr. Muhammad Khaliq

iii

 Table of Contents

Chapter 1 ...1

1.1 Introduction ..1

1.2 Scope ...2

1.2 Method ...2

1.3 Related Work ..3

1.4 Structure ...4

Chapter 2 ...5

2.1 Model-Based Design ...5

2.2 Model-Based Testing (MBT) ...6

2.2.1 Importance of MBT...6

2.3 Quality Control Techniques in MBT ...7

2.4 Testing ...8

2.5 Definition of Terms Related to Testing ...9

2.6 Test Techniques ..11

2.7 Testing Levels and Testing Process ..13

2.8 Formal Verification/Model Checking..15

2.9 Ladder Logic...18

2.10 Simulink ...21

Chapter 3 ...23

3.1 Methodology...23

3.1.1 Overview..23

3.1.2 Case Study..24

3.1.3 Implementation Details ..25

3.1.4 Gene-auto and CBMC ...27

3.1.5 Miter Model and Mutation ...30

3.1.6 Observation ..35

3.1.7 Future Work ...36

Chapter 4 ...38

Conclusions..38

Appendix A..39

A.1 ..39

iv

A.2 ..42

A.3 ..43

REFERENCES...56

v

 List of Figures

Figure 1: SUT Black-Box..12

Figure 2: Model-Based Testing Level ..14

Figure 3: Model-Based Testing Process..15

Figure 4: Simple ladder logic Diagram ...18

Figure 5: Normally close and Normally Open Contact ..19

Figure 6: OR Symbol Equivalency...19

Figure 7: AND Symbol Equivalency ..20

Figure 8: NAND Symbol Equivalency ...20

Figure 9: Simple Simulink model...22

Figure 10: Block Diagram for Modeling Procedure ...23

Figure 11: Water Tank Control System ..24

Figure 12: Water Tank Control System Simulink Model ...26

Figure 13: Simulink Model - PLC ladder Logic Equivalency ...27

Figure 14: Gene-auto Simulation Output ..28

Figure 15: CBMC Simulation Output ...29

Figure 16: Miter Model Block Diagram ...33

Figure 17: Miter Model Verification Result ..34

Figure 18: Diagram showing the location of M1_7_3 ..36

vi

 Acknowledgements

My sincere appreciation goes to my advisor, Dr. Nannan He, for her patience, understanding,

encouragements and the confidence she has in me to make this thesis a reality. She really assists

me in the research and always willing to listen to my concerns. I also want to express my

gratitude to Dr. Vincent Winstead for his incessant support. His advice for me on this thesis and

throughout the length of my masters program is indeed valuable. I can’t do without thanking all

my professors in Electrical Engineering department for their supports.

My wife Leslie is just so wholesome; her impacts on my success cannot be underestimated. The

work wouldn’t have been accomplished without the support of my family and friends. Thanks to

everyone.

To the God almighty, the alpha and omega, who in His infinite mercy supports me and guides

me throughout this program, all the glory and honor be onto your holy name.

1

 Chapter 1

1.1 Introduction
Software development engineering deals with the series of approaches that are based on the

software modeling as the primary form of expression. Sometimes, these models are explicitly

designed including the executable actions and the supporting codes are well written by hand.

Codes can also be generated from these models, ranging from system skeletons to complete,

deployable products. Until present, White-Box(structural) or Code-Based testing have been

studied by many research groups. However, systems have become more sophisticated and code

lines have incomparably grown. Diving into details in program codes can be too cumbersome for

testers because it requires lots of efforts, money and time, that is the reason why testers generally

adopt Black-Box(functional) testing [19] rather than White-Box testing [22].

Model-based Testing (MBT) is the automatic generation of software test procedure, using the

models of system requirements and behavior. Automatic support is required for good

functionality of MBT and this is probably the most popular software testing [24] used for

verification and validation techniques for modeling software under test (SUT) [23]. Model-based

Testing can either be black-box or grey-box considering the level of abstraction of the model

from which the behavior of SUT is observed. Black-box MBT consists of high level of

abstraction representing the SUT behavior, while the grey-box MBT describes the model with

details of the design information. White-box testing is not usually considered MBT [29].

Also with the increasing demand in software products, customers expect more reliable, efficient

and a quality software product that contains advanced features and functionality. The

competition between many companies forces the manufacturer to deliver the product with certain

2

prerequisites within a short period of time. This necessitates a short period of testing time. There

comes the need for test automation. Automation of testing not only reduces the effort and time

but also the cost incurred as testing needs to be done regressively when meeting tight project

schedules. The focus of this thesis is on the evaluation of software testing methods and the

requirements related to these testing methods. The requirements relating to the methods of

testing are in the domain of embedded real-time systems.

1.2 Scope
The scope of this thesis covers the design level, testing level and the verification level. Since all

these levels of design result in comprehensive and confidence design, all hands are put together

to go through all the three levels of design, although more emphasis are laid on design and the

verification level and these are also in the user interface level of application. The design is

accomplished by the use of Simulink module and the verification is being done by bounded

model checker for C (CBMC), Gene-Auto [30] is used as the testing tool. Some suggestions for

future design are also included.

1.2 Method
Solid background knowledge was developed after a thorough literature study on model based

design and testing. The design in this thesis stems from the challenges associated with an

industrial application model applied to automatic water tank control system. From the

requirements which must be met to get this water tank in place, knowledge of ladder logic was

applied. The ladder logic design was accomplished and the testing was executed but the

verification was almost impossible except for the timeliness properties which were done using

Uppaal [17] and this led to using Simulink-based design modeling to achieve proper verification.

3

The water tank model will be designed in Matlab/Simulink and the properties will be verified

with Bounded Model Checker for C (CBMC). CBMC only understands C code and therefore

cannot run the Simulink model without compilation. Therefore Gene-auto will be introduced.

Gene-Auto automatically converts the Simulink model to its equivalent C code [13] and this also

serves as a test tool because during the conversion, any mismatch in the design will result in

conversion failure and the C code will not be generated until this error is fixed. After a successful

generation of C code, CBMC [26] will be used to run the code for verification. Assertion follows

to assert the properties of the model.

In addition, automatic generation of miter model will be developed, this allows automatic

injection of mutant [15] in the miter model and the behavior (output) of individual mutated miter

model will be compared using the same inputs (Test cases) and then verified by using the above

procedures.

1.3 Related Work
Our work on Simulink model analysis is related to available methods in the literature. For

instance, code generated by Simulink was automatically validated using a decision procedure,

(Strichman and Ryabtsev [13]). This was done against some verification conditions which were

extracted from the model. Most authors touch a small fragment of Simulink model and only

discuss the approximate behavior of the model [5]. In contrast, our work extends these existing

results to a deeper level. Specifically, the precise behavior of the model was explicitly analyzed.

Our work is also related to previous work on the generation of test vectors with the use of

software model checkers [25]. CBMC or other similar techniques have been reportedly used by

4

some papers for generating high –coverage test suites and our work is closely related to these

implementations. Mutant injection in a model is also part of our work in this thesis and this has

equally been touched in various dimensions by some other authors [15]. Some papers described

single mutations [1] while combination of faults has been considered by others [4] in mutant

models. Bounded model checking method for estimating coverage was described by GroBe et al.

[7] which explained implementing the flip mutation at a given cycle and the verification is done

by model checker. Impact of equivalent mutations was described by Schuler et al. [16] and the

means of detecting such mutations was also discussed.

1.4 Structure
The thesis work was first introduced in chapter 1 where we discussed the scope of the thesis, the

method used to execute our work and the related work. We also went ahead to discuss Model-

based design, Model-based testing and the testing procedures. Ladder logic, Simulink and the

relationship between the two will be discussed in chapter 2. Chapter 3 describes the thesis

methodology where the whole work procedures are executed and the system properties are

verified. Some observations are drawn and suggestions for future designs are also discussed.

Then, the last part provides concluding remarks to all the work done.

