
Southern Illinois University Edwardsville
SPARK

SIUE Faculty Research, Scholarship, and Creative Activity

2016

Zeon Roots
Lisa M. Dollar
Southern Illinois University Edwardsville, lisamariedollar@gmail.com

G. Stacey Staples
Southern Illinois University Edwardsville, sstaple@siue.edu

Follow this and additional works at: http://spark.siue.edu/siue_fac

Part of the Algebra Commons, and the Discrete Mathematics and Combinatorics Commons

This Article is brought to you for free and open access by SPARK. It has been accepted for inclusion in SIUE Faculty Research, Scholarship, and
Creative Activity by an authorized administrator of SPARK. For more information, please contact magrase@siue.edu.

Recommended Citation
Dollar, Lisa M. and Staples, G. Stacey, "Zeon Roots" (2016). SIUE Faculty Research, Scholarship, and Creative Activity. 60.
http://spark.siue.edu/siue_fac/60

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Southern Illinois University Edwardsville

https://core.ac.uk/display/214102629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://spark.siue.edu?utm_source=spark.siue.edu%2Fsiue_fac%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://spark.siue.edu/siue_fac?utm_source=spark.siue.edu%2Fsiue_fac%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://spark.siue.edu/siue_fac?utm_source=spark.siue.edu%2Fsiue_fac%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=spark.siue.edu%2Fsiue_fac%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=spark.siue.edu%2Fsiue_fac%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://spark.siue.edu/siue_fac/60?utm_source=spark.siue.edu%2Fsiue_fac%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:magrase@siue.edu


Zeon Roots

Lisa M. Dollar, G. Stacey Staples∗

Abstract

Zeon algebras can be thought of as commutative analogues of
fermion algebras, and they can be constructed as subalgebras within
Clifford algebras of appropriate signature. Their inherent combinato-
rial properties make them useful for applications in graph enumeration
problems and evaluating functions defined on partitions. In this paper,
kth roots of invertible zeon elements are considered. More specifically,
conditions for existence of roots are established, numbers of existing
roots are determined, and computational methods for constructing
roots are developed. Recursive and closed formulas are presented,
and specific low-dimensional examples are computed with Mathemat-
ica. Interestingly, Stirling numbers of the first kind appear among
coefficients in the closed formulas.
AMS Subj. Classifications: 05E15, 15A66, 81R05
Keywords: zeons, root, Clifford algebra, Stirling number

1 Introduction

Zeon algebras were first defined and applied to graph theory in [13], although
the name “zeon algebra” was first used by Feinsilver [2, 3]. They arise as com-
mutative subalgebras of fermions (generated by disjoint pairs of fermions),
and can be constructed as subalgebras of Clifford algebras.

Combinatorial properties of zeons have been shown to generate Stirling
numbers of the second kind, Bell numbers, Catalan numbers, and Bessel
numbers [8]. Further, they have been useful in defining partition-dependent

∗Department of Mathematics and Statistics, Southern Illinois University Edwardsville,
Edwardsville, IL 62026-1653,USA, email: sstaple@siue.edu
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stochastic integrals. In fact, expanding powers of zeon elements is equivalent
to summing over partitions [9].

Weighting the vertices of a graph with zeon generators allows one to
construct a nilpotent adjacency matrix, A, whose entries are generators of the
algebra. The matrix is very convenient for performing symbolic computations
and allows enumeration of cycles by considering traces of matrix powers. This
idea has led to a number of applications to graph enumeration problems and
even routing problems in communication networks [10].

Recently, combinatorial identities involving zeons have been studied in
a number of works by A.F. Neto [4, 5, 6, 7]. In these works, Bernoulli
numbers, m-Stirling numbers of the second kind, higher order derivatives
of trigonometric functions, and representations of Bernoulli polynomials are
presented in the context of zeon algebras.

The current paper is an extension of work begun in Dollar’s master’s
thesis [1]. It is the first work exploring the basic algebraic properties of the
abelian multiplicative group formed by the algebra’s non-nilpotent elements.
Necessary and sufficient conditions are established for the existence of kth
roots, recursive and closed formulas are given for their construction, and a
number of examples are provided using Mathematica.

