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ABSTRACT 

 

Comparing Structure from Motion Photogrammetry and Computer Vision for Low-Cost 

3D Cave Mapping: Tipton-Haynes Cave, Tennessee 

by  

Clinton S. Elmore 

Natural caves represent one of the most difficult environments to map with modern 3D 

technologies. In this study I tested two relatively new methods for 3D mapping in Tipton-

Haynes Cave near Johnson City, Tennessee: Structure from Motion Photogrammetry and 

Computer Vision using Tango, an RGB-D (Red Green Blue and Depth) technology. 

Many different aspects of these two methods were analyzed with respect to the needs of 

average cave explorers. Major considerations were cost, time, accuracy, durability, 

simplicity, lighting setup, and drift. The 3D maps were compared to a conventional cave 

map drafted with measurements from a modern digital survey instrument called the 

DistoX2, a clinometer, and a measuring tape. Both 3D mapping methods worked, but 

photogrammetry proved to be too time consuming and laborious for capturing more than 

a few meters of passage. RGB-D was faster, more accurate, and showed promise for the 

future of low-cost 3D cave mapping.
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CHAPTER 1 
 

INTRODUCTION 

 

 Caves represent one of the last largely unexplored environments found in the 

world. For many, these dark cold worlds represent the home of demons, dragons, and the 

ever-elusive “Civil War gold,” as referred to in folklore told across the cave-forming 

regions of the Southeastern United States. Kids grow up hearing about the mystery, 

danger, and adventure waiting in these dark openings, visible from the back deck of the 

old family farmhouse. As time progressed, the important role these fragile underground 

environments has played to the health of the local people, and to the natural environment 

above ground, has become more understood. For many of the small rural communities 

established on the carbonate-rich lands of the Nashville Basin and Highland Rim, and the 

Valley and Ridge provinces of Tennessee, Alabama, and Georgia, well water and springs 

have represented two of the most widely used sources of drinking water for generations. 

The quality of this water is often highly dependent on both the condition of the cave 

passages carrying these subsurface streams, and the locations that surface streams sink 

down into the extensive underworld below. Beyond the scope of water quality, caves 

impact many different aspects of the societies living above them—from ground stability 

to significant scientific discoveries. This makes mapping these cave systems an 

important, yet widely ignored concern for many of the people who call these regions 

home. 
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 Much of the terrestrial world can now be mapped using Global Positioning 

Systems (GPS) or Global Navigation Satellite Systems (GNSS), but these technologies 

are limited underground. The signals used by satellite-based positioning systems do not 

penetrate the dense layers of earth that make up the ever-present ceiling that is central to 

the definition of a cave (Redovniković et al. 2014; Zlot and Bosse 2014). This huge 

limitation, along with the harsh environment of caves, has led to a slow progression of 

cave mapping technology and methodology. 

 In the United States, nearly all cave exploration, science, and survey is carried out 

by the otherwise everyday people who have taken up cave exploration as a lifestyle-

defining hobby. Scientific studies account for a small fraction of the total time spent 

studying these natural underground environments; the few scientists that do study caves 

typically started out as hobby cavers (Marbach and Tourte 2002; Palmer 2007). This 

revelation, often unknown by those who make their career in science, is why it is 

important to focus on affordable tools and techniques that are within reach of the huge 

community of low-budget cave explorers. These “unofficial” hobby cave explorers are 

the unsung heroes that build the massive foundation of knowledge that all academic cave 

science relies upon. That is why this project focuses on two modern mapping techniques: 

Structure from Motion (SfM) photogrammetry and a new RGB-D mapping device called 

Tango. Tango is an augmented reality computing platform developed by Google that uses 

computer to enable smartphones and tablets to detect their position in 3D space without 

GPS. Either could bring about the availability and feasibility of 3D mapping to the 

average cave explorer in the United States. The main goal of this study is to test the 
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practicality of these two modern 3D modeling methods to replace standard cave mapping 

methods widely used today.  
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CHAPTER 2 

BACKGROUND 

 

Mapping/Survey 

Important Concepts for Cave Mapping 

 Several important issues in cave survey must be addressed when considering the 

goal of the survey and the eventual map: accuracy, speed, detail, and usability of the map. 

These are important when managing a survey since cave mapping is typically a voluntary 

service done by cavers in their spare time. This places the attribute of speed as a very 

important, yet often ignored, goal for the survey. If the survey is exceedingly slow, the 

cavers typically lose steam and interest in continuing the project. This is a far greater 

problem in places like the Southeastern United States. where there is a massive number 

of accessible caves that need to be explored and mapped. In Tennessee alone, there are 

well over 10,000 documented caves, and this number grows at a rate of about fifty new 

caves per year (TCS 2018). Two counties in Middle Tennessee, White County and Van 

Buren County, have two of the highest cave densities in the world (TCS 2018). White 

County has 1,266 documented caves for an area of 982 square kilometers, or about 1.29 

caves per square kilometer. Van Buren County has 873 caves in an area of 712 square 

kilometers, or about 1.23 caves per square kilometer. 

 Depending on the size of the cave system, usability and accuracy of the map is 
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typically less important than the speed of survey. Most maps of larger cave systems will 

be used for guidance through the cave. In this role, it is important to include changes in 

passage shapes and obvious features that are clearly visible in the cave. Too much detail 

can clutter a map for a larger cave system, and some of it often has to be removed for the 

final product to be usable in this role. It is also important to include any scientifically 

important details that can be identified on the map for future research and studies. One 

example of this is how paleontologists and biologists rely heavily on avocational cavers 

for discovering locations of interest and creating the cave maps they use in their studies. 

 

Cave Survey Technique 

 For decades, cave mapping has been a long and tedious process involving a small 

team of dedicated cave explorers (Marbach and Tourte 2002). The procedure relies on 

human interpretation of the environment with many artistic liberties mixed in. The 

quality of each cave map is determined by in-cave sketches done by the cavers and the 

ultimate goal of the cartographer drafting the map (Grimes 2000). 

 The entire concept of surveying a cave rests on the simple process of building a 

single 3D wireframe that extends down the cave passage, called a “line plot,” by 

measuring line-of-sight survey shots between two arbitrary points, often easily 

identifiable natural features known as “survey stations.” These survey shots are used to 

determine the location of each new survey station in reference to the location of the 

previous one. This progression of mapping each new survey station by measuring the 

azimuth (the compass reading), vertical angle, and distance of the line-of-sight linking it 
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to the previous station (Figure 1) creates a line plot extending through the cave beginning 

at the cave entrance (Figure 2). 

 

Figure 1. A caver measures the azimuth and vertical angle of the vector line linking 
survey station A3 to survey station A4. 

 

 
Figure 2. The process of cave survey with the cave entrance located at survey station A1. 
One caver reads survey instruments at survey station A3 while another caver indicates 
the location of survey station A4. 
 

 

 A typical cave survey team requires a minimum of three cave explorers to be 

efficient: one who is on “point,” one who operates survey instruments, and one who is the 
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sketcher/book keeper (Figure 3). The caver on point, also called the “point person,” 

scouts ahead down the cave passage while placing survey stations in locations that are 

within line of sight. 

 
Figure 3. A caver records data as two other cavers measure the distance between survey 
stations using a surveyor’s measuring tape. Photo taken by Chris Higgins and used with 
his permission. 

 

 

 Survey designations typically follow an alphanumeric naming scheme, such as 

having the first survey in the cave named “A,” with a number following the letter 
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designator to represent each individual station in the “A” survey. When using this typical 

scheme, side passages are given new letters or a second letter after the letter “A” 

depending on the size of the cave system and the significance of the side passage. This 

common naming scheme is used in this study. 

 The job of the third caver, the sketcher, is the most important. The sketcher plots 

the line using a protractor, drawing what is essentially a rough map of the cave passage 

surveyed during the trip. This rough sketch map (Figure 4) typically includes the 

dimensions of the cave passage, features observed, the date of the survey trip, the survey 

team member names, and any other important notes about the survey trip. Cavers capable 

of sketching detailed and accurate passages, while keeping up with the cavers measuring 

the survey shots between survey stations, are a rare commodity; the sketcher has to 

record survey shot data as it is called out, be aware of cave hazards, and draft a rough 

cave map all at once.  

