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ABSTRACT      

A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead 

particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. 

Magnetic flux gradients are simulated in OpenFOAM CFD software and imported into MATLAB 

to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to 

calculate the interaction force between cell-bead complexes as they flow through a microfluidic 

device. The interaction force calculations are performed for cases where the connector vector is 

parallel, perpendicular, and at an angle of 45 degrees with the applied magnetic field. The 

trajectories of the particles are simulated by solving a system of eight ordinary differential 

equations using a fourth order Runge-Kutta method. The model is then used to study the effects of 

geometric positions and angles of the connector vector between the particles as well as the cell 

size, number of beads per cell, and flow rate on the interaction force and trajectories of the 

particles. The results show that the interaction forces may be attractive or repulsive, depending on 

the orientation of the connector vector distance between the particle complexes and the applied 

magnetic field. When the interaction force is attractive, the particles are observed to merge and 

trap sooner than a single particle whereas a repulsive interaction force has little or no effect on the 

trapping length. 

 

Keywords: Magnetic separation, particle-particle interaction, Lagrangian particle trajectory, 

Runge-Kutta method, cell-bead particle complexes, numerical simulation. 

 

I. INTRODUCTION 

Over the past two decades, microfluidic-based bioseparation devices have emerged as a viable 

technology to separate specific biological entities such as cells, bacteria, DNA/RNA, and proteins 
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from biological samples. These devices offer several advantages over conventional separation 

systems such as faster analysis, precise liquid handling, reduced amounts of reagents and samples, 

integration of multiple processes on a single chip, and portability. Among various microfluidic-

based bioseparation techniques, magnetic-based systems are attractive due to their high selectivity, 

simplicity, and low cost. Magnetic bio-separation has been used in lab-on-a-chip devices, cell 

separators, micro-total analysis systems, and DNA/RNA isolators [1-11]. In this technique, the 

desired biological particles are labeled with specific magnetic beads, followed by isolating the 

marked entities by the use of a magnetic separation device.  

 

Magnetic beads are comprised of iron oxide nanoparticles encapsulated in a polymer shell [12, 

13]. The surface of the magnetic beads are coated with a specific ligand that has a strong affinity 

to the receptors on the surface of the bioparticles. The size of target bioparticles can range from 

~5 μm - 50 μm for cells, 0.5 μm - 5 μm for bacteria, 20 nm - 450 nm for viruses, and 3 nm - 50 nm 

for proteins [14]. Due to a high degree of selectivity between magnetic particles and non-magnetic 

biomaterials, this separation method is more efficient than other bio-separation techniques. A 

significant number of analytical and experimental studies have been performed in the field of 

magnetophoretic bio-separation. A model has been developed by Nandy and Chaudhuri for the 

magnetophoretic capture of particles in a microfluidic device [15]. A magnetophoretic bio-

separation chip has been designed, fabricated and modelled by Darabi and Guo [16]. This chip was 

developed to separate CD4+T cells from blood and was later used to separate DNA from blood 

[17]. Shevkoplyas et al. [18] performed a force analysis on a superparamagnetic bead in the 

presence of an applied magnetic field. Zhu et al. [19] fabricated a magnetic-based bio-separation 

chip using embedded permanent magnets. In a magnetic cell separation system, the cells and 

magnetic beads form cell-bead particle complexes. Since the cell size is usually larger than the 

magnetics beads, several micron-sized beads can bind to the surface of the cell to form a cell-bead 

complex. Depending on the number of beads attached to each cell, the effective mass, volume, 

density, and radius of the cell-bead complex can be estimated and used in force calculation analysis 

[20]. 

