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Choosing Between Parametric or Non-parametric Tests 

Abstract: A common question in comparing two sets of measurements is whether to use a 

parametric testing procedure or a non-parametric procedure. The question is even more 

important in dealing with smaller samples. Here, using simulation, several parametric and non-

parametric tests, such as, t-test, Normal test, Wilcoxon Rank Sum test, van-der Waerden Score 

test, and Exponential Score test are compared.  

Introduction 

Let us consider two independent random samples 
mxxx ,,, 21   and 

nyyy ,,, 21   are

taken from two populations. To compare the two samples, a common practice is to compare their 

means, in other words testing the statistical hypothesis: 

211210 :       vs:   HH

Where 
0H indicates the null hypothesis, 

1H indicates the alternative hypothesis, 
1 indicates the 

first population mean, and 2  indicates the second population mean. 

The statistical tests of hypotheses are based on the fundamental that if the samples have 

significant evidence against the null hypothesis ( 0H ), then 0H  is rejected in favor of the 

alternative hypothesis (
1H ). Then the question is how significant is significant, when do we say 

there is enough evidence, the answer is based on the idea of Type I error, the probability of 

rejecting 0H  when in fact it is true. The power of the test is determined by the rate of rejection 

of 0H  when it should be rejected. In other words, how well our test sees that 10 HH 
.

p-value 

The observed level of significance (or the Type I error) of a test is known as the p-value 

of the test. This is the probability of rejecting 0H when it is in fact true. In our study we use a 5% 

level of significance. This however, is just one of the many common levels of significance 

commonly used. 

Parametric Tests 
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1. According to Reinard (2006), when the two population distributions are normal, the

population variances 
2

1  and 
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2  are unknown and unequal, the test statistic is 
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2. According to Tanis and Hogg (2008), when the two population distributions are normal, the

population variances 
2

1  and 
2

2  are unknown but equal, the test statistic is: 

nm
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2nm  degrees of freedom. 

3. According to Tanis and Hogg (2008), when the two population distributions are not assumed

as normal, the population variances 
2

1  and 
2

2  are unknown, and the sample sizes 1n  and 

2n are large, the test statistic is: 

n

s

m

s

YX
Z
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
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


, where Z is the standard normal variate. 

Note that 021   for all three cases above, as per the null hypothesis. But in general 

it is not necessarily zero as if we want to test that one mean is at least an amount higher than the 

other then 21    is that least amount, and so on. The cases for known variances are not 

considered as they are not common in practice. 

In this paper we will consider the first test and the third test and denote as TD  and ZD , 

respectively. We also will consider TP  when the tests are computed as in TD  and ZD  but the p-

value is computed by considering all permutations of the data. For larger samples, TP  uses 

random permutations instead of all possible permutations. The corresponding p-values are 

denoted as PTD , PZD , and PTP  for the t-test, normal test, and the respective permutation test, 

respectively. 
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Non-parametric Tests 

Wilcoxon Rank-Sum Test 

In Higgins (2004) the method to perform the Wilcoxon rank-sum test is computed as 

follows. Let m be the sample size of the one group or treatment, and n be the sample size of 

another. Combine nm observations into one group, and rank the observations from smallest to 

largest. Let 1 be the rank of the smallest observation, 2 the rank of the next smallest observation, 

and so on. It is common to have ties among observations in a data set; that is, one or more 

observations may have the same value. In this case, the assignment of ranks to the observations 

is ambiguous. To resolve this ambiguity, the average rank is assigned to the tied observations. 

Find the observed rank sum W of treatment 1 (Note we may analyze either treatment 1 or 

treatment 2 due to the equivalency of the statements 
21    and

12   ). Then the p-value of 

the test is computed either by using the distribution of all possible permutations of the ranks or 

by using normal approximation for larger samples. For the two sided test considered here 

),( maximum WWRWR  , 

where R is the sum of the ranks for the combined sample. 

Permutation Distribution 

In Higgins (2004) the method to perform the permutation distribution test follows. Find 

all possible permutations of the ranks in which m ranks are assigned to treatment 1 and n ranks 

are assigned to treatment 2. 

