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                                            Chapter 1 

1.1   Introduction 
Software development engineering deals with the series of approaches that are based on the 

software modeling as the primary form of expression. Sometimes, these models are explicitly 

designed including the executable actions and the supporting codes are well written by hand. 

Codes can also be generated from these models, ranging from system skeletons to complete, 

deployable products. Until present, White-Box(structural) or Code-Based testing have been 

studied by many research groups. However, systems have become more sophisticated and code 

lines have incomparably grown. Diving into details in program codes can be too cumbersome for 

testers because it requires lots of efforts, money and time, that is the reason why testers generally 

adopt Black-Box(functional) testing [19] rather than White-Box testing [22].  

Model-based Testing (MBT) is the automatic generation of software test procedure, using the 

models of system requirements and behavior. Automatic support is required for good 

functionality of MBT and this is probably the most popular software testing [24] used for 

verification and validation techniques for modeling software under test (SUT) [23]. Model-based 

Testing can either be black-box or grey-box considering the level of abstraction of the model 

from which the behavior of SUT is observed. Black-box MBT consists of high level of 

abstraction representing the SUT behavior, while the grey-box MBT describes the model with 

details of the design information. White-box testing is not usually considered MBT [29].  

Also with the increasing demand in software products, customers expect more reliable, efficient 

and a quality software product that contains advanced features and functionality. The 

competition between many companies forces the manufacturer to deliver the product with certain 
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prerequisites within a short period of time. This necessitates a short period of testing time. There 

comes the need for test automation. Automation of testing not only reduces the effort and time 

but also the cost incurred as testing needs to be done regressively when meeting tight project 

schedules. The focus of this thesis is on the evaluation of software testing methods and the 

requirements related to these testing methods. The requirements relating to the methods of 

testing are in the domain of embedded real-time systems. 

 

1.2 Scope 
The scope of this thesis covers the design level, testing level and the verification level. Since all 

these levels of design result in comprehensive and confidence design, all hands are put together 

to go through all the three levels of design, although more emphasis are laid on design and the 

verification level and these are also in the user interface level of application. The design is 

accomplished by the use of Simulink module and the verification is being done by bounded 

model checker for C (CBMC), Gene-Auto [30] is used as the testing tool. Some suggestions for 

future design are also included. 

1.2 Method 
Solid background knowledge was developed after a thorough literature study on model based 

design and testing. The design in this thesis stems from the challenges associated with an 

industrial application model applied to automatic water tank control system. From the 

requirements which must be met to get this water tank in place, knowledge of ladder logic was 

applied. The ladder logic design was accomplished and the testing was executed but the 

verification was almost impossible except for the timeliness properties which were done using 

Uppaal [17] and this led to using Simulink-based design modeling to achieve proper verification. 
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The water tank model will be designed in Matlab/Simulink and the properties will be verified 

with Bounded Model Checker for C (CBMC). CBMC only understands C code and therefore 

cannot run the Simulink model without compilation. Therefore Gene-auto will be introduced. 

Gene-Auto automatically converts the Simulink model to its equivalent C code [13] and this also 

serves as a test tool because during the conversion, any mismatch in the design will result in 

conversion failure and the C code will not be generated until this error is fixed. After a successful 

generation of C code, CBMC [26] will be used to run the code for verification. Assertion follows 

to assert the properties of the model.  

In addition, automatic generation of miter model will be developed, this allows automatic 

injection of mutant [15] in the miter model and the behavior (output) of individual mutated miter 

model will be compared using the same inputs (Test cases) and then verified by using the above 

procedures.   

 

1.3 Related Work 
Our work on Simulink model analysis is related to available methods in the literature. For 

instance, code generated by Simulink was automatically validated using a decision procedure, 

(Strichman and Ryabtsev [13]). This was done against some verification conditions which were 

extracted from the model. Most authors touch a small fragment of Simulink model and only 

discuss the approximate behavior of the model [5]. In contrast, our work extends these existing 

results to a deeper level. Specifically, the precise behavior of the model was explicitly analyzed. 

Our work is also related to previous work on the generation of test vectors with the use of 

software model checkers [25]. CBMC or other similar techniques have been reportedly used by 
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some papers for generating high –coverage test suites and our work is closely related to these 

implementations. Mutant injection in a model is also part of our work in this thesis and this has 

equally been touched in various dimensions by some other authors [15]. Some papers described 

single mutations [1] while combination of faults has been considered by others [4] in mutant 

models. Bounded model checking method for estimating coverage was described by GroBe et al. 

[7] which explained implementing the flip mutation at a given cycle and the verification is done 

by model checker. Impact of equivalent mutations was described by Schuler et al. [16] and the 

means of detecting such mutations was also discussed.  

1.4 Structure 
The thesis work was first introduced in chapter 1 where we discussed the scope of the thesis, the 

method used to execute our work and the related work. We also went ahead to discuss Model-

based design, Model-based testing and the testing procedures. Ladder logic, Simulink and the 

relationship between the two will be discussed in chapter 2. Chapter 3 describes the thesis 

methodology where the whole work procedures are executed and the system properties are 

verified. Some observations are drawn and suggestions for future designs are also discussed. 

Then, the last part provides concluding remarks to all the work done.  
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Chapter 2 

2.1 Model-Based Design 
Model-Based Design is a visual and math-based method of describing complex control design 

problems. Its usefulness is not limited to industrial applications but also motion control, 

aerospace and automotive applications. This happens to be the efficient methodology applied in 

embedded system design and it consists of four ordered steps of the development process: (1) 

plant modeling, (2) analyzing and synthesizing a controller for the plant, (3) simultaneous 

simulation of the plant and that of the controller, (4) deploying the controller [27]. Model-Based 

Design is a more cost effective and time-saving approach in the development of dynamic 

systems, not limited to control systems but also signal processing and communication systems.  

Traditional design methodology consists of complex structures and extensive software code 

development, but the Model based design touchstone is completely different. Designers use 

continuous-time and discrete-time building blocks to formulate a model with advanced 

functional characteristics. The formulated models with the corresponding simulation support 

tools can result in rapid prototyping and enhance software testing, software/hardware validation 

and the verification process. The Model-Based Design development process starts from 

requirements analysis to design and implementation, followed by testing and verification. Some 

of the advantages of Model-based Design that makes it a more efficient approach are that 

common design environments are used across project teams, designs are directly linked to the 

requirements, early stage error detection and correction, software codes and design 

documentation are automatically generated, algorithms are refined through multi-domain 

simulation. In addition, the test suites are reusable. More information regarding Model-based 

design for embedded system is discussed in [28].  
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2.2 Model-Based Testing (MBT) 
Model Based Testing is a software testing method in which test cases are derived entirely or 

partially from a behavioral model that describes the System Under Test, (SUT). Most model-

based testing inherits the complexity of the domain, or more particularly of the related domain 

models, the basic model is abstract and tries to describe the system in whole or in less detailed 

mode. The generated test case from this model is as abstract as the original model and this is 

called the Abstract Test Suites (ATS). Since this is abstract, it is not potentially executable but 

can provide an Executable Test Suite (ETS) that perfectly runs the SUT. There is no particular 

best method to create test cases because many methods have been developed to generate this 

from the models and fundamentally software testing is often heuristic based and experimental. 