 

Particle-particle interaction force is an important phenomenon in a magnetophoretic bio-separation 

chip. This interaction can occur between particle complexes either through the magnetic 

http://dx.doi.org/10.1063/1.5022582
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interaction force or the hydrodynamic interaction force [21-23]. In a magnetophoretic bio-

separation technique, the interaction between particle complexes is mostly due to the magnetic 

moment produced by the individual particle complexes. Hence, hydrodynamic interaction force 

can be neglected. It has been reported that in a magnetophoretic bio-separation chip, magnetic 

particles tend to form chain-like structures [23], sheets [24], and membranes [25] due to the 

attractive magnetic force between the particles. Thus, particle-particle interaction must be 

considered because of its broad application in magnetic separation, magnetic drug targeting [26], 

and biomedical sensing [27]. Due to the interaction force between particles, the trapping length of 

a bonded particle complex is expected to be shorter than a single particle. In a microfluidic channel, 

the interaction force can be of a particular interest near the bottom of the channel where the induced 

magnetic dipole moment between the particles is larger. Some studies have been performed in the 

past to reduce the effect of particle-particle interaction at the bottom of the channel. Gao et al. [28] 

developed a model for disaggregation of superparamagnetic micro-particle complex clusters at the 

bottom of the channel with the help of induced magnetic dipole–dipole repulsion.  

 

In this study, a dipole-based interaction force model was incorporated into the particle transport 

analysis in a magnetophoretic bio-separation chip and the effect of particle-particle interaction on 

particle trajectories was investigated. Magnetic flux gradients were simulated in OpenFOAM and 

particle transport modeling was performed in MATLAB by solving a system of eight coupled 

ordinary differential equations using a fourth order Runge-Kutta method.  

 

II. THEORY 

Two different approaches have been employed to obtain an analytical expression for the interaction 

force between magnetic dipoles [29]. These methods include a path integral approach and a vector 

differentiation approach. In both cases, the inter-particle distance vector is assumed to be large 

compared to the size of the dipoles. In classical electromagnetics, a magnetic field produced by a 

magnetic dipole is given by [30] 

4
.

 (1) 
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where  is the magnetic dipole moment and r is the distance between the two dipoles, and  is 

the vacuum permeability. Using potential energy considerations, the force exerted by the dipole 

1 on dipole 2 can be written as [31] 

.  (2) 

By substituting the magnetic field equation into Eq. (2), the interaction force between the 

particles becomes [29] 

3
4

. . .
5 . .

 (3) 

Where  is the interaction force, exerted on particle 1,  and  are the magnetic dipole 

moments of particles 1 and 2, and  is the connector vector between particles 1 and 2. Since the 

magnetic dipole moment is a function of the gradient of the magnetic field, it is difficult to have a 

good sense about the direction of the force. However, if the dipole moment is either parallel or 

perpendicular to the inter-particle distance vector, the force approximation will be simpler and an 

analytical expression can be obtained for the interaction force between two magnetic point dipoles 

[32-35]. A schematic illustration of magnetic dipole moments ., 	of two cell-bead particle 

complexes under the influence of magnetic field is shown in Fig. 1. If the particles are assumed to 

be spherical point dipoles, the interaction force can be approximated by simplifying Eq. 1, 

depending on the direction of the magnetic moment. It is assumed that the particles do not rotate 

which is valid for cases where the magnetic dipole moment is either parallel or appendicular to the 

direction of the applied magnetic field. For a case where the magnetic moment is parallel to the 

inter-particle distance (Case I), Eq. 3 can be simplified as:  

.    (4) 

The negative sign indicated that interaction force is attractive. If the particles are aligned parallel 

to the external applied field (i.e. θ = 0°), they are attracted towards each other without any rotation 

because the magnetic interaction force and the external magnetic force are both parallel to the field 

direction. When the magnetic moment is perpendicular to the inter-particle distance (Case II), the 

interaction force is repulsive and is given by:  

.   (5) 

In this case, the particles are repelled from each other in the horizontal direction and descend in 

the vertical direction towards the bottom of the channel without any rotation because the magnetic 
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interaction force between the particles is only in the horizontal direction. For a case where the 

magnetic moment is at an angle of 45° with the inter-particle distance (Case III), Eq. 3 can be 

written as:  

0.086 .   (6) 

The interaction force is still attractive but it is significantly smaller than case I, where the magnetic 

moment is parallel to the inter-particle distance. In addition, for θ =45°, particles can rotate and 

change orientation inside the channel, but particle rotation is neglected in this work. 

 

Figure 1 Schematic illustration of magnetic dipole moment ., 	of two cell-bead particle 

complexes under the influence of the magnetic field in a magnetophoretic bio-separation chip. The 

schematic is not to scale. 