For each permutation of the ranks, find the sum of the ranks for treatment 1 (or treatment 2). 

Determine the two sided p-value as 

,
  U)U,-maximum(R ofnumber 








 




m

nm

WR
PWR

where U is the sum of the ranks for treatment 1 (or treatment 2) for a permutation. 

When the sample sizes are so large that all permutations cannot be performed within a 

reasonable time period, random permutations for a reasonable number (10,000 or 100,000) of 

times can be performed depending on time and computational facility. 

Large Sample Approximation 
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According to Higgins (2004), for larger samples with sample size 10 or greater, such 

permutations can be considered large, 

)(

)(

WV

WEW
Z




follows approximate standard normal distribution and hence can be used to obtain an 

approximate p-value. Where mWE )( , 
1

)(
2




nm

mn
WV


,  is the mean for all ranks for the 

combined sample irrespective of whether there is any ties, and 2  is the population variance for 

all ranks for the combined sample irrespective of whether there is any ties. Without ties, 

2

1


nm
  and 

12

)1)(1(2 


nmnm
 . Let the large sample approximate p-value for the 

Wilcoxon Rank Sum test be denoted as PWZ . 

van der Waerden Score Test 

The process of this test is exactly similar to the Wilcoxon Rank Sum test where the ranks 

are replaced by the van der Waerden scores. In Higgins (2004) the van der Waerden scores are 

defined by 











 

1

1

)(
nm

i
V i

where 1  denotes the inverse of the cdf of the standard normal distribution. The test statistic is 

the sum of the van der Waerden scores for treatment 1 (or treatment 2). Then the p-value is 

computed using the methods as described for the Wilcoxon Rank Sum test by using the van der 

Waerden scores instead of the ranks. Let the permutation p-value for the van der Waerden score 

test be denoted as PVS  and the large sample approximate p-value for the van der Waerden score 

test be denoted as PVZ . 

Exponential Score Test 

The process of this test is exactly similar to the Wilcoxon Rank Sum test where the ranks 

are replaced by the Exponential scores. The Exponential scores are defined by 

,
2

1

1

11
,

1

11
,

1










 nmnmnmnmnmnm
 

in Higgins (2004). The test statistic is the sum of the Exponential scores for treatment 1 (or 

treatment 2). Then the p-value is computed using the methods as described for the Wilcoxon 

Rank Sum test by using the Exponential scores instead of the ranks. Let the permutation p-value 
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for the van Exponential score test be denoted as PES  and the large sample approximate p-value 

for the van der Waerden score test be denoted as PEZ .  

There are certain parameters under which parametric methods have been suggested to be 

superior to nonparametric methods. Similarly, there are instances where nonparametric methods 

are suggested over their parametric counterparts. According to Warner (2007), nonparametric 

methods should be used when the sample size is small, whereas parametric methods should be 

used when the sample size is large. Also when there is an outlier in the data, nonparametric 

methods are said to be preferable. According to Tanis and Hogg (2008), when the population 

distribution is normal and the sample size n is as small as 4 or 5 the normal test should a very 

adequate approximation. 

I also tested some parameters not considered or addressed by statisticians to see if they 

suggest one method or the other.  One of the parameters that will be tested is if different 

distributions have any effect on the performance of the two methods. The following three graphs 

illustrate the different distributions used. Different variances are also adjusted to see if any 

effects make themselves apparent. The distance between means is also changed, to see if the 

methods equivalently pick up on the more severe difference.  
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Figure A) Distribution Examples 

Simulation Study 

To investigate how the tests are related to the estimates of the Type I error, 1000 samples 

of sizes 5, 8, 11, and 15 are selected from independent normal populations with different means 

and variances. All nine p-values mentioned above (PTD, PZD, PTP, PWR, PWZ, PVS, PVZ, 

PES, and PEZ) are computed and the numbers of p-values less than or equal to 0.05 are recorded. 

The choices are: (i) Population 1: Normal with mean 1 and variance 1; Population 2: Normal 

with mean 1 and variance 1, (ii) Population 1: Normal with mean 1 and variance 1; Population 2: 

Normal with mean 1 and variance 1 with an outlier. The proportions of rejections are displayed 

in Table 1. The values displayed in Table 1 represent the rate at which the tests said the means 

were different when in fact they were the same. Each of the tests was performed on these two 

different distribution comparisons for the sample sizes 5, 8, 11, and 15. 