The remainder of the paper is laid out thusly. Terminology and notational
conventions are established in subsection 1.1. Group-theoretic properties
of invertible zeons, including conditions for invertibility and formulas for
computing inverses, are established in Section 2. Existence of kth roots
and recursive formulations of those roots are established in Section 3 before
explicit closed formulas for kth roots are established in Section 4. The paper
closes with concluding remarks in Section 5.

Examples appearing throughout the paper were computed using Math-
ematica with the CliffMath [11] and CliffSymNil [12] packages. These
packages, along with more examples, can be found through the Research link
at http://www.siue.edu/~sstaple.

1.1 Preliminaries

Let C`nnil denote the real abelian algebra generated by the collection {ζi} (1 ≤
i ≤ n) along with the scalar 1 = ζ0 subject to the following multiplication
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rules:

ζi ζj = ζj ζi for i 6= j, and

ζi
2 = 0 for 1 ≤ i ≤ n.

It is evident that a general element α ∈ C`nnil can be expanded as

α =
∑
I∈2[n]

αI ζI ,

where I ∈ 2[n] is a subset of the n-set, [n] := {1, 2, . . . , n}, used as a multi-

index, αI ∈ R, and ζI =
∏
ι∈I

ζι. The algebra C`nnil is called the (n-particle)

zeon algebra.
As a vector space, this 2n-dimensional algebra has a canonical basis of

basis blades of the form {ζI : I ⊆ [n]}. The null-square property of the
generators {ζi : 1 ≤ i ≤ n} guarantees that the product of two basis blades
satisfies the following:

ζIζJ =

{
ζI∪J I ∩ J = ∅,
0 otherwise.

(1.1)

An inner product is defined on C`nnil by linear extension of〈∑
I∈2[n]

uIζI , ζJ

〉
= uJ .

Hence, any elements u ∈ C`nnil can be expanded as u =
∑
I∈2[n]

〈u, ζI〉 ζI .

For convenience, arbitrary elements of C`nnil will be referred to simply as
“zeons.” Using the basic notions above, some computational tools can be
developed and some properties can be established.

2 Group Properties

Since C`nnil is an algebra, its elements form a commutative multiplicative
semigroup. It is not difficult to establish convenient formulas for expanding
products of zeons.
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Lemma 2.1. Let α, β ∈ C`nnil and write α =
∑
I∈2[n]

αIζI and β =
∑
I∈2[n]

βIζI .

Let the product γ = αβ be written γ =
∑
I∈2[n]

γIζI . For fixed multi-index I,

the corresponding coefficient of ζI in γ is given by

γI =
∑
K⊆I

αKβI\K .

Proof. The result follows immediately from γ =

(∑
K

αKζK

)(∑
J

βJζJ

)
in

light of (1.1).

For convenience, a collection of pairwise-disjoint subsets of 2[n] is denoted
by {I1| . . . |Ik}. Such a collection is said to be independent if its elements are
pairwise disjoint.

Lemma 2.2. Let α ∈ C`nnil and write α =
∑
I∈2[n]

αIζI . For positive inte-

ger k, let γ = αk be written γ =
∑
I∈2[n]

γIζI . For fixed multi-index I, the

corresponding coefficient of ζI in γ is given by 1

γI =
k∑
j=0

k!

j!
α∅

j
∑
π∈P(I)
|π|=k−j

aπ.

Proof. Applying the multinomial theorem, the null-square property of zeon

1By convention, define α∅
0 = 1 when α∅ = 0.
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generators yields∑
I∈2[n]

αIζI

k

=
∑

0≤`∅,...,`[n]
`0+...+`2[n]

=k

(
k

`∅, . . . , `[n]

) ∏
I∈2[n]

αI
`IζI

`I

=
k∑
j=0

(
k

j

)
α∅

j
∑

{I1|...|Ik−j}
independent

(k − j)!ζI1∪···∪Ik−j
k−j∏
`=1

aI`

=
k∑
j=0

k!

j!
α∅

j
∑

{I1|...|Ik−j}
independent

ζI1∪···∪Ik−j

k−j∏
`=1

aI` .

