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Abstract
Classical approaches to multi-constrained routing problems gener-

ally require construction of trees and the use of heuristics to prevent
combinatorial explosion. Introduced here is the notion of constrained
path algebras and their application to multi-constrained path prob-
lems. The inherent combinatorial properties of these algebras make
them useful for routing problems by implicitly pruning the underlying
tree structures. Operator calculus (OC) methods are generalized to
multiple non-additive constraints in order to develop algorithms for
the multi constrained path problem and multi constrained optimiza-
tion problem. Theoretical underpinnings are developed first, then
algorithms are presented. These algorithms demonstrate the tremen-
dous simplicity, flexibility and speed of the OC approach. Algorithms
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are implemented in Mathematica and Java and applied to a problem
first proposed by Ben Slimane et al. as an example.

1 Introduction

The objective of Quality of Service (QoS) routing is to find a path from
a source to a destination using the minimum amount of network resources
such as energy consumption per route, residual battery power per node,
available time slots, etc. while satisfying various QoS constraints, such as
delay, reliability, etc.

When multiple routing metrics are considered, the problem becomes a
multi-constrained path problem, which has been mathematically proven to
be NP-complete [22]. In practice, however, these problems are often solved
in polynomial time. In fact, van Mieghem and Kuipers [21] suggest that QoS
routing in realistic networks may not be NP-complete. More specifically, they
suggest that QoS routing problems confined to a particular class of networks
(topology and link weight structure) may not be NP-complete.

Many heuristic and approximation algorithms have been developed to
identify paths given particular QoS requests. For example, in [23], Xue, et al.
study the NP-hard multi-constrained QoS routing problem of seeking a path
from a source to a destination in the presence of multiple additive end-to-
end QoS constraints. By considering an optimization version of the problem
in which the first constraint is enforced and the remaining constraints are
approximated, they obtain (1 + ε)-approximations for any ε.

In [8], Hou, et al. study an NP-complete routing problem with multiple
additive constraints, and develop an approximation algorithm using a novel
approach they call the “two-dimensional sampling scheme.” This technique
reduces the approximation error without increasing the computational com-
plexity.

While classical approaches to multi-constrained routing problems gener-
ally require construction of trees and the use of heuristics to prevent com-
binatorial explosion [7, 11], the operator calculus approach presented herein
allows such explicit tree constructions to be avoided. Introduced here is the
notion of constrained path algebras and their application to multi-constrained
path problems. The inherent combinatorial properties of these algebras make
them useful for routing problems by implicitly pruning the underlying tree
structures.

Algebraic approaches to QoS routing in the internet have been studied
for some time. In his algebraic approach of 2002, Sobrinho [17] defined an
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algebra of weights containing a binary operation for the composition of link
weights into path weights and an order relation. Sobrinho further showed
that for a generalized Dijkstra’s algorithm to yield optimal paths, it is both
necessary and sufficient for the algebra to have a property called isotonicity,
in which the order relation between the weights of any two paths is preserved
if both are prefixed or appended by a common third path.

Operator calculus (OC) methods on graphs have been developed in a
number of works by Schott and Staples [15, 16, 18, 19]. The principal idea
underlying the approach is the association of graphs with algebraic structures
whose properties reveal information about the associated graphs. For exam-
ple, an element a of a ring or algebra is said to be nilpotent if an = 0 for some
positive integer n. By constructing the “nilpotent adjacency matrix” associ-
ated with a finite graph, information about self-avoiding structures (paths,
cycles, trails, etc.) in the graph are revealed by computing powers of the
matrix. Cycles are removed from consideration automatically by the algebra
itself.

At the heart of the OC approach are “zeon” algebras, which can be con-
sidered a commutative version of the algebra of fermion creation (or anni-
hilation) operators well-known to quantum physicists. Nilpotent adjacency
matrices can be regarded as quantum random variables in an algebraic prob-
ability space [16]. The OC algorithms presented here are most naturally
expressed in the language of operator theory using Dirac notation. Gener-
alizations of zeon algebras provide tools for sieving out paths with multi-
dimensional weights (or costs) simultaneously satisfying a number of con-
straints [14]. Paths whose weights exceed any of the constraints are zeroed
out by the algebra’s nilpotent properties.

In this paper, the impact of the OC approach is further extended by devel-
oping a “constraints algebra” that automatically removes from consideration
any path whose weight fails to simultaneously satisfy multiple constraints.
The resulting constrained path algebra is then used to devise algorithms for
computing multi-constrained paths in weighted graphs.

Unlike Sobrinho’s approach, the OC approach does not involve Dijkstra’s
algorithm, and the algebras involved are all derived from algebras already
known from quantum physics. The OC approach is well suited for imple-
mentation in a computer algebra system, e.g. Mathematica, and can be
approached with tools of operator theory and linear algebra. Unlike algo-
rithms relying on Dijkstra’s algorithm (e.g., SAMCRA [10] and Sobrinho’s
algorithm), the OC approach works with negative edge weights. Further, the
OC approach simultaneously finds all feasible multi-constrained paths (on
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the minimum number of hops) between a source and a target.
Consider a directed graph G = (V,E) on n vertices such that associated

with each edge (vi, vj) ∈ E is a vector weight wij = (wij1, . . . , wijm) ∈ Rm.
The point w∗ = (w∗

1, . . . , w
∗
m) ∈ X ⊂ Rm is referred to as a Pareto minimum

of X if there does not exist w = (w1, . . . , wm) ∈ X such that

(∀i) [wi ≤ w∗
i ], and (1.1)

(∃j) [wj < w∗
j ]. (1.2)

Equivalently, one says that w∗ is nondominated from below.
Defining the weight of a path in an edge-weighted graph as the sum of

vector weights of arcs contained in the path, a Pareto path is then a path
whose weight is a Pareto minimum.

For the case m = 1, Dijkstra’s algorithm finds all single source minimum
paths in a directed graph on n vertices with nonnegative edge weights in
O(n2) time [5]. The Bellman-Ford algorithm finds single source minimal
paths in digraphs with arbitrary edge weights and runs in O(n |E|) time [1, 6].

In the more general case m ≥ 1, Corley and Moon [3] presented an
algorithm for finding all Pareto paths with complexity O(mn2n−3 + mnn).

The aim of the current work is to find generalized Pareto paths satisfy-
ing multiple constraints involving weights that are not necessarily additive.
In place of vector addition, m-weights will be allowed arbitrary associative
binary operations assigned componentwise. In place of the ordinary real
relational operators ≤ and <, more general transitive relations will be con-
sidered.

2 Operator Calculus Approach

A simple example of the task at hand is to compute all feasible hop-minimal
paths from v1 to v5 in the five-node graph of Figure 1. Each edge is weighted
with a pair of additive weights subject to the constraints vector (0.5, 100),
so that a path p of multiweight (w1, w2) is feasible only if w1 ≤ 0.5 and
w2 ≤ 100. This problem will be solved in Example 2.18 using algebraic tools
developed below.

