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ABSTRACT

APOBEC3B is a newly identified source of mutation in many cancers, including 
breast, head/neck, lung, bladder, cervical, and ovarian. APOBEC3B is a member of 
the APOBEC3 family of enzymes that deaminate DNA cytosine to produce the pro-
mutagenic lesion, uracil. Several APOBEC3 family members function to restrict virus 
replication. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H combine 
to restrict HIV-1 in human lymphocytes. HIV-1 counteracts these APOBEC3s with the 
viral protein Vif, which targets the relevant APOBEC3s for proteasomal degradation. 
While APOBEC3B does not restrict HIV-1 and is not targeted by HIV-1 Vif in 
CD4-positive T cells, we asked whether related lentiviral Vif proteins could degrade 
APOBEC3B. Interestingly, several SIV Vif proteins are capable of promoting APOBEC3B 
degradation, with SIVmac239 Vif proving the most potent. This likely occurs through 
the canonical polyubiquitination mechanism as APOBEC3B protein levels are restored 
by MG132 treatment and by altering a conserved E3 ligase-binding motif. We further 
show that SIVmac239 Vif can prevent APOBEC3B mediated geno/cytotoxicity and 
degrade endogenous APOBEC3B in several cancer cell lines. Our data indicate that 
the APOBEC3B degradation potential of SIV Vif is an effective tool for neutralizing 
the cancer genomic DNA deaminase APOBEC3B. Further optimization of this natural 
APOBEC3 antagonist may benefit cancer therapy.

INTRODUCTION

The DNA cytosine deaminase APOBEC3B (A3B) 
was identified recently as a major source of mutation 
in cancer [1–11]. A3B was initially determined to be 
upregulated in breast tumors, and this upregulation 
correlates with increased mutation loads at its preferred 
DNA deamination motif (i.e. 5′-TC-3′) [1]. These 
mutations have been observed to occur in clusters, termed 
kataegis, and correlated with translocations and other 
chromosomal aberrations [6, 12, 13]. Since these findings, 
A3B has been further implicated in contributing to the 
mutational load in breast cancer and other malignancies, 
including bladder, cervical, head/neck, lung, and ovarian 

cancers [2–11]. Furthermore, clinical data have begun to 
accumulate, demonstrating that elevated A3B expression 
correlates with poor outcomes in breast cancer patients 
[14, 15]. Together, these studies support a model in which 
A3B is a major source of mutation in cancer that drives 
tumor evolution, therapy resistance, and poor patient 
outcomes (reviewed in [16–18]).

A3B is part of the seven-membered APOBEC3 
family of proteins, which share the ability to deaminate 
DNA cytosine to uracil – a pro-mutagenic base. The 
physiologic roles of the family members are antiviral 
immunity. However, each APOBEC3 appears specialized 
to restrict certain pathogens. For example, four members; 
APOBEC3D (A3D), APOBEC3F (A3F), APOBEC3G 
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(A3G), and APOBEC3H (A3H), have the ability to restrict 
the lentivirus human immunodeficiency virus-1 (HIV-1) 
in T lymphocytes by catalyzing mutations in the viral 
genome and interfering with reverse transcription (many 
labs, reviewed in [19, 20]). HIV-1 counteracts restriction 
by binding these APOBEC3 enzymes with the virally 
encoded Vif protein, and targeting them for E3 ubiquitin 
ligase-mediated proteasomal degradation (reviewed in [19, 
20]). The human A3B (huA3B) protein, however, does not 
restrict HIV-1 in T cells, and is not neutralized by HIV-1 
Vif [21–28].

Most lentiviruses in addition to HIV-1 encode a 
Vif protein, including simian immunodeficiency virus 
(SIV), bovine immunodeficiency virus (BIV), feline 
immunodeficiency virus (FIV), and maedi-visna virus 
(MVV). The Vif proteins from these viruses also function 
to degrade the cognate restrictive APOBEC3 proteins from 
each mammalian host [22, 29–32]. The number and type 
of APOBEC3 proteins that are encoded by each animal 
host can vary, with simians expressing seven APOBEC3 
proteins (similar to humans), cats expressing five 
APOBEC3 proteins, and cows and sheep each expressing 
four APOBEC3 proteins [33–35]. It is generally believed 
that each Vif protein has undergone evolutionary 
optimization to specifically degrade the APOBEC3s of 
each host. However, cross-species degradation has been 
documented and indeed likely occurs to allow zoonotic 
transmission [32, 35, 36]. Based on this rationale, we 
hypothesized that at least one naturally occurring lentiviral 
Vif would have human A3B (huA3B) antagonizing 
activity.