 The sketcher also writes down all the values obtained by the instrument while the 

point person or the instrument reader estimates or measures the “LRUDs.” LRUDs are 

the distances between the survey station, typically the forward station, and the passage 

walls around that station. The LRUDs are the measurements of the distances between the 

station and the Left wall, Right wall, the ceiling (Up), and the floor (Down). These values 

help the sketcher draw a more accurate representation of the passage dimensions while in 

the cave, and provide details for drafting the final map. 
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Figure 4. An example of high-quality sketch created during a 
survey trip into Blue Spring Cave in middle Tennessee. This 
sketch includes the survey shots between survey station BCP12 
and survey station BCP19. Blue Spring Cave is a very 
extensive cave system, and passages with three to four letters 
designating the survey of a passage, like the BCP survey, are 
not uncommon. 

 

 All survey data and sketches are used to draft the cave map, accomplished by 

many different methods depending on the desired quality of the cave map and how 

complex or extensive it is. In the past, the survey data line plot was plotted out by hand 

on a piece of graph paper sized to accommodate the entire cave survey. Finally, the 
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individual passage sketches are plotted out on the same graph paper together to create a 

final cave map. Thanks to the availability of computers and cave survey software, the 

drafting process is both simplified and far more accurate. Using a computer, the survey 

data is entered into one of the many cave survey programs available, and that program 

plots out the survey data for the cartographer. Next, each of the sketches from the cave 

survey are scanned and saved on the computer. These sketches are then “transformed” to 

fit the plotted survey shots represented by the sketch. The process of morphing is where 

the sketch is stretched to fit the data; this can be a painless process or a major difficulty 

depending on the quality and accuracy of the sketches. The morphing process allows the 

cartographer to connect all the sketches in a coherent manner and use those sketches to 

draft the passage details (Marbach and Tourte 2002; Palmer 2007). The line plot is then 

exported to a program that allows the sketches to be displayed as a layer behind the line 

plot and digitized with a line drawing feature in the program. The program used to 

digitize the cave map sketches in this study is the open source vector drawing program 

Inkscape; however, many different programs have been used to fill this role. 

 Many difficulties can be encountered when drafting cave maps of more complex 

cave systems, such as multiple overlapping levels and low-quality in-cave sketches. The 

cartographer must use skill and artistry to overcome these hardships and produce a usable 

cave map. The time it takes to map a cave using traditional methods varies a great deal; it 

is mostly dependent on how much detail, accuracy, and precision is desired or required. 

Typically, in larger cave systems, speed is the most important aspect of mapping. With a 

large complex cave system, producing any usable cave map for other cavers and/or 
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scientists is a monumental task that can take generations of cavers to complete. Many of 

these massive mapping projects start with great momentum while the cave is new and 

exciting, before ultimately slowing to a crawl as cavers lose interest and leave them for 

other new and exciting discoveries. The persistent problem of keeping momentum in 

cave mapping projects means that many cave maps never get finished and, sometimes, 

the survey data eventually becomes lost. The method of surveying cave passages 

described above is the main method used by nearly every cave explorer in every cave 

around the world (Palmer 2007). 

 

Analogue Survey Equipment 

 Cave survey requires a specialized adaptation of common land survey and 

construction survey techniques used widely throughout history. Most modern land and 

construction survey methods and tools can be directly traced back the invention of the 

theodolite. The theodolite is a specialized telescope-like device that is used to measure 

the vertical angle and/or the azimuth (horizontal angle) of the line of sight between it and 

a target. The very first description of what could be considered a theodolite is found in 

the book, Margarita Philosophica, written by Gregorius Reisch in 1512. The word 

“theodolite” was first used in the surveying textbook, A geometric practice named 

Pantometria, written by Leonard Digges in 1571 (Avram et al. 2016). The theodolite has 

been upgraded through the years, with the largest improvement coming in the form of a 

digital device named a “total station theodolite,” or just “total station.” 
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 The total station is a ubiquitous sight in modern land and construction survey. 

Total stations are theodolites with an electronic distance measuring device built in. This 

combination allows the total station to accurately record all three dimensions of line-of-

sight shots between the total station and the target. Total stations are large, expensive 

devices created to calculate extremely high precision measurements. While this level of 

precision is important in construction and land survey, trading some of the extreme 

precision in favor of smaller, more practical and cheaper devices is favorable when it 

comes to cave survey. 

 Typical cave survey methods of the past few decades utilize three different 

devices that, when used together, collect the same data as a total station: the azimuth, 

vertical angle, and distance of a survey shot. The most commonly available analogue 

instruments used to fill this role of a theodolite in cave survey are the Suunto sighting 

compasses/clinometers and the Brunton Pocket Transit, with the commonly available 

surveyor’s measuring tape used to measure distances (Palmer 2007; Redovniković et al. 

2014). 

 

The All-in-one Survey Instrument 

 A goal for the current generation of cavers has been to combine all of the analogue 

cave survey instruments into one digital survey unit (Heeb 2008). Many attempts at 

building, modifying, or adapting existing all-in-one survey devices for use in cave survey 

have been successful. The most successful all-in-one survey instrument at this time is 

arguably the “DistoX” and its successor, the “DistoX2.” Development of the DistoX 
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devices started in 2007 by Beat Heeb (Heeb 2009). The DistoX is built by modifying a 

Leica Disto A3, while the DistoX2 is created by modifying the Leica Disto X310 or the 

Leica Disto E7400x, the latter being a specific model for the United States (Heeb 2014). 

The DistoX and DistoX2 both combine a 3-axis compass and clinometer with the 

preexisting Leica laser range finder. The use of the 3-axis compass allows the user to 

achieve rapid and accurate measurements regardless of the device's orientation. With the 

first DistoX, the inclination is measured by an SCA3000-D02 accelerometer, while the 

azimuth is measured by three magneto-inductive sensors (Heeb 2014). The DistoX2 uses 

the same 3-axis compass of the original DistoX. For inclination, the DistoX2 uses a 

combination of the preexisting acceleration sensor on the X310/E7400x and another 3-

axis sensor mounted horizontally. The original DistoX used off-the-shelf AA batteries, 

presenting a major issue: calibration was needed after every battery change due to the 

change in the magnetic fields of the batteries (Heeb 2009). This issue was resolved with 

the DistoX2 with the addition of a built-in rechargeable lithium polymer battery pack that 

never changes magnetic orientation (Heeb 2014). Both devices transmit data via 

Bluetooth to a handheld device, such as a tablet or Personal Digital Assistant (PDA) 

device. This allows the sketcher to digitally construct the line plot and sketch the passage 

details at the exact moment measurements are recorded.  

 Typically, either a Windows Pocket PC or an Android tablet is used in 

conjunction with a DistoX. Several programs have been created or modified to work with 

the DistoX devices. The DistoX family of devices can be used as a direct replacement for 

the analogue survey instruments even when the sketching is done on graph paper. The 
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use of a tablet or PDA in conjunction with the DistoX is entirely optional.  

 The DistoX and DistoX2 are both well-suited for cave survey; they are generally 

robust and have been shown to be very accurate, even in the most extreme environments. 

The DistoX devices are nearly as accurate as a digital total station when corrected for 

magnetic declination (Ballesteros et al. 2013; Redovnikoviü 2014). Both the digital total 

station and the DistoX far exceed the accuracy of the commonly used analogue survey 

instruments the DistoX set out to replace (Redovnikoviü 2014). 

 

3D Cave Mapping 

LiDAR (Light Detection and Ranging) 

 LiDAR refers to the process of collecting spatial location data on the surface of an 

object or area of land by measuring the time it takes for a pulsed laser to bounce back to 

the LiDAR device. These location data are compiled into a large database known as a 

point cloud, used to reconstruct the surface of the target object or area of land. In the 

world of three-dimensional cave mapping, several methods using LiDAR have shown 

moderate success. The main goal has been to shorten the time it takes to survey while 

increasing the amount of data collected and therefore increasing detail. Cavers dream of 

“scanning” the entire cave passage in 3D at a walking pace (Zlot and Bosse 2014). This 

dream has remained elusive with several attempts coming close. 