5

Chapter 2

2.1 Model-Based Design
Model-Based Design is a visual and math-based method of describing complex control design

problems. Its usefulness is not limited to industrial applications but also motion control,

aerospace and automotive applications. This happens to be the efficient methodology applied in

embedded system design and it consists of four ordered steps of the development process: (1)

plant modeling, (2) analyzing and synthesizing a controller for the plant, (3) simultaneous

simulation of the plant and that of the controller, (4) deploying the controller [27]. Model-Based

Design is a more cost effective and time-saving approach in the development of dynamic

systems, not limited to control systems but also signal processing and communication systems.

Traditional design methodology consists of complex structures and extensive software code

development, but the Model based design touchstone is completely different. Designers use

continuous-time and discrete-time building blocks to formulate a model with advanced

functional characteristics. The formulated models with the corresponding simulation support

tools can result in rapid prototyping and enhance software testing, software/hardware validation

and the verification process. The Model-Based Design development process starts from

requirements analysis to design and implementation, followed by testing and verification. Some

of the advantages of Model-based Design that makes it a more efficient approach are that

common design environments are used across project teams, designs are directly linked to the

requirements, early stage error detection and correction, software codes and design

documentation are automatically generated, algorithms are refined through multi-domain

simulation. In addition, the test suites are reusable. More information regarding Model-based

design for embedded system is discussed in [28].

6

2.2 Model-Based Testing (MBT)
Model Based Testing is a software testing method in which test cases are derived entirely or

partially from a behavioral model that describes the System Under Test, (SUT). Most model-

based testing inherits the complexity of the domain, or more particularly of the related domain

models, the basic model is abstract and tries to describe the system in whole or in less detailed

mode. The generated test case from this model is as abstract as the original model and this is

called the Abstract Test Suites (ATS). Since this is abstract, it is not potentially executable but

can provide an Executable Test Suite (ETS) that perfectly runs the SUT. There is no particular

best method to create test cases because many methods have been developed to generate this

from the models and fundamentally software testing is often heuristic based and experimental.

Most of the time the package is created, namely Test Requirements, which includes the test stop

conditions and information with regard to the SUT part which should be tested.

Test requirements are usually a result of merging the whole test configuration related to the

design decision.

2.2.1 Importance of MBT

The main benefit of MBT is to generate a wide range of test cases in short span of time. Even

though modeling takes a considerable amount of time, it will always be less than deriving the test

cases manually. MBT allows us to test every module of the system at each stage in order to

detect which part does not satisfy the design specification before the whole design is coupled or

put into operation. This approach saves time. It allows one to figure out design errors,

inconsistencies or uncontrollable failures in design. Again, Model Based Testing is related to

7

how well the automation can be implemented. Therefore, the models that are formal, well-

defined functional interpretations, or machine readable models can in principle originate test

cases automatically. These models are commonly translated to State Transition Systems (STS) or

Finite State Automata (FSA). These STS or FSA show the feasible configuration of SUT. Thus,

to generate a test case STS/FSA is ought to find an executable path. An arbitrary feasible

execution path works as a test case. This technique is only possible if the model is Deterministic

Finite Automaton, FDA, or if it is reducible to a FDA. Based on the designed model, test cases

are usually generated and prioritization of the test cases will be needed to structure the testing

process and reduce test effort. Standard test generation criterion such as boundary value analysis,

equivalence class partitioning and cycle coverage are generally used. But the underlying factor is

the selection of any criteria that covers all the requirements.

2.3 Quality Control Techniques in MBT
Approaches to quality control techniques in Model-based design are Validation and Verification.

 Validation is just the measure of correctness or completeness of how a design

specification or requirement is being implemented. This is actually done to detect gross

error in the system. This validation is incomplete of course, but this is not very important

in this context as compared to the usual refinement-to-code context. With Model-Based

Testing, if some errors remain in the model, they are very likely to be detected when the

generated tests are run against the system under test.

 Verification is the way of scrutinizing the consistency of a system with respect to

specified design requirements. The two steps in verification are Testing and Formal

Verification/Model Checking.

8

2.4 Testing
 This is used to validate control system programs and subsequently detect errors. It can still be

understood as the process of systematically evaluating a system by observing its execution. The

main advantage of testing is its scalability, which means that it can handle millions of line of

code but this does not guarantee correctness because there is possibility of a system being

successfully tested and still contain errors. For the purpose of this thesis, Gene-auto is used as the

testing tool. This converts the designed SIMULINK model to its equivalent C-code.

Meaning of Testing

Testing can be interpreted in several ways depending one’s point of view however general

understanding of testing is described below, some of which is contained in Beizer’s testing levels

[20];

 Testing can be understood as tester’s confidence booster. At least if all detected failures

have been removed from a system, a tester will have confidence on the correctness of the

system. It is understood that testing does not guarantee the absence of faults.

 Testing can also be described as getting the variation between the actual and expected

behaviors of the system under test which brings about possibilities of detecting functional

failures.

 Testing is actually detecting failures and not the cause of the failures. This clarifies the

difference between testing and debugging because only debugging finds cause of a

particular failure. It does not prove absence of faults.

9

2.5 Definition of Terms Related to Testing
There are several notations used in testing procedures and few of these are described below.

They are commonly used throughout the thesis.

 Test Case: This is a set of input stimuli to be introduced into a system and the expected

behavior of the system under which a tester will determine whether the system under test

satisfies requirements or works correctly. Tester can also find problems in the

requirements or design during this process. It is good practice for testers to test one thing

at a time in order to ensure that test cases are not complicated or overlapped. In test cases,

both the positive scenarios and the negative scenario must be covered, and these must be

accurate, traceable, repeatable and be reusable if necessary.

 Abstract Test Case: This gives an idea of the test case structure and the information

about satisfied coverage criteria, it is actually made up of abstract information about the

set of input and output where the concrete information like parameter values or function

names are missing. This is usually the first step in test case generation and it cannot be

directly used on the actual system under test because of its high abstraction level and lack

of concrete information about the SUT and its environment.

 Concrete Test Case: This comprises of the present of abstract test case together with the

missing concrete information which gives it sufficient details to be actively executed and

correctly communicate with the system under test (SUT).

 Test Suite: This is set of detailed test cases that show some specific set of behaviors and

contains some information about the configuration to be used during testing. The

executable test suite is usually interfaced with the SUT through the test harness.

 Test Harness: This brings about automation of test data under varying conditions and

monitoring its outputs with test execution engine and test script repository. It is also

10

called Automated Test Framework. Test harness plays very important roles in testing

procedure such as automating the test process, executing test suites of test cases,

generating corresponding test results and ensuring that subsequent test runs are exact

duplicates of the previous ones. Description of the elements of a typical test case is

presented in the table 1.

T. C. ID Test case ID

T. C. Summary The test case summary or objective

T. S. ID Test suite ID for this test case

RRID This is the related requirement ID to which the test case can be traced

Prerequisites The combination of preconditions that must be met before test execution

Test procedure All the steps taken to execute the test

Test Data All the parameters needed to conduct the test

Expected Result The expected test output

Actual Result The actual test output generated after test execution

Test Status The conclusion to the test output either successful or failed

Remarks Any suggestion or comments related to the test conducts

Created By Name of the author that derived the test case

D.O.C The actual date the test case was created

Execution Date The actual date the test was executed

Executed By The name of the actual person conducted the test

Test Environment The kind of software or hardware used to carry out the test procedures

 Table 1: Elements of Test Case

11

 Test Oracle: This is used to determine the status of test whether it failed or passed. It

handles this by comparing what it knows to be the actual behaviors of the system, to the

behaviors of the SUT for a specific test-case input at a particular time. No test is able to

detect a failure without this.

 Debugging: This is the process by which a fault causing a particular failure in a given

time is being located.