 

Particle separation and transport is an important phenomenon in many microfluidic devices. Figure 

2 shows a schematic illustration of different forces acting on two cell-bead particle complexes in 

the presence of an applied magnetic field as they move along the channel. Among the various 

forces acting on the particles, the magnetic force, gravitational force, hydrodynamic drag force, 

and inter-particle interaction force are the dominant forces. The effects of Brownian motion can 

be ignored since the size of the particles in this study is in the 10-30 micron range. Van der Waals 

force was also neglected due to the size and concentration of the particles used in this analysis 

[36]. 

r r r

B

N
S

S
N

N
S

S
N

N
S

S
N

N
S

S
N

Permanent magnets with opposing poles 

N
S

S
N

N
S

S
N

N
S

S
N

N
S

S
N

Case I: θ=0° Case II: θ=90° Case III: θ=45°

Fluid Flow

http://dx.doi.org/10.1063/1.5022582


 
 

6 
 

 

Figure 2 Schematic illustration of different forces acting on two cell-bead particle complexes 

subjected to an applied magnetic field. Hydrodynamic drag force, gravitational force, magnetic 

force, and inter-particle interaction force are considered in the computational analysis. The 

schematic is not to scale. 

A solid particle suspended in a fluid experiences a hydrodynamic drag force opposite to its 

direction of motion. If the Reynolds’ number is low, which is the case with most microfluidic 

devices, the hydrodynamic drag force on a spherical particle can be approximated by Stokes’ law: 

6   (7) 

Where  is the particle radius,  is the dynamic viscosity of the medium, and 	 and   are the 

fluid and particle velocities, respectively. If the flow is laminar, the velocity distribution across the 

channel can be determined by solving a steady flow between two parallel plates as follows: 

6   (8) 

Where Q is the volumetric flow rate, h is the channel height, and w is the channel width. Stokes 

drag force can be modified for non-spherical particles such as a chain of small spheres [37]. In 

such case, the drag force equation can be written as: 

6   (9) 

where k is a shape factor and  is the equivalent radius of a sphere having the same volume as 

the chain of small spheres, 
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   (10)

For a cluster of n spheres, 

  (11)

The magnetic force acting on a particle complex is a function of the magnetic moment of each 

magnetic particle, number of beads attached to the cell, and magnetic field gradients:  

.    (12)

 where  is the magnetic dipole moment of the bead, N is the number of beads, 	is the magnetic 

field. Magnetic moment of the beads can be written as: 

   (13)

where ,  and  are the density, volume, and magnetization of the bead, respectively. At very 

low flow rates, the gravitational force can have an effect on trapping efficiency of a particle in a 

magnetic bio-separation chip. Thus, the gravitational force should be taken into account in the 

analysis of particle transport. The net gravitational force is due to the density difference between 

the particle and fluid. Thus, the net gravitational force can be written as: 

   (14)

where   and  are the densities of the particle and fluid, respectively, v 		is the volume of the 

particle,  is the gravitational acceleration. 

III. MATERIALS AND METHODS 

A. Modelling and Simulation 

OpenFOAM CFD software was used to simulate magnetic flux gradients above an array of 

external magnets with opposing poles. A detailed description of the magnetic field simulations has 

been previously reported and it is not repeated here for brevity [38]. The magnetic flux gradients 

were then imported into MATLAB to calculate the magnetic force at various nodes inside the 

microfluidic channel. Figures 3-5 show representative magnetic force distributions at various 

distances from the surface of the magnets for an array of eight permanent magnets configured in 

an alternating polarity along the channel. Figure 3 shows the variation of the x-component of the 

magnetic force, Fm,x, along the channel at various distances from the surface of the magnets. Due 

to the alternating polarity arrangement of the magnets, Fm,x changes direction from one magnet to 

http://dx.doi.org/10.1063/1.5022582
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another. This oscillatory feature of the magnetic force in x-direction is more visible near the surface 

of the magnets and as the distance from the magnets increases to 800 µm away from the surface, 

the magnetic force becomes relatively negligible.  

 

Figure 3 Variation of the x-component of the magnetic force along the channel at various distances 

from the surface of the magnets. 