Table 1: Estimates of the Level of Significance 

n PTD  PZD  PTP  PWR  PWZ PVS PVZ PES PEZ
N(1,1) N(1,1) 

5 0.053 0.089 0.056 0.037 0.066 0.040 0.066 0.060 0.037 

8 0.054 0.072 0.057 0.054 0.054 0.054 0.054 0.060 0.049 

11 0.042 0.065 0.043 0.046 0.046 0.046 0.046 0.054 0.047 

15 0.041 0.051 0.041 0.035 0.036 0.035 0.036 0.050 0.041 

N(1,1) N(1,1) w/outlier 

5 0.013 0.036 0.051 0.030 0.063 0.031 0.063 0.057 0.030 

8 0.004 0.018 0.032 0.030 0.030 0.030 0.030 0.029 0.020 

11 0.014 0.019 0.036 0.039 0.039 0.039 0.039 0.039 0.034 

15 0.019 0.029 0.043 0.041 0.041 0.041 0.041 0.048 0.041 

To investigate the powers of the tests, samples are generated from the populations having 

different means. The choices are: (i) Population 1: Normal with mean 1 and variance 1; 

Population 2: Normal with mean 3 and variance 1, (ii) Population 1: Normal with mean 1 and 

variance 1; Population 2: Normal with mean 5 and variance 2, (iii) Population 3: Normal with 

mean 1 and variance 1; Population 2: Normal with mean 2 and variance 1, (iv) Population 1: 

Exponential with mean 1/3; Population 2: Normal with mean 1 and variance 1, (v) Population 1: 

Exponential with mean 1/3; Population 2: Exponential with mean 1, (vi) Population 1: Skewed 

bimodal with mean 3/8 and variance 7/9; Population 2: Normal with mean 0 and variance 1, (vii) 

Population 1: Skewed bimodal with mean 3/8 and variance 7/9; Population 2:  with mean 3 and 

variance 1. Then for each of the choices proportion of rejections are computed and displayed in 

Table 2. The values displayed in Table 2 represent the rate at which the tests said the means were 
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different when in fact they were the different. Each of the tests was performed on these seven 

different distribution comparisons for the sample sizes 5, 8, 11, and 15. 

