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 ABSTRACT 

The Ecology of Fecal indicators 

by 

Dennis Gilfillan 

Animal and human wastes introduce pathogens into rivers and streams, creating human health 

and economic burdens. While direct monitoring for pathogens is possible, it is impractical due 

to the sporadic distribution of pathogens, cost to identify, and health risks to laboratory 

workers. To overcome these issues, fecal indicator organisms are used to estimate the presence 

of pathogens.  Although fecal indicators generally protect public health, they fall short in their 

utility because of difficulties in public health risk characterization, inconsistent correlations with 

pathogens, weak source identification, and their potential to persist in environments with no 

point sources of fecal pollution. This research focuses on characterizing the ecology of fecal 

indicators using both modeling and metabolic indicators to better understand the processes 

that drive fecal pollution. Fecal indicator impairment was modeled in Sinking Creek, a 303 (d) 

listed stream in Northeast Tennessee, using the ecological niche model, Maxent, for two 

different fecal indicators. While the use of Maxent has been well demonstrated at the 

macroscale, this study introduces its application to ecological niches at the microscale. Stream 

impairment seasonality was exhibited in two different indicators over multiple years and 

different resolutions (quarterly versus monthly sampling programs). This stresses the need for 

multiple year and month sampling to capture heterogeneity in fecal indicator concentrations. 

Although discharge is strongly associated with dissolved solutes, fecal indicator impairment was 

governed by other ecological factors such as populations of heterotrophic bacteria, enzyme 

activity, nutrient conditions, and other metabolic indicators. This research also incorporated 

metabolic indicators to characterize spatiotemporal variability in microbial community function, 

making connections to fecal and other pollution gradients. Communities differed in their ability 

to use a wide variety of substrates, and metabolic inhibition in sediments captured most of the 

interaction of aquatic and benthic communities. Sediment substrate activity was also indicative 

of degrees of pollution, suggesting that sediment is a potential reservoir for Escherichia coli in 

this stream, and there is possibility for resuspension, extended residence times, and increased 
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duration for exposure. This research highlights the benefit of using models and microbial 

indicators to better understand how environment shapes the niche of fecal indicators. 
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CHAPTER 1 

INTRODUCTION, LITERATURE REVIEW, AND GOALS OF STUDY 

 

Introduction 

Animal and human wastes introduce pathogens into rivers and streams, creating human 

health and economic burdens. Pathogens represent the primary cause of impairment for 

United States’ surface waters, impacting over 170,000 miles of rivers and streams (United 

States Environmental Protection Agency 2017). While direct monitoring for pathogens is 

possible, it is impractical due to the sporadic distribution of pathogens, cost to identify, and 

health risks to laboratory workers (Savichtcheva and Okabe 2006; Field and Samadpour 2007). 

To overcome these issues, fecal indicator organisms (FIOs) are used to estimate the presence of 

pathogens. These FIOs should exist whenever pathogens are present, be versatile in their use, 

not reproduce in the water column, and have an enteric origin (Cimenti et al. 2007; Maier et al. 

2009). Elevated levels of FIOs should correlate with the presence of pathogens, protecting 

public health and identifying locations with sources of fecal pollution. 

Impairment from pollution reduces a riverine system’s utility, so strategies are needed 

to minimize exposure to harmful pollutants and improve water quality. The Clean Water Act 

outlines the process for identifying impairment, listing of polluted watersheds, and developing 

a total maximum daily load (TMDL) for a watershed to determine acceptable pollutant 

concentrations (United States Environmental Protection Agency 2001a). A TMDL includes the 

amount of pollutants from point sources, typically identified through the national pollutant 

discharge elimination system (NPDES), and nonpoint sources (Borsuk et al. 2002; 

Shirmohammadi 2006). Nonpoint sources represent a substantial challenge in managing fecal 

pollution, necessitating creative strategies for source appropriation to reduce fecal loadings and 

determine responsible parties (Duda 1993; Meays et al. 2004; Field and Samadpour 2007). 

Although fecal indicators generally protect public health (Wade et al. 2003), they fall 

short in their utility because of difficulties in public health risk characterization, inconsistent 

correlations with pathogens, weak source identification, and their potential to persist in 

environments with no known sources of fecal pollution (Byappanahalli, Fowler, et al. 2003; 
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Savichtcheva and Okabe 2006; Field and Samadpour 2007; Yates 2007). This drives 

development of alternate indicators to improve on these weaknesses. A variety of alternate 

indicator organisms have been evaluated, and differentiation between human and animal 

sources have been suggested using host-specific microbes, genetic markers, functional 

characteristics such as carbon utilization, antibiotic resistance, and chemical markers (Scott et 

al. 2002; Cimenti et al. 2007; McLellan and Eren 2014). All of these can improve on the single 

indicator paradigm to monitor for impairment. 

In addition to these novel biochemical indicators as a means to improve monitoring and 

management, the use of geographic data and statistical modeling can improve on the single 

indicator paradigm (Nevers et al. 2016). Utilizing geographic data can allow for causal 

inferences into land use for source tracking, determining natural and anthropogenic drivers of 

fecal pollution(Smith et al. 2001; Eleria and Vogel 2005; Coulliete et al. 2009; Vitro et al. 2017). 

The use of statistical modeling has been applied to fecal pollution in a variety of ways: 

optimizing source tracking (Brion and Lingireddy 1999; Brion et al. 2002; Belanche-Muñoz and 

Blanch 2008; Ballestè et al. 2010), identifying environmental factors contributing to FIO 

persistence (Wilkes et al. 2011; Piorkowski et al. 2013; Hall et al. 2014), and creating predictive 

models to estimate conditions that exceed water quality criteria (Kim and Grant 2004; Eleria 

and Vogel 2005; Gonzalez et al. 2012; Gonzalez and Noble 2014). Using geographic data and 

statistical modeling present flexible strategies that can inform decision-makers on the sources 

of fecal pollution, identify fate and transport mechanisms, and are applicable on a universal 

scale. Although the single indicator paradigm is inherently limited, simultaneously incorporating 

alternative indicators, source tracking techniques and creative modeling strategies can improve 

its utility, aiding in understanding and reducing impairment due to fecal pollution. 

 

Public Health and Economic Burden of Pathogens 

A variety of pathogens are associated with waterborne and foodborne illnesses, 

contributing to morbidity and mortality globally.(Pandey et al. 2014) A serious concern for 

decision-makers and stakeholders, pathogens represent the primary reason for impairment 

within the United States, contaminating over 170,000 miles of riverine systems(United States 
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Environmental Protection Agency 2017). More than 100 different types of pathogenic 

microorganisms exist in aquatic environments, and waterborne illness from fresh water 

originates from animal and human waste via the fecal-oral route of transmission, dermal 

contact, or inhalation of bioaerosols (Soller et al. 2015). Each pathway results in a variety of 

clinical manifestations, such as gastrointestinal illness, respiratory problems, fever, 

inflammation of brain and meninges due to brain consumption, organ damage, respiratory 

distress, necrotizing fasciitis, Naegleriasis, and even death in highly susceptible populations 

(Hofstra 2011; United States Environmental Protection Agency 2012). 

Waterborne pathogens enter waterbodies through inadequately treated sewage, 

stormwater runoff, and various agricultural practices, but also can be naturalized members of 

microbial communities (Ferguson et al. 2003; Jamieson et al. 2004; Lasalde et al. 2005). These 

sources can be divided into two general types of pollution; point and nonpoint source. Point 

source pollution often derives from treated wastewater effluent and storm sewers, both which 

operate under the NPDES permitting process. Nonpoint sources are less characterized, but 

wildlife defecation, stormwater  runoff, faulty septic systems, manure spreading and spraying, 

overflow from confined animal feeding operation waste lagoons, general livestock waste  

runoff, and other sources all contribute to microbial contamination (Savichtcheva and Okabe 

2006; Boehm et al. 2009; Ibekwe et al. 2013). Pathogens that are of greatest concern exist in 

both recreational and drinking water, are highly infectious at low doses, possess traits of 

environmental resilience, survive for extended durations within nonhost environments, and are 

resistant to some water treatment processes (Field and Samadpour 2007; Ashbolt et al. 2010; 

Soller, Schoen, et al. 2010). For example, protozoan parasites are notorious for disease 

outbreaks in swimming pools due to their resistance to chlorination, and certain pathogens are 

able to survive in drinking water systems (Ashbolt et al. 2010). These require alternate methods 

of elimination for drinking water, increasing cost of treatment to prevent illness. Disease 

outbreaks in the United States are driven by many types of pathogens, including bacteria, 

protozoa, and viruses (Arnone and Walling 2007). 
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Waterborne disease outbreaks create both public health and financial burdens on 

communities. Globally, an estimated 13 million people die each year from waterborne 

pathogens, and waterborne illness causes approximately 900,000 incidents of disease and 900 

deaths due to exposure to contaminated water (Arnone and Walling 2007). From 1986 to 2000, 

there were 95 outbreaks associated with recreational waters in the United States, and 48 

outbreaks associated with drinking water (Arnone and Walling 2007). These outbreaks resulted 

in 5,095 total cases of disease occurrence due to recreational exposure, and 437,082 cases of 

disease due to drinking water contamination (Arnone and Walling 2007). During this time, the 

largest waterborne disease outbreak occurred in Milwaukee, Wisconsin, with faulty filtration 

processes leading to cryptosporidiosis in over 403,000 residents (MacKenzie et al. 1994). These 

outbreaks also create economic burdens due to medical costs and loss of productivity. In the 

1993 Milwaukee Cryptosporidium outbreak, the estimated costs of illness were $96.2 million; 

this included $31.7 million in medical costs and $64.6 million in productivity losses (Corso et al. 

2003). The estimated individual costs for illness ranged from $116 to $7,808, depending on 

severity of the illness (Corso et al. 2003). The burdensome nature of disease outbreaks requires 

diligent monitoring of pathogens to reduce this impact. 

Characterizing human health risks associated with waterborne pathogens is difficult 

because of differences in risk based on source, degree of exposure, and individual susceptibility. 

Human and nonhuman wastes possess unique assemblages of microorganisms; as a result, the 

risk of infection is dependent on the distribution, diversity, and number of pathogens (Soller, 

Schoen, et al. 2010). Animal and human sources of fecal pollution also have different pathways 

for exposure; pathogen introduction in wastewater effluents is continuous, with increases of 

poorly treated wastewater during rain events, but pathogen loading from manure and other 

animal sources is largely stormwater driven (Soller et al. 2015). Susceptibility to infection is a 

spectrum, and risks are higher for immunocompromised populations, the elderly, and children 

(Nwachuku and Gerba 2004; de Man et al. 2014). These factors make identifying universal 

conditions of elevated risk challenging, but essential to consider in monitoring for pathogens to 

protect human health. 
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Direct monitoring for pathogens would be ideal to mitigate human health risk, but the 

sporadic distribution of pathogens, their diversity in type and number, costly identification 

procedures, and risks to exposed laboratory workers makes this an impractical option 

(Savichtcheva and Okabe 2006; Cimenti et al. 2007; Field and Samadpour 2007; Maier et al. 

2009). Indicator organisms are used instead to estimate the relative density of enteric 

pathogens in water bodies, alleviating some of the difficulties of direct monitoring (Cimenti et 

al. 2007). FIOs should exist whenever pathogens are present, be versatile in their use, not 

reproduce in the water column, and have an enteric origin (Savichtcheva and Okabe 2006; 

Cimenti et al. 2007; Yates 2007). Current water quality standards for pathogens need to be 

scientifically defensible, universal in implementation across all societies and geographies, and 

properly protect human and ecosystem health (Boehm et al. 2009; Maier et al. 2009). Table 1-1 

identifies some of the characteristics of an ideal fecal indicator. 