 The main issue encountered when it comes to the practicality of the former 
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methods attempted is the reliance on expensive LiDAR units and the costly gear required 

to use those LiDAR units. Caves can be a very harsh environment and the typical cave 

explorer doesn’t have the funds or technical knowledge to buy and use a LiDAR unit. 

Despite this, some cavers and cave scientists, with access to large amounts of funding, 

have utilized LiDAR for cave mapping and produced some spectacular results– most 

notably the 3D scan of the monstrously big Miao Room, Titan Chamber, and Hong 

Meigui Chamber in China, showcased in the July, 2014 issue of National Geographic 

Magazine. The main limiting factor to using LiDAR for cave mapping remains the cost 

of the LiDAR unit. Currently this issue is apparent, however, the cost is rapidly declining 

as technology advances. As the accessibility of LiDAR increases, the prevalence of 

LiDAR cave mapping will likely increase.  

 

Photogrammetry 

 Photogrammetry is the science of using multiple photographs to make 

measurements and/or create a 3D model or image of the chosen subject. The process 

involves using overlapping photographs of a subject taken from multiple directions under 

similar lighting conditions to determine the spatial location of each feature of the subject. 

This spatial location can be determined by everything from humans using stereo image 

viewers to advance computer algorithms implemented by modern photogrammetry 

software utilizing a concept known as Structure from Motion (SfM).  In modern 

geoscience, photogrammetry is typically used to measure or document the terrain or some 
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feature on the surface of Earth using aerial photography. Due to this historical focus, the 

adaptation of photogrammetry techniques to non-aerial photographs of subjects that are 

less than 300 meters (1,000 feet) away is often referred to as “Close-Range 

Photogrammetry” (Matthews 2008). 

 Structure from Motion represents a modern approach to photogrammetry that 

does not require ground control points (GCPs) because computer algorithms 

automatically align photos based on features that are identifiable in multiple overlapping 

photographs. The advantage of using SfM is that most of the work is done by computers 

after taking photos out in the field. Photogrammetry using georeferenced targets often 

involves additional time in the field collecting the location data of each target. This 

process consumes far more time and requires expensive GPS units or the use of costly 

land survey equipment and preexisting georeferenced features. SfM effectively eliminates 

these major requirements and makes photogrammetry available to essentially anyone who 

owns a camera and computer (Westoby et al. 2012). The program used in this study, 

Agisoft PhotoScan, utilizes SfM to create 3D models from photographs. For the sake of 

efficiency, any time the word “photogrammetry” is used in this paper without additional 

descriptive adjectives, it refers to the practice of Close-Range Photogrammetry utilizing 

SfM. 

 With the advent of 3D viewing software and 3D printing, photogrammetry has 

exploded in popularity, and a large number of people—with little prior 3D mapping 

knowledge—are learning and perfecting many aspects. The explosion in interest has 
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largely been limited to modeling objects and environments on the surface; however, there 

are occasional attempts to model an indoor and/or underground environment. 

 The difficulty of cave photography and the massive logistics of taking a large 

number of photos in caves have largely limited the practice of photogrammetry to 

modeling smaller objects in caves, such as cave formations or petroglyphs. Many 

difficulties must be overcome when using photogrammetry in a cave: consistent and 

adequate lighting in a completely dark environment; robust gear able to withstand the 

harsh cave environment; the ability of the participants to travel to places that are often 

very inaccessible to all but the hardiest explorers; the ability to reach vantage points that 

have complete vision of the passage without adversely impacting to the cave 

environment; carrying all your own battery power in the cave; finding a method of 

identifying tie-point features or GCPs for the photogrammetry program to recognize 

when calculating the location that the photographs were taken. And these difficulties only 

grow with larger and more complex cave passages. There are also occasional massive 

cave passages or rooms that still require the venerable old magnesium/zirconium-filled 

flash bulbs to light up vast areas where modern electric flashes are incapable of 

producing enough light. Currently, the logistics required to take more than a few photos 

of these massive underground voids renders photogrammetry, as a universal solution to 

cave mapping, nearly impossible; hundreds of large flash bulbs would be required to map 

just one room. 

 Despite these shortcomings, photogrammetry is a particularly appealing process 

of low-cost 3D mapping that will be heavily utilized in certain cave related applications. 
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One of the most important aspects of photogrammetry is that most cavers already have 

the necessary gear, which is affordable and useful for general cave exploration. The 

standard set of caving photography gear typically consists of a camera, a wide angle lens, 

a set of three remote flash units, AA batteries for the remote flash units, remote flash 

triggers, and a waterproof and shockproof case to carry the flash units, camera, and lens 

(Figure 5). Another very important aspect is that the skill level required for 

photogrammetry is not dissimilar from general cave photography. Accessibility to the 

average person is very important because so much of cave science is carried out by the 

average cave explorer while on vacation from his or her standard non-cave related job. 
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Figure 5. The standard setup for cave photography. This same setup is used to create 
photogrammetry model/maps of cave features/passages. 
 

 The process of taking photographs for photogrammetry can become very difficult 

in a cave. The goal is to take photos that largely lack depth, shadows, and high dynamic 

lighting. All of these characteristics are often very important when it comes to the artistic 

nature of cave photography; however, they are either unimportant or unwanted in photos 

that have to be spatially aligned by a photogrammetry program. To take good cave 
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photographs, setting up remote flash units at different angles to the camera is very 

important, particularly backlighting a subject with a flash somewhat facing the camera 

behind the subject. This setup using off-camera flashes creates nice shadows that lead to 

a more pronounced display of distances and depths in the desired photo. However, when 

it comes to photogrammetry, flat photos with minimal shadows are desired. The lack of 

shadows helps the photogrammetry program orient the photos correctly and create 3D 

textures to cover the model. In short, photogrammetry uses the standard cave 

photography toolkit, but in a very different way. 

 

Computer Vision (RGB-D) 

 In contrast to the more mature methods of LiDAR modeling and photogrammetry, 

Computer Vision is a relatively new concept in geosciences. Computer Vision devices 

typically use a RGB-D sensor to create a model of the environments or an item. RGB-D 

sensors, or cameras, have grown out of their use in the robotics field and as virtual reality 

devices. In geosciences– and many other scientific fields– the first introduction of RGB-

D sensors for 3D mapping occurred on a large scale with the release of the video game 

device, called the Xbox Kinect (later renamed: the Microsoft Kinect). The term “RGB-D” 

refers to the integration of two different types of cameras in the same device. RGB refers 

to a camera that records light on the visible part of the electromagnetic spectrum. This is 

a standard camera sensor that people have been using to record videos and take pictures 

since the introduction of digital photography. The “-D” in RGB-D refers to a depth 
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sensor. The typical depth sensor, including the one found in the Kinect and Tango, is a 

combination of two devices that operate along the infrared (IR) range of the 

electromagnetic spectrum: a projector and camera. The IR projector and IR camera are 

set at a predetermined distance apart; this offset distance is a critical element in the final 

calculation of the depth by the sensor. The IR projector projects a predetermined pattern 

of laser dots onto the object or scene being scanned, and the IR camera records the dot 

pattern as it appears on the object or scene in front of the depth sensor. The deformation 

of the recorded dot pattern, in contrast to the projected dot pattern, is used to triangulate 

the distance between the dot and the sensor when it was reflected back to the camera, 

which determines the distance of the surface the dot was projected onto. In the case of 

Tango, this process occurs at a rate of 90 frames per second. Tango combines the depth 

camera and RGB camera into a single unit (Figure 6), with a quarter of the pixels 

collecting the IR data (Aijaz and Sharma 2016). Tango can use this combined RGB-D 

sensor to map subjects that are 0.5-4 meters (approximately 1.5-13 feet) away from the 

tablet (Google Developers 2017). 
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Figure 6. Features of the Lenovo Phab 2 Pro mobile device, which runs Tango. 