Most of the time the package is created, namely Test Requirements, which includes the test stop 

conditions and information with regard to the SUT part which should be tested. 

Test requirements are usually a result of merging the whole test configuration related to the 

design decision. 

 

2.2.1 Importance of MBT 

The main benefit of MBT is to generate a wide range of test cases in short span of time. Even 

though modeling takes a considerable amount of time, it will always be less than deriving the test 

cases manually. MBT allows us to test every module of the system at each stage in order to 

detect which part does not satisfy the design specification before the whole design is coupled or 

put into operation. This approach saves time. It allows one to figure out design errors, 

inconsistencies or uncontrollable failures in design. Again, Model Based Testing is related to 
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how well the automation can be implemented. Therefore, the models that are formal, well-

defined functional interpretations, or machine readable models can in principle originate test 

cases automatically. These models are commonly translated to State Transition Systems (STS) or 

Finite State Automata (FSA). These STS or FSA show the feasible configuration of SUT. Thus, 

to generate a test case STS/FSA is ought to find an executable path. An arbitrary feasible 

execution path works as a test case. This technique is only possible if the model is Deterministic 

Finite Automaton, FDA, or if it is reducible to a FDA. Based on the designed model, test cases 

are usually generated and prioritization of the test cases will be needed to structure the testing 

process and reduce test effort. Standard test generation criterion such as boundary value analysis, 

equivalence class partitioning and cycle coverage are generally used. But the underlying factor is 

the selection of any criteria that covers all the requirements. 

 

2.3 Quality Control Techniques in MBT 
Approaches to quality control techniques in Model-based design are Validation and Verification. 

 Validation is just the measure of correctness or completeness of how a design 

specification or requirement is being implemented. This is actually done to detect gross 

error in the system. This validation is incomplete of course, but this is not very important 

in this context as compared to the usual refinement-to-code context. With Model-Based 

Testing, if some errors remain in the model, they are very likely to be detected when the 

generated tests are run against the system under test.  

 Verification is the way of scrutinizing the consistency of a system with respect to 

specified design requirements. The two steps in verification are Testing and Formal 

Verification/Model Checking. 
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2.4 Testing 
 This is used to validate control system programs and subsequently detect errors. It can still be 

understood as the process of systematically evaluating a system by observing its execution. The 

main advantage of testing is its scalability, which means that it can handle millions of line of 

code but this does not guarantee correctness because there is possibility of a system being 

successfully tested and still contain errors. For the purpose of this thesis, Gene-auto is used as the 

testing tool. This converts the designed SIMULINK model to its equivalent C-code. 

Meaning of Testing 

Testing can be interpreted in several ways depending one’s point of view however general 

understanding of testing is described below, some of which is contained in Beizer’s testing levels 

[20]; 

 Testing can be understood as tester’s confidence booster. At least if all detected failures 

have been removed from a system, a tester will have confidence on the correctness of the 

system. It is understood that testing does not guarantee the absence of faults.  

 Testing can also be described as getting the variation between the actual and expected 

behaviors of the system under test which brings about possibilities of detecting functional 

failures. 

 Testing is actually detecting failures and not the cause of the failures. This clarifies the 

difference between testing and debugging because only debugging finds cause of a 

particular failure.  It does not prove absence of faults.  
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2.5 Definition of Terms Related to Testing 
There are several notations used in testing procedures and few of these are described below. 

They are commonly used throughout the thesis.  

 Test Case: This is a set of input stimuli to be introduced into a system and the expected 

behavior of the system under which a tester will determine whether the system under test 

satisfies requirements or works correctly. Tester can also find problems in the 

requirements or design during this process. It is good practice for testers to test one thing 

at a time in order to ensure that test cases are not complicated or overlapped. In test cases, 

both the positive scenarios and the negative scenario must be covered, and these must be 

accurate, traceable, repeatable and be reusable if necessary.  

 Abstract Test Case: This gives an idea of the test case structure and the information 

about satisfied coverage criteria, it is actually made up of abstract information about the 

set of input and output where the concrete information like parameter values or function 

names are missing. This is usually the first step in test case generation and it cannot be 

directly used on the actual system under test because of its high abstraction level and lack 

of concrete information about the SUT and its environment.  

 Concrete Test Case: This comprises of the present of abstract test case together with the 

missing concrete information which gives it sufficient details to be actively executed and 

correctly communicate with the system under test (SUT).  

 Test Suite: This is set of detailed test cases that show some specific set of behaviors and 

contains some information about the configuration to be used during testing. The 

executable test suite is usually interfaced with the SUT through the test harness. 

  Test Harness: This brings about automation of test data under varying conditions and 

monitoring its outputs with test execution engine and test script repository. It is also 
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called Automated Test Framework. Test harness plays very important roles in testing 

procedure such as automating the test process, executing test suites of test cases, 

generating corresponding test results and ensuring that subsequent test runs are exact 

duplicates of the previous ones. Description of the elements of a typical test case is 

presented in the table 1. 

T. C. ID Test case ID 

T. C. Summary The test case summary or objective 

T. S. ID Test suite ID for this test case 

RRID This is the related requirement ID to which the test case can be traced  

Prerequisites The combination of preconditions that must be met before test execution 

Test procedure All the steps taken to execute the test 

Test Data All the parameters needed to conduct the test 

Expected Result The expected test output 

Actual Result The actual test output generated after test execution 

Test Status The conclusion to the test output either successful or failed 

Remarks Any suggestion or comments related to the test conducts 

Created By Name of the author that derived the test case 

D.O.C The actual date the test case was created 

Execution Date The actual date the test was executed 

Executed By The name of the actual person conducted the test 

Test Environment The kind of software or hardware used to carry out the test procedures  

                                             Table 1: Elements of Test Case 
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 Test Oracle: This is used to determine the status of test whether it failed or passed. It 

handles this by comparing what it knows to be the actual behaviors of the system, to the 

behaviors of the SUT for a specific test-case input at a particular time. No test is able to 

detect a failure without this.  

 Debugging: This is the process by which a fault causing a particular failure in a given 

time is being located.  

Whenever a fault is detected in a system, it is understandable that not all inputs fed into 

the system caused the incorrect output which is known as failure and relating a particular 

failure with a corresponding fault will often be very difficult. And so, these concepts are 

better analyzed by fault/failure model which states that for a failure to be observed, the 

below three conditions must be observed; 

o Reachability: The location of the fault in the program must be reachable.  

o Infection: It must be confirmed that the state of the program in that particular 

location where the fault occur must be incorrect.  

o Propagation: The infected state of the program must propagate to cause incorrect 

output. 

2.6 Test Techniques  
Test techniques can be explained from the knowledge and the observability of the system under 

test. This can be conducted under black-box, white-box and gray-box testing. 