Evaluating the coefficient of a particular basis blade ζJ is thereby accom-
plished by considering a sum over partitions of the multi-index J . More
specifically, letting P(J) denote the collection of partitions of J ,

〈∑
I∈2[n]

αIζI

k

, ζJ

〉
=

k∑
j=0

k!

j!
α∅

j
∑
π∈P(J)
|π|=k−j

k−j∏
`=1

aπ`

=
k∑
j=0

k!

j!
α∅

j
∑
π∈P(J)
|π|=k−j

aπ.

Proposition 2.3. Let α =
∑
I∈2[n]

αIζI ∈ C`nnil. Write α = α∅ + β, where

β =
∑

∅6=I∈2[n]
αIζI = α − α∅ is nilpotent of index k. It follows that α is

invertible if and only if α∅ 6= 0, and setting

α′ =
k∑
j=1

(−1)j−1α∅
−jβj−1

one sees that αα′ = α′α = 1.
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Proof. Note that writing α = α∅ + β, where β =
∑

∅6=I∈2[n]
αIζI , one sees

immediately that β is nilpotent; i.e., βk = 0 for some positive integer k ≤
n+ 1. Consequently, α is not invertible if α∅ = 0.
Claim: For positive integer k,

α

(
k∑
j=1

(−1)j−1α∅
−jβj−1

)
= 1 + (−1)k−1α∅

−kβk.

Proof of the claim proceeds by induction on k. When k = 1, one finds

αα∅
−1 = (α∅ + β)α∅

−1 = 1− α∅−1β.

Assuming the result holds for some k ≥ 1, one finds

α

(
k+1∑
j=1

(−1)j−1α∅
−jβj−1

)

= α

(
k∑
j=1

(−1)j−1α∅
−jβj−1

)
+ (−1)kα

(
α∅
−(k+1)βk

)
= 1 + (−1)k−1α∅

−kβk + (−1)k(α−kβk + α−(k+1)βk+1)

= 1 + (−1)kα∅
−(k+1)βk+1.

This establishes the claim. It follows immediately that when β is nilpotent
of index k,

α

(
k∑
j=1

(−1)j−1α∅
−jβj−1

)
= 1 + (−1)k−1α∅

−kβk

= 1.

Lemma 2.4. If α ∈ C`nnil is invertible, then the inverse is unique.

Proof. Suppose αα′ = αγ = 1. Then, α′ = (αγ)α′ = (γα)α′ = γ(αα′) =
γ.

6



Lemmas 2.1 and 2.4 imply that for any positive integer n, the invertible
elements of C`nnil form an abelian multiplicative group. For convenience, this
group is denoted by C`nnil?. In particular,

C`nnil? :=
{
α ∈ C`nnil : α∅ 6= 0

}
.

Lemma 2.5. Every element of C`nnil is either nilpotent or invertible.

Proof. Let α ∈ C`nnil. If α∅ 6= 0, then α−1 exists. If α∅ = 0, then a simple
application of the multinomial theorem shows that αn+1 = 0.

Lemma 2.6. The nilpotent elements of C`nnil form a maximal ideal, hence-
forth denoted C`nnil0.

Proof. Closure under addition and multiplication is obvious. To see that the

nilpotent elements form an ideal, let α = α∅+ β, where β =
∑

∅6=I∈2[n]
αIζI and

α∅ 6= 0. Let γ ∈ C`nnil be nilpotent, i.e., assume γ∅ = 0. Then,

〈αγ〉0 = α∅0 = 0.

Denoting this ideal by C`nnil0 , maximality is established by noting that the
quotient C`nnil/C`nnil0 is isomorphic to the field of real numbers.

Definition 2.7. For n ∈ N, C`nnil? is defined to be the collection of invertible
elements in C`nnil. That is,

C`nnil? = {u ∈ C`nnil : u∅ 6= 0}.

Clearly, C`nnil? is closed under (commutative) zeon multiplication, has
multiplicative identity 1, and every element is invertible by Proposition 2.3.
Hence, the following lemma is established.

