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Strong stability of a class of difference equations of continuous

time and structured singular value problem ⋆

QianMa a, Keqin Gu b, Narges Choubedar b

aSchool of Automation, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China

bDepartment of Mechanical and Industrial Engineering, Southern Illinois University Edwardsville, Edwardsville, IL 62025,
USA

Abstract

This article studies the strong stability of scalar difference equations of continuous time in which the delays are sums of a
number of independent parameters τi, i = 1, 2, . . . ,K. The characteristic quasipolynomial of such an equation is a multilinear
function of e−τis. It is known that the characteristic quasipolynomial of any difference equation set in the form of one-delay-
per-scalar-channel (ODPSC) model is also in such a multilinear form. However, it is shown in this article that some multilinear
forms of quasipolynomials are not characteristic quasipolynomials of any ODPSC difference equation set. The equivalence
between local strong stability, the exponential stability of a fixed set of rationally independent delays, and the stability for all
positive delays is shown, and relations with the structured singular value problem are presented. A procedure to determine
strong stability in the special case of up to three independent delay parameters in finite steps is developed. This procedure
means that the structured singular value problem in the case of up to three scalar complex uncertain blocks can be solved in
finite steps.

Key words: Stability; Time delay; Difference equation; Structured singular value.

1 Introduction

This article studies the stability problem of systems with
characteristic quasipolynomial,

∆(s) = 1 +
K∑

m=1

∑
1≤i1<i2<···<im≤K

ai1i2...ime−(τi1+τi2+···+τim )s, (1)

where τi, i = 1, 2, . . . ,K are independent parameters,
and ai1i2...im are real coefficients. For K = 1, 2 and 3,

⋆ This work is partially supported by National Science Foun-
dation of China under Grant 61403199, the Natural Science
Foundation of Jiangsu Province under Grant BK20140770,
and the Fundamental Research Funds for the Central Uni-
versities of China under Grant 30916015105.

Email addresses: qianmashine@gmail.com (Qian Ma),
kgu@siue.edu (Keqin Gu), nchoube@siue.edu (Narges
Choubedar).

∆(s) in (1) becomes

∆(s) = 1 + a1e
−τ1s, (2)

∆(s) = 1 + a1e
−τ1s + a2e

−τ2s + a12e
−(τ1+τ2)s, (3)

∆(s) = 1 + a1e
−τ1s + a2e

−τ2s + a3e
−τ3s

+a12e
−(τ1+τ2)s + a13e

−(τ1+τ3)s

+a23e
−(τ2+τ3)s + a123e

−(τ1+τ2+τ3)s, (4)

respectively. Obviously, ∆(s) in (1) is the characteristic
quasipolynomial of the difference equation of continuous
time,

y(t) +
K∑

m=1

∑
1≤i1<i2<···<im≤K

ai1i2...imy(t− τi1 − τi2 − · · · − τim)

= 0. (5)

As ∆(s) in (1) is a multilinear function of e−τis, i =
1, 2, . . . ,K, it is closely related to the following form of
one-delay-per-scalar-channel (ODPSC) difference equa-
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tion set,

yk(t) =
K∑
j=1

dkjyj(t− τj), k = 1, 2, . . . ,K, (6)

where

yk(t) ∈ R, dkj ∈ R, k, j = 1, 2, . . . ,K.

Indeed, the characteristic function of (6) is

∆1(s) = det(I −DE) = 0, (7)

where

D= (dij)K×K ,

E =diag(e−τ1s, e−τ2s, . . . , e−τKs).

An expansion of the determinant shows that ∆1(s) is
indeed a multilinear function of e−τis, i = 1, 2, . . . ,K in
the form of (1). [7] in Section 9.6 illustrated through an
example how to rewrite the difference equation of the
form (5) to the ODPSC difference equation set of the
form (6) for the case of K = 2. Unfortunately, while
such rewriting is always possible for K ≤ 2, it may not
be possible in some cases with K ≥ 3 as will be shown
later in this article. Therefore, studying (1) indeed has
independent interest.

Difference equation of continuous time, in addition to
its independent interest, also plays an important role in
the theory of time-delay systems of neutral type [5, 7].
Especially, a necessary condition for the exponential sta-
bility of the coupled differential-difference equation (8)-
(9) below is the exponential stability of the associated
difference equation (6).

ẋ(t) =Ax(t) +
K∑
j=1

Bjyj(t− τj), (8)

yk(t) =Ckx(t) +
K∑
j=1

dkjyj(t− τj), k = 1, 2, . . . ,K, (9)

where

x(t) ∈ Rn, yk(t) ∈ R.

Similarly, the exponential stability of the difference
equation (5) is a necessary condition for the exponential
stability of the differential-difference equations of neu-
tral type studied in [15] for K = 2 and [6] for K = 3.
Time-delay systems of neutral type may arise in natu-
ral systems [7], or as a result of feedback control such
as Smith predictor [17] and discrete implementation of
distributed-delay feedback control [12–14,20].

The stability of difference equations of continuous time
has been studied using the Lyapunov functional ap-
proach [18, 19] and frequency domain approach [1, 8, 9].
This article uses the frequency domain approach. Sim-
ilar to systems described by differential equations, a
system described by difference equation (5) is exponen-
tially stable if and only if all its characteristic roots
sk, k = 1, 2, . . ., i.e., the solutions of the equation

∆(s) = 0, (10)

satisfy Re(sk) ≤ −ϵ for some ϵ > 0.

In this article, we concentrate on the strong stability of
the system (1). In other words, we are interested in the
stability of (1) when the delay parameters τ1, τ2, . . . , τK
are subject to independent, although arbitrarily small,
deviation from the nominal values. The surprisingly sig-
nificant impact of such small deviation was first docu-
mented by [9] and [11]. Our results are analogous to the
one given by [7] and [8]. For systems with up to three in-
dependent delays, a procedure is derived that can check
strong stability in finite steps.