Indicators historically used have been total coliforms, fecal coliforms, and fecal 

streptococci (Yates 2007). The indicator selected is highly dependent on potential use of the 

water bodies; for example, in Tennessee, drinking water is monitored using total coliform 

presence while recreational waters are monitored using E. coli (Tennessee Department of 

Environmental and Conservation 2015a). Nationally, recreational water quality criteria were 

updated in 2012 to support the use of enterococci for fresh and marine waters and E. coli for 

fresh waters (Boehm et al. 2009). Elevated FIO concentrations were correlated to 

gastrointestinal illness rates of either 32 or 36 per 1000 people for E. coli. In 2012, a statistical 

threshold value was also introduced, which is approximately the 90th percentile of the 

distribution of the water samples taken (United States Environmental Protection Agency 2012). 

In general, FIOs have been successful in alerting populations when potential for gastrointestinal 

illness is present (Wade et al. 2003), and can identify potential impairment due to human and 

animal wastes. 

  



15 
 

 

Table 1.1. Characteristics of an ideal fecal indicator. Adapted from Maier et al. (2015) and 

Cimenti et al. (2007) 

 Characteristic 

a.  The indicator should exist in the presence of 

fecal contamination, and be absent when 

there is not fecal contamination 

 

b.  If the indicator is a microorganism, it should 

be the member of the gut microflora of warm-

blooded animals, and should not grow in the 

environment 

 

c.  If the indicator is a chemical substance it 

should be associated with fecal discharges 

 

d.  The indicator should be useful for all types of 

waters 

 

e.  The concentration of the indicator should be 

greater than or at least equal to the amount of 

pathogens 
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f.  The indicator should persist in the 

environment for a longer time than the most 

resilient pathogen 

 

g.  The quantification of the indicator should be 

faster, easier to perform, and more sensitive 

than quantification of pathogens 

 

h.  The quantification of the indicator should be 

less expensive than the quantification of 

pathogens 

 

Management of Impaired Watersheds 

The need for clean water sources and the control of water pollution has been a part of 

public policy since the Federal Water Pollution Control Act of 1948 (Adler et al. 1993; Copeland 

1999). Growing public awareness and concern for managing water pollution led to the 

metamorphosis of the Federal Water Pollution Control Act into what is now known as the Clean 

Water Act of 1972 (Adler et al. 1993). The amendments included establishing a basic structure 

for regulating pollutant discharges, setting wastewater and surface water quality standards, 

and recognized the need to address the critical problems posed by nonpoint source pollution 

(Copeland 1999). The Clean Water Act requires the regular monitoring of surface waters to 

identify potential contamination, and creation and maintenance of the 303(d) list for impaired 

waters. 

As required by section 303(d) of the Clean Water Act, water bodies identified as 

impaired are listed. In the 2012 updated recreational water quality criteria for fecal pollution, 

states are given governance concerning the number of samples to be taken within a 30 day 

period to determine impairment (United States Environmental Protection Agency 2012).  

Tennessee uses a 5-sample 30-day geometric mean to determine pathogen impairment. Once a 

stream has been identified as impaired, a TMDL is developed (Hall et al. 2014; United States 



17 
 

Environmental Protection Agency 2017). A TMDL characterizes the point and nonpoint sources 

of pollution in a watershed, incorporates a margin of safety to account for variability, and is 

used to guide remediation efforts to return waterbodies to their intended use (United States 

Environmental Protection Agency 2001a; United States Environmental Protection Agency 2017).  

A reduction in load is required in many of these watersheds, and this is determined through 

monitoring, modeling, or a combination of the two to fully characterize the watershed sources 

of impairment (United States Environmental Protection Agency 2001a). States and 

municipalities develop and implement TMDLs with varying degrees of success (United States 

Environmental Protection Agency 2012). States are given creative leeway for development of 

TMDLs; some operate by designing them at the stream section level, whereas states like 

Tennessee create watershed TMDLs. The concept of a watershed could be defined in terms of 

drainage ditches, small farm ponds, or even large rivers; in the case of Tennessee 8-digit 

hydrologic unit codes are used as the demarcation of a watershed (Cohen and Davidson 2011). 

These TMDLs are designed to appropriate sources of pollution in a watershed, and effectively 

plan best management practices (BMPs) to mitigate these pollutants. 

The United States Environmental Protection Agency (EPA) distributes a variety of 

aquatic models for developing TMDLs and pollutant monitoring. In many of these models, 

surface flow is the only source of runoff into streams. Although landscape  runoff has been 

shown to contribute the greatest microbial loads to water bodies, hyporheic exchange and 

subsurface transport of microbes can be significant, needing consideration in certain 

environments (Hunter et al. 1992; Jamieson et al. 2004). Hydrograph modeling of fecal 

indicators is best used in extreme conditions such as flooding or drought conditions (Ghimire 

and Deng 2013); fate and transport of FIOs is not consistent with the build-up/wash-off theory 

used in most distributed watershed models (Benham et al. 2006; Surbeck et al. 2006; 

Drummond et al. 2015). Wash-off from land surfaces is unlikely to be at consistent land use 

specific rates, and differential survival of FIOs based on source are realistic issues, but are not 

considered in the current modeling practices (Surbeck et al. 2006). Most water quality models 

treat microorganisms as free-floating colloids with neutral buoyancy, despite the consensus 

that bacteria associate with sediment in stream environments (Jamieson, Doug M. Joy, et al. 
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2005). Although process-based models have been used for development of TMDLs with varying 

degrees of success, they are complex, cumbersome to use, and require a great deal of data to 

calibrate (Borah and Bera 2003; Shirmohammadi 2006). In addition, the complexity of the 

models does not necessarily improve simulation accuracy (Stow et al. 2003). These are 

difficulties and shortcomings of process models, stressing the need for alternate approaches to 

infer fate and transport processes of FIOs as well as the creation of simple but accurate models 

in data-sparse watersheds. 

Limited resources in the forms of finances, staff, and water quality modeling expertise 

are prevalent within all levels of the TMDL program. Financial resources are the strongest 

limitation because they reduce the amount of staff necessary to implement program goals, and 

reduce the amount of data that can be collected within impaired watersheds. Currently in the 

United States, each of the 10 regions is given an allotment to distribute to their member states, 

but this currency is not enough to fulfill the exhaustive requirement set out by the Clean Water 

Act. External factors create imbalances within the regions, especially in watersheds with vested 

interests from industry (Neilson and Stevens 2002; Maguire 2003). For example, the EPA 

regions in the eastern United States have considerably more funds due to local revenue from 

large numbers of point source dischargers desiring appropriate load allocations to reduce the 

financial burden of treatment (Neilson and Stevens 2002). Resource availability also can be 

limited by the variation in the number of listed streams within state, differential viewpoints on 

the need for environmental protection, and local political climates (Shirmohammadi 2006). 

Politicians have been critical of the TMDL program, at some points needing scientific proof that 

the TMDL process was a valid approach to reduce water pollution (Neilson and Stevens 2002; 

Elshorbagy et al. 2005; Shirmohammadi 2006). Support of this program is needed from all 

levels, and the lack of adequate resources nationwide makes proper implementation and 

development of TMDLs challenging. 

Another difficulty of developing TMDLs is the volume of impaired watersheds within the 

United States. To alleviate the stress of developing an exhaustive amount of unique TMDLs, 

many states have adopted a watershed approach as a feasible alternative (Elshorbagy et al. 

2005). The watershed approach is a coordinated framework designed to restore aquatic 
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systems and protect human health more effectively (Cohen and Davidson 2011). Encouraging 

collaborations between point source dischargers and citizens in a collaborative atmosphere 

provides an environment that recognizes dischargers and citizens as integral parts of the 

solution, focusing on long-term comprehensive solutions for both point and nonpoint sources 

of pollutants. In Tennessee, 55 watersheds are identified using 8-digit hydrologic unit codes, 

and these are evaluated on a five year cycle (Tennessee Department of Environmental and 

Conservation 2015b). The watershed approach fosters a better understanding of how physical 

and biochemical changes affect watersheds, allowing agencies and citizens to focus on those 

solutions most likely to be effective. 

A successful strategy in TMDL implementation is active involvement of stakeholders 

within all program stages (Neilson and Stevens 2002; Maguire 2003; Elshorbagy et al. 2005). 

When resources to properly monitor and manage watersheds are scarce, having surrounding 

community involvement invokes environmental groups to help achieve the objectives of the 

TMDL (Neilson and Stevens 2002). Involvement of stakeholders influences resource availability, 

with areas of support advocating for more data collection, and going beyond the limitations of 

the state (Maguire 2003). Stake-holders and the public should be brought in early to TMDL 

development to voice their concerns, and participation should be encouraged to make decision-

makers accountable for a successful TMDL. Increased public participation should be welcomed 

throughout the process, from development to implementation of best management practices. 

Although the TMDL program is admirable in its goals, limitations abound within the 

program. Modeling FIO fate and transport is challenging due to flow-independent survival, 

differential adaptive mechanisms based on source, and other ecological factors (Byappanahalli, 

Fowler, et al. 2003; Benham et al. 2006; Surbeck et al. 2006; Surbeck et al. 2010; Berthe et al. 

2013). Compounding these issues are the lack of resources for appropriate monitoring, 

modeling and remediation, weakening the ability to improve water quality in the United States 

(Neilson and Stevens 2002; Elshorbagy et al. 2005; Shirmohammadi 2006). Developing 

watershed-sized TMDLs optimizes efforts for maximum strategic impact, while stake-holder 

involvement stimulates cooperation, allocation of additional resources, and improve potential 

for successful implementation (Tennessee Department of Environmental and Conservation 
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2015b). However, there is a need for alternate modeling strategies to evaluate source in data-

sparse watersheds to better characterize loads and mechanisms driving fecal impairment, and a 

call for policies that encourage cooperation among decision-makers and stake holders within a 

watershed. 

 

The Fecal Indicator Paradigm 

Characterizing Public Health Risks 

Identifying public health risks based on FIOs is difficult because of geographic variability 

and the site-specific nature of epidemiologic studies. Moe et al. (1991) found that although 

significant differences in illness rates could be identified from highly contaminated water 

(>1000 E. coli per 100 mL), disease threshold risk varies based on local climate and cultural 

conditions (Moe et al. 1991). Colford et al. (2007) found that fecal indicator bacteria did not 

predict health effects at a marine bathing beach, cautioning that their results may be site-

specific, and suggesting that results were related to the lack of human sources and negative 

detection of enteric viruses (Colford et al. 2007). Fujioka et al. (2015) stated that the 2012 

Recreational Water Quality Criteria did not improve strategies to assess bathers’ health risks in 

all types for recreational waters (Fujioka et al. 2015). This may be attributed to the fact that 

these criteria were based on 7 marine bathing beaches, 2 freshwater beaches, and no riverine 

systems (United States Environmental Protection Agency 2012; Fujioka et al. 2015). However, it 

is infeasible to collect enough epidemiologic data in watersheds to identify regionally specific 

disease rates, and it is challenging to categorize an exposed population in many of recreational 

water bodies. However, Wade et al. (2002) found that although significant heterogeneity 

existed in epidemiologic studies, FIOs such as Enterococci and E. coli were found to be 

consistent predictors of elevated gastrointestinal illness in multiple geographic regions.(Wade 

et al. 2003) This supports their use as a FIO in light of the issues of site specific results, 

geographic variability, and local climate and culture. 
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Alternate Indicators and Correlations with Pathogens  

The diverse ecology of pathogens makes it difficult to use a single indicator to mimic all 

pathogens, increasing the challenge to find consistent relationships between pathogens and 

levels of FIOs. This has spurred interest in the development of alternate indicators for use in 

watersheds, improving on the bacterial single indicator paradigm. Alternate indicators include 

fecal anaerobes, viral indicators, and chemical compounds. Each of these has certain strengths 

as well as inherent weaknesses, and some need further testing to characterize their utility. 