Lemma 2.8. The invertible zeons C`nnil? form an abelian group under mul-
tiplication.

3 Existence and Recursive Formulations of

Zeon Roots

As will be shown, invertible zeons have roots of all odd orders and roots of
all even orders when their scalar parts are positive. A recursive algorithm
establishes their existence and provides a convenient method for their com-
putation.
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Theorem 3.1. Let w ∈ C`nnil?, and let k ∈ N. Then, ∃u ∈ C`nnil? such that
uk = w, provided w∅ > 0 when k is even. Further, writing w = ϕ + ζ{n}ψ,

where ϕ, ψ ∈ C`n−1nil, u is computed recursively by

u = w1/k = ϕ1/k + ζ{n}
1

k
ϕ−(k−1)/kψ.

Proof. Assuming w ∈ C`nnil? guarantees w∅ 6= 0, so the scalar part of w has
odd roots of all orders. Even-order roots w∅

1/k exist for positive values of w∅.
Proof is by induction on n. When n = 1, let w = a+ bζ{1}, where w∅ = a.

Applying the binomial theorem and null-square properties of zeon generators,
one finds(

a1/k +
b

ka(k−1)/k
ζ{1}

)k
= a+ ka(k−1)/k

b

ka(k−1)/k
ζ{1} = a+ bζ{1}.

Next, suppose the result holds for some n − 1 ≥ 1 and let w ∈ C`nnil be
written w = ϕ + ζ{n}ψ, where ϕ, ψ ∈ C`n−1nil. In particular, this implies

ϕ ∈ C`nnil?. Let α = ϕ1/k, and let u = α +
1

k
ζ{n}α

−(k−1)ψ. Then

uk =

(
α + ζ{n}

1

k
α−(k−1)ψ

)k
= ϕ+ kα(k−1) 1

k
ζ{n}α

−(k−1)ψ

= ϕ+ ζ{n}ψ

= w.

3.1 Counting Zeon Roots

Whenever an element u ∈ C`nnil has a kth root, a natural question that arises
is “How many kth roots does u have?” Perhaps not surprisingly, the answer
depends on whether u is nilpotent or invertible.

For example, an element of the form u = aζI ∈ C`nnil0 , where a 6= 0 and

|I| ≥ 2, has infinitely many square roots of the form x = bζJ +
a

b
ζI\J , where

∅ 6= J ( I and b 6= 0, since

x2 =
(
bζJ +

a

2b
ζI\J

)2
= 2b

a

2b
ζJ∪(I\J) = aζI = u.

This result generalizes to kth roots of zeon monomials as follows.
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Lemma 3.2 (Roots of nilpotent monomials). Let u = aζI ∈ C`nnil0, where
a 6= 0 and I 6= ∅. For positive integer k (2 ≤ k ≤ |I|), the element u has
infinitely many kth roots of the form

x =
k∑
`=1

b`ζJ` ,

where I = J1t· · ·tJk is any k-block partition of I and
k∏
`=1

b` =
a

k!
. Moreover,

no kth roots exist when k > |I|.

Proof. Applying Lemma 2.2,

xk =

(
k∑
`=1

b`ζJ`

)k

= k!
k∏
`=1

b`ζJ` = k!
a

k!
ζJ1∪···∪J` = aζI = u.

It is not difficult to see that the monomial aζI has no kth roots when k > |I|
because the necessary partitioning of I is impossible.

Constructing roots of more general nilpotent elements lies beyond the
scope of the current work. Of particular interest here is determining numbers
of kth roots of invertible elements of C`nnil.

Theorem 3.3. Let α ∈ C`nnil?, and let k ∈ N. Then, assuming α∅ > 0 when
k is even,

]{u : uk = α} =

{
1 when k ≡ 1 (mod 2),

2 when k ≡ 0 (mod 2).

