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ABSTRACT 

Synthesis and Evaluation of 1,2,4-oxadiazolidinones: The Search for A Potential non-β-lactam  

β-lactamase Inhibitors 

by 

Chimdi E. Kalu 

β-lactam antibiotics have been the most widely used drug of choice to combat infectious disease caused 

by bacteria. Unfortunately, their effectiveness is drastically threatened by bacterial β-lactamases. β-

lactamases is responsible for the resistance to most antibiotic drugs. For decades, β-lactam β-lactamases 

inhibitors have been used to reduce bacterial resistance; however, in this study 1,2,4-oxadiazolidinone 

derivatives as a non-β-lactam β-lactamases inhibitor against TEM-1 and P99 β-lactamases. The 

significance of oxadiazolidinone is the prominent five-membered ring scaffold in its structure, which is 

configurationally stable and present in other biologically active compounds such as linezolid and 

avibactam. Oxadiazolidinones were synthesized by treating nitrones with isocyanates. The synthesized 

compounds were characterized using 1H and 13C NMR, GC-MS, and FTIR. Afterward, they were tested 

using Nitrocefin as substrate to determine their effectiveness against TEM-1 and P99 serine β-lactamase. 

Compound 2a, 2b, 2c and 3 showed inhibition ranging from 12-38%. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

History of β-lactam Antibiotics 

In the late nineteenth century, some French medical students studied the resistance of genus 

Penicillium (a fungus) to the growth of the bacteria. They could not explain if the microbial resistance 

was because of the presence of penicillin. In a 1929 article from St. Mary’s Hospital in London, 

Alexander Fleming used the word “penicillin” to describe a well-defined antibacterial property.1 Since 

Fleming’s accidental discovery of the penicillin producing mold, years of steady progress have 

followed. And until today, the β-lactam group of compounds is the most successful examples of natural 

product application.2 After their commercialization, a β-lactamase secreting penicillin-resistant strain of 

Staphylococcus aureus was isolated.3,4 The use of Methicillin, a β-lactamase insensitive semi-synthetic 

penicillin to combat the problem of resistance, led to the evolution of another resistant strain known as 

methicillin-resistant Staphylococcus aureus (MRSA).5  
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Figure1: Few β-lactam Antibiotics 
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Most antibiotic agents have the β-lactam ring in their molecules. Bacterial resistance to this class 

of antibiotics is simple, as all β-lactam shared the same mode of action which is inhibition of bacterial 

cell wall synthesis by forming a stable covalent adduct with the active site serine residue of penicillin-

binding proteins (PBPs).6  

The PBPs are classified into two categories: the high molecular weight PBPs (HMW-PBPs) and the 

low molecular weight PBPs (LMW-PBPs). The HMW-PBPs are further subdivided into two groups – A 

and B, whereas the LMW-PBPs are subdivided into four groups based upon their tertiary structure.7 The 

HMW-PBPs are the main target of the β-lactams as they are essential for cell survival. Also, HMW-

PBPs are responsible for the execution of trans-glycosylation, while transpeptidation on the external side 

of the cytoplasmic membrane is carried out by both class A and B high molecular weight PBPs. 

Some bacteria have shown significant resistance to most β-lactam antibiotics using the mechanism 

described below: 

1. The biosynthesis of low-affinity PBPs catalyzes the transpeptidation reaction even in high doses of 

β-lactam antibiotics. Several Gram-positive bacteria accomplish this by mutation of residues around 

the active site of the PBPs hence decreasing the affinity of PBPs to β-lactam. This is commonly seen 

in non-β-lactamase producing Gram-negative bacteria.7–9 

2. The production of β-lactamase can facilitate the hydrolysis of the β-lactam ring in antibiotics, and in 

turn transfers the plasmid, encoding with β-lactamase gene among related and unrelated species. It is 

an important and prevalent mechanism in Gram-negative bacteria, e.g., Neisseria gonorrhea 

and Hemophilus influenza.8,10–12  

3. Decrease target site accessibility: Accessibility of target site plays a vital function in β-lactam drug 

action. The effectiveness of β-lactam depends on their ability to cross the outer membrane which is 

enhanced by the outer membrane protein (OMPs). Nevertheless, the bacteria eventually develop 
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resistance to the β-lactam through the outer membrane of the cell, leading to decreased effectiveness 

and increased minimum inhibitory concentration (MIC) of antibiotics. These, at most times, work 

with another resistance mechanism such as β-lactamase expression.13,14 

4. Decreasing the effective number of drugs in the periplasm using efflux pumps which facilitate the 

export of β-lactam outside the cell. It is common among gram-negative bacteria.14 

 

With the growing bacterial resistance to antibacterial drugs, there is a great need to design, 

synthesize and study non-β-lactam drugs that also display high specificity for the target site, low toxicity 

to human cells, and are not easily hydrolysable by β-lactamase.  

 

β-lactamase Enzymes 

The β-lactamase enzymes are multi-resistant to β-lactam antibiotics such as penicillin, 

cephalosporin, and monobactams (figure 1). These enzymes break the β-lactam ring open, which leads 

to deactivating the molecule’s antibacterial properties. The β-lactamases were first observed and isolated 

by E. P. Abraham and E. Chain from Gram-negative Bacillus Escherichia coli.1 It was before the 

clinical use of penicillin. By then, β-lactamases were not considered to be clinically relevant since 

penicillin was designed to treat staphylococcal and streptococcal infections and scientists could not 

isolate the enzymes from these Gram-positive organisms.1,15,16 

Kirby et al. (1944) successfully isolated the penicillinase from Staphylococcus aureus. It alerted 

the emergence of a major clinical problem, as these enzymes will eventually become the major causes of 

bacterial resistance.17 The production of large numbers of β-lactams, as well as the overuse of antibiotics 

has increased the selective pressure on disease-causing bacteria, consequently promoting the survival of 

organisms with multiple β-lactamase.18,19 About 850 β-lactamases have been detected, and it is assumed 
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that high mutation frequency, rapid recombination, and replication rates are responsible for bacteria 

resistance.20 

 

Classification of β-lactamase Enzymes 

β-lactamases can be classified into two major categories: 

1. The Ambler classes A to D, based on amino acid sequence homology, and  

2. The Bush-Jacoby-Medeiros group 1 to 4 based on substrate and inhibitor profile.21,22 

 

The β-lactamase are regularly grouped into four classes (A - D) based on sequence homology. The 

class A, C and D serine β-lactamase (SBLs) evolved from the PBP transpeptidase and are the most 

clinically common. They use the active serine as nucleophiles in β-lactam hydrolysis. On the other hand, 

the class B Metallo-β-lactamase (MBLIs) uses either a single Zn2+ ion or a pair of Zn2+ ions coordinated 

to His/Cys/Asp residue in their active sites.6,22  

Based on structural analysis and amino acid sequence comparison, three prevalent active site motifs 

have been observed among the SBLs: motif (a) stores the nucleophilic serine needed for acylation 

(SXXK), motif (b) is needed for protonation of the β-lactam N4 nitrogen leaving group upon acylation 

(S/Y-X-N/V), and motif (c) participates in the activation of the motif (B) S/Y proton donor and in 

substrate recognition and oxyanion stability (K/R-T-/S-G).23 

In this review, we will adopt the Ambler classification scheme. 
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Class A Serine β-Lactamases 

The first β-lactamase to be observed in penicillin-resistant bacteria was the class of A β-

lactamase, and they remain as the most common β-lactamase today.24 These enzyme possesses a 

conserved E166 (believed to be the general base needed during hydrolytic deacylation for the activation 

of catalytic water), situated in a region called Ω loop.25 Most class A serine β-lactamase are vulnerable 

to most β-lactamase inhibitors like clavulanate. Nevertheless, the K. Pneumoniae carbapenemases 

(KPC) showed resistance to clavulanate, and hence could probably be an exception to this inference.26  

 

Class A Extended-Spectrum β-Lactamases (ESBLs) 

Extended-Spectrum β-lactamase (ESBLs) are simply a class of plasmid-mediated and rapidly 

evolving enzymes that are currently raising a major treatment challenge in hospitalized and community-

based patients.27 They exhibit resistance to antibiotics such as the Oxyimino-Cephalosporins, 

Monobactam (aztreonam), and Penicillin. This class of β-lactamase is well known to be inhibited by 

Clavulanate.22,28 

Experimental findings revealed that it is difficult to detect the organism that produces this 

enzyme because the presence of ESBLs in a bacteria cell does not often produce resistance phenotype. 

The National Committee for Clinical Laboratory Standards (NCCLs) recommended detection of ESBLs 

in Klebsiella and E. coli by testing if the susceptibility to ceftazidime, Cefotaxime, ceftriaxone, 

cefpodoxime or Aztreonam reaches the previously established thresholds for resistance synergy.29  

 

Class A Serine Carbapenemases 

Class A serine Carbapenemases, having two functional groups, were observed sporadically in 

clinical isolation since their first discovery. These β-lactamases were detected in Enterobacter 
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cloacae, Serratia marcescens, and Klebsiella spp and are susceptible to Clavulanate as single isolates.30 

Reduced susceptibility to imipenem is observed by bacteria expressing these enzymes.  

 

Class B Metallo-β-Lactamases 

They are Zn2+ dependent β-lactamase, and they catalyze the hydrolysis of almost all β-lactam 

antibiotics except monobactams.31 Their uniqueness is because they are not inhibited by mechanism-

based inhibitors such as Sulbactam, Clavulanate or Tazobactam, which are very effective against class A 

β-lactamase. A good example of class B Metallo-β-lactamase is the new Delhi Metallo-β-lactamase.22,32 

 

Class C Serine Cephalosporinase 

Serine cephalosporinase of class C is considered as an array of β-lactamase enzymes encoded in 

the bla gene of bacterial chromosomes. The bacteria expressing the gene for this class of β-lactamases is 

significantly resistant to penicillin and β-lactam β-lactamase inhibitors like Cefoxitin, Cefotetan, 

Ceftriaxone, and Cefotaxime. Nevertheless, Cloxacillin, Oxacillin, and Aztreonam are known to 

inhibit AmpC.22,33 

 

Class D Serine Oxacillinases 

They are described as oxacillinases because of their inherent ability to hydrolyze oxacillin at a 

lesser rate of 50%, conversely to the relatively slow hydrolysis of oxacillin by serine carbapenemases 

and serine cephalosporinases.34 The class D enzymes lack the Ω loop E166 and rather involves 

a carboxylated lysine in an SXXK motif, which plays a dual function as the general base involved in 

both serine activation during acylation and in the activation of the catalytic water during 

hydrolytic deacylation.25,35–37 This class of β-lactamase has a resistance mechanism against β-
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lactam antibiotics. The mechanism is effective for the treatment of infectious diseases, which is caused 

by Acinetobacter baumannii and the Enterobacteriaceae.38,39 

 

Evolution Of β-lactam and non-β-lactam β-lactamase Inhibitors 

The persistent emergence of multi-drug-resistant bacteria has become a global health concern. 

