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Abstract

Mycobacterium avium subsp. paratuberculosis (Mpt), the causative agent of
Johne’s disease (JD), is a global problem in the agricultural industry. It is estimated that
25% of all U.S. dairy herds are JD positive. One obstacle in the management of JD is the
lack a sensitive diagnostic test for use during the early stages of infection. Resuscitation
promoting factors (Rpf) are proteins that promote the growth of many species of
Actinobacteria. If Rpf proteins could enhance the growth of Mpt, the sensitivity of
diagnostic fecal culture could be improved, and the impact of JD on the dairy industry
would be significantly reduced. The putative rpf translation products from four open
reading frames (ORFs) in the genome of Mpt have been designated as Rpf homologues,
but their function as true Rpf proteins has not been demonstrated. Bioinformatic and
sequence alignment analysis supported the previous identification of four ORFs as rpf’
homologues in Mpt, and further indicated that each of these homologues contains motifs
demonstrated to be critical for Rpf function. I cloned the Mpt homologue of 7pfB in E.
coli and optimized the conditions necessary for expression. The recovered expression
products were tested against dormant Mpt. Although the recombinant protein exhibited
effects in E. coli consistent with Rpf expression, dormant Mpt did not respond to
recombinant RpfB. This may have been due to the loss of functional conformation
during the purification process. Further, RpfB alone may not be sufficient to resuscitate

dormant Mpt.



vi

Table of Contents

ABSTRACT A%
INTRODUCTION 1
LITERATURE REVIEW 5
INFECTION AND IMMUNITY .....tiriiieeeeeeiieeeeeeeeeeeteeeeeeeeeeeaaeeeeeeeeeesanseeeseeeeeesnneeeseeeennnnereeeeeennans 6
DIAGNOSIS ..ottt ettt e et e e et e e e e et e e eeaeee e e ettt e s seatessaateeseeaaeessaaeesssaaeessaaeessnnees 9
PERSISTENCE AND DORMANCY ...coiutiiiiiniiieiiitteeeeteeeeeateesseateeesssteeessaseessssvssesssaseesssaneeesssseesins 10
BACTERIAL COMMUNICATION. ......oouttiiiitrieeiitreeeeeteeeeeteeesessteesesseeesessseessssesesssreessssessssssesessns 14
RESUSCITATION PROMOTING FACTORS ....oooiiiiieiiieieeee et eeeeaeeee e eeernree e e e e e 16
CELL WALLS OF DORMANT ORGANISMS ....ooiiuutirieeeeiiiinieeeeeeeeeeiateeeeeeeessssseeeeesssssnesesesessnsssnnes 21
MATERIALS AND METHODS 24
BACTERIAL CULTURES .....uvviiiittieeietteeeeeteeeeeeteeeeeeteeeeenteeeeessseseesnseessenssessensesesensneesenreesenreeesons 24
IDENTIFICATION OF GENOMIC RPF SEQUENCES .....vttiiiouiieiieeieeieeeeeeeeteeeseeeteesseseesseiaseessnsseesens 24
POLYMERASE CHAIN REACTION ....ooiiiiiiitiiiiieeeeeiiieeeeeeeeeeitteeeeeeeeesaaeeeeeeesssnnnaeeseeessnsnsaneseeessanns 25
[0 570) 1 1 TSRO 26
EXPRESSION ...uiiietietteeeeeteee e ettt e e et e e ettt e e seaeteesetateeseaaseesaaassessasseesassseeseaseeesaasseesansaeessnsseeesas 27
RECOMBINANT PROTEIN ISOLATION AND PURIFICATION ......ociiviuiiiiiieiieeeiieeeeeiieeeesneeesssnneeeens 28
EXPERIMENT ASSEMBLY ....ceoiiiutturiiieeeeeeineeeeeeeeeeeteeeeseeeeesaseeeeseesessssneeesesssssssreeseseeansssereeessssnnes 30
RESULTS 32

IDENTIFICATION OF MPT ORFS THAT ARE HOMOLOGOUS TO RPF ORFS OF RELATED
ACTINOBACTERIA .....uvviiiieteieeeeiteeeeeteee e ettt e eetaeeseeatveesesaaeessesseeesetaeesesnseesssssesssnnaeessansesessnreeesans 32
[0)570) N1 1€ OSSR 32
EXPRESSION ...uviiitietieeeettee e et e e e et e e e ettt eeseaaeeeseaateeseasteesaaaseeseasseesassseessaseeesaasseesasaeessnsseeesas 34
EFFECTS OF RECOMBINANT RPFB ON DORMANT MPT ....cooiiiiiiiiiiiiiieiiee ettt eiveee e 36
DISCUSSION 60
REFERENCES 68
APPENDIX AND PROTOCOLS 78
AGAROSE GEL ELECTROPHORESIS .....ccooouviiiiitieieeiteeeeiisreeeeiteeesensseesessseesssnssessssssssssssssesssnsssesens 78
SDS-PAGE (LAEMMLI PROTOCOL) .....cvviiitiiiitiieetie ettt eeteeeteeeteeeeteeeeteeeeaveeeaveessseesaneeeseeeseeenns 80
WESTERN BLOTTING ...ceiiiuviieiiitiee ettt eeeee et e et e e eeateeeeeaateeseaateesemaaeessesseeesaneseesseaseessaseeesassaeesn 86
COMPETENT CELL PREP AND ELECTROPORATION ......cccuvviviieeiiiiiiireeeeeeeniieeeeeeeeeesnneeesesseennnnees 89
ELECHrOPOFALION ...ttt et eeabeenbesnbeenbe s 90
RECOMBINANT PROTEIN EXPRESSION, CELL LYSIS, NI-NTA CHROMATOGRAPHY ................. 93
XD OSSION ...ttt ettt ettt e ettt e e e e e nraeeeenees 93
Ni-NTA CREOMALOZIAPIY ......cveeeeeeeeeee ettt ettt e aseessbeenasaen 97
DESALTING/BUFFER EXCHANGE .......ooeeiiuiiiiiiteeeeeeteeeeeiieeeeeereeeeeaeeeeennreseenneeesensnessennneesssnnens 101
POLYMERASE CHAIN REACTION ....coiiiiiiiuiiiieeiiieiieeeeeeeeeeiieeeeeeeesesnaeeeeeessenssseeeeessssnsnneeeeesssans 103
DNA LIGATION AND VECTOR CONSTRUCTION ......ccetiiiieeiurrereeeeeeeiirreeeseeeeeiseneeesesesensnneeeeesenens 104
TESTING THE EFFECTS OF RPFB ON DORMANT MPT......cutviiiieeeeeeieeeeeeeeeeeee e 105
DOFMANE COIl PFEP ...ttt ettt e e 105
RecOmMbBINANE PrOtEin PFED ...........cc..cccuveviiieeiieiiie et 106

GEOWEH MORTLOTING ...ttt ettt et et e e sabe e sabeeesaeenseeenseas 108



vil

List of Tables and Figures

TABLE 1: VECTOR NOMENCLATURE AND HOSTS. «.ttttuettttueeeeteeeeeeeaeeeeeeaeseeeenaeeeenanaeseennns 37
TABLE 2: CLONING AND EXPRESSION DETAIL. ..uuuueiiieeetiieiiieeeeeeeereeanneeeseeeeeesmseneeessseseees 38
TABLE 3: PRIMER NOMENCLATURE AND ANTIBIOTIC RESISTANCE MARKERS. ...eevvvvnnnnnnen. 39
TABLE 4: PRIMER NOMENCLATURE . ....uueitiitttttttieeeeeeeeeeetteaeeeeeseeeeetesanaeesssssssesssnnsaessseeeees 40
FIGURE 1: PROPOSED MODEL OF PEPTIDOGLYCAN ALTERATIONS DURING THE TRANSITION
FROM EXPONENTIAL GROWTH INTO STATIONARY PHASE. ...eiieitiitiiieeeeeeeeeeeeeeeeeeeeeeeeeeennnnns 41
FIGURE 2: PARTIAL PAIRWISE ALIGNMENT OF THE ANNOTATED AND HYPOTHETICAL
MYCOBACTERIAL RPFA SEQUENCES. . ..oevttititiiitiieteeeeeeeeeeeeeseseseeseesesssessessessssssssssesrerse... 42
FIGURE 3: PARTIAL PAIRWISE ALIGNMENT OF THE ANNOTATED AND HYPOTHETICAL
MYCOBACTERIAL RPFB SEQUENCGES. ....ovtttiiiiiiiiiitiiieeeteeeeeeeeeeeseeeeesesssessessesssssssssseersesrersee. 43
FIGURE 4: PAIRWISE ALIGNMENT OF THE ANNOTATED AND HYPOTHETICAL
MYCOBACTERIAL RPFC SEQUENC ES. ...cevttiiiiiiiitiitteeeeeeeeeeeeeseresesssesesssessessessrsssssssesreese.. 44
FIGURE 5: PAIRWISE ALIGNMENT OF THE ANNOTATED AND HYPOTHETICAL
MYCOBACTERIAL RPFE SEQUENCES. .....cctttitiiiiiiiieiiteeeeteeeeeeeeeeseseeesesssessessessssssssesessssseesaea. 45
FIGURE 6: PSC-A . oo et e et e e et e e e e e e e e e e e e e e e e eeeann 46
FIGURE 7: PMTS088, A PMV261 DERIVED CONSTRUCT ......cuvvviiieirerereeeeeeeeeeeseeeeeeererereeneeees 47
FIGURE 8: DNA SEQUENCING RESULTS CONFIRMING THE INSERTION OF RPFA INTO THE
FORMER PMTSO88 CONSTRUCT. v.vuueeeeeeettteeeeeeeeeeeeeeaeeeeeeeeeetessanneeesseessssmnnseesesessssmnnnns 48
FIGURE 9: DNA SEQUENCING RESULTS CONFIRMING THE INSERTION OF RPFE INTO THE
FORMER PMTSO088 CONSTRUCT DID NOT OCCUR. ....cetvvruueeeeeeeetireieeeeeeeeeeeesnneeeeeseseesssnnnnns 49
FIGURE 10: DNA SEQUENCING RESULTS CONFIRMING THE INSERTION OF RPFB INTO THE
FORMER PMTSO88 CONSTRUCT. v.vuueeeeeeettteeeeeeeeeeeeemaaeaeeeeeeeetessmnnsessssesssssnnaesssssssssmmnnns 50
FIGURE 11: DNA SEQUENCING RESULTS CONFIRMING THE INSERTION OF RPFC INTO THE
FORMER PM T SO88 CONSTRUCT. - etteueeeteeee et e e eeeeeeeeeeeeeeeeeeaeeeeeeaaeeeeaeaeeenenaeeenanaaeeennnn 51
FIGURE 12: PMTS079, A PET28B+ DERIVED CONSTRUCT.....uuvvrrreeieeeeeeiiirrreeeeeeeeeeennsnneeens 52
FIGURE 13: PMTS115, A PET28B+ DERIVED CONSTRUCT......cctvviiieeeeeeeiiirrrereeeeeeeeeennvnnenss 53

FIGURE 14: WESTERN BLOT OF MCE AND RPFB EXPRESSION TRIALS IN M. SMEGMATIS

FIGURE 15: GROWTH CURVES OF E. corL BL21(DE3) AFTER INDUCTION WITH 5
DIFFERENT IPTG CONCENTRATIONS. ..uittiiiiiiieiiteeniteeeiteeeiteesiteesieeessteeesanteesaneeesaneeesaneeas 55



viil

FIGURE 16: COMPARATIVE EXPRESSION OF MCE (PANEL A) AND RPFB (PANEL B) FROM
E. coLrBL21(DE3) USING 1 MM IPTG FOR 1 HOUR AT 37°C VS. INDUCTION WITH
0.05 MM IPTG OVER 4 HOURS AT 37°C. ..ettieeiiiieeeeiiiee ettt eete et e e eeaee e e evaee e e 56

FIGURE 17: INCREASING THE CONCENTRATION OF IMIDAZOLE IN THE NI-NTA WASH
BUFFER DECREASES THE AMOUNT CONTAMINATING PROTEINS IN THE NI-NTA ELUATES. . 57

FIGURE 18: INCREASING THE CONCENTRATION OF IMIDAZOLE IN THE NI-NTA ELUTION
BUFFER INCREASES THE AMOUNT CONTAMINATING PROTEINS IN THE NI-NTA ELUATES. .. 58

FIGURE 19: GROWTH CURVES OF MPT IN M7H9C WITH AND WITHOUT THE ADDITION OF
RECOMBINANT MCE AND RPFBi.. ..ot e e eeeeeaan 59



Introduction

Animal disease accounts for a significant annual economic loss to the agricultural
industry. Farmers must invest in controlling animal disease to ensure a healthy herd, and
a product of consumable quality. The farmer’s investment must be returned in order to
justify the costs accrued. Those who consume the products will make up the cost of
investing in the herd. If the cost of managing animal diseases can be reduced, the market
price for products from animals will also be reduced.

Johne’s disease (JD), caused by Mycobacterium avium subsp. paratuberculosis
(Mpt), is a chronic wasting disease that is particularly significant in dairy and beef cattle,
sheep, and goats; however it can also be found among wild ruminants (18). In 2008, the
prevalence of JD in dairy herds was estimated to be 25% (101). The average economic
cost of JD can be $229/cow/year (81). Estimates have placed the annual cost of JD to be
as much as $1.5 billion (90). Efforts to eradicate Mpt from the agricultural process have
been unsuccessful. Current JD management practices have helped decrease the incidence
of JD. However, the current diagnostic techniques are insufficient in distinguishing
uninfected animals from animals in the early stages of infection.

The course of JD can be broken down into 3 stages. Stage 1 is classified as early
infection, most commonly seen in animals less than 2 years of age. During this period
the infected animal does not show signs of disease, and Mpt is shed from the infected
animal at levels below the limits of detection. The second stage is classified as

subclinical infection. Subclinical infection is seen in animals that have been infected for



approximately 2-4 years. The infected host appears to be healthy, but may be a threat to
surrounding stock due to an increase in the amount of Mpt being shed. The final stage of
infection is classified as clinical infection. During clinical disease, animals progressively
show signs including emaciation, watery diarrhea, and a decrease in milk production.
Evidence of Mpt infection is easily accomplished during this stage of disease.

The organism is spread from animal to animal through the fecal-oral route by way
of contaminated food and water, nursing from infected dams, or transplacentally (18).
The infectious dose of Mpt has not been clearly established. The onset and progression
of JD can vary depending on the number of organisms ingested, as well as the age of the
animal (3). Mpt inocula at concentrations between 10® and 10'° are commonly used to
experimentally infect animals through ingestion (18). However, orally administered
doses of Mpt at concentrations as low as 10° have also successfully produced an infection
(18). It is estimated that animals in the clinical stage of infection shed 5x10'
mycobacteria per day (14). Currently, the most effective way to control the spread of the
organism is through hygienic herd management, early detection, and culling of infected
animals.

Early detection of infection is one of the objectives in the successful management
of JD. Fecal culture (FC) is the “gold standard” for detecting Mpt. FC is laborious,
expensive, has a slow turn around time, and frequently leads to false-negative diagnoses
due to poor sensitivity during the early stages of JD. Considering that FC is the gold
standard used in the diagnosis of JD, the efficiencies of all other diagnostic tests are
evaluated against FC. Diagnostic tests that are manipulated to have higher sensitivities

than FC are considered to give false-positive results, due to the accepted consideration



that animals not shedding Mpt do not have JD. Improving the sensitivity of FC during
the early and subclinical stages of disease would legitimize the elevated sensitivities of
other diagnostic methods that are inexpensive and have rapid turn around times, and
would lead to fewer false-negative diagnoses.

In order to increase the efficacy of JD diagnostics, work must first be done to
improve the diagnostic gold standard. The first thing we must learn about Mpt infections
is whether or not an infected host in the early stages of disease is always shedding Mpt.
It is currently held that Mpt-infected hosts intermittently shed Mpt during the early stages
of disease. However, infected hosts may always be shedding Mpt, but the accepted
methods of FC may only support the intermittent detection of Mpt during the early stages
of disease. If it is found that Mpt is always being shed from infected animals, it will be
likely that a fraction of the Mpt is in a non-culturable state. Although the available
diagnostic growth media have been optimized for the recovery of culturable Mpt, it is
poorly understood how viable but not culturable bacteria respond to these media.

The sensitivity of FC may be affected by the physiological state of Mpt. It is
possible that organisms in a physiologically dormant state cannot be successfully cultured
by standard FC methods. Dormancy results when conditions for growth are less than
optimal, possibly similar to those encountered within a granuloma. Reactivation of
dormant cells can result in the reactivation of a latent infection, diffusion of an existing
infection, or cause new infections upon entry into a new host. Recovery from dormancy
is dependent on signaling factors produced by actively growing cells. Isolation of the
signals that cause the resuscitation of dormant Mpt could be used in concert with FC to

recover dormant Mpt in vitro. This would permit the means to determine whether or not



dormant Mpt are being shed from infected hosts during the stages of JD where standard
FC is unreliable.

Growth factors known as Resuscitation Promoting Factors (Rpf) have been shown
to promote the growth of related organisms that were previously dormant. Rpf proteins
are highly conserved among Actinobacteria. The Rpf proteins of M. tuberculosis have
been shown to greatly increase the culturability of previously uncultivable mycobacteria.
To the writer’s knowledge, only one experiment has been published on the ability of a
Rpf to stimulate the growth of Mpt in vitro (117).

In the annotated genome of Mpt, there are four hypothetical proteins that share
homology with Rpfs of related bacteria. If it is determined that Mpt expresses these
genetic elements, recombinant Rpfs could be produced and incorporated into diagnostic
culture media to facilitate a more rapid and accurate diagnosis of subclinical animals, and
possibly improve the detection of Mpt-shedding animals within the early disease stage.

Our purpose in this study was to determine if Mpt contained the necessary genetic
elements for functional Rpf proteins, and if dormant Mpt would respond to those Rpf
proteins. We analyzed the Mpt Rpf homologues, and determined that the critical amino
acids for Rpf function are present. We cloned the four 7pf'sequences into a mycobacterial
expression vector; however we were unable to obtain any expression products from those
vectors. We successfully expressed the putative 7pfB in E. coli, and saw activity in E.
coli consistent with that of Rpf proteins. When the purified RpfB was tested against

dormant Mpt we did not detect any resuscitative response.



Literature Review

Mycobacterium avium subsp. paratuberculosis (Mpt) is the causative agent of
paratuberculosis, or Johne’s disease (JD); a chronic intestinal disease characterized by
inflammation of the ileum and granulomatous enteritis of domestic and wild ruminants
(12, 26, 38, 48, 68, 81, 94, 103). The economic consequences of this disease are
particularly significant in dairy herds. In 1997, estimates by The National Animal Health
Monitoring System (NAHMS) stated that 21.6% of dairy herds were infected (102). This
number increased to 25% of dairy herds in 2008 (101). The economic consequence of JD
can be as much as $1.5 billion in the dairy industry (38, 90).