Black-Box Testing: This refers to testing a system where the testers have no specific knowledge 

of the internal matters or the internal workings of the system. Testers only have knowledge of the 

possible input and expected output values but do not know how the program actually arrives at 

those output values. This is represented in figure 1. The source code and the architecture 
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knowledge of the system are not known, therefore the in-output functionality of the system are 

only allowed to be tested. Because of this, black-box testing is considered to be functional testing 

and is known as opaque box testing or closed box testing. The advantage of this is that tester can 

be non-technical since there is no need for the tester to have detailed functional knowledge of the 

system and that the test will be done from an end user’s point of view, because the system must 

be accepted by the end user. The disadvantage of this is that since all possible inputs in a limited 

testing time will be difficult to identify, then writing test cases may be slow or difficult.  

 

                                                               Figure 1: SUT Black-Box 

                                    
White-Box Testing: This refers to testing a system with full knowledge of its internal matters 

and this can still be used to create tests because there is access to all source code and the 

architecture documents. With the access to this information, white-box testing is not restricted to 

the detection of failures, but bugs and vulnerabilities are also easily detected compared to the 

black box testing and we can be confident of getting more complete testing coverage since we 

precisely know what to test. This is also known as clear box testing. The advantage of this is the 

higher quality testing which is more thorough with the possibility of covering most paths because 

of the wide knowledge and information about the internal matters of the system. The main 

disadvantage of white-box testing is that highly skilled resources with thorough programming 

knowledge and implementation is required since text can be very complex and high effort is 

actually needed to scrutinize all aspect of the program.  
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Gray-Box Testing: Gray-box testing is actually the combination of both black-box and the 

white-box testing. It is testing a system with partial knowledge of the internal matters of the 

system. This knowledge is usually constrained to detailed design documents and architecture 

diagrams. This testing technique is used to design tests at white-box level and execute them at 

black-box level. Gray-box testing is commonly used for commercial model-based testing where 

the tester have the rich knowledge of the internal matters of the system at the design level but all 

these knowledge are not known or not accessible by any tester at the execution level. 

2.7 Testing Levels and Testing Process 
System development management can be explained from series of models but development 

knowledge from V-Model is found to be more pronounced because it’s comprised of 

development stages at the top and the testing stages at the bottom. Figure 2 shows the importance 

of early execution test in system design because it is clearly understood that late execution test 

will definitely have an impact on the early development stages. The development stages range 

from the system requirements and specification, doing the requirement analysis, system being 

designed and arranged in modules, and implementation. The testing stages comprised of module 

testing for classes, integration testing which deals with components consisting of classes, system 

testing which integrate all components and the acceptance testing of the customer.  
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                                                                Figure 2: Model-Based Testing Level 

                                                       

Utilizing the style of user interface (UI) design could be a very good approach where the design 

application flow is explicitly described in the UI level. In this the models act as transformer 

between the source, which can be a UI specification, and the target, which can be a test 

automation script. The beauty of this is that it forms an easy process in the sense that the tester 

only has to provide the test automation parameters into the model, execute the test and finally 

analyze the results. The whole process is made possible with the availability of tools which can 

convert user interface specification into an application model, and create test cases from it. 

Figure 3 below described the Model-based testing process.  
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                                                                    Figure 3: Model-Based Testing Process 

                                             

2.8 Formal Verification/Model Checking 
This actually ensures correctness and consistency, but not scalability. Basically, Model Checking 

was created as a method of assuring whether an attribute of a specification is acceptable in the 

model. The model of the SUT and the specific requirement to be examined in the model checker 

will be developed, and if this attribute is acceptable in the model, in as much as the attribute is 

under test to get proved, the model checker identifies instances and contradictions. An instance 

can be a path in the execution of the model where the attribute is satisfied, while contradiction is 

a path where the attribute failed. This particular path can be reused as a test case several times. 

The earlier verification is performed in a design the sooner the errors are detected and rectified. 

It is very important to verify the integrity of the designed model before deploying it on a target 

embedded controller for build and integration because of the cost and scarcity of physical 

prototypes. Verification of design integrity is usually achieved through simulation and coverage 

analysis. Numerical overflow is one of the indication of poor design integrity and this condition 

can easily be curbed with simulation by stress testing the minimum and maximum numerical 

values of the model. Another poor design integrity indicator is the unreachable logic which 

Generate Test 

Input 

Check Test Result 
Run 

Test 

Convert Test 

Case 

Design Test 

Model 

Produce 

Coverage 

Measure 

Reliability 

Generate 

Expected Result 



 

16 
 

means that part of the design is missing an important aspect during specification, implementation 

and the test creation. This cannot be easily detected through mere simulation but structural 

coverage can be best applied for the detection.  To determine if the test passed or failed, model 

assertion is employed. This ensured that signal does not exceed its boundary during simulation or 

testing and it does this by stopping the execution when it’s about to happen.   

Two common verification tools; 

 CBMC: Software bounded model checking for C. It automatically proves the correctness 

of C codes in bound but this does not verify the timeliness requirement. The original 

brain behind the Bounded model checker (BMC) was to develop an environment where 

the modeling system is associated with program traces that violate some specific 

requirements and clarifies satisfy resulting formulae. Application of CBMC is becoming 

very popular, this is not limited to automatic test generation for verification of circuits 

and microprocessor designs [14] but also many papers have actually applied BMC to 

formally verify finite systems and develop software verification [11]. Bounded Model 

Checker for C programs (CBMC) was used in this paper as automatic test generator, 

performing assertion and system verification.  The key idea of CBMC is to work with 

low-level ANSI-C programs[12], discover array bounds, pointer constructs correctness, 

and user-provided assertions, also checks all other system safety properties [9].  The 

importance of CBMC in increasing the productivity of the entire software development 

process cannot be ignored, this enhancement has been achieved by reducing the cost of 

the testing phase. Since random testing does not provide enough confidence for proving 

the correctness of a compiled system because it solely relies on probability and finding 

semantically small faults with it is not guaranteed. Making up for this inefficiency 
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involves providing set of tests that covers 100% of the code.  The use of CBMC was 

effectively experimented in this paper where we were able to verify the modules of an 

industrial water tank control system by generating set of test for individual function 

performed by each module and this provides 100% coverage of the code.  If any part of 

the program violates the requirement, CBMC will return an error-trace which is an 

assignment to input variables. This error trace return is important in automatic test 

generation because a property has to be violated and this is achieved by inserting an 

assertion code that must be violated by the program using user-provided assertion. 

CBMC will generate an error trace return assigning vio lating value to the input variable.  

 UPPAAL: This is a widely used model checker for real-time systems and it is modeled in 

timed automaton. A timed automaton is a non-deterministic finite state machine which 

uses a clock to express its timing properties. A clock can be set to zero and gradually 

increases its value linearly with time. At any instance, the value of a clock is equal to 

time elapsed since the last time it was reset. Timed automata comprised of control state, 

variables and the clocks. Here, transition is only possible when the associated timed 

constrain is satisfied and its guard expression evaluates to true in the system state. 

Execution of timed automata are infinite sequences of system states that fulfill the 

invariants which may be either the passing of time or running of transitions. UPPAAL 

explicitly verified the system timeliness properties by using the UPPAAL Timed 

Automata (UPTA) which is an extended version of timed automata, to specify a system 

as a network of timed automata consisting locations and transitions. Transitions between 

these locations describe the behavior of the system.  
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2.9 Ladder Logic 
Concept of Programmable Logic Controller (PLC) originated from the knowledge of relay logic 

control system and Ladder logic happen to be the conventional programming language for the 

PLC because of the resemblance between the ladder logic programming diagram and that of 

relay logic control system. The brief introductions about Ladder logic programming can be better 

described by converting a simple switch program to a relay logic and finally to PLC ladder logic. 