Definition 2.1. Let m ∈ N, and let C ∈ Rm. Let ∗ denote an m-tuple of
associative binary operations on R. Let R = (R1, . . . , Rm) denote an m-tuple
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Figure 1: Five node multi-weighted graph.

of reflexive, transitive, antisymmetric relations on R, and note that R itself
is a transitive relation on Rm. The vector C is called the constraint vector
relative to the constraints relation R. A vector x ∈ Rm is said to satisfy C,
denoted x 	 C, if and only if

(x,C) ∈ R.

In particular, x 	 C if and only if (xi, ci) ∈ Ri for all i = 1, . . . ,m. Equiva-
lently, one writes

x 	 C ⇔ xi 	i ci ∀i ∈ {1, . . . , m}.
Note that for each i = 1, . . . ,m, the relation Ri determines a partial order
on R; i.e., for 1 ≤ i ≤ m,

(xi 	i yi) ∧ (yi 	i xi) ⇒ xi = yi.

Given a finite graph G in which each edge is weighted with an m-tuple
of nonnegative integers and a constraint vector C = (c1, . . . , cm) ∈ Rm, the
multi-constrained path problem is defined as follows.

Definition 2.2. The Multi-Constrained Path problem (or MCP problem) is
to find paths p from source vertex v0 to target vertex v∞ in the graph G such
that

wt(p) 	 (c1, . . . , cm) = C.
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Given an initial vertex v0 and terminal vertex v∞ in a weighted graph, the
collection of feasible paths from v0 to v∞ refers to all paths whose associated
total costs satisfy some predefined constraints. Among these feasible paths,
an optimal or preferred path can then be chosen.

For convenience, P will denote the set of all paths in the graph, G, and
P will denote the set of all feasible paths in G, i.e.,

P := {p ∈ P : wt(p) 	 C}.

An important variant of the MCP problem that is of particular interest
is the associated optimization problem.

Definition 2.3. Letting v0 and v∞ denote fixed source and target vertices in
a multi-weighted graph G, the Multi-Constrained Optimal Path problem (or
MCOP problem) is to find a path p = (v0, . . . , v∞) ∈ P such that

wt(p) 	 wt(q) ∀q ∈ P.

Given a constraint vector C = (c1, . . . , cm) ∈ Rm, a path p is deemed
feasible if its vector weight satisfies

wt(p) = (w1, . . . , wm) 	 C.

Let P denote the collection of all feasible paths in G. Fixing source vertex
v0 and target vertex v∞, the goal is to find a path in p = (v0, . . . , v∞) ∈ P

whose weight is a Pareto minimum. The operator calculus approach de-
scribed herein can be applied to sieve out the collection of feasible paths and
recover all single-source Pareto paths remaining.

Under the assumption that G has no multiple edges, paths are uniquely
determined by vertex sequences; e.g., p = (p0, . . . , p�). Let wi denote the
multi-weight of the ith edge in the path p. The weight of p is then defined
by

wt(p) := w1 ∗ w2 ∗ · · · ∗ w�.

Definition 2.4. The constraints algebra, denoted AC, is the real associative
unital algebra generated by {ξx : x ∈ Rm} with (formal) unit ξ0 having
multiplication defined according to

ξx ξy :=

{
ξx∗y if x ∗ y 	 C,

0 otherwise.
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Example 2.5. Consider m = 3, ∗ = (+, ·, max), C = (10, 20, 50), and
R = (≤,≤,≥). In this case,

ξ(1,4,10) ξ(9,3,80) = ξ(1+9,4·3,max{10,80}) = ξ(10,12,80).

On the other hand, because 1 + 12 > 10 and also because max{30, 35} < 50,
one finds

ξ(1,4,30) ξ(12,3,35) = 0.

In this example, the multiplicative identity (unit) of A(10,20,50) is formally
defined as ξ0 := ξ(0,1,−∞).

Given a constraint vector C = (c1, . . . , cm) ∈ Rm, properties of the con-
straints algebra AC can be used to sieve out the feasible paths from the
collection of all paths. The feasible paths can then be ranked and an optimal
path chosen.

For fixed positive integer n, consider alphabet Σn := {ωi : 1 ≤ i ≤ n}.
For convenience, we adopt the following ordered multi-index notation. In
particular, letting u = (u1, . . . , uk) for some k, the notation ωu will be used
to denote a sequence (or word) of distinct symbols of the form

ωu := ωu1ωu2 · · ·ωuk
.

Appending 0 to the set Σn, multiplication is defined on the words con-
structed from elements of Σn by

ωuωv =

{
ωu .v if u ∩ v = ∅,
0 otherwise,

where u .v denotes sequence concatenation.
One thereby obtains the noncommutative semigroup Ωn, whose elements

are the symbol 0 along with all finite words on distinct generators (i.e., finite
sequences of distinct symbols from the alphabet Σn). Since there are only
n generators, it is clear that the maximum multi-index size of semigroup
elements is n. Moreover, these symbols can appear in any order so that

the order of the semigroup is
n∑

k=0

(
n

k

)
k! =

n∑
k=0

(n)k. Here, (n)k denotes the

falling factorial.
Defining (vector) addition and real scalar multiplication on the semigroup

yields the semigroup algebra RΩn of dimension |Ωn|. This semigroup algebra
will be referred to as a path algebra. The next step is defining a nilpotent
adjacency matrix that preserves path-identifying information.
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Definition 2.6. Let G = (V,E) be a graph on n vertices, either simple or
directed with no multiple edges. Let {ωi}, 1 ≤ i ≤ n denote the null-square,
noncommutative generators of RΩn. Define the path-identifying nilpotent
adjacency matrix Ξ associated with G as the n × n matrix

Ξij =

{
ωj if (vi, vj) ∈ E,

0 otherwise.
(2.3)

Given a labeling of V by the n-set, [n] := {1, . . . , n}, and recalling Dirac
notation, the ith row of Ξ is conveniently denoted by 〈vi|Ξ while the jth

column is denoted by Ξ |vj〉. In this way, Ξ is completely determined by

〈vi|Ξ|vj〉 =

{
ωj if there exists a directed edge vi → vj in G,

0 otherwise,

for all vertex pairs (vi, vj) ∈ E.

Theorem 2.7. Let Ξ be the path-identifying nilpotent adjacency matrix of
an n-vertex graph G. For any k > 1 and 1 ≤ i �= j ≤ n,

ωi

〈
vi|Ξk|vj

〉
=

∑
k-paths w:vi→vj

ωw.

Moreover, 〈
vi|Ξk|vi

〉
=

∑
k-cycles w based at vi

ωw.

More specifically, when i �= j, the product of ωi with the entry in row i,
column j of Ξk is a sum of basis blades indexed by k-step paths vi → vj in
G. Moreover, entries along the main diagonal of Ξk are sums of basis blades
indexed by the graph’s k-cycles.

Proof. The result follows from straightforward mathematical induction on k
using properties of the multiplication in RΩn with the observation that the
initial vertex of the walk, vi, is unaccounted for in 〈vi|Ξk|vj〉, as seen in (2.3)
of the matrix definition. Hence, each term of

〈
vi|Ξk|vj

〉
is indexed by the

vertex sequence of a k-walk from vi to vj with no repeated vertices, except
possibly vi at some intermediate step. Left multiplication by ωi thus sieves
out the k-paths.