The fecal anaerobes Bifidobacterium and Bacteriodes have been suggested as potential 

indicators but do not survive as long as E. coli in the environment, meaning they only indicate 

recent microbial contamination (Kreader 1998; Savichtcheva and Okabe 2006). One benefit of 

Bacteriodes and Bifidobacterium is that certain species are host specific (Kreader 1995; Bonjoch 

et al. 2004; Simpson et al. 2004). However, only a few studies have used these indicators, and 

there is need for studies at larger scales that compare these alternate indicators with specific 

pathogens and waterborne disease (Savichtcheva and Okabe 2006). Clostridium perfringens has 

been implemented as a fecal indicator for sewage contaminated streams, ocean environments, 

and sea waters (Bisson and Cabelli 1980; Savichtcheva and Okabe 2006). Because C. perfringens 

is resistant to environmental stress in comparison to other indicators, it represents one of the 

most conservative indicators of fecal pollution (Davies et al. 1995). However, C. perfringens is 

useful for fate determination of sewage and assessment of effectiveness of disinfection in 

drinking water systems (Payment and Franco 1993; Payment et al. 2000). One criticism is of C. 

perfringens is their extended viability in aquatic sediments; they are able to be detected long 

distances from fecal discharges, indicating either remote or old fecal pollution (Sorensen et al. 

1989; Desmarais et al. 2002). 

Bacterial indicators do not serve well as indicators for viruses because of their different 

ecologies. Bacteriophages infecting Bacteriodes fragilis and coliphages (F-specific RNA 

coliphage) have been suggested as two potential viral indicators (Borrego et al. 1987; Borrego 

et al. 1990; Chung and Sobsey 1993). B. fragilis bacteriophages were detected in human 

samples but not in animal samples, hinting at use for source tracking (Tartera and Jofre 1987). 

Survival of these bacteriophages is comparable to or better than enteric viruses in surface 
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waters and occur in greater numbers (Tartera et al. 1988; Chung and Sobsey 1993). Difficulty in 

recovery of this bacteriophages from waters without human sources limits its usefulness, 

warranting further methodology development (Savichtcheva and Okabe 2006) Coliphages have 

different serotypes for animal and human feces that could be used for source tracking.(Scott et 

al. 2002) Male-specific (F+) coliphages represent promising viral models because of their 

physical resemblance to human enteric viruses, their stability in aquatic environments, and 

their resistance to water treatment processes (Chung and Sobsey 1993; Sinton et al. 2002; 

Savichtcheva and Okabe 2006). F-specific RNA coliphage is also suggested as a useful viral 

indicators in freshwaters, where they have the highest environmental resistance (Havelaar and 

Pot-Hogeboom 1988; Sinton et al. 2002). F-specific coliphages are promising indicators, but 

there is an urgent need to simplify the methodology to concentrate and recover these viruses 

in environmental samples (Savichtcheva and Okabe 2006; Field and Samadpour 2007). There is 

also a need for more complete and detailed genetic characterization of different coliphage 

groups (Savichtcheva and Okabe 2006). 

In environments in which traditional and alternate indicators might exist as natural 

microflora, fecal organic compounds such as fecal sterols could be used as alternative indicators 

(Dutka et al. 1974; Isobe et al. 2002; Isobe et al. 2004). Coprostanol is one of the major fecal 

sterols excreted by humans and animals; it is microbially degraded under aerobic conditions 

with half-lives of less than 10 days, suggesting the presence of fresh fecal pollution (Isobe et al. 

2002). Other structurally related fecal sterols could provide conclusive information concerning 

source (Leeming et al. 1996; Isobe et al. 2002; Isobe et al. 2004). An issue with coprostanol and 

other fecal sterols is that these chemicals are easily incorporated into sediments where they 

degrade relatively slowly (stable for 450 days at 15OC) (Isobe et al. 2002). Future studies also 

need to evaluate host specificity, detection limits, and correlation with known pathogens (Field 

and Samadpour 2007). 

While the alternate indicators hold promise to improve on the single indicator 

paradigm, current research questions the utility of traditional and alternate indicators to 

correlate with pathogens (Savichtcheva and Okabe 2006; Wu et al. 2011). Coliform groups 

typically demonstrated poor correlations with pathogens, partially explained by different 
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survival and persistence patterns in diverse environments such as rainforests and grey water 

(Carrillo et al. 1985; Ottoson and Stenström 2003). High densities of FIOs have been correlated 

with Salmonella spp., and the persistence of these pathogens was similar in both marine and 

freshwater (Morincigo et al. 1989). However, there is debate about the efficacy of the use of 

fecal coliforms to identify the occurrence of Salmonella (Savichtcheva and Okabe 2006). FIOs do 

not correlate with the protozoan pathogens Cryptosporidium and Giardia (Ferguson et al. 

2003). Harwood et al. (2005) evaluated the use of total coliform bacteria, fecal coliform 

bacteria, C. perfringens, and F-specific coliphages to predict presence of pathogens at 

wastewater reclamation facilities (Harwood et al. 2005). Although pathogens were also 

detected, no strong correlations were identified with the indicators. Because of the sporadic 

distribution of pathogens, many correlation studies have insufficient data regarding both the 

number of samples collected and the number of positive samples for pathogens (Wu et al. 

2011). The search for an indicator that reliably correlates with pathogens is on-going, but 

requires exhaustive direct monitoring of pathogens to be successful; this might be a faulty 

approach because of resource constraints in certain areas. 

In addition to the pursuit of alternate indicators of fecal pollution, rapid indicators using 

molecular techniques are being developed to provide decision-makers near real-time 

estimations of levels of traditional FIOs. Wade et al. (2006) evaluated the performance of rapid 

quantitative polymerase chain reaction (qPCR) for detecting levels of Bacteroides and 

Enterococcus at two Great Lakes recreational beaches (Wade et al. 2006). Enterococcus 

concentrations were found to correlate with gastrointestinal illness rates at both beaches; 

however, mixed results were found for the Bacteroides species at both beaches (Wade et al. 

2006). Gonzalez and Noble (2014) developed predictive models to compare how environmental 

conditions predicted both qPCR and cultured-based methods of Enterococcus and E. coli 

(Gonzalez and Noble 2014). While qPCR models showed high accuracy when applied to 

management decisions, inhibition was an issue that confounded the results; the authors 

developed an inhibition regression model to address these concerns (Gonzalez and Noble 

2014). Although qPCR methods have been approved by the United States as an alternate 

indicator to be used in conjunction with cultured-based methods, there is a need for further 
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evaluation of these methods in multiple geographic contexts (United States Environmental 

Protection Agency 2012). 

High throughput sequencing techniques, also known as next generation sequencing 

(NGS), present powerful approaches to shift the paradigm of microbial water quality 

management from fecal indicator control to assessing true pathogenic risk in watersheds. 

Ibekwe, Leddy, and Murinda (2013) used pyrosequencing (a NGS technique) to observe 

pathogen presence in a variety of urban and agricultural environments (Ibekwe et al. 2013). The 

results indicate that within this watershed, potential pathogens represented the greatest 

percentage of total operational taxonomic units in urban runoff water(7.94 %), agricultural  

runoff sediment (6.52%), and recreational park sediment (6.00%)(Ibekwe et al. 2013) NGS 

studies have been used to discover new indicators of sewage contamination, identifying 

bacterial taxa associated with human sources (McLellan et al. 2010; Unno et al. 2010; Cai and 

Zhang 2013). NGS has been applied to multiple drinking water safety studies, including source 

waters (Chao et al. 2013), various stages of the drinking water treatment and distributions 

processes (Shi et al. 2013), and investigation of the effects of biofilms on microbial 

diversity(Huang et al. 2014). The NGS methodology needs to be fine-tuned and standardized to 

make application of these techniques ubiquitous for indicator use (Tan et al. 2015), but these 

represent an exciting transition in indicators of fecal pollution. 

 

Source Identification 

The ubiquitous nature of E. coli and Enterococcus in the guts of warm-blooded animals 

makes them impractical for source identification, necessitating development of source tracking 

techniques (Yates 2007; McLellan and Eren 2014; Blount 2015). Fecal source tracking is 

important for the following reasons; it helps investigate causes of high levels of FIOs (Kirschner 

et al. 2017), identifies potential pathogens that may exist within a watershed (Ibekwe et al. 

2013), and assists in estimating human health risk from exposure to pathogens (Field and 

Samadpour 2007; Soller, Schoen, et al. 2010; Soller et al. 2014). The principle underlying fecal 

source tracking is the assumption that different sources of fecal waste have unique, detectable 

identifiers that connect to the host (Savichtcheva and Okabe 2006; Field and Samadpour 2007). 
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Varieties of culture independent and dependent techniques have been suggested throughout 

the literature, some requiring a library to be developed for their use. These can be further 

divided into culturing, phenotypic, genetic, and chemical methods (Cimenti et al. 2007). Some 

examples of these are shown in Table 1-2. 

Although the use of single FIOs does not usually identify source, some researchers still 

use FIO ratios to infer source and age of pollution. The application of ratios of fecal coliforms to 

fecal streptococci have historically been used, with ratios greater than 4 indicating human fecal 

matter and less than 0.7 indicating animal fecal matter. However, these ratios or shifts in ratios 

are not recommended for universal application due to different survival rates between 

coliforms and streptococci that cause complex changes in ratios over time (Scott et al. 2002; 

Simpson et al. 2002). Other microorganisms that can be cultivated for source-tracking include 

previously mentioned alternate indicators Bifidobacteria spp. and Bacteroides spp (Carrillo et al. 

1985; Kreader 1995; Kreader 1998; Savichtcheva and Okabe 2006; Field and Samadpour 2007). 

Bacteriophages of B. fragilis have been used as a human specific viral indicator because they 

are more persistent in water than B. fragilis (Tartera and Jofre 1987; Cimenti et al. 2007). 

Despite their high specificity in source tracking, there is uncertainty associated with overall 

reliability of this source tracking mechanisms (Sinton et al. 1998; Maier et al. 2009) .Other 

phages used for human and animal source tracking are the F-RNA phages; subgroups II and III 

have been isolated only in human wastes, while subgroup I was only found in non-human 

mammals (Calci et al. 1998; Cole et al. 2003; Cimenti et al. 2007).The main issue with these 

phages is  the detection methods are highly complex (Cimenti et al. 2007). 

Phenotypic methods hold potential for source tracking because different functional 

characteristics are exhibited by lineages of microbes from different hosts. These dissimilar 

metabolic characteristics are because unique environmental factors control microbial 

populations within the host (Scott et al. 2002). One of the primary drawbacks of phenotypic 

methods is multiple microbial species can show similar responses to biochemical gradients, 

potentially confounding unique source-specific fingerprints, but utilizing multiple phenotypic 

characteristics increases the ability to create unique physiognomies (Field and Samadpour 
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2007). Common phenotypic methods include antibiotic resistance analysis (ARA), serotyping, 

and carbon substrate utilization profiles. 