To test this idea, we surveyed a panel of Vif proteins 
from diverse lentiviruses (see Methods for a full listing of 
viral isolates) and found that SIVmac239 Vif is a potent 
neutralizer of huA3B, while several other SIV Vif proteins 
are also capable of promoting huA3B degradation. 
MG132 treatment inhibited degradation, as did altering 
the conserved E3 ligase-binding motif, indicating that 
the degradation likely occurs through the established 

polyubiquitination mechanism. Finally, we demonstrated 
that SIVmac239 Vif can prevent huA3B mediated geno/
cytotoxicity and degrade endogenous huA3B in multiple 
human cancer cell lines. Our studies thereby establish 
SIVmac239 Vif as a molecular tool that may be further 
developed into a therapeutic strategy to counteract huA3B, 
decrease tumor mutation rates, and improve patient 
outcomes.

RESULTS

SIVmac239 Vif triggers huA3B degradation

We and others have previously demonstrated that 
HIV-1IIIB Vif does not efficiently mediate degradation of 
huA3B during viral infection [21–25, 37]. To determine 
huA3B sensitivity to degradation by various lentiviral Vif 
proteins, we tested the ability of a panel of Vif constructs 
derived from HIV-1IIIB, SIVmac239, BIV, MVV, and FIV 
to mediate degradation of huA3B. These Vif constructs 
were transfected into 293T cells at near-equivalent levels 
based on immunoblots, along with a constant amount of 
huA3B or vector control (Fig. 1A). The expected sizes 
of these Vif proteins range from approximately 23.9 kDa 
for HIV-1IIIB Vif to 30.4 kDa for FIV Vif including the 
1.2 kDa carboxy-terminal MYC epitope tag. HIV-1IIIB 
Vif demonstrated inefficient counteraction of huA3B, 
as it was only able to mediate degradation of huA3B at 
the highest expression levels. SIVmac239 Vif was the 
most efficient at mediating degradation of huA3B, with 
the lowest level of SIVmac239 Vif mediating a similar 
level of huA3B degradation as the highest level of 
HIV-1IIIB Vif. Furthermore, the highest level of 
SIVmac239 Vif rendered huA3B barely detectable 
by immunoblot (Fig. 1A). HuA3B cotransfected with 
BIV Vif showed moderately lower levels of expression 
regardless of the amount of BIV Vif co-transfected. FIV 
Vif and MVV Vif did not have any effect on huA3B, 
regardless of expression levels.

Figure 1: SIVmac239 Vif efficiently degrades huA3B. A. Immunoblot demonstrating the varying abilities of the lentiviral Vif 
proteins to degrade huA3B. The lysates were blotted for MYC to detect Vif, HA to detect huA3B, and tubulin (TUB) as a loading control. B. 
Representative immunoblot demonstrating the abilities of Vif from HIV-1IIIB and the indicated SIV isolates to degrade huA3B. The lysates 
were blotted for MYC to detect Vif, HA to detect huA3B, and tubulin (TUB) as a loading control. The migration positions of molecular 
weight standards are indicated next to the anti-MYC (Vif) panels.
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To determine if degradation of huA3B is a property 
elicited by Vif from multiple SIV strains, we tested a 
diverse panel of SIV Vif expression constructs. The 
panel consisted of lentiviruses that naturally infect sooty 
mangabeys, rhesus macaques, stump-tailed macaques, pig-
tailed macaques, cynomolgus macaques, and African green 
monkeys [38]. As described above, these Vif constructs 
were expressed in 293T cells at near-equivalent levels 
based on immunoblots, with huA3B or vector control, 
and cellular lysates were probed to assess the level of 
Vif-mediated degradation of huA3B (Fig. 1B). Many of the 
different SIV Vif proteins caused degradation of huA3B. 
These include Vif from SIVmac239, SIVsmCFU212, 
SIVsmPG, SIVsmPBj, SIVsmE041, and SIVstm. 
Additionally, many of the different SIV Vif proteins 
were unable to mediate degradation of huA3B. These Vif 
proteins include SIVmac142, SIVmfa186, SIVmne027, 
SIVsmE543, SIVagmTAN, as well as Vif from HIV-1IIIB 
(Fig. 1B). Over multiple independent experiments, 
SIVmac239 Vif consistently expressed well and elicited a 
strong huA3B degradation phenotype. For these reasons, 
additional experiments focused on SIVmac239 Vif.