 

 In addition to the RGB-D sensor, Tango is unique in that it uses multiple other 

methods to keep track of the spatial location of the device while it is being used for 3D 

mapping. Google has adapted the robotics concept of SLAM (Simultaneous Localization 
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and Mapping) to help keep an accurate location without aid from GPS. For this, Tango 

uses a wide-angle motion tracking camera and inertial sensors to aid in the spatial 

tracking of the device (Aijaz and Sharma 2016). 

 Tango is marketed as a virtual reality device focused on recreating virtual worlds 

or imposing virtual objects that fit, or react with, the room or place the operator is 

located. The device relies on having ambient lighting to record the surface texture of the 

model and helps correct for drift. The Tango tablet is most often used in a well-lighted 

area for a limited amount of time, while being able to fit inside a pocket; the build of the 

tablet reflects these considerations. 

 The first consideration to be dealt with is the poor ergonomics of using the tablet 

to map for a long period of time, particularly the unfortunate location of the power button 

where it is often pushed by mistake while holding the tablet for 3D modeling use. One 

other important aspect of using any imaging device in a cave is the complete lack of light; 

all lighting equipment must be brought in by the caver. As stated before, the Tango tablet 

is typically used in a well-lighted (or poorly lit) environment; the device does not fully 

function in an environment where no light exists. Another consideration is that Tango's 

battery is inadequate for the long periods of time required for mapping larger 

environments, such as a cave. Another consideration that must be addressed is the limited 

protection the tablet has against the harsh environment of a cave. 

 Most of these issues were solved by using and modifying a standard camera 

stabilizing “caddie” that the tablet was attached to via a purpose-built tablet holder that 
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had a standard tripod mount (Figure 7). A standard 18-volt LED car fog light was 

attached to the bottom of the caddie and used for lighting. The type of lighting required 

was diffused soft light, so a folded piece of cooking wax paper was attached to the front 

of the car fog light with rubber bands. The 18-volt LED was attached to the bottom of the 

camera cradle with the fog light mount, washers and nuts, and several zip ties. A switch 

and wiring for the light was connected to the upper part of the caddie with zip ties and 

vinyl electrical tape. The chosen wiring was standard US “NEMA” grounded cord 

connector. A standard 12-volt motorcycle battery was used to power the LED fog light—

specifically the smallest one found at a standard box store; this battery was set up with a 

long cord that had a grounded NEMA connector to complement the NEMA connector 

used for the caddie light. A small cave survey bag was used to carry the motorcycle 

battery while the NEMA cord linked the battery to the switch and LED light. A standard 

light switch was mounted to the top handle of the caddie; this switch was used to switch 

the LED light on and off as needed. To address the inadequate (for this task) battery life 

of the Tango tablet, a store-bought large-capacity USB battery bank was strapped to the 

base of the caddie with zip ties. And a USB-to-Micro USB cable was routed through the 

handle and held in place with vinyl electrical tape. The USB cable was used to link the 

tablet to the battery bank, allowing the tablet to be used far longer than the built-in 

battery, which only lasted for around an hour while mapping. To help protect the tablet, a 

purpose-built rubberized case was used to cover the bare tablet. The entire caddie setup 

made mapping with the tablet far easier and more effective at mapping Tipton-Haynes 

Cave. 
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Figure 7. Tango setup used in this study. The lighting, extra battery, and cradle allow for 
a more efficient use of the Tango tablet when it comes to mapping a large dark 
environment such as a cave. 
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Other Methods 

 Several other methods of remote sensing have been investigated for 3D cave 

mapping, including: ultrasonic mapping (Sellers et al. 1998), ground penetrating radar 

(Chamberlain 2000; Kasprzak 2015), and survey with a total station (Paul 2013). Of these 

listed methods, two require access to the cave passage:  ultrasonic mapping and survey 

with a total station. The third method, using ground penetrating radar, provides the ability 

to map underground voids from the surface above. These methods have been shown to 

work, however, they typically produce lower resolution models, require more time/effort, 

and cost more than other methods. 

 

Location 

Geography, Hydrology, and Geology 

 Tipton-Haynes Cave is 175 meters long, with 8.5 meters of vertical extent. It is 

located in the Tipton-Haynes Historic Site, 760 meters northeast of the northernmost 

flank of Buffalo Mountain along the southeastern bank of Catbird Creek. The cave is a 

truncated section of an old, mostly phreatic cave system formed in the steeply dipping 

carbonate beds of the massively thick Ordovician- Cambrian-aged Knox Group—the 

main cave-producing rock unit found in the Valley and Ridge Province of Tennessee 

(Palmer AN and Palmer MV 2009). Buffalo Mountain is located on one of the many 

thrust sheets found in the easternmost extent of the Valley and Ridge Province; the thrust 

sheet the mountain sits upon is called the Buffalo Mountain Thrust Sheet. On this thrust 
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sheet, the Knox Group is locally a mostly limestone rock unit that is around 900 meters 

thick with intermittent sandy dolomite layers and cherty limestone. Cambrian-age 

sandstones of the Chilhowee Group, along with some small pieces of the Cambrian-age 

Shady Dolomite, have been thrust over top of the younger Ordovician- Cambrian-aged 

Knox Group, forming a large volume of the erosion-resistant Buffalo Mountain. The 

Knox Group remains exposed along the flanks of Buffalo Mountain, particularly along 

the northern and western sides (Ordway 1959). It is difficult to determine which part of 

the Knox Group Tipton-Haynes Cave is formed in without a detailed geological study, 

which is beyond the scope of this paper. The cave is formed mostly in limestone, with 

some narrow intermixed sandy dolomite beds along with the occasional chert bed. In this 

area, the Knox Group is harshly dipping to the northwest. 

 As stated, Tipton-Haynes Cave is a truncated section of an old, mostly phreatic 

cave system that formed as a conduit carrying (typically) slow-moving water under the 

water table. The stream that currently flows through portions of the cave uses the cave 

passage as a route of convenience and is unlikely to be related to the former drainage that 

created the cave passage in Tipton-Haynes Cave. It is entirely likely that several 

inaccessible phreatic conduits, currently located well below the water table, drain the 

northern end of Buffalo Mountain along a similar route and trend to Tipton-Haynes Cave 

today. In short, Tipton-Haynes Cave is a small piece of a very old cave system that is 

isolated in a more weather resistant section of the Knox Group that remains intact, 

forming a low rocky ridge at the edge of a grassy field. The grassy field signifies either a 

less weather resistant section of the Knox Group or a portion of the rock unit that was 
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subjected to more powerful erosive forces (Figure 8). 

 

 
Figure 8. A map of Tipton-Haynes Cave (in red) is overlaid on top of a blend of satellite 
photos and a hillshade made from the LiDAR terrain data for Washington County, 
Tennessee. This overlay also shows the spring-fed pond in the valley northwest of the 
small hill in which Tipton-Haynes Cave is formed. 
 

 Eleven entrances are formed where cave passages in Tipton-Haynes Cave have 

been truncated by the hillside of the low ridge the cave is in. These numerous large 

entrances have created a cave that animals can easily use as a shelter or den. This use by 

animals through the ages has made the cave an important site for the study of local 

Pleistocene fauna. Many of the chemical deposits of travertine throughout the cave 

contain fragments of bones that have yet to be fully studied (2016 conversation with B 

Schubert). Many of the chemical deposits of travertine throughout the cave contain 

fragments of bones that have yet to be fully studied. These calcite travertine deposits 
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form a matrix that glues together everything contained in the cave passage around the 

time the travertine is being deposited, forming a natural time capsule. The resulting 

matrix of travertine, rock fragments, and bone-fragments is often called “bone breccia” 

by paleontologists (Schubert and Mead 2012). 