ARA can be used to differentiate between bacteria based on varying responses to 

antibiotic treatments. Differential uptake patterns of antibiotics and other pharmaceuticals 

elicit unique patterns in animal and human microflora, giving a characteristic fingerprint to 

identify fecal sources (Cimenti et al. 2007). A simple but time consuming procedure, isolates are 

plated on media with increasing concentrations of antibiotics and a profile is generated that can 

be compared to known profiles typical of the strains in question (Whitlock et al. 2002; Wiggins 

et al. 2003). These have been used to evaluate indicators of pig manure application (Huysman 

et al. 1993), fecal streptococci strains (Wiggins 1996), and Enterococci (Graves et al. 2002; 

Booth et al. 2003); however, the need for a database is the strongest limitation to this method 

(Cimenti et al. 2007). 

Serotyping involves identifying the presence of different somatic antigens and has been 

successfully used to fingerprint non-overlapping serotypes from different fecal sources 

(Parveen et al. 2001). The ability of different fecal bacteria to utilize multiple sources of carbon 

has also been used to discriminate between Enterococcus species (Hagedorn et al. 2003). 

Community Level Physiological Profiles (CLPPs) based on these substrates patterns can be used 

to identify over 2000 species of microorganisms using the Biolog software (Cimenti et al. 2007). 

Both of these methods suffer from the need to have a geographically specific database, and 

additional studies to evaluate the overall effectiveness (Field and Samadpour 2007). 

Genotypic profiles of enteric bacteria can be used to discriminate between sources of 

fecal pollution (Cimenti et al. 2007; Field and Samadpour 2007; McLellan and Eren 2014). The 

genetic marker that is analyzed needs to be either host-specific or generic; non-specific 

indicators, however, must have characteristic DNA fingerprints to discern source. Two popular 

methods of these genetic methods are ribotyping and pulse field gel electrophoresis (PFGE). 

Ribotyping involves examining the rRNA in each bacterial isolate using probes after treating 

genomic DNA with restriction endonuclease (Scott et al. 2002). This technique has been used to 

discriminate human and animal sources of E. coli (Parveen et al. 1999; Carson et al. 2001), and 

identify genetic variations in wildlife and geographic locales (Hartel et al. 2002; Scott et al. 
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2003). PFGE is the process of separating DNA fragments by alternating an electric current in 

more than one direction to obtain a DNA fingerprint of bacterial isolates (Myoda et al. 2003). 

Both of these are time-consuming to develop a geographic-specific database of isolates, but are 

promising source tracking methods based on comparison testing (Field and Samadpour 2007). 

 

Molecular assays, either as specific genetic markers or DNA extracted from a water 

sample, have been proposed as improved source tracking indicators because there is no 

intervening culturing step; this speeds up the source tracking process and allows access to 

markers that would be difficult or impossible to detect using culturing methods. Assays of 

specific marker genes using a polymerase chain reaction (PCR), referred to as host-specific PCR, 

can be used to identify sources and these genes can include anaerobic bacterial genes, toxin or 

virulence genes, and host mitochondrial sequences. Host-specific PCR methods for viruses have 

been developed for humans (Shanks et al. 2007), pigs (Jiménez-Clavero et al. 2003; Hundesa et 

al. 2006), and cattle (Fong and Lipp 2005); however, the enteroviruses that infect bovine 

species are not host-specific because they are also found in deer, sheep, horse and geese 

(Jiménez-Clavero et al. 2005). Although these methods have promise for source-tracking viral 

contamination, they require large samples that, when concentrated, can also concentrate PCR-

inhibiting substances, interfering with detection (Jiang et al. 2001; Surbeck et al. 2006). This can 

be compensated for by using nested PCR, but this compromises quantitative detection (Jiang et 

al. 2001; Maluquer de Motes et al. 2004). 

Many fecal anaerobic bacteria have host-specific distributions and exist at much higher 

densities than coliform species and enterococci (Kreader 1995; Savage 2001), but these 

anaerobes are not commonly used as indicators due to difficulty in cultivating bacteria from the 

genera Bifidobacterium and Bacteroidales (Eckburg et al. 2005; Field and Samadpour 2007). 

These anaerobes are expected to have minimal reproduction in secondary habitats such as 

water bodies, but the advent of molecular detection allows for host-specific markers such as 

ribosomal RNA genes and protein gene targets.(Shanks et al. 2006; Shanks et al. 2007) Currently 

Bacteroidales host-specific PCR primers can identify feces from ruminants, humans, dogs, pigs, 

horses, and elk (Bernhard and Field 2000; Dick, Bernhard, et al. 2005; Dick, Simonich, et al. 
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2005; Okabe et al. 2007), with comparable detection limits to E. coli (Bernhard and Field 2000; 

Dick and Field 2004). These assays are geographically stable, have been used in North America 

(Kreader 1995; Bernhard and Field 2000), northern Europe,(Seurinck et al. 2005), Japan(Okabe 

et al. 2007), Hawaii(Betancourt and Fujioka 2006), and New Zealand (Gilpin et al. 2003). These 

host-specific markers also correlate well with sewage and FIOs(Dick and Field 2004) as well as 

some zoonotic pathogens.(Walters et al. 2007) Limitations of this approach include lack of 

wildlife host-specific markers and horizontal transfer of fecal bacteria of organisms in close 

contact such as humans and their pets (Dick, Bernhard, et al. 2005). Host-specific methods have 

also been developed for Bifidobacterium species (Bonjoch et al. 2004), but studies have shown 

mixed sensitivity and their limited environmental persistence reduces their usefulness as an 

indicator (Bernhard and Field 2000).  

Host-specific assays of toxin genes associated with E. coli and enterococci are suggested 

as potential source tracking tools because these toxin-containing strains occur worldwide, 

providing geographic stability (Field and Samadpour 2007). Toxins identified for E. coli include 

the human-specific STIb toxin (Oshiro and Olson 1998), the pig-specific STII toxin (Khatib et al. 

2003), and the cattle-specific LTIIa toxin (Khatib et al. 2002); additionally, the human specific 

virulence gene (esp) has been identified for Enterococcus faecium (Scott et al. 2005). One 

drawback of this method is that the target genes are rare, requiring enrichment of FIOs (Scott 

et al. 2005), nested PCR, or magnetic bead capture (Tsai et al. 2003). Detection of these genes is 

semi-quantitative, and if enrichment is used, it becomes a culture dependent technique (Field 

and Samadpour 2007). Horizontal gene transfer is also a concern of this method, lowering 

sensitivity of detection (van den Bogaard et al. 2002). Mitochondrial gene sequences from 

blood and intestinal cells in theory make excellent host-specific targets because these cells are 

not found in multiple hosts and cannot spread among species, except transiently after meat 

consumption (Martellini et al. 2005; Caldwell et al. 2007). However, Martellini et al. 2005 had 

problems with specificity and detection limits in an initial study (Martellini et al. 2005), and a 

follow-up study by Caldwell et al. 2007 demonstrated that large samples sizes (at least 0.2 g of 

feces per 100 mL of water) are required to correctly discriminate between human, pig, and 
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bovine mitochondrial gene sequences (Caldwell et al. 2007). This amount of feces within 

samples would be difficult to find in all but the most polluted waters. 

Chemicals markers can be used to assess human versus nonhuman sources in a 

watershed. Chemicals used include caffeine (Daneshvar et al. 2012), fecal sterols (Sinton et al. 

1998; Black et al. 2007; Fahrenfeld et al. 2016), laundry brighteners (Hayashi et al. 2002), 

human pharmaceuticals (Daneshvar et al. 2012), fragrances (Standley et al. 2000; Peck and 

Hornbuckle 2004), long-chain alkyl benzenes (Sinton et al. 1998; Martins et al. 2002), and 

animal growth promotors (Boxall et al. 2004; Zhou et al. 2013). A combined index of caffeine 

and fragrances can indicate the presence of human sewage, while a ratio of certain steroids can 

identify agricultural and wildlife inputs (Standley et al. 2000). Sterols have been used to suggest 

human, dog, and bird fecal impacts in Australia (Suprihatin et al. 2003), and relative 

concentrations of two sterols, 24-ethylcoprostaonol and coprostanol, reliably discriminated 

between human and non-human sources (Blanch et al. 2006). Although chemical indicators 

hold promise as culture independent source tracking methods, the spread, transport, and 

persistence of these chemicals may not correlate with pathogens and FIOs (Field and 

Samadpour 2007). Ecological and physical factors affect survival of microorganisms and will 

impact chemical indicators differently, such as settling, insolation, UV irradiation, nutrient 

conditions, and grazing (Düreth et al. 1986; Sinton et al. 2002; Whitman et al. 2004; Brookes et 

al. 2005).  

 

Table 2.2. Types of fecal source tracking techniques. 

Group of source tracking techniques Examples 

Culturing methods Fecal coliforms-Fecal streptococci ratios and 

shifts 

Fecal streptococci species identification  

Bifidobacteria spp. 

Bacteroides spp. 

Bacteriophages 

Phenotypic methods Antibiotic resistance 
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Multiple antibiotic resistance analysis 

Serogrouping 

Community level physiologic profiling using 

carbon utilization 

Genetic methods Ribotyping 

Pulse-field gel electrophoresis 

PCR 

Host-specific molecular markers 

Chemical methods Fecal sterols 

Caffeine 

Fragrances  

Human pharmaceuticals 

Long-chain alkyl benzenes 

Animal growth promotors 

 

Each of these source tracking techniques has their strengths and weaknesses, but much 

of the problem in source tracking is within validation and standardization. Many methods have 

not extended past the proof of concept, feasibility, or biological likelihood stage of 

development, and few comparative studies exist that identify the best performing source 

tracking tools (Field and Samadpour 2007). There is a limited amount of both comparative and 

blind sampling validation for many of these methods, whether culture dependent or not (Field 

and Samadpour 2007). The Southern California Coastal Water Research Project (SCCWRP) and 

the US EPA participated in a comparison study in 2003 to assess effectiveness of source tracking 

techniques across multiple labs.  Identical, blind samples containing human, cattle, dog, or gull 

feces, sewage/human wastewater, or mixtures of  each were given to several labs compare 

accuracy between methods (Field et al. 2003; Harwood et al. 2003; Myoda et al. 2003; Noble et 

al. 2003; Stoeckel and Harwood 2007). Methods were assessed based on correct classification 

of samples, quantification of fecal contributions, and ability to handle different matrices. Only 

ribotyping, PFGE, and host-specific PCR were notably accurate within this study, but none of the 
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methods identified all the sources in every sample (Field and Samadpour 2007; Stoeckel and 

Harwood 2007). Performance was variable between different investigators, stressing the need 

for standardization, and none of the methods were able to accurately quantify the sources 

(Field and Samadpour 2007; Stoeckel and Harwood 2007).  

Smaller studies have compared library dependent methods of E. coli; results indicated 

that ribotyping and PFGE performed well, but only a few of the isolates could be classified using 

ribotyping (Stoeckel et al. 2004). Single enzyme (HindIII) ribotyping has been compared to 

antibiotic resistance, but neither performed well at identifying the isolates (Moore et al. 2005), 

and another ribotyping and antibiotic resistance study demonstrated problems with antibiotic 

resistance stability (Samadpour et al. 2005). The difference of these smaller studies could be 

due to study design, methodological considerations, poor choice of analysis, and operator error 

(Field and Samadpour 2007; Stoeckel and Harwood 2007). Shanks et al. (2016) recently 

developed standardization techniques for human associated source tracking indicators, 

demonstrating that research is moving towards developing  data acceptable criteria for 

universal use (Shanks et al. 2016). 