As shown in [5], the strong stability problem of such dif-
ference equation is closely related to the structured sin-
gular value problem [3, 4, 16, 21]. Therefore, the proce-
dure derived here means that we have obtained amethod
to calculate the structured singular value for up to three
scalar complex uncertain blocks.

The remaining parts of this article is organized as fol-
lows. Section 2 discusses the relationship between the
systems described by (1) and the ODPSC model de-
scribed by (7). Section 3 develops the general theory of
strong stability of system (1). These two sections are
very similar to the contents of [10]. Section 4 presents
a method to check strong stability of the system (1) in
finite steps when there are not more than three inde-
pendent parameters. Section 5 discusses the relationship
between the strong stability problem and the structured
singular value problem. Section 6 provides some numer-
ical examples to illustrate the developed method.

2 Relations with ODPSC model

From the discussion above, we know that the character-
istic quasipolynominal of the ODPSC form of difference
equation set (6) has the form of (1). However, as will be
shown in Theorem 1 below, for a given quasipolynom-
inal ∆(s) of the form (1) with K ≥ 3, it is not always
possible to find an ODPSC difference equation set (6)
such that its characteristic function ∆1(s) is equal to
∆(s). Therefore, it is of independent interest to study
the system (1).

Theorem 1. For a given quasipolynominal ∆(s) in the
form of (1) with K = 3, there exists a 3 × 3 matrix D
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such that ∆1(s) given in (7) satisfies ∆1(s) = ∆(s) if
and only if the following inequality holds:

(a12a3 + a13a2 + a23a1 − 2a1a2a3 − a123)
2

≥ 4(a1a2 − a12)(a2a3 − a23)(a3a1 − a13). (11)

Proof. For the sake of convenience, write δk =
e−τks, k = 1, 2, 3. Expand the determinant in (7) and
simplify, we obtain

∆1(s) = 1− d11δ1 − d22δ2 − d33δ3
+D12δ1δ2 +D23δ2δ3 +D31δ3δ1
−det(D)δ1δ2δ3, (12)

where

Dij =

∣∣∣∣∣ dii dij

dji djj

∣∣∣∣∣ .
By matching the coefficients, it is not difficult to show
that

∆1(s) = ∆(s), (13)

if and only if the following four equations are satisfied

d12d21 = a1a2 − a12, (14)

d23d32 = a2a3 − a23, (15)

d13d31 = a1a3 − a13, (16)

d21d32d13 + d31d12d23
= a12a3 + a13a2 + a1a23 − a123 − 2a1a2a3. (17)

First consider the case

(a1a2 − a12)(a2a3 − a23)(a3a1 − a13) = 0. (18)

Then, (11) is satisfied. Equation (18) means that at least
one of the following three equations is satisfied

a1a2 − a12 = 0, (19)

a2a3 − a23 = 0, (20)

a3a1 − a13 = 0. (21)

Without loss of generality, suppose (19) is satisfied.
Choose d12 = 0. Then it is always possible to choose
d23, d32, d13, d31 such that d32 ̸= 0, d13 ̸= 0 and (15)-(16)
are satisfied. We may then choose

d21 =
1

d32d13
(a12a3 + a13a2 + a1a23 − a123 − 2a1a2a3),

and (14)-(17) are all satisfied.

Now consider the case (18) is not satisfied. Let

d12 = α, d23 = β.

Without loss of generality, we restrict α ̸= 0, β ̸= 0.
Then (14) and (15) become

d21 =
a1a2 − a12

α
, d32 =

a2a3 − a23
β

,

and equation (17) can be written as

(a1a2 − a12)(a2a3 − a23)

αβ
d13 + αβd31

= a12a3 + a13a2 + a1a23 − a123 − 2a1a2a3. (22)

Therefore, there exists a matrix D such that (14)-(17)
are satisfied if and only if there exist α, β, d13 and d31
such that (16) and (22) are satisfied. For any given α
and β, in the d13-d31 parameter space, the equation (16)
represents a hyperbola, and (22) represents a straight
line. The existence of their solutions is equivalent to the
existence of intersections between the straight line and
the hyperbola. We separate them into the following four
cases.

Case 1:

a1a3 − a13 > 0,

(a1a2 − a12)(a2a3 − a23) < 0.

Obviously, (11) is satisfied. In this case, the hyperbola
represented by (16) is located at the first and third quad-
rant, and the straight line has a positive slope. The sit-
uation is illustrated in Fig. 1. It can be easily seen that
they always intersect at two points.

Figure 1. The location of curves represented by (16)
and (22) in case 1.

Case 2:

a1a3 − a13 < 0,

(a1a2 − a12)(a2a3 − a23) > 0.

Obviously, (11) is satisfied, the hyperbola is located at
the second and fourth quadrant, and the straight line
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Figure 2. The location of curves represented by (16)
and (22) in case 3.

has a negative slope. Therefore, there are always two
intersecting points.

Case 3:

a1a3 − a13 > 0,

(a1a2 − a12)(a2a3 − a23) > 0.

The possibility of intersection in this case depends on the
parameters. The tangent of the hyperbola at (d130, d310)
is

d31 = −(
d310
d130

)(d13 − d130) + d310. (23)

As (d130, d310) needs to satisfy (16) in order to be on the
hyperbola, (23) can be written as

d31
2d310

+
d13

2a1a3−a13

d310

= 1. (24)

On the other hand, the straight line described by (22)
can be written as

d31
a12a3+a13a2+a23a1−2a1a2a3−a123

αβ

+
d13

αβ(a12a3+a13a2+a23a1−2a1a2a3−a123)
(a1a2−a12)(a2a3−a23)

= 1. (25)

Intersection occurs if and only if the straight line de-
scribed by (25) is farther away from the origin than the
tangent described by (24) when they are parallel to each
other, i.e.,

(a12a3 + a13a2 + a23a1 − 2a1a2a3 − a123)
2

(a1a2 − a12)(a2a3 − a23)

≥ 4(a1a3 − a13), (26)

which is equivalent to (11).