Industrial Load control electrical circuit diagram can also be used to describe Ladder logic 

programs since this is basically the open or closed switch concept. It is understood by engineers 

or technicians that opened switch disconnects (break contact) the load from incoming current 

while the closed switch connects (make contact) the load to the incoming current, this is also 

known as an ON/OFF switch. The switch can be manually or automatically controlled depending 

on the application available. Figure 4 below represents a simple ladder logic diagram. 

                                            

                                                             Figure 4: Simple ladder logic Diagram 

                                                                           

The switch has to be connected before the power can flow to the lamp and light up the lamp. The 

horizontal line represents the flow of current. The switch used above is called a normally-open 

contact and there is also another one called the normally-close contact, this is shown in the figure 

5. This can be extended to PLC application by connecting the switch to the PLC input, the lamp 

to the PLC output and the same program is run. Combination of contacts in various dimensions 

makes up the ladder logic program and most of these combinations are briefly described. This is 

called ladder logic because of its ladder nature and the combination of the contacts function as 
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logical operators. Normally open contact will be closed (connected) when it is activated and the 

normally close contact will be opened (disconnected) when activated.  

 

                                  Figure 5: Normally close and Normally Open Contact 

                       

 

                                                             Figure 6: OR Symbol Equivalency 

                                                              

A B Lamp 

OFF OFF OFF 

OFF ON ON 

ON OFF ON 

ON ON ON 

                                                           Table 2: Representing logic “OR” 
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                                                          Figure 7: AND Symbol Equivalency 

                                                              

A B Lamp 

OFF OFF OFF 

OFF ON OFF 

ON OFF OFF 

ON ON ON 

                                                         Table 3: Representing logic “AND” 

 

 

                                                        Figure 8: NAND Symbol Equivalency    
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A B Lamp 

OFF OFF ON 

OFF ON ON 

ON OFF ON 

ON ON OFF 

                                                            Table 4: Representing logic “NAND” 

In the figure 6 above, the lamp will turn ON when either of the contact A or B is activated, or 

when both are activated simultaneously. Table 2 above describes the OR operation.  Figure 7 

describes AND gate operation, the lamp turns ON only when both contact A and B are activated. 

If contact A is activated and contact B is not or either way, the lamp will not be turned ON. 

Table 3 also describes this scenario. In figure 8, both contact A and contact B need to be 

activated for the lamp to be OFF, but except that, any combination of contact A and B will 

definitely turn ON the lamp as described in table 4 above. 

Knowledge of the PLC ladder logic programming and the possibility of relating it to logic gate 

operator equivalency helps a lot in this thesis to make the combination of the requirement 

analysis for modeling the industrial water tank control system, and these were transformed and 

explicitly modeled using Simulink.  

2.10 Simulink 

Simulink is an interactive graphical environment where model-based design for embedded 

system or dynamic system is been created and simulated [8]. This provides an easier and faster 

way to develop a model compared to text-based programming language (like C programming) 

because of the explicit details provided by graphical models and enhanced intellectual controls. 

A model represents a system which consists of collection of blocks. All these set of block 
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libraries in Simulink are used for modeling (combine, modify and generate output) and 

simulation (display signals) or to test some time-varying systems, they actually help in clarifying 

requirements analysis, validation and verification. Application of Simulink is not limited to the 

area of controls and communications but also very useful in image processing, video processing 

and signal processing. Simulink also use lines to transmit signals from block to block, this is 

usually done by transmitting the signal from the output terminal of one block to the input 

terminal of another. Figure 9 shows an example of basic Simulink model. Some examples of 

common Simulink blocks are listed below; 

 Sources: These are used for signal generation and comprised of Signal generator, Step 

function, Random number, Ramp and Constant.  

 Linear and Connections: This comprised of continuous-time system element, 

Connections and Linear blocks such as math Operations blocks (Add, Product, Gain, 

Sum), summing junctions, Signal routing (Mux and Demux) etc.  

 Nonlinear Operators: These include Saturation, Transport Delay, Arbitrary functions 

etc. 

 Discrete: This consists of discrete-time system elements such as State-Space, Transfer 

function, Integrator etc.  

 Sinks: These are used to display or output signals. Examples are Scope, XY Graph etc.  

 

                                                           Figure 9: Simple Simulink model 
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                                                            Chapter 3 

3.1 Methodology 
This thesis work is done by carrying out research and executing the design on industrial water 

tank control system shown in figure11.This section describes the details of all the procedures 

taken to implement the model. 

3.1.1 Overview 
The work started from gathering the requirements to be taken into consideration for the design, 

followed by modeling of the industrial water tank control system with respect to these 

requirements using PLC ladder logic Programming.  The content of the ladder logic is converted 

to its equivalent simulink model, then all the verifications and assertions were carried out. Figure 

describes the block diagram for the procedures.  

 

                                            Figure 10: Block Diagram for Modeling Procedure 
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3.1.2 Case Study 
  To ensure effective operation of the tank, some safety features were established, this is shown 

in table 4 below. The control unit consists of three flow lines (Flow line1, Flow line2 and 

backflow line) with two pumps, Up flow valve, Down flow valve and Backflow valve, there is 

also a Water tank and the Output valve. The requirement is that the two flow lines must not 

operate at the same time and this is accomplished by ensuring that the pumps are not working at 

the same time, should this situation occur, this indicates a Pump failure and thereby error in the 

control system. Any Pump failure must cause the associated valve to stop working. Another 

safety is that the valves must be actuated for 10 seconds before the pump should be opened, 

which means that no pump should work if the valves are not activated for this specified time. 

Should the Pumps be Idle, both Output valve and the Backflow valve must stop operating. The 

table 2 below presents the lists of the inputs and the outputs for the control system interactions.  