Considering entries along the main diagonal of Ξk, note that the final step
of a k-cycle based at vi returns to vi so that left multiplication by ωi is not
required for cycle enumeration.
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The goal now is to extend the path-identifying nilpotent adjacency matrix
approach to include weighted edges. In particular, each edge of the graph
will be weighted by an m-tuple of real numbers. In this manner, paths in the
graph will have associated m-dimensional weights. Typically, the components
of these weights are nonnegative integers or real numbers, and the weights
are additive.

Definition 2.8. Given a path algebra Ωn, the tensor algebra AC ⊗ Ωn is
referred to as the constrained path algebra relative to (C,R).

Definition 2.9. Let C ∈ Rm, and let G = (V,E) be a graph on n ver-
tices whose edges (vi, vj) are multi-weighted by vectors wij ∈ R+

m. The
C-constrained path-identifying nilpotent adjacency matrix associated with G
is the n × n matrix with entries in AC ⊗ Ωn determined by

Ψij =

{
ξwijωj if (vi, vj) ∈ E,

0 otherwise.

The C-constrained path-identifying nilpotent adjacency matrix Ψ repre-
sents an algebra homomorphism via

ωvi
�→

∑
�

〈vi|Ψ|v�〉.

This extends inductively to the full algebra AC ⊗ Ωn by linear extension of

ωp.vi
�→ ωp

∑
�

〈vi|Ψ|v�〉.

Dirac notation is extended to (AC ⊗ Ωn)|V | by linear extension of

〈ξaωb| := ξaωb〈b|b||.

Example 2.10. For example, regarding Ψ as a matrix whose rows are in-
dexed by the vertices {vi},

〈ξaω(v1,...,vk)|Ψ = ξaω(v1,...,vk)〈vk|Ψ,

which yields the row vector obtained by component-wise multiplication of the
vk-th row of Ψ by the fixed element ξaω(v1,...,vk).
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For real scalars α, β ∈ R, linear extension is given by

〈αξaωb + βξcωd|Ψ := αξaωb〈b|b||Ψ + βξcωd〈d|d||Ψ.

Define |1〉 as the column vector of all 1s. The inner product of a vector
v with |1〉 is simply the sum of the components of v. The mapping from
(AC ⊗ Ωn)|V | back to AC ⊗ Ωn is then given naturally by the inner product
with |1〉.
Theorem 2.11. Given a multi-weighted graph G on n vertices and a con-
straint vector C = (c1, . . . , cm), let v0 and v∞ denote distinct source and
target vertices, respectively. If Ψ is the C-constrained path-identifying nilpo-
tent adjacency matrix associated with G, then the collection of feasible paths
v0 → v∞ in G is given by

ξ0ω0

n∑
�=1

〈v0|Ψ�|v∞〉 =
∑

pathsp:v0→v∞
wt(p)<c

ξwt(p)ωp.

More specifically, feasible paths exist if and only if ξ0ω0

∑n
�=1〈v0|Ψ�|v∞〉 is

nonzero. For the case v0 = v∞, one has

〈v0|Ψ�|v0〉 =
∑

cyclesp:v0→v0
wt(p)<c

ξwt(p)ωp.

Proof. The result follows from Theorem 2.7 in consideration of combinatorial
properties of AC.

Note that the partial order 	 on the multi-exponents appearing in the
canonical expansion of any element u ∈ AC can be totally ordered by sorting.
Writing ∧ and ∨ for the logical conjunction (AND) and disjunction (OR),
this ordering is done lexicographically according to

x � y ⇔ (x1 ≺1 y1) ∨ [(x1 = y1) ∧ (x2 ≺ y2)]

∨ · · · ∨ [(∀i < m, xi = yi) ∧ (xm ≺m ym)] . (2.4)

A path p ∈ X ⊂ P is said to be optimal or preferred for X if

wt(p) � wt(q), (∀q ∈ X).

The ordering � of multi-exponents naturally induces an ordering on the
monomials {ξwt(p)ωp : p ∈ P}. One then defines a choice function ג on
AC ⊗ Ωn by

ג

(∑
p∈X

ξa(p)ωp

)
:= {ξwt(p)ωp : wt(p) � wt(q), ∀q ∈ X}.
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Corollary 2.12. If ξ0ω0

n∑
�=1

〈v0|Ψ�|v∞〉 �= 0, then the optimal (preferred)

path p = (v0, . . . , v∞) exists and is given by

ג

(
ξ0ω0

n∑
�=1

〈v0|Ψ�|v∞〉
)

= ξwt(p)ωp.

Proof. By Theorem 2.11, the collection of all feasible paths v0 → v∞ is given

by ξ0ω0

n∑
�=1

〈v0|Ψ�|v∞〉. By the chosen ordering of paths and definition of ,ג

the optimal path is as stated.

Proposition 2.13. Given a multi-weighted graph G on n vertices with nilpo-
tent multi-weighted adjacency matrix Ψ, a constraint vector C = (c1, . . . , cm),
and a vertex v0, the collection of all feasible paths with initial vertex v0 in G
is given by

n∑
�=1

〈ξ0ωv0 |Ψ�|1〉 =
∑

{p∈P:p0=v0}
ξwt(p)ωp.

Proof. By Theorem 2.11, 〈ξ0ωv0 |Ψ� is a vector whose jth component is an
algebraic sum representing all feasible �-paths p from v0 to vj in the graph
G. Computing the inner product with the ones vector thereby transforms
the row vector into an algebraic sum of all components. Hence, 〈ξ0ωv0|Ψ�|1〉
is an algebraic sum representing all paths of length � having initial vertex v0.
Summing over all possible path lengths then gives the stated result.

Remark 2.14. Note that for real parameter t, a generating function can be
prescribed as follows.

〈ξ0ωv0 |et Ψ|1〉 =
n∑

�=1

∑
p∈C:p0=v0

|p|=�

t�

�!
ξwt(p)ωp.

Feasible paths of length � are then recovered by evaluating partial deriva-
tives.

∂�

∂t�
〈ξ0ωv0|et Ψ|1〉

∣∣∣∣
t=0

= 〈ξ0ωv0 |Ψ�|1〉.

Define the functional 〈1AC
| as the row vector

〈1AC
| := (ξ0ωv1 , ξ

0ωv2 , . . . , ξ
0ωvn).
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Given a path p of finite but indeterminate length, let p∞ denote the terminal
vertex of path p.

Proposition 2.15. Given a multi-weighted graph G on n vertices with nilpo-
tent multi-weighted adjacency matrix Ψ, a constraint vector C = (c1, . . . , cm),
and a vertex v∞, the collection of all feasible paths with terminal vertex v∞
in G is given by

n∑
�=1

〈1AC
|Ψ�|v∞〉 =

∑
{p∈P:p∞=v∞}

ξwt(p)ωp.

Proof. By Theorem 2.11, Ψ�|v∞〉 is a column vector whose jth component
is an algebraic sum representing all feasible �-paths p from vj to v∞ in the
graph G in addition to all feasible �-walks p from vj to v∞ which revisit
the initial vertex vj exactly once at some intermediate step. Computing the
inner product with the vector 〈1AC

| thereby transforms the row vector into
an algebraic sum of all components. Hence, 〈1AC

|Ψ�|v∞〉 is an algebraic sum
representing all paths of length � having terminal vertex v∞. Summing over
all possible path lengths then gives the stated result.