SIVmac239 Vif degrades huA3B in a manner 
analogous to HIV-1IIIB Vif degradation of huA3G

To determine if SIVmac239 Vif mediates 
degradation of huA3B in an analogous manner to HIV-1IIIB 
Vif degradation of huA3G, which has been studied 
extensively (reviewed in [19, 20]), we tested for Vif-
mediated relief of HIV-1 restriction in single-cycle 
infectivity assays. Additionally, we examined rhesus 
macaque A3B (rhA3B) susceptibility to SIVmac239 Vif, 
as this protein is the cognate target of SIVmac239 Vif. 
HuA3B, rhA3B, huA3G, and vector control constructs 
were transfected into the 293T cell line with Vif-deficient 
full-length molecular clone HIV-1IIIB. Another vector 
control, HIV-1IIIB Vif, or SIVmac239 Vif were co-
transfected into the cells on separate expression vectors. 
As shown previously, huA3G restricted viral infectivity in 
the absence of any Vif protein, but lesser so when HIV-1IIIB 
Vif was present (Fig. 2A). The ability of huA3G to restrict 
HIV replication was even more strongly counteracted by 
SIVmac239 Vif, as reported [39, 40]. Overall, both HIV-
1IIIB and SIVmac239 Vif proteins have the capacity to 
degrade huA3G (Fig. 2B). In contrast, huA3B restricted 
HIV-1IIIB infectivity both in the absence of Vif protein and 
in the presence of HIV-1IIIB Vif. Only SIVmac239 Vif was 
able to relieve huA3B-mediated restriction of HIV-1IIIB 
(Fig. 2A), and only SIVmac239 Vif promoted degradation 
of huA3B (Fig. 2B). The rhA3B protein showed a similar 
restriction profile to huA3B. RhA3B was restrictive in 
the absence of Vif, and in the presence of HIV-1IIIB Vif. 
SIVmac239 Vif moderately restored viral infectivity in the 
presence of rhA3B (Fig. 2A), and had a minor effect on 
rhA3B degradation (Fig. 2B), as reported [22, 32].

To further characterize similarities between 
huA3G, huA3B, and rhA3B counteraction by HIV-1IIIB 
Vif and SIVmac239 Vif, we tested whether the observed 
degradation occurs through a ubiquitin-mediated 
proteasomal degradation pathway, as is the case for HIV-
1 Vif-mediated degradation of huA3G, by inhibiting 
proteasomal degradation with the compound MG132 
[41, 42]. As expected, MG132 inhibited degradation of 
huA3G by HIV-1IIIB Vif and SIVmac239 Vif (Fig. 3A). 
SIVmac239 Vif, but not HIV-1IIIB Vif, mediated 
degradation of huA3B, and this degradation was also 
inhibited by MG132. RhA3B was somewhat degraded in 
the presence of SIVmac239 Vif, while HIV-1IIIB Vif was 
not observed to mediate degradation of rhA3B. Inhibition 
of the proteasome with MG132 decreased SIVmac239 Vif 
mediated degradation of rhA3B (Fig. 3A).

Figure 2: SIVmac239 Vif efficiently counteracts 
huA3B-mediated restriction of HIV-1. A. Bar graph 
depicting the infectivity (measured as % infected CEM-GFP 
reporter) of Vif-deficient HIV-1IIIB complemented with vector 
(grey bars), HIV-1IIIB Vif (blue bars), or SIVmac239 Vif (red 
bars); produced in the presence of vector control, huA3B, rhA3B 
or huA3G (n = 3; mean and SD shown). Asterisks indicate 
level of significance, compared to the no Vif condition (***p < 
0.001, as determined by one-way ANOVA). B. Representative 
immunoblots for each infection condition are shown beneath 
each histogram bar. Purified viral particles were blotted for HA 
to detect A3 and for p24 (Gag) as a loading control. Producer 
cell lysates were blotted for HA to detect A3, for MYC to detect 
Vif, and for Tubulin (TUB) as a loading control. The migration 
positions of molecular weight standards are indicated next to the 
anti-MYC (Vif) panels.
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We next asked whether the SLQ motif of Vif, which 
mediates interaction with ELOC of the E3 ubiquitin 
ligase complex, is important for mediating degradation of 
huA3B. HIV-1IIIB Vif and SIVmac239 Vif are only 30% 
identical at the amino acid level, but the SLQ motif is 
conserved (Fig. 3B). We transfected cells with APOBEC3 
and Vif constructs as shown in Fig. 3C. Mutation of the 
SLQ region to AAA in HIV-1IIIB Vif abrogated its ability 
to mediate degradation of huA3G. Similarly, mutation of 
the SLQ region to AAA in SIVmac239 Vif also abolished 
degradation of huA3G (Fig. 3C). Neither wild-type nor 
SLQ- > AAA versions of HIV-1IIIB Vif caused degradation 
of huA3B. The SLQ- > AAA mutation in SIVmac239 Vif 
prevented Vif-mediated degradation of huA3B, indicating 
that this Vif protein interacts with the E3 ligase complex 
to degrade huA3B in a manner similar to the interaction of 
HIV-1 Vif and huA3G (Fig. 3C).