Case 4:

a1a3 − a13 < 0,

(a1a2 − a12)(a2a3 − a23) < 0.

Similar to Case 3, we may conclude that the hyperbola
and the straight line intersect if and only if (11) is satis-
fied.

All the possible cases have been exhausted, and the proof
is thus complete. �

3 Stability conditions

The strong stability condition of (6) can be found in [7]
and [8] with appropriate adaption described in [5]. Here
we will study the strong stability of the system (1). For
complex numbers δj , j = 1, . . . ,K, we allow a slight
abuse of notation and write

∆(δ1, . . . , δK)

= 1 +
K∑

m=1

∑
1≤i1<i2<···<im≤K

ai1i2...imδi1δi2 . . . δim .

Then

∆(e−τ1s, e−τ2s, . . . , e−τKs) = ∆(s).

Theorem 2. The following statements are equivalent:
(i) System (1) is exponentially stable for a given set
of rationally independent parameters τ1 > 0, τ2 >
0, . . . , τK > 0.
(ii) For given nominal parameters τ01 > 0, τ02 >
0, . . . , τ0K > 0, and an arbitrarily small ε > 0, system
(1) is exponentially stable for all positive parameters
τ1, τ2, . . . , τK that satisfy

|τj − τ0j | < ε, j = 1, 2, . . . ,K.

(iii) System (1) is exponentially stable for arbitrary pos-
itive parameters τ1 > 0, τ2 > 0, . . . , τK > 0.
(iv)

0 /∈ {∆(δ1, δ2, . . . , δK)||δj | ≤ 1, j = 1, 2, . . . ,K}. (27)

(v)

min{∆(δ1, δ2, . . . , δK)|∆ ∈ R, |δj | = 1, j = 1, 2, . . . ,K}
> 0. (28)

Before presenting the proof, it is worthwhile to men-
tion that the above theorem is parallel to the one for
difference equation set in [7]. Obviously, Condition (iii)
(global strong stability) implies Condition (ii) (local
strong stability), which in turn implies (i). The fact that
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they are equivalent may be surprising for those who are
not familiar with the parallel results for difference equa-
tion set. From practical point of view, if the K delay pa-
rameters are not structurally contained to be rationally
dependent, then they should be assumed to be subject
to independent variations described by (ii). The above
theorem indicates that the condition for guaranteed sta-
bility in this case (no matter how accurate the estimate
is) is the same as that for the case of not knowing any-
thing about these parameters at all (other than being
positive)! In view of the equivalence, we say a system is
strongly stable if it satisfies any one of the above five
conditions. Conditions (iv) and (v) are instrumental for
us to check strong stability, analytically or numerically.

Proof of Theorem 2. We will show (iv) ⇔ (v),
(i) ⇒ (v), (iv) ⇒ (iii), and (iii) ⇒ (ii) ⇒ (i), from
which the equivalence can be concluded.

(iv) ⇔ (v). Define

Υ(ϵ1, ϵ2, . . . , ϵK)

=min{∆(δ1, δ2, . . . , δK)|∆ ∈ R, |δj | ≤ ϵj , j = 1, 2, . . .K}.

Obviously, Υ(ϵ1, ϵ2, . . . , ϵK) is a continuous and decreas-
ing function of ϵ1, ϵ2, . . . , ϵK , and Υ(0, 0, . . . , 0) = 1.
Therefore, (27) is equivalent to

Υ(1, 1, . . . , 1) > 0. (29)

For fixed δj = δ∗j , j = 2, 3, . . . ,K,

∆(δ1, δ
∗
2 , . . . , δ

∗
K) = b0 + b1δ1, (30)

where

b0 = 1 +
K−1∑
m=1

∑
2≤i1<i2<···<im≤K

ai1i2...imδ∗i1δ
∗
i2 . . . δ

∗
im ,

b1 =

K−1∑
m=1

∑
2≤i1<i2<···<im≤K

a1i1i2...imδ∗i1δ
∗
i2 . . . δ

∗
im .

As δ1 varies along the unit circle |δ1| = 1, b0 + b1δ1 will
also traces out a circle centered at b0 with radius |b1| as
illustrated in Fig. 3. As δ1 stays within the unit circle
|δ1| < 1, b0 + b1δ1 stays within the circle shown in Fig.
3. Then, it is obvious from Fig. 3 that

min{∆(δ1, δ
∗
2 , . . . , δ

∗
K)|∆ ∈ R, |δ1| ≤ 1}

is reached by some δ1 with |δ1| = 1. Therefore,

min{∆(δ1, δ
∗
2 , . . . , δ

∗
K)|∆ ∈ R, |δ1| ≤ 1}

=min{∆(δ1, δ
∗
2 , . . . , δ

∗
K)|∆ ∈ R, |δ1| = 1}

=

{
Re(b0)−

√
|b1|2 − [Im(b0)]2, |b1| ≥ Im(b0);

∞, |b1| < Im(b0).
(31)

Figure 3. ∆(δ1, δ
∗
2 , . . . , δ

∗
K) as δ1 varies within the unit
circle.

Similarly, one has

min{∆(δ∗1 , δ2, δ
∗
3 , . . . , δ

∗
K)|∆ ∈ R, |δ2| = 1}

=min{∆(δ∗1 , δ2, δ
∗
3 , . . . , δ

∗
K)|∆ ∈ R, |δ2| ≤ 1}. (32)

· · · · · ·
min{∆(δ∗1 , δ

∗
2 , . . . , δ

∗
K−1, δK)|∆ ∈ R, |δK | = 1}

=min{∆(δ∗1 , δ
∗
2 , . . . , δ

∗
K−1, δK)|∆ ∈ R, |δK | ≤ 1}. (33)

Therefore, it can be concluded that the left hand side of
(28) is equal to Υ(1, 1, . . . , 1). Hence, (27) is equivalent
to (29), which is equivalent to (28).