 Tipton-Haynes Cave was formally mapped by members of the Holston Valley 

Chapter of the National Speleological Society in 1981 (TCS 2016). The 1981 map 

(Figure 9) is above average for the time, however, a more modern map is desired by the 

managers of Tipton-Haynes Cave, Dr. Schubert (paleontologist), and the author. 
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Figure 9. The original map of Tipton-Haynes Cave created in 1981 by 
members of the Holston Valley Chapter of the National Speleological 
Society. The cartographer of the map was Robert E. Whittemore. Yellow 
indicates any corrections and/or additions made by the TSC map director. 
At the time of the edits, Tipton-Haynes Cave Nr1 and Tipton-Haynes Cave 
Nr2 were not physically connected. 
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Brief History of the Greater Tipton-Haynes Site 

 Tipton-Haynes Cave is located on Tipton-Haynes Historic Site, which consists of 

a farmhouse, outbuildings, a spring-fed pond, a spring house, and a modern museum. The 

historic site covers 17 acres of mostly farmland along the banks of Catbird Creek, located 

1.75 miles southeast of the current city center of Johnson City, Tennessee. The name 

“Tipton-Haynes” comes from the last names of the two families who historically lived on 

this plot of land: Tipton and Haynes. The first documented claim to the property was the 

purchase of a 524-acre tract, including the property of the site, by Jonathan Tipton of 

Virginia in 1775. In 1782, and not long after the 1775 property claim was declared null 

and void, the land was sold to Samuel Henry,  a cousin of the famous Revolutionary War 

hero Patrick Henry. In 1784, Samuel Henry sold the land (on a 100-acre tract) to Colonel 

John Tipton, Jonathan Tipton's brother. The farm remained in the Tipton family until 

1837 when it was sold to a local land speculator, David Haynes, who gave it as a 

wedding gift to his son Landon Carter Haynes. The land switched hands several times 

until 1945 when the Simmerlys, relatives of the Haynes family, sold it to the Tennessee 

Historical Commission. The Tipton-Haynes farm was placed on the National Register of 

Historic Places in 1970 and is open to the public as a museum and educational site under 

the stewardship of the Tipton-Haynes Historical Association (Brock and Whitaker 2012).  
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CHAPTER 3 

METHODS 

 

Use of the DistoX2 to Make a Traditional Map 

 A new map was created for this project in a style that is more detailed than the 

typical modern digital cave map, allowing for a proper comparison of how well a high-

detail cave map stacks up to the newer 3D mapping methods tested in this study. The job 

of the survey measuring tape, compass, and clinometer was carried out by a DistoX2, 

giving the new map much more accuracy and precision when compared to analogue 

survey instruments. 

 The LRUDs were measured using the DistoX2, via shooting a shot from the 

station to the walls and ceiling. Typically, this method is done by surveyors who strive 

for more precision at the large expense of speed; however, Tipton-Haynes Cave is a 

shorter cave, and a more detailed map was desired, so speed was sacrificed. The passage 

was sketched at a 1:120 scale on 8.5 x11-inch weatherproof, 1/10-inch grid paper. 

Measurements were recorded on 4 5/8 x 7-inch weatherproof paper specifically set up for 

recording survey notes. Using the much larger 8.5 x11-inch grid paper for sketching 

allowed for a much greater level of detail, accuracy, and precision while also speeding up 

the entire survey in the process. Survey stations were temporarily marked using either 

flagging tape or zip ties. Some important stations were described in greater detail in the 

survey notes for potential future use. 
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 Mapping took place over the course of three days, with five hours spent in the 

cave each day. This is excessively long for a cave of this size, however, accuracy and 

detail were important for making comparisons. The focus on accuracy and detail leads to 

much more time spent sketching the passage. The survey started out with an obvious 

point on a large slab located just outside the main entrance to the cave (entrance E1); this 

station is the first station of the newly designated “A Survey,” or “Station A1.”  The 

survey then extended into the cave, passing by a “hand-and-knees” crawl along the left 

wall in between stations A2 and A3. Past the side passage crawl, the A Survey extended 

up a slope to the southeast, leading into what is considered the “main passage” of the 

cave; this main passage is the largest known passage in Tipton-Haynes Cave. The main 

passage extended as a mostly walking, canyon-shaped passage formed along a 

northeastern-southwestern trend, following the strike of the harshly dipping beds of the 

Knox Group. In the floor of the main passage, a prominent point of a buried rock was 

chosen as the “tie-in” survey station, Station A4, to survey down both directions of the 

passage. The A Survey continued to the northeast towards of entrances E6, E7, and E8. 

Survey Station A5 was located on a large boulder that, along with many others, has fallen 

into the cave passage due to the intersection of the outside hillside (which created the 

three aforementioned entrances). The A Survey then skirted the northern edge of the 

boulder pile at the base of entrances E6, E7, and E8 while extending into an upper level 

tube-shaped passage trending northwest (perpendicular to the strike of the bedding). The 

next survey shot extended down the length of this upper level tube-shaped passage, 

ending at Station A7 on the floor at a climbable balcony overlooking a lower-level 
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passage. The eleventh entrance to the cave was located mere feet to the northwest of this 

station and was clearly visible. The A Survey then extended down a short climb-down 

and into a larger passage below. 

 This lower-level passage is damp and contains far more organic debris then the 

rest of the cave; the floor is covered in tracks from small animals that utilize this passage 

as a shelter or den. Another tie-in station, Station A8, was placed on a large rock at the 

base of the aforementioned balcony descent. From Station A8, the A Survey extended 

back to the southwest to Station A9. Station A9 is located at a junction between a lower 

level passage extending to the east, roughly underlying the upper-level tube-shaped 

passage described earlier. The next survey station, Station A10, is located on a pointy 

rock partially embedded in the hard, moist dirt floor. At this point, the passage connected 

back into the entrance passage via the “hands-and-knees” crawl located between survey 

stations A2 and A3. The rest of the surveys, B Survey, C Survey, D Survey, and E 

Survey, signify side passages and lower levels found in the main portion of the cave. 

 A second part of the cave, formally known as the separate unconnected cave 

“Tipton-Haynes Cave Nr2,” was surveyed next. The entire portion of this cave is 

surveyed as the AA Survey, AB Survey, AC Survey, AD Survey, and the AE Survey. 

This portion of the cave started at an entrance passage formed along the strike of the rock 

with a lower, southbound canyon passage that contained a small flowing stream in the 

floor. Along the lower part of the northern wall in the entrance room, a lower crawl 

passage extended in the direction of the main passage in the “Tipton-Haynes Cave Nr1” 

(the A Survey). The two traditionally independent caves were connected via a very tight 
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tube-shaped crawl between stations A4 and A5, along the southeastern wall at floor level.  

 The data collected while mapping consisted of sketches and survey vector data 

recorded on paper while in the cave. These data were scanned to make digital images that 

were then cropped and post-processed in GIMP, an open source image editing software. 

The survey vector data were entered into the cave survey software called Compass. 

Compass produced the line plot of the cave from the vector data. This line plot was 

converted to a Scalable Vector Graphics (SVG) file using the Compass SVG exporter. 

The SVG file created in Compass was then opened in Inkscape, an open source vector 

drawing program, along with the scanned and cropped sketches. Typically, sketches are 

transformed to fit the vector data using the Compass Sketch Editor, however, the sketches 

created during this study were accurate enough to directly upload into Inkscape without 

needing any transforming. The sketches were then digitized and compiled into a single 

map using Inkscape. Passage cross sections were digitized and placed next to the passage 

they represent. A title, key, and other relevant information were then modified and/or 

added to complete the draft of the map. 

 

Photogrammetry for 3D Cave Mapping 

 Photogrammetry was carried out in a non-technical and fast way to represent the 

most practical usage in standard cave mapping. No control points were used; the proper 

alignment of the photographs is entirely reliant on the algorithms of modern 

photogrammetry software. This is to limit the required time spent in the cave and 



 

42 

expedite the survey process in attempt to obtain the speed and efficiency of traditional 

mapping techniques.  

 The photos were taken with attention given to maintaining consistent lighting, 

color, and depth of field. This consistency allowed the photogrammetry program to 

georeference the photos and stitch them together into a 3D model. The easiest way to 

keep the lighting aligned in the same direction for each photo, with respect to the camera, 

is to mount the flashes onto a bracket with the camera. This makes the camera bulky to 

carry; however, that is far more preferable than having to keep off-camera flashes aligned 

while not venturing in between those remote flashes and the subject, which creates a 

large human shadow in the image. 