Whenever a fault is detected in a system, it is understandable that not all inputs fed into

the system caused the incorrect output which is known as failure and relating a particular

failure with a corresponding fault will often be very difficult. And so, these concepts are

better analyzed by fault/failure model which states that for a failure to be observed, the

below three conditions must be observed;

o Reachability: The location of the fault in the program must be reachable.

o Infection: It must be confirmed that the state of the program in that particular

location where the fault occur must be incorrect.

o Propagation: The infected state of the program must propagate to cause incorrect

output.

2.6 Test Techniques
Test techniques can be explained from the knowledge and the observability of the system under

test. This can be conducted under black-box, white-box and gray-box testing.

Black-Box Testing: This refers to testing a system where the testers have no specific knowledge

of the internal matters or the internal workings of the system. Testers only have knowledge of the

possible input and expected output values but do not know how the program actually arrives at

those output values. This is represented in figure 1. The source code and the architecture

12

knowledge of the system are not known, therefore the in-output functionality of the system are

only allowed to be tested. Because of this, black-box testing is considered to be functional testing

and is known as opaque box testing or closed box testing. The advantage of this is that tester can

be non-technical since there is no need for the tester to have detailed functional knowledge of the

system and that the test will be done from an end user’s point of view, because the system must

be accepted by the end user. The disadvantage of this is that since all possible inputs in a limited

testing time will be difficult to identify, then writing test cases may be slow or difficult.

 Figure 1: SUT Black-Box

White-Box Testing: This refers to testing a system with full knowledge of its internal matters

and this can still be used to create tests because there is access to all source code and the

architecture documents. With the access to this information, white-box testing is not restricted to

the detection of failures, but bugs and vulnerabilities are also easily detected compared to the

black box testing and we can be confident of getting more complete testing coverage since we

precisely know what to test. This is also known as clear box testing. The advantage of this is the

higher quality testing which is more thorough with the possibility of covering most paths because

of the wide knowledge and information about the internal matters of the system. The main

disadvantage of white-box testing is that highly skilled resources with thorough programming

knowledge and implementation is required since text can be very complex and high effort is

actually needed to scrutinize all aspect of the program.

13

Gray-Box Testing: Gray-box testing is actually the combination of both black-box and the

white-box testing. It is testing a system with partial knowledge of the internal matters of the

system. This knowledge is usually constrained to detailed design documents and architecture

diagrams. This testing technique is used to design tests at white-box level and execute them at

black-box level. Gray-box testing is commonly used for commercial model-based testing where

the tester have the rich knowledge of the internal matters of the system at the design level but all

these knowledge are not known or not accessible by any tester at the execution level.

2.7 Testing Levels and Testing Process
System development management can be explained from series of models but development

knowledge from V-Model is found to be more pronounced because it’s comprised of

development stages at the top and the testing stages at the bottom. Figure 2 shows the importance

of early execution test in system design because it is clearly understood that late execution test

will definitely have an impact on the early development stages. The development stages range

from the system requirements and specification, doing the requirement analysis, system being

designed and arranged in modules, and implementation. The testing stages comprised of module

testing for classes, integration testing which deals with components consisting of classes, system

testing which integrate all components and the acceptance testing of the customer.

14

 Figure 2: Model-Based Testing Level

Utilizing the style of user interface (UI) design could be a very good approach where the design

application flow is explicitly described in the UI level. In this the models act as transformer

between the source, which can be a UI specification, and the target, which can be a test

automation script. The beauty of this is that it forms an easy process in the sense that the tester

only has to provide the test automation parameters into the model, execute the test and finally

analyze the results. The whole process is made possible with the availability of tools which can

convert user interface specification into an application model, and create test cases from it.

Figure 3 below described the Model-based testing process.

Module

Design

System

Design

Requirement

Analysis

System Requirement

and Specification

Implementation

Requirement

Analysis

System

Testing

Integration

Testing

Module

Testing

15

 Figure 3: Model-Based Testing Process

2.8 Formal Verification/Model Checking
This actually ensures correctness and consistency, but not scalability. Basically, Model Checking

was created as a method of assuring whether an attribute of a specification is acceptable in the

model. The model of the SUT and the specific requirement to be examined in the model checker

will be developed, and if this attribute is acceptable in the model, in as much as the attribute is

under test to get proved, the model checker identifies instances and contradictions. An instance

can be a path in the execution of the model where the attribute is satisfied, while contradiction is

a path where the attribute failed. This particular path can be reused as a test case several times.

The earlier verification is performed in a design the sooner the errors are detected and rectified.

It is very important to verify the integrity of the designed model before deploying it on a target

embedded controller for build and integration because of the cost and scarcity of physical

prototypes. Verification of design integrity is usually achieved through simulation and coverage

analysis. Numerical overflow is one of the indication of poor design integrity and this condition

can easily be curbed with simulation by stress testing the minimum and maximum numerical

values of the model. Another poor design integrity indicator is the unreachable logic which

Generate Test

Input

Check Test Result
Run

Test

Convert Test

Case

Design Test

Model

Produce

Coverage

Measure

Reliability

Generate

Expected Result

16

means that part of the design is missing an important aspect during specification, implementation

and the test creation. This cannot be easily detected through mere simulation but structural

coverage can be best applied for the detection. To determine if the test passed or failed, model

assertion is employed. This ensured that signal does not exceed its boundary during simulation or

testing and it does this by stopping the execution when it’s about to happen.

Two common verification tools;

 CBMC: Software bounded model checking for C. It automatically proves the correctness

of C codes in bound but this does not verify the timeliness requirement. The original

brain behind the Bounded model checker (BMC) was to develop an environment where

the modeling system is associated with program traces that violate some specific

requirements and clarifies satisfy resulting formulae. Application of CBMC is becoming

very popular, this is not limited to automatic test generation for verification of circuits

and microprocessor designs [14] but also many papers have actually applied BMC to

formally verify finite systems and develop software verification [11]. Bounded Model

Checker for C programs (CBMC) was used in this paper as automatic test generator,

performing assertion and system verification. The key idea of CBMC is to work with

low-level ANSI-C programs[12], discover array bounds, pointer constructs correctness,

and user-provided assertions, also checks all other system safety properties [9]. The

importance of CBMC in increasing the productivity of the entire software development

process cannot be ignored, this enhancement has been achieved by reducing the cost of

the testing phase. Since random testing does not provide enough confidence for proving

the correctness of a compiled system because it solely relies on probability and finding

semantically small faults with it is not guaranteed. Making up for this inefficiency

17

involves providing set of tests that covers 100% of the code. The use of CBMC was

effectively experimented in this paper where we were able to verify the modules of an

industrial water tank control system by generating set of test for individual function

performed by each module and this provides 100% coverage of the code. If any part of

the program violates the requirement, CBMC will return an error-trace which is an

assignment to input variables. This error trace return is important in automatic test

generation because a property has to be violated and this is achieved by inserting an

assertion code that must be violated by the program using user-provided assertion.

CBMC will generate an error trace return assigning vio lating value to the input variable.

 UPPAAL: This is a widely used model checker for real-time systems and it is modeled in

timed automaton. A timed automaton is a non-deterministic finite state machine which

uses a clock to express its timing properties. A clock can be set to zero and gradually

increases its value linearly with time. At any instance, the value of a clock is equal to

time elapsed since the last time it was reset. Timed automata comprised of control state,

variables and the clocks. Here, transition is only possible when the associated timed

constrain is satisfied and its guard expression evaluates to true in the system state.

Execution of timed automata are infinite sequences of system states that fulfill the

invariants which may be either the passing of time or running of transitions. UPPAAL

explicitly verified the system timeliness properties by using the UPPAAL Timed

Automata (UPTA) which is an extended version of timed automata, to specify a system

as a network of timed automata consisting locations and transitions. Transitions between

these locations describe the behavior of the system.

18

2.9 Ladder Logic
Concept of Programmable Logic Controller (PLC) originated from the knowledge of relay logic

control system and Ladder logic happen to be the conventional programming language for the

PLC because of the resemblance between the ladder logic programming diagram and that of

relay logic control system. The brief introductions about Ladder logic programming can be better

described by converting a simple switch program to a relay logic and finally to PLC ladder logic.