The following notational convention for functionals and vectors associated
with vertex subsets is adopted henceforth.

Definition 2.16. For arbitrary vertex subset W ⊆ V , define the AC-functional
〈W | by

〈W | :=
∑
w∈W

〈ξ0ω{w}|.

Similarly, define the vector |W 〉 by

|W 〉 :=
∑
w∈W

|w〉.

Given disjoint subsets of vertices W0,W∞ ⊂ V , the next corollary reveals
a method of computing all feasible paths from initial nodes v0 ∈ W0 and
terminal nodes v∞ ∈ W∞. This allows one to compute feasible paths between
clusters of nodes in a network.

Corollary 2.17. Given a multi-weighted graph G on n vertices with nilpotent
multi-weighted adjacency matrix Ψ, a constraint vector C = (c1, . . . , cm), a
subset of vertices W0 ⊆ V , and a subset of vertices W∞ ⊆ V , the collection
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of all feasible paths with initial vertex v0 ∈ W0 and terminal vertex v∞ ∈ W∞
in G is given by

n∑
�=1

〈W0|Ψ�|W∞〉 =
∑

{p∈C:p0∈W0,p∞∈W∞}
ξwt(p)ωp.

Proof. The result follows from the proofs of Propositions 2.13 and 2.15.

For purposes of implementation and clarity of pseudocode, the operator
calculus (Dirac notation) formalism is simplified using basic linear algebra.
For example, the linear functional 〈x| is represented naturally by the row
vector x. The nilpotent adjacency operator Ψ associated with an n-vertex
graph is naturally represented by an n × n matrix denoted unambiguously
by Ψ.

Example 2.18. Returning to the graph, the associated path-identifying nilpo-
tent adjacency operator is represented by the following matrix:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
(.26,28)

ξ ω{2}
(.32,40)

ξ ω{3} 0 0

0 0
(.04,42)

ξ ω{3}
(.12,32)

ξ ω{4} 0

0 0 0
(.12,30)

ξ ω{4}
(.16,64)

ξ ω{5}

0 0 0 0
(.08,22)

ξ ω{5}
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where multi-exponents are written directly above the ξs in order to save space.
Recall that the task is to compute all feasible hop-minimal paths from v1

to v5, where each edge is weighted with a pair of additive weights subject to

the constraints vector (0.5, 100). Setting v1 :=

(
(0,0)

ξ ω{1}, 0, 0, 0, 0
)

, feasible

1-paths with initial vertex v1 are recovered by computing the row vector

u = v1Ψ =

(
0,

(.26,38)

ξ ω{1,2},
(.32,40)

ξ ω{1,3}, 0, 0
)

.

All feasible two-step paths with initial vertex v1 are found by computing
uΨ = v1Ψ

2. The reader can verify that the fourth component of this vector
is

(v1Ψ
2)4 =

(0.38,60)

ξ ω{1,2,4} +
(0.44,70)

ξ ω{1,3,4},
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representing the two feasible 2-paths from v1 to v4. The reader can further
verify that the fifth component of this vector is zero. The infeasible path

v1v3v5 has been “killed” by the properties of the algebra:
(.32,40)

ξ
(.16,64)

ξ = 0.
Finally, the one feasible three-step path from v1 to v5 is found by exam-

ining the 5th component of the row vector

v1Ψ
3 =

(
0, 0, 0,

(0.42,100)

ξ ω{1,2,3,4},
(0.46,82)

ξ ω{1,2,4,5}

)
.

The infeasible path v1v3v4v5 has been killed by the fact that in the con-

straints algebra,
(0.32,40)

ξ
(0.12,30)

ξ
(0.08,22)

ξ =
(0.44,70)

ξ
(0.08,22)

ξ = 0. The infeasible path
v1v2v3v5 has been eliminated in similar fashion.

3 Algorithms

Based on the results of the previous section, two types of algorithms are
considered herein: centralized algorithms and distributed algorithms. In the
centralized algorithms considered here, the graph’s topology is known and
fixed at all times. In the distributed case, the algorithm is implemented at
a vertex, and only a subgraph or extended neighborhood is “visible” at any
step of the algorithm.

Remark 3.1. The algorithms appearing here are similar to, but more general
than those put forth in Chapter 17 of the book by Mehdi and Ramasamy [12].
The OC approach accommodates more general constraints and simultaneously
obtains all feasible hop-minimal (i.e., least-hop) paths for a given a source-
destination pair.

3.1 Centralized: Precomputed Routing

The first centralized algorithm considered here is applied to a fixed graph; i.e.,
the static case. Using the result of Theorem 2.11, Algorithm 1 enumerates
all feasible hop-minimal paths from initial vertex v0 to terminal vertex v∞.
Applying a choice function then allows the user to select a preferred path for
the routing.

In the static case, the topology of the entire network is fixed and known.
The static case centralized algorithm proceeds by developing all paths with
source vertex v0. At each iteration of the loop, a partial path is evolved one
step. The algorithm terminates in two cases:
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1. The partial paths all ultimately revisit vertices or violate the con-
straints. In this case the algorithm returns 0.

2. Any feasible path v0 → v∞ is found. At this point, the algorithm re-
turns all existing feasible hop-minimal paths within the frame sequence
considered.

Note that replacing the final line of Algorithm 1 by

return ג (uv∞)

allows one to compute the preferred hop-minimal path from v0 to v∞.
Given initial vertex v0, target vertex v∞, and constrained path-identifying

nilpotent adjacency operator Ψ, The centralized algorithm proceeds as fol-
lows.

1. Compute the action of the operator Ψ on the initial vertex v0 and
prepend the initial vertex to create a row vector, u, containing partial
paths of length 1. Simply stated, this is the v0th row of Ψ with each
entry left-multiplied by the element ωv0 . In the pseudocode, this is
denoted by v0Ψ.

2. If target has not been reached (v∞-component of u is zero), apply the
matrix Ψ to u, thereby appending one step to each partial path.

3. Repeat step 2 until either the target has been reached or all partial
paths have self-intersected, in which case u = 0.

4. Return all existing hop-minimal paths to target (zero if no path exists).
This information is found in the v∞ component of u.

Note that as a matrix, Ψ acts on row vectors by right-multiplication.
Algorithm 1 expresses the centralized algorithm in pseudocode.

