East Tennessee State University Digital Commons @ East Tennessee State University

Appalachian Student Research Forum

2019 ASRF Schedule

Apr 12th, 11:20 AM - 11:35 AM

The Influence of Diabetes on Peripheral Arterial Disease Comorbidities in the Central Appalachian Region between 2008 and 2018.

Moboni Mokikan East Tennessee State University

Sylvester Olubolu Orimaye *East Tennessee State University*

Adeola Olubukola Awujoola East Tennessee State University

Olufeyisayo Opeyemi Odebunmi East Tennessee State University

Adekunle Olumide Oke East Tennessee State University

See next page for additional authors

Follow this and additional works at: https://dc.etsu.edu/asrf

Mokikan, Moboni; Orimaye, Sylvester Olubolu; Awujoola, Adeola Olubukola; Odebunmi, Olufeyisayo Opeyemi; Oke, Adekunle Olumide; Alamian, Arsham; Stewart, David; Wang, Liang; Poole, Amy; Walker, Terrie; Blackwell, Gerald; and Mamudu, Hadii, "The Influence of Diabetes on Peripheral Arterial Disease Comorbidities in the Central Appalachian Region between 2008 and 2018." (2019). *Appalachian Student Research Forum*. 60. https://dc.etsu.edu/asrf/2019/schedule/60

This Oral presentation is brought to you for free and open access by the Events at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Appalachian Student Research Forum by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact digilib@etsu.edu.

Author Names

Moboni Mokikan, Sylvester Olubolu Orimaye, Adeola Olubukola Awujoola, Olufeyisayo Opeyemi Odebunmi, Adekunle Olumide Oke, Arsham Alamian, David Stewart, Liang Wang, Amy Poole, Terrie Walker, Gerald Blackwell, and Hadii Mamudu The Influence of Diabetes on Peripheral Arterial Disease comorbidities in the Central Appalachian region between 2008 and 2018

Moboni Mokikan, MPH

mokikan@etsu.edu

Department of Biostatistics and Epidemiology

College of Public Health

East Tennessee State University

April 12 2019

Orimaye SO²; Awujoola AO¹; Odebunmi OO²; Oke AO²; Alamian A¹; Poole A²; Stewart DW³; Wang L¹; Blackwell G⁵; Walker T⁵; Mamudu HM²

Biostatistics and Epidemiology Department, College of Public Health, East Tennessee State University, Johnson City, TN.
Department of Health Services Management and Policy, College of Public Health, East Tennessee State University, Johnson City, TN.
Department of Pharmacy Practice, Bill Gaton College of Pharmacy, East Tennessee State University, Johnson City, TN.
Ballad Health, Johnson City, TN.

Background

- Over 100 million people in the United States (U.S.) have diagnosed diabetes or pre-diabetes.
- People with diabetes are at a higher risk of developing atherosclerosis, which is the most common cause of PAD.
- About 20–30% of PAD patients in the U.S. have diabetes but little is known about PAD in rural central Appalachia.

Peripheral Arterial Disease

Normal

Figure 1: Map illustrating Diabetes in Appalachian region.

- The Appalachian region as a whole experiences excess mortality compared to non-Appalachian regions in the US
- Considerable differences in disease burden among age, gender or ethnic groups.
- Disease burden = 9.8 percent experienced by the nation as a whole with
- Central Appalachia -13.5 % and
- North Central Appalachia -12.8 %
- reporting the highest percentages.

Figure 2: Age-Adjusted Prevalence of Diagnosed Diabetes Among US Adults 2015

http://www.cdc.gov/diabetes/data

CDC's Division of Diabetes Translation. United States Diabetes Surveillance System available at http://www.cdc.gov/diabetes/data

Definition: Mortality

A measure of the number of deaths in a population, in relation to the entire population, over a specific time period.

Vascular Disease Foundation and the American Cancer Society

Purpose

- Therefore, this study aimed to examine the influence of **diabetes on PAD patient outcome** within the Central Appalachian region.
- If Diabetic risk factors are well controlled , could that improve overall PAD health outcomes?

Methodology

• Study population:

- 13,455 index cases were extracted from the Electronic Medical Records (EMR) using the ICD-9 and ICD-10 codes.
- Among all PAD cases in the study, 6153 cases were diabetics with males being 3472 and females being 2681.

• Outcome:

The outcome variable under study was the prevalence of diabetes in the study population

• Risk factors and predictors:

Myocardial Infarction (MI) history, hypertension, smoking status and hypercholesterolemia.

Socio-demographic variables considered in the study included gender, age, ethnicity and marital status

Covariates were Body Mass Index (BMI), Low density lipoproteins (LDL), High density lipoproteins (HDL), Total Cholesterol, and Triglycerides (TG).