 

Figure 4 depicts the variation of the y-component of the magnetic force, Fm,y, along the channel at 

various distances from the surface of the magnets. The negative sign indicates that the direction of 

Fm,y is towards the surface of the magnets. Furthermore, by comparing Fm,x and Fm,y values, it can 

be concluded that the dominant component of the magnetic force inside the channel is the y 

component of the force, which is approximately 5 times larger than Fm,x. The norm of the magnetic 

force along the channel at different distances from the surface of the magnets is shown in Figure 

5. It can be seen from this figure that the magnetic force is substantially higher at the interface of 

the magnets. Due to polarity arrangement of the magnets, the force produced inside the channel is 
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larger than a single magnet and it provides net magnetic force on the particle at a distance of 600 

µm from the surface of the magnets is approximately 10-15 pN. 

 

 

Figure 4 Variation of the y-component of the magnetic force along the channel at various distances 

from the surface of the magnets. 
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Figure 5 Variation of magnetic force norm along the channel at various distances from the surface 

of the magnets. 

 

In this work, horizontal and vertical components of the magnetic force along with the drag force, 

gravitational force, and particle-particle interaction force were used to predict particle trajectories 

inside the fluidic channel. When the magnetic moment is parallel to the connector vector, the 

motion of the particles in the channel can be predicted by applying Newton’s second law in the x 

and y directions as follows: 

Force balance for particle 1 in the x-direction:  

m
dv ,

dt
F , F ,  (15)

Force balance for particle 1 in the y-direction:   

	m , F , F , F F    (16)

Force balance for particle 2 in the x-direction: 

m
dv ,

dt
F , F ,  (17)

Force balance for particle 2 in the y-direction:  

m , F , F , F F   (18)

Substituting equations 4-9 and 11 in equations 15-18, and simplifying, we can write: 

, kv , n       (19)

 

dv ,

dt
kv , n  (20)

 

dv ,

dt
kv , n  (21)
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dv ,

dt
kv , n  (22)

Where 

  (23)

 

1
  

     (24)

 

  +   +
| / |

        (25)

 

1
  

   (26)

 

  +    +
| / |    (27)

Equations 19-22 constitute a system of coupled ordinary differential equations (ODEs). When the 

applied magnetic field is parallel to the connector vector, the coupled system of equations can be 

written as: 

 

, n kv ,     (28)

 

,     (29)

 

, n kv ,  (30)
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,     (31)

 

, n kv ,    (32)

 

,              (33)

 

, n kv ,    (34)

 

,    (35)

The simulations were performed using a 4th order Runge-Kutta method. Equations 28-35 were 

solved subject to initial conditions for position of (0), (0),	 (0),	 (0) and velocity of 

, 0 , , 0 , , (0), , 0  of the particles. Then, the change in the vertical and 

horizontal positions of the particles were calculated from the initial position where the particles 

started their transports in the channel to determine the particle trajectories within the microfluidic 

channel. Similar analyses were performed for cases where the applied magnetic field was 

perpendicular or at an angle of 45° to the connector vector. The flowchart of the solution algorithm 

is shown in Fig. 6. 

http://dx.doi.org/10.1063/1.5022582
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Figure 6 A flowchart of numerical simulation 

B. Experimental Method 

Since the resolution of optical microscopy is not suitable for tracking of small and fast-moving 

particles inside a microfluidic channel, it is not possible to experimentally control and measure the 

trajectories of cell-bead complexes. Thus, to verify the computational model, a series of 

experiments were carried out using 1-µm superparamagnetic beads at various flow rates and their 

trapping lengths were experimentally measured. The trapping length refers to the farthest distance 

a particle can travel before it is captured on the bottom of the channel. For example, if the channel 

height is 200 µm and the particle starts its journey from the top of the channel, it slowly descends 

towards the bottom of the channel due to the magnetic force as it travels through the channel.  Once 

the particle reaches the bottom of the channel, the particle is considered as being trapped. The 

horizontal distance that the particle travels from its starting position until it is trapped on the bottom 

of the channel is referred to as the trapping length of the particle.  
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Figure 7 shows a photograph of the experimental setup which consists of a bidirectional MilliGat 

pump with a MicroLynx controller for the sample, a syringe pump for the buffer, an optical 

microscope to monitor the particle motion within the channel, and plastic tubing for the 

connections between the pumps and the chip. Magnetic bead samples were prepared by washing 

and diluting a 10 µL concentrated magnetic beads in 990 µL deionized water (a 1:100 dilution). 