Great effort has been made to minimize or possibly eliminate the threat posed by bacteria resistance by 

using new a class of β-lactam β-lactamases and non-β-lactam β-lactamase inhibitors. This could either 

extend the spectrum of activity or address specific bacterial resistance mechanisms that arose in the 

targeted bacterial population.10,40,41 

About 65% of all prescribed antibiotics contain β-lactam – Penicillin, Cephalosporins, 

Carbapenems, and Monobactam.42 The mechanism of β-lactam antibiotics (figure 2) aims at the last 

synthetic step in peptidoglycan (PG) biosynthesis, in which they mimic acyl D-ala-D-ala on the 

peptidoglycan stem in order to inhibit penicillin-binding protein (PBP) that catalyze transpeptidation of 

the adjacent PG strands.   
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Figure 2: Mechanism of action of penicillin antibiotic drug43 
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The common mechanism of resistance to the β-lactam in Gram-negative bacteria is that β-

lactamase enzymes hydrolyze the four-membered β-lactam ring, rendering it inactive (figure 3). The β-

lactamase are frequently encoded on a freely movable plasmid that enhances their transmission among 

bacteria population. 25 
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Figure 3: Mechanism of inhibition of β-lactam antibiotic by β-lactamase44,45 

 

The effectiveness of some oral β-lactam antibiotics is decreasing due to the constant evolution 

of β-lactamase, and this has posted a great threat to human health.25,46,47 In 1970, three β-lactam β-

lactamase inhibitors (BLIs): Clavulanic acid, Sulbactam, and Tazobactam10 (figure 4) were used to 

circumvent SBL mediated resistance. These inhibitors are mechanism-based covalent inactivators that 

form a stable acyl-enzyme intermediates with the catalytic serine β-lactam BLIs. They are preferred to 

others because of their low toxicity and high specificity to target cells.6,7  

In the 1980s, the BLIs (figure 4) were used in combination with β-lactam antibiotics as a 

standard part of treatment to significantly reduce the minimum inhibitory concentration (MIC) against 

various bacteria.48–50 Some examples of such combined drugs include UnasynTM (ampicillin and 

sulbactam), AugmentinTM (amoxicillin and clavulanate), and ZosynTM (piperacillin and 

tazobactam).6,10,42,51 Despite the use of these synergistic drugs, there is still antibiotic resistance due to 

over-use of antibiotics by humans and in agriculture, production of inhibitor-resistant β-lactamases or 

enzyme hyper production.52 
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Figure 4: β-lactam mediated β-lactamase inhibitor 

 

Conventionally, BLIs are effective against class A serine β-lactamase but ineffective to C and D 

SBL enzymes.40 BLIs have no substantial antibiotic activity on their own but protect β-

lactam antibiotics against destructive hydrolysis of the β-lactam ring by microorganism’s β-lactamase. 

Currently, there are several new class A SBL (the inhibitor-resistant TEM and Complex Mutant TEM) 

that have drastically developed resistance to these inhibitors10,53. Thus, the need for a novel inhibitor is 

crucial. 

 

Non-β-lactam β-lactamase Inhibitors 

Non-β-lactam β-lactamase inhibitors such as Linezolid and Avibactam (figure 5) can 

effectively inhibit the hydrolysis of β-lactam by bacterial β-lactamase. When avibactam is used in 

combination with extended-spectrum Cephalosporine and Aztreonam, it forms a synergistic drug that is 

effective against Gram-negative bacterial infection.54–56 
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Figure 5: Some non-β-lactam based β-lactamase inhibitors25,57 

 

Based on PBP inhibitors, the non-β-lactam β-lactamase can be placed into 4 categories: 

• Transition state analogs  

• Substrate analogs  

• Covalent inhibitors 

• Non-covalent inhibitors  

 

Transition State Analogs. Transition State Analogs (TSAs) are compounds that are like the 

transition state of a catalyzed reaction. These compounds account for potent enzyme inhibitors that 

confer insight into an enzyme mechanistic behavior.58 When enzymes bind to a substrate, they form a 

complex which goes through a chemical and geometric shift. The TSAs with the same shape and charge 

of the original transition molecule bind with the enzyme. The analog exhibits the same characteristics as 

the initial transition molecules, however they are still slightly different and will not lead to the required 

product formation. Due to this differences, they will eventually deactivate the enzyme, consequently 

preventing them from binding to the substrates.59 TSA inhibitors, such as boronic acids, carbonyl 

compounds, and phosphates could bind to the enzyme with ease due to the affinity they have for it.7,60 

Hence, they are efficient serine β-lactamase and protease inhibitors.10,40,41  
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Substrate State Analog.  Substrate State Analogs (SSAs) are compounds having a chemical 

structure like the substrate molecule in an enzyme-catalyzed reaction. SSAs can behave as the 

competitive inhibitor of an enzyme-catalyzed reaction, taking the same binding site of their analogs and 

consequently decreasing the substrate’s efficiency. The Vmax remains the same as the intended 

substrate affinity decreases.61,62 Substrate analogs react like suicide substrate by acylation of PBP active 

serine, just like the acylation of β-lactam.7 An example of substrate analog includes 3-acetylpyridine 

adenine dinucleotide: a substrate analog of NADH,63 bicyclic pyrazolidinones and lactivicins. The last 

two analogs have been observed to show clinically significant antibacterial activities and PBP 

inhibitors.64–66 Jungheim & Ternansky, 1992 as cited by (Osazee, 2016) stated that bicyclic 

pyrazolidinones (figure 6) compounds containing a strong electron deficient group in C3 position 

displayed a considerable in vitro activity unlike others.64 
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Figure 6: Bicyclic pyrazolindinones64 

 

Lactivicin (LTV) (figure 7), a novel natural non-β-lactam antibiotic, was isolated  in 1986  by 

Takeda Research group from a bacterial strain (Empedobacter lactamgenus and Lysobacter albus).67–72 

LTV is effective against Gram-positive bacteria.68 Nevertheless, it is susceptible to hydrolysis by β-

lactamase enzymes.67 As a means to address the issue of susceptibility to β-lactamase, LTV derivatives 
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were synthesized, which increased antibacterial activity against Gram-negative bacteria and reduced its 

toxicity.65,71,72 
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Figure 7: Lactivicin analogs65 

 

Covalent Inhibitor. They are inhibitors that bind and form a bond with target enzymes. They are 

able to achieve this because they have a bond-forming functional group designed to react rapidly with a 

specific nucleophilic residue in the active site to form a permanent bond.73 An example of covalent 

inhibitors include: Aspirin, Afatinib, and  Rociletinib.74 Covalent enzyme inhibitors are important 

biochemical substances.74–78 Some potential benefits of covalent inhibitors are: circumventing the 

challenges associated with the targets having a shallow undruggable binding site, reducing the 

development of drug resistance due to mutation of a binding site, and high biochemical efficiency, thus 

resulting in lower doses and reduced off-target effects.76 

However, the benefits are offset by some potential disadvantages like unfit for a mechanism 

which involves short residence time and partial inhibition, a potential risk of immune-mediated drug 

hypersensitivity, or less advantageous for targets that are suddenly turned over by protein synthesis.79–81 

Irrespective of their downsides, covalent inhibitors have had a significant impact on human health.76 
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Non-Covalent Inhibitors. Non-covalent inhibitors interact reversibly to the active site of PBPs 

with no acylation involved in the process; hence, they are regarded as highly effective inhibitors. The 

disadvantageous conformational changes in the active site of  PBP’s MRSA involved during acylation 

are averted.82,83   

Some classic examples of non-covalent inhibitors are aminothiadiazol, naphthalene, 

sulfonamide, arylalkylidene rhodamine, arylalkylidene iminotriazolidene, anthranilic acid, and 

quinolones. Anthranilic acid, and quinolones was observed to be a non-covalent inhibitor of PBPs 

of E.coli and B. subtilis, but all active quinolones were without in vitro antibacterial effect against E.coli 

or B. subtilis by themselves.84–89 

 

Diazabicyclooctane 

In the 1990s, a novel non-β-lactam BLIs which belong to diazabicyclooctane (DBOs) class of 

compounds were developed.54,90–92. It has been proven that diazabicyclooctane avibactam is able to 

inhibit a broader spectrum of serine-β-lactamase than the BLI-clavulanic acid. Studies by King et al. 

(2015) demonstrated that 1.7 and 2.0Å resolution crystal structure of avibactam covalently attach to 

class D β-lactamase OXA–10 and OXA–48.  

In 2015, avibactam was approved by the FDA, and it is currently in its phase III clinical trials as 

part of a combined treatment to be used with Ceftazidime to combat multi-resistant urinary tract and 

intra-abdominal infections.92–94 This synergistic drug has been proven to be safe and tolerable in clinical 

trials, with relatively few adverse effects recorded.54 The most prevalent resistance to this drug is the 

expression of new β-lactamases that are not inhibited by Avibactam.95 
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Mechanism of Action of Avibactam 

Avibactam inhibits serine β-lactamase (SBL) by forming a carbamyl linkage with the catalytic 

serine, which is not broken down by a hydrolytic mechanism. Rather, the decarbamylation of the 

avibactam occur through the recyclization of DBO fused ring structure, recovering the intact inhibitor 

which could either re-carbamylate the active site or be released into the solution to inhibit more SBLs96 

(scheme 1). Avibactam was not hydrolyzed by β-lactamase because the carbamyl carbon is less prone 

to nucleophilic attack than its ester analog.97,98 Such stability is most likely due to the resonance effect 

in which the lone pair of electrons on the sp2 hybridized N1 aligns with the carbonyl C=O P-orbital, thus 

increasing electron density at the electrophilic carbonyl carbon.99 Based on the kinetic analysis of a key 

active site mutant for class A β-lactamase CTX-M-15, a substantiated mechanism for avibactam 

mediated β-lactamase inhibition was proposed.25,43  
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Scheme 1: Catalytic mechanism of avibactam based SBL inhibition (adapted from King D. et al. 2015)25 
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Nitrones 

In 1916, Pfeiffer suggested the name “nitrones” as an abbreviation for nitrogen ketone to 

highlight their remarkable similarities to ketones.100 Furthermore, Delipierre et al. (1965) observed that 

the similarity is due to the mesomeric effects [(i) — (ii) and (iii) — (iv)] that are present in both types of 

compounds, thus making nitrone [or azomethine N-oxide (i)] act like an extended carbonyl function100 

(scheme 2). 
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Scheme 2: Similarity of nitrones to ketones (adapted from Delipierre et al., 1965)100 

 

The polarity of nitrones are influenced by the electronic effect of the substituents X, Y and R. In 

the case (I: X, Y, and R = alkyl) the double bond is fixed, and the positive charge is localized between 

the carbon and nitrogen atoms of the nitrone. The positive charge on the azomethine carbon atom (II) 

(scheme 2) influences most nitrone reactions.100 There could be another case like in pyridine N-oxide 