Mycobacterium tuberculosis and M. leprae are the most well-known
mycobacterial pathogens of humans, collectively infecting nearly 9.5 million new
individuals each year (37, 82). Notable mycobacterial animal pathogens include M.
bovis, M. avium subsp. avium, and Mpt. The common features of mycobacterial
infections have led to the consideration of Mpt in the pathogenesis of Crohn’s disease (8,
9,12, 13, 36, 59, 68, 80, 105); however, this remains controversial.

Mpt has the slowest generation time of all cultivable mycobacteria, at
approximately 20 hours (50). The genomic comparison of Mpt to M. tuberculosis
indicates that this slow growth may have resulted from an insertion near oriC, as well as
numerous nucleotide substitutions in genes encoding enzymes for purine synthesis (78).
The most notable phenotypic difference between Mpt and other mycobacteria is the in

vitro dependence of the former on mycobactin J, a siderophore. It is thought that this



dependency may be due to the truncation of the mbtA gene (53). The reliance on an

intermediate iron supplier secures the obligate parasitism of Mpt.

Infection and Immunity

Infection begins with the consumption of milk or feed contaminated with Mpt.
While moving through the small intestine, Mpt comes into contact with mucosa-
associated lymphoid tissue where it crosses through M cells of the ileal Peyer’s patches
(38, 60). M cells are a common portal of entry for pathogens due to reduced levels of
brush-border microvilli, digestive enzymes, and surface mucus at this site (32). Mpt then
passes from ileal M cells to subepithelial and intraepithelial macrophages (60).
Following endocytosis by macrophages of the Peyer’s patches, the fate of Mpt depends
on the maturation of the phagosome. If maturation occurs, the chances of Mpt surviving
are greatly diminished. Maturation occurs in approximately 30% of phagocytic cases
(115), and can lead to successful antigen presentation to reactive T-cell populations (26).
If maturation of the phagosome does not occur, the environment Mpt encounters is less
acidic and less toxic than in the case of normal phagosome trafficking.

The importance of phagosome trafficking extends to the reliance of Mpt on an
intermediate iron supplier. The means by which Mpt obtains iron in vivo has eluded
scientists to date. Brooks et al. characterized a 40 kDa protein called antigen D, the
sequence of which resembles E. coli bacterioferritin (7). The role antigen D plays in iron
acquisition for Mpt has yet to be confirmed. Lambrecht and Collins determined that
mycobacteria are unable to access iron bound to siderophores of unrelated organisms;

however, at a pH between 5-6.2, iron dissociation from host siderophores — transferrin



and lactoferrin — will promote the growth of Mpt without mycobactin (51). The pH
inside of a Mpt phagosome is 6.2-6.3 (43). In addition to this, Mpt-containing
phagosomes have increased levels of transferrin receptors (TFR), which are responsible
for transporting transferrin into early-stage endosomes (44). Mpt also produces an
extracellular ferric reductase that could play a role in Fe*" acquisition from chelated Fe**
(42). Due to Mpt’s lack of SOD activity, this reductase would also offer protection by
making Fe’" unavailable to H,O,-producing enzymes (42). In addition, the increased
levels of TFR on Mpt-containing phagosomes suggest that Mpt may gain access to iron
from transferrin (43, 44).

The complexity of immune responses during this multistage disease cannot be
summed up in the simple paradigm of a Th1-Th2 shift (27). A synthesis of literature
from reports describing immune responses to Mpt infection can be confusing because of
variables such as methods and location of experimental inoculation, murine vs. ruminant
hosts, location of sampling for cytokine detection, identification and quantitation of
cytokines via mRNA transcripts vs. direct cytokine screening, and determining which
disease stage (if any) is being examined. A number of workers have reviewed the
available literature with regard to disease progression and host responses to Mpt infection
(26, 88, 91). Conclusions from these reports weighed the determinants of infection on a
controlled Th-type 1 response. If stabilized by the host, there is little likelihood that the
infection will progress to the subclinical stage, and protective immunity can result from
circulating Mpt-reactive CD8+ T lymphocytes (95).

The first response to the presence of Mpt is the production of the proinflammatory

cytokines interleukin (IL) 1o, IL-6, and gamma interferon (IFN-y) as well as upregulation



of tumor necrosis factor associated receptor factor 1 (TRAF1) (26). Through IL-2/CD25
signaling, Th-1 and suppressor T-cell populations begin proliferation and production of
IL-10, respectively (26).

Signs of IL-1a toxicity characterize the progression of infection into the sub-
clinical phase. Lack of a TNF-a response sufficient to result in the formation of
granulomas leads to the dissemination of infection (26). Granulomas of tuberculosis
have been characterized as avascular structures consisting of 3 basic layers. The first is
the outermost layer, composed of resting macrophages and lymphocytes. The second
layer is composed of activated macrophages. The third layer is the caseous center,
composed of viable bacteria, bacterial fragments, and killed macrophages (43).

The enhanced survival of infected macrophages may also be the result of high
levels of TRAFI1 surface expression, which prevent these cells from undergoing
apoptosis. Mpt causes further recruitment of macrophages, and selection for and
containment of suppressive T-cell populations by maintaining steady host production of
IL-1a, IL-8, IL-10, and augmentation of the population shift from Th-1 to cytotoxic
suppressor cells (26). Interestingly, a tie is yet to be made between the abundance of IL-8
and the lack of neutrophil infiltration.

Once the host has progressed to the clinical stage of disease, the active cell
population has shifted almost exclusively to the response of macrophages, cytotoxic
suppressor cells, and B cells. This combination marks total loss of control and regulation
over the infection, and Mpt moves about the host unchecked. The resulting pathogenesis
leads to extensive inflammation and damage to the ileum, granuloma formation, and

thickening of the lumen intestinal wall (38). The distortion of villous absorptive tissue



lining the intestine leads to the subsequent development of malabsorptive diarrhea,
wasting of the infected animal, and death. The explosive diarrhea that occurs during the
clinical stage results in the shedding of large numbers of infectious Mpt which can be
readily ingested by the surrounding stock; including those at highest risk of infection —
neonatal and juvenile calves (38, 81).

Although calves become infected with Mpt, Mpt cannot be reliably recovered in
culture during the early stage of disease. After this stage, calves may or may not progress
to the subclinical stage (71). This puts a high demand on the development of new

technologies that aid the early diagnosis by the identification of Mpt-infected animals.

Diagnosis

Fecal culture is considered to be the gold standard in detecting Mpt infection due
to its near absolute specificity and high analytical sensitivity in detecting animals with
clinical infection. However, fecal culture is very time consuming, taking up to 16 weeks
to complete (81). Modifications to classical fecal culture techniques have significantly
reduced the detection time for cattle with clinical infections (81). In contrast to clinical
infection, detection of infection in asymptomatic animals is still problematic, both in
terms of time and sensitivity: the sensitivity of fecal culture relative to infection is
estimated to be between 30% and 50% (17, 57).

Enzyme linked immunosorbent assay (ELISA) is another method frequently used
in diagnosis. Although the specificities of ELISA Kkits are routinely high, the specificities
can vary. This can result from the quality of the Mpt antigen used in the ELISA, and

whether the antibody shares cross-reactivity with other environmental mycobacteria (23,
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24). The sensitivity of ELISAs vary with the age of the animal being tested (66), as well
as the disease state of the host. The sensitivity of serological diagnostic methods
increases with the progression of disease. ELISA testing has great utility for rapid
diagnosis and guiding proper management practices, but does not provide us with a
sensitivity equal to that of diagnostic culture tests (24). When the infection is controlled
by the cell-mediated response, indirect ELISA has a very low sensitivity. As the animal
ages and the infection progresses, the humoral response becomes active and the
sensitivity increases with the production of antibodies; however, by the time antibody
levels become detectable, the infection has likely progressed to a terminal stage (26).
This makes ELISA suitable to examine the infectiousness of an animal, but not as a
determinant of infection in early diagnosis (66).

Success has been made in modifying these tests to improve their sensitivity and
specificity; however when their diagnostic efficiency is examined, it is always compared
against fecal culture. Other methods for detecting Mpt infections include brightfield-
microscopic examination of acid-fast smears, fluorescence in situ hybridization,
complement fixation, agarose gel immunodiffusion, the gamma interferon assay, and
IS900 DNA detection. These methods have not been widely accepted due to their
inability to distinguish among previous exposure, disease latency, and active infection, as

well as the test probes lacking necessary sensitivity and/or specificity (81).

Persistence and Dormancy

Despite their apparent simplicity, prokaryotes are highly adaptive organisms that

have the ability to sustain themselves under a variety of environmental conditions (93).
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Survival of parasitic organisms within ecological habitats can pose a selective advantage
for them by means of transfer within biological vectors. Both Mpt and the closely related
Mycobacterium avium subsp. avium have been shown to survive and replicate within a
number of protozoa following both phagocytosis and encystment (78, 92, 111). This
capability affords them a greater resistance to antimicrobial drugs and chemical
disinfection (58, 111), the ability to disperse through aerosolization of Mpt-infected cysts
(78), and concurrent infection through entrance of the intestinal epithelium within
pathogenic amoeba (16). Insects and nematodes have also been implicated as possible
biological vectors for the transfer of Mpt. Insects and insect larvae feed on the feces of
Mpt infected cattle and intestinal matter in slaughterhouses (34), and can be consumed by
potential hosts along with grasses and feed. Parasitic nematodes could possibly enhance
the virulence of Mpt by reducing the infectious dose required for infection (6, 112).
Whittington ef al. has shown the Mpt can survive outside the host for as many as 55
weeks in the soil, and 65 weeks in distilled water (113).

It has long been held that animals in the early and sub-clinical stages of disease
shed Mpt in feces intermittently, which would explain the poor sensitivity of fecal culture
in these stages. However, it is possible that infected animals may always be shedding
Mpt, but those being shed by animals in the early stages of disease — when the host is
able to suppress replication — are not able to withstand growth on the rich, selective
media used for primary culture due to oxidative damage from increased metabolism.

In some non-spore forming bacteria, growth-limiting conditions (such as
restriction of growth in granulomas or environmental restrictions) cause organisms to

enter a non-culturable state called dormancy, which can last for decades (12, 63, 110).
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Dormancy has been defined as a reversible phase in which the organism has drastically
reduced its metabolism and persists without replication (104). The adoption of this
inactive state can be the result of suboptimal growth conditions which lead to the
reduction of metabolic activity, formation of more rigid cellular components, and a shift
in catabolic pathways (110). Extended periods of time in a state of non-replicating
persistence can lead to an organism remaining viable, but not culturable (VBNC) (77).
This can also be referred to as non-replicating persistence (NRP).

A number of models have been tested on the transition of organisms into a state of
NRP (110). To better understand the mechanisms of transition, it is important to consider
the conditions under which an organism is forced to enter NRP. Pathogenic
mycobacteria must overcome the obstacle of maintaining viability within granulomas.
Concerning M. tuberculosis granulomas, the substrate availability in the caseous slurry
(83, 116) and the necrotic tissue at a pH of approximately 6.5 (110) are conducive for
ongoing metabolism. However, over time within a granuloma the decreased oxygen
availability limits the ability of mycobacterial cells to grow and divide (10, 45, 79, 110).
Granulomas that result from an Mpt infection can differ from granulomas caused by M.
tuberculosis. They typically do not differentiate as well, and caseation only occurs in
ovine hosts.

According to the Wayne dormancy model (107), when oxygen supplies diminish
to approximately 1% of ambient oxygen concentrations, M. tuberculosis begins its decent
into anaerobic respiration in what they refer to as NRP-1 (107). The organism halts

division, thickens its cell wall, replicates its chromosome one final time, and with a
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continued deprivation of oxygen enters a survival transition into what they refer to as
NRP-2 (107).

The use of nitrate reduction and the glyoxylate shunt are both important during
the transition to NRP. Nitrate reductase genes are induced in M. tuberculosis during
hypoxia and exposure to nitric oxide (89). Reducing nitrate allows this organism to
generate ATP during periods of anaerobiosis (89, 108, 110). Although putative genes for
assimilatory nitrate and nitrite reduction, and nitrate/nitrite transporters have been
identified in Mpt (2), the effects of such gene products have yet to be tested in Mpt. The
reductive amination of glyoxylate by way of the glyoxylate shunt promotes the
conservation of carbon, the preservation of biosynthetic intermediates, and the means to
regenerate NAD through the activity of glycine dehydrogenase (109). It has been
proposed by Wayne and Lin that NAD production from reductive amination of
glyoxylate would provide the means to generate the ATP required to complete a final
cycle of DNA replication before the termination of cell division (109). The sensitivity of
mycobacteria in the state of NRP, or transition to NRP, to metronidazole may indicate
that these organisms have the ability to respire anaerobically (107). However, the
reductive potential required for the activity of metronidazole may exist in a
microaerophilic environment (reductive potential below -430 mV) (31, 107).

Within a granuloma, successful entrance into NRP would require a very gradual
and organized alteration of metabolic processes. Through gradual oxygen depletion, in
vitro experiments have produced non-replicating bacteria that survived for 12 years (25).
Upon re-introduction into an aerated medium, these non-replicating cells grew and

divided immediately (107).
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Successful recovery from a state of NRP depends heavily on the rate of entrance
into NRP-1 and NRP-2 (107). Cells that are rapidly depleted of oxygen will not spend
enough time in NRP-1, and their chances of survival during NRP-2 become greatly
diminished (106, 109). Addressing these issues in an in vivo system, Canetti noted that
conditions would differ greatly per granuloma, with the specific variables affecting
successful NRP, including cellular composition, the extent of caseation and liquefaction,
and oxygen availability (110).

In some cases of extended dormancy, mycobacteria shed their cell walls and enter
a spheroplastic state (15). This allows the organism to more efficiently evade
phagocytosis, and therefore remain undetected in a host for longer periods of time.
Mycobacterial spheroplasts have been found to exist within a host (15). These
spheroplasts are metabolically active, capable of reverting back to their normal cell-
walled form, and infectious upon reversion (15, 73, 100). Recovery and reversion of
experimentally induced mycobacterial spheroplasts can vary from as low as 0.1% to as

high as 20% (15, 100). Rates of reversion in vivo are currently unknown.

Bacterial Communication

For many actinomycetes, successful resumption of growth from dormancy is
dependent on signaling factors produced by the population of cells (61, 63, 64). When
gene expression is determined by population density, it is referred to as quorum sensing
(QS) (96). QS plays a role in the activation of genes that are beneficial at high bacterial
load, commonly exemplified by the bioluminescence of Vibrio fischeri following the

activation of the /ux operon of that organism (96, 114). It has been demonstrated that
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Gram-positive organisms also use a pheromone-based QS motif (61). The effects of this
include competence, virulence, antimicrobial peptide production, and possibly
resuscitation.

The classical mechanism of QS in Gram-positive bacteria starts with a post-
translationally modified peptide that gets secreted via an ATP-binding-cassette (ABC)
exporter. The signal is received by a transmembrane sensor, which becomes
phosphorylated. The phosphorylated component combines with the response regulator to
act as an inducer molecule for the operon. The process is autoregulated by having the
genes that code for the signaling peptide, the ABC exporter, and the two-component
regulatory system transcriptionally linked (49). This particular model is specific to
biological molecules that are produced as a means of direct communication and
population sampling.

There is also a means of biochemical signaling by molecules that are not
produced with the sole intent of communication, but their presence can result in
phenotypic changes in the organism detecting them. One example includes muropeptides
incorporated into the peptidoglycan of bacterial cell walls. When serving their primary
purpose, they contribute to the structural integrity of an organism. When recognized as a
free-floating entity, they can act as a regulatory stimulus (30, 35, 47, 76). Peptidoglycan
can act as a signaling molecule by way of serine/threonine protein kinases (STPK) (85).
While studying the PASTA (penicillin-binding protein and serine/threonine kinase
associated) domain kinase PrkC, Shah et al. showed that m-DAP- containing
muropeptides acted as a strong stimulus for the germination of Bacillus endospores (47,

84). Mycobacteria express an essential STPK homologue to PrkC called PknB, that is



16

downregulated in response to carbon starvation, and therefore activated during periods of
growth (4, 33). The possible significance of PknB in relation to peptidoglycan structure

will be discussed below.

Resuscitation Promoting Factors

Micrococcus luteus, a member of Order Actinomycetales (high G+C content
bacteria), produces an autoinducing proteinaceous growth factor known as resuscitation-
promoting factor (Rpf protein) (12, 38, 61). It has been shown by Mukamolova and
colleagues that Rpf proteins are highly conserved and promote growth of many
Actinobacteria, including several species of mycobacteria (64). Their importance has
even extended to infectious mycobacteriophages that conserve them within protein tails
for the purpose of cell wall penetration, and possible cell-cycle initiation (70).

Analysis of N-terminal processing has suggested that Rpf proteins could be uniquely
involved in autocrine and paracrine signaling (61, 64).

Mukamolova and colleagues have shown that there is cross-species interaction
among mycobacteria that produce Rpf proteins. In one such instance, picomolar
concentrations of the Rpf proteins of M. tuberculosis were able to stimulate a >10-fold
increase in the population of previously dormant M. bovis within a 60-day incubation
period, while reducing the time for induction of logarithmic growth to approximately 20
days (depending on which Rpf was assayed) (64). Zhu et al. confirmed that Mpt also
responded to Rpf proteins at picomolar concentrations (117). Their work showed that
Mpt could be recovered from a dormant state when recombinant putative Mpt RpfA was

added to culture media at concentrations between 8 and 128 picomolar.
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There are five rpf genes in the genome of M. tuberculosis designated rpfA
(Rv0867c¢), rpfB (Rv1009), rpfC (Rv1884c), rpfD (Rv2389c), and rpfE (Rv2450c) (28,
29, 64, 98, 99). Basic Local Alignment Sequencing Tool (BLAST) (1) searches have
revealed that each of the genes rpfA4, rpfB, rpfC, and rpfE has a homologue within the
genome of Mpt (47). If the function of these homologues in Mpt is similar to Rpf
function in M. tuberculosis, it may be possible to incorporate products of these rpf’
homologues into culture media to improve the sensitivity of diagnostic culture.

It was initially presumed by Mukamolova et al. that rather than functional
redundancy, each Rpf might be expected to serve a unique purpose in specific situations
(61). Work with mutants harboring null mutations in the 7pf sequences has shown that
rpf mutations do not affect the growth of M. tuberculosis in liquid media (46, 98). All
Rpfs are dispensable for in vivo and in vitro growth; however progressive Rpf deletions
impair virulence, colony-forming ability on solid agar, and the ability to spontaneously
recover from a dormant state (46).