 

                                                Figure 11: Water Tank Control System 
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Li_CH_REQ Request for changing of the line 

H_FLOW High flow rate water distribution request 

L_FLOW Low flow rate water distribution request 

Lx_FAIL Failure from any of the Pumps 

SP_FAIL Indication that there is no distribution 

Lx_PUMP Starting up any of the Pumps 

Lx_UP Activate the Upstream valve of any of the Pumps 

Lx_DOWN Activate the Downstream valve of any of the Pumps 

BFW_VALVE Backflow valve opened 

OUT_VALVE Output valve 

                                             Table 5: Input and Output flow 

 

3.1.3 Implementation Details 
All the requirements for this system were strictly examined, demonstrated with ladder logic and 

transformed into a Simulink model. Since our priority for this design is safety, then the control 

system has to be modeled with the programming environment where adequate testing can be 

performed, and explicit validation and verification can be carried out. For this kind of design, 

modeling using Simulink appears to be a good choice because Simulink programs can eventually 

be converted to a different form of programming languages which can be understood by some 

testing and verification tools. This flexibility feature has made Simulink probably the most 

popular tool for model based designs. 
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                                   Figure 12: Water Tank Control System Simulink Model 

                                     

Figure 12 above consists of four subsystems which are made of a combination of logical 

operators. These are arranged and connected in such a way as to perform the functions specified 

by the control tank and meet up with all the safety conditions included in the requirement 

analysis. This starts with a step by step analysis of simple PLC ladder logic programming and 

interpreting it into combination and connection of simple logical operator blocks in Simulink to 

check the specific requirement at that step. Figure 13 gives details of this interpretation for the 

first subsystem. 
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                                           Figure 13: Simulink Model - PLC ladder Logic Equivalency 

                                                                                             

The description of this model is that Li_CH_REQ is “AND” with the “NOT” of L1_PRIO to 

output CONT_L1. Again, Li_CH_REQ is “AND” with L1_PRIO to output CONT_L2. Then, 

CONT_L1 is “OR” with L1_PRIO and the output is “AND” with the “NOT” of CONT_L2 to 

output CONT_L2. The Delay1 is a time delay which was used to denote that L1_PRIO is a 

feedback. This same block combinational procedure was used to model the whole system 

according to the specified requirement and it was reduced to four different subsystems i.e. the 

first subsystem, WTM_SUB1, WTM_SUB2 and WTM_SUB3. 

 

3.1.4 Gene-auto and CBMC 
After modeling each stage of the system, a test is been carried out to ensure that there is no 

wrong block combinations or connection error in the design. This early stage testing is one of the 

advantages of Simulink modeling because it saves design time, reduce cost of design and boost 

confidence of the designer. It is actually understood that it will be very discouraging if a model 

cannot be tested for error at the early stage and found out to contain some errors when tested at 
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the end of the whole design. This means that the designer will either have to start all over again 

or undergo series of troubleshooting steps before any found error might be fixed or rectified.  

The Simulink model shown in figure 11 is then run through Gene-auto (testing tool) and the 

result showing successful simulation is shown in figure 14. 

 

                                                                     Figure 14: Gene-auto Simulation Output 

 

The purpose for this step is to convert the Simulink model to its equivalent C program and to 

ensure that the design is modeled correctly because if there is lapse in the design, the simulation 

will return error result. This step is called the testing level and the fact that there is a successful 

simulation does not guarantee a perfect design nor does it indicate that all design requirements 

are met. Since the model is been successfully converted to C language then a verification 

procedure has been carried out with the use of model checking tools called CBMC. But before 

CBMC can understand the C program generated by the Gene-auto, a “main” function needs to be 

added to the program because without this the CBMC simulation will return conversion error. 

The generated Gene-auto C program is shown at the appendix A.3 and the main function added 

to the C program is shown below. The window showing the successful verification with the 

CBMC is presented in figure 15. 
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void main( ) { 

T_WATER_TANK_MODELLING3_io *t_io; 

T_WATER_TANK_MODELLING3_state *t_state; 

WATER_TANK_MODELLING3_compute(t_io, t_state); 

} 

                                                                           

 

 

                                                                   Figure 15: CBMC Simulation Output 

                                             

Successful verification indicates that the system under test (SUT) is correctly modeled and that is 

free of error.  The next step is checking the properties of the system whether it meets up with the 

modeling requirements and this can be done by assertion. Assertion is a statement about the 

intended behavior or a requirement of the system and Assertion-Based Verification ensured that 

the system/design obey the temporary assertions. This is combining the test cases in such a way 

that satisfy the intended behavior of the system. The corresponding assertion statement for this 

system is presented below; 

void main( ) { 

t_WATER_TANK_MODELING3_io*t_io; 
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t_WATER_TANK_MODELING3_state*t_state; 

t_WATER_TANK_MODELING3_compute(t_io, t_state); 

assert(t_io       L2_PUMP ==1 || t_io      L2_PUMP ==0); //verify Boolean input 

assert(t_io       L1_PUMP ==1 || t_io      L1_PUMP ==0); //verify Boolean input 

assert((t_io       L1_PUMP ==1 && t_io      L2_PUMP ==0) || (t_io       L1_PUMP ==1 && 

 t_io      L2_PUMP ==0) || (t_io       L1_PUMP ==0 && t_io      L2_PUMP ==0)); //verify that 
the two pumps don’t work at the same time.  

Assert((t_io       L1_PUMP ==0 && t_io      L2_PUMP ==0) || (t_io       BF_VALVE ==0 && 

 t_io      OUT_VALVE ==0)); //verify that if both pumps are not working then the backflow 
valve and the output valve must stop working.  

assert((t_io       L2_FAILURE ==1) && (t_io      L2_FAIL ==1) && (t_io       L2_PUMP ==0); 
//verify that any failure in line 2 will cause L2_PUMP to stop. } 

 

All the above assertion statements return successful verification after simulation. Note that any 

assertion that does not obey the system requirement will return verification failure.  

3.1.5 Miter Model and Mutation 

Now, since all of the system requirements are met, we go ahead to search for any redundant 

component in the design and this is done by automatic generation of miter modules for the 

system, followed by injection of mutants (mutation) in each miter module [1]. The purpose of 

this is to kill mutants in the system. A mutant is killed if a block is changed in the design and it 

caused a significant output change. But if no output change detected (i.e. no mutant killed) after 

changing the block multiple times, then the particular replaced block is redundant and it can be 

safely removed from the original system without changing the expected output of the system. 

This in return actually reduces the size of the system. The more mutants killed in a system, the 

closer is the system to correctness and the more the confidence of the tester [15]. The system 

consist of four different logical operator blocks which are AND, OR, NOR, NOT and two time 
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delay blocks. The logical operator “AND” and “OR” is only considered for miter modules 

generation. There are seven “AND” blocks and nine “OR” blocks in the system, each of these 

blocks can be mutated in five different ways i.e. the “AND” block can be changed to OR, 

NAND, NOR, XOR, NXOR and “OR” block can be changed to AND, NAND, NOR, XOR, X-

NOR as described in table 6 below. This means that 40 different miter modules are generated 

ranging from “miter1_1_1”, “miter1_1_2” to “miter2_9_5”. But this mutation steps is applied to 

one block changed in the system at a time. Injection of mutant to a particular block at a time is 

better compared to mutant injection to many logical operator blocks at a time because the later 

might result into negative effect cancellation and the system behaves as if nothing has changed 

[6].  The Matlab script used for automatic generation of the miter modules and the injection of 

individual mutant is presented at the Appendix A.1. The diagram describing one of the miter 

models is also shown in Appendix A.2. 

 

                                                         Table6: Describing Mutation blocks  
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The expression Miterx_y_z used in this work represents the changes made to the mutated part of 

the miter model and the meaning of the annotations is described below; 

X = represents the number that corresponds to the type of the original block 

Y = represents the position of the original block in the system 

Z = this is the number that represents the type of the block used as a mutant 

The next step is to run the mutated models with Gene-auto. Since there are large numbers of 

models to run, then this has to be done automatically. The below batch file is used to 

automatically run the Gene-auto. 