(figure 8) whereby a high degree of delocalization is felt due to its aromatic character. An electron 

withdrawing group (X or Y) of scheme 2 will reduce electron density on the carbon, thus improving its 

electrophilic character. That is why C-benzoyl-N-nitrone undergoes 1,3-cycloaddition 110 times faster 

than CN-diphenyl nitrone100,101 (Figure 8). 
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Figure 8: Some examples of nitrone 

 

The common terms aldo- and keto-nitrones are applied occasionally to differentiate those with 

and without a proton on the α-carbon.100 Nitrones can either be solid or liquid depending on the polarity 

of the substituent present. They are readily soluble in water except if a hydrophobic substituent such as 

aryl group is present. Extraction from aqueous solution by an organic solvent is only feasible after 

concentration of and salting out.100 Nitrones are known to have a significant application as a spin trap in 

biological studies,102 as an antibacterial agent,103–105 and are effective in age-related diseases106 because 

of the stability of the resulting nitroxide radicals.107 

 

Preparation of Nitrones 

The preparation of different kinds of nitrones was reviewed by Smith in 1938 and later by 

Harmer and Macaluso in 1964.108 The easiest method to synthesize nitrones involves the condensation 

of aldehydes with N-monosubstituted hydroxylamines,109–111 oxidation of secondary amine, or N.N-

disubstituted hydroxylamine.112,113 These procedures give a good result but still have drawbacks, such as 

relatively long reaction time, the use of surplus aldehydes to reach greater conversion, and time-

consuming chromatographic purification.114 
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N-Substituted Hydroxylamine. The condensation of aldehyde derivatives with N-substituted 

hydroxylamine (scheme 3) is the most common method for the synthesis of nitrone. However, it is 

limited by the availability of suitable hydroxylamine.115,116 Generally speaking, the synthesis of nitrones 

works more readily with aldehydes than with ketones, although some aldehydes are prone to 

polymerization under alkaline conditions.117 
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Scheme 3: Synthesis of nitrones from benzaldehyde and N-substituted hydroxylamine118 

 

 More often, the hydroxylamine function is directly obtained in situ by zinc-dust reduction of a 

nitro-compound. (Scheme 4)119 The zinc reduction of nitroalkanes was what was employed in this 

study. Reduction of nitro compounds go through three intermediate stages – the formation of nitroso 

compounds, the formation of hydroxylamine, and the formation of amine products. Interestingly, the 

process can be terminated at the hydroxylamine stage by various ways, among which the use of zinc in 

ammonium chloride in ethanol is the most common.120 
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Scheme 4: Synthesis of nitrone from nitroalkanes 
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N, N-disubstituted Hydroxylamine. There are a good number of reagents that can oxidize both 

cyclic and acyclic N, N-disubstituted hydroxylamine to nitrones.121,122 Some reactions may require the 

use of a suitable catalyst such as copper-ammonia complex.123 

 

Gem-chloronitroso Compounds. The reaction of nitrones, obtained from gem-

chloronitroso compounds, with phenyl isocyanates has been reported. 124 However, Kumar et al. (2005) 

reported that an attempt to synthesize gem-chloronitroso led to a low yield.125 Similar experience 

occurred in this study when an attempted to synthesize nitrone from chloronitroso compounds was done. 

Gem-chloronitroso is generally obtained from oximes treated with elemental chlorine, or aqueous 

hypochlorous,126 but frequently lead to the production of overoxidized nitro derivatives with little 

compounds present. Few methods are adequately selective to terminate the reaction at the nitroso phase. 

However, those methods involved contamination of the product, are restricted to a substrate, involves 

pH-dependent reaction with strict precaution, and leads to the formation of by-products, consequently 

having a low yield of products. Eventually, they encountered a research work on the oxidation of 

organic compounds with N-tert-butyl-chlorocyanamide.127 This novel reagent was sufficiently selective 

to terminate the reaction at nitroso phase without being over-oxidized to nitro-compound.   

Schenk et al. (1980) also reported synthesizing nitrones from nitroso compound with Grignard 

reagents. Their investigation on the reaction of chloronitroso adamantane with a Grignard reagent 

revealed that adamantylidene nitrones are formed in proportions that differ with the nature of Grignard 

reagent RMgX. They also noticed that a higher yield of N-methyl and N-phenyl nitrones were obtained 

only when the R group of the Grignard reagent was CH3 and C6H5, but with all other Grignard reagents, 

the yield of nitrone was much lower.124 
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Spectroscopy of Nitrones 

A strong absorption in 1600 cm-1 is characteristic of all nitrones, but the exact position of this 

band varies with different nitrones. It is observed that in acyclic nitrones the position of the band is 

slightly wider in range depending on the nature of the substituent involved.100,124 It is difficult to state 

with certainty the origin of this band; some authors assign it to the C=N stretching mode121 while others 

attribute it to the C=N+→O- group.128 Another strong absorption in the region 1170-1280 cm-1 is found 

in all nitrones, which is thought to be due to the N+→O - stretching frequencies.100 The proton NMR 

singlet at 3.70 ppm is attributed to the N-methyl group.129 IR and NMR spectra analysis indicated that 

most nitrones were very sensitive to hydrolytic decomposition. However, the adamantylidene nitrones 

were less vulnerable to hydrolytic decomposition and generally more stable.124 The NMR spectrum of 

the N-methyl nitrones was complicated by the existence of an incompletely resolved homo-allylic 

coupling across the nitrone function. Black et al. (1974) in a series of cyclic aliphatic α-methyl nitrone 

observed the homo-allylic coupling.130 

 

Isomerism of Nitrones 

Nitrones exhibiting (E)- and (Z)-isomers may interconvert.100,108,131 They could exist either in 

dimeric form - aldonitrone132,133 or in a trimeric form.122 In contrast, at room temperature 

adamantylidene nitrone exits in monomeric form as deduced from their spectroscopic and chemical 

properties.129,134,135 Normally, the nitrone isomers that are thermodynamically stable are those with the 

bulkiest group in a trans position. Aldonitrones happen to be the only known isomers to show such a 

trans relationship. In the case of ketonitrones with α-substituent R1 and R2, having a slight difference in 

bulkiness, both isomers may exist.124,136,137  
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More so, the calculations on barriers to rotation about C=N bond138 demonstrated that 

aldonitrones are significantly more stable than ketonitrones, but under extreme conditions of 

cycloaddition, the aldonitrones can isomerize.139 To circumvent the challenges associated with (E/Z) 

isomerism of nitrone, some cyclic nitrones were developed which permitted only single geometry about 

the C=N double bond, thus decreased the number of possible cycloaddition products obtained.140 In 

cyclic nitrones the syn-configuration is determined by the ring, but in acyclic nitrones the double bond 

in the group will introduce the possibility of the existence of geometrical isomers.141 Cyclic and acyclic 

nitrones are used as intermediary molecules for the preparation of medicinal products142–145since they 

can be easily synthesized and are more stable and reactive than C=N containing compounds.146–148   

 

Cycloaddition Reaction 

The cycloaddition reaction between phenyl isocyanate and nitrone was first published in 1894.149 

Nitrones are 1,3-dipoles with 4 pi electrons which participate in 1,3-dipolar cycloaddition reaction with 

different kinds of appropriate unsaturated compounds such as alkynes,150–153 isocyanates,154–157 

isothiocyanates,158 thiocarbonyl compounds, and phosphoranes compounds, to produce various 

heterocyclic five-membered ring systems.108,148,159 The cycloadduct formed sometimes undergoes a 

fascinating transformation.159,160 Nitrones are preferred as starting material of choice due to their high 

yield and excellent selectivity.118 1,3-dipolar cycloaddition is a very effective and useful reaction in 

generating different kinds of heterocycles with a variety of structures of high demand in pharmaceutics. 

161,162  
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However, it is worthy of note to state that cycloaddition reaction only occurs readily 

with aldonitrones. Nevertheless, stronger dipolarophiles, such as isocyanates, can react with 

ketonitrones.135 Hence, treatment of nitrones with phenyl isocyanate in benzene at ambient temperature 

could lead to the formation of oxadiazolidinone in a very high yield.129  

1,3-dipolar cycloaddition is important in polymer modification,163,164 generation of Nano-

structures semiconductors,165 surface modification of ordered mesoporous carbons,166 fluorescent single-

walled Nano-tube syntheses which are used in medicine for diagnosis and controlled drug delivery,167 

and synthesis of modified DNA and RNA as molecular diagnostic tools.168 

 

Mechanism of Cycloaddition 

The mechanism of cycloaddition reaction of nitrones with isocyanates occurs in a concerted 

manner in a gas phase and in a step-wise manner in an apolar solvent. In the first step of the step-wise 

mechanism, the oxygen atom of the nitrone acts as a nucleophile approaching the central carbon atom of 

the isocyanate to form an intermediate.169 The transition state generated is stabilized by an attractive 

electrostatic interaction enhanced in apolar solvent. In a typical step-wise mechanism the first step is the 

rate-limiting step, but the formation of 1,2,4-oxadiazolidin-5-one170–173 or 1,4,2-dioxazolidine174,175 is 

determined in the second step which is the rate-limiting step. The formation of these two products is 

because both the double bonds of isocyanates (C=N and C=O) were involved in the cycloaddition 

reaction leading to two products in scheme 5.169  
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Scheme 5: Possible cycloadduct from the reaction of nitrone with isocyanates169 

  

Computational studies indicate that the formation of 1,2,4-oxadiazolidin-5-one is preferred both 

kinetically and thermodynamically irrespective of the solvent used.176–178 There are different opinions on 

what the mechanism of 1,3-cycloaddition of nitrone with isocyanate is. Some scholars considered it as a 

one-step, four-centered, concerted reaction that forms two new sigma bonds,179 but not essentially at an 

equal rate.101,180 A two-step mechanism having a spin-paired diradical intermediate has been 

posited181,182 but not accepted. Furthermore, an alternative two-step mechanism including a zwitterionic 

intermediate was reported. This cannot be disregarded completely for addition reaction involving highly 

polarized dipolarophiles.183,184 
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The 1,2,4-Oxadiazolidinone Scaffold 

 

Justification of Research 

The rationale for the synthesis of oxadiazolidinone derivatives comes from the fact that 

oxadiazolidinones possesses a section in their scaffold that is like the active site of non-β-lactam β-

lactamase inhibitors - avibactam and linezolid as shown in (scheme 6). Their structural similarity to 

oxazolidinones (linezolid) endows them with some advantageous features to be used as the antibiotic 

agent. Like the previously described of the oxazolidinones scaffold,185–187 they are hydrolytically stable 

in acidic and basic conditions, and the effectiveness is due to the existence of N-aryl substitution which 

is observed to be significant from the isoxazoline scaffold.57 
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Scheme 6: The structural relationship between non-β-lactam β-lactamase inhibitors and 

oxadiazolidinones 

 

Therefore, this study aims at developing an oxadiazolidinone derivatives which retain the active 

site and evaluate their antibiotic effects against TEM-1 and P99 serine β-lactamase. Moreover, the attack 

by Ser-OH function of the active site of serine β-lactamase may lead to the formation of a stable 

covalent bond, consequently making oxadiazolidinones an effective inhibitor of β-lactamase. Scheme 7 
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demonstrates the possible mechanism of action of oxadiazolidinone with respect to the mode of action 

of avibactam in scheme 8. 
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Scheme 8: Mechanism of action of avibactam as a non-β-lactam β-lactamase inhibitor43 

 

Ritter T. (2004) hypothesizes that although β-lactam ring in ezetimibe (figure 9) is reported to be 

needed, however, there is no evidence that it plays any role than a scaffold to appropriately position the 

pharmacophore groups.57 Based on his hypothesis, it implies that there is a chance for the four-

membered β-lactam ring to be replaced with a five- membered ring heterocycle instead, upon which 

substituents that are known to show antibacterial activity can be added.57 The five-membered rings have 
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less angular strain which may enhance its stability and in turn prevent easy hydrolysis, a case common 

among the four-membered β-lactam ring.  