In the dynamic case, the matrix Ψ is replaced by a sequence of matrices
(Ψk : k ∈ N0). This sequence arises from discretization of the continuous-
time evolution of the graph process. Since changes in graph topology occur at
distinct points in time, the matrix Ψk represents a fixed graph topology valid
from time tk−1 until time tk. Distinct graphs of this sequence are referred
to herein as frames. For convenience, it will be assumed that consecutive
matrices are distinct; i.e, Ψtk �= Ψtk−1

for k ∈ N.
It will be assumed that the time is discretized and the graph sequence is

adapted such that topology changes cannot occur during a hop. In particular,
all partial paths can be advanced one step during any frame.
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input : Source node v0, target node v∞, and constrained
path-identifying nilpotent adjacency matrix Ψ.

output: Component of row vector u representing all
multi-weighted paths of minimal length from v0 to v∞
satisfying the constraint vector.

u := v0Ψ
while [(u �= 0anduv∞ �= 0)] do

u := uΨ
end
return uv∞

Algorithm 1: StaticCentralizedPaths (pseudocode)

The dynamic centralized algorithm proceeds by developing all paths with
source vertex v0. At each time step, a partial path is evolved one step or
allowed to wait for the next time increment to advance. All partial paths are
maintained and extended in subsequent frames. In addition to continuing
partial paths, the algorithm allows the possibility that a new path from v0

may be initiated in a new frame to become a feasible path v0 → v∞. The
algorithm terminates when the time exceeds a final allowable time or when
any feasible path v0 → v∞ is found. At that point, the algorithm returns all
existing feasible hop-minimal paths within the frame sequence considered.

Given source node v0, target node v∞, initial time t0, final allowable
time t∞, and a sequence of constrained path-identifying nilpotent adjacency
operators (Ψk : k ∈ N0), the dynamic algorithm proceeds as follows.

1. Initialize frame counter k and row vector u = v0Ψ0 of one-step partial
paths originating at v0.

2. Advance the frame counter and advance all partial paths one step while
preserving all partial paths already obtained, by computing u(I + Ψk).
Here, I denotes the identity matrix.

3. Assuming network topology in frame k is different1 from topology in
frame k−1, also allow the possibility of new path starting in kth frame
by computing u := u + v0Ψk.

4. Repeat steps 2 and 3 until a path has been found to the target, v∞, or
until a maximum allowed number of frames have been considered.

1It is assumed that the process can be discretized in a manner to ensure this.
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5. Return all feasible paths found or zero if no paths exist. This is accom-
plished by returning the v∞ component of the row vector u.

Once again, the matrices Ψk acts on row vectors by right-multiplication.
Algebraically, steps 2 and 3 of the algorithm are conveniently handled by
u := u(I + Ψk + v0Ψk). Algorithm 2 expresses the centralized dynamic
algorithm in pseudocode.

input : Source node v0, target node v∞, initial time t0, final
allowable time t∞, and a sequence of (not necessarily
distinct) constrained path-identifying nilpotent adjacency
matrices (Ψk : k ∈ N0).

output: Algebraic element ψ representing multi-weighted
hop-minimal paths from v0 to v∞ satisfying the constraint
vector.

k := 0
u := v0Ψ0

while [(tk ≤ t∞) and (uv∞ �= 0)] do
k := k + 1
u := u(I + Ψk + v0Ψk)

end
return uv∞

Algorithm 2: DynamicCentralizedPaths (pseudocode).

As before, replacing the final line of Algorithm 2 by

return ג (uv∞)

allows one to compute the preferred hop-minimal path from v0 to v∞.

3.2 Distributed: Dynamic Routing

The distributed routing algorithm is implemented at individual nodes. Each
node receiving a packet is able to choose a routing for passing the packet
along, based on some partial information the node has about the current
network topology. The distributed algorithm described here makes use of
the following assumption:

While the topology of the graph is not known at any time, each node
“knows” its own best-case minimal distance from every other node in the
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underlying graph. This is the minimum number of hops between a node
and every other node in the underlying graph assuming all links are valid.
Writing Pij for the set of all paths p : vi → vj in the underlying graph G, let
d : V × V → N0 ∪ {∞} be the function defined by

d(vi, vj) :=

⎧⎨
⎩

min
p∈Pij

{|p|} if Pij �= ∅,
∞ otherwise.

In other words, d(vi, vj) is the minimum number of hops required to reach
vj from vi among all existing paths in the underlying graph. If no such path
exists, d(vi, vj) = ∞.

In order to determine whether an evolving path is getting closer to the
destination, a “distance oracle” function is employed. We define the distance
oracle Δ : (AC ⊗ Ωn) × (AC ⊗ Ωn) → N0 by

Δ

( ∑
p∈P1⊆P

ξwt(p)ωp,
∑

q∈P2⊆P
ξwt(q)ωq

)
:= min

p∈P1
q∈P2

d(p|p|,q|q|).

Remark 3.2. The distance oracle reveals the minimum number of hops re-
quired to reach the terminal vertex of a path in P2 from the terminal vertex
of a path in P1.

Given a finite path b, denote by Ψ(b,tk) the b-neighborhood adjacency op-
erator at time tk. This operator represents the adjacency of the neighborhood
N (b|b|) in the graph at time tk.

Algorithm 3 is implemented at each node of the underlying graph. It is
worthwhile to note that computations are being performed in a sequence of
algebras.

For convenience, define the canonical path projection πΩ : AC ⊗ Ωn → P
by linear extension of

πΩ(ξwt(b)ωb) := b.

Algorithm 4 simulates the node wise implementation to choose a preferred
multi constrained path v0 → v∞ in the graph process (Gtk : k ∈ N0). Once
again, it will be assumed that the time is discretized and the graph sequence
is adapted such that topology changes cannot occur during a hop.

Algorithm 4 proceeds by developing a preferred path with source vertex
v0. At each time step, the partial path is augmented by one step such that
the constraints are still satisfied and the absolute distance (number of hops)
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input : Algebraic monomial ξwt(b)ωb ∈ AC ⊗ Ωn, target node v∞,
and discrete time tk. The element ξwt(b)ωb represents a
multi-weighted partial path (of length |b|) from fixed
initial vertex v0 to vertex vb|b| . The constraint vector is
C = (c0, c1, . . . , cm), in which the zeroth component, c0,
represents the maximum number of hops allowed to
complete any path from vb|b| to the target node.

Data: Neighborhood adjacency operator Ψ(b,tk) valid at time step
tk is assumed to be available, as this is implemented at each
node.

output: Algebraic element ψ representing a preferred
multi-weighted path of length |b| + 1 emanating from v0,
satisfying the fixed constraint vector, and whose last step
does not increase the minimal distance to v∞ over the
previous partial path.

Get best-case remaining distance from target.
δ′ := Δ(ξbωb, ξ0ωv∞)

Reset constraints so remaining distance cannot increase during
path evolution.
C := (δ, c1, . . . , cm)

Extend partial path by one step, and return preferred feasible path.

return (ξwt(b)ωb|Ψ(b,tk)〉)ג

Algorithm 3: ChoiceEvolve

from the target is not increased. The algorithm terminates when the time
exceeds a final allowable time or when a feasible path v0 → v∞ is found.

Another useful distributed implementation allows multiple paths to evolve
in parallel. By removing the choice function from Algorithm 3, the node-level
implementation returns a collection of feasible partial paths whose terminal
nodes are neighbors of the current node and whose maximal distance from
the target does not exceed the current node’s distance from the target. This
algorithm, Algorithm 5 can then be applied recursively (by linear extension)
to obtain a collection of feasible paths from a given source to a given target.
An example of output obtained using Algorithm 5 can be seen in Figure 4.
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input : Source vertex v0, target node v∞, initial time t0, final
allowable time t∞, and neighborhood adjacency operator
Ψ(v0,tk) valid at time step t0.