In looking for the best practices associated with source tracking, a catch-all one 

indicator approach is just as limiting as fecal indicators, but the development of suites of 

indicators or microarrays holds promise for improving source tracking. Statistical models were 

used to evaluate the use of multiple molecular techniques to identify source, with the goal to 

create suites of indicators to optimize source tracking (Ballestè et al. 2010). McLellan and Eren 

(2014) suggested next generation sequencing, microbiome arrays, and better understanding of 

gut microbiomes may improve source tracking through using the most informative taxonomic 

groups as indicators (McLellan and Eren 2014). 

 

Adaptive Mechanisms 

E.coli is a well-studied bacterium in its host environment, but the ecology of E.coli in 

secondary habitats such as  aquatic systems is less well-characterized (Blount 2015). The 

conditions of the nonhost environment (i.e., aquatic and benthic systems) were once 

considered too harsh for E. coli to survive, making it an attractive indicator organism. However, 
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research has shown that E. coli has potential to grow, persist, and evolve within nonhost 

environments such as on the surface of Cladaphora (Byappanahalli, Shively, et al. 2003), 

temperate soils (Byappanahalli, Fowler, et al. 2003; Whitman et al. 2006), beach sand (Alm et 

al. 2003; Whitman and Nevers 2003; Cloutier et al. 2015), and lake bottom sediments (LaLiberte 

and Grimes 1982). Even pathogenic indicator bacteria, such as E. coli O157:H7, survive in 

oligotrophic environments (Vital et al. 2008). Environmental E. coli strains exhibit diverse 

functions from their enteric counterparts, suggesting evolution in secondary habitats (Winfield 

and Groisman 2003; Luo et al. 2011). E. coli populations were discovered in non-human 

impacted environments in Puerto Rico, suggesting that these strains of E. coli were part of the 

native microflora (Lasalde et al. 2005). This phenomenon leads itself to the hypothesis that 

once released from the host, selective pressure is exerted on E.coli populations through 

environmental conditions; part of the population is lost in this secondary habitat while those 

E.coli with adaptive advantages persist (Luo et al. 2011; Berthe et al. 2013). 

Understanding what environmental factors are associated with E. coli persistence can 

help characterize the niche for E. coli in aquatic environments. E. coli survival was strongly 

dependent on concentrations of dissolved organic carbon and phosphorus in microcosm 

experiments (Surbeck et al. 2010). Wild isolates of E.coli were found to survive for longer 

periods of time by possessing minimal virulence, adapting to low temperatures, and coexisting 

with low levels of fecal bacteria (Berthe et al. 2013). There is an active need in research to 

understand whether FIOs such as E. coli are competitively excluded from long-term residence, 

or if FIOs outcompete certain members of the community due to their metabolic plasticity 

(Souza et al. 2002). Persistent E. coli populations in excess of water quality criteria would 

suggest either diverse adaptations to facilitate long-term survival, continual inputs of fecal 

pollution, or a reservoir of resuspended material contaminated with E. coli. 

Microbes are essential to ecosystem function because of their role in secondary 

production of organic matter and cycling of nutrients to higher trophic levels; however, little is 

known about the relationships between these assemblages and FIOs (Cloutier et al. 2015). 

Changes in these communities could act as a signal of environmental alterations such as inputs 

of fecal pollution, benefitting microbial source tracking and water quality management (Boivin 
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et al. 2002). Cloutier et al. (2015) examined these relationships, and found that the structure of 

these assemblages was similar among the same beach zone, and fine scale differences 

distinguished communities from different beaches, suggesting a biogeographic effect (Cloutier 

et al. 2015). Relationships between community metabolism and FIOs have not readily been 

investigated; however, community level physiological profiles (CLPPs) using carbon substrate 

utilization have been used to identify sources of pollution in surface waters (Hagedorn et al. 

2003). These metabolic and functional characteristics are sensitive to environmental changes, 

and could be used as an early indicator of harmful anthropogenic inputs. 

 

The Watershed Approach and Source Tracking 

Characterizing landscape geography is an important component of watershed 

approaches to evaluate sources and mechanisms of fecal pollution. Land use within a 

catchment alters water chemistry in specific ways, shifting available nutrients and allowing 

formation of niches that endorse pathogen survival (Mawdsley et al. 1995; Williams et al. 

2012). Surface flow is the primary transport mechanism of microbial pollution; however, 

different landscapes possess different microbial assemblages that can be shed through runoff 

(Jamieson et al. 2004; Wilkes et al. 2011). If a majority of  nonpoint source fecal pollution stems 

from agricultural practices and livestock access to streams, proximity of agricultural land use 

near streams beds could provide insight into reasoning why certain watersheds continually 

violate water quality standards (Mawdsley et al. 1995; Wilkes et al. 2011). The identification of 

urban and residential land use with increased FIOs exceedances might point to either violations 

of the NPDES permits, faulty septic tanks systems, or illicit urban discharges (Duda et al. 1982). 

This type of source identification would be difficult to experimentally determine, but 

geographic information can be used to guide decision making. 

Heavy rainfall typically precedes waterborne disease outbreaks; over 50% of waterborne 

disease outbreaks in the United States from 1948 to 1994 were associated with extreme rainfall 

events (Curriero et al. 2001). Heavy rainfall causes increased shredding of pathogens from the 

landscape, and overloads wastewater treatment systems. Turbulence associated with flooding 

also resuspends pathogens in sediments, increasing the distribution of pathogens within a 
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watershed; the association between FIOs, pathogens, and suspended solids has been 

documented (Characklis et al. 2005; Fries et al. 2006; Piorkowski et al. 2013; Sterk et al. 2013; 

Drummond et al. 2015). Rainfall has been associated with increased likelihood of detecting 

Giardia and Cryptosporidium in river water as well as enteric viruses (Atherholt et al. 1998; 

Hunter 2003; Sterk et al. 2013). The heaviest rainfall in a 50-year period preceded a 1993 

Cryptosporidium outbreak in Milwaukee (Patz et al. 2008). Factors such as soil composition, 

topography, and amount of impervious surface govern how microbes partition into  runoff, 

driving magnitude and extent of  runoff mediated fecal pollution (Frey et al. 2013; Wilkes et al. 

2013; Martinez et al. 2014). Steep slopes cause increased erosion due to stormwater, and in the 

presence of recent fecal contamination can increase number of pathogens in  runoff as well as 

allow for longer distance FIO transport (Jamieson et al. 2004; Martinez et al. 2014). Impervious 

surfaces cause decreased infiltration, altering flow regimes and increasing shedding of 

pathogens from these and nearby landscapes (Mawdsley et al. 1995; Brabec 2002).  

In order to use geographic data appropriately, researchers must identify both natural 

and anthropogenic drivers of fecal pollution to assist in source allocation. The soil survey 

geodatabase (SSURGO) is an effective tool to explore soil data for identifying natural drivers of 

fecal pollution much like topography. This can help determine differential effects on fecal 

partitioning into runoff, where infiltration into soils is to occur, and what areas have potential 

for long-term residences in soils (Whitman et al. 2006; Cloutier et al. 2015). Aquatic sediments 

are a reservoir for FIOs and pathogens because of favorable nutrient conditions, protection 

from UV inactivation, and safety from protozoan grazing (Alm et al. 2003; Ferguson et al. 2003). 

Widespread soil sampling is impractical for most watersheds, but the soil database allows for 

inferences into which soil characteristics are worthy of further investigation in controlled 

microcosm experiments.   

One of the current issues for public health is the effect of climate change, and how this 

influences environmental transmission of pathogens. Increased temperatures and shifts within 

the hydrologic cycle will alter fate and transport of environmentally transmitted pathogens 

regardless of whether they are waterborne or vector spread (Sterk et al. 2013). Increased 

frequency of heavy rainfall events is expected in many regions of the United States increasing 
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potential for  waterborne disease transmission (Curriero et al. 2001; Hofstra 2011). Increasing 

temperature can have a drastic effect on distribution and persistence of environmental 

pathogens, but effects arepathogen dependent (Hofstra 2011; Sterk et al. 2013). Even in the 

face of uncertainty regarding the scale of climate change, it is essential to explore how this 

increases potential for exposure from waterborne pathogens and how policy needs adjustment 

to limit adverse health effects due to climate change.  

 

Use of Modeling to Improve Fecal Indicator Management 

Although the advent of alternate indicators of fecal pollution and the accessibility of 

geographic datasets can improve understanding source of FIOs and pathogens in a watershed, 

there is a need to develop analytic techniques that incorporate this information constructively 

for decision-makers (Benham et al. 2006). Statistical models can extract information concerning 

environmental factors driving E. coli impairment, allowing inference into sources of fecal 

pollution; this can be used to assess the degree of compliance, identify dominant factors 

associated with impairment, and as a communication tool for stakeholders. While many TMDL 

models are process-based models, meaning that they are supposed to simulate the fate and 

transport of FIOs within the environment, statistical modeling can be used to optimize TMDLs in 

terms of source appropriation,identifying key processes integral to chronic fecal indicator 

impairment (Nevers et al. 2016). These techniques can also be utilized in a QMRA framework to 

adequately assess public health risks in areas with mixed sources of pollution (Ashbolt et al. 

2010). Although one indicator cannot mimic the plethora of pathogens in water, incorporating 

modeling can fine tune an indicator’s utility, inform the public concerning health risks, enhance 

understanding of the ecology of waterborne pathogens, and optimize source tracking and 

development of microarrays while increasing confidence in decision making. 

 

Informing the Public Concerning Health Risks 

Statistical models have been implemented to provide information concerning public 

health risks of pathogens through the use of predictive modeling. The use of these models can 

be multifaceted; provide early warning signs for recreational beach closures, provide 
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estimations of FIOs in times between sampling periods, and to identify hotspots of fecal 

pollution (Gonzalez et al. 2012; Herrig et al. 2015). To characterize water bodies impacted by  

multiple sources and transport mechanisms, it is infeasible to collect the number of samples 

needed to describe exposure and appropriately quantify source contribution; modeling fills in 

the gaps to better inform the public, decision-makers, and managers (Ashbolt et al. 2010).  

Quantitative microbial risk assessment (QMRA) is a framework that allows for modeling 

a diverse range of scenarios concerning potential illness due to exposure to pathogens (Haas et 

al. 1999; Ashbolt et al. 2010). This can inform management actions and decision making 

concerning microbial water quality by simulating different sources of pollutants (Soller et al. 

2014), resuspension of sediments (Abia et al. 2016), and stormwater events (McBride et al. 

2013; Soller et al. 2015). QMRA approaches have also been used to infer etiologic agents of 

disease, and human enteric viruses including Norovirus were identified as the probable agents 

of gastrointestinal illness based on time of onset of illness (Soller, Bartrand, et al. 2010). 

Another important finding from QMRA studies is the concept that certain animal sources pose 

significantly lower risks than human sources of pollution; however, some species like cattle 

pose similar risks as human impacted waters (Soller, Bartrand, et al. 2010). 

One of the benefits of risk assessment modeling is that it provides clear guidance of 

identifying research gaps as well as defining management actions; standard compliance 

monitoring does not support this agenda (Ashbolt et al. 2010). Since many QMRA approaches 

use Monte-Carlo simulations, this has the added benefit of being a probabilistic approach, 

which allows for estimation of uncertainty in models (Donald et al. 2011). This improves the 

traditional grab sample approach by providing a distribution of risks rather than a point 

estimate based on 1 or 2 statistics, allowing for assessment of long-range trends or degree of 

compliance for water quality managers (Ashbolt et al. 2010). 