(i) ⇒ (v). Suppose (v) does not hold, i.e.,

min{∆(δ1, . . . , δK)|∆ ∈ R, |δj | = 1, j = 1, 2, . . . ,K}
≤ 0. (34)

It is sufficient to show that (i) does not hold. Define

φ(ρ)

=min{∆(δ1, . . . , δK)|∆ ∈ R, |δj | = e−ρτj , j = 1, . . . ,K}.

Then (34) means

φ(0) ≤ 0.

It is also obvious that

φ(∞) = 1 > 0.

Therefore, there exists a ρ0 ≥ 0 such that

φ(ρ0) = 0.

In other words, for some θ∗j ∈ [0, 2π), j = 1, 2, . . . ,K,

δj = e−(ρ0τj+iθ∗
j ), j = 1, 2, . . . ,K,

satisfy

∆(δ1, δ2, . . . , δK) = 0. (35)
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Since τ1, τ2, . . . , τK are rationally independent, it follows
from Kronecker theorem and basic properties of almost
periodic functions [2] that, for every ϵ > 0, we can find
a ξ ∈ R such that

|ξτj − θ∗j | < ϵ mod 2π, j = 1, 2, . . . ,K. (36)

For a given series ϵ = ϵn ↓ 0, (36) implies that there
exists a corresponding sequence ξn such that

lim
n→∞

eiξnτj = eiθ
∗
j , j = 1, 2, . . . ,K. (37)

Accordingly,

lim
n→∞

∆(δ
(n)
1 , δ

(n)
2 , . . . , δ

(n)
K ) = 0, (38)

where

δ
(n)
j = e−(ρ0+iξn)τj , j = 1, 2, . . . ,K.

Because |eiξn | = 1, and the unit circle is compact, the
series eiξn must have an accumulating point. Therefore,
there exists a subsequence ξnk

of ξn such that eiξnk →
eiξ

∗
as k → ∞. By continuity, one has

∆(δ∗1 , δ
∗
2 , . . . , δ

∗
K) = 0, (39)

where

δ∗j = e−(ρ0+iξ∗)τj , j = 1, 2, . . . ,K.

This means that (i) is violated. From this, we conclude
(i) implies (v).

(iv) ⇒ (iii). Suppose that (iii) does not hold.
Then, there exists at least one set of positive delays
τ∗1 , τ

∗
2 , . . . , τ

∗
K such that system (1) is not exponentially

stable. This means the equation

∆(e−τ∗
1 s, e−τ∗

2 s, . . . , e−τ∗
Ks) = 0,

has a series of solutions sn, n = 1, 2, · · · , such that
limn→∞ Re(sn) = ρ∗ ≥ 0. Let θn = Im(sn). Because
|eiθn | = 1, and the unit circle is compact, the series eiθn

must have an accumulating point. Then, there exists a
subsequence θnk

of θn such that eiθnk → eiθ
∗
as k → ∞.

By continuity, we conclude that δj = e−(ρ∗+iθ∗)τj sat-

isfies (35) but |δj | = e−ρ∗τj ≤ 1. Therefore, this vio-
lates the statement (iv). It can thus be concluded that
(iv) ⇒ (iii).

The fact that (iii) ⇒ (ii) ⇒ (i) is obvious, and thus the
proof is complete. �

4 Stability conditions for K ≤ 3

In this section, we will express the strong stability con-
ditions for K ≤ 3 in a form that can be checked in fi-
nite steps. Obviously, such strong stability conditions
are of interest. For example, Assumption 3 in [15] and
Assumption III in [6] may be replaced by the strong sta-
bility conditions of the difference equations developed
here to reduce conservatism. In addition, this also leads
to a method of calculating structured singular value with
no more than 3 complex scalar blocks as will be shown
later. The following lemma is instrumental.

Lemma 3. For given δ2 = δ∗2 , δ3 = δ∗3 , . . ., δK = δ∗K ,

min{∆(δ1, δ
∗
2 , . . . , δ

∗
K)|∆ ∈ R, |δ1| = 1} > 0 (40)

is satisfied if and only if either one of the following two
conditions holds:

i) |Im(b0)| > |b1|; (41)

ii) Re(b0) > 0, and (42)

|b0| > |b1|, (43)

where

b0 = 1 +
K−1∑
m=1

∑
2≤i1<i2<···<im≤K

ai1i2...imδ∗i1δ
∗
i2 . . . δ

∗
im ,

b1 =
K−1∑
m=1

∑
2≤i1<i2<···<im≤K

a1i1i2...imδ∗i1δ
∗
i2 . . . δ

∗
im .

Proof. Similar to the proof of Theorem 2 (iv) ⇔ (v),
it is obvious from Fig. 3 or (31). �

The following theorem for K = 3 follows easily from the
above lemma.

Theorem 4.The system (4) is strongly stable if and only
if the following two conditions are both satisfied for all
|δ∗2 | = |δ∗3 | = 1:

i) |1 + a2δ
∗
2 + a3δ

∗
3 + a23δ

∗
2δ

∗
3 |

> |a1 + a12δ
∗
2 + a13δ

∗
3 + a123δ

∗
2δ

∗
3 |. (44)

ii) Either Re(1 + a2δ
∗
2 + a3δ

∗
3 + a23δ

∗
2δ

∗
3) > 0, (45)

or |Im(1 + a2δ
∗
2 + a3δ

∗
3 + a23δ

∗
2δ

∗
3)|

> |a1 + a12δ
∗
2 + a13δ

∗
3 + a123δ

∗
2δ

∗
3 |. (46)

Proof. In Lemma 3, (41) implies (43). Therefore, the
necessary and sufficient conditions for (40) can be equiv-
alently stated as the following two conditions are both
satisfied: i) (43) is satisfied, and ii) either (42) or (41) is
satisfied. The proof is complete by recognizing that (43)
becomes (44), (42) becomes (45), and (41) becomes (46)
when K = 3. �
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We now present a method to check (44) as a theorem.
The proof is given in the Appendix.