Industrial Load control electrical circuit diagram can also be used to describe Ladder logic

programs since this is basically the open or closed switch concept. It is understood by engineers

or technicians that opened switch disconnects (break contact) the load from incoming current

while the closed switch connects (make contact) the load to the incoming current, this is also

known as an ON/OFF switch. The switch can be manually or automatically controlled depending

on the application available. Figure 4 below represents a simple ladder logic diagram.

 Figure 4: Simple ladder logic Diagram

The switch has to be connected before the power can flow to the lamp and light up the lamp. The

horizontal line represents the flow of current. The switch used above is called a normally-open

contact and there is also another one called the normally-close contact, this is shown in the figure

5. This can be extended to PLC application by connecting the switch to the PLC input, the lamp

to the PLC output and the same program is run. Combination of contacts in various dimensions

makes up the ladder logic program and most of these combinations are briefly described. This is

called ladder logic because of its ladder nature and the combination of the contacts function as

19

logical operators. Normally open contact will be closed (connected) when it is activated and the

normally close contact will be opened (disconnected) when activated.

 Figure 5: Normally close and Normally Open Contact

 Figure 6: OR Symbol Equivalency

A B Lamp

OFF OFF OFF

OFF ON ON

ON OFF ON

ON ON ON

 Table 2: Representing logic “OR”

20

 Figure 7: AND Symbol Equivalency

A B Lamp

OFF OFF OFF

OFF ON OFF

ON OFF OFF

ON ON ON

 Table 3: Representing logic “AND”

 Figure 8: NAND Symbol Equivalency

21

A B Lamp

OFF OFF ON

OFF ON ON

ON OFF ON

ON ON OFF

 Table 4: Representing logic “NAND”

In the figure 6 above, the lamp will turn ON when either of the contact A or B is activated, or

when both are activated simultaneously. Table 2 above describes the OR operation. Figure 7

describes AND gate operation, the lamp turns ON only when both contact A and B are activated.

If contact A is activated and contact B is not or either way, the lamp will not be turned ON.

Table 3 also describes this scenario. In figure 8, both contact A and contact B need to be

activated for the lamp to be OFF, but except that, any combination of contact A and B will

definitely turn ON the lamp as described in table 4 above.

Knowledge of the PLC ladder logic programming and the possibility of relating it to logic gate

operator equivalency helps a lot in this thesis to make the combination of the requirement

analysis for modeling the industrial water tank control system, and these were transformed and

explicitly modeled using Simulink.

2.10 Simulink

Simulink is an interactive graphical environment where model-based design for embedded

system or dynamic system is been created and simulated [8]. This provides an easier and faster

way to develop a model compared to text-based programming language (like C programming)

because of the explicit details provided by graphical models and enhanced intellectual controls.

A model represents a system which consists of collection of blocks. All these set of block

22

libraries in Simulink are used for modeling (combine, modify and generate output) and

simulation (display signals) or to test some time-varying systems, they actually help in clarifying

requirements analysis, validation and verification. Application of Simulink is not limited to the

area of controls and communications but also very useful in image processing, video processing

and signal processing. Simulink also use lines to transmit signals from block to block, this is

usually done by transmitting the signal from the output terminal of one block to the input

terminal of another. Figure 9 shows an example of basic Simulink model. Some examples of

common Simulink blocks are listed below;

 Sources: These are used for signal generation and comprised of Signal generator, Step

function, Random number, Ramp and Constant.

 Linear and Connections: This comprised of continuous-time system element,

Connections and Linear blocks such as math Operations blocks (Add, Product, Gain,

Sum), summing junctions, Signal routing (Mux and Demux) etc.

 Nonlinear Operators: These include Saturation, Transport Delay, Arbitrary functions

etc.

 Discrete: This consists of discrete-time system elements such as State-Space, Transfer

function, Integrator etc.

 Sinks: These are used to display or output signals. Examples are Scope, XY Graph etc.

 Figure 9: Simple Simulink model

23

 Chapter 3

3.1 Methodology
This thesis work is done by carrying out research and executing the design on industrial water

tank control system shown in figure11.This section describes the details of all the procedures

taken to implement the model.

3.1.1 Overview
The work started from gathering the requirements to be taken into consideration for the design,

followed by modeling of the industrial water tank control system with respect to these

requirements using PLC ladder logic Programming. The content of the ladder logic is converted

to its equivalent simulink model, then all the verifications and assertions were carried out. Figure

describes the block diagram for the procedures.

 Figure 10: Block Diagram for Modeling Procedure

24

3.1.2 Case Study
 To ensure effective operation of the tank, some safety features were established, this is shown

in table 4 below. The control unit consists of three flow lines (Flow line1, Flow line2 and

backflow line) with two pumps, Up flow valve, Down flow valve and Backflow valve, there is

also a Water tank and the Output valve. The requirement is that the two flow lines must not

operate at the same time and this is accomplished by ensuring that the pumps are not working at

the same time, should this situation occur, this indicates a Pump failure and thereby error in the

control system. Any Pump failure must cause the associated valve to stop working. Another

safety is that the valves must be actuated for 10 seconds before the pump should be opened,

which means that no pump should work if the valves are not activated for this specified time.

Should the Pumps be Idle, both Output valve and the Backflow valve must stop operating. The

table 2 below presents the lists of the inputs and the outputs for the control system interactions.

 Figure 11: Water Tank Control System

25

Li_CH_REQ Request for changing of the line

H_FLOW High flow rate water distribution request

L_FLOW Low flow rate water distribution request

Lx_FAIL Failure from any of the Pumps

SP_FAIL Indication that there is no distribution

Lx_PUMP Starting up any of the Pumps

Lx_UP Activate the Upstream valve of any of the Pumps

Lx_DOWN Activate the Downstream valve of any of the Pumps

BFW_VALVE Backflow valve opened

OUT_VALVE Output valve

 Table 5: Input and Output flow

3.1.3 Implementation Details
All the requirements for this system were strictly examined, demonstrated with ladder logic and

transformed into a Simulink model. Since our priority for this design is safety, then the control

system has to be modeled with the programming environment where adequate testing can be

performed, and explicit validation and verification can be carried out. For this kind of design,

modeling using Simulink appears to be a good choice because Simulink programs can eventually

be converted to a different form of programming languages which can be understood by some

testing and verification tools. This flexibility feature has made Simulink probably the most

popular tool for model based designs.

26

 Figure 12: Water Tank Control System Simulink Model

Figure 12 above consists of four subsystems which are made of a combination of logical

operators. These are arranged and connected in such a way as to perform the functions specified

by the control tank and meet up with all the safety conditions included in the requirement

analysis. This starts with a step by step analysis of simple PLC ladder logic programming and

interpreting it into combination and connection of simple logical operator blocks in Simulink to

check the specific requirement at that step. Figure 13 gives details of this interpretation for the

first subsystem.

27

 Figure 13: Simulink Model - PLC ladder Logic Equivalency

The description of this model is that Li_CH_REQ is “AND” with the “NOT” of L1_PRIO to

output CONT_L1. Again, Li_CH_REQ is “AND” with L1_PRIO to output CONT_L2. Then,

CONT_L1 is “OR” with L1_PRIO and the output is “AND” with the “NOT” of CONT_L2 to

output CONT_L2. The Delay1 is a time delay which was used to denote that L1_PRIO is a

feedback. This same block combinational procedure was used to model the whole system

according to the specified requirement and it was reduced to four different subsystems i.e. the

first subsystem, WTM_SUB1, WTM_SUB2 and WTM_SUB3.

3.1.4 Gene-auto and CBMC
After modeling each stage of the system, a test is been carried out to ensure that there is no

wrong block combinations or connection error in the design. This early stage testing is one of the

advantages of Simulink modeling because it saves design time, reduce cost of design and boost

confidence of the designer. It is actually understood that it will be very discouraging if a model

cannot be tested for error at the early stage and found out to contain some errors when tested at

28

the end of the whole design. This means that the designer will either have to start all over again

or undergo series of troubleshooting steps before any found error might be fixed or rectified.