SIVmac239 Vif rescues cells from huA3B-
mediated cytotoxicity

HuA3B is geno/cytotoxic in cell culture systems 
when overexpressed [1, 13, 43]. HuA3B localizes to the 
nucleus of cells, where it accesses genomic DNA and 

causes massive amounts of C-to-U deamination events. 
This leads to abasic sites, catastrophic levels of mutation, 
and ultimately cell death [1]. To determine if SIVmac239 
Vif could save cells from huA3B-mediated cytotoxicity, 
we stably expressed huA3B-eGFP or eGFP alone under 
the control of a doxycycline-inducible promoter in T-REx 
293 cells, allowing for titratable expression of the protein 
[1]. Vector control, HIV-1IIIB Vif, and SIVmac239 Vif 
were expressed stably in the inducible huA3B and GFP 
cells, and expression was confirmed by immunoblotting 
(inset images, Fig. 4A & 4B). These cells were plated 
in increasing concentrations of doxycycline to assess 
viability in the constitutive presence of Vif and the 
inducible presence of huA3B.

The cells that inducibly expressed huA3B alone 
(i.e. huA3B + vector control) showed a marked decrease 
in viability, correlating with increased huA3B expression, 
with an IC50 value of 5 × 10−1 pg/mL doxycycline 
(Fig. 4A). Stable expression of HIV-1IIIB Vif counteracted 
huA3B at an intermediate level, as demonstrated 
by significantly increased viability at 1 – 103 pg/mL 
doxycycline, and increasing the IC50 value to 4.4 × 103 
pg/mL doxycycline. Additionally, as seen in immunoblots, 
there is a modest decrease in detected huA3B compared 

Figure 3: SIVmac239 Vif degradation of huA3B is analogous to HIV-1IIIB Vif degradation of huA3G. A. Immunoblots 
demonstrating inhibition of Vif-mediated degradation of A3 proteins in the presence of MG132 (5 μM, 16 hours) or an equivalent amount 
of acetonitrile as a vehicle control. B. Amino acid alignment of the ELOC-binding SLQ region of the HIV-1 and SIV Vif proteins used in 
this study. The residues are shaded for conservation, with darker shades corresponding to more conserved positions. The residue positions 
included in the alignment are indicated. The conserved SLQ tri-residue motif is underlined. C. Immunoblots demonstrating that SIVmac239 
Vif-mediated degradation of huA3B is dependent on the SLQ motif, as is HIV-1IIIB and SIVmac239 degradation of huA3G. Cell lysates 
were blotted for MYC to detect Vif, for HA to detect A3, and for tubulin (TUB) as a loading control.
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with no Vif (Fig. 4B). Stable expression of SIVmac239 
Vif robustly counteracted huA3B and showed fully 
rescued or significantly increased levels of viability 
at all tested doxycycline concentrations. The maximal 
decrease in viability observed was only 30%, preventing 
the determination of an IC50 value. The amount of huA3B 
detectable by immunoblot is only moderately less than that 
with no Vif, or HIV-1IIIB, and still clearly detectable. These 
data indicate that SIVmac239 Vif may counteract huA3B 
through both a canonical degradation mechanism (likely 
the major pathway based on the aforementioned results) 
as well as, we speculate, a non-canonical mechanism such 
as cytoplasmic sequestration. This theory is not without 
precedent as HIV-1 Vif has been reported to alter the 
subcellular localization of APOBEC3 enzymes [37]. For 
comparison, cells that inducibly expressed GFP showed a 
constant level of viability with increasing GFP expression, 
regardless of co-expression of HIV-1IIIB Vif or SIV Vif 
(Fig. 4C & 4D).