Theorem 5. Let

p1(z) = C2z
2 + C1z + C1z

−1 + C2z
−2 + C0, (47)

where

C2 = g22 − 4f2f3,

C1 = 2g1g2 − 4f1(f2 + f3),

C0 = g21 + 2g22 − 4(f2
1 + f2

2 + f2
3 ),

and

f1 = a3 + a2a23 − a1a13 − a12a123,

f2 = a23 − a1a123,

f3 = a2a3 − a12a13,

g1 = a21 + a213 + a212 + a2123 − a23 − a22 − a223 − 1,

g2 = a1a12 + a13a123 − a2 − a3a23.

Let z∗i , |z∗i | = 1, i = 1, 2, . . . , n, n ≤ 4 denote all the
solutions to the following equation on the unit circle,

p2(z) = 2C2z
4 + C1z

3 − C1z − 2C2 = 0. (48)

Then, the inequality (44) holds for all |δ∗2 | = |δ∗3 | = 1 if
and only if{

p1(z
∗
i ) > 0, i = 1, 2, ..., n,

−2|g2| > g1.
(49)

Next we will consider (45). For δ∗2 and δ∗3 on the unit
circle, we may write

δ∗2 = cos(α) + i sin(α), (50)

δ∗3 = cos(β) + i sin(β), (51)

and the left hand side of (45) becomes

η(α, β) = 1 + a2cos(α) + a3cos(β) + a23cos(α+ β).(52)

Checking (45) reduces to the minimization of η(α, β).
The solution is given in the following theorem. The proof
is given in the Appendix.

Theorem 6. A local minimum of η(α, β)may be reached
by α and β that satisfy

sin(α) = 0, sin(β) = 0, (53)

and the corresponding value of η(α, β) is either

ηr+ = 1 + a2 − |a3 + a23|, (54)

or

ηr− = 1− a2 − |a3 − a23|. (55)

Furthermore, if

a2 ̸= 0, a3 ̸= 0, a23 ̸= 0, (56)

and∣∣∣∣12
(
a3a23
a22

− a3
a23

− a23
a3

)∣∣∣∣≤ 1, (57)∣∣∣∣12
(
a2a23
a23

− a2
a23

− a23
a2

)∣∣∣∣≤ 1, (58)

then a local minimum may also be reached by α and β
that satisfy

cos(α) =
1

2

(
a3a23
a22

− a3
a23

− a23
a3

)
, (59)

cos(β) =
1

2

(
a2a23
a23

− a2
a23

− a23
a2

)
, (60)

sin(α) =±
√
1− cos2 α, (61)

sin(β) =
a2
a3

sin(α). (62)

The corresponding local minimum is

ηc = 1− 1

2
(
a2a3
a23

+
a2a23
a3

+
a3a23
a2

). (63)

The global minimum is

min
0≤α,β≤2π

η(α, β) = min{ηr+ , ηr− , ηc} (64)

if (56), (57) and (58) are all satisfied. Otherwise,

min
0≤α,β≤2π

η(α, β) = min{ηr+ , ηr−}. (65)

From the above results, we arrive at the following algo-
rithm.

Algorithm 1. (For checking the strong stability of the
system described by (4) using Theorem 4).
Step 1. Check if (44) holds for all δ∗2 , δ

∗
3 on the unit

circle. If not, declare the system not strongly stable, and
terminate the algorithm. Otherwise, continue.
Step 2. Check if ηr+ given in (54) and ηr− given in
(55) are both positive. If either of them is not positive,
declare the system not strongly stable, and terminate
the algorithm. Otherwise, continue.
Step 3. Check if (56), (57) and (58) are all satisfied.
If any of them is not satisfied, then declare the system
strongly stable, and terminate the algorithm. Otherwise,
continue.
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Step 4. Check if ηc given in (63) is positive. If it is, then
declare the system strongly stable, and terminate the
algorithm. Otherwise, continue.
Step 5. Check if (46) is satisfied by δ∗2 and δ∗3 given in
(50) and (51), where cos(α), cos(β), sin(α) and sin(β)
are given in (59)-(62). If not, declare that the system not
strongly stable. Otherwise, declare the strong stability
cannot be determined by this algorithm. Terminate the
algorithm.

In Step 2, if either ηr+ or ηr− is not positive, then (45)
is violated by some real δ∗2 and δ∗3 . Obviously, (46) is
also violated as its left hand side vanishes. In Step 3, if
(56), (57) and (58) are not all satisfied, then (65) holds.
In Step 5, if (46) is satisfied by the given δ∗2 and δ∗3 ,
it is insufficient to determine the system to be strongly
stable. Indeed, in this case, the strong stability requires
(46) to be satisfied by all δ∗2 and δ∗3 in the following set

{(δ∗2 , δ∗3) | |δ∗2 | = 1, |δ∗3 | = 1, (45) is not satisfied},

which is not easy to determine. Fortunately, the problem
can be circumvented by changing the roles of δ1, δ2 and
δ3 as described below.

Theorem 4 is based on first calculating the minimum for
|δ1| = 1 with fixed δ∗2 and δ∗3 . Parallel results can be
obtained by first calculating the minimum for |δ2| = 1
with fixed δ∗1 and δ∗3 , or the minimum for |δ3| = 1 with
fixed δ∗1 and δ∗2 . These parallel results are given below as
Theorems 7 and 8. They can be obtained from Theorem
4 by alternating the subscripts 1, 2, and 3.