The Simulink model shown in figure 11 is then run through Gene-auto (testing tool) and the

result showing successful simulation is shown in figure 14.

 Figure 14: Gene-auto Simulation Output

The purpose for this step is to convert the Simulink model to its equivalent C program and to

ensure that the design is modeled correctly because if there is lapse in the design, the simulation

will return error result. This step is called the testing level and the fact that there is a successful

simulation does not guarantee a perfect design nor does it indicate that all design requirements

are met. Since the model is been successfully converted to C language then a verification

procedure has been carried out with the use of model checking tools called CBMC. But before

CBMC can understand the C program generated by the Gene-auto, a “main” function needs to be

added to the program because without this the CBMC simulation will return conversion error.

The generated Gene-auto C program is shown at the appendix A.3 and the main function added

to the C program is shown below. The window showing the successful verification with the

CBMC is presented in figure 15.

29

void main() {

T_WATER_TANK_MODELLING3_io *t_io;

T_WATER_TANK_MODELLING3_state *t_state;

WATER_TANK_MODELLING3_compute(t_io, t_state);

}

 Figure 15: CBMC Simulation Output

Successful verification indicates that the system under test (SUT) is correctly modeled and that is

free of error. The next step is checking the properties of the system whether it meets up with the

modeling requirements and this can be done by assertion. Assertion is a statement about the

intended behavior or a requirement of the system and Assertion-Based Verification ensured that

the system/design obey the temporary assertions. This is combining the test cases in such a way

that satisfy the intended behavior of the system. The corresponding assertion statement for this

system is presented below;

void main() {

t_WATER_TANK_MODELING3_io*t_io;

30

t_WATER_TANK_MODELING3_state*t_state;

t_WATER_TANK_MODELING3_compute(t_io, t_state);

assert(t_io L2_PUMP ==1 || t_io L2_PUMP ==0); //verify Boolean input

assert(t_io L1_PUMP ==1 || t_io L1_PUMP ==0); //verify Boolean input

assert((t_io L1_PUMP ==1 && t_io L2_PUMP ==0) || (t_io L1_PUMP ==1 &&

 t_io L2_PUMP ==0) || (t_io L1_PUMP ==0 && t_io L2_PUMP ==0)); //verify that
the two pumps don’t work at the same time.

Assert((t_io L1_PUMP ==0 && t_io L2_PUMP ==0) || (t_io BF_VALVE ==0 &&

 t_io OUT_VALVE ==0)); //verify that if both pumps are not working then the backflow
valve and the output valve must stop working.

assert((t_io L2_FAILURE ==1) && (t_io L2_FAIL ==1) && (t_io L2_PUMP ==0);
//verify that any failure in line 2 will cause L2_PUMP to stop. }

All the above assertion statements return successful verification after simulation. Note that any

assertion that does not obey the system requirement will return verification failure.

3.1.5 Miter Model and Mutation

Now, since all of the system requirements are met, we go ahead to search for any redundant

component in the design and this is done by automatic generation of miter modules for the

system, followed by injection of mutants (mutation) in each miter module [1]. The purpose of

this is to kill mutants in the system. A mutant is killed if a block is changed in the design and it

caused a significant output change. But if no output change detected (i.e. no mutant killed) after

changing the block multiple times, then the particular replaced block is redundant and it can be

safely removed from the original system without changing the expected output of the system.

This in return actually reduces the size of the system. The more mutants killed in a system, the

closer is the system to correctness and the more the confidence of the tester [15]. The system

consist of four different logical operator blocks which are AND, OR, NOR, NOT and two time

31

delay blocks. The logical operator “AND” and “OR” is only considered for miter modules

generation. There are seven “AND” blocks and nine “OR” blocks in the system, each of these

blocks can be mutated in five different ways i.e. the “AND” block can be changed to OR,

NAND, NOR, XOR, NXOR and “OR” block can be changed to AND, NAND, NOR, XOR, X-

NOR as described in table 6 below. This means that 40 different miter modules are generated

ranging from “miter1_1_1”, “miter1_1_2” to “miter2_9_5”. But this mutation steps is applied to

one block changed in the system at a time. Injection of mutant to a particular block at a time is

better compared to mutant injection to many logical operator blocks at a time because the later

might result into negative effect cancellation and the system behaves as if nothing has changed

[6]. The Matlab script used for automatic generation of the miter modules and the injection of

individual mutant is presented at the Appendix A.1. The diagram describing one of the miter

models is also shown in Appendix A.2.

 Table6: Describing Mutation blocks

32

The expression Miterx_y_z used in this work represents the changes made to the mutated part of

the miter model and the meaning of the annotations is described below;

X = represents the number that corresponds to the type of the original block

Y = represents the position of the original block in the system

Z = this is the number that represents the type of the block used as a mutant

The next step is to run the mutated models with Gene-auto. Since there are large numbers of

models to run, then this has to be done automatically. The below batch file is used to

automatically run the Gene-auto.

@echo off

REM list all files with suffix docx in the directory

FOR %%f IN (miter?_?_?.mdl) DO (

C:\Users\VICTOR\Documents\Gene-Auto\geneauto2\geneauto2.bat %%f

ECHO %%f

)

The simulation is successfully completed. After this level, verification steps with the model

checker (CBMC) follows. Any of the models that return a successful verification with the

assertion of the original model’s outputs and the mutated model’s outputs, indicates that the

mutated logical operator block in that model is redundant and it can be successfully removed

without harming any part of the system, in other word, no mutant is killed or there is an

equivalent mutant. Otherwise this will return verification failed. This is shown in figure 16. For

this thesis, the verification returned failure for the assertion made for all the miter models (the

33

original models and the mutated models), which means that the original model’s output

(behavior) is not equal to the mutated model’s output (behavior). In this case it is glaring that the

injection of mutants has caused behavioral differences in the mutated models.

 Figure 16: Miter Model Block Diagram

The assertion statement to compare the output of the original model with the output of the

mutated model for the miter model “miter2_1_5” is shown below and the verification result is

shown in figure 17.

void main() {

_Bool t1,t2,t3,t4,t5,t6,t7,t8;

t_miter2_1_5_io *t_io;

t_miter2_1_5_state *t_state;

 miter2_1_5_compute(t_io,t_state);

 t1= t_io->L1_UP == t_io->L1_UP1;

 t2= t_io->L2_UP == t_io->L2_UP1;

 t3= t_io->L2_PUMP == t_io->L2_PUMP1;

34

 t4= t_io->L1_PUMP == t_io->L1_PUMP1;

 t5= t_io->L1_DOWN == t_io->L1_DOWN1;

 t6= t_io->L2_DOWN == t_io->L2_DOWN1;

 t7= t_io->OUT_VALVE == t_io->OUT_VALVE1;

 t8= t_io->BF_VALVE == t_io->BF_VALVE1;

 assert(t1 && t2 && t3 && t4 && t5 && t6 && t7 && t8);

 }

 Figure 17: Miter Model Verification Result

35

Miter

Output

Miter1_1_2 Miter1_3_1 Miter1_5_4 Miter1_7_3 Miter2_1_5 Miter2_3_3 Miter2_6_4 Miter2_9_3

t1 FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE

t2 TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE

t3 TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE

t4 FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE

t5 FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE

t6 TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE

t7 TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE

t8 FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

 Table 6: Miter Model Output Result

3.1.6 Observation

The assertion statements were conducted for all the miter models. The above verification table 6

was drawn for the mutant injected at the location close to the system input, around the middle

part of the system and close to the system output. It can be seen that the verification failed for all

the miter models which indicates that all these mutants were killed. It can also be inferred that

the Output t7 is more tolerant to faults because no matter what mutant is injected into the system,

the behavior still tends to remain the same except for the mutant injected at location Miter1_7_3.