Table 2: Powers of the Tests 

n PTD  PZD  PTP  PWR  PWZ PVS PVZ PES PEZ

)1,1(N )1,3(N  

5 0.762 0.867 0.762 0.681 0.767 0.681 0.767 0.735 0.681 

8 0.967 0.990 0.970 0.961 0.961 0.961 0.961 0.940 0.921 

11 0.994 0.995 0.994 0.989 0.989 0.989 0.989 0.981 0.980 

15 1.000 1.000 0.999 0.999 0.999 0.999 0.999 0.994 0.994 

)1,1(N )2,5(N

5 0.904 0.972 0.928 0.849 0.901 0.849 0.901 0.897 0.849 

8 0.997 0.999 0.999 0.995 0.995 0.995 0.995 0.998 0.996 

11 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

)1,1(N )1,2(N
5 0.270 0.393 0.270 0.209 0.291 0.209 0.291 0.264 0.209 

8 0.454 0.519 0.464 0.441 0.441 0.441 0.441 0.411 0.373 

11 0.589 0.638 0.597 0.566 0.566 0.573 0.566 0.569 0.544 

15 0.743 0.765 0.743 0.729 0.731 0.730 0.731 0.680 0.664 
 3/1Exp  )1,1(N

5 0.208 0.345 0.279 0.201 0.245 0.207 0.245 0.228 0.201 

8 0.307 0.459 0.450 0.383 0.383 0.383 0.383 0.427 0.392 

11 0.518 0.612 0.610 0.530 0.530 0.533 0.530 0.587 0.564 

15 0.719 0.777 0.775 0.670 0.681 0.677 0.681 0.763 0.748 
 3/1Exp   1Exp  

5 0.133 0.287 0.264 0.186 0.263 0.188 0.263 0.249 0.186 

8 0.316 0.442 0.454 0.399 0.399 0.399 0.399 0.450 0.397 

11 0.517 0.624 0.624 0.555 0.555 0.560 0.555 0.615 0.595 

15 0.722 0.777 0.782 0.679 0.682 0.683 0.682 0.768 0.747 
))3/1(),2/3(()4/1()1,0()4/3( 2NN  )1,0(N

5 0.096 0.153 0.097 0.069 0.103 0.069 0.103 0.095 0.069 

8 0.100 0.145 0.104 0.108 0.108 0.108 0.108 

108

0.127 0.109 

11 0.127 0.166 0.125 0.128 0.128 0.130 0.128 0.156 0.137 

15 0.163 0.179 0.162 0.153 0.155 0.154 0.155 0.196 0.182 
))3/1(),2/3(()4/1()1,0()4/3( 2NN  )1,3(N  

5 0.930 0.978 0.932 0.878 0.933 0.884 0.933 0.929 0.878 

8 0.998 0.999 0.999 0.998 0.998 0.998 0.998 0.996 0.996 

11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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We now analyze the various scenarios and compare the effectiveness of the parametric 

and non-parametric tests. We will compare populations which share different distributions, 

populations that have different respective distributions, populations with different variances, 

different populations, populations with different means, and treatments with extreme outliers. 

We will observe how quickly the tests are picking up on the fact that 
210 :  H when it is the 

case. 

We begin with two populations each having a normal distribution. One of the samples 

has a mean of 1 and a variance of 1. The other has a mean of 1 and a variance of 1. Since the 

means are equal we are computing the level of significance of the tests. We can see from Table 1 

that PZD or the normal test had slightly higher levels of significance for all four of the 

populations sizes. However this difference was not significant. The decision made of rejecting or 

accepting 
0H  depends entirely on your desired level of significance. No test drastically stood out 

such that a majority of commonly used levels of significance would result in different test 

yielding different results.  All of the tests picked roughly 5% for a level of significance except 

PZD when n=5, however, even that was off be less than 4%. Additionally the large sample 

approximation of the exponential scores test or PEZ picked a low level of significance when the 

sample size n=5. The data discussed is plotted in the following graph (Figure 1). 

Figure 1: Type 1 Error; N(1,1) vs N(1,1) 

Now we observe the results of similarly constructed populations with the addition of 

outliers. Again, since the means are equal we compute the levels of significance. It is apparent 

from the data displayed in Figure 2 that the scores were on average lower than in Figure 1, this 

means that the tests were, on average, more effective in determining that H0 is true. When the 

sample size n=5, PWZ, PVS, and PES, all picked values greater than 5%, while the rest picked 

lower values. When the sample size was greater, however, all the tests performed similarly 
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picking value lower than 5%. While the observed levels of significance are somewhat greater for 

the nonparametric methods, they still generally resulted in the same conclusion of 

rejecting
210 :  H . The data discussed is plotted in the Figure 2. 

Figure 2: Type 1 Error; N(1,1) vs N(1,1) with outlier 

When finding the levels of significance in both cases the methods did not differ too 

greatly. While in certain circumstances some tests had a p-value greater than 5%, the tests that 

had a p-value less than 5% were not far below this level of significance. When considering the 

differences between the tests we observed that on average the difference between the parametric 

and nonparametric methods was rather small. Since there was not a great deal of difference in the 

performance of the tests when considering the different styles of distributions and the sample 

sizes, there was no single method of test, parametric or nonparametric, that clearly performed 

better than the rest. We shall soon see that, when we dive into observing the power of the tests, 

the similarities become even more apparent 

We now consider how effective the tests were in determining when 210 :  H is not 

true. This first simulation compares two normal populations each having a variance of 1, and 

means of 1 and 3, respectively. When the sample size n=5, PZD had a slightly greater power than 

the rest, while the other tests performed very similarly when testing the power. When the sample 

size increased there was very little difference between any of the test’s performance.  Since there 

was no significant difference between any of the tests for all four of the sample sizes, the test 

performed equally. The data discussed is plotted in the following graph.  
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Figure 3: Type 2 Error; simulation 1, N(1,1) vs N(3,1) 

In the second simulation we analyze two normal populations, population 1 with a mean 

of 5 and variance 1, and population 2 with mean 5 and variance 2. Each of the tests picked up on 

this increased difference in means rather effectively. As the sample size increases this becomes 

even more apparent. This is especially true when the sample size n=15. In this case all of the 

tests had identical values. 