@echo off 

REM list all files with suffix docx in the directory 

FOR %%f IN ( miter?_?_?.mdl ) DO ( 

C:\Users\VICTOR\Documents\Gene-Auto\geneauto2\geneauto2.bat %%f 

ECHO %%f  

) 

The simulation is successfully completed. After this level, verification steps with the model 

checker (CBMC) follows. Any of the models that return a successful verification with the 

assertion of the original model’s outputs and the mutated model’s outputs, indicates that the 

mutated logical operator block in that model is redundant and it can be successfully removed 

without harming any part of the system, in other word, no mutant is killed or there is an 

equivalent mutant. Otherwise this will return verification failed. This is shown in figure 16. For 

this thesis, the verification returned failure for the assertion made for all the miter models (the 
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original models and the mutated models), which means that the original model’s output 

(behavior) is not equal to the mutated model’s output (behavior).  In this case it is glaring that the 

injection of mutants has caused behavioral differences in the mutated models. 

 

                                                Figure 16: Miter Model Block Diagram 

                                                 

The assertion statement to compare the output of the original model with the output of the 

mutated model for the miter model “miter2_1_5” is shown below and the verification result is 

shown in figure 17. 

void main() { 

_Bool t1,t2,t3,t4,t5,t6,t7,t8; 

t_miter2_1_5_io *t_io;  

t_miter2_1_5_state *t_state; 

 miter2_1_5_compute(t_io,t_state); 

 t1= t_io->L1_UP == t_io->L1_UP1; 

 t2= t_io->L2_UP == t_io->L2_UP1; 

 t3= t_io->L2_PUMP == t_io->L2_PUMP1; 
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 t4= t_io->L1_PUMP == t_io->L1_PUMP1; 

 t5= t_io->L1_DOWN == t_io->L1_DOWN1; 

 t6= t_io->L2_DOWN == t_io->L2_DOWN1; 

 t7= t_io->OUT_VALVE == t_io->OUT_VALVE1; 

 t8= t_io->BF_VALVE == t_io->BF_VALVE1; 

 assert(t1 && t2 && t3 && t4 && t5 && t6 && t7 && t8); 

 } 

 

 

                                                Figure 17: Miter Model Verification Result  
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Miter 

Output 

Miter1_1_2 Miter1_3_1 Miter1_5_4 Miter1_7_3 Miter2_1_5 Miter2_3_3 Miter2_6_4 Miter2_9_3 

t1 FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE 

t2 TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

t3 TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

t4 FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE 

t5 FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE 

t6 TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE 

t7 TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE 

t8 FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE 

                                                           Table 6: Miter Model Output Result  

3.1.6 Observation 

The assertion statements were conducted for all the miter models. The above verification table 6 

was drawn for the mutant injected at the location close to the system input, around the middle 

part of the system and close to the system output. It can be seen that the verification failed for all 

the miter models which indicates that all these mutants were killed. It can also be inferred that 

the Output t7 is more tolerant to faults because no matter what mutant is injected into the system, 

the behavior still tends to remain the same except for the mutant injected at location Miter1_7_3. 

The mutant injected at location Miter1_7_3 actually have great effect on the output t7 because it 

is located very close to the output as shown in figure 18 below. As it was explained earlier, 

Miter1_7_3 means that the mutant “OR” is applied to the 7th “AND” block in the system. All 

other outputs are seen to be more sensitive to faults.  
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Explanation of M1_7_3 

1= represents the original logical operator block which is in this case “AND” block,  

7 = means that the “AND” block changed is located at the seventh position in the system, which 

is very close to the output because there are only seven “AND” block in the system.  

3 = indicates that the “AND” block is changed to “NOR” block  

 

                                         Figure 18: Diagram showing the location of M1_7_3 

3.1.7 Future Work 

More work can still be done on this system in the future to make the system more robust because 

high fault tolerant systems can survive more extreme environments and tend to be more reliable. 

This can be done by finding ways of quenching or absorbing all the effects introduced into the 
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system by the injected mutants before getting to the system output, irrespective of the inputs to 

the system. These mutants can be described in real life scenario as unforeseen environmental 

changes that can affect the system behavior.  Implementing this will definitely strengthen the 

confidence of the system designer as well as the system users.  
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                                     Chapter 4 

Conclusions 
We have presented a methodology for model-based verification. We believe that the goals of this 

thesis work have been met because all the design system properties were explicitly verified and 

satisfied. We started from an interpretation of the PLC ladder logic represented as a Simulink 

model, followed by conversion of the Simulink model to C program using Gene-auto. Some 

main functions and assertion statements were added to conduct the verification using CBMC. We 

also went further to generate miter models which enable the comparison of the original system 

behavior with the mutated system behavior. Suggestions on how the system can be made more 

robust were also discussed.  
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Appendix A 

A.1 

The Matlab script that automatically generates the miter models and the injection of mutants is 

presented below; 

function gen_miterv2(model_name) 
  % step 1 probe model  
  
  [all_ logicBlocks, all_ANDBlocks, all_ORBlocks, all_NOTBlocks] = probe1(model_name);  
  N_AND = length(all_ANDBlocks); 
  N_OR = length(all_ORBlocks); 
  
  arr = [N_AND N_OR];  
   
  for i = 1:2 
      fo r j = 1 : arr(i) 
          for k = 1 : 5 
            bdclose('all') ;  
  
            load_system('WATER_TANK_MODELLING3') ; 
            new_system('empty', 'Model') ;  
  
            Simulink.SubSystem.copyContentsToBlockDiagram('WATER_TANK_M ODELLING3/WTM', 'empty') ;  
            Simulink.BlockDiagram.copyContentsToSubSystem('empty', 'WATER_TANK_MODELLING3/MITA') ; 
  
            name = sprintf('miter%d_%d_%d', i, j, k) ;  
            save_system('WATER_TANK_MODELLING3', name) ;  
  
            c lose_system('WATER_TANK_MODELLING3', 0) ;  
            close_system('empty', 0) ;  
          end  
      end 
  end 
    % generate miter models  
    for i = 1:2 
      fo r jj = 1 : arr(i) 
          for k = 1 : 5 
               
            name = sprintf('miter%d_%d_%d', i, jj, k) ; 
            miter_handler = load_system(name) ;  
  
            mu_sys = find_system(miter_handler, 'SearchDepth', 1, ... 
                'BlockType', 'SubSystem', 'Name', 'MITA') ;  
     