SIVmac239 Vif degrades endogenous huA3B

To begin to assess the feasibility of using 
SIVmac239 Vif or a derivative to counteract endogenous 
huA3B as an anti-cancer therapeutic, we examined the 

effect of SIVmac239 Vif in three cancer cell lines that 
endogenously express high levels of huA3B: HCC1569 
cells, a human breast cancer cell line; JSQ3, a human 
head and neck cancer cell line; and OVCAR5, a human 
ovarian cancer cell line [1, 3]. These three cell lines 
were transfected with HIV-1IIIB Vif and SIVmac239 
Vif expression constructs, as well as empty vector. No 
significant difference in levels of endogenous huA3B was 
observed in cells stably expressing the vector control or 
HIV-1IIIB Vif (Fig. 5A & 5B). In contrast, HCC1569, JSQ3, 
and OVCAR5 cells engineered to express SIVmac239 
Vif all showed significantly lower levels of huA3B, 
indicating that SIVmac239 Vif is capable of mediating the 
degradation of endogenous huA3B in cancer cells (Fig. 5A 
& 5B).

We further characterized SIVmac239 Vif-mediated 
degradation of endogenous huA3B in the OVCAR5 cell 
line. As shown with overexpressed huA3B, mutation 
of the SLQ region to AAA in SIVmac239 Vif abrogated 
its ability to mediate degradation of endogenous huA3B 
(Fig. 5C). Changing the SLQ region to AAA in HIV-1IIIB 
Vif had no effect, as neither of these proteins mediated 
degradation of huA3B (Fig. 5C). In further agreement with 
the overexpression experiments, treatment of the OVCAR5 
cells with the proteasomal inhibitor MG132 rescued 

Figure 4: SIVmac239 Vif rescues cells from huA3B-mediated DNA damage and cytotoxicity. A. Clonogenic assay for T-REx 
293 cells expressing huA3B-eGFP with doxycycline induction, and stably expressing vector (grey), HIV-1IIIB Vif (blue), or SIVmac239 
Vif (red). Relative viability indicates the ratio of clones that grew in increasing doxycycline, compared to no doxycycline induction (n = 3, 
mean and SD shown). The lysates (inset) were blotted for MYC to detect Vif and tubulin (TUB) as a loading control. Asterisks indicate level 
of significance, compared to vector condition (*p < 0.05; **p < 0.01; ***p < 0.001, as determined by two-way ANOVA). B. Representative 
immunoblots for cells at each doxycycline (dox) concentration show induction of huA3B in the presence of the indicated Vif constructs. 
Cell lysates were blotted for GFP to detect huA3B-eGFP and for HSP90 as a loading control. C. Clonogenic assay for T-REx 293 cells 
expressing eGFP with doxycycline induction, and stably expressing vector (squares), HIV-1IIIB Vif (triangles), or SIVmac239 Vif (circles), 
as described above (n = 3, mean and SD shown). The lysates (inset) were blotted for MYC to detect Vif and for tubulin (TUB) as a loading 
control. D. Representative immunoblots for cells at each doxycycline (dox) concentration show induction of GFP in the presence of the 
indicated Vif constructs. The lysates were blotted for GFP and for HSP90 as a loading control.
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endogenous huA3B from SIVmac239 Vif-mediated 
degradation (Fig. 5C). Based on the established mechanism 
for Vif function, these data indicate that SIVmac239 Vif 
interacts with ELOC of the E3 ubiquitin ligase complex 
via its SLQ motif to mediate proteasomal degradation of 
endogenous huA3B.

DISCUSSION

A3B contributes to genomic mutation in breast and 
other cancers, and associates with poor patient outcomes 
(reviewed in [16–18]). As such, it would be beneficial 
to cancer research and patient therapy to be able to 
counteract this potent DNA mutator. A3B is part of a 
larger family of APOBEC3 proteins, some of which have 
physiologic functions in restricting HIV-1 replication, 
and these are counteracted by HIV-1 Vif (reviewed in 
[19, 20]). HuA3B is not efficiently degraded by HIV-1 
Vif [21–28], however, HIV-1 Vif may bind huA3B as 
indicated by co-immunoprecipitation studies [21, 37]. We 
hypothesized that the Vif protein from another lentivirus 
may be capable of counteracting huA3B, as diverse 
lentiviruses are restricted by differing subsets of the host’s 
APOBEC3 proteins. By surveying a panel of Vif proteins 
from lentiviruses that infect different animal hosts, we 
identified SIVmac239 Vif as a potent inhibitor of both 
overexpressed and endogenously upregulated huA3B, 
degrading huA3B in an analogous manner to HIV-1IIIB Vif 
mediating degradation of huA3G.