Theorem 7. The system (4) is strongly stable if and
only if the following two conditions are satisfied for all
|δ∗1 | = |δ∗3 | = 1:

i) |1 + a1δ
∗
1 + a3δ

∗
3 + a13δ

∗
1δ

∗
3 |

> |a2 + a12δ
∗
1 + a23δ

∗
3 + a123δ

∗
1δ

∗
3 |. (66)

ii) Either Re(1 + a1δ
∗
1 + a3δ

∗
3 + a13δ

∗
1δ

∗
3) > 0, (67)

or |Im(1 + a1δ
∗
1 + a3δ

∗
3 + a13δ

∗
1δ

∗
3)|

> |a2 + a12δ
∗
1 + a23δ

∗
3 + a123δ

∗
1δ

∗
3 |. (68)

Theorem 8. The system (4) is strongly stable if and
only if the following two conditions are satisfied for all
|δ∗1 | = |δ∗2 | = 1:

i) |1 + a1δ
∗
1 + a2δ

∗
2 + a12δ

∗
1δ

∗
2 |

> |a3 + a13δ
∗
1 + a23δ

∗
2 + a123δ

∗
1δ

∗
2 |. (69)

ii) Either Re(1 + a1δ
∗
1 + a2δ

∗
2 + a12δ

∗
1δ

∗
2) > 0, (70)

or |Im(1 + a1δ
∗
1 + a2δ

∗
2 + a12δ

∗
1δ

∗
2)|

> |a3 + a13δ
∗
1 + a23δ

∗
2 + a123δ

∗
1δ

∗
2 |. (71)

Satisfaction of Theorem 7 or 8 may also be checked us-
ing parallel algorithms (which will be called Algorithms
2 and 3, respectively) obtained from Algorithm 1 by al-
ternating subscripts. It should be pointed out that al-
though Theorems 4, 7 and 8 are equivalent, Algorithms

1,2,and 3 are not. As will be illustrated in Section 6, it is
sometimes necessary to apply Algorithm 2 or 3 to obtain
a definite answer if Algorithm 1 fails to do so. All the
systems we have tested seem to indicate that we can al-
ways obtain a definite answer after all three algorithms
have been used although we have not been able to the-
oretically prove this.

We will turn our attention to the case of K = 2. Ob-
viously, this is a special case of K = 3, and Theorem 4
and Algorithm 1 still apply. However, more explicit con-
ditions are possible in this case as is presented below.

Theorem 9.The system (3) is strongly stable if and only
if the following two inequalities hold:{

1− a2 > |a1 − a12|,
1 + a2 > |a1 + a12|,

(72)

or equivalently, the following two inequalities hold:{
1− a1 > |a2 − a12|,
1 + a1 > |a2 + a12|.

(73)

Proof. Suppose the system is strongly stable. Then
Theorem 2 (iv) requires

0 /∈ {∆(δ1, δ2)||δ1| ≤ 1, |δ2| ≤ 1}. (74)

The above implies

|a1| < 1, (75)

and

|a2| < 1. (76)

(76) implies that the condition (45) is true for δ∗3 = 0
and all |δ∗2 | ≤ 1. Therefore, we conclude that necessary
and sufficient conditions for min{∆(δ1, δ2)|∆ ∈ R, |δ1| =
1, |δ2| = 1} > 0 are (76) and (44) hold for δ∗3 = 0 and all
|δ∗2 | = 1. (44) can be rewritten as

(1 + a2δ
∗
2)(1 + a2δ∗2) > (a1 + a12δ

∗
2)(a1 + a12δ∗2), (77)

or

a21 + a212 − 1− a22 < 2Re[(a2 − a1a12)δ
∗
2 ]. (78)

The above holds for all |δ∗2 | = 1 if and only if

a21 + a212 − 1− a22 < −2|a2 − a1a12|. (79)

(79) is equivalent to

2(a2 − a1a12) < −(a21 + a212 − 1− a22), (80)
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and

2(a2 − a1a12) > a21 + a212 − 1− a22. (81)

It is easily seen that (80) and (81) along with (76) are
equivalent to (72). Thus (72) is necessary and sufficient.
Note that the first inequality in (72) is equivalent to
(82) and (83) below, and the second inequality in (72) is
equivalent to (84) and (85) below.

a12 − a2 > a1 − 1, (82)

a2 + a12 < 1 + a1, (83)

a12 − a2 < 1− a1, (84)

a2 + a12 > −1− a1. (85)

But (82) and (84) are equivalent to the first inequality
of (73), and (83) and (85) are equivalent to the second
inequality of (73). This shows that (72) is equivalent to
(73). The proof is complete. �

In Section 9.6 of [7], the same stability conditions (after
correcting a sign error and adapting the notation) were
obtained by rewriting it to a set of two difference equa-
tions and appealing to the Routh-Hurwitz criteria with
complex coefficients. The proof here is much simpler.

The case for K = 1 is obvious, and is stated as follows.

Theorem 10. The system (2) is strongly stable if and
only if the following inequality holds:

|a1| < 1. (86)

5 Relations with structured singular value
problem

The strong stability problem of ODPSC difference equa-
tion set is closely related to the structured singular value
problem [3, 4, 16]. Indeed, as discussed in [5], the differ-
ence equation set (6) is strongly stable if and only if

ρ0
∆
= sup

δk∈R,|δk|=1
k=1,2,...,K

ρ(DE(δ)) < 1, (87)

where

E(δ) = diag(δ1, δ2, . . . , δK). (88)

It is not difficult to show that |δk| = 1 may be relaxed
to |δk| ≤ 1,

ρ0 = sup
δk∈R,|δk|≤1
k=1,2,...,K

ρ(DE(δ)). (89)

In view of (89), the stability condition (87) can be equiv-
alently expressed as a structured singular value problem

µ(D) < 1, (90)

where

µ(D)

=
1

min{r | det(I −DE(δ)) = 0, for some |δk| ≤ r, k = 1, . . . ,K}

is the structured singular value of the matrix D under
the uncertainty structure of K complex scalar blocks of
size one each.