N
O

F

OH

F

OH

 

Figure 9: Structure of ezetimibe57 

 

Compounds having 1,2,4-oxadizolidinone scaffold or their derivatives have been demonstrated 

to be biologically active.188 For instance, 1,2,4-oxadiazolidin-3,5,-dione is present in the core structure 

of a herbicide like methazole and BAS-3820.189 Furthermore, oxadiazolidinone intermediates are used to 

produce amidine, an important functional group amongst biological active compounds.190–194 It was 

reported that N-Styrenyl amidines were conveniently synthesized from an oxadiazolidinone intermediate 

that underwent CO2 elimination and Styrenyl migration. 154 By using this route to obtain N-

Styrenyl amidine, they were able to circumvent the limitations associated with the conventional pinner-

type methods for amidine production which involved the addition of imine to an imidate component.195–

197 Oxadiazolidinones are excluded from most literature because they lack an appropriate procedure for 

their synthesis in an enantiomerically pure and stable form.57,156 This research work communicates 

suitable methodology to synthesize some 1,2,4-oxadiazolidinone derivatives which are described in the 

experimental section in chapter 2.  
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Chemistry of Oxadiazolidinone 

A model reaction between nitrones and isocyanates revealed that the reaction depends on the 

nitrone structure, and it is positively enhanced by the presence of an electron donating group at the 

nitrone carbon atom.  However, nitrones with electron-poor substituent also give rise 

to oxadiazolidinone in moderate yield over a long period of time upon being heated.157 Therefore, the 

electron withdrawing group possibly makes the oxygen atom of nitrone less nucleophilic and reduces the 

probability of the nitrone-oxygen attack towards the electron-poor isocyanate group.116,198  

The reaction of oxaziridine with isocyanate to furnish nitrone-isocyanate cycloadduct strongly 

rely on the electronic character of the substituent on the carbon atom of the oxaziridine, just like the 

nitrones.199 Electron-rich oxaziridine with phenyl isocyanates was also rapid and progressed 

with some conversion to produce the corresponding bis-oxadiazolidin-5-one in thirty minutes. 

 

Stereochemistry of Oxadiazolidinone 

A meticulous examination of the 1,3-cycloaddition reaction of nitrones has been reported.1591,3-

cycloaddition of chiral nitrones with dipolarophile such as monosubstituted alkene and phenyl 

isocyanate is cis-stereoselective.200 This isomerism is because of the approach of 1,3 dipole of E/Z 

nitrone configuration and dipolarophile in endo or exo fashion.139 Separately, in either case, the nitrone 

may approach either the re or si face of the dipolarophile.201 

The treatment of ethyl (1,1-diphenylmethylene)-carbamate with hydroxylamine in alkoxide ion 

results in the formation of 3,3-diphenyl-1,2,4-oxadiazolidin-5-one. However, when (1,1-

diphenylmethylene)-carbamoyl chloride was treated with hydroxylamine, an isomeric product, 5,5-

diphenyl-1,2,4-oxadiazolidin-3-one was obtained. Le Fur et al. (1981),202 in the experiment of the two 

compounds as anticonvulsants in the mouse corneal electroshock method revealed that 5,5-diphenyl-
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1,2,4-oxadiazolidin-3-one was 1/3, and 3,3-diphenyl-1,2,4-oxadiazolidin-5-one was 1/6 as active as 5,5-

diphenylhydantoin.203 

 

Structural Confirmation of Oxadiazolidinone 

Goldschmidt and Beckmann, in 1890,149 were the first to report about cycloaddition of nitrones 

with isocyanates. Prior to 1987, researchers were contemplating the type of cycloadduct that would be 

formed when nitrones undergo cycloaddition reaction with isocyanates. Nevertheless, with the aid of 15N 

NMR spectroscopy and X-ray crystallography, it revealed that the cycloadduct synthesized from various 

aryl-substituted nitrones and aryl-isocyanates are substituted 1,2,4-oxadiazolidinones204–206 and not 

previously reported 1,3,4-oxadiazolidinones205 (figure 10). 

 

N

N O
O

R1

R2
R3

NN

O
O

R1

R2
R3

1,2,4-oxadiazolidinone 1,3,4-oxadiazolidinone  

Figure 10: Oxadiazolidinone scaffold numenclature205 

 

Goldschmidt et al.(1890) attributed the 1,2,4-oxadiaxolidinone structure to the cycloadduct of N-

benzyl-C-phenylnitrone with phenyl isocyanate on the grounds of its transformation into N-benzyl-N-

phenylbenzamidine as it reacted with sodium methoxide.206  An intensive study by Huisgen et al. (1969), 

on 1,3-dipolar cycloaddition, reported other nitrone-isocyanate adduct and attributed the structure as an 

adduct of N-methyl-C-phenylnitrone with phenyl isocyanates.200  The low-resolution mass spectrum in 

which m/z fragment corresponding to the ion PhC=N+Ph was the most outstanding confirmation for this 

structure. 
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 Preparation of Oxadiazolidinones 

There are several procedures on the synthesis of 1,2,4-oxadizolidinone.207–209 Nevertheless, it is 

challenging to obtain a general method for their preparation in enantiomerically pure form.210 In the 

search for the synthesis of new potential drugs, the first procedure for the synthesis of enantiomerically 

pure oxadiazolidinone through cycloaddition of nitrone with isocyanates was developed.57 The 

usefulness of isocyanate in various synthetic processes cannot be overstated as they play a vital role in 

cycloaddition with nitrones to generate heterocycles such as oxadiazolidinones, which has 

potential pharmaceutical and biological activity.211 Isocyanates are also employed in polymer 

industries and academia due to their high yield and the lack of formation of by-products associated with 

their usage.212 The treatment of nitrones with isocyanates in appropriate solvents furnished a stable 

1,2,4-oxadiazolidin-5-one.159,213 

In order to produce oxadiazolidinone, we must take into consideration the availability of 

effective methodology for their successful and convenient synthesis in optically active form.139,214 Also, 

the heterocycle would have to be configurationally stable, most especially, in acidic and alkaline 

condition.156 
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Specific Goal 

Our goal is to synthesize oxadiazolidinone derivatives (as a non-β-lactam β-lactamase inhibitor) 

with the potential of being used in combination with β-lactam antibiotics. This is intended to restore the 

effectiveness of some β-lactam antibiotic drugs that lost their potency, due to the continuous evolution 

of β-lactamase enzyme when used alone.  
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CHAPTER 2 

EXPERIMENTAL SECTION 

Materials 

Phenyl isocyanate, ethyl isothiocyanato acetate, nitromethane, nitroethane, and benzaldehyde 

were purchased from Alfa Aesar Chemical Company. The deuterated solvents (DMSO-d6 and CDCl3) 

were bought from Sigma-Aldrich Chemical Company. Solvents (DCM, absolute ethanol, 95% ethanol, 

ethyl acetate, toluene, hexane, petroleum ether, diethyl ether, chloroform, Acetone, methanol, anhydrous 

tetrahydrofuran (THF), anhydrous dioxane, and benzene), Salts (MgSO4, Na2SO4, NaCl, MOPS buffer), 

and other reagents (glacial acetic acid, hydrochloric acid, sodium hydroxide, lithium hydroxide, zinc 

powder and ammonium chloride) were obtained from Alfa Aesar Chemical Company. Enzyme kinetic 

essay (Nitrocefin (NCF), and bovine serum albumin (BSA)) used for enzyme kinetics assay were 

purchased from Bio Vision Incorporated. Enzymes (TEM-1 β lactamase, and P99 β lactamase) were 

ordered from Invitrogen and Sigma-Aldrich Chemical Company, respectively. 

 

Instrumentation 

The 1H and 13C nuclear magnetic resonance (NMR), were reported in CDCl3 and DMSO-d6 on a 

Joel Eclipse 400 MHz spectrometer; chemical shifts were recorded in part per million (ppm) with 

reference to residual signal of CDCl3 and DMSO-d6   at δH/δC 7.25/76.8 ppm and 2.50/39.5 ppm 

respectively; NMR data were reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplets, dd = doublet of doublet; Coupling constant in Hz. IR analysis was carried out using 

Shimadzu IR prestige-21 FTIR spectrometer; absorptions were given in wavenumbers (cm-1). UV/Vis 

absorbance and kinetic analysis were done using 8454 UV/Vis spectrometer with a PCB 1500 water 

Peltier system by Agilent Technologies and quartz 1000 µL cuvettes having 1 cm path length was 



44 
 

utilized. The melting points were ascertained using an IA9100 series. Thermo Scientific Electrothermal 

Digital Melting point instrument. The molecular weight of compounds was determined using a 

Shimadzu GC-MS - QP 2010 plus; chromatogram and spectra were recorded in 70 eV and peaks were 

given in percent (m/z). Chromatographic purification of the product was done on E. Merck Silica gel 

using a force flow of eluent at 0.3-0.5 bar pressure.215 Concentration under reduced pressure was 

performed by rotary evaporation at 40-50 °C in appropriate pressure. Pure compounds were 

subsequently dried under high vacuum.57 
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Chemistry 

General procedure for the synthesis of (Z)-N-(benzylidene) ethanamine oxide (1a) 

N

H

O

 

1.80 mL (25 mmol) of nitroethane, 2.80 mL (27.5 mmol) of benzaldehyde and 1.87 g (35 mmol) 

of ammonium chloride were added to 150 mL EtOH/H2O (1:1) and cooled to 0 °C. 1.64 g (25 mmol) of 

Zn powder was added to the reaction mixture. After 24 hours, the mixture was filtered through a celite 

pad and washed with dichloromethane (DCM). The filtrate was extracted with dichloromethane, and the 

combined organic layer was dried with anhydrous sodium sulfate. After the salt was filtered off, it was 

concentrated and purified by vacuum distillation under reduced pressure. It was further purified with a 

fractional column and monitored with TLC to obtain the desired product in good amount. 