The mutant injected at location Miter1_7_3 actually have great effect on the output t7 because it

is located very close to the output as shown in figure 18 below. As it was explained earlier,

Miter1_7_3 means that the mutant “OR” is applied to the 7th “AND” block in the system. All

other outputs are seen to be more sensitive to faults.

36

Explanation of M1_7_3

1= represents the original logical operator block which is in this case “AND” block,

7 = means that the “AND” block changed is located at the seventh position in the system, which

is very close to the output because there are only seven “AND” block in the system.

3 = indicates that the “AND” block is changed to “NOR” block

 Figure 18: Diagram showing the location of M1_7_3

3.1.7 Future Work

More work can still be done on this system in the future to make the system more robust because

high fault tolerant systems can survive more extreme environments and tend to be more reliable.

This can be done by finding ways of quenching or absorbing all the effects introduced into the

37

system by the injected mutants before getting to the system output, irrespective of the inputs to

the system. These mutants can be described in real life scenario as unforeseen environmental

changes that can affect the system behavior. Implementing this will definitely strengthen the

confidence of the system designer as well as the system users.

38

 Chapter 4

Conclusions
We have presented a methodology for model-based verification. We believe that the goals of this

thesis work have been met because all the design system properties were explicitly verified and

satisfied. We started from an interpretation of the PLC ladder logic represented as a Simulink

model, followed by conversion of the Simulink model to C program using Gene-auto. Some

main functions and assertion statements were added to conduct the verification using CBMC. We

also went further to generate miter models which enable the comparison of the original system

behavior with the mutated system behavior. Suggestions on how the system can be made more

robust were also discussed.

39

Appendix A

A.1

The Matlab script that automatically generates the miter models and the injection of mutants is

presented below;

function gen_miterv2(model_name)
 % step 1 probe model

 [all_ logicBlocks, all_ANDBlocks, all_ORBlocks, all_NOTBlocks] = probe1(model_name);
 N_AND = length(all_ANDBlocks);
 N_OR = length(all_ORBlocks);

 arr = [N_AND N_OR];

 for i = 1:2
 fo r j = 1 : arr(i)
 for k = 1 : 5
 bdclose('all') ;

 load_system('WATER_TANK_MODELLING3') ;
 new_system('empty', 'Model') ;

 Simulink.SubSystem.copyContentsToBlockDiagram('WATER_TANK_M ODELLING3/WTM', 'empty') ;
 Simulink.BlockDiagram.copyContentsToSubSystem('empty', 'WATER_TANK_MODELLING3/MITA') ;

 name = sprintf('miter%d_%d_%d', i, j, k) ;
 save_system('WATER_TANK_MODELLING3', name) ;

 c lose_system('WATER_TANK_MODELLING3', 0) ;
 close_system('empty', 0) ;
 end
 end
 end
 % generate miter models
 for i = 1:2
 fo r jj = 1 : arr(i)
 for k = 1 : 5

 name = sprintf('miter%d_%d_%d', i, jj, k) ;
 miter_handler = load_system(name) ;

 mu_sys = find_system(miter_handler, 'SearchDepth', 1, ...
 'BlockType', 'SubSystem', 'Name', 'MITA') ;

 % add 10 outport blocks
 new_b_handler{1} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/L2_UP'], ...
 'MakeNameUnique', 'on') ;
 new_b_handler{2} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/L1_UP'], ...
 'MakeNameUnique', 'on') ;

40

 new_b_handler{3} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/EN'], ...
 'MakeNameUnique', 'on') ;
 new_b_handler{4} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/L1_PUMP'], ...
 'MakeNameUnique', 'on') ;
 new_b_handler{5} = add_block('built -in/Outport', [get(mu_sys, 'Parent'), '/L1_DOWN'], ...
 'MakeNameUnique', 'on') ;
 new_b_handler{6} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/EN1'], ...
 'MakeNameUnique', 'on') ;
 new_b_handler{7} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/L2_PUMP'], ...
 'MakeNameUnique', 'on') ;
 new_b_handler{8} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/L2_DOW N'], ...
 'MakeNameUnique', 'on') ;
 new_b_handler{9} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/OUT_VALVE'], ...
 'MakeNameUnique', 'on') ;
 new_b_handler{10} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/BF_VALVE'], ...
 'MakeNameUnique', 'on') ;
 sys_inports = find_system(miter_handler, 'SearchDepth', 1, ...
 'BlockType', 'Inport') ;
 %length(sys_inports)

 port_handlers = get(mu_sys(1), 'PortHandles') ;
 inports = port_handlers.Inport;
 outports = port_handlers.Outport;
 %length(inports)

 fo r j = 1:length(inports)
 srcPort_handler = get(sys_inports(j), 'PortHandle ') ;
 add_line(get(mu_sys, 'Path'), srcPort_handler.Outport(1), inports(j)) ;
 end

 fo r j = 1:length(outports)
 dstPort_handler = get(new_b_handler{j}, 'PortHandle') ;
 add_line(get(mu_sys, 'Path'), outports(j), dstPort_handler.Inport(1)) ;
 end

 save_system(name) ;
 close_system(name) ;
 end
 end
 end

 % generate mutants
 for i = 1:2
 fo r jj = 1 : arr(i)
 for k = 1 : 5

 name = sprintf('miter%d_%d_%d', i, jj, k) ;
 miter_handler = load_system(name) ;

 mutated_tank = find_system(miter_handler, 'SearchDepth', '1', ...
 'BlockType', 'SubSystem') ;
 %length(mutated_tank)

 if i == 1

41

 selectedBlocks = find_system(mutated_tank(1), 'BlockType', 'Logic ', 'Operator', 'AND') ;
 length(selectedBlocks)
 for t j = 1:length(selectedBlocks)
 if t j == jj
 if k == 1
 set_param(selectedBlocks(t j), 'Operator', 'OR');
 break;
 elseif k == 2
 set_param(selectedBlocks(t j), 'Operator', 'NAND');
 elseif k == 3
 set_param(selectedBlocks(t j), 'Operator', 'NOR');
 elseif k == 4
 set_param(selectedBlocks(t j), 'Operator', 'XOR');
 else
 set_param(selectedBlocks(t j), 'Operator', 'NXOR');
 end
 end
 end
 else
 selectedBlocks = find_system(mutated_tank(1), 'BlockType', 'Logic ', 'Operator', 'OR') ;
 end
 if i == 2
 selectedBlocks = find_system(mutated_tank(1), 'BlockType', 'Logic ', 'Operator', 'OR') ;
 length(selectedBlocks)
 for t j = 1:length(selectedBlocks)
 if t j == jj
 if k == 1
 set_param(selectedBlocks(t j), 'Operator', 'XOR');
 elseif k == 2
 set_param(selectedBlocks(t j), 'Operator', 'NXOR');
 elseif k == 3
 set_param(selectedBlocks(t j), 'Operator', 'NAND');
 elseif k == 4
 set_param(selectedBlocks(t j), 'Operator', 'NOR');
 else
 set_param(selectedBlocks(t j), 'Operator', 'AND');
 end
 end
 end
 else
 selectedBlocks = find_system(mutated_tank(1), 'BlockType', 'Logic ', 'Operator', 'AND') ;
 end

 save_system(name) ;
 close_system(name) ;
 end
 end
 end

42

A.2

The diagram of one of the generated miter models is shown below;

43

A.3
Gene-auto C program for WATER_TANK_MODELING3

/*

 WATER_TANK_MODELLING3.c

 Generated by Gene-Auto toolset ver 2.4.10

 (launcher GALauncher)

 Generated on: 17/04/2015 08:42:37.581

 source model: WATER_TANK_MODELLING3

 model version: 7.5

 last saved by:

 last saved on:

*/

/* Includes */

#include "WATER_TANK_MODELLING3.h"

/* Function definitions */

void WATER_TANK_MODELLING3_init(t_WATER_TANK_MODELLING3_state *_state_) {

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<SequentialBlock: name=Unit Delay> */

 state->Unit_Delay_memory_1 = TO_GABOOL(0);