For a given multilinear expression ∆(δ1, δ2, . . . , δK), we
may also define

µ(∆)

=
1

min{r | ∆(δ1, . . . , δK) = 0 for some |δk| ≤ r, k = 1, . . . ,K} .

Then, it is immediately clear that ∆(s) is strongly stable
if and only if

µ(∆) < 1. (91)

In view of the fact that ∆1(s) is the characteristic
quasipolynomial of the ODPSC difference equation set,
it is easily seen that

µ(D) = µ(∆1). (92)

Therefore, the results presented in the last section means
that we have obtained a method to check the satisfaction
of µ(D) < 1 in finite steps for the uncertainty structure
of up to three complex scalar blocks.

6 Illustrative examples

In this section, we present some numerical examples to
illustrate the method developed in Section 4.

Example 1. Consider a system described by (4) with
the following parameters

a1 = 0.4, a2 = 0.3, a3 = 0.1, a12 = 0.15,

a13 = −0.2, a23 = 0.5, a123 = 0.1.

Apply Algorithm 1, we find that (44) is satisfied for all
δ∗2 and δ∗3 on the unit circle. ηr+ and ηr− are both posi-
tive, but neither (57) nor (58) is satisfied. Therefore, we
can conclude that the system is strongly stable, and the
algorithm terminates in Step 3.
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Because (11) is not satisfied, the system cannot be writ-
ten in the form of ODPSC model.

Example 2. Consider a system described by (4) with
the following parameters

a1 = 0.3, a2 = 0.3, a3 = 0.8, a12 = −0.1,

a13 = 0.2, a23 = −0.2, a123 = −0.1.

Apply Algorithm 1, we find that (44) is satisfied for all
δ∗2 and δ∗3 on the unit circle. (55) is nonpositive. There-
fore, we conclude that system is not strongly stable. The
algorithm terminates in Step 2.

Because (11) is satisfied, then there exists a D such that
∆1(s) = ∆(s) according to Theorem 1. Indeed, by fol-
lowing its proof, we may find such a D,

D =


−0.3 1 −0.474

0.19 −0.3 1

−0.084 0.44 −0.8

 .

Wemay confirm our conclusion by applying the stability
condition of the ODPSC model given in [5] or check if
µ(D) < 1 is satisfied by using the method given in [16].

Example 3. Consider a system described by (4) with
the following parameters

a1 = 0.27, a2 = 0.65, a3 = 0.75, a12 = 0.2,

a13 = 0.2, a23 = 0.85, a123 = 0.25.

Apply Algorithm 1, we find that (44) is satisfied for all
δ∗2 and δ∗3 on the unit circle. We also find that ηr+ > 0,
ηr− > 0. Furthermore, (56), (57) and (58) are all satis-
fied, and ηc < 0. The corresponding minimizing param-
eters satisfy

cos(α) ≈ −0.2534, sin(α) ≈ ±0.9673,

cos(β) ≈ −0.5450, sin(β) ≈ ±0.8383.

Moreover, (46) is satisfied by δ∗2 , δ
∗
3 given in (50) and

(51) with α, β specified above. Therefore, the strong sta-
bility of the system cannot be determined as Algorithm
1 terminates in Step 5.

However, a definite answer can be easily reached by us-
ing Algorithm 2 based on Theorem 7. Indeed, it can be
checked that both (66) and (67) are satisfied for all δ∗1 and
δ∗3 on the unit circle, from which we conclude that the
system is strongly stable. As (11) is not satisfied, there
is no ODPSC model with this characteristic quasipoly-
nomial.

Example 4. Consider a system described by (4) with

the following parameters

a1 = 0.32, a2 = 0.7, a3 = 0.75, a12 = 0.32,

a13 = 0.32, a23 = 0.8, a123 = 0.32.

Similar to Example 2, (44) is satisfied for all δ∗2 and δ∗3
on the unit circle. The condition (45) is not satisfied by
the minimizing δ∗2 , δ

∗
3 given in (50) and (51) with

cos(α) ≈ −0.3898, sin(α) ≈ ±0.9208,

cos(β) ≈ −0.5111, sin(β) ≈ ±0.8594.

But the condition (46) is satisfied by this pair of δ∗2 and
δ∗3 , and Algorithm 1 terminates in Step 5 without a def-
inite conclusion about strong stability.

Applying Algorithm 2, we find (66) is not satisfied for all
δ∗1 and δ∗3 on the unit circle. Therefore, we can conclude
that the system is not strongly stable.

The parameters for the system satisfy (11), and for

D =


−0.32 1 3.33

−0.096 −0.7 1

−0.024 −0.275 −0.75

 ,

we have ∆1(s) = ∆(s). The conclusion about non-
strong stability can be confirmed by other methods
mentioned in Example 2.

7 Conclusions

For scalar difference equations of continuous time with
delays being the sum of a number of independent param-
eters, the following three conditions are equivalent: 1. It
is exponentially stable for a fixed set of rationally inde-
pendent parameters; 2. It is locally strongly stable; 3. It
is globally strongly stable. Although this conclusion is
similar to the case of ODPSC case, and all ODPSCmodel
share the same characteristic quasipolynomial with such
a scalar difference equation, the reverse is not always
true, and therefore, such a study is of independent inter-
est. The conditions for strong stability is developed. Es-
pecially, for the case of three or less independent param-
eters, the strong stability conditions can be determined
in finite steps.

The strong stability problem of a class of such systems
is equivalent to the structured singular value problem.
Therefore, the solution of this problem implies that
we have found a method to solve the structured singu-
lar value problem in finite steps when the uncertainty
structure is three or fewer complex scalar blocks.

Appendix
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Proof of Theorem 5. Let

c0 = 1 + a2δ
∗
2 , c1 = a3 + a23δ

∗
2 ,

d0 = a1 + a12δ
∗
2 , d1 = a13 + a123δ

∗
2 .