OutputAlgebraic element ψ representing a feasible path v0 → v∞ if
one is found, zero otherwise.

Initialize frame counter (k), best case distance (in hops) from source
to target (δ), constraints, and preferred first step from v0.
k := 0
δ := Δ(ξ0ωv0 , ξ

0ωv∞)
C := (δ, c1, . . . , cm)
ψ := ג

(〈ξ0ωv0 |Ψ(v0,t0)|1〉
)

Repeat until maximum frames considered or until remaining distance
to target is zero.
while

[
(tk ≤ t∞) and [Δ(ψ, ξ0ωv∞) �= 0

]
do

Advance frame counter.
k := k + 1

Extend partial path by one step.
ψ := ChoiceEvolve[ξ0ωv0 , v∞, tk, Ψ(πΩ(ψ),tk)]

end

Return preferred feasible path if one found. Otherwise, return zero.
return ψ

Algorithm 4: DistributedChoosePath

3.3 Remarks on complexity

Note that ωi〈vi|Ψk is represented as a row vector whose nonzero entries rep-
resent all k-paths with initial vertex vi. Similarly, Ψ|vj〉 is represented by
a column vector whose nonzero entries represent 1-paths with terminal ver-
tex vj. Computing the (k + 1)-paths from vi to vj then requires computing
ωi〈vi|ΨkΨ|vj〉. Letting A = (aij) be the ordinary adjacency matrix of G,
recall that

aij =

{
1 if (vi, vj) ∈ E,

0 otherwise.

Letting λ denote the number of multiplications involved in this compu-
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input : Algebraic monomial ξwt(b)ωb ∈ AC ⊗ Ωn, target node v∞, and
discrete time tk. The element ξwt(b)ωb represents a
multi-weighted partial path (of length |b|) from fixed initial
vertex v0 to vertex vb|b| . The constraint vector is
C = (c0, c1, . . . , cm), in which the zeroth component, c0,
represents the maximum number of hops allowed to complete
any path from vb|b| to the target node.

Data: Neighborhood adjacency operator Ψ(b,tk) valid at time step tk
is assumed to be available, as this is implemented at each node.

output: Algebraic element ψ representing all feasible multi-weighted
paths of length |b| + 1 emanating from v0, satisfying the
fixed constraint vector, and whose last steps do not increase
the minimal distance to v∞ over the previous partial path.

Get best-case remaining distance from target.
δ′ := Δ(ξbωb, ξ0ωv∞)

Reset constraints so remaining distance cannot increase during path
evolution.
C := (δ, c1, . . . , cm)

Extend partial path by one step, and return feasible paths.
return 〈ξwt(b)ωb|Ψ(b,tk)

Algorithm 5: MultiplePathEvolve

tation,

λ =
n∑

�=1

a�j(
{feasible k-paths vi → v�})

≤ 
{feasible k-paths with source vi}. (3.5)

It follows immediately that the number of multiplications performed in
determining ωi〈vi|Ψk|vj〉 is bounded above by the number of feasible paths
of length at most k − 1 having initial vertex vi. Hence, the next corollary is
obtained.

Corollary 3.3. Given a fixed pair of vertices v0 and v∞, the complexity of
enumerating all feasible k-paths from v0 to v∞ with the constrained path-
identifying nilpotent adjacency matrix is

O(n · 
{p ∈ Fv0 : |p| ≤ k − 1}),
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where Fv0 denotes the collection of all feasible paths having initial vertex v0.

The computational complexity stated above is in terms of monomial mul-
tiplications performed within the algebra. Recall that for disjoint ordered
multi-indices p, q, the product ωpωq = ωp.q is given by sequence concate-
nation. Moreover, there are m component-wise binary operations performed
on the multi-exponents representing weights. Hence, some additional polyno-
mial cost is associated with the implementation of this algebra multiplication.

4 Application: Multi-constrained routing in

a wireless mesh sensor network

The problem posed by Ben Slimane, et al. involves computing feasible paths
in wireless mesh sensor networks (WMSNs) subject to three additive con-
straints as described in [2]. Wireless mesh sensor networks (WMSNs) may
consist of a collection of spatially distributed sensor nodes, characterized by
limited memory, processing capability and battery power supply which are
organized in a full mesh topology. WMSNs are expected to support various
types of applications with different QoS requirements. According to novel
application requirements, QoS constraints become more and more critical
in terms of end-to-end delay, data throughput and packet-error- rate. Also,
due to energetic constraints at node level, energy saving remains the most
challenging issue.

The authors of [2] propose a cross-layer algorithm for WMSNs, referred to
as the Joint duty cycle Scheduling, resource Allocation and multi-constrained
QoS Routing algorithm (JSAR). To deal with different WMSNs requirements,
JSAR combines simultaneously, a duty cycle scheduling scheme for energy
saving, a resource (time slots per available frequency channels) allocation
scheme for resource efficiency, and a heuristic multi-constrained routing pro-
tocol for multi-constrained QoS support. They go on to implement JSAR
and evaluate its performance, showing that JSAR performs better with the
increase of the number of available frequency channels and time slots.

An example on a 32-node graph found in that work is considered herein
using OC methods. The OC approach is applied in the static case to enu-
merate (precompute) all hop-minimal feasible paths from a given source to a
given target in the graph. The approach assumes the topology of the entire
graph is available and fixed throughout the process. Sample paths obtained
and summaries of running times are presented below.
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The OC approach is applied in the distributed case to enumerate hop-
minimal feasible paths from a given source to a given target in the graph
subject to the requirement that each step of the path not increase the distance
(in number of hops) from the destination. The approach assumes that each
vertex knows (and reports) its minimal hop distance from the destination,
and that each vertex can “see” (i.e. query) all of its neighbors.

The distributed algorithm is applied to the 32-node static case first and
a dynamic version of the 32-node example second. Sample paths obtained
and summaries of running times appear in Section 4.1.

Figure 2 depicts a weighted graph on 32 vertices, as considered in [2].
Each edge is assigned a vector of positive weights in R3. Simulations were
processed using five different examples of the constraint vector C = (c1, c2, c3)
appearing in Table 1, where:

• The first constraint c1 (Max Packet Reception Rate) represents the
upper bound of the logarithmic value of the packet reception rate of
a feasible path. The link’s logarithmic value of the packet reception
rate prruv is defined as the absolute value of the logarithmic value of
PRRuv (packet reception rate).

PRRs→d =
∑

luv∈Ps→d

prruv =
∑

luv∈Ps→d

|log10(PRRuv)|

• The second constraint c2 (Max Delay) represents the upper bound of
the end-to-end delay of a feasible path.

δs→d =
∑

luv∈Ps→d

δuv

• The third constraint c3 (Max Energy) represents the upper bound of
the total consumed energy of a feasible path. Ec

uv represents the sum
of the energy consumed by node u during radio transmission and data
processing and queueing (Ec

u) and the energy consumed by node v
during radio receiving (Ec

v).

Ec
s→d =

∑
luv∈Ps→d

Ec
uv

The constraint vector Ci represents stricter constraints than the con-
straint vector Ci+1.
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Constraints Max Packet Reception Rate Max Delay Max Energy
C1 1.61604 2.41987 68.1328
C2 2.83083 4.75579 185.967
C3 3.91719 6.85752 330.864
C4 4.75373 10.1413 428.139
C5 5.07585 14.1619 643.696

Table 1: Constraints considered by Ben Slimane.