  

Yield:  2.18 g (58.5%). m.p.: 48-50 °C 

1H-NMR (400 MHz CDCl3): δ = 1.19-1.23 (t, 3H), 3.60-3.65 (q, 2H), 7.08-7.09 (q, 3H), 7.17 (s, 1H), 

7.96-8.01 (q, 2H). 13C-NMR (400 MHz CDCl3): δ = 13.43, 61.7 (C-N), 128.3-128.3, 130.1 (C=N), 

130.6, 133.4.  IR (KBr): ν̃ (cm-1) = 3052, 2927 (N=C-H), 2360, 1736, 1519 (C=N), 1448, 1322 (CNO), 

1155 (N→O), 981, 756, 692. UV λ max (CHCl3): 298, 209 nm. GC-MS (70 eV) m/z (%): 149 (85) 

[M+], 148 (100), 120 (41), 105 (16), 91 (23), 77 (33), 65 (17), 50 (13). 
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General method for the preparation of (Z)-N-(benzylidene) methanamine oxide (1b)  

N

H

O

 

To a stirred solution of 5.10 mL of benzaldehyde (1 equiv, 50 mmol) in 319 mL of 95% ethanol 

was added 5.35 mL (2 equiv, 100 mmol) of nitromethane followed by 9.8 g (3 equiv, 150 mmol) of Zn 

powder. Finally, 18.9 mL (6 equiv, 300 mmol) of acetic acid was added drop-wise at 0 °C, and the 

mixture was stirred at room temperature for 24 hours. Afterwards, the solvent was rotary-evaporated, 

and the zinc was filtered off through a plug of celite pad eluted with DCM. The resulting liquid was 

purified by flash column chromatography elution of ethyl acetate with hexane (2:1) to obtain a pure 

nitrone after evaporation of the column fraction. 6.03 g of the product was obtained.  

 

Yield: 6.03 g (89%). m.p.: 75-77 °C. 

1H-NMR (400 MHz CDCl3) δ = 3.88 (s, 3H), 7.37 (s, 1H) 7.40-7.42 (t, 3H), 8.19-8.21 (q, 2H). 13C-

NMR (400 MHz CDCl3) δ = 54.4 (C-N), 128.6, 130.3 (C=N), 130.7, 135.8. IR (KBr): ν̃ (cm-1) = 3054 

(N=C-H), 2360, 1596 (C=N), 1403 (CNO), 1168 (N→O), 1025, 944, 757, 676. UV λ max (CHCl3): 217, 

210 nm. GC-MS (70 eV) m/z (%): 135 (66) [M+], 134 (100), 118 (21), 107 (20), 89 (16), 77 (31), 65 

(14), 50 (11), 42 (21). 
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General procedure for the preparation of 2-ethly-3,4-diphenyl-1,2,4-oxadiazolidin-5-one (2a)  

N
N
O

O

 

To 1.0 g (6.7 mmol) of 1a in 2.5 mL of DCM, at room temperature, is added 0.73 mL (6.7 

mmol) of phenyl Isocyanate. The solution was stirred at room temperature for 38 hours; after 

evaporating the solvent, it was concentrated in vacuum to obtain an off-white solid. The solid was then 

triturated in methanol for 3 hours, filtered off, washed with hexane, and dried in vacuum to obtain 1.35 g 

of the targeted compound.  

 

Yield 1.35 g (75%). m.p.: 118-119 °C. 

1H-NMR (400 MHz CDCl3) δ =1.29-1.33 (t, 3H), 3.14-3.28 (d, j=32 Hz, 2H), 5.68 (s, 1H), 7.08-7.15 (d, 

2H), 7.28-7.38 (m, 8H). 13C-NMR (400 MHz CDCl3) δ = 12.1, 53.6, 83.5 (benzylic carbon), 120.7, 

125.3, 127.2, 129.2, 129.3, 129.9, 135.7, 136.2, 154.8 (C=O). IR (KBr): ν̃ (cm-1) = 2978, 2360, 2341, 

1754 (C=O), 1598, 1500, 1456, 1378, 1222, 1130, 970, 842, 754, 694. UV λ max (CHCl3): 241, 197 nm. 

GC-MS (70 eV) m/z (%): 267 (1.6) [M+], 224 (53), 223 (100), 180 (57), 148 (42), 119 (87), 104 (82), 

77 (96), 44 (30). 
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Preparation of 2-methyl-3,4-diphenyl-1,2,4-oxadiazolidin-5-one (2b) 

N
N
O

O

 

0.68 g (5 mmol) of nitrone 1b in 20 mL dioxane was placed in 100 mL round bottom flask and 

1.10 mL (10 mmol) of phenyl isocyanate was added to the mixture. The reaction mixture was heated at 

60-75 °C for 60 minutes. The solvent was evaporated using rotary evaporator, and the product was 

crystallized from absolute ethanol. 

 

Yield: 0.42 g (33%). m.p.: 119-121 °C. 

1H-NMR (400 MHz CDCl3): δ = 3.1 (s, 3H), 5.58 (s, 1H), 7.10-7.14 (t, 1H), 7.28-7.31 (m, 4H), 7.33-

7.38 (d, 5H). 13C-NMR (400 MHz CDCl3): δ = 45.8, 85.6 (benzylic carbon), 120.2, 121.0, 125.5, 127.3, 

129.3, 130.1, 135.2, 136.1, 154.8(C=O). IR (KBr): ν̃ (cm-1) = 3343, 3037, 2348, 1758 (C=O), 1702, 

1596, 1546, 1498, 1446, 1382, 1311, 1230, 1128, 840, 754, 694. UV λ max (CHCl3): 243,194 nm. 

 GC-MS (70 eV) m/z (%): 254 (29) [M+], 207 (75). 131 (20), 88 (100), 57 (33), 43 (23). 
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Synthesis ethyl 2-(2-methyl-3-phenyl-5-thioxo-1,2,4-oxadiazolidin-4-yl) acetate (2c) 

N
N
O

S
O

O

 

2.7 g (20 mmol) of nitrone 1b in 40 mL dioxane was placed in 100 mL round bottom flask and 3 

mL (24.2 mmol) of ethyl isothiocyanato acetate was added to the mixture. The reaction mixture was 

heated at 60-75 °C for 3.5 hours, and the solvent was evaporated afterward. The crude product was 

purified by flash column chromatography to obtain 3.7 g of a pale-yellow viscous liquid. 

 

Yield: 3.7 g (66%). Pale yellow oil. 

1H-NMR (400 MHz CDCl3): δ = 1.23-1.26 (t, 3H), 3.01 (s, 3H), 3.49-3.53 (d, j=16, 1H), 4.16-4.20 (q, 

2H), 4.71-4.75 (d, j=16, 1H), 5.53 (s, 1H), 7.34-7.43 (dd, 5H). 1H-NMR (400 MHz CDCl3): δ = 14.2, 

45.1, 46.2, 62.0, 87.3 (benzylic carbon), 128.1, 129.2, 130.9, 133.0, 167.3 (C=S), 185.0 (C=O). IR 

(KBr): ν̃ (cm-1) = 2983, 2345, 1743, 1475, 1396, 1315, 1205, 1126, 1022, 964, 698. UV λ max (CHCl3): 

253, 209 nm. GC-MS (70 eV) m/z (%): 280 (2) [M+], 244 (12), 220 (13), 147 (19), 118 (90) 91 (100), 

83 (31) 55 (29). 
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Synthesis of 2-(methyl-3-phenyl-5-thioxo-1,2,4-oxadiazolidin-4-yl) acetic acid (3)  

N
N
O

S
HO

O

 

150 mg (0.52 mmol) of 2c was dissolved in 10 mL tetrahydrofuran and 50 mg (2.1 mmol) of 

Lithium hydroxide in 5 mL of Water was gradually added to the solution containing the 2c. The reaction 

mixture was stirred at room temperature for 30 minutes. Afterward, ammonium chloride was added, and 

the mixture was immediately extracted with ethyl acetate three times. The combined organic layer was 

dried using anhydrous sodium sulfate and the solvent removed in vacuo to obtain 100 mg of the product. 

 

Yield: 100 mg (77%). Viscous oil. 

1H-NMR (400 MHz CDCl3): δ =3.0 (s, 3H), 3.49-3.53 (d, j=16 Hz, 1H), 4.71-4.75 (d, j=16 Hz, 1H), 

5.51 (s, 1H), 7.34-7.43 (dd, 5H), 9.98 (s, H). 13C-NMR (400 MHz CDCl3): δ = 44.9, 46.2, 87.4 

(benzylic carbon), 128.3, 129.5, 131.0, 132.8, 171.2 (C=S), 185.0 (C=O). IR (KBr): ν̃ (cm-1) = 2964, 

2360, 1731, 1632, 1481, 1316, 1241, 1041, 700, 698. UV λ max (CHCl3): 211, 194 nm. GC-MS (70 eV) 

m/z (%): 252 (100) [M+], 207 (70), 185 (67), 146 (58), 133 (64), 117 (74), 91 (67), 44 (76). 
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Enzyme Inhibition Kinetics 

Enzymes inhibition kinetics were performed on the oxadiazolidinone analogs to determine their 

effectiveness against β-lactamase enzymes, percentage inhibition, and enzyme residual activity. This 

was done using a spectrometric analysis of nitrocefin (NCF) at 485 nm at 30 °C. NCF is chromogenic in 

nature, and it is known to absorb light at 385 nm giving off an orange-yellow color which eventually 

absorbs light at a higher wavelength, due to hydrolysis by β-lactamase (scheme 9). The method used in 

the preparation of MOPS, BSA, substrate, and enzymes were cited from Osazee, J. 2016.6 
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Scheme 9: Hydrolysis of NCF by β-lactamase. 

 

Preparation of MOPS stock solution (0.02 M) 

8.37 g of MOPS was dissolved in 500 mL of water. Furthermore, 40 mL of the stock solution 

was diluted with 200 mL of water to obtain a 0.02 M solution. 
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Preparation of BSA (1% and 0.1%) in MOPS buffer 

100 mg of BSA was dissolved in 10 mL of MOPS buffer. Then 1% of the BSA was used to 

dilute the enzyme. 1% of the BSA in the MOPS buffer was diluted in 9 mL of MOPS buffer to obtain 

0.1% BSA, which was used for the essay. 

 

Preparation of NCF (5 nM) 

2.582 g of the substrate (NCF) was dissolved in 1 mL of 0.02 M MOPS buffer which was then 

diluted to 100 µM in the enzyme mixture. 

 

Preparation of TEM-1 β-lactamase enzyme 

0.56 mg/mL of the enzyme (TEM-1) was diluted to 47.5 nm using 1% BSA. 2 µL and was used 

for the essay to obtain 0.25 nm enzyme concentration. 

 

Preparation of P99 β-lactamase enzyme 

1.4 mg of the enzyme (P99) was dissolved in 1 mL of 1% BSA in MOPS buffer to obtain a stock 

solution of 300 µM. The stock solution was then diluted and used for enzyme kinetic essay. 
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In the essay used for enzyme kinetic analysis, NCF was observed at 100 µM, TEM-1 was at 0.25 

nM, and P99 was at 0.2 nM in 20 nM MOPS buffer (pH=7.5), having 0.1% BSA in the MOPS buffer in 

the final volume of 600 µL. Clavulanate was used as our control at a concentration of 120 nM. 