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<SequentialBlock: name=Unit Delay> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<SequentialBlock: name=Unit Delay> */

44

 state->Unit_Delay_memory_2 = TO_GABOOL(0);

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<SequentialBlock: name=Unit Delay> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SequentialBlock:

name=Unit Delay> */

 state->Unit_Delay_memory_3 = TO_GABOOL(0);

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SequentialBlock:

name=Unit Delay> */

}

void WATER_TANK_MODELLING3_compute(t_WATER_TANK_MODELLING3_io *_io_,

t_WATER_TANK_MODELLING3_state *_state_) {

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=LINE_SWAP>/<OutDataPort: name=> */

 GABOOL LINE_SWAP;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=L2_FAILURE>/<OutDataPort: name=> */

 GABOOL L2_FAILURE;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=H_FLOW>/<OutDataPort: name=> */

 GABOOL H_FLOW;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=L_FLOW>/<OutDataPort: name=> */

 GABOOL L_FLOW;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=L1_FAIL>/<OutDataPort: name=> */

 GABOOL L1_FAIL;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=SP_FAIL>/<OutDataPort: name=> */

 GABOOL SP_FAIL;

45

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=L2_FAIL>/<OutDataPort: name=> */

 GABOOL L2_FAIL;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SequentialB lock:

name=Unit Delay>/<OutDataPort: name=> */

 GABOOL Unit_Delay_2;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator>/<OutDataPort: name=> */

 GABOOL Logical_Operator;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator1>/<OutDataPort: name=> */

 GABOOL Logical_Operator1_2;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator2>/<OutDataPort: name=> */

 GABOOL Logical_Operator2_2;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator3>/<OutDataPort: name=> */

 GABOOL Logical_Operator3_2;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator4>/<OutDataPort: name=> */

 GABOOL Logical_Operator4_2;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator5>/<OutDataPort: name=> */

 GABOOL Logical_Operator5;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<SequentialBlock: name=Unit Delay>/<OutDataPort: name=> */

 GABOOL Unit_Delay_1;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator10>/<OutDataPort: name=> */

 GABOOL Logical_Operator10;

46

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator11>/<OutDataPort: name=> */

 GABOOL Logical_Operator11;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator12>/<OutDataPort: name=> */

 GABOOL Logical_Operator12;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator13>/<OutDataPort: name=> */

 GABOOL Logical_Operator13;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator6>/<OutDataPort: name=> */

 GABOOL Logical_Operator6;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator7>/<OutDataPort: name=> */

 GABOOL Logical_Operator7;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator8>/<OutDataPort: name=> */

 GABOOL Logical_Operator8;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator9>/<OutDataPort: name=> */

 GABOOL Logical_Operator9;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<SequentialBlock: name=Unit Delay>/<OutDataPort: name=> */

 GABOOL Unit_Delay_3;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator14>/<OutDataPort: name=> */

 GABOOL Logical_Operator14;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator15>/<OutDataPort: name=> */

 GABOOL RS_L2_S;

47

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator16>/<OutDataPort: name=> */

 GABOOL Logical_Operator16;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator17>/<OutDataPort: name=> */

 GABOOL Logical_Operator17;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator18>/<OutDataPort: name=> */

 GABOOL Logical_Operator18;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator19>/<OutDataPort: name=> */

 GABOOL Logical_Operator19;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator20>/<OutDataPort: name=> */

 GABOOL Logical_Operator20;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator1>/<OutDataPort: name=> */

 GABOOL Logical_Operator1_1;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator2>/<OutDataPort: name=> */

 GABOOL Logical_Operator2_1;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator3>/<OutDataPort: name=> */

 GABOOL Logical_Operator3_1;

 /* Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator4>/<OutDataPort: name=> */

 GABOOL Logical_Operator4_1;

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<SequentialBlock: name=Unit Delay> */

 Unit_Delay_3 = _state_->Unit_Delay_memory_1;

48

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<SequentialBlock: name=Unit Delay> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=LINE_SWAP> */

 LINE_SWAP = _io_->LINE_SWAP;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=LINE_SWAP> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=L2_FAIL> */

 L2_FAIL = _io_->L2_FAIL;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=L2_FAIL> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=L2_FAILURE> */

 L2_FAILURE = _io_->L2_FAILURE;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=L2_FAILURE> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<SequentialBlock: name=Unit Delay> */

 Unit_Delay_1 = _state_->Unit_Delay_memory_2;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<SequentialBlock: name=Unit Delay> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator1> */

 Logical_Operator1_2 = !Unit_Delay_1;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator1> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator> */

 Logical_Operator = LINE_SWAP && Logical_Operator1_2;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator> */

49

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator2> */

 Logical_Operator2_2 = LINE_SWAP && Unit_Delay_1;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator2> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator4> */

 Logical_Operator4_2 = !Logical_Operator2_2;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator4> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator5> */

 Logical_Operator5 = Logical_Operator || Unit_Delay_1;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator5> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator3> */

 Logical_Operator3_2 = Logical_Operator4_2 && Logical_Operator5;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator3> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator14> */

 Logical_Operator14 = !Logical_Operator3_2;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator14> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator15> */

 RS_L2_S = Logical_Operator14 || L2_FAILURE;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator15> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=H_FLOW> */

50

 H_FLOW = _io_->H_FLOW;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=H_FLOW> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=L_FLOW> */

 L_FLOW = _io_->L_FLOW;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=L_FLOW> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator16> */

 Logical_Operator16 = !(H_FLOW || L_FLOW);

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator16> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator9> */

 Logical_Operator9 = !(H_FLOW || L_FLOW);

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator9> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=L1_FAIL> */

 L1_FAIL = _io_->L1_FAIL;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=L1_FAIL> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=SP_FAIL> */

 SP_FAIL = _io_->SP_FAIL;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock:

name=SP_FAIL> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator10> */

 Logical_Operator10 = Logical_Operator9 || L1_FAIL || SP_FAIL;

51

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator10> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator12> */

 Logical_Operator12 = !Logical_Operator10;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator12> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator4> */

 Logical_Operator4_1 = !H_FLOW;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator4> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SequentialBlock:

name=Unit Delay> */

 Unit_Delay_2 = _state_->Unit_Delay_memory_3;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SequentialBlock:

name=Unit Delay> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator6> */

 Logical_Operator6 = !Unit_Delay_2;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator6> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator7> */

 Logical_Operator7 = Logical_Operator3_2 && Logical_Operator6;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator7> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator8> */

 Logical_Operator8 = Logical_Operator7 || L2_FAILURE;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator8> */

52

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator11> */

 Logical_Operator11 = Unit_Delay_3 || Logical_Operator8;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator11> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator18> */

 Logical_Operator18 = RS_L2_S || Unit_Delay_2;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator18> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator13> */

 Logical_Operator13 = Logical_Operator11 && Logical_Operator12;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator13> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=L1_UP> */

 io->L1_UP = Logical_Operator13;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=L1_UP> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: name=EN>

*/

 io->EN = Logical_Operator13;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: name=EN> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator17> */

 Logical_Operator17 = SP_FAIL || Logical_Operator16 || Logical_Operator13 || L2_FAIL;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator17> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator19> */

53

 Logical_Operator19 = !Logical_Operator17;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator19> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator20> */

 Logical_Operator20 = Logical_Operator18 && Logical_Operator19;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator20> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=L2_UP> */

 io->L2_UP = Logical_Operator20;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=L2_UP> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=L1_PUMP> */

 io->L1_PUMP = Logical_Operator13;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=L1_PUMP> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=L1_DOWN> */

 io->L1_DOWN = Logical_Operator13;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=L1_DOWN> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=EN1> */

 io->EN1 = Logical_Operator20;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: name=EN1>