Proof. Note that the choice of scalar term, u∅, is unique when k is odd. Now
suppose uk = α = vk, and observe that u− v is nilpotent. Writing u = a+ β
for some nilpotent β, it follows that v = a+ γ for nilpotent γ. Observe that
the product αδ of an invertible element α and a nilpotent δ, is zero if and
only if δ = 0, since 0 = α−10 = δ. Hence, assuming uk = vk, one finds

uk − vk = (u− v)(uk−1 + uk−2v + · · ·+ vk−1)

= (u− v)
[
(ak−1 + δ1) + (ak−1 + δ2) + · · ·+ (ak−1 + δk)

]
= (u− v)

[
kak−1 + δ

]
,
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where δ = δ1+ · · ·+δk is nilpotent by the ideal property of C`nnil0 established
in Lemma 2.6. It is clear that kak−1+δ is invertible, so (u−v)(kak−1+δ) = 0
implies (u− v) = 0.

In the case of even k, there are two possible choices for the scalar term,
±u∅. In one of these cases, uk = vk implies u− v is nilpotent and the proof
proceeds as above. In the other case, uk = vk implies u + v is nilpotent.
Considering this case in detail, one writes u = a + β and v = −a + γ for
nilpotent elements β and γ. For even values of k, a little algebra thereby
yields

uk − vk = (u+ v)
(
uk−1 − uk−2v + · · ·+ (−1)k−1vk−1

)
= (u+ v)

[
(ak−1 + δ1)− (−ak−1 + δ2) + · · · − (−ak−1 + δk)

]
= (u+ v)

[
kak−1 + (δ1 − δ2 + · · · − δk)

]
.

Letting δ = δ1 − δ2 + · · · − δk, one sees that (u + v)(kak−1 + δ) = 0 implies
(u+ v) = 0 as before. Hence, u = −v.

Given an invertible zeon u and even positive integer k, it now makes
sense to define the principal kth root of u as the zeon w satisfying w∅ > 0
and wk = u. All roots of odd order can be considered principal.

Example 3.4. Consider the following zeon element of C`5nil:

396ζ{1,2} − 108ζ{1,3} − 108ζ{1,4} − 396ζ{1,5} + 324ζ{2,3} + 324ζ{2,4}

−1332ζ{2,5} − 432ζ{3,4} − 324ζ{3,5} − 324ζ{4,5} + 72ζ{1,2,3} − 36ζ{1,2,4}

+1014ζ{1,2,5} + 144ζ{1,3,4} − 72ζ{1,3,5} − 72ζ{1,4,5} + 720ζ{2,3,4}

+1080ζ{2,3,5} + 1620ζ{2,4,5} − 720ζ{3,4,5} − 732ζ{1,2,3,4} − 318ζ{1,2,3,5}

−624ζ{1,2,4,5} + 624ζ{1,3,4,5} + 204ζ{2,3,4,5} − 864ζ{1,2,3,4,5} − 108ζ{1}

−540ζ{2} + 540ζ{5} + 216.

Applying the result of Theorem 3.1, the principal eighth root of u is deter-
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mined to be