After the initial rate was observed for 3 minutes on the spectrometer, the percentage enzyme inhibition 

was calculated with the formula shown below: 

% enzyme inhition = Initial rate of enzyme with inhibitor × 100%
Initial rate of enzyme without inhibitor  

Enzyme residual activity was calculated by subtracting the % enzyme inhibition from 100%. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

Synthesis of Nitrones 

 

Preparation of Nitrone 1a 

(Z)-N-(benzylidene)-1-ethanamine oxide was prepared as a starting material for the synthesis of 

oxadiazolidinone 2a by the reduction of nitroethane to N-substituted hydroxylamine with zinc dust in 

ethanol solution of ammonium chloride (NH4Cl) followed by the condensation with benzaldehyde in 

situ to furnish nitrone 1a without the use of nitrogen gas (scheme 10).118 

 

NO2
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2 H
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H
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 H
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O
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H

N

H
N OH

O
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Scheme 10: Synthesis of nitrone 1a 

 

  It was purified using vacuum distillation under reduced pressure to obtain 58% yield. The 1H 

nuclear magnetic resonance (NMR) in CDCl3 showed a triplet from the (-CH3) group at (1.19-1.23 

ppm), and a quartet from (-CH2) at (3.60-3.65 ppm). The singlet at 7.17 ppm corresponds to the proton 

from (-N=C-H).118 The two multiplets at (7.08-7.09 ppm) and (7.98-8.01 ppm) are signals from the 

benzene ring. The singlet at 1.70 ppm could be coming from the (-OH) signal of water or ethanol that 

was not completely removed after their use as solvents. Also, the small triplet and quartet observed at 

(0.91-1.00 ppm) and (3.69-3.80 ppm) are from (-CH3) and (-CH2) of ethanol (Appendix A1). 
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IR, 13C NMR, and GC-MS were also used to ascertain the structure of nitrone 1a. The IR 

characteristic absorption at 2927 cm-1, 1519 cm-1, and 1155 cm-1 from (-N=C-H), (C=N), and (N-O) 

respectively also confirms the structure of nitrone 1a. The 13C signal of (-C=N-H) at 133.4 ppm gives an 

insight into 1a. In the gas chromatography and mass spectrometry (GC-MS) analysis, the parent peak 

was seen at a retention time (R.T) of 9.3 minutes with a peak intensity of 85% which corresponds to the 

exact molecular weight 149 gmol-1 of the desired product 1a (Appendix A2-A4). 

 

Preparation of Nitrone 1b 

(Z)-N-benzylidenemethanamine oxide was prepared as a starting material for the synthesis of 

oxadiazolidinone 2b, 2c, and 3 by the reduction of nitromethane to N-substituted hydroxylamine with 

zinc dust, followed by subsequent reaction with benzaldehyde in situ in an alcoholic solution of acetic 

acid (scheme 11).  

NO2 H

O

H

N
O

95% EtOH. Zn. AcOH
0 °C rt, 24 h

1b  

Scheme 11: Preparation of nitrone 1b 

 

The product was purified by flash column chromatography using elution of ethyl acetate to 

hexane (2:1) to obtain 89% yield of the pure nitrone 1b after rotary evaporation of column fraction. The 

higher yield observed for 1b, as seen in table 1, may be because nitromethane has one carbon less than 

nitroethane. The shorter carbon chain length of nitromethane could have possibly enhanced their 

reaction with benzaldehyde. 
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Table 1: Nitrones, UV λ max, and infrared data  

N

H

O R

 

Nitrones R Yield 
(%) 

m.p. 
(°C) 

Time 
(h) 

UV λ 
max 
(nm) 
 

N=C-H NMR 
(ppm) 

IR frequency 
(cm-1) 

      1H 13C C=N N-O 

1a CH3 58 48-50 24 298 7.17 133.4 1519 1155 

1b CH3CH2 89 75-77 24 217 7.37 135.8 1596 1168 

 

The 1H NMR in CDCl3 showed the (-CH3)-proton as a singlet at 3.88 ppm. The proton is 

relatively deshielded since it is directly attached to an electronegative sp2 Nitrogen. This accounts for the 

relatively high chemical shift (δ) for the (-CH3)-proton of nitrone 1b observed in appendix B1. The 

singlet at 7.37 ppm corresponds with the characteristic (-N=C-H)-proton signal. The benzene ring of 1b 

gave off two multiplets at (7.40-7.42 ppm) and (8.19-8.20 ppm), just like nitrone 1a (Appendix B1). The 

(-N=C-H) function was represented by a peak at 135.8 ppm in the 13C NMR 1b.  

Structural elucidation was further done using IR and GC-MS. The IR spectrum showed a (-N=C-

H) stretch at 3054 cm-1, (-C=N) stretch at 1596 cm-1, (-C=N-O) at 1403 cm-1, and (N→O) stretch at 

1168 cm-1 confirming the structure of 1b129,139. The GC-MS showed a parent peak at a retention time of 

8.4 minutes with a peak area of 66.10% indicating the exact molecular weight of 135 gmol-1 for nitrone 

1b (Appendix B2-B4). 
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Synthesis of 1,2,4-oxadiazolidinones 

 

Synthesis of 1,2,4-oxadiazolidin-5-one 2a 

The treatment of nitrone 1a with commercially available phenyl isocyanate in dichloromethane 

(DCM) precedes through cycloaddition to afford 78% yield of 2-ethyl-3,4-diphenyl-1,2,4-oxadiaxolidin-

5-one (2a) after trituration in methanol for 3 hours.57,124,139,156,157 (scheme 12).  
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Scheme 12: Synthesis of oxadiazolidinone 2a. 

 

Phenyl isocyanate was used because it is a good dipolarophile, and it plays a vital role in 

cycloaddition to generate heterocycles with biological activity. Furthermore, their usage enhances the 

production of compounds in high yield without byproducts.211  

Oxadiazolidinone 2a was obtained as a colorless solid and characterized by using 1H, and 13C 

NMR, IR, and mass spectrometry. 1H NMR in CDCl3 showed a triplet at (1.29-1.33 ppm) from (-CH3) 

group. A doublet at (3.13-3.28 ppm, j=11.3 Hz)216 from (-CH2) was observed instead of a quartet due to 

the germinal coupling effect of each proton in the (-CH2) on one another. The (-C-H)-protons of the two 

benzene rings were observed as multiplets at 7.08-7.18 ppm and 7.28-7.38 ppm. 
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To demonstrate the cycloaddition that occurred,116 a section of 1H NMR of 1a is compared with 

the corresponding section of 1H NMR of 2a in (figure 11). The singlet of (-N=C-H)-proton in nitrone 1a 

at 7.17 ppm is seen after cycloaddition as a singlet of oxadiazolidinone 2a at 5.68 ppm (Appendix C1). 

 

 

Figure 11: 1H NMR spectra of 1a and corresponding oxadiazolidinone 2a 
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The 13C NMR peaks at 154.8 and 83.5 ppm correspond to the signals from (-C=O) and the 

benzylic carbon, respectively. The UV λ max analysis revealed that 2a absorbs at 241 and 197 nm. In 

the IR spectrum, the signal at 1155cm-1 of N→O vibration of nitrone 1a drastically decreased while a 

strong signal at 1754 cm-1 of C=O vibration appeared, confirming the formation of the five-membered 

ring structure of 2a (figure 11). Also, the absence of (-N=C=O) absorption at 2300 cm-1 in the IR 

spectrum of 2a distinctively indicates that all phenyl isocyanate was consumed.199 GC-MS showed a 

peak at RT of 16.6 minutes giving off a molecular peak of 267 gmol-1 for 2a (Appendix C2-C4). 

 

Synthesis of 1,2,4-oxadiazolidin-5-one 2b 

2-methyl-3,4-diphenyl-1,2,4-oxadiazolidin-5-one (2b) was synthesized through 1,3-dipolar 

cycloaddition of nitrone 1b with phenyl isocyanate using the same procedure applied to produce 2a. 

However, in this reaction dioxane was used as the solvent to obtain a 33% yield of the pure 2b (scheme 

13).  
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Scheme 13: Synthesis of oxadiazolidinone 2b 

 

1H NMR in CDCl3 showed a singlet from (-CH3) group at 3.04 ppm and the benzylic proton at 

5.58 ppm which is in line with literature data.198 The (-CH) of the two benzene rings of 2b gave a 

multiplets at (7.10-7.18 ppm) and (7.28-7.38 ppm), just like the benzene rings of 2a. The 13C NMR of (-
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N=C-H) signal at 135.8 ppm in nitrone 1b appeared at 85.6 ppm as the benzylic carbon for 2-methyl-

3,4-diphenyl-1,2,4-oxadiazolidin-5-one (2b) (figure 12).  

 

 

Figure 12: 13C NMR spectra of 1b and corresponding cycloadduct 2b 
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The transformation from sp2 carbon in nitrone 1b to sp3 carbon in 2b may be responsible for the 

shielding towards the upfield region. The 13C signal at 154.8 ppm corresponding to the presence of (-

C=O) shows a stretching at 1754 cm-1 in the IR spectrum, hence confirming the structure for 2b. UV λ 

max indicates that 2b absorbs at 243 and 194 nm. In the GC-MS analysis, the exact molecular weight of 

254 gmol-1 indicating 2b was seen at a retention time of 14.2 minutes with a peak intensity of 28.49% 

(Appendix D1-D4). 

 

Synthesis of ethyl 2-(2-methyl-3-phenyl -5-thioxo-1,2,4-oxadiazolidin-4-yl) acetate (2c) 

2c was obtained in good yield when nitrone 1b was treated with commercially available ethyl 

isothiocyanato acetate in dioxane at 60 °C for 3.5 hours. Just like other analogs, the structure of 2c was 

deduced from their 1H and 13C NMR, IR, and GC-MS analysis.  

The 1H NMR in CDCl3 showed two sharp singlets: from (-N-CH3) at 3.01 ppm and from the 

characteristic benzylic proton at 5.53 ppm. The (-CH2) attached to C=O and N4 gave off two doublets, 

resulting from the germinal coupling at (3.48-3.54 ppm and 4.71-4.75 ppm, j=16 Hz). The two 

multiplets at (1.23-1.28 ppm) and (4.16-4.22 ppm) correspond to (-CH3) and (-CH2), respectively. The 

benzene ring appeared as a doublet of doublet at 7.34-7.43 ppm. The singlet at 2.01 is possibly from the 

(-CH3) of ethyl acetate used for flash column chromatography (Appendix E1). 
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Scheme 14: Synthesis of compound 2c 
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The 13C NMR signal of 2c at 185.0 and 167.3 ppm corresponds to (-C=O) and (-C=S) 

functionality, respectively. The C=O is more deshielded than C=S because oxygen in the carbonyl group 

is more electronegative than Sulphur in the thionyl group. The strong (-C=O) absorption at 1743 cm-1 

and (-C=S) at 1475 cm-1 in the IR spectrum further confirms the five-membered 2-ethyl-(2-methyl-3-

phenyl-5-thioxo-1,2,4-oxadiazolidin-4-yl) acetate. The GC-MS of 2c shows a peak at 11.1 minutes 

giving a molecular weight of 280 gmol-1 corresponding to the exact molecular weight of 2c (Appendix 

E2-E4). 