Downing and colleagues suggested a regulatory interdependence and
communication among Rpf gene products when considering single, double, and triple
mutants (28). Using the Erdman type M. tuberculosis strain, Downing et al. showed that
triple mutants of Arpf4 ArpfC ArpfB and ArpfA ArpfC ArpfD showed a significant
deficiency in resuscitation (P <0.001); with the effects of losing 7pfB in combination with
-A and -C being more catastrophic to the organism than the loss of rpfD in combination
with —4 and -C (29). Tufariello et al. confirmed the importance of RpfB (relative to the
other single rpf deletions) with respect to resuscitation of dormant cells with their

Erdman type M. tuberculosis single mutant ARv1009 (rpfB) (99). This indicates that
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there is not complete redundancy within the Rpf family of proteins, and with respect
solely to resuscitation, there is a greater importance to the conservation of certain rpf
sequences.

Kana et al. created quadruple rpf mutants of M. tuberculosis that displayed no
upregulatory compensation by expression of the remaining »pf, which refute any
suggestion of significant crosstalk among or between rpf genes (46). Some of the
transcriptional regulators of »pf genes have now been recognized (72, 74). Kana et al.
also saw a hierarchy within the family of proteins that placed the importance of RpfB and
-E retention greater than RpfA, -C, and -D (46).

Initially, the Rpf protein was classified as a bacterial cytokine due to its potency
at low concentrations (61). More recent work has led to the classification of Rpf proteins
as peptidoglycan hydrolases (62, 97). Rpf proteins exhibit hydrolytic activity on the cell
walls of both Gram-positive and Gram-negative organisms, as well as artificial lysozyme
substrates. However, a decrease in the ability to break down artificial peptidoglycan
substrates indicates that the activity of Rpfs is highly specific. When assayed with
fluorescamine-labeled cell walls, the M. luteus Rpf exhibited a five- to six-fold decrease
in peptidoglycan hydrolysis when compared to that of lysozyme (62). When assayed
with 4-methylumbelliferyl-B-D-N-N'-N""-triacetylchitotriose (MUF tri-NAG), the activity
of the M. luteus Rpf diminished an additional 45 fold comparatively (62). Recent
structural modeling has shown that conserved regions of Rpf proteins share structural
homology with that of lysozyme and a family of lytic transglycosylases (20, 21, 62). Rpf

proteins could play unique roles in the reorganization of peptidoglycan, cleavage of the
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septum, transport of molecules across the cell wall, or production of signaling
muropeptides in the resuscitation of dormant Mpt (62).

Among all members of the Rpf family there is an invariant glutamate residue at
position 54, that when altered, greatly diminishes the muralytic activity of the protein (62,
97). Two cysteine residues at the beginning and end of the 70-residue conserved Rpf
domain may play a role in the binding of a cofactor (62), or serve as the sole disulfide
bridge in the cleft area (20). Other important structural components include a glycine-X-
X-glutamine turn motif, and glycan binding threonine and tryptophan residues (20).

A recent discovery has shown that RpfB and -E also interact with Rpf-interacting
protein A (RipA) (39, 40). RipA is a peptidoglycan endopeptidase that co-localizes with
RpfB at the septum of dividing cells. RpfB is thought to cleave the B-1,4-glycosidic
bonds in peptidoglycan, while RipA hydrolyzes peptide cross-linkages (39, 40). Hett et
al. (39) showed that RipA is vital for actively growing cells, and provided further
evidence that RpfB alone is insufficient. They also showed that the combined effort of
both enzymes cleaves peptidoglycan much more efficiently than does either enzyme
individually (39); however, no trials were completed on cultures grown to a dormant
state. Due to the potential lethality of unregulated peptidoglycan hydrolases, it would not
be striking to find more protein-protein interactions existing within the Rpf family (41).

Interestingly, Mycobacterium leprae, which through reductive evolution has lost
~30% of its genome and ~40% of its protein-coding genes when compared to other
mycobacteria, has retained its genes for RpfA, -B, and -C (22, 29). This may indicate

that homologues in this, and other pathogenic species, are essential.
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Expression profiling from Tufariello ef al. showed that all five M. tuberculosis rpf
mRNA transcripts were produced, and peaked at their earliest measured interval (day 4 of
growth at ODggo = 0.125; 3.1x10” CFU/ml) (98). From this point, expression levels
varied throughout the time intervals of the experiment; but unlike the M. luteus Rpf, M.
tuberculosis Rpf mRNA transcripts, as well as 23s ribosomal rRNA, were still detectable
4 months into extended-stationary phase (98). Their presence was also detected in an in
vivo murine model (98).

This brings up two interesting questions. First, how deep into stationary phase
must the organism be before the effects of Rpfs are exerted? Second, why are cells in a
4-month extended stationary phase producing Rpfs (assuming translation is occurring)
that are not having an auto-inducing effect? The following are suggestions to address
these questions.

1) The concentrations of Rpf proteins are not optimal to induce resuscitation.

2) There are additional factors required to exit dormancy, i.e. oxygen, nutrients,
metabolic products, declining immunity.

3) If additional factors are required, lasting Rpf proteins could provide the means

to a more rapid and ensured recovery when conditions improve.

4) The Rpf mRNA transcripts are stabilized and inactivated during the onset of
dormancy.
5) The peptidoglycan rearranging ability of lytic transglycosylases could provide

the means to ensuring a more rigid and durable cell wall during transitions into

dormancy.



21

6) The combined hydrolytic and transglycolytic ability of Rpfs serve to aid the
recycling of cell wall material during adaptation into a spheroplastic state when
dormancy becomes extended.

It is more likely that in considering the properties of Rpfs, including the short half
life (in vitro) (64), recovery from dormancy comes from their expression within lag phase
when the organism must begin alteration of the cell wall to accommodate cell division; or
during lag and exponential phase, when it would be beneficial to signal related cells to
exit dormancy and begin a cooperative assault against the host. In the Tufariello ef al.
2003 study, their earliest attempts at detect Rpf transcripts were limited to early-

exponential phase (98).

Cell Walls of Dormant Organisms

It has been shown that when entering dormancy, both Gram-positive and Gram-
negative organisms will increase the total number of peptidoglycan cross linkages by
converting dimers to trimers, tetramers, pentamers, and higher oligomers (69, 86). In
addition to these changes, Enterococcus faecalis (a Gram-positive organism) will
produce thicker and more durable cell walls, increase the amount of lipoteichoic acid,
increase the number of penicillin-binding proteins (PBPs), and increase the amount of the
active cell-wall bound autolysin — muramidase (69, 86, 87). PBP1 is a high-molecular-
weight enzyme with both transglycosylase and transpeptidase activity. PBPS is a low-
molecular-weight enzyme that promotes the maturation of peptidoglycan. Low-
molecular-weight PBPs have either carboxypeptidase or DD-endopeptidase activity.

Muramidases are also required for the cleaving of peptidoglycan during cell division.
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Eighty-five percent of Murl (a muramidase) is located in the cytoplasm of exponentially
growing cells (87). It is inactive until it becomes transported to the cell wall. There is a
3-fold increase in the amount of Murl located in the cell walls of VBNC Gram-positive
cells (87). Murl has an increased affinity for hyper-linked peptidoglycan; however, there
is also an increase in the amount of lipoteichoic acid in the cell walls of dormant
organisms, which inhibits the activity of autolysins (19). Addressing mycobacterial
peptidoglycan specifically, during entrance into stationary phase there is a significant
reduction of 4—3 peptide bonds between m-DAP and D-Ala, and increased
transpeptidation of 3—3 linkages between m-DAP-m-DAP (Figure 1) (4, 47, 52).

This rearrangement may alter the conformation of peptidoglycan, such that a
specialized enzyme may be required to break the linkages once cell division is to resume.
It may also change the shape of released peptidoglycan fragments, which may act as
signaling factors in two-component regulatory systems. If acting through two-component
regulatory systems, the resuscitation of mycobacteria may be an act of quorum sensing
similar the quorum sensing means of Gram-positive organisms.

It has been hypothesized by Signoretto and colleagues that the combination of
these events will both promote greater endurance during dormancy, as well as a means to
recovery when growth conditions improve (87). With a redesigned cell wall, and all
enzymes in place and waiting, the proposed transglycosylase and lysozyme properties of
Rpf could be the missing link in the onset of recovery from a dormant state. Upon
reactivation, Rpf mediated carboxypeptidase cleavage and release of muropeptides,

particularly m-DAP-terminating disaccharide tripeptides generated during the entrance
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into dormancy, could possibly act through PknB signaling to release the organism from

its dormant state (47).
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Materials and Methods

Bacterial Cultures

Mycobacterium avium subsp. paratuberculosis (Mpt) was propagated in
Middlebrook 7H9 broth (Becton Dickinson, Franklin Lakes, NJ) supplemented with 10%
oleic acid-albumin-dextrose-catalase (Becton Dickinson), 0.05% Tween 80 (Becton
Dickinson), and 2 png Mycobactin J (Allied Monitor, Fayette, MO) (M7H9C), in sealed
tissue culture flasks. Mycobacterium smegmatis and E. coli cultures were propagated in
LB broth (Becton Dickinson). All strains containing plasmids were grown in LB broth
supplemented with 30-50 pg/ml kanamycin sulfate (Sigma, St. Louis, MO) or 50 pg/ml
ampicillin (Sigma), depending on the resistance encoded within the vector.

Dormant Mpt were prepared by inoculating 1 ml of Mpt into 10 ml M7H9C in 15
ml serum vials. The vials were sealed with a rubber septum, and held at 37°C for a
minimum of 2 years. Before use, a viability assay was performed via flow cytometry to
analyze the condition of the cells.

E. coli XL-1, E. coli (lacZAM15), E. coli BL21(DE3), and M. smegmatis mc¢*155
cultures were propagated in LB broth and held at -80°C after an electrocompetency

preparation as described in the appendix.

Identification of Genomic rpf Sequences

All annotated and hypothetical Rpf protein sequences were mined from the

following mycobacterial species using the NCBI website: M. abscessus, M. ulcerans, M.
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marinum, M. tuberculosis, M. bovis, M. avium, and M. smegmatis. Once determined,
pairwise alignments were created using the protein sequences of each Rpf using CLC
Free Workbench. A consensus sequence produced from the alignments was used to
probe the proteome of Mpt. Sequences that showed homology were then realigned with

the mycobacterial Rpf proteins to analyze the placement of each critical amino acid.

Polymerase Chain Reaction

Primers were designed to amplify the 4 rpf'sequences identified in the Mpt
genome (rpfA4, rpfB, rpfC, and rpfE). Restriction sites were added to the 5’ tails of the
forward and reverse oligos, and additional nucleotides were added as needed for the
purpose of cloning in frame with the 4sp60 promoter, and hexahistidine tag within the
pMV261-derived vector, pMTS088 (Minnesota State University — Mankato, culture
collection). Primers were ordered from Integrated DNA Technologies (Coralville, IA)
and diluted as 50 uM stocks. A detailed explanation of how the primers were used is
discussed below.

Polymerase Chain Reactions (PCR) were set up in 50 pl aliquots to contain final
concentrations of: 1X buffer (50 mM Tris/HCI, 10 mM KCI, 5 mM (NH4),SO4, 2 mM
MgCl,, pH 8.3/ 25°C), 1X GC-Rich solution (Roche, Indianapolis, IN), 5% DMSO, 200
uM dNTPs, forward and reverse primers at 1 uM each, 4 units DyNAzyme™ Il DNA
polymerase (Finnzymes, Lafayette, CO), and DNA templates varying in concentration
from 5 ng to a whole cell lysate. Reactions were carried out in an Eppendorf,

Mastercycler® Gradient thermal cycler (Eppendorf, Hauppauge, NY) using a denaturing
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temperature of 95°C for 5 minutes, a thermal gradient across 12 lanes ranging from 50°C

to 70.5°C, and an extension temperature of 72°C over 35 cycles.

Cloning

Primers designed to isolate hypothetical rpf sequences from the genome of Mpt
are as follows: RpflF and RpflR (rpf4), Rpf2F and Rpf2R (rpfE), RpfB Forw10 and
RpfB Rev10 (rpfB), RpfC/D Forw10 and RpfC/D Rev10 (rpfC). PCR amplicons
generated from genomic Mpt templates were TA cloned into the plasmid vector, pSC-A,
using a Stratagene (Santa Clara, CA) StrataClone™ PCR cloning kit at a 2:1 vol./vol.
insert:vector ratio. The pSC-A constructs were propagated in the E. coli strain provided
by the manufacturer. Blue-white screening was performed using LB agar (Becton
Dickinson) supplemented with 50 pg/ml kanamycin (Fisher, Pittsburgh, PA) and 2% 5-
bromo-4-chloro-3-indolyl-b-D-galactopyranoside (X-Gal) (Zymo Research, Orange, CA).
Selected transformants were screened using PCR.

Secondary primer sets were required to incorporate restriction tails into the rpf4
and rpfE sequences. These primers included Rpf1D and Rpf1BR for the amplification of
rpfA, and Rpf2D and Rpf2DR for the amplification of rpfE. The pMTS089 and
pMTS090 vectors served as templates for these PCRs. Nucleotide sequences generated
from these reactions were TA cloned into pSC-A, and selected for as previously
described.

Transformants containing the rpfinsert were grown overnight at 37°C in LB broth
supplemented with 50 ug/ml kanamycin. Plasmids were extracted using a Zyppy™

Plasmid Miniprep Kit (Zymo Research), and digested eccentrically to confirm insert
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orientation. Inserts were removed from vectors using restriction endonucleases
respective to sites incorporated into the primer tails, and gel purified using a
Zymoclean™ DNA Gel Recovery Kit (Zymo Research). Recovered inserts were then
ligated downstream and in frame with the 4sp60 promoter, and upstream and in frame
with the hexahistidine tag in the plasmid vector pMTSO088. The pMTS088 vector is a
modified pMV261 construct, which contains a mycobacterial cell entry (Mce) sequence
between the flanking Asp60 promoter and hexahistidine tag. Mce has no affect on cell
growth, and was used as a hexahistidine-tagged mycobacterial protein control in this
study. The pMTS088 derived rpf constructs were propagated using E. coli XL-1
following electroporation using a Gene Pulser Xcell™ (Bio-Rad , Hercules, CA) set to
2,500 V, 25 uF, and 200 Q. Once insert screening and orientation were confirmed,
plasmids were extracted and electroporated into electrocompetent Mycobacterium

smegmatis mc>155 at 1250 V, 25 uF, and 800 Q in a 2mm cuvette.

Expression

M. smegmatis mc¢*155 transformants were grown at 37°C for 72-96 hours in 30 ml
LB with 50 pg/ml kanamycin (Fisher), and harvested using centrifugation for 10 minutes
at 10,000 x g. Pellets were resuspended in 250 pl 1X phosphate-buffered saline (PBS)
with 1 mM phenylmethylsulfonyl fluoride (PMSF) (Sigma) and boiled for 15 minutes.
Alternatively, cultures were harvested using centrifugation, washed twice in 1X PBS, and
resuspended in 1 ml 1X PBS. Cells were then pulse sonicated for 20-second intervals
with three repetitions, and PMSF added to a final concentration of 10 mM. The protein

fraction of cell lysates was quantitated using the bicinchoninic acid (BCA) assay (Pierce)
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standardized with bovine serum albumin (BSA) (Rockland, Gilbertsville, PA). Equal
quantities of protein from boiled lysates were sent through SDS-PAGE, and streamlined
into western blots. Blotting was performed with a biotin affinity-purified rabbit anti-6X
His antibody (Rockland).

Plasmid vector pMTS079 (a pET28b+ derivative) was used as a second parent
vector for the expression of rpfB. The pMTS079 vector was digested using Ncol
(Fermentas, Glen Burnie, MD) and Ps¢I (Promega, Madison, WI), allowing rpfB to be
inserted downstream and in frame with the T7 /ac promoter and upstream and in frame
with the histidine tag provided from pET28b+ (Novagen, San Diego, CA). The new
construct — pMTS115 —and pMTS079 were electroporated into electrocompetent E. coli
BL21(DE3) (Novagen) using the same parameters as described for E. coli XL-1.
Expression conditions were optimized by growing cultures at room temperature, 30°C,
and 37°C. Each of the cultures was induced between 0.6 and 0.8 ODsgg units with
isopropyl-1thiol-(d)-galacto-pyranoside (IPTG) (EMD Chemicals, Gibbstown, NJ) at
final concentrations of 0.05 mM, 0.1 mM, 0.5 mM, and 1 mM. Ten-milliliter samples
were drawn each hour over the four-hour period and processed for the detection of his-

tagged proteins.

Recombinant Protein Isolation and Purification

Cultures were harvested by centrifugation at 10,000 x g for 10 min, washed in 20
mM Tris-HCI pH 8.0, and spun again at 10,000 x g for 10 min. Pellets were resuspended
in 2 ml BugBuster® (Novagen) reagent supplemented with 1 mg/ml lysozyme (MP

Biomedicals, Solon, OH), 25 U Benzonase® nuclease (Novagen), | mM PMSF, and
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rocked at room temperature for 30 minutes. Cell lysates were spun down at 16,000 x g
for 10 minutes, and pellets were resuspended in 1 ml BugBuster® reagent with final
concentrations of lysozyme and PMSF at 1 mg/ml and 1 mM respectively. Resuspended
pellets were sonicated on ice at 45% duty with 5.5 output control in a Branson Sonifier
450 (Danbury, CT) for three 10 sec pulses between 30 sec breaks.

Soluble fractions were separated from insoluble fractions by centrifugation at
21,000 x g for 10 min. Pellets were resuspended in 1X Ni-NTA binding buffer pH 8.0,
solubilized with either 6 M guanidine hydrochloride (Fluka, Buchs, Switzerland) or § M
urea (Sigma), and stored overnight at 4°C. The following day the samples were
centrifuged at 4,000 x g for 30 minutes to separate any remaining insoluble debris.
Solubilized fractions were sent through HisPur™ Ni-NTA Resin (Pierce, Rockford, IL)
and eluted in four 500 pl fractions. Eluted fractions were desalted using D-Salt™
Dextran Desalting Columns (Pierce) with 3mls of 10 mM Tris-HCI pH 6.8 in 500 pl
increments. Samples were stored at -20°C in 10 pl aliquots. Eluates containing peak
protein fractions were determined photometrically at OD,go. Once the peaks were
determined, samples were run through SDS-PAGE and western blots. The optical
density of the RpfB and Mce protein bands relative to the co-purifying contaminating
bands were measured using UVP LabWorks Biolmaging Software (Upland, CA). The
total protein concentrations in each sample were determined using the BCA assay

standardized with BSA.
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Experiment Assembly

A 2 ml aliquot of dormant Mpt was drawn from serum vials with a 3 cc syringe
fitted with a 25-gauge needle. Cells were centrifuged at 10,000 x g for 7 minutes and
resuspended in 1 ml 1X PBST. Half the volume was diluted with 1X PBST to a
photometric reading of 30% transmission (2.0x10® CFU/ml) at ODsgo. The remaining
500 pl was centrifuged at 10,000 x g for 7 minutes, and resuspended in an equal volume
of M7HOC required to get the density to 30% transmission. The culture was then serially
diluted to a final concentration of 2.0x10* CFU/ml in 10 ml M7H9C. Alternatively,
cultures were serially diluted to final concentrations of 2.0x10° CFU/ml in 10 ml
MT7HO9C. Prior to inoculation, a viability assay was done on the dormant Mpt cultures
using SYTO9® and propidium iodide (Invitrogen, Eugene, OR) by way of flow
cytometry (Millipore, Billerica, MA).