 

Mapping Tipton-Haynes Cave with Photogrammetry 

 For mapping Tipton-Haynes Cave, the author opted for a lightweight Micro Four 

Thirds (M4/3) camera system over a traditional digital single-lens reflex (DSLR) camera. 

This is due to the difficulty of shooting hundreds of photos over the course of several 

hours, all while holding the camera and two large flashes steady for the photos. A 12mm 

wide-angle pancake lens was chosen due to its low barrel distortion, light weight, and 

availability. An ultra-wide lens, while better at capturing more of the passage, would 

need post processing to correct for the typical barrel distortion and vignetting that even 

the best ultra-wide rectilinear lens typically has. 

 Ninety-seven photos were taken of the main entrance and the narrow, odd-shaped, 
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entrance passage extending into the cave. A total of 987 photos were taken past the 

entrance passage and throughout the main part of the cave (the strike-oriented passages 

and rooms). Most of these photos were shot with the camera lens perpendicular and 

facing the passage walls when possible. Due to the irregular character of the cave 

passage, taking photos from the most desirable angle was often not possible. This led to a 

more random approach to taking pictures with hope that the photogrammetry software 

could automatically sort out the photos during post-processing. 

 A challenge with the lighting occurred where narrow bedding plane shelves or 

slots extended out of, or retreated into, the cave wall. These narrow features were not 

properly lit due to the location of the flashes just slightly above the level of the camera 

lens. This could be mostly resolved by turning the entire camera setup and shooting the 

slots or shelves with the camera at a different angle. 

 The number of AA batteries required for shooting all 987 photos was not 

excessive; the flashes could be used at a very low setting due to the size of the cave. Each 

flash used only two sets of four AA batteries, for a total of 32 AA batteries. This would 

be a concern if the subject location was deep in the bowels of a large and difficult cave 

system. Photogrammetry requires a massive number of photos compared to how many 

are taken on a typical cave photography trip. 

 The photographs of Tipton-Haynes Cave were taken back to the East Tennessee 

State University Geosciences computer lab and sorted according to how usable they were 

and how even the lighting was. Several overexposed and underexposed photos were 
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tossed out. No editing was done to the individual photographs before they were imported 

into Agisoft PhotoScan Pro. All 987 photographs were included in the first run and at 

least 250 of those photos could not be properly aligned. This could be due to many 

reasons; however, the misalignment for one area was apparent: the sunlight around the 

entrance caused conflicting sources of light. Beyond the entrance, additional photos could 

not be aligned through many of the tighter passages in the cave due to the difficulty of 

shooting pictures in confined spaces. 

 

Tango for 3D Cave Mapping 

 The mapping program chosen for this study is called Real-Time Appearance-

Based Mapping, or RTAB-Map. This type of program is referred to as a “Simultaneous 

Planning, Localization And Mapping” program, or SLAM. The goal of SLAM programs 

is to make it possible for an autonomous robot to map the surrounding environment in 

real time and compile the collected data into a continuously updating map that the robot 

uses for terrain navigation and obstacle avoidance (Labbé and Michaud 2011). RTAB-

Map contains algorithms used for “loop closure.” Loop closure is where a previously 

mapped passage is intersected by a later survey, where the later survey is tied into the 

former survey to correct any error and provide a more accurate location. The ability to 

correct for drift via loop closure is extremely important in both traditional cave survey 

and SLAM, and RTAB-Map does this on the fly when an area previously mapped is 

detected. One limitation that cannot be remedied, only worked around, is a RAM memory 
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limit built into the Android operating system of the device (Google Developers 2017). 

The work-around involved saving the current scan and starting a new scan every time the 

program was close to reaching its RAM limit. Most 3D mapping/modeling programs for 

Tango have been built to accommodate this hard RAM limit; RTAB-Map is no different. 

 

Mapping Tipton-Haynes Cave with Tango 

 Many trial runs were done with the Tango device as it is new technology, and 

different methods and software had to be explored. This led to many days out in the field 

with little return. An efficient method of using the tablet to map cave passage was 

eventually found and used. 

 The area outside the main entrance was mapped first, followed by the narrow 

walking passage leading into the cave. This passage has an odd shape that was 1.5 meters 

wide at the floor level up until around 0.5 meters off the floor. At that point, the passage 

narrowed to a width of about 0.5 meters all the way to the cave's ceiling. This odd-shaped 

passage proved difficult to map with the Tango due to its narrow nature. Beyond this, the 

narrow odd-shaped entrance passage increased in size after three meters of traverse, 

extending into the main room of the cave. 

 Scanning continued through the main room to the southwest until the small rocky 

crawl extending out the second entrance was encountered. This crawl proved to be a very 

difficult area to properly scan due to the small size and irregular shape of its passage. 

After the author was satisfied with the results displayed on the tablet, the large, mostly 
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walkable passage extending northeast was navigated. The small but decorated upper level 

area in the ceiling overlooking the main chamber of the cave was ignored; mapping it 

would require a difficult free climb while strapped down with relatively fragile gear. The 

lower passage extending to the northeast was scanned up until the pile of boulders 

extending down from E6, E7, and E8—where the passage is cut off by a break to the 

surface. That entrance area was scanned, followed by the cave passage below leading 

around the northern end of the boulder pile. The cave passage bifurcates into an upper-

level tube crawl and a lower-level dirt-floored crawl a few meters down its passage. The 

lower route was taken to simplify the mapping process and the final model. Also, 

including the upper-level passage would make the final product more difficult to 

understand by stacking passages on top of each other, creating a blob of passages. The 

passage extending into a more complex portion of the cave to the northeast was scanned 

next with no issues. Next, entrance number nine was scanned to aid in the process of 

georeferencing the cave map. 

 After scanning the ninth entrance, mapping continued to the southwest in the 

direction of the main entrance. No difficulty presented itself in this passage until the 

crawl connecting this portion of the cave to the main entrance passage was reached. This 

crawl, once again, proved difficult to capture due to the tight dimensions and the 

minimum range of the device. Once through the connection crawl, a section of the 

entrance passage containing memorable features was rescanned, which allowed RTAB-

Map to close the loop made by the main two passages of the cave. After mapping the 

main part of the cave, the scan was saved onto the tablet's hard drive. 
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 Next, the southbound section of the cave was mapped. The entrance was scanned 

in by the device, followed closely by the entrance room/passage. After this passage was 

scanned, the focus was set on the southbound passage containing the small stream. The 

area linking these two passages, once again, caused the same issue with the minimum 

range, though, like the other tight areas, the passage was adequately mapped despite these 

issues. The passage extending south proved easy to scan, just like the other walking 

passage present in the cave; however, at the time of the scan, no water or stream was 

present which aided in the endeavor. After scanning in twelve meters of walking-canyon 

passage, and two very short side alcoves, the breakdown climb-up and crawl signified the 

end of the passage at the third entrance to the cave. This area was yet another tight 

passage that proved difficult to map. The third entrance of the cave was not exited and 

scanned due to the presence of large spiders and mud. 

 Comparing cave maps is a difficult task as nearly all mapping methods create 

inaccuracies. This leads to the conflict of what basemap to use as a control. Due to the 

proven accuracy of the DistoX2, the hand-drawn map (created with the DistoX2) was 

chosen as the base map. Several identifiable features on each map were chosen as 

“control points” for use in the comparison. The chosen control point features were points 

where a sudden change in passage shape occurred, which helped when trying to locate 

these features in the 3D models. The 3D models were stitched together (where necessary) 

and exported as a plan view slice of the passage to be compared to the traditional plan 

view map. 