 

Synthesis of 2-(2-methyl-3-phenyl-5-thioxo-1,2,4-oxadiazolidin-4yl) acetic acid (3) 

The ester functional group (-COOCH2CH3) in 2c was hydrolyzed to carboxylic (-COOH) 

functionality in 3 by the treatment of 2c with lithium hydroxide (LiOH) in tetrahydrofuran (THF). The 

pH of the solution was adjusted with ammonium chloride (NH4Cl), and the crude product was extracted 

with ethyl acetate to obtain compound 3 in 77% yield.  
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Scheme 15: Synthesis of compound 3 

 

Compound 3 was characterized by 1H and 13C NMR, IR, and GC-MS. To demonstrate that the 

five-membered heterocycle 3 was retained and hydrolysis was successful, a section of the 1H NMR 

spectrum of 2c in CDCl3 is compared with the corresponding 1H NMR spectrum of 3 in figure 13. 
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Figure 13: 1H NMR of 2c and corresponding cycloadduct 3 indicating successful hydrolysis 

 

The signals from (-CH3) and (-CH2) of 2c at (1.23-1.28 ppm) and (4.16- 4.20 ppm) diminished in 

3. Also, the appearance of a singlet at 9.98 ppm corresponds with the proton from (-OH) of carboxylic 

group. The illustration explained in figure 13 indicates successful hydrolysis of the ester to carboxylic 

acid (Appendix F1). Furthermore, to illustrate that the five-membered scaffold of 3 was retained in the 
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process of hydrolysis, the 13C NMR spectrum of 2c is compared with the corresponding 13C NMR of 3 

in figure 14.  

 

 

Figure 14: 13C NMR of 2c with the corresponding product of hydrolysis 3. 

 

The signals from (-C=O) at 185.0 ppm and (-C=S) at 170 ppm that is observed in both spectra 

(figure 14) indicates that the five-membered scaffold in 2c and 3 are still intact. The 13C signals from (-
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CH2-N4) at 46.15 ppm and (-N2-CH3) at 44.99 ppm are still intact (Figure 15). The IR stretch at 1731 

cm-1 and 1481 cm-1 in table 2 corresponds with C=O and C=S vibration respectively.  
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O 1
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R1
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Figure 15: Oxadiazolidinone scaffold 

 

Table 2: Physical properties and spectroscopic data of oxadiazolidinone derivatives 

Compound substituents m.p. 
(°C) 

Yield 
(%) 

1H and 13C NMR 
(ppm) 

IR (cm-1) 

R1 R2 X Ph-C-H Ph-C-H C=O C=S 

2a C2H5 Ph O 118-119 75 5.68 83.5 1754  

2b CH3 Ph O 119-121 33 5.58 85.6 1758  

2c CH3 CH2CO2C2H5 S Oil 66 5.53 87.3 1743 1475 

3 CH3 CH2CO2H S Oil 77 5.51 87.4 1712 1483 

 

In the GC-MS analysis of 3, the parent peak was observed at a retention time of 12.3 minutes with a 

peak area of 100% which corresponded to the exact molecular weight of 3. (Appendix F2-F4). 
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Biological Activity 

 

In vitro Cytotoxicity Evaluation of Oxadiazolidinone 2a 

The MTT assay was used to test the in vitro cytotoxicity of 2a on cancer cell lines obtained from 

the American Tissue Type Culture Collection (ATTC). These cell lines include IGROV1, OVCAR-4, 

HS 578T, BT-549, A498, UO-31, 786-0, CAKI-1, UACC-62, SK-MEL-28, SNB-19, SF-268, PC-3, 

SW-620, and EKVX, and they differ by tissue type and origin of the cells. The result of the analysis 

revealed that the highest inhibition was observed against renal cancer (table 2). 

 

Table 3: The cytotoxicity essay (%) of 2a on relative control (100%) against IGROV1, OVCAR-4, HS 

578T, BT-549, A498, UO-31, 786-0, CAKI-1, UACC-62, SK-MEL-28, SNB-19, SF-268, PC-3, SW-

620, and EKVX 

 Cancer types Cell line Growth% % Inhibition 

1 Ovarian Cancer IGROV1 95.59 4.41 

 OVCAR-4 95.84 4.16 

2 Breast Cancer HS 578T 93.06 6.94 

 BT-549 99.50 0.50 

3 Renal Cancer A498 82.27 17.73 

 UO-31 86.72 13.33 

 786-0 95.23 4.77 

 CAKI-1 94.52 5.48 

4 Melanoma UACC-62 93.93 6.07 

 SK-MEL-28 99.89 0.11 
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5 CNS Cancer SNB-19 98.91 1.09 

 SF-268 96.56 3.44 

6 Prostate Cancer PC-3 98.18 1.82 

7 Colon Cancer SW-620 97.45 2.55 

8 Non-Small Cell lung Cancer EKVX 97.38 2.62 

  

The MTT Assay was done by adding 5-diphenyl-tetrazolium bromide to a solution of cancer cells. The 

cells that are active will metabolize the MTT solution and form a formazan crystal (scheme 15).  
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N
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N

N

N

N
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3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT)

(E,Z)-5-(4,5-dimethylthiazol-2-yl)-1,3-diphenyl 
formazan (Formazan)  

Scheme 16: Metabolism of MTT by active cancer cell to form Formazan crystals 

 

The crystals are dissolved in a solution and their optical density measured at 570 nm with the aid of a 

spectrophotometer. The effectiveness of 2a can be determined because there is a direct relationship 

between the optical density of the formazan crystal and the number of active cells left in the solution. 
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Enzyme Inhibition Kinetics 

Enzyme inhibition kinetics were performed to determine the percentage of inhibition and 

residual activity against TEM-1 and P99 β-lactamases in 30 mM MOPS buffer. 3 µL of the enzyme was 

used for the assay. The initial rate is evident on how active the enzyme is. The higher the rate, the more 

active the enzyme. If the inhibitor is present, the activity is expected to decrease, like with clavulanate 

(figure 16). The percentage inhibition and residual activities of the enzymes after incubation with 

oxadiazolidinone analogs (2a, 2b, 2c, and 3) as inhibitors in the presence of chromogenic substrate NCF 

is shown in table 3. 

 

 

Figure 16: Hydrolysis of the substrate, NCF by TEM-1 β-lactamase 
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Table 4: Residual Activity and Percent Inhibition of TEM-1 for 3 minutes, 30 °C for 3 minutes Utilizing 

Potential Synthesized Inhibitors* 

 Compound Molecular 
Weight 
(g/mol) 

Initial Rate 
V˳ ± SD (ΔA, sec-1) × 
10-3 

Initial Rate 
+Inhibitor 
V˳ ± SD (ΔA, 
sec-1) × 10-3 

Residual 
Activity  
(%) 

% 
Inhibition 

1 2a 268.31 1.6870 ± 0.01531 1.2930 ± 0.03163 76.47 23.53 

2 2b 254.28 2.9367 ± 0.26697 2.1840 ± 0.34975 74.37 25.63 

3 2c 280.00 
 

1.159 ± 0.01139 
 

1.0139 ± 0.02758 
 

87.48 
 

12.52 
 

4 3 252.29 2.0411 ± 0.01252 1.2465 ± 0.01698 61.07 38.93 

5 3 (P99) 252.29 7.1434 ± 0.15520 5.5067 ± 0.15981 77.09 22.91 

Final concentration & volume of Enzyme (TEM-1) = 3 µL (0.45 nM),  
Substrate (NCF) = 12 uL (100 µM) 
0.1% BSA in MOPS buffer = 562 µL (0.02 mM, pH – 7.5)  
Inhibitor (in 3% ACN) = 20 µL (500 µM) 
 

The result obtained from the enzyme kinetic inhibition reveals that 2a-2c displayed 12-26% 

inhibition against TEM-1. The relatively low percentage inhibition observed could be because they were 

not sufficiently soluble in the buffer solution used for the enzyme kinetic analysis, hence making the 

synthesized inhibitors inaccessible to the active site. Also, there is a tendency for steric hindrance, due to 

the substituent on the scaffolds of 2a-2c to prevent part of the molecule from interacting appropriately 

with the active serine site of TEM-1 β-lactamases. The incorporation of substituent known to show great 

activity57 and enhance solubility (e.g. -COOH, -SO3H, -OH etc.) is most likely to improve the inhibitory 

activity of the synthesized inhibitors against β-lactamases. Therefore, compound 3 was synthesized to 

resolve the problem of steric hindrance and probably enhance the interaction between the active site of 
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the enzyme and the inhibitor. The enzyme kinetic inhibition analysis of 3 showed a significant increase 

to 38.9% against TEM-1 but 22% inhibition against P99. 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

Conclusion 

In this research work oxadiazolidinone derivatives (2a, 2b, 2c, and 3), as a non-β-lactam β-

lactamase inhibitor, were evaluated for their inhibitory activity against TEM-1 and P99 serine β-

lactamase after they were prepared using commercially available isocyanate derivatives (phenyl 

isocyanates and ethyl isothiocyanato acetate) with synthesized nitrone 1a and 1b. The tolerance for 

substituents on N2 and N4 position of oxadiazolidinone scaffold makes it easier for lots of functional 

groups to be incorporated. Thus, these compounds could be having useful synthetic application in 

pharmaceutical industries. 

The synthesized nitrones were: (z)-N-(benzylidene)-1-ethanamine oxide (1a), and (z)-N-

benzylidenemethanamine oxide (1b). The oxadiazolidinone derivatives were: 2-ethyl-3,4-diphenyl-

1,2,4-oxadiazolidin-5-one (2a), 2-methyl-3,4-diphenyl-1,2,4-oxadiazolidin-5-one (2b), ethyl 2-(2-

methyl-3-phenyl-5-thioxo-1,2,4-oxadiazolidin-4-yl) acetate (2c), 2-(2-methyl-3-phenyl-5-thioxo-1,2,4-

oxadiazolidin-4-yl) acetic acid (3).  

After successful synthesis and characterization of the compounds, an MTT Essay was used to 

test the in vitro cytotoxicity of oxadiazolidinone 2a on cancer cell lines such as IGROV1, OVCAR-4, 

HS 578T, BT-549, A498, UO-31, 786-0, CAKI-1, UACC-62, SK-MEL-28, SNB-19, SF-268, PC-3, 

SW-620, and EKVX. Compound 2a had more activity on renal cancer, decreasing the cell viability of 

786-0 by about 18%. The activity on other cell lines ranged from 4-14%.  