Recombinant RpfB and Mce were tested at two different starting concentrations.
For the first preparation, purified recombinant Mce and RpfB were diluted to total protein
concentrations of 1 nM in volumes of, at minimum, 100 ul M7H9C. The second
preparations were setup identically with RpfB and Mce at final concentrations of 12.8
nM.

Eight doubling dilutions of Mce and RpfB were tested against dormant Mpt, each
in 5 replicate sets per plate. This accounted for 10 of the 12 columns of each plate. Of
the remaining 2 columns, 1 contained only dormant Mpt, and the other contained only
M7HOIC (Appendix Figure 1, Appendix Figure 2, Appendix Figure 3, Appendix Figure

4).
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Microplate wells were covered with a transparent seal to prevent evaporation and
contamination. Microplates were placed in sterile plastic containers with a benzalkonium
chloride soaked paper towel between the microplate and the bottom of the container to
prevent desiccation and contamination. Containers were incubated at 37°C. Before
optical densities were measured, microplates were allowed to equilibrate to room
temperature in a laminar hood, and a new seal was placed over the wells. Optical

densities were measured at 590 nm every 48 hours.
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Results

Identification of Mpt ORFSs that are Homologous to rpf ORFs of Related

Actinobacteria

All available annotated and hypothetical Rpf protein sequences of mycobacterial
species were aligned according to their classification as RpfA-E. Consensus sequences
were determined, and used to probe the proteome of Mpt. It was confirmed that 4
hypothetical Rpf proteins exist in Mpt. The GenBank accession numbers for those
hypothetical Rpf sequences are MAP_0805c, MAP 0974, MAP 1607c, and
MAP _2273c. Each of the hypothetical Mpt Rpf proteins was then aligned with annotated
mycobacterial Rpf proteins to verify the approximately 70-residue consensus, the
flanking cysteines, the catalytic glutamate, the glycine-X-X-glutamine turn motif, and the
NAG-binding threonine and tryptophan residues that all proteins of the Rpf family share.
The RpfA alignment is shown in figure 2. The RpfB alignment is shown in figure 3. The

RpfC alignment is shown in figure 4. The RpfE alignment is shown in figure 5.

Cloning

Primers were first designed to isolate the 7pf homologues from the genome of
Mpt. Restriction tags were incorporated into the 5’ tails of the primers that amplified
rpfC and rpfB, but not rpfA4 or rpfE (described in table 2). Each of the 4 rpf'sequences

was then TA cloned into pSC-A. The names of those primers and the pSC-A derived
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constructs that were produced using the amplicons generated from those primers are
listed in table 3. The pSC-A vector is described in figure 6.

Once the rpf~pSC-A constructs were produced, a second set of primers containing
restriction elements was designed to amplify rpf4 and rpfE from pMTS089 and
pMTSO090 (described in table 2). Primer sequences are listed in table 4. The PCR
amplified products were then TA cloned into pSC-A to produce the vectors pMTS099
and pMTS100. The construction of all 6 7pf~pSC-A plasmids was confirmed using PCR
and restriction endonuclease digestion.

Following BamHI and Nsil digestion of the pSC-A constructs pMTS099,
pMTS100, pMTS110, and Ncol and Nsil digestion of pMTS109, all sequences were
ligated into the modified pMTS088 vector (a pMV261 derivative). The pMTS088 vector
is described in figure 7. DNA sequencing reactions were performed using an ABI
Prism®. Primers designed for the purpose of DNA sequencing are listed in table 3. The
sequence of each primer is listed in table 4. DNA sequencing allowed us to analyze the
5” and 3’ linkages, and confirm that all inserted sequences were in frame with the
hexahistidine tag, the heat-shock promoter of pMTS088, and the mycobacterial 4sp60
Shine-Dalgarno sequence — 5" CGGAGGA 3’ (55, 65). The DNA sequencing results
were aligned with the predicted rpf constructs to verify the predicted constructs were
assembled correctly. All sequences were confirmed, with the exception of pMTS105
(thought to contain rpfE), which contained a mismatched section upstream of the 3’
Nsil/Pstl link (figure 9). The pMTS104 sequencing results are shown in figure 8. The
pMTS105 sequencing results are shown in figure 9. The pMTS112 sequencing results

are shown in figure 10. The pMTS113 sequencing results are shown in figure 11. The
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rpfB sequence was also ligated into the modified pMTS079 vector (a pET28b+
derivative), producing the vector pMTS115. The presence of 7pfB in pMTS115 was
confirmed using PCR and restriction endonuclease digestion. The pMTS079 vector is
described in figure 12. The pMTS115 vector is described in figure 13. Detailed
descriptions of each pSC-A, pMV261, and pET28b+ derived construct are given in table

1.

Expression

No his-tagged proteins were detected from any attempts at expression within M.
smegmatis mc*155, including pMTS088 — the positive control (figure 14). Previous
attempts at expression of recombinant his-tagged mce from pMTS088 in M. smegmatis
mc?155 have been successful (Secott, unpublished) however those results could not be
replicated. For this reason, the plan to express recombinant-mycobacterial proteins in a
mycobacterial host was abandoned, and efforts were put towards the expression of rpfB
and mce in E. coli BL21(DE3) from pET28-derived vectors.

Initial attempts at detecting recombinant RpfB from E. coli BL21(DE3) proved
difficult due to the lysis of the expressing cells (figure 15). The initial attempts were
carried out according to the manufacturer’s instructions, inducing with 1 mM IPTG and
harvesting after a 3 hour expression time. Upon further investigation it was found that
there was a considerable loss of detectable recombinant RpfB using extended expression
times (figure 16). Considering that RpfB has the potential to be a lethal protein due to its
ability to break glycosidic bonds of the cells wall, the graph in figure 15 gives reason to

believe that the Mpt rpfB ORF codes for a functional protein, and E. coli BL21(DE3) is
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able to express it in its functional conformation. For this reason, growth and expression
conditions were optimized with the primary interest of recovering soluble RpfB, and
secondarily, to produce the greatest detectable quantity (see materials and methods).

Although it is assumed that there is an active, soluble quantity of RpfB being
translated due to the lysis of expressing cells, detection of soluble RpfB was not
successful (exemplified in figure 16). The conditions that promoted the best expression
(in terms of cellular-retained quantity) were when the cells were grown at 37°C, induced
with ImM IPTG between 0.6 and 0.8 ODsyg units, and harvested at 1 hour post induction
(figure 16). This procedure, as well as all others tried, produced recombinant his-tagged
proteins in the form of inclusion bodies.

The Thermo Scientific Pierce Blue Prestained Protein MW Marker was used to
distinguish the size of recombinant proteins in SDS-PAGE gels. The Mce and RpfB
proteins were expected to be 48 kDa and 42 kDa, respectively. Recombinant Mce
migrated at a slightly slower rate than ovalbumin (47 kDa), and RpfB migrated at a
slightly faster rate (figure 16).

Protein OD,g peaks following the desalting of Ni-NTA consistently occurred
within the first 3 ml eluted. Quantitative differences in the Mce and RpfB protein
purifications differed between expression trials from as much as 146 pg/ml, to as little as
6.5 ug/ml. Although the majority of protein that eluted from the Ni-NTA column was
consistent with the expected molecular weight of Mce and RpfB, the actual quantity of
recombinant protein recovered was skewed by the presence of co-purifying contaminant
proteins (seen in figure 17 and figure 18). Optical densitometry was used to measure the

proportion of RpfB and Mce relative to the amount of co-purifying contaminant bands.
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The differences in optical density ranged from as little as 35% purity to as much as 100%
purity.

Increasing the concentration of imidazole in the column wash buffer from 20 mM
to 50 mM appeared to increase the purity of recombinant proteins that were recovered
(Figure 17), without affecting the affinity of hexahistidine-fused proteins to the column
resin. However, this varied between experiments. Increasing the concentration of
imidazole in the column elution buffer from 250 mM to 500 mM resulted in a product of
comparable quantity, and lesser purity (Figure 18). Decreasing the pH of the binding,
wash, and elution buffers from pH 8.0 to pH 6.3 did not have an effect on the purity of
eluted histidine-fused proteins (data not shown). To avoid potential problems resulting
from protein carbamylation, all proteins that were tested for bioactivity came from
chromatography preparations in which urea was used in concert with Ni-NTA buffers at a
slightly alkaline pH. There did not appear to be a difference in the quantity or purity of
recombinant proteins when inclusion bodies were solubilized with urea compared to their

solubilization with guanidine hydrochloride (data not shown).

Effects of Recombinant RpfB on Dormant Mpt

The viability assay on dormant Mpt calculated an approximate 3.5% culture
viability. Results showing the growth stasis of dormant Mpt with and without the
addition of recombinant Mce and RpfB are shown in Figure 19. The results displayed in
figure 19 are consistent with the optical densities of all 24 plates monitored. Dormant

Mpt cultures did not exceed baseline turbidity levels in any of the 24 plates monitored.



Table 1: Vector nomenclature and hosts.
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Plasmid Parent Modified Parent Sequence Sequence Host
Vector used for Cloning Inserted Template
E. coli
pSC-A N/A N/A N/A N/A (StrataClone™ )
. Mpt E. coli
pMTS089 pSC-A N/A P/ Genome (StrataClone™)
. Mpt E. coli
pMTS090 pSC-A N/A pfE Genome (StrataClone™)
MTS099 SC-A N/A 7 MTS089 E. coli
P Pt Pt p (StrataClone™)
MTS100 SC-A N/A MTS090 E. coli
P Pt pfE p (StrataClone™)
Mpt E. coli
pMTS109 pSC-A N/A p/B Genome (StrataClone™)
Mpt E. coli
pMTS110 pSC-A N/A r/C Genome (StrataClone™)
pMV261 N/A N/A N/A N/A M. smegmatis mc¢*155
pBluescriptIl SK+, . 2
pMTS088 pMV261 pSC-A, pET28b+ mce pMTS079 M. smegmatis mc"155
pMTS104 pMV261 pMTS088 rpfA pMTS099 M. smegmatis mc*155
pMTS105 pMV261 pMTS088 ofE pMTS100 M. smegmatis mc*155
pMTS112 pMV261 pMTS088 rpfB pMTS109 M. smegmatis mc*155
pMTS113 pMV261 pMTS088 rpfC pMTS110 M. smegmatis mc*155
pET28b+ N/A N/A N/A N/A E. coli BL21(DE3)
pBluescriptIl SK+, Mpt .
pMTS079 pET28b+ PSC-A mce Genome E. coli BL21(DE3)
pMTS115 | pET28b+ pMTS079 rpfB pMTS109 E. coli BL21(DE3)

" Primers used to generate the 7pf amplicon were designed to anneal approximately 400
base pairs outside of the ORF in the genome of Mpt. The construct was then used as a
template for directional rpf cloning.



Table 2: Cloning and expression detail.

Promoter / Sequence
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Plasmid FOI‘VY&I.‘d Revgrs.e Expression  Verification Sequence — Expression
Restriction  Restriction Tag Method Confirmed Detected

pSC-A N/A N/A N/A N/A N/A N/A
pMTS089 N/A N/A N/A RE, PCR Yes, Yes N/A
pMTS090 N/A N/A N/A RE, PCR Yes, Yes N/A
pMTS099 |  BamHI Nisil N/A RE, PCR Yes, Yes N/A
pMTS100 |  BamHI Nisil N/A RE, PCR Yes, Yes N/A
pMTS109 Neol Nisil N/A RE, PCR Yes, Yes N/A
pMTS110 |  BamHI Nisil N/A RE, PCR Yes, Yes N/A
pMV261 N/A N/A h;fl’g) / N/A N/A N/A
pMTS088 B;’Z(I){IL Psil hgggfs/ RE, PCR Yes, Yes No
pMTS104 N/A N/A }g’(’ggs/ ;ﬁig:a Ye%;es’ No
pMTS105 N/A N/A }g’(’ggs/ ;ﬁig:a Ye;ges’ No
pMTS112 N/A N/A }g(’g(is/ ;ﬁig:a Ye%;es’ No
pMTS113 N/A N/A }g(’g(is/ ;ﬁig:a Ye%;es’ No
pET28b+ N/A N/A ];7)(1{;?5/ N/A N/A N/A
pMTS079 Ncol Pstl 1;7)(11‘;?3/ RE, PCR Yes, Yes Yes
pMTS115 N/A N/A E;ﬁfs/ RE, PCR Yes, Yes Yes

’ Sequencing showed the 3’ ligation occurred between Nsil-Pstl restriction sites, however
the sequence upstream of the linkage did not match that of the hypothetical »pfE. See

Figure 25 for further explanation.
RE = Restriction Endonuclease Digestion.



Table 3: Primer nomenclature and antibiotic resistance markers.
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Pasmid | Clonimg Primers' S JNE 3G

pSC-A N/A N/A N/A Kan
pMTS089 RpflF, RpfIR N/A N/A Amp
pMTS090 Rpf2F, Rpf2R N/A N/A Amp
pMTS099 Rpf1D, Rpfl1BR N/A N/A Kan
pMTS100 Rpf2D, Rrf2BR N/A N/A Kan
pMTS109 Rfi’ggf‘{’:}g ’ N/A N/A Kan
pMTS110 RI{’;%]/)DF}QZVVVIIS ’ N/A N/A Kan
pMV261 N/A N/A N/A Kan
pMTS088 N/A N/A N/A Kan
pMTSI113 N/A g/?;g II{{:;I))RLIif?I(ll?:l')]’) Msi\?[ggé’isR Kan
pET28b+ N/A N/A N/A Kan
pMTS079 N/A N/A N/A Kan
pMTS115 N/A N/A N/A Kan

" See Table 4 for the corresponding sequences and templates of each primer.
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Amplified
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Primer ID Template Primer Sequence 5’ — 3’ RE Tag
Sequence
RpflF rpfA Mpt tgacgagagaggaatacatc N/A
p P, Genome gigacgagagagg g
RpflIR rpfA Mpt tgtggaagcaccagttcttc N/A
Y P, Genome giggaag g
Rpf1D rpfA pMTS089 taatGGATCCagagaggaatacatcggcgcgtatgagtgg BamHI
RpflBR rpfA pMTS089 taatATGCATggegctgggtgcgggcetgcaccagggeg Nsil
Rpf2F pfE Mpt caacgggttacggaagagta N/A
p 14 Genome gggttacggaagag
Rpf2R pfE Mpt tagccccatacaagacaa N/A
Y P, Genome ggtag g
Rpf2D pfE pMTS090 taatGGATCCtcgtgecccgacccagacggeacgteccg BamHI
Rpf2BR rpfE pMTS090 gctgATGCATgccgeggeggecgeacaccgggecacgegc Nsil
RpfB Mpt
Forwl0 rpfB Genome CCATGGcccegegegttgagtgtattgacaaa Ncol
Mpt .
RpfB Rev10 rpfB Genome ATGCATaccagctcttccgetgeaca Nsil
RpfC/D Mpt
Forwl0 rpfC Genome GGATCCtaacgccttgttttcgectgecgaaatg BamHI
RpfC/D Mpt .
Rev10 rpfC Genome ATGCATcgggaccgecgectggatca Nsil
All
088 HspF Sequencing pMV261
Link ID amplicon derived aglggeagegaggacaactigag N/A
vectors
rpfA
lgnﬁl(sf;{ sequencing pMTS104 gcaatcttggegacgcetgacac N/A
amplicon
rpfB
Ilflﬁll:lig sequencing pMTS112 gcacaccgaaaccgegtatc N/A
amplicon
rpfC
Cﬁli)nllji%R sequencing pMTS113 tgtggcecaaagegttacctattcg N/A
amplicon
pfE
I}ifl—ll:l;g sequencing pMTSI105 gctgaggcetgttggttgaatge N/A
amplicon
All
Sequencing pMV261
109F1 amplicon derived gaatcacttcgcaatggccaagac N/A
vectors
All
MsMceHisR Sequepcmg pMTSOSS ataTTCGA Agccaactcagcttectttcggg BstBI
amplicon derived

vectors
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Figure 1: Proposed model of peptidoglycan alterations during the transition from
exponential growth into stationary phase. The diagram is a simplified reproduction of
a model produced by Kana et al. (47). The NA/GM polymer represents the N-acetyl or
N-glycolyl muropeptide that mycobacteria contain (56). The left side shows the typical
arrangement of peptidoglycan during exponential growth. The right side shows the
proposed arrangement of peptidoglycan in dormant mycobacteria.
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Figure 2: Partial pairwise alignment of the annotated and hypothetical
mycobacterial RpfA sequences. All sequences were identified using the NCBI website.
Alignment was created using CLC Free Workbench. Horizontal arrows indicate the
flanking cysteine residues near to the beginning and end of the approximately 70-residue
core Rpf sequence. Vertical arrows indicate the invariant glutamate, the glycine-X-X-
glutamine turn motif, and the NAG-binding threonine and tryptophan residues that all
members of the Rpf family share. This alignment shows the similarities that all
annotated and hypothetical RpfA proteins share.
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Figure 3: Partial pairwise alignment of the annotated and hypothetical
mycobacterial RpfB sequences. All sequences were identified using the NCBI website.
Alignment was created using CLC Free Workbench. Horizontal arrows indicate the
flanking cysteine residues near to the beginning and end of the approximately 70-residue
core Rpf sequence. Vertical arrows indicate the invariant glutamate, the glycine-X-X-
glutamine turn motif, and the NAG-binding threonine and tryptophan residues that all
members of the Rpf family share. This alignment shows the similarities that all
annotated and hypothetical RpfB proteins share.
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Figure 4: Pairwise alignment of the annotated and hypothetical mycobacterial RpfC
sequences. All sequences were identified using the NCBI website. Alignment was

created using CLC Free Workbench. Horizontal arrows indicate the flanking cysteine
residues near to the beginning and end of the approximately 70-residue core Rpf

sequence. Vertical arrows indicate the invariant glutamate, the glycine-X-X-glutamine

turn motif, and the NAG-binding threonine and tryptophan residues that all members of
the Rpf family share. This alignment shows the similarities that all annotated and
hypothetical RpfC proteins share.
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Figure 5: Pairwise alignment of the annotated and hypothetical mycobacterial RpfE
sequences. All sequences were identified using the NCBI website. Alignment was
created using CLC Free Workbench. Horizontal arrows indicate the flanking cysteine
residues near to the beginning and end of the approximately 70-residue core Rpf
sequence. Vertical arrows indicate the invariant glutamate, the glycine-X-X-glutamine
turn motif, and the NAG-binding threonine and tryptophan residues that all members of
the Rpf family share. This alignment shows the similarities that all annotated and
hypothetical RpfE proteins share.
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MCS