Figure 4: Type 2 Error; simulation 2, N(1,1) vs N(5,2) 

For the third simulation we analyze two normal populations each having a variance of 1, 

and means of 1 and 2 respectively. The normal test of PZD picked a slightly higher value for the 

two lesser of the four sample sizes. The other test performed similar to each other for each of the 
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sample sizes. When the sample size was greater, PZD was performing closely to the other eight 

tests. 

Figure 5: Type 2 Error; simulation 3, N(1,1) vs N(2,1) 

In the fourth simulation we change the distribution of one of our samples to exponential 

and give it a mean of 1/3, the second population has normal distribution with a mean of 1 and 

variance 1. Similarly to the previous scenarios, the tests gave approximately the same result for 

all the sample sizes, with the differences between the tests decreasing as the sample size 

increased. 

Figure 6: Type 2 Error; simulation 4, Exp(1/3) vs N(1,1) 
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The fifth simulation compares two exponential distributions with means 1/3 and 1, 

respectively. In a slight change of pace, none of the tests stood out either above or below for any 

of the sample sizes in determining when
210 :  H is false. When the sample size n=5 the tests 

all have values close to 20%-25%. Each of the tests had almost identical values for higher three 

sample sizes. 

Figure 7: Type 2 Error; simulation 5, Exp(1/3) vs Exp(1) 

In the sixth and seventh simulations we compared skewed bimodal distributions with 

normal distributions. In both of the trials the skewed bimodal distribution had a mean of 3/8 and 

variance of 7/9, while the normal distributions had means 0 and 3 respectively, and in both cases 

variance of 1. In the sixth simulation for all four of the sample sizes the tests all performed 

similarly, picking values approximately 8% apart or less. They also stayed below 20% in all of 

the cases. In the seventh trial however, the tests all had values 85% or high, while still 

maintaining a maximum difference of 10%.  
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Figure 8: Type 2 Error; simulation 6,  (3/4)N(0,1)+(1/4)N((3/2),(1/9) )vs N(0,1) 

Figure 9: Type 2 Error; simulation 7, (3/4)N(0,1)+(1/4)N((3/2),(1/9) ) vs N(3,1) 

While there were instances where one of the tests had a slightly higher or lower value for 

a certain set of parameters, when there was a difference it was not large enough to be considered 

significant. In finding both the power and the level of significance, none of the tests truly 

“outperformed” the others for any particular set of parameters. When finding the observed level 

of significance, the nonparametric tests did prove to be consistently more effective than the 

parametric tests. However, this difference in effectiveness or performance was not enough to 

influence the decision of whether or not to reject 210 :  H . Consequently, when we consider 
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the set of parametric test against the set of nonparametric tests we did not observe that one set or 

the other had a significantly higher power or more accurately picked the level of significance.  

Contrary to accepted set of criteria for determining which to use, our research did not find 

a specific set of parameters for which parametric tests are the proper choice over nonparametric. 

A small sample size had a small effect on the performance of the tests, however when the size 

increased, the tests performed almost equivalently. This is the opposite of what the accepted 

notion of the performance of the parametric methods versus nonparametric methods. Changing 

the variance also seemed to have no effect. When the difference between the means was greater, 

both sets of tests, parametric and nonparametric, picked up on this difference similarly. Even 

when comparing different distributions types, the tests performed relatively similar to each other.  

  Since there was no clear scenario when parametric methods outperformed 

nonparametric methods or visa versa, the research was inconclusive. None of the tested 

parameters had an effect significant enough to cause noticeable change in the outcome. Thus, the 

choice of parametric or nonparametric seems to be left to the preference of the person analyzing 

the population data.  
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