 

Enhancing Understanding of the Ecology of Fecal Indicators and Pathogens 

FIOs and pathogens are unique water contaminants because of their ability to survive 

and grow in the environment, confounding the management processes. However, by modeling 

the ecology of these organisms, environmental factors driving impairment can be identified, 
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aiding in determining appropriate best management practice (BMP) for a given watershed. 

Issues such as presence of enteric viruses in surface waters, particle attachment of FIOs, and 

connecting land use, water chemistry, and pathogens can all be investigated using modeling 

approaches.  

Predicting the presence of enteric viruses in surface waters is complex, and requires 

understanding of the presence, load, and age of fecal material within the environment. A novel 

application of the atypical coliform ratio was incorporated into multivariate logistic regression 

models to represent fecal age in predicting detection of viruses (Black et al. 2007). Other 

parameters within the best performing logistic models included the presence of a human-sterol 

to indicate source, and some FIOs to provide information concerning loads. This research 

highlights the importance of fecal age with regards to identifying the presence of fecal 

pollution. 

Particle attachment of FIOs such as E. coli has been demonstrated to be dependent on a 

variety of factors such as particle size (Soupir and Mostaghimi 2011), suspended sediment loads 

(Garcia-Armisen and Servais 2009), organic matter(Guber et al. 2007), water chemistry (Park et 

al. 2008), and stormflow conditions (Characklis et al. 2005). This cacophony of influences makes 

it difficult to determine constant attachment percentages for watershed TMDL models 

(Piorkowski et al. 2013). Classification and regression trees (CART), regularized regression using 

a least angle shrinkage and selection operator (LASSO), and multivariate adaptive splines 

(MARS) have been used to investigate factors concerning E. coli attachment to particles and 

virulence (Piorkowski et al. 2013). The benefit of these types of models is that they are not 

confounded by overfitting, multicollinearity, or restriction to linear relationships (Friedman 

1991; Tibshirani 1996; Parkhurst et al. 2005). MARS was the highest performing model based 

on accuracy statistics. Hydrological and meteorological variables tended to have minor 

influences on particle attachment except in the LASSO models, with land use and particle 

properties being included in the majority of models (Piorkowski et al. 2013). In terms of 

virulence, factors such as residential land use, electrical conductivity, and water and air 

temperatures were found to be associated with the presence of E. coli virulence markers within 

the attached fraction, in addition to the particle properties within the previously mentioned 
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attachment models. Similar results were found within the unattached models for presence of 

virulence factors without the particle properties.  

Multiple linear regressions using climate variables, measurements easily obtained using 

field equipment, or land cover datasets derived from remote sensing have been employed with 

varying success to develop predictive models for watershed managers (Eleria and Vogel 2005; 

Gonzalez et al. 2012; Herrig et al. 2015). Regression has also been used to compare new 

molecular techniques with their cultural counterparts to identify if qPCR was appropriate for 

the Neuse River estuary in North Carolina (Gonzalez et al. 2012). Most predictive models find 

that fecal pollution is governed by precipitation, landscape, and water quality parameters 

(Francy et al. 2003; Gonzalez et al. 2012; Herrig et al. 2015). In the Charles River, Massachusetts 

it was found that rainfall amount and intensity governed fecal coliform levels, with previous 

day’s coliform levels also accounting for some variation (Eleria and Vogel 2005); in other 

studies, landscape indicators such as agriculture on steep slopes, urban land, and natural 

stream cover predicted watershed impairment (Smith et al. 2001). Fecal pollution has also been 

modeled using a Bayesian maximum entropy approach which incorporates spatial covariance as 

well as specific measurements at sites to produce informative predictive maps of water quality 

(Coulliete et al. 2009; Money et al. 2009). CART were used to identify distinct environmental 

and land use indicators of the sporadic distribution of Cryptosporidium oocysts and Giardia cyst 

densities, as well as the presence of Salmonella enterica, Campylobacter spp., Listeria 

monocytogenes, and Escherichia coli O157:H7 (Wilkes et al. 2011). Season, stream order, 

turbidity, and discharge were strong recurring predictors. Land use was found to not be a 

strong predictor, although densities of pathogens were higher near dairy operations. 

Multivariate statistical techniques such as canonical correlation analysis and canonical 

discriminant analysis can reveal spatiotemporal variability within parameters affecting water 

quality, and these can be used to infer mechanisms driving fecal pollution; this can ultimately 

be used to identify the sources of this contamination (Hall et al. 2014). Some other applications 

of modeling to understand how environmental factors affect FIOs are estimating E. coli loads 

using physical, chemical, and biological factors within a neural network (Dwivedi et al. 2013), 
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and hyporheic-groundwater interactions associated with transport of E. coli within sediments 

porewater (Dwivedi et al. 2016). 

 

Optimizing Source Tracking 

In looking for best practices for source tracking, a catch-all indicator approach is just as 

limiting as the single indicator paradigm, but using statistical models to create suites of 

indicators holds promise to improve source tracking. Discriminant analysis, k-nearest neighbors, 

decision trees, and naïve Bayes classifiers were used as predictive models to evaluate the use of 

multiple molecular techniques to identify source (Ballestè et al. 2010).Bifidobacterium 

adolescentis and host-specific mitochondrial DNA markers for bovine (Bomito) and swine 

(Pomito) sources of pollution were identified to differentiate between human, swine, poultry, 

and bovine sources with 75.7% accuracy; when just discriminating between human and animal 

sources, only B. adolescentis and Pomito were needed to achieve 84.6% accuracy.  

Neural networks are machine learning models that are intriguing for complex modeling 

problems such as source tracking because these systems can estimate complex, non-linear 

relationships characteristic of riverine systems, including fate and transport of fecal pollution 

(Brion and Lingireddy 1999; Basheer and Hajmeer 2000). Brion et al. (2002) used neural 

networks to sort between animal  runoff and human sewage; additionally, the relative age of 

the fecal pollution was evaluated within the watershed (Brion et al. 2002). Gram-negative and 

gram-positive bacteria were required to sort sewage from runoff, and turbidity was found to be 

relatively unessential in source tracking. Neural networks have also been used to identify 

sources of intrusions in water supplies to assess the vulnerability of water systems, and develop 

early warning systems to protect human health and the environment (Kim et al. 2008). 
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Summary of Literature Review 

Fecal pollution is a consequence of human ecology, and FIO monitoring provides a 

protective measure against exposure to pathogens surviving in these wastes. Waterborne 

disease outbreaks are costly, both from a public health and economic standpoint, so protecting 

from this exposure is necessary to reduce burden. However, this problem is ubiquitous, causing 

water quality degradation in a substantial portion of our rivers and streams. Alternative 

methods are needed to utilize this monitoring data and identify strategies to reduce sources of 

fecal pollution, and improve a riverine system’s overall utility. 

Although the spirit of the TMDL is geared towards improving the quality of water in the 

United States, program implementation has several deficiencies. Inadequacies in current 

modeling approaches, resource limitation, and the sheer number of impaired watersheds make 

it difficult to develop successful TMDLs. While the policy behind TMDL development is 

progressive, the science associated with the policy is inadequate to effectively implement the 

Clean Water Act. Strategies to improve modeling and stimulate resources can boost the 

effectiveness of TMDLs, successfully fulfilling the objectives of the Clean Water Act to 

rehabilitate, protect, and enhance surface water quality nationally. 

While fecal indicators provide a protective measure against exposure, they fall short 

because they do not appropriately characterize public health risks, relationships between fecal 

indicators and pathogens are ill-defined, and they do not provide information about source. In 

addition, adaptive mechanisms exist in fecal indicators to persist in secondary habitats, leading 

to unique monitoring challenges in chronically impaired streams. A deeper issue is that policy 

makers focus on controlling fecal indicators, losing sight that the main purpose of fecal 

indicators is to reduce exposure to pathogens. Because of this misdirected focus, much of the 

management of watersheds concerns control of fecal indicators rather than understanding and 

limiting exposure to pathogens.  

These shortcomings have stimulated development of a plethora of alternate indicators 

and source-tracking techniques using both culture dependent and independent techniques. 

While culture-based are relatively inexpensive, require minimal processing, and are easily 

available, the need for a library is time consuming, requiring extensive sampling to create a 
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cosmopolitan database. This limits these methods to smaller geographic areas. The problem of 

culturing bias can be reduced through using culture independent techniques, allowing sampling 

of the full population in question. These reduce the time needed for analysis, are typically 

simpler, and are not restricted to easily cultivatable organisms. However, host-specific markers 

may not be present in all individuals of a species, validation is needed when applied to different 

regions, and large samples are potentially required for rare toxin genes. Only a few animal 

species are currently available, and wildlife species are poorly represented, identifying a 

definitive research gap. Additionally, correlations between FIOs, pathogens, and culture 

independent markers either are inconsistent or not well-characterized. Since current regulation 

is based on FIOs, any source tracking marker used must correlate with FIOs for them to be 

useful. 

For reasons mentioned above, managing fecal pollution is a complicated process, 

needing creative strategies in monitoring and assessment; statistical modeling presents ways to 

extract information concerning water quality to better characterize source, transport 

mechanisms, and ecological drivers of chronic E. coli impairment. These applications are multi-

faceted; identify key sources of impairment, predict levels of FIOs in between sampling periods, 

fill knowledge gaps concerning hydrologic dependence, and connect existing water quality to 

degree of fecal pollution. Modeling using multivariate statistics affords the ability to synthesize 

information from a variety of molecular, metabolic, chemical, and geographic datasets, 

enhancing and optimizing monitoring and identifying key remediation strategies. 

Historically, sanitary engineers needed to understand pollution sources and 

environmental dynamics because traditional microbial methods were either inadequate or 

time-consuming. It seems counter-intuitive that this approach has been traded in the effort to 

develop high-tech rapid indicators without acknowledging the wider environmental context. A 

multitier approach refocuses attention to pathogens, incorporating multiple source tracking 

techniques and water quality monitoring to paint a more comprehensive picture of the 

pathogen distribution and survival. The best approach to source tracking is to develop blended 

indicators of specific types of pollution, and develop microarray methods to reduce cost and 

resources in analysis of data. In addition, efforts to coordination NGS research, FIOs, and source 
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tracking can optimize monitoring strategies. Quantitative microbial risk assessment (QMRA) can 

assist in developing risk scenarios and models to estimate human health risk in a universal 

framework. Watershed decision-makers also need to evaluate potential sources within a 

watershed using modern geospatial techniques, and the use of statistical modeling should not 

be undervalued in a watershed approach characterize and communicate fate and transport of 

fecal pollution. 

 

Goals of Study 

This dissertation presents three manuscripts to aid in understanding the ecology of fecal 

indicators in a lower order stream in the Watauga River watershed. The papers integrate 

multivariate modeling, multiple FIOs, and microbial functional diversity to characterize the 

niche of fecal indicators within their secondary habitat, extracting information concerning 

source and mechanisms driving their presence along Sinking Creek, a 303(d) listed stream. Since 

fecal indicators such as E. coli exist as both naturalized and invasive species within the microbial 

community, this dissertation also explores connections between microbial activity, fecal 

pollution, and other types of pollution along this stream continuum. Incorporating these 

techniques can improve decision making in chronically impaired watersheds, guiding 

management and remediation strategies most appropriately. 