TA cloning site

Figure 6: pSC-A. Plasmid vector pSC-A was used as a parent vector for the propagation
of rpf'sequences that were amplified directly from the genome of Mpt using PCR.
Amplified rpf'sequences were TA cloned into the /acZ gene coding for a-fragment of (3-
galactosidase.
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6XHis
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BamHI (4859)

BamHI (4544)
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£ Ros 5933bp

7600

Ncol (4369)

ori E

BamHI (4352)
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Figure 7: pMTS088, a pMV261 derived construct. The pMTS088 vector was
constructed by Secott and Johnson during a previous study. The vector was designed to
express histidine-fused mycobacterial proteins in a mycobacterial host. The Asp60
promoter and the hexahistidine tag in pMTSO088 flank the mce sequence, which encodes a
mycobacterial cell entry protein. Before the mce sequence was cloned into pMV261 it
was shuttled through pBluescriptll SK+, pET28b+, and pSC-A. The 3’ tail of the mce
sequence carried with it a portion of the MCS from pBluescriptll SK+, and a portion of
the MCS from pET28b+ containing the C-terminal hexahistidine tag. Digesting the
pMTSO088 vector with the restriction nucleases that are shown opened the vector for rpf
cloning.
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B: rpfA 3' Link in pMTS104
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Figure 8: DNA sequencing results confirming the insertion of rpfA4 into the former
pMTS088 construct. The 5’ PCR amplicon (A) was amplified from pMTS104 using
primers 088 HspF Link ID and 1D HspR Link ID. The 3’ PCR amplicon (B) was
amplified from pMTS104 using primers 109F1 and MsMceHisR. DNA sequencing was
performed in Dr. Robert Sorensen’s lab at Minnesota State University — Mankato, MN.
The pairwise alignments was produced using CLC Free Workbench to show that the 5’
BamHI and 3" Nsil/Pstl ligations occurred, and the sequences up and downstream of the
linkages matched those of the expected pMTS104 sequence. The boxes note the location
of the restriction sites. Nucleotides to the left of the boxes are part of the pMTS088
sequence. Nucleotides to the right of the boxes are part of the pf4 sequence.
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A: rpfE 5" Link in pMTS105
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B: rpfE 3' Link in pMTS105
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Figure 9: DNA sequencing results confirming the insertion of rpfE into the former
pMTS088 construct did not occur. The 5’ PCR amplicon (A) was amplified from
pMTS104 using primers 088 HspF Link ID and E HspR Link ID. The 3' PCR amplicon
(B) was amplified from pMTS105 using primers 109F1 and MsMceHisR. DNA
sequencing was performed in Dr. Robert Sorensen’s lab at Minnesota State University —
Mankato, MN. The pairwise alignment was produced using CLC Free Workbench to
show that the 5" BamHI and 3" Nsil/PstI ligations occurred, and the sequences up and
downstream of the linkages matched those of the expected pMTS105 sequence. The
boxes note the location of the restriction sites. Nucleotides to the left of the boxes are
part of the pMTSO088 sequence. Nucleotides to the right of the boxes are part of the rpf4
sequence. Although the sequencing reaction missed the targeted BamHI site in the 5’
link, the sequence of the rpfE PCR amplicon shares homology with the expected
sequence. The rpfE 3' link does not share homology with the expected sequence. Further
investigation showed that the 3’ link shared homology with the mce sequence that was
expectedly removed from pMTS088.
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B: rpfB 3' Link in pMTS112
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Figure 10: DNA sequencing results confirming the insertion of rpfB into the former
pMTS088 construct. The 5’ PCR amplicon (A) was amplified from pMTS112 using
primers 088 HspF Link ID and 1D HspR Link ID. The 3’ PCR amplicon (B) was
amplified from pMTS112 using primers 109F1 and MsMceHisR. DNA sequencing was
performed in Dr. Robert Sorensen’s lab at Minnesota State University — Mankato, MN.
The pairwise alignment was produced using CLC Free Workbench to show that the 5
Ncol and 3’ Nsil/Pstl ligations occurred, and the sequences up and downstream of the
linkages matched those of the expected pMTS112 sequence. The boxes note the location
of the restriction sites. Nucleotides to the left of the boxes are part of the pMTS088
sequence. Nucleotides to the right of the boxes are part of the pfB sequence.
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B: rpfC 3' Link in pMTS113
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Figure 11: DNA sequencing results confirming the insertion of rpfC into the former
pMTS088 construct. The 5’ PCR amplicon (A) was amplified from pMTS113 using
primers 088 HspF Link ID and 1D HspR Link ID. The 3’ PCR amplicon (B) was
amplified from pMTS113 using primers 109F1 and MsMceHisR. DNA sequencing was
performed in Dr. Robert Sorensen’s lab at Minnesota State University — Mankato, MN.
The pairwise alignment was produced using CLC Free Workbench to show that the 5’
BamHI and 3" Nsil/Pstl ligations occurred, and the sequences up and downstream of the
linkages matched those of the expected pMTS113 sequence. The boxes note the location
of the restriction sites. Nucleotides to the left of the boxes are part of the pMTS088
sequence. Nucleotides to the right of the boxes are part of the pfC sequence.
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Figure 12: pMTS079, a pET28b+ derived construct. The pMTS079 vector was
constructed by Secott and Johnson during a previous study. The mce sequence encodes a
mycobacterial cell entry protein. The Ncol restriction site in pET28b+ and the Ps¢I

restriction site in the mce sequence provided the means to cloning rpfB inframe with the
T7 lac promoter and C-terminal 6XHis of pET28b+.
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Figure 13: pMTS115, a pET28b+ derived construct. The pMTS115 vector was
constructed for the expression of rpfB in an E. coli system. The rpfB sequence was first
removed from the pMTS109 vector using the restriction endonucleases Ncol and Nsil.
The mce sequence was removed from pMTS079 using the restriction endonucleases
Ncol, and the Nsil isoschizomer, Pstl. The pMTS115 vector was then constructed by
ligating rpfB into pMTS079 at the Ncol and Nsil/Pstl cohesive ends. This placed rpfB
inframe with the T7 lac promoter and 6XHis tag of pET28b+.
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Figure 14: Western blot of mce and rpfB expression trials in M. smegmatis mc*155.
M. smegmatis mc*155 cultures containing either pMV261, pMTS088, or pMTS112 were
grown for 96 hours at 37°C. Cultures were processed according to the methods protocol
for the purification of hexahistidine-fused proteins. Lanes 1-10 are described from left to
right: lanes 1-3, concentrated culture supernates of pMV261, pMTS088, and pMTS112,
respectively; lanes 4-6, Soluble fractions of pMV261, pMTS088, and pMTS112 cell
lysates, respectively; lane 7, MW marker; lanes 8-10, Insoluble fractions of pMV261,
pMTSO088, and pMTS112 cell lysates, respectively. Bands of interest are those that are
present in RpfB and Mce preparations, and absent in pMV261 preparations. This is seen
at one location, indicated by the horizontal arrow (A). However, previous research has
shown that recombinant Mce expressed from M. smegmatis mc*155 migrates at a rate
equal to proteins that have a molecular weight of 50 kDa (B). The location of the
indicated band is >50 kDa. Along with this, RpfB is expected to migrate faster than Mce
due its molecular weight of 42 kDa when expressed from pMTS112. This shows that
there is no expression of mce or rpfB from M. smegmatis mc*155.
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Figure 15: Growth curves of E. coli BL21(DE3) after induction with 5 different
IPTG concentrations. Blue lines represent cultures expressing mce from pMTS079,
and red lines represent cultures expressing rpfB from pMTS115. The legends are listed
in order from highest absorbance to lowest absorbance at 7.5 hours. Cultures were
induced with IPTG at ODsgy 0.6. Cell division stopped after 90 minutes in all
concentrations of IPTG for cultures expressing mce. After this time the absorbance
decreased slowly until an optical density of approximately 0.58. Cell division stopped at
90 minutes in cultures expressing rpfB at IPTG concentrations of 0.05 mM and 0.1 mM.
From this point there was a rapid decline in absorbance until it reached an optical density
of approximately 0.44. Cell division stopped at 60 minutes in cultures expressing rpfB at
IPTG concentrations of 0.5 mM and 1 mM. From this point there was a dramatic decline
in absorbance until it reached an optical density of approximately 0.44. This indicates
there is lytic activity of RpfB on expressing cells.
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Figure 16: Comparative expression of mce (Panel A) and rpfB (Panel B) from E. coli
BL21(DE3) using 1 mM IPTG for 1 hour at 37°C vs. induction with 0.05 mM IPTG
over 4 hours at 37°C. Cultures were induced with IPTG between ODs900.6-0.8. Ten
milliliters of the culture induced with 1 mM IPTG was and processed at 1 hour post
induction. Ten milliliters of the culture induced with 0.05 mM IPTG was drawn and
processed each hour over 4 hours. Fifteen microliters of the soluble lysate, and urea-
solubilized lysate was then sent through a western blot using an anti-6XHis antibody at a
1:1000 dilution. Lane 1 is the urea-solubilized fraction of the culture induced with 1 mM
IPTG at 1 hour post induction. Lanes 2, 4, 7, 9 are urea-solubilized cell lysates at 1, 2, 3,
and 4 hour intervals, respectively. Lanes 3, 5, 8, 10 are soluble fractions of the cell
lysates at 1, 2, 3, and 4 hour intervals, respectively. Lane 6 is the MW Marker. This
shows that the recombinant proteins separate with the insoluble fraction, and the largest
quantities of recombinant protein are produced when cells are grown at 37°C, induced
with 1 mM IPTG, and harvested after 1 hour of expression.
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Figure 17: Increasing the concentration of imidazole in the Ni-NTA wash buffer
decreases the amount contaminating proteins in the Ni-NTA eluates. Expression of
rpfB after 1 hour induction with 1 mM IPTG. Inclusion bodies were solubilized with 8 M
urea and sent through Ni-NTA resin. Ten-millimolar imidazole was used in the binding
buffer, 20 mM imidazole (Panel A) or 50 mM imidazole (Panel B) was used in the wash
buffer, and 250 mM imidazole was used in the elution buffer. Four 500 pl volumes of
elution buffer were applied to the resin, collected, and 15 pul of each eluate was sent
through a 10% acrylamide gel (lanes 2-5). Lane 1 is the MW Marker. This shows that
when compared to a 50 mM imidazole wash (Panel B), RpfB elutes with more
contaminating bands
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Figure 18: Increasing the concentration of imidazole in the Ni-NTA elution buffer
increases the amount contaminating proteins in the Ni-NTA eluates. Expression of
rpfB after 1 hour induction with 1 mM IPTG. Inclusion bodies were solubilized with 8 M
urea and sent through Ni-NTA resin. Ten-millimolar imidazole was used in the binding
buffer, 20 mM imidazole was used in the wash buffer, and 250 mM imidazole (Panel A)
or 500 mM imidazole (Panel B) was used in the elution buffer. Four 500 ul volumes of
elution buffer were applied to the resin, collected, and 15 pul of each eluate was sent
through a 10% acrylamide gel (lanes 2-5). Lane 1 is the MW Marker. This shows that
when compared to a 500 mM imidazole elution (Panel B), RpfB elutes with fewer
contaminating bands.
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Figure 19: Growth curves of Mpt in M7H9C with and without the addition of
recombinant Mce and RpfB. The 96-well plate used in this assay contained 5 replicate
trials that tested doubling dilutions of recombinant Mce and RpfB from 500 mM to 3.91
mM on dormant Mpt in M7H9C, 8 replicate tests on dormant Mpt in M7H9C , and 8
replicate tests on M7HOC. Optical densities were measured over 31 days. Since there
was no difference between any of the trials testing varying recombinant protein
concentrations, all 40 wells containing Mce (5 replicates of 8 different protein
concentrations) were treated as 40 replicates to produce 1 line. The same was done for
RpfB-containing wells. This figure shows that Recombinant RpfB has no effect on the
recovery of dormant Mpt.
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Discussion

Our purpose in this study was to test the ability of recombinant Mpt RpfA-E to
promote the growth of dormant Mpt. Our bioinformatic analysis revealed four »pf ORFs
in the genome of Mpt, consistent with the accession numbers published by Kana et al.
(47). DNA sequencing revealed that the Mpt rpf4, rpfB, and rpfC sequences were
successfully cloned into the pMV261 derived vector. Our attempts at producing
recombinant Mce, RpfA, RpfB, and RpfC from a modified pMV261 vector in M.
smegmatis mc>155 were unsuccessful. Reasons for this are unclear when considering
that previous attempts at expressing mce from the pMV261-derived construct were
successful. Investigations are currently in process to determine a consistent and
repeatable means of expressing recombinant proteins from these pMV261 derived
constructs. Once this is accomplished, there is a greater likelihood of recovering a
functional Rpf product, which can be tested to resuscitate dormant Mpt.

We examined the ability of E. coli BL21(DE3) to express two mycobacterial
proteins (Mce and RpfB) from pET28b+ derived vectors. We also examined the potential
functionality of the recombinant Mce and RpfB proteins on cultures of dormant Mpt.
Our results determined that the optimal conditions for the expression of these proteins in
E. coli, in terms of greatest cellular-retained quantity, occur when the cultures are
induced at ODsgy 0.6-0.8 with 1 mM IPTG, incubated at 37°C, and harvested at 1 hr post
induction. These conditions, however, resulted in the aggregation of fusion proteins as

inclusion bodies. These inclusion bodies had to be solubilized with chemical denaturants
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in order to isolate the fusion proteins from the rest of the cell lysate. In doing so, fusion
proteins are linearized, and the potential functionality may have been compromised.
Some proteins are known to spontaneously refold after their removal from denaturing
conditions (i.e. RNase and prion proteins). In considering the possibility of that some
spontaneous reformation occurred, total protein concentrations from desalted Ni-NTA
eluates were tested against dormant Mpt at concentrations up to 640 times greater than
optimal RpfB concentrations required for the resuscitation of related species. For the
resuscitation of related species, the optimal concentration of RpfB is approximately ~13
pM (64).

When testing the bioactivity of recombinant proteins, it is preferable to optimize
the expression conditions so that the protein can be isolated from a soluble fraction.
When E. coli is being used for the expression of a foreign gene, uncertainties in the
quality and/or quantity of an expression product can result from (i) questionable folding
of unique protein structures, (ii) tRNA availability and rare codon demand, (iii)) mRNA
folding and stability, (iv) translational efficiency, (v) protease activity in E. coli, (vi)
potential lethality of the recombinant expression product (54), (vii) a Met, His, or Glu
residue being called for at the +2 location of the mRNA transcript (5), (viii) and negative
repeating nucleic acid elements. These variables, as well as the rate of recombinant
protein expression and recognizable signal cleavage sites can play a role in the
production and solubility of recombinant proteins. A number of commercially available
E. coli strains have been developed to overcome some of these obstacles, and a number

of molecular techniques can be used to alter the rare codon demand of foreign sequences.
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The following characteristics of the mce and rpfB sequences used in this
experiment may make them less suitable for expression in E. coli: (i) use of the rare E.
coli codons AGG, AGA, CGA, CGG (all of which code for arginine), and CCC (coding
for proline) (11), (i1) codon adaption indices (CAI) of 0.72 and 0.74, respectively, (iii)
rare codon frequency distributions (CFD) of 8% and 6%, respectively, (iv) and nucleic
acid sequences containing 18 and 26 negative repeating elements (NRE), respectively
(CAI, CFD, and NRE values were calculated using the algorithm from

www.genscript.com/cgi-bin/tools/rare_codon_analysis). E. coli BL21(DE3) was able to

overcome these obstacles; however, we were unable to obtain a soluble product. It is
worth noting that, although a pause in translation due to the lack of appropriate tRNA can
cause premature termination, significant reductions in total soluble protein concentrations
have been observed in systems where codon bias was adjusted (75).

Previous studies that attempted the expression of Rpf proteins in E. coli have
produced mixed results. The Zhu et al. study was successful in developing a functional
Rpf protein in E. coli (117). Tufariello and colleagues were unsuccessful in inducing a
resuscitative response in dormant M. tuberculosis cultures using recombinant Rpf
proteins expressed from E. coli (98). Mukamolova and colleagues had difficulty
expressing a soluble and functional M. luteus rpf from pET19b using E. coli (62). They
were successful in using E. coli to produce a recombinant M. [uteus Rpf from the
pBAD/gllIb vector (62). However they were unable to test the activity of the
recombinant M. [uteus Rpf due the high level of endogenous Rpf activity in expressing
cells, which resulted in cell lysis during expression (62). In this study, expression of rpfB

in E. coli from the pET28b+ vector was complicated by the incorporation of recombinant
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RpfB into inclusion bodies and aggregation during cell lysis. However, this study does
suggest (1) the Mpt putative rpfB ORF codes for a functional Rpf, (ii) the Mpt rpfB was
successfully cloned into the pET28b+ derivative, and (iii) £. coli BL21(DE3) were able
to fold the protein properly. The fact that inclusion bodies were our source of Rpf
purification suggests additional possibilities: (1) there are two forms of RpfB being
produced — one of which is functional, and one of which is aggregated; (ii) during
expression of 7pfB, the initial recombinant products produced are secreted through the
periplasm, and as the endogenous level rises with continued expression, their
accumulation results in aggregation. This could explain why lysis was seen in the
expressing cells, yet inclusion bodies were still detected.

Although fusion proteins were obtained from E. coli expression of mce and rpfB,
the purity and quantity of those proteins following Ni-chelate chromatography was less
than desired, and replicate expression trials frequently led to differences in the purity and
quantity of recombinant protein. Hexahistidine fused contaminants were not expected
due to the fact that our cloning designs utilized restriction sites upstream of the N-
terminal hexahistidine tag in pET28b+.