            % add 10 outport blocks 
            new_b_handler{1} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/L2_UP'], ... 
                'MakeNameUnique', 'on') ;    
            new_b_handler{2} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/L1_UP'], ... 
                'MakeNameUnique', 'on') ;     
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            new_b_handler{3} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/EN'], ... 
                'MakeNameUnique', 'on') ;     
            new_b_handler{4} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/L1_PUMP'], ... 
                'MakeNameUnique', 'on') ;  
             new_b_handler{5} = add_block('built -in/Outport', [get(mu_sys, 'Parent'), '/L1_DOWN'], ... 
                'MakeNameUnique', 'on') ;    
            new_b_handler{6} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/EN1'], ... 
                'MakeNameUnique', 'on') ;     
            new_b_handler{7} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/L2_PUMP'], ... 
                'MakeNameUnique', 'on') ;     
            new_b_handler{8} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/L2_DOW N'], ... 
                'MakeNameUnique', 'on') ;  
            new_b_handler{9} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/OUT_VALVE'], ... 
                'MakeNameUnique', 'on') ;     
            new_b_handler{10} = add_block('built-in/Outport', [get(mu_sys, 'Parent'), '/BF_VALVE'], ... 
                'MakeNameUnique', 'on') ;  
            sys_inports = find_system(miter_handler, 'SearchDepth', 1, ... 
                'BlockType', 'Inport') ;  
            %length(sys_inports) 
  
            port_handlers = get(mu_sys(1), 'PortHandles') ;  
            inports = port_handlers.Inport; 
            outports = port_handlers.Outport;     
            %length(inports) 
  
            fo r j = 1:length(inports) 
              srcPort_handler = get(sys_inports(j), 'PortHandle ') ;  
              add_line(get(mu_sys, 'Path'), srcPort_handler.Outport(1), inports(j)) ;  
            end 
  
            fo r j = 1:length(outports) 
              dstPort_handler = get(new_b_handler{j}, 'PortHandle') ;  
              add_line(get(mu_sys, 'Path'), outports(j), dstPort_handler.Inport(1)) ; 
            end 
  
            save_system(name) ; 
            close_system(name) ;  
          end  
      end 
    end  
  
    %  generate mutants 
    for i = 1:2 
      fo r jj = 1 : arr(i) 
          for k = 1 : 5 
               
            name = sprintf('miter%d_%d_%d', i, jj, k) ; 
            miter_handler = load_system(name) ;  
  
            mutated_tank = find_system(miter_handler, 'SearchDepth', '1', ... 
                'BlockType', 'SubSystem') ; 
            %length(mutated_tank) 
  
            if i == 1 
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                selectedBlocks = find_system(mutated_tank(1), 'BlockType', 'Logic ', 'Operator', 'AND') ; 
                length(selectedBlocks) 
                for t j = 1:length(selectedBlocks) 
                    if t j == jj 
                        if k == 1 
                            set_param(selectedBlocks(t j), 'Operator', 'OR');  
                            break;  
                        elseif k == 2 
                            set_param(selectedBlocks(t j), 'Operator', 'NAND');  
                        elseif k == 3  
                            set_param(selectedBlocks(t j), 'Operator', 'NOR');  
                        elseif k == 4 
                            set_param(selectedBlocks(t j), 'Operator', 'XOR');  
                        else 
                            set_param(selectedBlocks(t j), 'Operator', 'NXOR'); 
                        end 
                    end 
                end  
            else 
                selectedBlocks = find_system(mutated_tank(1), 'BlockType', 'Logic ', 'Operator', 'OR') ;  
            end 
           if i == 2 
                selectedBlocks = find_system(mutated_tank(1), 'BlockType', 'Logic ', 'Operator', 'OR') ;  
                length(selectedBlocks) 
                for t j = 1:length(selectedBlocks) 
                    if t j == jj 
                        if k == 1 
                            set_param(selectedBlocks(t j), 'Operator', 'XOR');  
                        elseif k == 2 
                            set_param(selectedBlocks(t j), 'Operator', 'NXOR'); 
                        elseif k == 3  
                            set_param(selectedBlocks(t j), 'Operator', 'NAND');  
                        elseif k == 4 
                            set_param(selectedBlocks(t j), 'Operator', 'NOR');  
                        else 
                            set_param(selectedBlocks(t j), 'Operator', 'AND'); 
                        end 
                    end 
                end  
            else 
                selectedBlocks = find_system(mutated_tank(1), 'BlockType', 'Logic ', 'Operator', 'AND') ; 
            end 
             
     
            save_system(name) ; 
            close_system(name) ;  
          end  
      end 
    end  
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A.2 

The diagram of one of the generated miter models is shown below; 
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A.3 
Gene-auto C program for WATER_TANK_MODELING3 

/* 

    WATER_TANK_MODELLING3.c 

    Generated by Gene-Auto toolset ver 2.4.10 

    (launcher GALauncher) 

    Generated on: 17/04/2015 08:42:37.581 

    source model: WATER_TANK_MODELLING3 

    model version: 7.5 

    last saved by: 

    last saved on: 

*/ 

 

/* Includes */ 

 

#include "WATER_TANK_MODELLING3.h" 

 

/* Function definitions */ 

 

void WATER_TANK_MODELLING3_init(t_WATER_TANK_MODELLING3_state *_state_) { 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<SequentialBlock: name=Unit Delay>  */  

 

    _state_->Unit_Delay_memory_1 = TO_GABOOL(0); 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<SequentialBlock: name=Unit Delay>  */  

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<SequentialBlock: name=Unit Delay>  */  
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    _state_->Unit_Delay_memory_2 = TO_GABOOL(0); 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<SequentialBlock: name=Unit Delay>  */  

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SequentialBlock: 

name=Unit Delay>  */ 

    _state_->Unit_Delay_memory_3 = TO_GABOOL(0); 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SequentialBlock: 

name=Unit Delay>  */ 

} 

 

void WATER_TANK_MODELLING3_compute(t_WATER_TANK_MODELLING3_io *_io_, 

t_WATER_TANK_MODELLING3_state *_state_) { 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=LINE_SWAP>/<OutDataPort: name=>  */ 

    GABOOL LINE_SWAP; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=L2_FAILURE>/<OutDataPort: name=>  */ 

    GABOOL L2_FAILURE; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=H_FLOW>/<OutDataPort: name=>  */ 

    GABOOL H_FLOW; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=L_FLOW>/<OutDataPort: name=>  */ 

    GABOOL L_FLOW; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=L1_FAIL>/<OutDataPort: name=>  */ 

    GABOOL L1_FAIL; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=SP_FAIL>/<OutDataPort: name=>  */ 

    GABOOL SP_FAIL; 
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    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=L2_FAIL>/<OutDataPort: name=>  */ 

    GABOOL L2_FAIL; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SequentialB lock: 

name=Unit Delay>/<OutDataPort: name=>  */ 

    GABOOL Unit_Delay_2; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator1>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator1_2; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator2>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator2_2; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator3>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator3_2; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator4>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator4_2; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator5>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator5; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<SequentialBlock: name=Unit Delay>/<OutDataPort: name=>  */ 

    GABOOL Unit_Delay_1; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator10>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator10; 
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    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator11>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator11; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator12>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator12; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator13>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator13; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator6>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator6; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator7>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator7; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator8>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator8; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator9>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator9; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<SequentialBlock: name=Unit Delay>/<OutDataPort: name=>  */ 

    GABOOL Unit_Delay_3; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator14>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator14; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator15>/<OutDataPort: name=>  */ 

    GABOOL RS_L2_S; 
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    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator16>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator16; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator17>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator17; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator18>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator18; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator19>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator19; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator20>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator20; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator1>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator1_1; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator2>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator2_1; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator3>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator3_1; 

    /*  Output from <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator4>/<OutDataPort: name=>  */ 