Before introducing the sample into the channel, the chip and tubing were washed with deionized 

water and soaked with 20 % bovine serum albumin (BSA) for 30 minutes and rinsed with the 

isolation buffer. Next, the diluted bead sample was injected into the separation channel using a 

bidirectional milliGAT pump. The flow rate was varied from 10 mL/h to 80 mL/h in 10 mL/h 

increments.  Each test was repeated three times and the average values of the trapping length of 

superparamagnetic beads were measured.  

 

http://dx.doi.org/10.1063/1.5022582
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Figure 7 A photograph of the experimental setup 

 

IV. RESULTS AND DISCUSSION 

Figure 8 shows a comparison between the experimentally measured and simulated trapping lengths 

at various flow rates. The simulated trapping lengths were found to be in good agreement with the 

experimental results confirming our modeling approach and methodology. Once the model was 

validated for superparamagnetic beads, simulations were performed to determine the trajectories 

of two cell-bead particle complexes for the following three cases: 

1) Case I: The applied magnetic field is parallel (0°) to the connector vector. 
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2) Case II: The angle between the applied magnetic field and the connector vector is 45°. 

3) Case III: The applied magnetic field is perpendicular (90°) to the connector vector. 

 

 

Figure 8 A comparison between the simulated and experimentally measured trapping length of 1-

µm superparamagnetic beads at various flow rates 

 

The 0° (parallel) and 90° (perpendicular) cases were selected because they represent extreme 

situations where particles either fully attract or fully repel one another. If the cell-bead complexes 

are aligned parallel to the external applied field, the magnetic interaction force between the 

particles is attractive, causing the cell-bead complexes to merge together and eventually trap earlier 

at the bottom of the channel. On the other hand, if the connector vector between complexes is 

perpendicular to the direction of magnetic field, the magnetic interaction force is repulsive, forcing 

the particles to move away from one another. In this case, the particles do not merge and follow 

their own trajectories inside the channel until they are trapped or flow out of the channel. While 

one could model any angles between 0 and 90 degree, we selected for a 45 degrees angle because 

0

10

20

30

40

50

0 20 40 60 80 100

Tr
ap

p
in
g 
Le
n
gt
h
 (
m
m
)

Flow rate (mL/hr)

Experiment

Simulation

http://dx.doi.org/10.1063/1.5022582


 
 

17 
 

the interaction force is still attractive albeit much weaker than the zero degrees case but it results 

in a shorter trapping length. The angles that results in a repulsive force do not lead to interesting 

results because it has very little or no effect on particle trajectory and each particle follows its own 

trajectory.  

 

Simulations were performed to study the effects of sample flow rate, number of beads per cell, and 

cell size on the trajectory of the cell-bead complexes by taking into account the particle-particle 

interaction. The inter-particle distance (center to center distance between the particles) was also 

varied to investigate its effect on the interaction force and particle trajectories. Figure 9 depicts the 

effect of flow rate on trajectories of two cell-bead particle complexes as they travel along the 

channel. The number of beads per cell, cell size, and bead size are 10, 10 µm, and 1 µm, 

respectively. The inter-particle distance was assumed to be twice the particle diameter. Each set of 

two lines with the same color represent the trajectories of two identical particles that start their 

journeys from two different initial positions while they are slowly attracted and eventually merged 

together due to the particle-particle interaction force. The point where the two lines with the same 

color merge represents the position where the particles join together.  From that point on, the 

merged particles are considered as a single particle and follows its own trajectory inside the 

channel. The bonded particle is observed to descend at a much steeper slope within the microfluidic 

channel until it is finally trapped on the bottom of the channel. This is because when the particles 

are joined together, their magnetic moments increase by a factor of two since the magnetic moment 

is linearly proportional to the number of beads, but the drag force does not increase linearly. Since 

the bonded particle is not spherical, a shape factor was introduced to calculate the drag force by 

assuming that the bonded particles form a chain-like cluster of spheres. A shape factor value of 

k=1.12 was used in the simulation because the chain is aggregate of two spherical particles [37]. 

Other parameters of particle modelling remains the same but the effective mass and volume are 

twice that of a single particle.  