The following ideas are possible explanations for the differences seen in purity
and quantity of recombinant proteins. (i) More recombinant protein is released from cells
expressing rpfB compared to cells expressing mce due to a more complete lysis caused by
high endogenous levels of active RpfB. (ii) The use of denaturants may expose histidine-
dense regions in other E. coli proteins that may competitively bind to the nickel resin.
(ii1) Hydrophobic interactions occurring between the chromatography resin and

contaminating proteins may affect the purity of the histidine tagged proteins. Results
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may be improved if a different purification tag is used. Some tags, such as GST, promote
the solubility of recombinant proteins. Others, such as the affinity tags FLAG and HPC,
promote greater purity of recombinant proteins due to specific epitope interactions (54).

It is difficult to say with certainty that the differences seen from adjusting
parameters such as imidazole concentrations and pH of the chromatography buffers had a
direct affect on the purity and quantity of recovered proteins. This is due to the
comparisons being made between expression trials, and not within expression trials. The
differences may have resulted from inconsistencies in the total amount of recombinant
protein expressed from cell lines, or different amounts of cellular debris solubilized with
the inclusion bodies. The ratio of cells transcribing recombinant sequences vs. cells that
have adapted a resistance to IPTG may change over time, negatively affecting the
quantity of recombinant protein relative to the total protein expressed for normal cell
operations. It is presumed that less than 2% of the culture is unaffected by IPTG (67).
This percentage may vary from culture to culture, and may increase over time with
extended storage at -80°C, culture passage, or freeze-thaw cycling.

Recombinant RpfB and Mce were tested against dormant Mpt, despite the issues
of absolute purity. The analysis of the SDS-PAGE gels using optical densitometry
helped in deciphering the quantity of hexahistidine-fused protein that was being applied
to dormant Mpt, relative to contaminating proteins. The concentrations of Mpt RpfB that
were tested against dormant Mpt varied in concentration from as high as 6.4 nM to as low
as 3.91 nM. Again, the exact concentration of recombinant protein added could not be
calculated due to the protein-contaminated preparations. None of these concentrations

induced a response from dormant Mpt cultures when dormant cultures were added at



65

concentrations of 1.0x10* CFU/well, or 1.0x10° CFU/well (calculated by 30%T at
ODsgp). Through the use of a viability assay using flow cytometry, the actual number of
viable cells was likely 3.54x10" CFU/well and 3.54x10° CFU/well, respective the
photometric calculations.

To my knowledge, this study is the second attempt at resuscitating dormant Mpt
through the use of autologous Mpt Rpfs. The first attempt was done by Zhu and
colleagues, who tested the potential functionality of the putative Mpt RpfA (117). The
optimal concentration of Mpt RpfA observed to resuscitate dormant Mpt was 100 pM in
the Zhu study. No other data exists on the optimal concentrations of Rpfs required to
resuscitate dormant Mpt, and all other studies have used mycobacterial cultures that had
been dormant for months, not years. Considering that optimal Rpf concentrations are
typically consistent across genera, and even families, it is unlikely that optimal Rpf
concentrations required for the resuscitation of dormant Mpt will differ. However, this
will not be certain until optimal Rpf concentrations required for the resuscitation of
dormant Mpt are determined.

Mycobacterial cells that have been dormant for years may differ structurally from
cells that have been dormant for months. As previously stated, Mpt can enter a
spheroplastic state during periods of extended dormancy. The high energy demand
required to maintain the mycolates of the outer cell membrane will likely not be
supported, and with time, the acid-fast cell wall will diminish. When this occurs, the
optimal concentrations of Rpf proteins required to resuscitate dormant cells may be much
lower than concentrations required to recover “younger” dormant cultures due to the

accessibility of exposed mycobacterial peptidoglycan.
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As cells age in dormancy and take on a true spheroplastic state, the peptidoglycan
disappears. If Rpf proteins induce resuscitation by hydrolyzing glycosidic bonds of
structurally modified cell walls, then no resuscitation would be seen from cells in a
spheroplastic state. However, Rpf induced recovery from dormancy may be possible for
cells in a spheroplastic state if recovery is dependant on the products of Rpf substrate
cleavage rather than direct Rpf hydrolysis of the cell wall. Peptidoglycan fragments are
activators of two-component regulatory systems, and the serine threonine protein kinase
PknB is an essential growth mechanism in M. tuberculosis (33). This kinase has also
been hypothesized to serve a role in resuscitation — particularly through the means of
recognizing structurally modified peptidoglycan that has been cleaved by Rpf proteins
(47). Since PknB is essential for growth, it is possible that PknB is maintained
throughout dormancy.

Other protein-protein interactions may exist for the proper function of RpfB on
dormant Mpt. RipA, for example, has been shown to co-localize with RpfB at the septum
of dividing cells (39, 40). Studies have been done to examine the effects of numerous rpf’
deletions, and results from those studies have concluded that there is a hierarchy of
importance in the retention of certain rpf sequences when considering the ability to
induce resuscitation. However, no studies have shown the effects of adding combined
Rpf proteins to dormant cultures. Keeping in mind that (i) peptidoglycan hydrolases are
tightly regulated by the cell, (ii) rpfs are being found to be controlled by different
transcriptional regulators, (iii) work with Rpf null mutants has shown diminished
resuscitative capability with sequential deletions, (iv) expressions of all 7pfs seem to

overlap at some point during growth, and (v) redundancy among 4 conserved proteins
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seems unlikely (especially considering that 3 homologues still exist in M. leprae), it may
be possible that the Rpf proteins associate to form a larger complex.

This study has produced many avenues for future research. Now that all of the
Mpt rpf ORFs are cloned into a mycobacterial expression vector, conditions to express
the sequences and effects of the recombinant products can be tested against dormant Mpt.
To make future study compare well with other Rpf studies, dormant Mpt should be tested
within months of entering dormancy. The choice of growth media should be better
investigated in future trials. Some studies show that Middlebrook 7H9 inhibits the
recovery from dormancy (117). This may be due to the increased metabolism resulting in
the production of an overwhelming amount of reactive-oxygen intermediates. If this is
the case, the addition of Rpf proteins in combination with oxygen reducing agents may
result in a greater number of cells recovering from dormancy.

Antibodies could be produced to the RpfB proteins that were produced in this
experiment. These antibodies could then be applied to cultures of Mpt to determine if,
and during what stages of growth RpfB is expressed in Mpt.

Much work is yet to be done on the study of Mpt dormancy and the effects of Rpf
proteins on dormant Mpt. With continued investigation, it may be found that Rpf
proteins are the key to increasing the sensitivity of diagnostic culture, and lowering the

incidence of JD.
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Appendix and Protocols

Agarose Gel Electrophoresis

Required: Agarose Electrophoresis Matrix, 1 X TBE Buffer, Gel Cast, Loading Dye,
Parafilm, Buffer Tank, Power Source, 2 mg/ml Ethidium Bromide, UV Imaging System

1. Make 1% agarose gel by adding 0.3 grams of agarose electrophoresis matrix to 29.7
ml of 1X TBE buffer. Caution! Ethidium bromide is a known carcinogen, always
wear gloves!

2. Boil the mixture in a glass bottle for 2 minutes.

3. While the Solution is boiling, setup your gel cast by taping the open ends with
masking tape so the top of the tape is level with the sides of the cast. Insert comb in
the top end.

4. Once the solution has air-cooled to approximately 50°C, poor it level with the sides of
the cast, add 10 pl of 2 mg/ml ethidium bromide, and mix with the pipette tip. An
agarose solution that’s too hot can warp the cast. Improper cooling methods can
cause inconsistencies in the gel. Ethidium bromide is photo reactive; do your best to
shelter it from light.

5. Once the gel has solidified, remove the comb carefully. Squirt water over the area
where comb meets gel to lubricate as it pulls out. Removing to fast can pull the
agarose base of the gel through the comb slot creating an open-ended well. Remove
the masking tape from the ends.

6. Place the gel, still in the cast, into the buffer tank so the wells are nearest to the
cathode. Fill the buffer tank with 1X TBE buffer so that the buffer rises just over the
top of the gel.

7. Mix your sample on a square of parafilm with the loading dye to a final concentration
of 1X. Your final volume should not exceed 30 ul. Carefully load your samples into
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the wells. If your number of samples is less the number of available wells, avoid
using the outermost wells. Be sure to save one lane for your ladder.

8. Place the lid over the tank and connect the cables with concern to the cathode and
anode. Switch on the power supply, and run the gel at 145 V for approximately 45
minutes, or until the bromphenol blue in the loading dye travels % the distance of the
gel. It should migrate with bands of approximately 500 base pairs.

9. Place the gel under UV light to reveal your samples.

NOTE: Proper clean up is a must! Your gel, running buffer, gel cast, box, and anything
else you have touched will contain residual ethidium bromide.

10X TBE Buffer

Tris Base 108 g
Boric Acid 55¢g
EDTA 93¢g
dH,O gs.tol L

2 mg/ml Ethidium Bromide

Ethidium Bromide 0.02¢g

dH,O 10 ml

Prepare in a 50 ml conical tube, wrap in foil, and store at 4°C. Caution! Ethidium
bromide is a known carcinogen! Take proper precautions.
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SDS-PAGE (Laemmli Protocol)

Required: Acrylamide:Bis 37.5:1, 4X Tris-SDS pH 8.8, 4X Tris-SDS pH 6.8, TEMED,
Fresh 10% Ammonium Persulfate, 10X Tris-Glycine, 2X loading dye, Beta
Mercaptoethanol, Coomassie Blue Solution, Destaining Solution, Glass Casting Plates,
Casting Clamps, Buffer Tank, Power source

1. Thoroughly clean glass plates with water and 70% ethanol.

2. Place the glass-plate clamps on the bench surface, and insert the glass plates. Once
you are sure they are flush, clamp them into place. If they are not your gel will leak
out the bottom before it solidifies. Clamp glass-plate assemblies into the casting box,
being sure the bottoms of the glass plates are seated into the foam seats.

3. Combine the following for a 10% separating gel: 5 ml Acrylamide:Bis 37.5:1, 3.75
ml 4X Tris-SDS pH 8.8, 6.25 ml dH,0, 50 ul fresh ammonium persulfate, and 10 pl
TEMED. Mix well, and with a P1000 micropipette dispense 5 ml between the glass
plates. Caution! Acrylamide is a known neurotoxin!! Wear gloves!

4. Once you have 5 mls between the plates, gently dispense dH,O on top of the
acrylamide solution until the volume reaches the top of the front glass plate. When
solidified you will see a line develop at the gel/dH,O interface. Wait until you see
this before proceeding.

5. Combine the following to make the stacking gel: 0.65 ml Acrylamide:Bis 37.5:1, 1.25
ml 4X SDS-Tris pH 6.8, 3.05 ml dH,O, 25 pul fresh ammonium persulfate, and 10 pl
TEMED. Mix well.

6. Discard the excess water from the separating gel. With a P1000 micropipette,
dispense the stacking-gel solution on top of the separating gel until it reaches
approximately 5 mm from the top of the front glass plate. Being sure to avoid
trapping bubbles, insert the gel comb into the liquid stacking-gel solution. Some may
spill over the front — clean appropriately wearing gloves. Be sure the comb is seated
against the right side of the plates. As the level drops, add stacking-gel acrylamide
solution in 5 pl increments to the minute gap between the left side of the comb and
the glass plate until it solidifies. If you do not do this you will lose the outermost
wells of your gel.
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When the stacking gel has solidified, release the clamps and wash any residual liquid
acryladmide solution from the plates. Place the gels in the clamping frame such that
both of the shorter glass plates face the center, and lock into place. Place the
clamping frame into the buffer tank.

Make 1X Tris-Glycine buffer by adding 40 mls of 10X Tris-Glycine buffer to 360
mls of dH,O. Dispense all 400 mls into the center, between the two gels. Allow the
excess buffer to flow in into the surrounding reserve of the buffer tank.

Dispense 300 pl of 2X loading dye into a 500 ul tube. Add 6 pul of beta
mercaptoethanol and mix well. Dispense 15 pul into an appropriate number of sample
tubes. Add 15 pl of your sample to each respective tube, and mix.

Boil your samples in the thermocycler for 10 minutes.

Dispense 25 pl of your samples into the wells of the gel with a P30 micropipette.
Avoid using the outermost wells if you don’t need them. Be sure to save one lane for
your ladder. Fill any unused wells with 1X loading dye.

Put the lid into place with concern to the cathode and anode, and run your samples at
165 V for 60 minutes. Be sure to check frequently, as the buffer level between the
gels will decrease rapidly while running. To refill it, stop the power, and with a 10 ml
pipette draw buffer from the reserve and dispense it back into the center.

When the cycle is complete, discard the buffer and remove the clamping frame.
Separate the glass plates with the gel releaser. Cut away the stacking gel, and rinse
the gels under dH,O.

Rock the gels overnight in a low volume of 1X coomassie solution.

Dispose of the used coomassie solution in a hazardous waste container, and rinse the
gels with dH>O. Add destaining solution and rock until the solution needs to be
changed. Do this until the gel is fully destained.

Observe the bands under bright illumination.
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Separating Gel
Final Acrylamide Concentration in Separating Gel (%)

Stock Solutions
(ml) 5 6 7 1715 8 9 10 12 13 15
30%
Acrylamide/ 25 30 35 40 45 50 60
0.8% 0 0 0 3.75 0 0 0 0 6.50 7.50
Bisacrylamide
4X Tris- 3.7 3.7 3.7 3.7 37 37 3.7
HCV/SDS pH 8.8 5 5 5 375 5 5 5 5 3.5 | 3.7

87 82 1.7 72 67 62 52
dH,0 s P 5 7.50 5 s P 5 475 3.75
10% APS 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(Fresh) 5 5 5 0.05 5 5 5 5 0.05 0.05
TEMED 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 001 001

1 1 1 1 1 1 1

Gel % 5 10 15
Protein 16-
Separation 60-200 70 12-45
Range (kDa)
30% Acrylamide/0.8% Bisacrylamide
Acrylamide 30g
N,N'- methylenebisacrylamide 08¢g
dH,O qg.s. to 100 ml

Keep solution away from light by wrapping the bottle with foil. Heat solution to 37°C

to get chemicals into solution. Filter with 0.45 pm-membrane filter. Caution!

Acrylamide is a neurotoxin! Take proper precautions!
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4X Tris-HCI/SDS Seprating Gel pH 8.8

Tris-HCl O91¢g
SDS 2g
dH,O q.s. to 500 ml

Stir reagents into solution, pH to 8.8 with HCI, filter through 0.45 pm filter, store at

4°C

4X Tris-HCI/SDS Stacking Gel pH 6.8

Tris-HCI 6.05¢g
SDS 04¢g
dH20 q.s. to 100 ml

Stir reagents into solution, pH to 8.8 with HCI, filter through 0.45 pm filter, store at

4°C

10% Ammonium Persulfate

Ammonium Persulfate

0.1g

dH,O

0.9 ml

Always prepare this solution fresh before use. Store at -20°C
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2X Sample Buffer

Tris-HCl 1.52¢g
Glycerol 20 ml
SDS 20¢g
Bromphenol Blue 0.001 g
dH,O q.s. to 100 ml

Stir reagents into solution, pH to 6.8 with HCI, add 20 pl B-mercaptoethanol per ml

sample buffer immediately before use.

10X SDS-PAGE Running Buffer

Tris Base 302 ¢
Glycine 144 g
SDS 10g
dH,O g.s. to 1000 ml

Coomassie Blue Solution

Methanol 500 ml
Glacial Acetic Acid 300 ml
Coomassie Blue R 05¢g
dH,O q.s. to 1000 ml
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Destaining Solution

Methanol 50 ml

Glacial Acetic Acid 70 ml

dH,O g.s. to 1000ml
References

T.E. Secott, MnSU-Mankato. Lab Protocol. 2003. Preparation of Reagents for
Denaturing Sodium Dodecylsulfate-Polyacrylamide Discontinuous Gel Electrophoresis —

Laemmli Method.
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Western Blotting

Required: SDS-PAGE Gel, Transfer Buffer, Bio-Ice Cooling Unit with frozen water, Gel-
Holder Cassettes, Gel-Transfer Cell, Buffer Tank, Nitrocellulose Paper, Filters, Foam
Pads, Power Source, Appropriate Antibody, Diaminobenzidine Solution, Sterile 1X
PBST + 1% BSA, 1X PBST, Tube Roller, 50 ml Conical Tubes, Cake Pan, Magnetic Stir
Bar, Magnetic Stir Plate,

1.

Streamline this protocol from step 15 of SDS-PAGE protocol.

Cut a piece of nitrocellulose paper equal in size to the area covered by the migration
of your bands in the polyacrylamide gel. Trim 2 Whatman filters (per blot) equal in
size to the foam pads.

Assemble the gel sandwich as follows: 1) place the gel-holder cassettes in the cake
pan, black side down. Pour approximately 400 ml transfer buffer into cake pan. 2)
Saturate the foam pads in transfer buffer in cake pan. Place one pad onto each black
panel of cassettes. 3) Place one trimmed Whatman filter on top of the saturated foam
pad. 4) Place polyacrylamide gel in the center of the wet filter. 5) Carefully lay
down the nitrocellulose paper on top of the gel. 6) Place 2™ trimmed Whatman filter
on top of the nitrocellulose paper. 7) Saturate 2" foam pad in running buffer and
place overtop wet filter. Careful! Be sure to exclude any and all bubbles between
any of the layers of your gel sandwich or transfer will be incomplete! Wear nitrile
gloves during this procedure. Latex and bare skin will leave residues that can obscure
your results!

Fold down the clear side of the cassette and clamp shut. Place the cassettes into the
gel-transfer cell with the plastic hinges down, and orientated such that the black
cassette panels are facing the same direction as the black side of the transfer cell.

Pour transfer buffer from the cake pan into the buffer tank, and drop in the stir bar.
The stir bar should be able to spin in between the center notches of the cassettes.

Place the bio-ice cooling unit (already containing frozen water) into the remaining
gap between the buffer tank and the gel-transfer cell. Fill the buffer tank with the
remaining transfer buffer until it reaches a few millimeters below the top lip of the
buffer tank. Fluid expansion will cause overflow of buffer if filled too high.
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1.

12.

13.
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Set the tank on the magnetic stirrer and turn on to medium speed, being sure it rotates
unobstructed. Secure lid to the tank, with concern to the anode and cathode, and run
for 1 hour at 100 V.

When the cycle completes, pour the buffer back into the original container. It can be
reused approximately 5 times, or until distortion of your bands is seen. Deconstruct
the sandwich apparatus, and place the nitrocellulose, blot-side up, into a 50 ml conical
tube. Pipette 10 ml of filter-sterilized 1X PBST + 1% BSA into conical tube, and
slide nitrocellulose paper up and down until bubbles are gone. Put tube into a roller
at 4°C, and rotate for 1 hour.

Dump 1X PBST + 1% BSA, and add 5-10 ml 1X PBST + 1% BSA + 1:1000 anti-
6XHis antibody and Spin at 4°C for 1 hour.