Figure 2: Graph on 32 vertices originally considered by Ben Slimane, et al.

Note that for fixed C ∈ R3 with additive weights, multi-exponents x =
(x1, x2, x3) appearing among basis elements ξx ∈ AC must satisfy x 	 C.
Given x,y ∈ R3, multiplication of arbitrary algebraic monomials conse-
quently satisfies

ξxξy =

{
ξx+y if x + y 	 C,

0 otherwise.

In order to apply the OC approach to problems of identifying paths sat-
isfying multiple constraints (represented by C), the path-identifying nilpo-
tent adjacency matrix will be extended by allowing entries from the algebra
AC ⊗ Ωn. In this approach, a path u = (u1, . . . , um) of (additive) weight
wt(u) = x ∈ R3 will be represented in AC ⊗ Ωn by an element of the form
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ξwt(u) ωu. The concatenation of this path with another path v = (v1, . . . , v�)
of weight wt(v) = y ∈ R3 is then represented by the product

(ξwt(u)ωu)(ξwt(v)ωv) =

{
ξwt(u)+wt(v)ωu .v if u .v ∈ P,

0 otherwise.

Note that for the centralized process, the multiplicative identity in the
constraints algebra is ξ0 := ξ(0,0,0).

Formally, a request is a triple (v0, v∞,C) consisting of a source, a target,
and a constraints vector. Informally, such a triple represents a request to send
a packet from a source to a destination subject to constraints determined by
C. The routing algorithm processes a request in order to find an optimal
path satisfying all of the constraints.

The algorithm works by finding all feasible paths emanating from a single
source. The algorithm stops when any feasible path from the source to the
destination is found. At that point, the algorithm returns all feasible paths
from the source to the destination requiring the same number of hops. These
paths are referred to as being hop-minimal feasible paths. No shorter feasible
path exists.

Alternatively, the algorithm stops when no feasible paths exist (all pos-
sibilities are explored or excluded). In this case, the algorithm returns zero,
and one knows that no feasible path exists.

Examples 4.1 and 4.2 were computed using Mathematica 8 for MAC OS
X on a MacBook Pro with 2.4 GHz Intel Core i7 processor and 8 GB of 1333
MHz DDR3 SDRAM.

Example 4.1. Figure 3 depicts running times of precomputing (centralized)
feasible paths in the graph of Figure 2 over 100 randomly-generated requests.
The trials were repeated five times subject to each of the five constraint vectors
proposed in Table 1. Smaller points plotted correspond to tighter constraints.
As expected, tighter constraints lead to shorter running times since fewer
paths are developed.

4.1 Distributed implementation

In the distributed example, the algorithm is implemented at a node. The
node is aware of its adjacent neighbors, and each node knows its own minimal
hop distance from a fixed destination. Note that this minimum distance is
the minimum path length obtained by applying either Dijkstra’s algorithm
or the Bellman Ford algorithm to a graph whose edges are all of unit weight.
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Figure 3: 100 trials of (centralized) precomputed routing over 5 constraint
vectors of Table 1. Smaller points represent tighter constraints.

The node-level implementation is done using a single row of a path-
identifying nilpotent adjacency matrix, because the full structure of the graph
is assumed to be unknown. In the simulations run here, however, all such row
vectors are stored as a single matrix. Two types of simulations are run here:
a single path distributed process and a multiple path parallel distributed
process.

In the single path process, the node-level implementation results in a
single choice for routing of a packet in the next step. The choice is made
such that remaining distance (in hops) to the target is minimal and does not
increase over the current step. This is the direct implementation of Algorithm
4. The algorithm runs quickly, but sometimes fails to find existing feasible
paths, since it only returns paths whose sequences of remaining distances are
monotonically decreasing.

In the multiple path parallel process, the node-level implementation re-
turns feasible partial paths to all of the current nodes neighbors whose dis-
tances to the target are not greater than the current nodes distance to the
target. In this way, feasible multiple paths can be obtained while still ex-
hibiting efficient runtimes.

In the distributed process, the multiplicative identity in AC is ξ(∞,0) :=
ξ(∞,0,0,0). When applied to the static case, this implementation offers even
better runtimes than the previous experiments by pruning inefficient paths
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1 �� 32 computed in 0.664923 seconds:

Ξ
�0,0.976003,10.1516,35.3546�

Ω�1,3,5,16,31,32�

2 �� 32 computed in 0.423689 seconds:

Ξ
�0,1.07465,9.68467,33.0071�

Ω�2,3,5,16,31,32� �

Ξ
�0,1.52333,7.71884,38.0328�

Ω�2,9,14,16,31,32� � Ξ
�0,1.99955,8.38013,36.5632�

Ω�2,9,14,26,31,32�

3 �� 32 computed in 0.10045 seconds:

Ξ
�0,0.869069,8.36483,27.4182�

Ω�3,5,16,31,32�

4 �� 32 computed in 0.013641 seconds:

Ξ
�0,0.902801,7.57742,25.7488�

Ω�4,5,16,31,32�

5 �� 32 computed in 0.013071 seconds:

Ξ
�0,0.684089,6.00111,20.556�

Ω�5,16,31,32�

6 �� 32 computed in 0.02859 seconds:

Ξ
�0,1.12816,9.39787,36.268�

Ω�6,13,14,16,31,32� � Ξ
�0,1.60438,10.0592,34.7984�

Ω�6,13,14,26,31,32�

7 �� 32 computed in 0.066037 seconds:

Ξ
�0,1.24739,8.51249,36.277�

Ω�7,9,14,16,31,32� � Ξ
�0,1.72362,9.17378,34.8074�

Ω�7,9,14,26,31,32� �

Ξ
�0,1.20218,9.07201,35.4859�

Ω�7,13,14,16,31,32� � Ξ
�0,1.6784,9.73331,34.0163�

Ω�7,13,14,26,31,32�

8 �� 32 computed in 0.109907 seconds:

Ξ
�0,1.56557,7.21951,38.2474�

Ω�8,9,14,16,31,32� � Ξ
�0,2.04179,7.8808,36.7778�

Ω�8,9,14,26,31,32� �

Ξ
�0,1.22028,9.89495,36.196�

Ω�8,11,14,16,31,32� � Ξ
�0,1.6965,10.5562,34.7264�

Ω�8,11,14,26,31,32�

9 �� 32 computed in 0.024936 seconds:

Ξ
�0,1.12293,6.11152,30.3507�

Ω�9,14,16,31,32� � Ξ
�0,1.59915,6.77281,28.8811�

Ω�9,14,26,31,32�

10 �� 32 computed in 0.146358 seconds:

Ξ
�0,1.03559,8.87969,37.1956�

Ω�10,11,14,16,31,32� � Ξ
�0,1.51181,9.54098,35.726�

Ω�10,11,14,26,31,32�

Figure 4: Multiple path parallel distributed routing. Enumerate feasible
paths to v32 in graph of Figure 2. Paths satisfy constraint vector C5 of Table
1.

and eliminating the full matrix multiplication.