 Due to the limitation of the photogrammetry model (the limited number of photos 
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that were able to be stitched together by the photogrammetry software), the main 

comparison was done using the original “Tipton-Haynes Cave Nr1” (Figure 10) portion 

of the cave. This portion contains six easily identifiable points where the passage 

drastically changes. The points were identifiable on all three maps: the traditional map, 

the photogrammetry map, and the Tango map. Six additional control points were added 

to the “Tipton-Haynes Cave Nr2” (Figure 10) part of the cave for additional comparison 

between the Tango model and the traditional map. All 3D models were treated as 2D plan 

view maps in this comparison, which allowed for the inclusion of the hand-drawn plan 

view map. The Z values for the 3D models were zeroed, which collapsed the point clouds 

down to what are essentially plan view cave models. 
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Figure 10. The cave passage labeled according to the formally unconnected areas of 
passage in Tipton-Haynes Cave. The labels “Nr1” and “Nr2”, which stand for “Name 
reuse 1” and “Name reuse 2”, indicate that both caves were formerly named “Tipton-
Haynes Cave.” The two caves were connected through the extremely tight crawl shown 
on the map just inside the entrance E5. 
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CHAPTER 4 

RESULTS 

 

Traditional Cave Map 

 The traditional cave map produced during this study (Figure 11) includes both 

portions of the cave, formally Tipton-Haynes Nr1 Cave and Tipton-Haynes Nr2 Cave. 

The caves were connected during the mapping process via the tight crawl located 

between E5 and E6. The survey lines were excluded from the final map as they are not 

needed for the map comparison to show everything happening in the cave. Both the total 

vertical extent and total length are included on the map. Due to the location of the cave, 

and possible future uses of the map by local people, standard American units were used. 

The standard US 8.5×11-inch dimensions are used for the plot of the cave. This allows 

the map to be printed out by a standard US printer for future use. Color was sparingly 

used on the map to allow the use of the map in either color or black and white. 

 

3D Cave Map/Models Created Using Photogrammetry 

 While the maps and model produced with photogrammetry is limited to the Nr1 

portion of the cave, the model includes most of the large main room and second room 

(Figure 12). The 3D model was flattened by collapsing the Z axis based on a portion of 

the cave floor that was measured as a level plane using the DistoX2. 
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Figure 11. The new map of Tipton-Haynes Cave created during this study. Surveyors 
included cave paleontologist Dr. Blaine Schubert and his son Briar Schubert, Brazilian 
caver Marcelo Kramer, and Tennessee caver/geologist Clinton Elmore. The cartography 
was done by Clinton Elmore. 
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Figure 12. The extent of the 3D model created using photogrammetry by 
overlaying it over top of an outline of the traditional map (in blue). 

 

3D Cave Maps/Models Created Using Tango 

 Tango correctly located and aligned passage while recording data which produced 

a more complete 3D model of the cave compared to photogrammetry. Both the Nr1 and 

Nr2 parts of the cave were modeled. The model was then flattened on the same Z axis 
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that the photogrammetry model was flattened along. This process created a plan view 

map of passage based on the 3D model created by Tango. A textured mesh model (Figure 

13) was produced and compared to the DistoX2 basemap (Figure 14). 

 
Figure 13. The 3D texture map created using Tango. Much more of the 
cave could be captured due to the ability of the Tango device to tack the 
location of the user using multiple different types of algorithms and 
sensors. 
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Figure 14. The 3D mesh created using Tango (green) georeferenced over top of the 
DistoX2 base map. 
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CHAPTER 5 

DISCUSSION 

 

Photogrammetry 

 In larger cave passages where the flashes would have to be at a higher setting, 

many more batteries would be required for the flashes. The size and scope of a project 

may justify buying rechargeable flash battery packs if the flashes you are using have the 

option. Another consideration with the flashes is the time spent adjusting the power of the 

flashes. The most effective method to do this is to buy flashes with the option for radio 

control from the camera or from a sender unit in the hot shoe of the camera. Adjusting 

flashes becomes less of a problem if the flashes are mounted on a flash bar attached to the 

camera—like the unit used in this study. The zoom feature present on most modern 

flashes would greatly help illuminate places that are unreachable via walking for any 

reason. These could be areas distant from the main trail or areas far off the floor. This, 

however, is not a huge issue in a small spaces like Tipton-Haynes Cave. 

 The model produced with photogrammetry only included part of the area where 

photos were taken. This failure to map some areas may have to do with lighting near the 

entrances or the lack of easily recognizable features. No objects that could be used as 

control points were placed in the cave during the study. The results in this study show 

that control points are likely required for doing photogrammetry in caves. 
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Tango 

 Though not as convenient to carry as most modern camera gear setups, the overall 

setup used with the Tango device is not unwieldy. The device itself is carried in a plastic 

waterproof case that is built to carry the generic 7-inch tablet. The cradle, on the other 

hand, proved much more difficult to safely transport in a harsh cave environment; the 

cradle used in this study is entirely made out of plastic. To map more inaccessible cave 

systems in the future, either a more robust metal cradle, or a protective case for the 

cradle, is needed as the plastic cradle would not last long after being dragged through a 

cave in a pack while unprotected. The motorcycle battery is far more convenient to carry, 

but with one major caveat: lead-acid batteries, like the motorcycle battery in this study, 

must be avoided in any cave that has any type of rope work due to the extreme 

vulnerability that nylon has to acid. Many other concerns arise for this setup if it is to be 

used in a wet cave, though this new list of concerns is beyond the scope of this study. 

 RTAB-Map conveniently reminds the user when the passage wall is extremely 

close, as Tango does not work as well when capturing data about objects that are roughly 

0-0.5 meters away from the tablet. A similar problem occurred with photogrammetry 

while trying to take photos of cave walls in snug cave passages. A very convenient aspect 

of using Tango to map is that, unlike photogrammetry, the passage walls are showcased 

instantly on the tablet screen as scanning occurs. This allows the mapper to rescan any 

areas that show holes or errors. With photogrammetry, these holes or errors would not 

show up until after processing the photos and producing the 3D model on a computer 

away from the cave. 
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 The ceiling height showcases one of the major limitations of Tango: the 4-meter 

maximum range of the RGB-D sensor (Froehlich et al. 2017). This short range would not 

be a concern if all caves resembled Tipton-Haynes Cave; however, many caves contain 

far more spacious passages. To use this device in larger passages, the operator would be 

required to trample over most of the passage floor, and this is a major issue that conflicts 

with the idea of keeping a low human impact on the cave environment. In some caves 

that have been regularly visited for years, this isn’t a problem, however, in the more 

pristine cave passages that only have a narrow path extending through the center, this 

device would not be able to capture the entire passage without stepping on and destroying 

the delicate terrain that flanks each side of the foot path. The issue of range in the taller 

areas in Tipton-Haynes Cave was offset by the ability to hold the cradle in one hand 

while extending the arm out. This was possible only because the ceiling was only just out 

of range while using the device normally. 

 

Time Spent Mapping 

 With Tango, it took just four hours to map 543.4 feet of the 579.5 total feet of 

cave passage in Tipton-Haynes Cave. This comes out to a rate of 135.85 feet of small-to-

medium cave passage per hour. This is spectacularly fast compared to the other methods 

of mapping performed in this study. A one-man team mapping with the DistoX was able 

to map 94.55 feet of passage per hour; however, surpassing the 135.85 feet per hour rate 

of the Tango could easily be done with a survey team and less detailed sketches. 
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Photogrammetry took the longest time with 225.7 feet of cave passage photographed in 

four hours, which comes out to 56.43 feet mapped per hour. The time it takes to set up 

and take a massive number of photos adds up quickly, however, photogrammetry results 

in far higher resolution textures. This slow pace could be greatly increased with practice 

and improved technique, as photogrammetry relies a lot on the skills of the photographer. 

 With post-processing, both Tango and photogrammetry require the use of more 

complicated 3D modeling software that requires skill and practice to use effectively, 

which greatly limits the number of cavers who can easily adapt to these new techniques. 

Most 3D modeling programs are specifically focused on mapping items from the outside, 

rather than having the perspective of being on the inside of the model looking out, which 

makes post-processing cave passage models very difficult for the untrained caver. 