Save antibody solution for future reuse, and wash nitrocellulose paper for 1 hour by
adding 10 ml 1X PBST and spinning at 4°C for 1 hour. Sequential washes and buffer
exchanges may help eliminate background noise.

Prepare diaminobenzidine solution by combining the following: 10 ml dH,O, 60 mg
Tris-HCL, 6 mg diaminobenzidine, and pH to 7.2 with HCL

Caution! Diaminobenzidine has known health hazards! Take proper safety
precautions!

Once step 10 wash has completed, dump wash buffer, and add diaminobenzidine
solution. Add 6.6 pl 30% H,0O, to the solution and mix briefly. Rotate by hand at
room temperature. Bands should develop within 15 minutes.

Wash nitrocellulose paper with dH,O to stop the reaction and prevent over
development of background. Observe bands.
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20X PBST

Sodium Phosphate (monobasic) 44¢
Sodium Phosphate (dibasic) 24 ¢
Sodium Chloride 170 g
Tween 20 10 ml
dH,O q.s. to 1000 ml

Dilute 5 ml 20X PBST into 95 ml dH,O to make 1X.

1X PBST + 1% BSA

IX PBST

99 ml

BSA

Mix BSA into solution, sterile filter with 0.22 um filter. Dispense into two 50 ml

conical tubes, store at 4°C.

Diaminobenzidine Solution

Tris-HCI 0.06 g
Diaminobenzidine 0.006 g
dH,O 10 ml
30% Hydrogen Peroxide 6.6 ul

Mix tris into solution and pH to 7.2 with HCI, then add diaminobenzidine. Do not add
H,0, until immediately before use. Caution! Diaminobenzidine has known health

hazards! Take proper precautions.
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Competent Cell Prep and Electroporation

Required: Competent Cell Line, Shaking Incubator, LB Broth, SOC Broth, 10%
Glycerol, Centrifuge Bottles, Centrifuge, Ice, -80°C Freezer, 2 mm Cuvette, Bio-Rad
Gene Pulser Xcell™, LB Agar, Blood Agar, Appropriate Antibiotic, 37°C Incubator,
Sterile Glass Pasteur Pipttes, 6 ml Culture Tubes

1. Dispense 50 ml LB broth (add 0.05% tween 20 if growing M. smegmatis mc’155) into
a 250 ml Erlenmeyer flask, and inoculate with your cell line. Grow at 37°C overnight
(for E. coli XL-1, or 48 hours for M. smegmatis mc’155) in a shaking incubator at
2,000 RPM.

2. When the incubation is complete, do a purity check by streaking the culture to blood
agar.

3. Put the cultures on ice for 3 hours. Cool the centrifuge and rotor to 4°C during this
time.

4. Centrifuge the cultures at 10,000 x g for 10 minutes at 4°C. Dump supernate, and
resuspend the pellet in 50 ml cold-sterile 10% glycerol.

5. Centrifuge as before, and resuspend the pellet in 25 ml cold-sterile 10% glycerol.
6. Centrifuge as before, and resuspend the pellet in 10 ml cold-sterile 10% glycerol.
7. Centrifuge as before, and resuspend the pellet in 2 ml cold-sterile 10% glycerol.

8. Dispense the 2 ml suspension into 50 pl aliquots, keeping all tubes and cultures on ice
during the step.

9. Store 50 pl aliquots at -80°C.
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Electroporation

1. Thaw competent cells on ice.

2. Dispense up to 5 pl of your plasmid into the thawed cells, and mix by stirring the
pipette. Do not pipette up and down.

3. Pipette the cell/plasmid mix into a cold 2 mm electroporation cuvette. Wipe the
metal edges dry with a paper towel.

4. Shock the cells in the Bio-Rad Gene Pulser Xcell™. For E. coli strains use the
following parameters: 2,500 V, 25 uF, and 200 Q. For M. smegmatis use the
following parameters: 1250 V, 25 pF, and 800 Q. If electrical arcing occurs, lower
your DNA concentration or make new competent cells.

5. Immediately following electroporation, use a glass Pasteur pipette to pipette 1 ml pre-
warmed SOC broth into the cuvette, pipette up and down to mix, and move to a 6 ml
culture tube.

6. Incubate E. coli strains for 1 hour, or M. smegmatis strains for 2 hours in a shaking
incubator at 37°C.

7. Prepare 2 LB agars supplemented with an appropriate antibiotic.

8. Pipette 100 pul of your culture to the surface of one of the prepared LB-antibiotic
agars, and the remaining 900 pl to the other (these volumes may need to be
optimized).

9. Spread the volumes evenly across the entire surface of the agar, being sure the liquid
is entirely absorbed into the agar before proceeding to the next step (allowing the
agars to “dry” in the laminar-flow hood by leaving the lids off for an hour may
expedite the process).

10. Incubate E. coli cultures overnight, or M. smegmatis cultures for 48 hours at 37°C.

11. Screen colonies by PCR.
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12. Subculture multiple colonies that screen positive in LB broth supplemented with the
appropriate antibiotic. Store cultures in 10% glycerol at -80°C and -20°C in replicate.

10% Glycerol

Glycerol 10 ml
dH,O 90 ml
Autoclave and store at 4°C.

LB Broth

LB Broth Base 20 g
Tween 20 (if growing M. smegmatis mc’ 155) 500 pl
dH,O 1000 ml
Autoclave immediately after prepared, store at 4°C. Add 10 g/L NaCl for Miller
formulation.

LB Agar

LB Broth Base 20 g
Agar-Agar 15¢g
dH,O 1000 ml

Boil contents into solution. Cool to 50°C, and dispense into 20 ml aliquots.
Autoclave, and store at 4°C.
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SOC Broth

Sterile Filtered 20% Dextrose 20 ml
1 M MgCl, 10 ml
1 M MgSOq4 10 ml
SOB broth 960 ml
1 M MgCl,

MgCl,*6H,0 2033 ¢
dH,0O 100 ml
1M MgSO4

MgSO4+7H,0 24.65¢g
dH,0O 100 ml
SOB Broth

Tryptone 20g
Sodium Chloride 05¢g
Yeast Extract S5¢g
dH,O g.s. to 1000 ml

Autoclave SOB broth immediately after preparation. Store SOB, SOC, and 20%

dextrose at 4°C
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Recombinant Protein Expression, Cell Lysis, Ni-NTA Chromatography

Expression

Required: 250 ml Erlenmeyer Flasks, LB broth, 50 mg/ml Kanamycin, 500 mM IPTG,
100 mM PMSF in 95% Ethanol, Shaking Incubator, Centrifuge Bottles, Centrifuge, 1 M
Tris-HCI pH 8.0, 10% Glycerol, -20°C Freezer, Spectrophotometer, Spectrophotometer
Cuvettes, BugBuster® Reagent

1. Transform E. coli BL21 (DE3) with your vector. Once they have been screened for
your DNA insert, grow them in a shaking incubator at 37°C in 50 ml LB broth with
30 pg/ml kanamycin to ODsg9 0.8. Concentrate into 2 ml 10% sterile glycerol,
dispense into 80ul aliquots, and freeze at -80°C. Note: expression will decrease with
extended storage at 80°C.

2. Dispense 50 ml LB broth into a 250 ml Erlenmeyer flask. Add 30 ul of 50 mg/ml
kanamycin for a final concentration of 30 pg/ml.

3. Add 40 pl of concentrated transformed E. coli BL21 (DE3) cells from frozen aliquots.

4. Grow cells at 37°C (shaking) to ODsqg 0.6-0.8.

5. Induce cells with I mM IPTG (100 ul of 500 mM stock IPTG), and continue
incubation for 1 hour.

6. Harvest cells by centrifugation at 10,000 x g for 10 minutes.

7. Resuspend cells in 10 ml 20 mM Tris-HCI pH 8.0 (200 ul 1 M Tris-HCI pH 8.0 into
9.8 ml dH,0O). Spin as before.

8. Resuspend the cells in 1 ml 1X Ni-NTA binding buffer. Add 1 mM PMSF (10 pl/ml
from 100 mM stock) and freeze at -20°C overnight in a 15 ml conical tube. Caution!
PMSEF is extremely toxic!! Lab coat, respirator, gloves, fume hood! Note: some
protocols state that extended storage at -20°C can cause inclusion bodies to become
less soluble.
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50 mg/ml Kanamycin

Kanamycin Sulfate 0.05¢g
deO 1 ml
Store at -20°C

500 mM IPTG

IPTG 0.119¢
Store at -20°C

100 mM PMSF

PMSF 0.087 g
95% Ethanol 5ml
Store at -20°C Caution! PMSF is extremely toxic! Take proper precautions.

1 M Tris-HCI pH 8.0

Tris-HCI 121.14 g
dH,O g.s. to 1000 ml

pH to 8.0 with HCI
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LB Broth

LB Broth Base 20 g
dH,O 1000 ml
Autoclave immediately after prepared, store at 4°C. Add 10 g/L NaCl for Miller
formulation.

LB Agar

LB Broth Base 20 g
Agar-Agar 15¢
dH,O 1000 ml
Boil contents into solution. Cool to 50°C, and dispense into 20 ml aliquots.

Autoclave, and store at 4°C.

10% Glycerol

Glycerol 10 ml
dH,O 90 ml
Autoclave and store at 4°C.
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Sonication

Required: Sonifier, 100 mM PMSF, Ice, Lab coat, Respirator, Latex Gloves, Hearing
Protection, 1.5 ml Centrifuge Tubes, BugBuster® reagent, 1X Ni-NTA binding buffer,
Urea, 15 ml Conical Tubes

1. Thaw cells, immediately add PMSF to final concentration of 1 mM (PMSF has a half-
life of ~ 30 min in H,0).

2. Pulse-sonicate cell suspension inside the fume hood, 6 times for 10 seconds with 30
second breaks on ice. Avoid contact between the probe tip and the tube. If
suspension turns to foam while sonicating, allow liquid to settle before continuing.

3. Move the suspension into a 1.5 ml centrifuge tube, and spin at max speed for 10
minutes. Save supernate for analysis by SDS-PAGE.

4. Completely resuspend pellet in 1 ml 1:10 BugBuster® reagent, vortex, and repeat
centrifugation.

5. Repeat step 13.

6. Resuspend pellet in 1X Ni-NTA binding buffer. Add an additional 1.25 mg of
imidazole for each ml of binding buffer to account for the volume increase from the
addition of urea in the following step. Move suspension into a 15 ml conical tube.

7. Add urea to a final concentration of 8 M (48 mg per 1 ml binding buffer). Vortex
thoroughly. Note: use of urea can be problematic. Be sure Ni-NTA buffers have a
slightly alkaline pH to reduce chances of protein carbamylation, while maintaining an
appropriate polyhistidine pKa for the binding of nickel ions.

8. Pulse sonicate the suspension 3 times for 10 seconds between 30 second breaks ON
ICE (heating promotes the production of isocyanic acid from urea decomposition).

9. Centrifuge for 30 min at 6000 x g. During centrifugation, proceed to following steps
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Ni-NTA Chromatography

Required: Novagen® Chromatography Columns, Pierce® Disposable 10 ml
Polypropylene Column, Clamp Stand, Tube Clamps, Ni-NTA 50% Resin Slurry, 4X Ni-
NTA Bind Buffer, 4X Ni-NTA Wash Buffer, 4X Ni-NTA Elution Buffer, Denaturant
(urea), Imidazole, 500 mM NaOH, Ultrapure Water, 15 ml Conical Tubes, 1.5 ml
Centrifuge Tubes,

1. Place clamp stand into laminar flow hood, attach clamps, and secure Novagen®
chromatography columns.

2. Pipette 1 ml of 50% Ni-NTA slurry into the chromatography column and allow resin
to settle by gravity. Once settled, remove end cap and allow fluid to drain. Equate
resin by gravity flow with 2 ml 1X Ni-NTA buffer + 8 M urea, using the same
calculations for urea and additional imidazole.

3. Send soluble fraction from step 11 through the prepared Ni-NTA resin, collect in a 15
ml conical tube, and send eluate through the resin a second time.

4. Prepare 4 ml 1X Ni-NTA wash buffer and add 1.25 mg imidazole per 1 ml binding
buffer, 48 mg urea, and vortex. Note: wait to add urea until you are ready to apply
wash buffer to the column.

5. Add 2 ml wash buffer to the column, allow to flow through, and repeat with
remaining 2 ml. Note: baseline OD,g) readings may be necessary to determine when
all contaminating proteins have eluted. Imidazole concentration may need to be
optimized if contaminating proteins elute downstream.

6. Prepare 2 ml 1X Ni-NTA elution buffer and add an additional 17 mg imidazole.
Immediately before use, add 96 mg urea to bring final urea concentration to 8 M, and
vortex.

7. Elute into 1.5 ml micro-centrifuge tubes as follows with the following volumes:
elution 1) 400 pl; elution 2) 700 pl; elution 3) 500 ul; elution 4) 500 pl.
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8. Wash Ni-NTA resin with 5 ml dH,O, cap, add an equal resin volume of 20% EtOH
(500 pl assuming 1 ml slurry was added in step 13). Gently pipette up and down and
move resin slurry to a capped, Pierce® Disposable 10 ml Polypropylene Column fit
with one polyethylene disc placed directly above the reservoir tip. Be sure to
assemble column such that there is already fluid in the tip, and no bubbles. Continue
collecting used resin from identical-protein extractions in this column for preparation
of reuse.

Eluates containing urea can be streamlined directly into SDS-PAGE from step 18. If
guanidine-HCl is used as a denaturant in place of urea, eluates from step 18 must be
either dialyzed or sent through a buffer exchange system before running through SDS-
PAGE. For exchanging buffer, see Desalting Protocol.

Preparation To Reuse Resin:

1. Allow resin to settle in Pierce® column

Prepare 15 ml 500 mM NaOH

Remove cap and allow fluid to flow through

Add 5 ml 500 mM NaOH and allow to flow through
Cap column

Add 5 ml 500 mM NaOH and let sit for 30 minutes
Remove cap and allow to drain

Add 5 ml 500 mM NaOH and allow to flow through
9. Wash with 10 ml dH,O

10. Repeat step 9

11. Add 5 ml 20% EtOH and allow to flow through

12. Cap column, add a volume of 20% EtOH equal to that of the resin volume
13. Store at 4°C

e A il

Note 1) Preparing the resin for reuse cannot be done in the Novagen® columns. 500 mM
NaOH will degrade the retention disc.

Note 2) This does not recharge the resin; it prepares the resin for reuse with identical
proteins. Recharge resin when it losses its color. To do so, see product manual.
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4X Ni-NTA Binding Buffer pH 8.0

Sodium Phosphate (monobasic) 04¢g
Sodium Phosphate (dibasic) 10g
Sodium Chloride 14 ¢
Imidazole 0.54 g
dH,O q.s. to 200 ml
pH to 8.0 with HCI

4X Ni-NTA Wash Buffer pH 8.0

Sodium Phosphate (monobasic) 04¢g
Sodium Phosphate (dibasic) 10g
Sodium Chloride l4¢g
Imidazole 1.09 g
dH,O g.s. to 200 ml
pH to 8.0 with HCI

4X Ni-NTA Elution Buffer pH 8.0

Sodium Phosphate (monobasic) 04¢g
Sodium Phosphate (dibasic) 10g
Sodium Chloride 14 ¢
Imidazole 13.62 ¢
dH,O g.s. to 200 ml

pH to 8.0 with HCI
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500 mM Sodium Hydroxide

Sodium Hydroxide

03g

dH,O

15 ml
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Desalting/Buffer Exchange

Required: D-Salt™ Columns, 1X PBS, 10 mM Tris-HCI pH 6.8, 0.02% Sodium Azide,
Spectrophotometer, Clamp Stand, Tube Clamps, 1.5 ml Centrifuge Tubes,
Spectrophotometer, Quartz Cuvette,

1. Remove the top column cap and clamp the desalting column into place.

2. Decant the excess buffer from the surface of the top disc. Remove the bottom cap
and allow any remaining storage buffer to drip through.

3. Slide the buffer reservoir into place at the top of the column. Add 5 column volumes
of 10 mM Tris-HCI pH 6.8 to the top of the column (25 ml for the 5 ml column).
Allow to drain completely.

4. Add your sample to the column and proceed to step 5 once it has stopped dripping.

5. In 500 pl increments, add 10 mM Tris HCI pH 6.8 to the top of the column and
collect the flow through in 1.5 ml centrifuge tubes. In your initial trials, run a total
volume of 5 ml through the column.

6. Take ODjgoreadings from the total volume of each sample to determine which tube(s)
contain your sample. Note: Readings will become inaccurate as you approach 3 ml
elution volume from the column, as the buffer you are trying to elute from will begin
to elute with your exchange buffer.

7. Confirm the presence of your protein by SDS-PAGE.

8. Recharge the column by passing through 10 column volumes of 1X PBS.

9. For storage, send through 5 column volumes of 0.02% sodium azide, and recap the
top and bottom when approximately 1 ml remains above the top disc. Store columns
upright at 4°C. Caution! Sodium azide is toxic! Take proper precautions.
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10 mM Tris-HCI pH 6.8

Tris-HCl 0242 ¢

dH,O 200 ml

pH to 6.8 with HCI

20X PBS

Sodium Phosphate (monobasic) 44¢
Sodium Phosphate (dibasic) 24 ¢
Sodium Chloride 170 g
dH,O g.s. to 1000 ml
Dilute 5 ml 20X PBS into 95 ml dH,O to make 1X.

0.02% Sodium Azide

Sodium Azide 0.04 ¢

dH,O 200 ml

Caution! Sodium azide is toxic! Take proper precautions.
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Polymerase Chain Reaction

This protocol was developed for amplification from high GC-containing templates.

Required: 200 pl tubes, 1.5 ml Centrifuge tubes, Ultrapure Water, Primers (10 mM
working stocks), DNA Template, 10X Buffer with MgCl,, Taq Polymerase, Roche GC-
Rich Solution, DMSO, dNTPs, Thermocycler, Ice

1. UV irradiate an appropriate number of 200 pl reaction tubes and 1.5 ml master-mix
centrifuge tubes.

2. Combine the following in a 1.5 ml centrifuge tube for a 50 pl master mix:
a. 32.5 pl ultrapure water
b. 5 ul 10X buffer with MgCl,

1 pul 10 mM dNTPs

5 ul Roche® GC-Rich Solution

2.5 ul DMSO

1 ul 10 mM forward primer

1 pl 10 mM reverse primer

1 ul DNA template

1 ul (2 U) DyNAzyme™ II polymerase (increase to 4 U if performing PCR

with chaotropes for the purpose of cloning)

TG th O Ao

3. In a thermocycler, amplify sequence in lanes 7-9 (60.8°C, 63.5°C, 66.0°C) of a
thermal gradient ranging from 50°C to 70.5°C.