    GABOOL Logical_Operator4_1; 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<SequentialBlock: name=Unit Delay>  */  

    Unit_Delay_3 = _state_->Unit_Delay_memory_1; 
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    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<SequentialBlock: name=Unit Delay>  */  

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=LINE_SWAP>  */ 

    LINE_SWAP = _io_->LINE_SWAP; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=LINE_SWAP>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=L2_FAIL>  */ 

    L2_FAIL = _io_->L2_FAIL; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=L2_FAIL>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=L2_FAILURE>  */ 

    L2_FAILURE = _io_->L2_FAILURE; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=L2_FAILURE>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<SequentialBlock: name=Unit Delay>  */ 

    Unit_Delay_1 = _state_->Unit_Delay_memory_2; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<SequentialBlock: name=Unit Delay>  */  

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator1>  */ 

    Logical_Operator1_2 = !Unit_Delay_1; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator1>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator>  */ 

    Logical_Operator = LINE_SWAP && Logical_Operator1_2; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator>  */ 
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    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator2>  */ 

    Logical_Operator2_2 = LINE_SWAP && Unit_Delay_1; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator2>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator4>  */ 

    Logical_Operator4_2 = !Logical_Operator2_2; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator4>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator5>  */ 

    Logical_Operator5 = Logical_Operator || Unit_Delay_1; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator5>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator3>  */ 

    Logical_Operator3_2 = Logical_Operator4_2 && Logical_Operator5; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem>/<CombinatorialBlock: name=Logical\nOperator3>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator14>  */ 

    Logical_Operator14 = !Logical_Operator3_2; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator14>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator15>  */ 

    RS_L2_S = Logical_Operator14 || L2_FAILURE; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator15>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=H_FLOW>  */ 
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    H_FLOW = _io_->H_FLOW; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=H_FLOW>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=L_FLOW>  */ 

    L_FLOW = _io_->L_FLOW; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=L_FLOW>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator16>  */ 

    Logical_Operator16 = !(H_FLOW || L_FLOW); 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator16>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator9>  */ 

    Logical_Operator9 = !(H_FLOW || L_FLOW); 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator9>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=L1_FAIL>  */ 

    L1_FAIL = _io_->L1_FAIL; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=L1_FAIL>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=SP_FAIL>  */ 

    SP_FAIL = _io_->SP_FAIL; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SourceBlock: 

name=SP_FAIL>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator10>  */ 

    Logical_Operator10 = Logical_Operator9 || L1_FAIL || SP_FAIL; 
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    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator10>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator12>  */ 

    Logical_Operator12 = !Logical_Operator10; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator12>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator4>  */ 

    Logical_Operator4_1 = !H_FLOW; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator4>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SequentialBlock: 

name=Unit Delay>  */ 

    Unit_Delay_2 = _state_->Unit_Delay_memory_3; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SequentialBlock: 

name=Unit Delay>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator6>  */ 

    Logical_Operator6 = !Unit_Delay_2; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator6>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator7>  */ 

    Logical_Operator7 = Logical_Operator3_2 && Logical_Operator6; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator7>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator8>  */ 

    Logical_Operator8 = Logical_Operator7 || L2_FAILURE; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator8>  */ 
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    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator11>  */ 

    Logical_Operator11 = Unit_Delay_3 || Logical_Operator8; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator11>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator18>  */ 

    Logical_Operator18 = RS_L2_S || Unit_Delay_2; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator18>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator13>  */ 

    Logical_Operator13 = Logical_Operator11 && Logical_Operator12; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem1>/<CombinatorialBlock: name=Logical\nOperator13>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=L1_UP>  */ 

    _io_->L1_UP = Logical_Operator13; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=L1_UP>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: name=EN>  

*/ 

    _io_->EN = Logical_Operator13; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: name=EN>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator17>  */ 

    Logical_Operator17 = SP_FAIL || Logical_Operator16 || Logical_Operator13 || L2_FAIL; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator17>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator19>  */ 
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    Logical_Operator19 = !Logical_Operator17; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator19>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator20>  */ 

    Logical_Operator20 = Logical_Operator18 && Logical_Operator19; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem2>/<CombinatorialBlock: name=Logical\nOperator20>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=L2_UP>  */ 

    _io_->L2_UP = Logical_Operator20; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=L2_UP>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=L1_PUMP>  */ 

    _io_->L1_PUMP = Logical_Operator13; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=L1_PUMP>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=L1_DOWN>  */ 

    _io_->L1_DOWN = Logical_Operator13; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=L1_DOWN>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=EN1>  */ 

    _io_->EN1 = Logical_Operator20; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: name=EN1>  

*/ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator2>  */ 

    Logical_Operator2_1 = Logical_Operator13 && Logical_Operator20; 
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    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator2>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=L2_PUMP>  */ 

    _io_->L2_PUMP = Logical_Operator20; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=L2_PUMP>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator1>  */ 

    Logical_Operator1_1 = Logical_Operator13 || Logical_Operator20; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator1>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=L2_DOWN>  */ 

    _io_->L2_DOWN = Logical_Operator20; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=L2_DOWN>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator3>  */ 

    Logical_Operator3_1 = Logical_Operator1_1 || Logical_Operator4_1; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SystemBlock: 

name=Subsystem3>/<CombinatorialBlock: name=Logical\nOperator3>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=OUT_VALVE>  */ 

    _io_->OUT_VALVE = Logical_Operator2_1; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=OUT_VALVE>  */ 

    /*  START Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=BF_VALVE>  */ 

    _io_->BF_VALVE = Logical_Operator3_1; 

    /*  END Block: <SystemBlock: name=WATER_TANK_MODELLING3>/<SinkBlock: 

name=BF_VALVE>  */ 
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    /*  START Block memory write: <SystemBlock: 

name=WATER_TANK_MODELLING3>/<SequentialBlock: name=Unit Delay>  */ 

    _state_->Unit_Delay_memory_3 = Logical_Operator20; 

    /*  END Block memory write: <SystemBlock: 

name=WATER_TANK_MODELLING3>/<SequentialBlock: name=Unit Delay>  */ 

    /*  START Block memory write: <SystemBlock: 

name=WATER_TANK_MODELLING3>/<SystemBlock: name=Subsystem>/<SequentialBlock: 

name=Unit Delay>  */ 

    _state_->Unit_Delay_memory_2 = Logical_Operator3_2; 

    /*  END Block memory write: <SystemBlock: 

name=WATER_TANK_MODELLING3>/<SystemBlock: name=Subsystem>/<SequentialBlock: 

name=Unit Delay>  */ 

    /*  START Block memory write: <SystemBlock: 

name=WATER_TANK_MODELLING3>/<SystemBlock: name=Subsystem1>/<SequentialBlock: 

name=Unit Delay>  */ 

    _state_->Unit_Delay_memory_1 = Logical_Operator13; 

    /*  END Block memory write: <SystemBlock: 

name=WATER_TANK_MODELLING3>/<SystemBlock: name=Subsystem1>/<SequentialBlock: 

name=Unit Delay>  */ 

} 
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