• Statistical Analysis:

-**Multivariable logistic regression** was performed to examine potential risk factors of diabetes in PAD patients.

-Independent T-tests were used to compare the means among diabetics and non-diabetics with PAD.

NB: For all tables, B= regression coefficient Exp(B) = Odds Ratio CI = Confidence Interval, * Sig./ p-value < 0.05.

Results and discussions

Figure 3: Bar chart showing Diabetes in PAD and its prevalence in some comorbidities

Table 1: Statistical differences between Diabetes in PAD and Non-Diabetes PAD individuals and their association with some covariates. (Independent T-test)

Characteristic			95% Confidence Interval of the Difference		
		Sig. (2-tailed)	lower	Upper	
Age	Equal variances not assumed	0.159	-0.110	0.672	
вмі	Equal variances not assumed	0.025	-13.013	-0.850	
LDL Result	Equal variances not assumed	0.000	11.002	14.741	
HDL Result	Equal variances not assumed	0.000	4.782	6.665	
CHL Result	Equal variances Assumed	0.000	8.529	13.761	
Triglycerides	Equal variances not assumed	0.000	-64.917	-46.297	
MI History	Equal variances not assumed	0.000	-0.114	-0.086	
Hypertension	Equal variances not assumed	0.000	-0.166	-0.140	
Hypercholest- erolemia	Equal variances not assumed	0.000	-0.021	-0.007	
Smoking Status	Equal variances not assumed	0.000	0.109	0.148	

NB: For all tables, B= regression coefficient Exp(B) = Odds Ratio CI = Confidence Interval, * Sig./ p-value < 0.05.

- Significant predictors of the Independent T-test included
 - Age
 - Last BMI
 - LDL result
 - HDL result
 - Triglycerides
 - MI history
 - Hypertension
 - smoking status

Table 2: Statistical Analysis of Diabetes outcome in the presence of multiple predictors using multivariable logistic regression

۲

Significant predictors	Characteristic Sig.		OR	OE(C + for Even(D))	
- BMI				95% C.I. for Exp(в)
- HDL result				lower	Upper
	EncounterAge	0.768	1.002	0.991	1.012
- Iriglycerides	LastBMI	0.000	1.056	1.039	1.073
- MI history	LDLResult	0.207	0.991	0.976	1.005
- Hypertension	HDLResult	0.009	0.980	0.965	0.995
- smoking status	CHLResult	0.876	0.999	0.985	1.013
	TriglyceridesEncMx	0.017	1.003	1.001	1.005
	MIHistory	0.003	1.375	1.111	1.703
	HypertensionRegistry	0.000	2.822	1.804	4.415
	Hypercholesterolemia	0.521	1.091	0.837	1.421
	Smoking Status	0.053	0.802	0.641	1.003

Table 3: Stratification by Gender: Females

				95% C.I.for EXP(B)	
	Characteristic	Sig.	OR	Lower	Upper
females	LastBMI	0.000	1.071	1.046	1.096
	HDLResult	0.152	0.985	0.966	1.005
	MIHistory	0.274	1.163	0.887	1.525
	HypertensionRegistry	0.002	2.691	1.457	4.971

Table 4: Stratification by Gender: Males

				95% C.I.for EXP(B)	
	Characteristics	Sig.	OR	Lower	Upper
males	TriglyceridesEncMx	0.044	1.003	1.000	1.006
	HypertensionRegistry	0.002	2.691	1.457	4.971
	Smoking Status	0.019	0.706	0.528	0.944

Table 5: Stratification by Hypertension

				95% C.I.for EXP(B)	
Hypertension Present		Sig.	OR	Lower	Upper
	LastBMI	0.000	1.056	1.038	1.073
	HDLResult	0.025	0.982	0.966	0.998
	TriglyceridesEncMx	0.014	1.003	1.001	1.006
	MIHistory	0.003	1.379	1.111	1.710

Table 6: Stratification by MI

				95% C.I.for EXP(B)	
MIHistory		Sig.	OR	Lower	Upper
Present	LastBMI	0.000	1.074	1.039	1.111
Absent	LastBMI	0.000	1.052	1.033	1.072
	TriglyceridesEncMx	0.018	1.004	1.001	1.007
	HypertensionRegistry	0.000	2.938	1.833	4.707

Conclusion

- **Diabetes** is a major risk factor for **PAD**.
- CVD risk factors are strongly associated with PAD comorbidities and are worsened in the presence of diabetes.
- HDL seemed to be negatively associated with the predictor variables and may be protective and Hypertension is strongly positively associated.
- We suggest that hospitals and health care systems should strongly control for the risk factors of diabetes and adopt a multi-risk-factor approach for improving health outcomes for PAD patients.

Acknowledgement

• We thank Ballad Health (Wellmont CVA Heart Institute) for their research support and for providing the data.