4. Analyze your samples by agarose-gel electrophoresis.
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DNA Ligation and Vector Construction

Required: T4 DNA Ligase, 10X Buffer, 200 pul tubes, Restriction-Digested Vector and
Insert

1. UV irradiate sterile 200 pl reaction tube.

2. Combine the following:

120 ng restriction-digested vector
60 ng restriction-digested insert

1 ul 10X buffer

1 ul T4 DNA ligase

Q.s. to 10 ul with nuclease-free H,O
Incubate overnight at 18°C

mo oo o

3. Transform electrocompetent or chemically competent cells, select and screen colonies
by PCR.
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Testing the Effects of RpfB on Dormant Mpt

Required: Dormant Mycobacterium avium subsp. paratuberculosis, Thermo Scientific®
Evolution 300 UV-Vis™, Quartz Cuvette, Microcentrifuge, 3 cc Syringe, 25 Gauge
Syringe Needles, Middlebrook 7H9C, Sterile 1X PBST, Microcentrifuge Tubes,
Tupperware™ Container, Sterile 96-Well Plate, Mce and RpfB Preps, 37°C Incubator,
Laminar Flow Hood with UV Light, 70% Ethanol, 95% Ethanol, 15 ml Conical Tube,
Sterile Plastic Reservoirs, Thermo Scientific® Multiskan™ 96-Well Plate Reader.

1. The night before you begin this setup, autoclave the following:

1X PBST

200 pl pipette tips (2-3 boxes)

1000 pl pipette tips (1 box)

10 ml glass pipettes

Microcentrifuge tubes

Tupperware™ container, with a paper towel in the bottom — damp with roccal,
and the top cocked off to the side

mo oo o

2. Allow the autoclave to cool to room temperature overnight.

3. The next morning, bleach the inside of the laminar flow hood and wipe down any
items in the hood with 70% ethanol.

4. Open the autoclave and immediately slide the Tupperware™ lids into place. Move
all items from the autoclave into the laminar flow hood and irradiate with UV light
for 15 minutes.

Dormant Cell Prep

1. Gently shake your dormant cells into suspension, breaking up the majority of
flocculated cells.

2. Place a drop of 95% ethanol on top of the rubber cap of the serum vial containing
your dormant cells and allow to evaporate in the laminar hood
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3. Assemble your syringe in the laminar hood, insert the needle through the rubber cap,
and withdraw 2 ml (2 cc) of suspended cells.

4. Dispense the 2 ml into 1 ml aliquots in two 1.5 ml microcentrifuge tubes. Spin at
10,000 x g for 7 minutes in a microcentrifuge.

5. Aseptically dump the supernate, resuspend the cells in 500 pul 1X PBST, and combine
the two 500 pl volumes into one tube.

6. Withdraw 500 pl from the 1 ml volume, dispense into the quartz cuvette, and read in
the % transmittance (%7) in the Evolution 300 UV-Vis™.

7. Adjust the %T to approximately 30% (between 27% and 33%) by adding 1X PBST in
50 pl increments directly to the cuvette containing the cells. At 30%T your cell
density will be approximately 2.0x10®. Once you have determined the volume
necessary to dilute your cells to 30%T, fill the remaining volume of the cuvette with
10% bleach, and wash appropriately.

8. Spin down the remaining 500 pl of cells from step 10 at 10,000 x g for 7 minutes, and
resuspend the pellet in an equal volume of M7HIC to that which it took to bring the
cell density to 2.0x10% (30%T).

9. Using two microcentrifuge tubes filled with 900 pl of M7H9C as your diluent,
perform two 1:10 serial dilutions on your cells to bring the concentration to 2.0x10°.
Perform a 3™ dilution (1:100) by dispensing 100 pl of your cells at 2.0x10° into 10 ml
M7HIC in a 15 ml conical tube. This will bring your cells to a density of 2.0x10".

Recombinant Protein Prep

1. Have your protein preps ready and quantitated by BCA standardization.

2. Dilute 10 pl of your protein solution (or appropriate volume depending on the
quantitated value) in M7HOC to a final concentration of 1 nM. You will need
minimally, a total volume of 100 ul for 5 replicate trials.
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Experiment Assembly

Proceed to the following with impeccable and absolute concern to the highest allowable
aseptic standards.

1. Dispense 10 ml of M7HOIC into a sterile plastic reservoir that conforms to use with a
multichannel pipette.

2. Fill the wells of a 96-well plate using the following instructions.
3. Dispense 180 ul M7H9C into row A, columns 1-10.

4. Dispense 100 ul M7HIC into row A, column 11

5. Dispense 100 ul M7HOC into rows B-H, columns 1-11.

6. Dispense 20 pl of Mce and RpfB at 1 nM into their respective wells.
a. Mce into row A, columns 1-5
b. RpfB into row A, columns 6-10

7. Serially dilute 100 pl of row A columns 1-10 through rows B-H, columns 2-10.
Discard 100 pl from row G.

8. Empty the 10 ml of dormant Mpt at 2.0x10" into a sterile plastic reservoir.

9. Add 100 pl of dormant Mpt to rows A-H, columns 1-11.
10. Add 200 pul M7HOC to rows A-H, columns 12.

11. Cover with cap, place into Tupperware™. Incubate cells, tubes containing serial
dilutions, dormant cells, and what remains of your protein dilutions to track sources
of potential contamination.
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Growth Monitoring

1. Scan the optical density of your plates every 2 days.

2. Open the Tupperware™ container in the laminar hood, and irradiate under UV light
for 5 minutes.

3. Remove the lid of the 96-well plate and place upside down to allow all condensate to
evaporate. Allow the temperature of the media to equilibrate to room temp.

4. Aseptically seal the wells by pressing a transparent Platemax® film over the top, and
wipe all surfaces dry. From this point on, this seal will represent “the lid” in step 28.

5. Measure the optical density of the media at 490 nm in the Multiscan™
spectrophotometer.

6. Wipe all surfaces of the plate with 70% ethanol, place back into Tupperware™, and

incubate.
20X PBST
Sodium Phosphate (monobasic) 44¢
Sodium Phosphate (dibasic) 24 ¢
Sodium Chloride 170 g
Tween 20 10 ml
dH,O q.s. to 1000 ml
Dilute 5 ml 20X PBST into 95 ml dH,O to make 1X.
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Middlebrook 7H9 Broth w/ 2 pg/ml Mycobactin J and 0.05% Tween 80 (M7H9C)

Middlebrook 7H9 Broth Base 47 ¢
Tween 80 0.5ml
Mycobactin J 4 ml
dH,O 900 ml

Mix components and autoclave. Cool to 50°C and aseptically add 100 ml oleic acid-
albumin-dextrose-catalase (OADC). Alternatively, filter-sterilize the complete

medium. Store at 4°C.

Al A2 A3 A4 A5 A6 A7 A8 A9 Al10 All Al2
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
500 pM  |500 pM 500 pM (500 pM [500 pM 500 pM  |500 pM 500 pM |500 pM [500 pM |Mpt @

1.0x10*
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant |M7H9C
250 pM  |250 pM |250 pM |250 pM |250 pM |250 pM (250 pM  [250 pM |250 pM  |250 pM  |Mpt @

1.0x10*
C1 c2 C3 C4 C5 C6 c7 Cc8 c9 C10 C11 C12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
125pM (125 pM 125 pM |125pM 125 pM  |125pM 125 pM 125pM ([125pM ([125pM [Mpt @

1.0x10*
D1 D2 D2 D3 D4 D6 D7 D8 D9 D10 D11 D12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
62.5pM |62.5pM |62.5pM |62.5pM |62.5pM |62.5pM [62.5pM [62.5pM [|62.5pM |62.5pM |Mpt @

1.0x10*
El E2 E3 E4 ES5 E6 E7 E8 E9 E10 E1l1l E12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
31.25 pM (31.25 pM |31.25 pM (31.25 pM (31.25 pM |31.25 pM |31.25 pM (31.25 pM (31.25 pM |31.25 pM [Mpt @

1.0x10*
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
15.63 pM |15.63 pM [15.63 pM |15.63 pM |15.63 pM |15.63 pM [15.63 pM |15.63 pM |15.63 pM |15.63 pM [Mpt @

1.0x10*
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
7.81pM (7.81pM |7.81pM (7.81pM (7.81pM |7.8 pM 7.8 pM 7.8 pM 7.8 pM 7.8 pM Mpt @

1.0x10*
H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant |M7H9C
3.91pM (3.91pM |3.91pM (3.91pM (3.91pM |3.91pM |3.91pM (3.91pM (3.91pM |3.91pM [Mpt@

1.0x10*

Appendix Figure 1: 96-well plate layout. M7HOC was used as the growth medium in
all wells. Columns A1-A10 contain dormant Mpt at 1.0x10* CFU/well in addition to the

recombinant protein.
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Al A2 A3 A4 A5 A6 A7 A8 A9 Al10 All Al2
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant |M7H9C
500 pM 500 pM 500 pM 500 pM 500 pM 500 pM 500 pM 500 pM 500 pM 500 pM Mpt @

1.0x10°
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
250 pM |250 pM  |250 pM |250 pM |250 pM |250 pM (250 pM 250 pM |250 pM  |250 pM  |Mpt @

1.0x10°
C1 c2 C3 C4 C5 C6 c7 Cc8 c9 C10 C11 C12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant |M7H9C
125 pM 125 pM 125 pM 125 pM 125 pM 125 pM 125 pM 125 pM 125 pM 125 pM Mpt @

1.0x10°
D1 D2 D2 D3 D4 D6 D7 D8 D9 D10 D11 D12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant |M7H9C
62.5pM |62.5pM |62.5pM |62.5pM |62.5pM |62.5pM [62.5pM [62.5pM [|62.5pM |62.5pM |Mpt @

1.0x10°
El E2 E3 E4 ES E6 E7 E8 E9 E10 E1l1l E12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
31.25 pM |31.25 pM |31.25 pM |31.25 pM |31.25 pM |31.25 pM (31.25 pM (31.25 pM [31.25 pM |31.25 pM |Mpt @

1.0x10°
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
15.63 pM |15.63 pM [15.63 pM |15.63 pM |15.63 pM |15.63 pM [15.63 pM |15.63 pM |15.63 pM [15.63 pM |Mpt @

1.0x10°
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
7.81pM (7.81pM |7.81pM (7.81pM (7.81pM |7.8 pM 7.8 pM 7.8 pM 7.8 pM 7.8 pM Mpt @

1.0x10°
H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H1i1 H12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
3.91pM (3.91pM |3.91pM (3.91pM (3.91pM |3.91pM |3.91pM (3.91pM (3.91pM |3.91pM [Mpt@

1.0x10°

Appendix Figure 2: 96-well plate layout. M7HOC was used as the growth medium in
all wells. Columns A1-A10 contain dormant Mpt at 1.0x10° CFU/well in addition to the
recombinant protein.
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Al A2 A3 A4 A5 A6 A7 A8 A9 Al10 All Al2
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant |M7H9C
6.4 nM 6.4 nM 6.4 nM 6.4 nM 6.4 nM 6.4 nM 6.4 nM 6.4 nM 6.4 nM 6.4 nM Mpt @

1.0x10*
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant |M7H9C
3.2nM 3.2nM 3.2nM 3.2nM 3.2nM 3.2nM 3.2nM 3.2nM 3.2nM 3.2nM Mpt @

1.0x10*
C1 c2 C3 C4 C5 C6 c7 Cc8 c9 C10 C11 C12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant |M7H9C
1.6 nM 1.6 nM 1.6 nM 1.6 nM 1.6 nM 1.6 nM 1.6 nM 1.6 nM 1.6 nM 1.6 nM Mpt @

1.0x10*
D1 D2 D2 D3 D4 D6 D7 D8 D9 D10 D11 D12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant |M7H9C
800 pM (800 pM |800pM (800pM (800pM |800pM |800pM (800pM ([800pM |800pM [Mpt@

1.0x10*
El E2 E3 E4 ES E6 E7 E8 E9 E10 E1l1l E12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
400 pM (400 pM (400 pM (400 pM  |400 pM  |400 pM |400 pM |400 pM (400 pM (400 pM [Mpt @

1.0x10*
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
200 pM (200 pM |200 pM (200 pM (200 pM |200 pM |200 pM (200 pM (200 pM |200 pM [Mpt @

1.0x10*
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
100 pM  |100 pM 100 pM  |100 pM 100 pM  |100 pM 100 pM  |100 pM 100 pM 100 pM  |[Mpt @

1.0x10*
H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H1i1 H12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
50 pM 50 pM 50 pM 50 pM 50 pM 50 pM 50 pM 50 pM 50 pM 50 pM Mpt @

1.0x10*

Appendix Figure 3: 96-well plate layout. M7HOC was used as the growth medium in
all wells. Columns A1-A10 contain dormant Mpt at 1.0x10* CFU/well in addition to the

recombinant protein.
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Al A2 A3 A4 A5 A6 A7 A8 A9 Al10 All Al2
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant |M7H9C
6.4 nM 6.4 nM 6.4 nM 6.4 nM 6.4 nM 6.4 nM 6.4 nM 6.4 nM 6.4 nM 6.4 nM Mpt @

1.0x10°
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant |M7H9C
3.2nM 3.2nM 3.2nM 3.2nM 3.2nM 3.2nM 3.2nM 3.2nM 3.2nM 3.2nM Mpt @

1.0x10°
C1 c2 C3 C4 C5 C6 c7 Cc8 c9 C10 C11 C12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant |M7H9C
1.6 nM 1.6 nM 1.6 nM 1.6 nM 1.6 nM 1.6 nM 1.6 nM 1.6 nM 1.6 nM 1.6 nM Mpt @

1.0x10°
D1 D2 D2 D3 D4 D6 D7 D8 D9 D10 D11 D12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant |M7H9C
800 pM (800 pM |800pM (800pM (800pM |800pM |800pM (800pM ([800pM |800pM [Mpt@

1.0x10°
El E2 E3 E4 ES E6 E7 E8 E9 E10 E1l1l E12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
400 pM (400 pM (400 pM (400 pM  |400 pM  |400 pM |400 pM |400 pM (400 pM (400 pM [Mpt @

1.0x10°
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
200 pM (200 pM |200 pM (200 pM (200 pM |200 pM |200 pM (200 pM (200 pM |200 pM [Mpt @

1.0x10°
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
100 pM  |100 pM 100 pM  |100 pM 100 pM  |100 pM 100 pM  |100 pM 100 pM 100 pM  |[Mpt @

1.0x10°
H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H1i1 H12
Mce Mce Mce Mce Mce RpfB RpfB RpfB RpfB RpfB Dormant [M7H9C
50 pM 50 pM 50 pM 50 pM 50 pM 50 pM 50 pM 50 pM 50 pM 50 pM Mpt @

1.0x10°

Appendix Figure 4: 96-well plate layout. M7HOC was used as the growth medium in
all wells. Columns A1-A10 contain dormant Mpt at 1.0x10°® CFU/well in addition to the

recombinant protein.
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Protein Mce Mce Mce RpfA | RpfA | RpfB | RpfB RpfB | RpfC | RpfC | RpfE RpfE
DNA GC% 66.5 66.3 65.5 75.9 72.9 69.7 68.0 68.8 63.8 62.0 75.0 72.2
Length (a.a.) 435 472 473 250 292 372 416 397 170 206 216 254
Expressed From Mpt | pMTS079 [ pMTS088 | Mpt |pMTS104| Mpt |pMTS112 [pMTS115| Mpt |pMTS113 | Mpt [pMTS105
Weight (kDa) 4578 | 48.05 50.07 [ 24.82 | 29.65 | 39.19 | 44.09 42.07 18.03 | 22.60 | 22.18 | 26.46
Isoelectric Point 6.26 6.38 6.25 4.84 5.35 5.79 6.08 6.19 8.98 7.16 9.55 8.63
Aliphatic Index 93.031 | 93.235 93.422 |63.120| 65.303 |R87.796 | 89.468 89.064 |78.176 | 82.371 |60.324| 65.781
Alanine (A) 11.3 11.5 11.8 20.0 19.2 12.1 12.7 12.3 14.7 15.0 17.1 16.9
Cysteine (C) 0.5 0.4 0.4 0.8 0.7 0.8 0.7 0.8 1.8 1.5 1.4 1.2
Aspartic Acid (A) 5.1 5.1 5.5 6.8 12 6.2 6.5 6.0 1.8 3.4 4.6 5.9
Glutamic Acid (E) | 3.0 33 32 32 3.8 4.6 4.6 4.8 53 53 23 2.8
Phenylalanine (F) | 2.5 2.6 2.5 1.6 1.7 1.3 1.4 1.5 3.5 3.4 1.9 2.0
Glycine (G) 9.9 9.5 9.1 12.0 10.3 9.7 8.7 9.1 112 9.2 9.7 83
Histidine (H) 1.1 24 23 2.0 3.8 1.1 24 25 24 4.9 1.9 3.9
Isoleucine (I) 5.5 5.5 5.7 2.0 2.7 4.0 43 4.0 59 6.3 32 3.9
Lysine (K) 34 35 3.8 0.8 1.7 22 2.6 23 2.9 3.9 1.9 2.8
Leucine (L) 10.1 10.4 10.1 4.0 4.5 6.2 6.7 6.8 4.7 5.8 3.7 4.7
Methionine (M) 1.6 1.5 1.7 1.2 1.7 2.7 2.9 2.8 24 24 0.5 0.8
Asparagine (N) 6.4 6.2 59 2.0 2.1 3.8 34 3.5 53 4.9 4.2 35
Proline (P) 8.0 7.7 7.6 15.6 13.7 6.5 6.0 6.0 59 53 19.0 16.9
Glutamine (Q) 32 33 32 4.8 4.5 3.8 3.6 3.8 4.7 4.4 4.2 3.9
Arginine (R) 3.7 35 34 4.0 4.1 7.3 6.5 6.8 53 3.9 6.9 5.9
Serine (S) 5.5 53 5.1 4.8 4.5 5.4 5.0 53 6.5 53 4.2 35
Threonine (T) 7.4 7.0 7.4 4.4 4.8 7.5 7.5 7.1 3.5 3.9 4.6 4.7
Valine (V) 7.1 6.8 6.8 6.8 6.2 12.4 11.5 11.8 7.6 6.8 5.6 5.1
Tryptophan (W) 0.7 0.7 0.6 2.0 1.7 1.6 1.4 1.5 2.9 24 23 2.0
Tyrosine (Y) 3.7 35 3.6 1.2 1.0 1.1 1.2 1.0 1.8 1.5 0.9 0.8

Appendix Table 1: Mce and Rpf protein statistics. Statistics were produced using
CLC Free Workbench. This figure shows the molecular characteristics of each protein.

Numbers to the right of the amino acids represent what percentage of the protein is

composed of that amino acid.
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