 Drafting a traditional cave map is a tedious process that is entirely dependent on 

the quality of the sketches and the quality of the survey notes. The major benefit to 

drafting traditional cave maps, however, is the abundance of programs and information 

available for this specific process. Compared to survey done with analogue sighting 

compasses and clinometers, the DistoX2 greatly increased the speed of the survey as it 

allowed far easier survey station placement and reduced instrument reading errors. 
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Comparing the Accuracy of the Cave Maps 

 The comparison was carried out using the common GIS software, ArcGIS Pro. 

Obvious observable features that could be accurately tagged on all maps were chosen as 

“control points,” or exact points used to georeference each model to the hand-drawn 

basemap. Each of the chosen points were easily identifiable features—sharp corners in 

the passage and abrupt changes in passage direction at junctions—visible on the 3D maps 

and the base map. Five control points were chosen to compare each 3D map to the base 

map created using the DistoX. These control points are labeled 1-5 in Figure 15. Two 

additional points, A and B, were used to initially line the maps up in Figure 15. All of 

these control points are located in the Nr1 part of the cave. 

 The total amount of error between the control points on the two models being 

compared at the given time is given as the Root Mean Square error, or RMS error. The 

RMS errors for each control point indicates the physical distance between the control 

points on the base map and the control points on the map that is being compared to the 

base map—the higher the value, the more error. The value used to compare each map in 

this study is the total RMS error. The total RMS error value is the sum of the individual 

RMS errors for all five control points (Figure 15.) After the total RMS errors were 

recorded for the non-transformed maps, each map was transformed to better fit the shape 

of the DistoX base map. For both 3D maps, a similarity transformation produced the most 

visually accurate final results. A similarity transformation is a first order transformation 

which tries to preserve the shape of the original raster (Esri 2018). The total RMS error 

from each transformed map is shown in Figure 16. 
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Figure 15. This map shows the chosen control point features in blue. The two points used 
to initially line up the maps are shown in red. Control points are essential for a 
quantitative comparison of the mapping and modeling investigated in this study. 
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Figure 16. The total RMS error values for each comparison and the final RMS value 
after a similarity transformation was applied. The values are in decimal feet. Similarity 
transformation was chosen for both of the maps because it produced the most visually 
accurate end results. 
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CHAPTER 6 

CONCLUSION 

 

Are Photogrammetry and Google Tango Viable Mapping Techniques? 

 The number of different ways to map a cave in 3D has increased greatly with new 

technologies. The two methods tested in this paper represent two techniques that contain 

a lot of promise for future use in cave mapping and cave science. Photogrammetry 

provides the ability to take standard camera gear and produce models showcasing 

extreme accuracy and detail; however, current limitations relegate its use to features and 

sections of cave passage rather than entire cave systems. That is not to say that 

photogrammetry cannot be used to model an entire cave system; the process required 

would just be very difficult and time consuming. The most exciting part of this study was 

using the Tango tablet. This tablet performed exceptionally well mapping the cave 

passage to a usable standard of quality. Small objects weren’t as detailed or accurate, but 

the overall cave passage was surprisingly accurate, especially considering that no control 

points were used. The entire process of mapping was generally very fast and easy with 

Tango. The only place where Tango stumbled a little was in tight crawls. The biggest 

problem with Tango is the RAM limit, which has more to do with the Android operating 

system then Tango itself. This problem was solved by dividing the cave into sections and 

providing control points to link them in 3D editing software. For this particular study, the 

two main sections of Tipton-Haynes Cave could be georeferenced using the multiple 
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entrances and the traditional survey data, so control points were not needed. In the future, 

the decision to use control points must be considered when mapping larger cave systems; 

connecting each segment of passage without obvious control points is extremely difficult. 

 One thing to consider with the two 3D mapping techniques tested in this study is 

that neither of them works well in passages with pools of water. This is due to the 

reliance that each of these methods has on visible light, ultraviolet light, or infrared light. 

Perhaps with help from a polarizing filter, photogrammetry can penetrate some water, 

while Tango seems to somewhat work when the tablet is held very close and 

perpendicular to the water's surface. Above ground, some LiDAR units have been used to 

map near-shore areas of the ocean floor; however, it remains a very expensive process. 

(Irish and White 1998). 

 

For Average Cavers 

 Both 3D techniques used in this paper have attractive qualities when it comes to 

empowering cavers to utilize them during a weekend cave trip. As stated before, 

photogrammetry only requires standard cave photography gear and photogrammetry 

software, which make it an attractive method for cavers without large funding. Tango 

also has some attractive aspects: it’s relatively cost effective, almost the entire mapping 

process is automated and done in real, it is fast, and it is accurate enough for mapping 

cave passages. This paper barely scratched the surface of the use of photogrammetry to 

produce 3D models, as the main focus was on the use of RGB-D methods, particularly 
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Tango. With a lot of user experience and the use of control points and/or scales, 

photogrammetry is capable of producing extremely accurate and detailed 3D models and 

maps. This ability makes photogrammetry an extremely important asset for cavers, albeit 

not a quick and efficient way to create a normal cave map; SLAM mapping with devices, 

like Tango, excel at this process. Perhaps the differences between the two methods will 

slowly become less and less over time; combining the extremely high-resolution models 

produced by photogrammetry with the practical usability and speed of a SLAM setup like 

Tango. 

 

For Scientists 

 Scientists operating in many different fields of study have started to incorporate 

3D mapping by both RGB-D devices and photogrammetry, along with other more 

expensive methods like LiDAR. This trend will continue as universities continue to 

acquire more instruments and teach future scientists how to use these exciting new 

technologies as practical tools. Photogrammetry has been a staple of scientists for years 

now; however, with new computer programs and the creation of a huge base of hobbyist 

photogrammetry users, the entire concept of photogrammetry will become more 

advanced and more accessible in time. This and the extreme level of detail that 

photogrammetry can achieve, with relatively little effort, will keep it as a mainstay far 

into the future for scientists and hobbyists alike. Tango is a little more specialized when it 

comes to its use in science. Perhaps due to the speed at which it can scan an environment, 
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it will likely find niche uses outside of the robotics field. One possibility is in extreme 

environments where humans are incapable of residing for the time it takes to do 

photogrammetry. 

 

Final Conclusion 

 Mapping and modeling technology is rapidly becoming more advanced and 

available for both the modern consumer and professional. This massive shift away from 

large expensive devices, and techniques that require very skilled and experienced experts, 

paints a very exciting future for those seeking the ability to rapidly 3D map previously 

inaccessible environments, such as caves. As the community of average consumers using 

these techniques and technologies to produce 3D models and maps continues to explode 

in size, the methods and devices used will continue to improve with time. 

 Photogrammetry will continue to find large-scale use with this bustling new 

market of consumers and hobbyists wishing to capture as much of the world around them 

in 3D, as well as professionals who require extreme accuracy and detail. The ability to 

use regular photography gear is an attractive feature for any potential user. This being 

said, devices like Tango, and SLAM mapping in general, will continue to march into the 

future for completely different reasons—such as providing exciting new consumer virtual 

reality technology and creating drones with area mapping and collision sensors. In the 

realm of science, mapping will likely be the main use of SLAM devices. This study 

showcased the exciting capability of a SLAM device, like Tango, for rapidly mapping 
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areas previously not able to be mapped without expensive and large equipment. Even 

LiDAR itself is starting to become used on a large scale in the field of robotics as part of 

different SLAM systems; this usage will bleed over into the consumer market just as 

SLAM devices using RGB-D cameras have. 

 The future of modeling caves in full 3D is especially bright; however, the extreme 

practicality of maps produced using traditional survey methods will live on into the future 

as well. The readability of well-produced cave maps may remain impossible to surpass in 

the foreseeable future. The availability of devices like the DistoX bring traditional cave 

mapping a much-needed boost in accuracy and efficiency as well. Perhaps the ability to 

produce a traditional cave map directly from a scanned 3D model of cave passage may be 

the ideal use of these technologies. Future cavers may choose to combine the ever-

increasing speed and accuracy of 3D scanning via SLAM, with the usability of traditional 

hand-drawn maps. 
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