Also, the enzyme kinetic inhibition data revealed that compound 2a-2b showed an inhibition 

against TEM-1 ranging from 12-26% which was increased to 38.9% when derivative 3 was synthesized 

and evaluated on the same TEM-1. The poor solubility of all synthesized compounds in the MOPS 
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buffer, and the steric hindrance due to the presence of a bulky substituent on the oxadiazolidinone 

scaffold could be the reason for the relatively low inhibitory activity of the synthesized inhibitors (2a – 

2c, and 3) against the serine β-lactamase. 

 

Future Work 

The incorporation of functional groups (e.g. -OH, SO3H, -CONH2 etc.) with a known inhibitory 

history against TEM-1, P99 and other types of β-lactamases will be our focus. Also, a molecular 

docking to determine the possible interaction of oxadiazolidinone derivatives with the active site amino 

acid residue of TEM-1 will be carried out, and lastly the synthesized compounds will be subjected to 

Lipinski’s rule of 5 to ascertain their drug likeliness. 
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APPENDICES 

Appendix A1: 1H NMR Spectrum for Compound 1a in CDCl3 
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Appendix A2: 13C NMR Spectrum for Compound 1a in CDCl3 
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Appendix A3: GC-MS Spectrum for Compound 1a in Acetone 

 

# of Peaks 434 
Raw Spectrum 9.343 (scan: 1050) 
Background No Background Spectrum 
Exact mass   149.05  
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Appendix A4: IR Spectrum for Compound 1a in Chloroform 
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Appendix B1: 1H NMR Spectrum for Compound 1b in CDCl3 
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Appendix B2: 13C NMR Spectrum for Compound 1b in CDCl3 
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Appendix B3: GC-MS Spectrum for Compound 1b in Acetone 

 

 
# of Peaks 434 
Raw Spectrum 8.439 (scan: 778) 
Background No Background Spectrum 
Exact mass  135.00  
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Appendix B4: IR Spectrum for Compound 1b in Chloroform 
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Appendix C1: 1H NMR Spectrum for Compound 2a in CDCl3 
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Appendix C2: 13C NMR Spectrum for Compound 2a in CDCl3 
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Appendix C3: GC-MS Spectrum for Compound 2a in Acetone 

 

 

 

# of Peaks 409 
Raw Spectrum 16.636 (scan: 1949) 
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Appendix C4: IR Spectrum for Compound 2a in Chloroform 
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Appendix D1: 1H NMR Spectrum for Compound 2b in CDCl3 
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Appendix D2: 13C NMR Spectrum for Compound 2b in CDCl3 
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Appendix D3: GC-MS Spectrum for Compound 2b in Acetone 

 

# of Peaks 455 
Raw Spectrum 14.170 (scan: 1311) 
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Appendix D4: IR Spectrum for Compound 2b in Chloroform 
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Appendix E1: 1H NMR Spectrum for Compound 2c in CDCl3 
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Appendix E2: 13C NMR Spectrum for Compound 2c in CDCl3 
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Appendix E3: GC-MS Spectrum for Compound 2c in Acetone 
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Appendix E4: IR Spectrum for Compound 2c in Chloroform 
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Appendix F1: 1H NMR Spectrum for Compound 3 in CDCl3 
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Appendix F2: 13C NMR Spectrum for Compound 3 in CDCl3 
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Appendix F3: GC-MS Spectrum for Compound 3 in Acetone 
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Raw Spectrum  12.371 (scan : 1054) 
Background    No Background Spectrum 
Exact mass     252.10  
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Appendix F4: IR Spectrum for Compound 3 in Chloroform 

N
N
O

S
HO

O

 

2
9

6
4

.0
7

2
8

8
5

.0
0

2
3

6
0

.4
5

1
7

3
1

.7
7

1
6

3
7

.2
7

1
4

8
1

.0
7

1
3

9
8

.1
4

1
3

1
5

.2
2

1
2

4
1

.9
4

1
1

2
6

.2
3

1
0

4
1

.3
7

9
5

6
.5

2

8
5

2
.3

8

6
9

8
.1

0

5
4

3
.8

3

5 0 01 0 0 01 5 0 02 0 0 02 5 0 03 0 0 03 5 0 0

9 2

9 4

9 6

9 8

S u n  M a r  2 4  1 0 :5 1 : 5 9 :9 7  2 0 1 9

W a v e n u m b e r s

%
 
T
r
a
n
s
m
i
t
t
a
n
c
e



121 
 

VITA  

CHIMDI EKE KALU 

 

Education:      Master of Science in Chemistry, May 2019 

    East Tennessee State University, Johnson City, TN   

    Bachelor of Science in Chemistry. Dec. 2011 

    Cross River State University of Technology, Calabar,  

    Nigeria 

Professional Experience:  Graduate Assistant, East Tennessee State University, Johnson City, 

      TN, Jan. 2017 – Dec. 2018 

Presentations:    Chimdi Kalu, Noah Lyon and Abbas G. Shilabin “Synthesis,  

      Evaluation and Biological Significance of 1, 2, 4-  

      Oxadiazolidinone: The search for non-β-lactam β-  

      lactamase inhibitor.” 70th Southeast Regional Meeting of  

      American Chemical Society held in Augusta, GA,   

      November 1st, 2018. 

   Chimdi Kalu, Austin Miller and Abbas G. Shilabin “Synthesis of  

    1, 2, 4-Oxadiazolidinone analogs.” Appalachian Student  

    Research Forum held in Millennium Center, Johnson City  

    TN. 5th April 2018. 

Activities and  
Community Involvement:    Served at Good Samaritan Christmas food pantry, Young Adult  
 
      Calvary Church Johnson City, TN, Dec. 2018 
 



122 
 

   Volunteered during Martin Luther (Jr) day, ETSU Gospel Choir    

           Jan. 2017 

   Environmental clean-up, Graduate Professional Student   

    Association (ETSU), April 2017 

   Assisted first aid for attendees during Guyana 50th Anniversary  

           May 2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2019

	Synthesis and Evaluation of 1,2,4-oxadiazolidinones: The Search for A Potential Non-β-lactam β-lactamase Inhibitors.
	Chimdi Eke Kalu
	Recommended Citation


	INTRODUCTION AND LITERATURE REVIEW
	History of β-lactam Antibiotics
	β-lactamase Enzymes
	Classification of β-lactamase Enzymes
	Class A Serine β-Lactamases
	Class A Extended-Spectrum β-Lactamases (ESBLs)
	Class A Serine Carbapenemases
	Class B Metallo-β-Lactamases
	Class C Serine Cephalosporinase
	Class D Serine Oxacillinases

	Evolution Of β-lactam and non-β-lactam β-lactamase Inhibitors
	Non-β-lactam β-lactamase Inhibitors

	Diazabicyclooctane
	Mechanism of Action of Avibactam

	Nitrones
	Preparation of Nitrones
	Spectroscopy of Nitrones
	Isomerism of Nitrones

	Cycloaddition Reaction
	Mechanism of Cycloaddition

	The 1,2,4-Oxadiazolidinone Scaffold
	Justification of Research
	Chemistry of Oxadiazolidinone
	Stereochemistry of Oxadiazolidinone
	Structural Confirmation of Oxadiazolidinone

	Specific Goal

	EXPERIMENTAL SECTION
	Materials
	Instrumentation
	Chemistry
	General procedure for the synthesis of (Z)-N-(benzylidene) ethanamine oxide (1a)
	General method for the preparation of (Z)-N-(benzylidene) methanamine oxide (1b)
	General procedure for the preparation of 2-ethly-3,4-diphenyl-1,2,4-oxadiazolidin-5-one (2a)
	Preparation of 2-methyl-3,4-diphenyl-1,2,4-oxadiazolidin-5-one (2b)
	Synthesis ethyl 2-(2-methyl-3-phenyl-5-thioxo-1,2,4-oxadiazolidin-4-yl) acetate (2c)
	Synthesis of 2-(methyl-3-phenyl-5-thioxo-1,2,4-oxadiazolidin-4-yl) acetic acid (3)

	Enzyme Inhibition Kinetics
	Preparation of MOPS stock solution (0.02 M)
	Preparation of BSA (1% and 0.1%) in MOPS buffer
	Preparation of NCF (5 nM)
	Preparation of TEM-1 β-lactamase enzyme
	Preparation of P99 β-lactamase enzyme


	RESULTS AND DISCUSSION
	Synthesis of Nitrones
	Preparation of Nitrone 1a
	Preparation of Nitrone 1b

	Synthesis of 1,2,4-oxadiazolidinones
	Synthesis of 1,2,4-oxadiazolidin-5-one 2a
	Synthesis of 1,2,4-oxadiazolidin-5-one 2b
	Synthesis of ethyl 2-(2-methyl-3-phenyl -5-thioxo-1,2,4-oxadiazolidin-4-yl) acetate (2c)
	Synthesis of 2-(2-methyl-3-phenyl-5-thioxo-1,2,4-oxadiazolidin-4yl) acetic acid (3)

	Biological Activity
	In vitro Cytotoxicity Evaluation of Oxadiazolidinone 2a
	Enzyme Inhibition Kinetics


	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	REFERENCES
	APPENDICES
	Appendix A1: 1H NMR Spectrum for Compound 1a in CDCl3
	Appendix A2: 13C NMR Spectrum for Compound 1a in CDCl3
	Appendix A3: GC-MS Spectrum for Compound 1a in Acetone
	Appendix A4: IR Spectrum for Compound 1a in Chloroform
	Appendix B1: 1H NMR Spectrum for Compound 1b in CDCl3
	Appendix B2: 13C NMR Spectrum for Compound 1b in CDCl3
	Appendix B3: GC-MS Spectrum for Compound 1b in Acetone
	Appendix B4: IR Spectrum for Compound 1b in Chloroform
	Appendix C1: 1H NMR Spectrum for Compound 2a in CDCl3
	Appendix C2: 13C NMR Spectrum for Compound 2a in CDCl3
	Appendix C3: GC-MS Spectrum for Compound 2a in Acetone
	Appendix C4: IR Spectrum for Compound 2a in Chloroform
	Appendix D1: 1H NMR Spectrum for Compound 2b in CDCl3
	Appendix D2: 13C NMR Spectrum for Compound 2b in CDCl3
	Appendix D3: GC-MS Spectrum for Compound 2b in Acetone
	Appendix D4: IR Spectrum for Compound 2b in Chloroform
	Appendix E1: 1H NMR Spectrum for Compound 2c in CDCl3
	Appendix E2: 13C NMR Spectrum for Compound 2c in CDCl3
	Appendix E3: GC-MS Spectrum for Compound 2c in Acetone
	Appendix E4: IR Spectrum for Compound 2c in Chloroform
	Appendix F1: 1H NMR Spectrum for Compound 3 in CDCl3
	Appendix F2: 13C NMR Spectrum for Compound 3 in CDCl3
	Appendix F3: GC-MS Spectrum for Compound 3 in Acetone
	Appendix F4: IR Spectrum for Compound 3 in Chloroform

	VITA