Then, (44) becomes

|d0 + d1δ
∗
3 | < |c0 + c1δ

∗
3 |. (93)

Take square on both sides of the above inequality and
expand, we obtain

|d0|2 + |d1|2 − |c0|2 − |c1|2 < 2Re[(c̄0c1 − d̄0d1)δ
∗
3 ]. (94)

This is true for all |δ∗3 | = 1 if and only if

|d0|2 + |d1|2 − |c0|2 − |c1|2 < −2|c̄0c1 − d̄0d1|, (95)

which can be equivalently expressed as{ [
|d0|2 + |d1|2 − |c0|2 − |c1|2

]2
> 4|c̄0c1 − d̄0d1|2,

|d0|2 + |d1|2 − |c0|2 − |c1|2 < 0.
(96)

Set δ∗2 = eiθ, θ ∈ [0, 2π], and let

κ(θ) = C2e
2iθ + C1e

iθ + C1e
−iθ + C2e

−2iθ + C0,

then the first inequality of (96) can be written as

κ(θ) > 0. (97)

Notice that min
θ∈[0,2π]

κ(θ) is achieved by θ that satisfies

dκ

dθ
= 0,

or

2C4e
2iθ + C3e

iθ − C2e
−iθ − 2C1e

−2iθ = 0. (98)

Let z = eiθ, then (98) becomes (48), which is a fourth
order polynomial equation of z. There are four solutions
of z to this equation. However, only those solutions on
the unit circle are potential candidates for κ(θ) to reach
minimum. Because κ(θ) = p1(e

iθ), it is obvious that
min
θ

κ(θ) > 0 if and only if p1(z
∗
i ) > 0 for all the solutions

z∗i of (48) that are on the unit circle.

It is easy to see that the second inequality of (96) is
equivalent to −2|g2| > g1. This completes the proof. �

Proof of Theorem 6. First, assume a2 ̸= 0, a3 ̸= 0,
and a23 ̸= 0. Note that min η(α, β) is achieved by (α, β)

that satisfy

∂η

∂α
= 0,

∂η

∂β
= 0,

or

a2sin(α) + a23sin(α+ β) = 0, (99)

a3sin(β) + a23sin(α+ β) = 0. (100)

It follows from (99) and (100) that (62) holds. By using
(62), (99) becomes

sin(α)[a2a3 + a3a23cos(β) + a2a23cos(α)] = 0. (101)

It can be seen that a solution of (101) must satisfy either

a2a3 + a3a23cos(β) + a2a23cos(α) = 0, (102)

or

sin(α) = 0. (103)

For (102), we have

cos(β) = − a2
a23

− a2
a3

cos(α). (104)

From (62) and (104), we obtain

1−
[
a2
a23

+
a2
a3

cos(α)

]2
=

a22
a23

[
1− cos2(α)

]
,

which can be solved for cos(α) to obtain (59). A substi-
tution of (104) by (59) yields (60). Because |cos(α)| ≤ 1
and |cos(β)| ≤ 1, a real solution of (59) and (60) exists
if and only if (57) and (58) hold. A substitution of (52)
by (59)-(62) yields (63).

For (103), one has α = 0 or α = π. For α = 0, we have

min
α,β

η(α, β) =min
β

{1 + a2 + a3cos(β) + a23cos(β)}

= 1 + a2 − |a3 + a23|, (105)

which is (54). For α = π, we have

min
α,β

η(α, β) =min
β

{1− a2 + a3cos(β)− a23cos(β)}

= 1− a2 − |a3 − a23|, (106)

which is (55).

Finally, if a2 = 0, then obviously α and β can be chosen
such that

min
α,β

η(α, β) = 1− |a3| − |a23|.
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This is already included in (54) and (55). It can be sim-
ilarly shown that other cases (a3 = 0 or a23 = 0) are
also already included in (54) and (55). This completes
the proof. �

References

[1] Avellar C, and Hale J. On the zeros of exponential
polynomials. Journal of Mathematical Analysis and
Applications, vol. 73, no. 2, pp. 434-452, 1980.

[2] Corduneanu C. Almost Periodic Functions. Interscience
Publishers, 1968.

[3] Doyle J. Analysis of feedback systems with structured
uncertainties. IEE Proceedings D, vol. 129, no. 6, pp. 242-
250, 1982.

[4] Doyle J, Wall J, and Stein G. Performance and robustness
analysis for structured uncertainty. In Proceedings of the 21th
IEEE Conference on Decision and Control, pp. 629-636, 1982.

[5] Gu K. A review of some subtleties of practical relevance
for time-delay systems of neural type. ISRN Applied
Mathematics, vol. 2012, article ID 725783, 46 pages, 2012.

[6] Gu K, and Zheng X. Stability crossing set for systems
with three scalar delay channels. International Journal of
Dynamics and Control, vol. 2, pp. 164-197, 2014.

[7] Hale J, and Verduyn Lunel S. Introduction to Functional
Differential Equations. Springer, New York, NY, USA, 1993.

[8] Hale J, and Verduyn Lunel S. Strong stabilization of
neutral functional differential equations. IMA Journal of
Mathematical Control and Information, vol. 19, no. 1-2, pp.
5-23, 2002.

[9] Henry D. Linear autonomous neutral functional differential
equations. Journal of Differential Equations, vol. 15, no. 1,
pp. 106-128, 1974.

[10] Ma Q, Gu K, and Choubedar N. Further results on the
strong stability of difference equations of continuous time. In
Proceedings of the 20th World Congress of the International
Federation of Automatic Control, Toulouse, France, July 9-
14, pp. 13860-13865, 2017.

[11] Melvin W. Stability properties of functional
difference equations. Journal of Mathematical Analysis and
Applications, vol. 48, no. 3, pp. 749-763, 1974.
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