In testing the conservation of the ability of Vif 
proteins from various SIV strains to degrade huA3B, we 
found that many but not all SIV Vif proteins share this 
trait. Such an ability to degrade huA3B is potentially 
due to structural and functional conservation of huA3B 
with simian APOBEC3 proteins and the ability of some 
of these simian enzymes to restrict the relevant SIV 
strains, thus being legitimate targets of the respective 
Vif ubiquitin ligase complexes. For example, rhA3B 
has been demonstrated here and in other studies to 
be counteracted by SIVmac Vif, suggesting that this 
protein may be relevant for SIVmac infection of rhesus 
macaques [22, 32]. In contrast, HIV-1 is not restricted by 
huA3B in T cells, the major cellular target of HIV-1, and 
HIV-1 Vif does not efficiently counteract huA3B [21–28]. 
These species specificities can be utilized to further 
understand the relevant protein interaction surfaces. For 
instance, the ability of HIV-1 Vif to counteract huA3F but 
not rhA3F has led to better understanding to this protein 
interaction surface [32, 44–46]. By better understanding 
the interaction between huA3B and SIVmac239 Vif, 
SIVmac239 Vif may be engineered to become more 
efficient at degrading huA3B and to increase its specificity 
for huA3B over other APOBEC3 proteins, resulting in a 
better molecular probe and cancer therapeutic.

Interestingly, although we clearly showed that 
SIVmac239 Vif is capable of degrading huA3B, it also 
appeared capable of neutralizing the cytotoxic effects of 
huA3B beyond the canonical degradation mechanism. 
Based on prior studies [37], we hypothesize that 
SIVmac239 Vif may also bind huA3B in the cytosol and 
prevent it from importing into the nuclear compartment. 

Figure 5: SIVmac239 Vif degrades endogenous huA3B 
in cancer cells. A. Representative immunoblots of HCC1569, 
JSQ3, and OVCAR5 cells expressing empty vector, HIV-1IIIB 
Vif, or SIVmac239 Vif. Cell lysates were blotted for endogenous 
huA3B, for MYC to detect Vif, and for tubulin (TUB) as a loading 
control. B. Quantification of endogenous huA3B in cancer cells 
expressing empty vector, HIV-1IIIB Vif, or SIVmac239 Vif. A3B 
levels were normalized to Tubulin, and the amount of A3B in the 
presence of vector, for each cell line, was set at 1 (n = 3, mean and 
SD shown). Asterisks indicate level of significance, compared 
to vector control (**p < 0.01; ***p < 0.001, as determined by 
two-way ANOVA). C. Representative immunoblot of OVCAR5 
cells demonstrating that SIVmac239 Vif-mediated degradation 
of endogenous huA3B is dependent on the SLQ motif and that 
this degradation is inhibited in the presence of MG132 (5 μM, 
16 hours). Cell lysates were blotted for endogenous huA3B, for 
MYC to detect Vif, and for tubulin (TUB) as a loading control.
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Such a sequestration mechanism could help protect 
genomic DNA from huA3B’s genotoxic activities, as has 
been inferred for the related APOBEC3A (A3A) protein 
[47, 48]. However, this theory needs extensive testing 
for validation and to distinguish it from other possible 
mechanisms. HIV-1IIIB Vif was also able to mediate 
neutralization of huA3B, albeit at a much lower level than 
SIVmac239 Vif. This may be related to binding rather 
than degradation of the protein. This observation also 
suggests that HIV-1 Vif could protect cells from huA3B’s 
oncogenic effects, and that HIV-1 infected individuals may 
be partly protected from the onset or progression of some 
malignancies. However, this does not seem to be the case 
as HIV-1 infection is associated with an increased risk of 
several AIDS-defining and non-AIDS defining cancers 
[49, 50].

This study is the first to show that SIVmac239 Vif 
can degrade the genomic DNA mutator huA3B in living 
cells. Degradation of endogenous huA3B was observed 
in cell lines representing three different types of human 
cancer, suggesting that although cellular factors that 
regulate huA3B are not yet elucidated, this finding may 
have implications for treating a wide range of huA3B 
effected malignancies. The data presented here have 
strong implications for developing SIVmac239 Vif as 
a molecular tool for future studies on the mutagenic 
properties of huA3B, and for neutralizing huA3B in cancer 
to halt tumor mutagenesis, prevent therapy resistance, and 
improve the treatment and prognosis of cancer patients.