 

The results also show that the external magnetic force is stronger than the interaction force between 

the particles. For example, by the time that the particles with an initial distance of 20 µm are 

attracted and merged together due to the interaction force, they descend by more than 50 µm due 

to the external magnetic field. The results also indicate that the particle trapping length increases 

http://dx.doi.org/10.1063/1.5022582
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with increasing the flow rate. This is because as the flow rate increases, the particle velocity along 

the channel increases as well, but the external magnetic force remains constant. As a result, the 

particle travels a longer distance before it is trapped on the bottom of the channel.  

 

 

Figure 9 Trajectories of two cell-bead particle complexes at various flow rates for a case where 

the applied magnetic field is parallel to the connector vector. The distance between particle 

complexes is twice the particle diameter (r=2D).  

In a magnetophoretic bio-separation chip, the number of beads that are attached to each cell can 

have a significant effect on particle-particle interaction. Figure 10 shows the simulation results for 

an inter-particle spacing of r=2D at various number of beads per cell. The cell size, bead size, and 

flow rate are 10 µm, 1 µm, and 50 mL/hr, respectively. The particles are assumed to start from the 

same horizontal position at the same time, but the first particle starts its journey from a vertical 

position of 100 µm while the second particle starts from a vertical position of 80 µm. The results 

indicate that the trapping length decreases with increasing the number of beads per cell. This is 

due to the fact that as the number of beads per cell increases, the magnetic moment of the particle 
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complexes increase as well. As a result, the particle complexes with more number of beads are 

attracted to each other at a much faster rate and bonded together sooner. Additionally, particles 

with more number of beads descend at a faster rate because as shown in Eq. (12), the external 

magnetic force is proportional to the number of beads.  

 

 

Figure 10 Trajectories of two cell-bead particle complexes at various number of beads per cell for 

a case where the applied magnetic field is parallel to the connector vector. The distance between 

particle complexes is twice the particle diameter (r=2D).  

 

For a given number of beads per cell, the interaction force between particle complexes is different 

depending on the cell size. Figure 11 shows the particle trajectories for three different cell sizes at 

an inter-particle distance of r=2D. The flow rate, number of beads, and bead size are 50 mL/hr, 10, 

and 1 µm, respectively. In all cases, as the particles travel along the channel, they are attracted 
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towards each other due to an attractive interaction force and eventually form a single bonded 

particle. It is observed that as the cell size increases, it takes more time for the particles to be 

trapped on the bottom of the channel. This is because the drag force is greater on a larger particle, 

causing the particle to move at a slower velocity. Thus, if the number of beads per cell is kept the 

same, it can be said that the particle interaction is less dominant for larger cell sizes. 

 

Figure 11 Trajectories of two cell-bead particle complexes at various cell sizes for a case where 

the applied magnetic field is parallel to the connector vector. The distance between particle 

complexes is twice the particle diameter (r=2D).  

Figure 12 depicts the trajectories of two cell-bead particle complexes for a case where the applied 

magnetic field is parallel to the connector vector at two different inter-particle distances of r=D 

and r=2D. The number of beads per cell, cell size, bead size, and flow rate are 10, 10 μm, 1 μm, 

50 mL/hr, respectively. The trajectory of a single particle is also plotted for comparison. Note that 

for the r=D case, one particle starts its journey from a vertical position of 100 µm while the other 
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particle starts from a vertical position of 90 µm. For the r=2D case, one particle starts from a 

vertical position of 100 µm while the other particle starts from a vertical position of 80 µm. It is 

observed that for the r=D case, the bonded particle is trapped sooner on the bottom of the channel 

compared to the r=2D and single particle cases. The results also indicate that as the inter-particle 

distance increases, it will take a longer time for the particle complexes to get closer and bond 

together. This is because the interaction force decreases as the distance between the particle 

complexes increases. Once the particles are pulled together and bonded, the magnetic force will 

be higher than the hydrodynamic drag force. Thus, the trapping of the bonded particle accelerate 

for the r=D case. Simulations were also performed for a case where the distance between particle 

complexes was three times the particle diameter (i.e. r=3D). At this particular inter-particle 

distance, the interaction force was not sufficient to pull the particles together and each particle 

followed its own trajectory. As the particles moved along the channel, the inter-particle distance 

was observed to decrease but the interaction force was not sufficient to change the trajectories of 

individual particles significantly. These results are not shown because the trajectories were similar 

to a single particle trajectory.  
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Figure 12 Trajectories of two cell-bead particle complexes at various inter-particle distances for a 

case where the applied magnetic field is parallel to the connector vector. The trajectory of a single 

particle is shown for comparison. 