Chapter 2, Maxent Estimation of Aquatic Escherichia Coli Stream Impairment, explores 

the use of Maxent, a commonly used ecological niche modeling, to identify environmental 

factors associated with fecal indicator impairment. The goal of this research was to utilize long-

term water quality data to extract information concerning what water quality parameters are 

associated with the probability of impairment; impairment in this case is defined as one sample 

being in violation 2012 recreational water quality criteria standard for E. coli (United States 

Environmental Protection Agency 2012). Using Maxent to model how water quality influences 

E. coli impairment aids in inferring source and mechanisms of fecal pollution. This approach 

allows for estimation of both linear and non-linear effects of water quality, demonstrates a 

probabilistic method for variable selection, and reframes the question from “How much E. coli 

in our watershed?” to “what factors separate E. coli impairment from compliance?”, which is 
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useful when evaluating watershed decisions. This manuscript was published in the open source 

journal PeerJ on September 13th, 2018.  

Chapter 3, Canonical Variable Selection for Ecological Modeling of Fecal Indicators, 

extends the use of Maxent by incorporating canonical correlation analysis as a variable 

selection procedure in probabilistic models of F+ somatic bacteriophage detections and E. coli 

impairment. The goal of the study was to determine if fecal indicators share common ecological 

niches, and if not, what differences are observed between impairment and water quality. This 

study used a single year of monitoring data to identify chemical and microbial parameters most 

associated with these fecal indicators, indicating distinct ecological drivers of the probability of 

impairment. This manuscript was published in a special issue of Journal of Environmental 

Quality titled “Microbial Water Quality—Monitoring and Modeling” on September 20th, 2018. 

Chapter 4, Microbial Community Metabolism Associated with Pollution along a Stream 

Continuum, introduces the use of microbial metabolism, indicated by the degradation of single 

sources of carbon, to identify spatiotemporal changes and connections to fecal and other types 

of pollution within Sinking Creek. The goal of this study was to observe whether changes in the 

activity of the microbial community could be connected to different sites and pollution 

gradients, and what is the seasonal variation of this activity. Unique patterns of substrate 

utilization existed, and these were further investigated using canonical correlation analysis and 

multiple linear regression. Canonical correlation analysis was used to summarize interactions 

between aquatic and benthic microbial communities to utilize various carbon substrates, better 

characterizing metabolic exchange between these environments. Dominant degraded 

substrates patterns were then used to inform regression models on three pollutants; fecal 

pollution as measured by E. coli concentrations, nutrient pollution in the form of nitrates (NO3
-), 

and organic pollution in the form of biochemical oxygen demand (BOD5).  

Chapter 5, Conclusions and Recommendations, presents a critical analysis of the 

achievement of the objectives, and limitations of the study were mentioned. Connections 

between chapters were exposed, and merits of the methodology were summarized. The 

conclusions from the research were stated to review the information gained from this research, 

and future directions for research were developed as well.   
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CHAPTER 2 

MAXENT ESTIMATION OF AQUATIC ESHERICHIA COLI STREAM IMPAIRMENT 

DENNIS GILFILLAN, ANDREW JOYNER, PHILLIP SCHEUERMAN 

 

Abstract 

Background. The leading cause of surface water impairment in United States’ rivers and 

streams is pathogen contamination. Although use of fecal indicators has reduced human health 

risk, current approaches to identify and reduce exposure can be improved. One important 

knowledge gap within exposure assessment is characterization of complex fate and transport 

processes of fecal pollution. Novel modeling processes can inform watershed decision making 

to improve exposure assessment. Methods. We used the ecological model, Maxent, and the 

fecal indicator bacterium Escherichia coli to identify environmental factors associated with 

surface water impairment. Samples were collected August, November, February, and May for 8 

years on Sinking Creek in Northeast Tennessee and analyzed for 10 water quality parameters 

and E. coli concentrations. Univariate and multivariate models estimated probability of 

impairment given the water quality parameters. Model performance was assessed using area 

under the receiving operating characteristic (AUC) and prediction accuracy, defined as the 

model’s ability to predict both true positives (impairment) and true negatives (compliance). 

Univariate models generated action values, or environmental thresholds, to indicate potential 

E. coli impairment based on a single parameter. Multivariate models predicted probability of 

impairment given a suite of environmental variables, and jack-knife sensitivity analysis removed 

unresponsive variables to elicit a set of the most responsive parameters. Results. Water 

temperature univariate models performed best as indicated by AUC, but alkalinity models were 

the most accurate at correctly classifying impairment. Sensitivity analysis revealed that models 

were most sensitive to removal of specific conductance. Other sensitive variables included 

water temperature, dissolved oxygen, discharge, and NO3
-. The removal of dissolved oxygen 

improved model performance based on testing AUC, justifying development of two optimized 

multivariate models; a 5-variable model including all sensitive parameters, and a 4-variable 

model that excluded dissolved oxygen. Discussion. Results suggest that E. coli impairment in 
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Sinking Creek is influenced by seasonality and agricultural  runoff, stressing the need for multi-

month sampling along a stream continuum. Although discharge was not predictive of E. coli 

impairment alone, its interactive effect stresses the importance of both flow dependent and 

independent processes associated with E. coli impairment. This research also highlights the 

interactions between nutrient and fecal pollution, a key consideration for watersheds with 

multiple synergistic impairments. Although one indicator cannot mimic the plethora of existing 

pathogens in water, incorporating modeling can fine tune an indicator’s utility, providing 

information concerning fate, transport, and source of fecal pollution while prioritizing resources 

and increasing confidence in decision making. 

 

Introduction 

Rapid urbanization of rural areas causes deterioration in water quality, rendering many 

water bodies unfit for their domestic and recreational use. An assortment of contaminants is 

introduced into aquatic systems, but pathogens represent the major cause of stream 

impairment in the United States (United States Environmental Protection Agency 2017). 

Pathogens are difficult to measure directly because of their sporadic distribution, costly 

identification, and potential health risks to laboratory workers (Field and Samadpour 2007). 

Most pathogens in aquatic systems stem from human and animal fecal wastes, including direct 

deposition of feces in water (Vidon et al. 2008),  runoff from land with fecal deposits (Tyrrel and 

Quinton 2003; Jamieson et al. 2004), and sanitary sewer malfunctions (Ferguson et al. 2003; 

McLellan and Eren 2014). To address the difficulties in monitoring specific pathogens, fecal 

indicator organisms (FIOs) are commonly used to assess the presence of fecal pathogens. 

An effective fecal indicator is associated with the presence of specific pathogens, with a 

straightforward method for enumeration that correlates with magnitude and age of fecal 

pollution (Savichtcheva and Okabe 2006; Maier et al. 2009). The use of FIOs such as fecal 

coliform bacteria and Escherichia coli are traditionally used for determining surface water 

pathogen impairment (Yates 2007; United States Environmental Protection Agency 2012). 

Although these indicators assist in alerting populations when exposure to pathogens is likely, 

the current approach is limited by using a single indicator such as E. coli for a designated use 
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(Wade et al. 2003; Savichtcheva and Okabe 2006; Field and Samadpour 2007). The 

cosmopolitan nature of E. coli in warm-blooded animals makes them impractical for source 

identification (Field and Samadpour 2007; Yates 2007; McLellan and Eren 2014; Blount 2015). 

The ability of E. coli to survive in soils (Lasalde et al. 2005; Ishii et al. 2006), algae 

(Byappanahalli, Shively, et al. 2003), and sediments (LaLiberte and Grimes 1982; Alm et al. 

2003; Drummond et al. 2015) provide a reservoir for continued persistence and potential to 

naturalize (Winfield and Groisman 2003; Lasalde et al. 2005; Luo et al. 2011). These 

characteristics and deficiencies emphasize the difficulty of single standard FIO monitoring for 

impairment, stressing the need for additional methods to evaluate source and mechanisms of 

FIO impairment. 

In addition to the above issues, appropriately characterizing FIO impairment for 

regulation and decision making is difficult due to complex fate and transport processes 

(Benham et al. 2006; de Brauwere et al. 2014; Drummond et al. 2015). These complex fate and 

transport processes include transport through  runoff and stormwater (Lipp et al. 2001; 

Kistemann et al. 2002; McKergow and Davies‐Colley 2010), remobilization from sediments and 

hyporheic exchange (Drummond et al. 2015; Dwivedi et al. 2016), particle attachment 

(Characklis et al. 2005), and UV light exposure (Sinton et al. 2002). Additionally, ecological 

processes control FIO fate and transport through variable survival patterns of indicators and 

pathogens,(Anderson et al. 2005; Stott et al. 2011) availability of nutrients and organic matter 

,(Surbeck et al. 2010; Perkins et al. 2016) and predation.(McCambridge and McMeekin 1980) 

Appropriately characterizing the physics and ecology driving fate and transport can better 

inform management decisions for total maximum daily load (TMDL) development, reduction of 

pollution, and allocation of resources. 

Modeling provides flexible approaches to infer sources and processes associated with 

FIOs and other pathogens, overcoming some of the issues of the single indicator paradigm. 

Various statistical and machine learning models have been used to approach such problems of 

incorporating age of fecal pollution for source tracking or detection of viruses (Brion et al. 2002; 

Black et al. 2007); identifying land use, environmental, and water quality parameters associated 

with FIOs and pathogens (Brion and Lingireddy 1999; Viau et al. 2011; Wilkes et al. 2011; 
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Gonzalez et al. 2012; Gonzalez and Noble 2014; Hall et al. 2014; Herrig et al. 2015; Lušić et al. 

2017); determining factors influencing particle attachment and virulence (Piorkowski et al. 

2013); and optimizing microbial source tracking (Belanche-Muñoz and Blanch 2008; Ballestè et 

al. 2010; Smith et al. 2010; Molina et al. 2014). Some other applications of modeling include 

using turbidity or rainfall to predict E. coli concentrations at unmonitored sites (Coulliete et al. 

2009; Money et al. 2009), estimating E. coli loads using physical, chemical, and biological factors 

within a neural network (Dwivedi et al. 2013), and hyporheic-groundwater interactions 

associated with transport of E. coli within sediment porewater (Dwivedi et al. 2016). Modeling 

can inform decision-makers concerning what drives impairment, addressing some of the 

shortcomings of a single indicator approach. 

Maxent, a commonly used ecological niche model (Phillips et al. 2004; Phillips and Dudík 

2008), identified environmental variables associated with probability of E. coli stream 

impairment, making inferences concerning source and mechanisms driving fecal pollution. 

Although modeling E. coli using a machine learning model such as Maxent is not a novel 

approach, e.g., Dwivedi, Mohanty and Lesikar, (2013), this study is unique in the following 

ways: it focuses on how the water quality is associated with E. coli impairment in lower order 

streams, uses nonparametric bootstrapping as a probabilistic assessment of model 

performance based on the area under the curve (AUC) of the receiving operator characteristic 

(ROC), and uses loss of information as an indicator of sensitive variables. Ecological niche 

models have been utilized for species distribution (Lozier et al. 2009), conservation of rare 

species (Guisan et al. 2006), invasive species (Thuiller et al. 2005), and disease vector 

epidemiology studies (Boeckmann and Joyner 2014), but this is a new application of Maxent to 

microbial water quality. Additionally, developing models in lower order streams has not been 

previously reported; this is important because water from low order streams is used for 

domestic water supply and recreation in many areas of the United States. 