MATERIALS AND METHODS

APOBEC3 expression constructs

The APOBEC3 proteins huA3B (GenBank accession 
no. NM004900), huA3G (GenBank NM021822), and 
rhA3B (GenBank JF714485, but with the asparagine 
at amino acid residue 316 restored to aspartate [51]) 
were expressed with carboxy-terminal HA tag in the 
pcDNA3.1(+) vector (Invitrogen). cDNA was provided 
by Dr. Theodora Hatziioannou (Aaron Diamond AIDS 
Research Center, New York) [32]. Additionally, huA3B 
was expressed with a carboxy-terminal eGFP tag in the 
doxycycline-inducible pcDNA5TO vector (Clontech).

Vif nomenclature and expression constructs

Each Vif protein is described by virus type 
(HIV, SIV, etc) and a strain/isolate identifier (IIIB, 
mac239, etc) according to standard conventions in the 
retrovirus field. The lentiviral Vif proteins from HIV-1IIIB 
(protein sequence matches GenBank EU541617), 
SIVmac239 (GenBank AY588946), BIVBIM127 (GenBank 
M32690), MVV1514 (GenBank M60610), and FIVNSCU 
(GenBank m25381) were codon optimized (GenScript 
Corporation) and expressed with a carboxy-terminal MYC 

tag in the pVR1012 vector [29]. Vif expression constructs 
from SIVsmCFU212 (GenBank JX860407), SIVsmPG 
(GenBank AAC68657), SIVsmPBj (GenBank AAB22996), 
SIVsmE041 (GenBank HM059825), SIVstm (GenBank 
AAA91941), SIVmac142 (GenBank Y00277), SIVmfa186 
(GenBank KF030930), SIVmne027 (GenBank U70412), 
SIVsmE543–3 (GenBank U72748), and SIVagmTAN 
(GenBank AAC57053) were derived originally in the 
Johnson lab (Boston College) [38]. These cDNAs were 
subcloned into the pVR1012 vector with a carboxy-
terminal MYC tag. The Vif expression construct pVR1012 
was a generous gift of Dr. Xiao-Fang Yu (John Hopkins, 
Baltimore). For transient expression in HCC1569 and JSQ3 
cells, the constructs were transfected with TransIT-2020 
(Mirus) and TransIT-X2 (Mirus), respectively. For stable 
expression in OVCAR5 cells, HIV-1IIIB and SIVmac239 
Vif were subcloned into the pLenti4-Hygro-TO backbone, 
transduced into OVCAR5 cells, and a stably expressing 
pool was selected with hygromycin.

HIV constructs

The Vif proficient and Vif deficient (X26X27) 
HIV-1IIIB A200C proviral expression constructs 
(GenBank EU541617) have been reported [52].

Cell lines

293T cells, T-REx 293 (Invitrogen) cells, and JSQ3 
cells were maintained in Dulbecco’s modified Eagle 
medium (DMEM) containing 10% fetal bovine serum 
(FBS) and 0.5% penicillin-streptomycin (P/S). CEM-
GFP, HCC1569, and OVCAR5 cells were maintained in 
RPMI medium with 10% FBS and 0.5% P/S. The CEM-
GFP HIV reporter cell line was obtained from the NIH 
AIDS Reagent Program [53]; the breast cancer cell line 
HCC1569 from ATCC; the head and neck cancer cell line 
JSQ3 from Dr. Mark Herzberg (University of Minnesota); 
and the ovarian cancer cell line OVCAR5 from the Mayo 
Clinic ovarian cell line repository.