*/

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator2> */

 Logical_Operator2_1 = Logical_Operator13 && Logical_Operator20;

54

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator2> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=L2_PUMP> */

 io->L2_PUMP = Logical_Operator20;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=L2_PUMP> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator1> */

 Logical_Operator1_1 = Logical_Operator13 || Logical_Operator20;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator1> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=L2_DOWN> */

 io->L2_DOWN = Logical_Operator20;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=L2_DOWN> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator3> */

 Logical_Operator3_1 = Logical_Operator1_1 || Logical_Operator4_1;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock:

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator3> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=OUT_VALVE> */

 io->OUT_VALVE = Logical_Operator2_1;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=OUT_VALVE> */

 /* START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=BF_VALVE> */

 io->BF_VALVE = Logical_Operator3_1;

 /* END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock:

name=BF_VALVE> */

55

 /* START Block memory write: <SystemBlock:

name=WATER_TANK_MODELLING3>/<SequentialBlock: name=Unit Delay> */

 state->Unit_Delay_memory_3 = Logical_Operator20;

 /* END Block memory write: <SystemBlock:

name=WATER_TANK_MODELLING3>/<SequentialBlock: name=Unit Delay> */

 /* START Block memory write: <SystemBlock:

name=WATER_TANK_MODELLING3>/<SystemBlock: name=Subsystem>/<SequentialBlock:

name=Unit Delay> */

 state->Unit_Delay_memory_2 = Logical_Operator3_2;

 /* END Block memory write: <SystemBlock:

name=WATER_TANK_MODELLING3>/<SystemBlock: name=Subsystem>/<SequentialBlock:

name=Unit Delay> */

 /* START Block memory write: <SystemBlock:

name=WATER_TANK_MODELLING3>/<SystemBlock: name=Subsystem1>/<SequentialBlock:

name=Unit Delay> */

 state->Unit_Delay_memory_1 = Logical_Operator13;

 /* END Block memory write: <SystemBlock:

name=WATER_TANK_MODELLING3>/<SystemBlock: name=Subsystem1>/<SequentialBlock:

name=Unit Delay> */

}

56

REFERENCES

[1]V. Okun, 'Specification Mutation for Test Generation and Analysis', Ph.D Theses, University

of Maryland Baltimore County, 2004.

[2]M. Mäkinen, 'Model Based Approach to Software Testing', Maters Theses, Helsinki

University of Technology, 2007.

[3]D. Heise, 'Automated Generation of Simulink Models for Enumeration Hybrid Automata',

Masters Theses, University of Tennessee, Knoxville, 2013.

[4]A. Brillout, N. He, M. Mazzucchi, D. Kroening, M. Purandare, P. Rümmer and G.

Weissenbacher, 'Mutation-based test case generation for simulink models', in 8th international

conference on Formal methods for components and objects, Eindhoven, The Netherlands, 2009.

[5]N. He, P. Rümmer and D. Kroening, 'Test-case generation for embedded simulink via formal

concept analysis', in 48th Design Automation Conference, San Diego, California, 2011.doi: [DOI

10.1145/2024724.2024777]

[6]O. Kupferman, W. Li and S. Seshia, 'A theory of mutations with applications to vacuity,

coverage, and fault tolerance', in Formal Methods in Computer-Aided Design (FMCAD), IEEE

Computer Society, 2008, pp. 1-9.

[7]D. Große, U. KÜhne and R. Drechsler, 'Estimating functional coverage in bounded model

checking', in Design Automation and Test in Europe, 2007, pp. 1176–1181.

[8]The MathWorks: Simulink design verifier [Online]. Available:

http://www.mathworks.com/help/sldv/%20(2009)%20version%201.5

http://www.mathworks.com/help/sldv/%20(2009)%20version%201.5

57

[9]D. Angeletti, E. Giunchiglia, M. Narizzano, A. Puddu and S. Sabina, 'Automatic test

generation for coverage analysis using CBMC', in Computer Aided Systems Theory-EUROCAST

2009, 2009, pp. 287-294.

[10]F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella and M. Vardi, 'Benefits of

Bounded Model Checking at an Industrial Setting', in 13th International Conference on

Computer Aided Verification, 2001, pp. 436-453.

[11]A. Biere, A. Cimatti, E. Clarke, O. Strichman and Y. Zhu, 'Bounded Model Checking',

Advances in Computers, vol. 58, pp. 117-148, 2003.

[12]E. Clarke, D. Kroening and F. Lerda, 'A tool for checking ANSI-C programs', in Tools and

Algorithms for the Construction and Analysis of Systems, 2004, pp. 168-176.

[13]M. Ryabtsev and O. Strichman, 'Translation validation: From simulink to c', in Computer

Aided Verification, Springer Berlin Heidelberg, 2009, pp. 696-701.

[14]H. Chockler, O. Kupferman, R. Kurshan and M. Vardi, 'A practical approach to coverage in

model checking', in Computer Aided Verification, Springer Berlin Heidelberg, 2001, pp. 66-78.

[15]D. Schuler, V. Dallmeier and A. Zeller, 'Efficient mutation testing by checking invariant

violations', in International Symposium on Software Testing and Analysis (ISSTA), ACM, New

York, 2009, pp. 69–80.

[16]B. Grun, D. Schuler and A. Zeller, 'The impact of equivalent mutants', in Software Testing,

Verification and Validation Workshops, 2009, International Conference on. IEEE, 2009, pp. 192-

199.

58

[17]B. Zoubek, J. Roussel and M. Kwiatkowska, 'Towards automatic verification of ladder logic

programs', in IMACS-IEEE" CESA'03":" Computational Engineering in Systems Applications,

2003, p. CD-ROM.

[19]B. Beizer, Black-box testing. New York: Wiley, 1995.

[20]B. Beizer, Software testing techniques. New York: International Thomson Computer Press,

1990.

[21]W. Stephan, 'Test models and coverage criteria for automatic model-based test generation

with UML state machines', PhD dissertation, Humboldt University of Berlin, 2010.

[22]S. Nidhra, 'Black Box and White Box Testing Techniques - A Literature Review', IJESA,

vol. 2, no. 2, pp. 29-50, 2012.

[23]L. Apfelbaum and D. John, 'Model based testing', in Software Quality Week Conference,

1997, pp. 296-300.

[24]A. Pretschner, 'Model-based testing', in 27th international conference on Software

engineering, St. Louis, MO, USA, 2005, pp. 722-723.doi:[DOI 10.1145/1062455.1062636]

[25]S. Rayadurgam and M. Heimdahl, 'Coverage based test-case generation using model

checkers', in 8th Annual IEEE International Conference and Workshop on the Engineering of

Computer Based Systems (ECBS 2001), Washington, DC, U.S.A, 2001, pp. 83–91.

[26]'CBMC–C bounded model checker', in Tools and Algorithms for the Construction and

Analysis of Systems, Springer Berlin Heidelberg, 2014, pp. 389-391.

[27]P. Mosterman, 'Model-based design of embedded systems', in IEEE international conference

on microelectronic systems education, vol 3, IEEE, 2007, pp. 3-3.

59

[28]G. Nicolescu and P. Mosterman, Model-based design for embedded systems. Boca Raton,

FL: CRC Press, 2010.

[29]S. Muhammad and Y. Labiche, 'A systematic review of model based testing tool support',

Tech. Rep, Carleton University, Canada, 2010.

[30]E. Rugina, D. Thomas, X. Olive and G. Veran, 'Gene-auto: Automatic software code

generation for real-time embedded systems', in DASIA 2008 Data Systems In Aerospace, 2008,

pp. vol. 665, p. 28.

	Minnesota State University, Mankato
	Cornerstone: A Collection of Scholarly and Creative Works for Minnesota State University, Mankato
	2015

	Model-Based Verification for SIMULINK Design
	Victor Oke
	Recommended Citation

	tmp.1452193485.pdf.02LZW