63/8 −
33/8ζ{1}
8 25/8

+
5 33/8ζ{5}

8 25/8
+

71ζ{1,2}
128 65/8

+
35 33/8ζ{1,5}

128 25/8
+

3 33/8ζ{2,3}
8 25/8

+
3 33/8ζ{2,4}

8 25/8
+

175 33/8ζ{2,5}
128 25/8

+
7 33/8ζ{1,3,5}

64 25/8
+

7 33/8ζ{1,4,5}
64 25/8

+
15 33/8ζ{2,4,5}

64 25/8
+

35 33/8ζ{3,4,5}
32 25/8

+
2009 33/8ζ{1,2,3,5}

2048 25/8
+

2569 33/8ζ{1,2,4,5}
2048 25/8

+
997ζ{1,3,4,5}
1536 65/8

+
63 33/8ζ{2,3,4,5}

64 25/8
+

13 33/8ζ{1,2,3,4,5}
512 25/8

−
33/8ζ{3,4}

2 25/8

−
5 33/8ζ{2}

8 25/8
−

33/8ζ{1,3}
8 25/8

−
33/8ζ{1,4}

8 25/8
−

3 33/8ζ{3,5}
8 25/8

−
3 33/8ζ{4,5}

8 25/8

−
25 33/8ζ{2,3,5}

64 25/8
−

21 33/8ζ{1,3,4,5}
64 25/8

−
5ζ{3,4,5}
2 65/8

−
ζ{1,3,5}
4 65/8

−
ζ{1,4,5}
4 65/8

−
11ζ{1,5}
8 65/8

−
37ζ{2,5}
8 65/8

−
5ζ{1,3,4}
32 65/8

−
25ζ{2,3,4}
32 65/8

−
5ζ{1,2,3}
64 65/8

−
29ζ{1,2,4}
64 65/8

−
61ζ{1,2,3,4}
1536 65/8

−
4519ζ{2,3,4,5}

1536 65/8
−

8243ζ{1,2,3,5}
3072 65/8

−
8987ζ{1,2,4,5}

3072 65/8
−

4135ζ{1,2,5}
6144 65/8

−
13321ζ{1,2,3,4,5}

24576 65/8
.

4 Explicit kth Root Formulas

While recursive constructions are convenient for proving existence of roots,
they do not give a clear picture of the algebraic structure. The goal now is
to give a more explicit formulation of zeon roots.

Given a polynomial function f(x) and a ∈ R, recall the Taylor series
expansion of f about a:

f(x) =
∞∑
j=0

f (j)(a)

j!
(x− a)j.

Writing arbitrary α ∈ C`nnil in the form α = a∅ + β, where β ∈ C`nnil0 , the
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formal Taylor series of f(α) about a∅ is defined by

f(α) =
∞∑
j=0

f (j)(a∅)

j!
(α− a∅)j

=
∞∑
j=0

f (j)(a∅)

j!
βj.

With the formal series in hand, an explicit formula for the principal kth root
is within reach.

Theorem 4.1. Let α ∈ C`nnil?, where n ≥ 1, and let k ≥ 2 be a positive
integer. The principal kth root of α is given by

u1/k = a∅
1/k +

∑
I 6=∅

 |I|∑
j=1

a∅
−j+ 1

k

j∑
`=0

S1(j, `)

k`

∑
π∈P(I)
|π|=j

aπ

 ζI .

Proof. Let u ∈ C`nnil be written in the form a∅ + β, where a∅ ∈ R is nonzero
and β is nilpotent of index m + 1. For fixed k ∈ N, let f(x) = x1/k and
consider the Taylor series expansion of f(u) expanded about a∅. In particular,

u1/k =
∞∑
j=0

f (j)(a∅)

j!
βj

=
m∑
j=0

f (j)(a∅)

j!
βj.

Let S1(j, `) denote the Stirling number of the first kind defined by the
following property: (−1)(j−`)S1(j, `) is the number of permutations of j ele-
ments that contain exactly ` cycles. It is well known that Stirling numbers
of the first kind are generated by the falling factorial (x)n. In light of this
result, it is not difficult to show that

dj

dxj
(x1/k) =

j∑
`=0

S1(j, `)

k`xj−1/k
.

Hence,

f (j)(a∅)

j!
=

1

j!

j∑
`=0

S1(j, `)

k`a∅j−1/k
=
a∅
−j+ 1

k

j!

j∑
`=0

S1(j, `)

k`
.
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Writing β =
∑
I 6=∅

aIζI , Lemma 2.2 gives βj = j!
∑
|I|≥j

ζI
∑
π∈P(I)
|π|=j

aπ, so that

u1/k =
m∑
j=0

f (j)(a∅)

j!
βj

= a∅
1/k +

m∑
j=1

a∅
−j+ 1

k

j!

j∑
`=0

S1(j, `)

k`
βj

= a∅
1/k +

m∑
j=1

a∅
−j+ 1

k

j!

j∑
`=0

S1(j, `)

k`
j!
∑
|I|≥j

∑
π∈P(I)
|π|=j

aπζI

= a∅
1/k +

m∑
j=1

a∅
−j+ 1

k

j∑
`=0

S1(j, `)

k`

∑
|I|≥j

∑
π∈P(I)
|π|=j

aπζI .