Immunoblotting

Cell lysates were prepared by resuspending washed 
cell pellets directly in 2.5 Χ Laemmli sample buffer. Viral 
particles were purified from the filtered supernatant by 
centrifugation prior to resuspension in 2.5Χ Laemmli 
sample buffer. A3-HA was detected with monoclonal 
mouse anti-HA (BioLegend), Vif-MYC was detected 
with polyclonal rabbit anti-MYC (Sigma-Aldrich), 
Tubulin (TUB) was detected with monoclonal mouse 
anti-α-Tubulin (Covance), HIV-1 Gag was detected with 
monoclonal mouse anti-HIV-1 p24 (NIH AIDS Reagent 
Program) [54], A3-GFP was detected with monoclonal 
mouse anti-GFP (Clontech), HSP90 was detected with 
mouse anti-HSP90 (BD Biosciences). A3B was detected 
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with rabbit monoclonal anti-A3B [55] (Brown et al., in 
prep). To determine endogenous huA3B degradation, 
the huA3B and Tubulin bands were quantified from 
immunoblots using ImageJ (1.42q), and huA3B levels 
were normalized to those of Tubulin. These values were 
analyzed using a two-way ANOVA. Bonferroni’s method 
for post-hoc testing was used to compare the amount 
of huA3B in the presence of vector, HIV-1IIIB Vif, and 
SIVmac239 Vif. Statistical analyses were done with Prism 
5 (GraphPad Software Inc.).

Vif degradation

293T cells were transfected in triplicate with 
pVR1020-Vif-MYC or empty vector, at levels normalized 
by immunoblot, and pcDNA3.1 A3-HA, or empty vector, 
as indicated, using PEI (polyethyleneimine; Polysciences, 
Inc.). The following amounts of Vif expression construct 
were transfected for Fig. 1A: HIV-1IIIB 50–200 ng; 
SIVmac239 50–200 ng; BIV 100–400 ng; FIV 50–200 ng; 
MVV 100–400 ng. For Fig. 1B, the following amounts 
of Vif expression construct were transfected: HIV-1IIIB 
50–100 ng; SIVmac239 100–200 ng; SIVsmCFU212 
200–400 ng; SIVsmPG 200–400 ng; SIVsmPBj 
200–400 ng; SIVsmE041 200–400 ng; SIVstm 
400–800 ng; SIVmac142 200–400 ng; SIVmfa186 
200–400 ng; SIVmne027 200–400 ng, SIVsmE543 
200–400 ng; SIVagmTAN 400–800 ng. After 48 hours, 
the cells were harvested for immunoblot analysis. To 
inhibit proteasomal degradation, MG132 (American 
Peptide) was added at 5 μM, 16 hours before harvesting 
the cells.

HIV-1 single cycle infection with replication-
proficient virus

The single-cycle infectivity assays were performed 
as previously reported [22] by transfecting 293T cells 
(TransIT-LT1; Mirus) in triplicate with 1 μg of a Vif-
deficient HIV-1 proviral expression construct along with 
25 ng of A3-HA expression construct or empty vector, and 
25 ng of Vif-MYC expression construct or empty vector. 
After 48 hours, purified virus-containing supernatants 
were used to infect the CEM-GFP HIV-1 reporter cells, 
and cell and viral particle lysates were prepared for 
immunoblotting. Infectivity was analyzed using a one-way 
ANOVA. Dunnett’s method for post-hoc testing was used 
to compare increases in infectivity in the presence of the 
Vif expression constructs with vector control. Statistical 
analyses were done with Prism 5 (GraphPad Software Inc.).

Flow cytometry

HIV-infected CEM-GFP cells were prepared for 
flow cytometry by fixation in 4% paraformaldehyde. GFP 
fluorescence was measured on a BD FACS Canto II flow 

cytometer (BD Biosciences). All data were analyzed using 
FlowJo flow cytometry analysis software (version 8.8.7). 
GFP fluorescence was quantified from gated live cell 
populations.

Viability assay

T-REx 293 cells (Invitrogen), which stably 
express the tetracycline repressor, were transfected with 
pcDNA5TO-A3B-eGFP and pcDNA5TO-eGFP constructs 
using TransIT-LT1 (Mirus). Stable clones were selected 
with hygromycin and blasticidin. These T-REx 293 huA3B 
and T-REx 293 GFP stable clones were further engineered 
to stably express HIV-1IIIB Vif-myc, SIVmac239 Vif-
MYC or vector by transfection of pcDNA3.1 expression 
constructs and selection with G418. To assess viability, 
equal numbers of cells were plated in triplicate in 
increasing doxycycline concentrations and clones were 
allowed to form. The clones were quantified using ImageJ 
(1.42q) software. In parallel, these cells were plated in 
increasing doxycycline concentrations and harvested after 
48 hours for immunoblotting. Viability data were analyzed 
using a two-way ANOVA. Bonferroni’s method for post-
hoc testing was used to compare viability in the presence 
of vector control to the viability with HIV-1IIIB Vif and 
SIVmac239 Vif. Statistical analyses and TCID50 were done 
with Prism 5 (GraphPad Software Inc.).
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