Simulations were also performed for case II, where the magnetic field is perpendicular to the 

connector vector distance. Figure 13 shows the trajectories of two cell-bead particle complexes for 

an inter-particle distance of r=2D. The number of beads per cell, cell size, bead size, flow rate are 

10, 10 µm, 1 µm, and 50 mL/hr, respectively. It is observed that the particles are not attracted to 

each other in this case and each particle follows its own trajectory. This is because as shown in 

Equation 5, when the connector vector is perpendicular to the magnetic moment, the interaction 

force between the particles is repulsive, causing particles to move away from each other. In this 

case, the particle-particle interaction force has a very little or no effect on the trapping length. 
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Figure 13 Trajectories of two cell-bead particle complexes for a case where the applied magnetic 

field is perpendicular to the connector vector. 

Figure 14 depicts a comparison between the trajectories of particle complexes for cases where the 

applied magnetic field is parallel (0°) or forms a 45° angle with the connector vector. A single 

particle trajectory, which is similar to the case where the magnetic field is perpendicular to the 

connector vector (i.e. 90°) is also plotted for comparison. In all cases, the cell size, bead size, 

number of beads, and flow rate are 10 µm, 1 µm, 10, and 50 mL/hr, respectively. The results show 

that the trapping length for the 0° case is shorter than the 45° case and the 45° case is shorter than 

the single particle trapping length. This is because the particle-particle interaction force for the 0° 

case is much stronger than the 45° case as shown in Eqs. 4 and 6.  In addition, as the particle 

complexes move along the channel, they are attracted towards each other and eventually stick 

together. Since the manganic moment of the merged particle is larger than each individual particle, 
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the descending velocity of the bonded particle increases, resulting in a shorter trapping length for 

the merged particles compared to a single particle. 

 

Figure 14 Comparison of trajectories of two cell-bead particle complexes with a single particle 

trajectory for cases where connector vector is parallel (0°) and at 45°angle with the applied 

magnetic field. The distance between particle complexes is twice that of the particle diameter 

(r=2D).  

 

V. CONCLUSIONS 

In this paper, a Lagrangian transport analysis was performed to predict trajectories of cell-bead 

particle complexes in a magnetophoretic bio-separation chip. A dipole-based model was employed 

to calculate the particle-particle interaction and obtain particle trajectories within the microfluidic 

device. Simulations were performed for three different cases where the geometric positions of the 
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particle complexes were parallel, at a 45 degrees angle, and perpendicular with the applied 

magnetic field. The parallel and perpendicular cases were selected because they represent two 

extreme cases where particles either fully attract or repel one another. While one could model any 

angles between 0 and 90, a 45 degrees angle was chosen because the interaction force is still 

attractive albeit much weaker than the zero degrees case. A parametric study was also performed 

to analyze the effect of particle-particle interaction on the trajectories of cell-bead complexes by 

varying flow rate, cell size, and number of beads per cell. The trapping length was observed to 

increase with increasing the flow rate and cell size while it decreased with increasing the number 

of beads per cell. It was found that the interaction force between cell-bead complexes can be 

attractive or repulsive depending on the angle between the magnetic moment and the connector 

vector. When the applied magnetic field is parallel to the connector vector, an attractive force 

between particle complexes are observed, causing the particles to join together and trap sooner 

than a single particle. However, if the magnetic moment and connector vector are perpendicular, 

the interaction force is repulsive, and the particles are repelled from each other and follow their 

own trajectories. In this case, particle-particle interaction force has a very little or no effect on the 

trapping length. It is also noticed that if the connector vector forms a 45° angle with the magnetic 

moment, a less dominant attractive force is produced between the particle complexes than the case 

where the magnetic moment is parallel with the connector vector. These modeling results provide 

valuable insights into a better understanding of particle-particle interaction and its effect on particle 

trajectory which cannot be easily obtained from experimental observations. 
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