For fixed nontrivial multiindex I, the coefficient of ζI in u1/k is now given
by rearranging the summation: namely,

〈u1/k, ζI〉 =

|I|∑
j=1

a∅
−j+ 1

k

j∑
`=0

S1(j, `)

k`

∑
π∈P(I)
|π|=j

aπ.

Expanding u1/k in terms of basis blades then reveals the desired result:

u1/k = a∅
1/k +

∑
I 6=∅

 |I|∑
j=1

a∅
−j+ 1

k

j∑
`=0

S1(j, `)

k`

∑
π∈P(I)
|π|=j

aπ

 ζI .

Example 4.2. A closed formula for the principal 4th root of
∑
I∈2[2]

aIζI ∈

C`2nil, as computed by Mathematica, is

5a∅
(
a{1,2}ζ{1,2} + a{1}ζ{1} + a{2}ζ{2}

)
− 4a{1}a{2}ζ{1,2} + 25a∅

2

25a∅9/5
.

Collecting terms by basis blade, this is seen to be

4
√
a∅ +

a{1}ζ{1}
4a∅3/4

+
a{2}ζ{2}
4a∅3/4

+

(
4a∅a{1,2} − 3a{1}a{2}

)
ζ{1,2}

16a∅7/4
.
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4.1 Closed formulas for n = 1, 2, 3.

This approach leads to a number of dimension-dependent special formulas.
For example, in C`1nil? , the principal kth root of α = a∅ + a{1}ζ{1} is

α1/k = a∅
1/k +

a
1
k
−1
∅ a{1}ζ{1}

k
.

In C`2nil? , the principal kth root of α = a∅+a{1}ζ{1}+a{2}ζ{2}+a{1,2}ζ{1,2}
is

α1/k = a∅
1/k +

a∅
1
k
−1a{1}ζ{1}
k

+
a∅

1
k
−1a{2}ζ{2}
k

+

[
a∅

1
k
−1a{1,2}
k

+
a∅

1
k
−2a{1}a{2}
k2

−
a∅

1
k
−2a{1}a{2}
k

]
ζ{1,2}.

In C`3nil? , the principal kth root of α =
∑
I∈2[3]

aIζI is given by

α1/k = a∅
1/k +

a∅
1
k
−1a{1}
k

ζ{1} +
a∅

1
k
−1a{2}
k

ζ{2} +
a∅

1
k
−1a{3}
k

ζ{3}

+

[
a∅

1
k
−1a{1,2}
k

+
a∅

1
k
−2a{1}a{2}
k2

−
a∅

1
k
−2a{1}a{2}
k

]
ζ{1,2}

+

[
a∅

1
k
−1a{1,3}
k

+
a∅

1
k
−2a{1}a{3}
k2

−
a∅

1
k
−2a{1}a{3}
k

]
ζ{1,3}

+

[
a∅

1
k
−1a{2,3}
k

+
a∅

1
k
−2a{2}a{3}
k2

−
a∅

1
k
−2a{2}a{3}
k

]
ζ{2,3}

+

[
a∅

1
k
−3a{1}a{2}a{3}

k3
−

3a∅
1
k
−3a{1}a{2}a{3}

k2
+

2a∅
1
k
−3a{1}a{2}a{3}

k

]
ζ{1,2,3}

+

[
a∅

1
k
−2a{3}a{1,2}
k2

+
a∅

1
k
−2a{2}a{1,3}
k2

−
a∅

1
k
−2a{3}a{1,2}

k

]
ζ{1,2,3}

+

[
a∅

1
k
−2a{1}a{2,3}
k2

−
a∅

1
k
−2a{2}a{1,3}

k
−
a∅

1
k
−2a{1}a{2,3}

k

]
ζ{1,2,3}

+
a∅

1
k
−1a{1,2,3}
k

ζ{1,2,3}.
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5 Concluding Remarks

Combinatorial applications of zeons have been studied in several papers in
recent years, primarily in the context of products and integral powers of
nilpotent elements. The current paper represents a logical step forward by
considering rational powers and group-theoretic properties of invertible zeons.
While their structure is easy to define, they offer some interesting revelations
(e.g. the discovery of Stirling numbers of the first kind in the closed formula
for kth roots) when examined in depth.
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