The distributed implementation has the advantage of making the dynamic
case much easier to model than in the full adjacency matrix implementation.
Some code has already been developed to consider intermittent links and
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nodes. In Figure 4, feasible paths v0 → v32 are enumerated in parallel over
sources v0 ∈ {v1, . . . , v16} in the graph of Figure 2.

Example 4.2. Sample output can be easily obtained for larger graphs. For
purposes of comparison, the 128-node graph of Figure 5 was generated in a
manner to guarantee a degree of similarity with the 32-node example provided
by Ben Slimane, et al. In particular, the graph was generated such that each
node has out-degree between zero and seven to keep the average out-degree
relatively low.

.

Figure 5: Randomly generated 128-node graph.

In Figure 6, runtimes of multiple-path distributed routing on 128-node
graph of Fig. 5 are depicted. For each constraint vector of Table 1, 100
randomly-generated requests were processed. Smaller points correspond to
tighter constraints.

4.2 Comparison between OC and SAMCRA

In this section, we present a performance comparison between the centralized
version of OC and SAMCRA, implemented in Java. Both algorithms pre-
compute the paths and solve the multi-constrained optimization problem.

SAMCRA returns one path between a nodes pair. This path has the
minimum non-linear length � that satisfies all the constraints. If we consider
a path P with k links: P = {e1, e2, . . . , ek}, the length of P is [10]:
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Figure 6: Runtimes of multiple-path distributed routing on 128-node graph
of Fig. 5 using 100 randomly-generated requests over five constraint vectors
of Table 1. Smaller points represent tighter constraints.

�(P ) = max
1≤i≤m

(∑k
j=1 W

ej

i

Li

)

where m is the number of weights and L the constraint vector.
SAMCRA is based on two more principles: the k−shortest path approach

and the non-dominance. The k-shortest path approach is used when more
than one possible paths between a source and a destination is needed to be
found. In SAMCRA, this approach is applied only to the intermediate nodes,
where we store not only one but multiple sub-paths from the source to each
intermediate node, only when these paths are non-dominated (I.1) (I.2). In
each step, SAMCRA chooses the sub-path with the minimum path length
and stops whenever the first feasible path is found.

Using the “nilpotent adjacency matrix”, OC can find a set of feasible
paths between any source and destination or between a nodes pair. However,
it can stop whenever any feasible path is found and return all the hop-minimal
feasible paths. In each step, the multiplication of the matrices evolves the
sub-paths one hop, if these paths satisfy the constraints.

OC and SAMCRA are exact, so they are able to find a solution, if a
solution exists. SAMCRA is relied on Dijkstra, so it is limited on working
with positive edge weights, while OC provides flexibility working with both
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positive and negative weights. Moreover, SAMCRA can deal with min(max)
QoS metrics by checking all the links of the graph in advance and omitting
those that do not satisfy the constraints. OC deals with min(max) metrics
in the main process.

Tables II and III, depict the total computation time of 100 random re-
quests of SAMCRA and OC on the 32-node graph of Fig. IV.I and 128-node
graph of Fig. IV.5., using the constraint vector C3 of Table 1. OC stops when
any feasible path from the source to the destination is found. In SAMCRA,
Dijkstra is implemented from all the nodes to all the other nodes. In [10], it
is proposed to apply Dijkstra from the destination to the rest of the nodes
for efficiency but this is not possible when the graph is directed.

The tables reveal that SAMCRA requires more execution time than OC
for computing 100 random requests. The complexity of both algorithms
depends on the number of nodes and therefore as larger is the graph as more
time the algorithms need to be executed. The tables also reveal that in the
small graph of 32 nodes the difference of runtimes between the two algorithms
is not remarkable but in the bigger graph of 128-nodes, OC is much more
efficient.

Fig. IV.7 and IV.8 depict precisely the runtimes of each request, using the
constraint vector C3. A polynomial curve fitting is used (’poly2’ in Matlab).
OC outperforms SAMCRA in all cases.

C1 C2 C3 C4 C5

SAMCRA 41.6 35.8 30.6 24.1 24.5
OC 24.1 21.3 20.1 21.7 19.7

Table 2: Execution time in msec of 100 (centralized) random requests over
the graph of Fig. IV.1

C1 C2 C3 C4 C5

SAMCRA 5262.9 5262.4 5398.3 5449.5 5438.0
OC 278.9 177.6 51.6 44.9 44.6

Table 3: Execution time in msec of 100 (centralized) random requests over
the graph of Fig. IV.5



Operator Calculus Algorithms for Multi-Constrained Paths 99

Figure 7: Runtimes of OC and SAMCRA on 32-node graph of Fig. IV.1 over
the constrained vector C3.

4.3 Comparison between OC and Sobrino’s algorithm
(D-OTF)

According to Sobrino, an optimal path is the lexicographic-lightest path ob-
tained by strict isotonicity. Classical algorithms that are trying to solve the
shortest path problem, return an optimal path in terms of an additive weight
(delay, hop count etc) which is the minimum path for a source-destination
pair. D-OTF ensures that any subpath of an optimal path has to be optimal
as well.

Solving the shortest path problem, Sobrino’s algorithm does not consider
multiple metrics neither accept lower and upper bound cost requirements
during the graph search. It does not work with negative weights as well.
Trying to compare OC and Sobrino’s algorithm, in case of the latter we
reduce the problem using one positive metric in each link (the delay) without
considering any constraint. D-OTF returns one path and OC stops whenever
one path is found using the constraint vector C3. Fig. IV.9 and IV.10
reveal that in that case Sobrino’s algorithm is the best, demanding the least
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Figure 8: Runtimes of OC and SAMCRA on 128-node graph of Fig. IV.5
over the constrained vector C3.

execution time since it has the same complexity as Dijkstra. Nevertheless, it
can not be applied for solving the multi-constrained path problem.

All three algorithms (centralized OC, SAMCRA and D-OTF) have been
implemented in Java(VM) 1.6.0.27 and computed in Ubuntu 12.04.3 with
2x3 GHz Intel Core 2 Duo processor and 8 GB DDR2.
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Figure 9: Runtimes of OC and D-OTF on 32-node graph of Fig. IV.1 over
the constrained vector C3.

5 Conclusion

The algorithms presented here are “quantum-like” in the sense that they are
expressed using sequences of operators defined on algebras. Unlike the case
in quantum computing, these operators are implemented using programming
languages like Mathematica and Java, eliminating any need for quantum
error-correction. The strengths of the OC approach lie in its flexibility and
simplicity.

A number of avenues for further study exist, including the following:

1. Consider additional constraints in the static case. Notably, we want
to consider probability of link existence, so that each path will have a
probability of viability appearing in its overall weight. This will make
path selection easier.

2. Compare with explicit paths generated by other methods.
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Figure 10: Runtimes of OC and D-OTF on 128-node graph of Fig. IV.5 over
the constrained vector C3.

3. Solving the two disjoint path problem using OC approach.

4. Further develop the distributed and dynamic distributed implementa-
tions for this problem. The OC approach offers a great deal of flexi-
bility. For example, considering multi-hop visibility in the distributed
algorithm is of particular interest.
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