The motivation for using Maxent to predict E. coli impairment is to investigate how 

environment, i.e. water quality parameters, shapes the niche of E. coli impairment based on a 

decision boundary; in this case, a water quality standard. A probabilistic procedure for 

univariate and multivariate model development is presented using nonparametric 
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bootstrapping cross-validation. Univariate models generated action values, or environmental 

thresholds of impairment, to indicate potential E. coli impairment based on a single parameter. 

Multivariate models predicted probability of impairment given a suite of environmental 

variables, and jack-knife sensitivity analysis removed unresponsive variables in multivariate 

models to elicit a set of the most responsive water quality parameters. Using Maxent to model 

how water quality influences E. coli impairment aids in inferring source and mechanisms of 

fecal pollution. This approach allows for estimation of both linear and non-linear effects of 

water quality, demonstrates a probabilistic method for variable selection, and reframes the 

question from “How much E. coli in our watershed?” to “what factors separate E. coli 

impairment from compliance?,” which is useful when evaluating watershed decisions. 

 

Methods 

Sampling Sites and Data Collection 

Sinking Creek is a 1st to 3rd Strahler order mixed-use stream that is noncompliant for 

State of Tennessee standards for fecal coliform and E. coli (Tennessee Department of 

Environmental and Conservation 2006). Starting in August 2004, samples were collected by 

hand in August, November, February, and May of each year until August 2011 as a long-term 

monitoring plan at 14 sites in Sinking Creek, and samples were analyzed for 10 water quality 

parameters and populations of E. coli (Fig. 2.1). 
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Figure 2.1. Map of sampling sites and watershed of the study area, Sinking Creek. The 

inset map shows the United States and the state of Tennessee, and the location of Sinking 

Creek. Samples were taken from August 2004 to August 2011 during the months of August, 

November, February, and May. The outline represents the watershed boundary of Sinking 

Creek, and 2006 National Land Cover Dataset (NLCD) has been clipped to the watershed (Fry et 

al. 2011). Stream flows from its headwaters at SC14 downstream to SC1. 

 

Specific conductance (conductivity) and water temperature were measured using an 

Orion 115A+ conductivity meter (Thermo Fisher Scientific, Waltham, MA). The pH was 

measured using an EL2 portable pH meter (Mettler Toledo, Columbus, OH). Dissolved oxygen 

was collected using an YSI Model 55 dissolved oxygen meter (YSI Inc., Yellow Springs, OH). 

Samples for nitrates (NO3
-), phosphates (PO4

3-), biochemical oxygen demand (BOD5), alkalinity, 
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and hardness were collected in clean 2 L polyethylene bottles and stored at 4 °C until laboratory 

analysis. A flow meter (Global Water, FP101) was placed in the center of the channel to 

measure stream velocity. Stream width was calculated where the stream velocity was 

measured, and depth was averaged over three points across the stream width. Velocity was 

multiplied by stream width and average depth to estimate discharge. 

NO3
- and PO4

3-  analyses were performed in triplicate using colorimetric 

HACH™ methods (HACH, Loveland, CO) and reagents. NO3
- and PO4

3- analyses were conducted 

by adding 10 mL of water to a vial containing NitraVer5 or PhosVer3 for the respective analyses. 

Vials were shaken to dissolve the reagent and samples were analyzed with a DR890 colorimeter 

(HACH, Loveland, CO) (HACH Company 2013). Triplicate sample for alkalinity and hardness were 

determined using 100 mL sample volumes and a digital titrator (HACH, Loveland, CO) (HACH 

Company 2013). Phenolphthalein and bromcresol green-methyl red indicators were used, and 

the sample was titrated with 1.6 N sulfuric acid to a grey-green endpoint (HACH Company 

2006). BOD5 was measured in triplicate using the 5-day BOD5 test (American Public Health 

Association 2005). Populations of E. coli were determined using the Colilert defined substrate 

test. Briefly, 97 wells were filled with 100 mL of water sample with the Colilert substrate added. 

Samples were incubated for 24 hours, and wells that fluoresce under a UV light were 

considered positive for E. coli, and a most probable number estimate was made based on the 

number of positive wells in both the large and small wells (American Public Health Association 

2005). If a sample was in excess of the geometric mean United States recreational water quality 

criteria, the sample site was considered impaired. Impairment was based on recommendation 

1, which is a threshold of 126 
𝐶𝐹𝑈

100 𝑚𝐿
 that corresponds to an illness rate of 

36

1,000
 people (United 

States Environmental Protection Agency 2012). 

To get an estimation of land use throughout the Sinking Creek watershed, land cover 

data were downloaded from the National Land Cover Dataset (NLCD) for 2006 (Fry et al. 2011). 

Each sampling site’s drainage area was delineated using StreamStats version 3 from the United 

States Geologic Survey (Ries III et al. 2017). Land was grouped into 3 categories; forested, 

developed, and agricultural. Forested land includes the categories deciduous forest, evergreen 

forest, and mixed forest. Developed land use includes all developed categories; open space 
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(less than 20% impervious surface), low intensity (20–49% impervious surface), medium 

intensity (50–79% impervious surface), and high intensity (80–100% impervious surface). 

Agricultural land included grassland/herbaceous and pasture/hay. The area of each land use 

was divided by the total area of the drainage area to get the percentage land use shown in 

Table 2.1, and sampling sites as well as land cover categories are shown in Fig. 2.1. 
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Table 2.1. Sampling sites, land use, and E. coli concentrations in Sinking Creek. Percentage of 

each land cover types (Agricultural, Developed, and Forested) as well as E. coli geometric means 

(GM), geometric standard deviations (GSD), and maximum and minimum values for each site 

used in the study are shown. 

Sampling 

Site 

 Agricultural 

Land Use 

(%) 

Developed 

Land Use 

(%) 

Forested 

Land Use 

(%) 

E. coli GM 

(GSD)  
Min, Max 

SC1 15.6 36.4 47.3 254.5 (3.4) 43.7,2398.8 

SC2 14 37.2 48.1 182.3 (6.1) 17.4,39810.7 

SC3 9.7 38 51.5 137.1 (4.0) 14.5,1737.8 

SC4 9.7 37.9 51.6 169.8 (5.7) 8.5,23988.3 

SC5 8.7 38.1 52.4 140.0 (7.2) 4.1,30903.0 

SC6 7.1 30.2 61.6 50.2 (8.3) 0.5,8709.6 

SC7 7.1 30 61.8 36.7 (9.4) 0.5,10232.9 

SC8 7.7 24.3 66.8 73.9 (5.3) 10.7,8709.6 

SC9 7.4 19.9 71.4 110.3 (5.8) 14.5,3981.1 

SC10 5.2 6.6 86.5 70.6 (5.2) 6.2, 1995.3 

SC11 5.6 3.8 89 17.2 (9.9) 0.5,1202.3  

SC12 5.8 2.1 90.3 91.3 (3.8) 5.2,812.8 

SC13 0 1.1 96.5 7.8 (5.5) 0.5,102.3 

SC14 0 0 100 5.0 (6.1) 0.5, 245.5 
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Modeling Background 

Maxent is an iterative machine learning model commonly used for mapping species 

distributions (Phillips, S., Dudík, M., Schapire 2010). Within the sample space, x, and given a set 

of environmental features (parameters), f1(x), f2(x), …, fn(x), the Maxent distribution estimates a 

vector of feature weights, β = (β1β2, …, βn), that maximizes the entropy of the raw distribution 

of impairments, qβ(x), using a Gibbs distribution,  

𝑞𝛽(𝑥) =
exp (∑ 𝛽𝑗𝑓𝑗(𝑥)𝑛

𝑗=1 )

𝑍𝛽
         (2.1) 

where Zβ is the normalization constant that ensures that qβ(x) integrates to one over the 

study area (Phillips, S., Dudík, M., Schapire 2010). This modeling approach is justified because it 

provides the maximum information concerning impairment. From a water quality management 

standpoint, this approach is beneficial because decision-makers and stake-holders are more 

concerned with factors associated with impairment rather than compliance when approaching 

fecal pollution monitoring and management. 

Original features (parameters) can be transformed into quadratic, product, hinge, and 

threshold feature classes so that complex multivariate responses can be modelled (Phillips and 

Dudík 2008), but Maxent incorporates L1 regularization to balance satisfying the constraints on 

the features while minimizing overfitting. L1 regularization is not unique to Maxent, and is used 

in many general linear models (Elith et al. 2011). A regularization parameter λj smooths 

probability distributions, generating sparse solutions and removing unnecessary features; this 

shrinks weights to balance fit and complexity (Elith et al. 2011). Because of regularization, 

Maxent fits a penalized maximum likelihood model equivalent to minimizing the relative 

entropy dependent on the error-bound constraints, 

𝑚𝑎𝑥𝛽  
1

𝑚
∑ ln (𝑞𝛽(𝑥𝑖)) − ∑  𝜆𝑗|𝛽𝑗|𝑛

𝑗=1
𝑚
𝑖=1        (2.2)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∫ 𝑞𝛽(𝑥)𝑑𝑥 = 1    

where m is the number of positive samples, n is the number of features, and x is the 

feature vector for occurrence point i. Eq. (2.2) provides insight into how Maxent uses 

background data: the first term is larger for models that distinguish between impairment states 

the best. The second term represents the regularization, which gets larger as the weights βj 
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increase, indicating a complex model more likely to over fit. The output of qβ(x), is termed the 

raw distribution, but it is difficult to interpret due to its scale dependence. More background 

points result in smaller raw values because their sum cannot exceed 1 over a large amount of 

points (Phillips and Dudík 2008; Elith et al. 2011). For this reason, the logistical output of the 

Maxent model, P(x), will be used because it represents the probability of impairment given the 

sample space, x. This is a logistic model using the same set of weights β with the intercept of 

the model determined by the entropy of qβ(x), H. The model is shown in Eq. (2.3) below. 

𝑃(𝑥) =
𝑒𝐻𝑞𝛽(𝑥)

1+ 𝑒𝐻𝑞𝛽(𝑥)
          (2.3) 

 

Univariate Models 

Data were processed using a list-wise deletion process, where individual samples from a 

site were removed if they were missing a parameter measurement due to laboratory errors, 

equipment malfunctions, calibration issues, or sites being dry at the time of sampling. A sample 

of 100 bootstrapped models was developed, and 20% was subsampled for testing validation. 

Bootstrapping is a nonparametric resampling technique to make inferences about a population 

based on resampling from a set population, generating population level statistics, while 

providing an estimate of uncertainty of those statistics (Campolongo and Saltelli 1997). For this 

modeling approach, all background points are used in the development of the null model, and 

the impaired samples are bootstrapped. Although Maxent can incorporate a wide variety of 

feature classes, only linear and quadratic feature classes were used to develop action values, or 

thresholds of impairment. The rationale for using these types of feature classes is for ease of 

generating action values as well as to assess both linear and non-linear effects of single 

parameters. 

The AUC was calculated for the training and testing datasets. The AUC is a metric of 

performance for binary classification. The true positive prediction rate (sensitivity) and false 

positive prediction rates (1–specificity) of each sample are plotted as a ROC for different 

decision boundaries, and the area under that ROC is integrated. An AUC of 0.5 indicates that 

the model is no better than random chance, and a value of 1.0 indicates perfect model 

performance (Zweig and Campbell 1993; Zou et al. 2007). 
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The decision boundary (logistic threshold) between impaired and unimpaired samples 

should maximize accurately predicting impairment (exceedance of the E. coli criteria) while 

balancing correct negative predictions (Bean et al. 2012). Therefore, maximum test sensitivity 

and specificity was defined as the appropriate decision boundary. A low sensitivity would 

indicate poor performance in identifying impairment, while a low specificity would indicate an 

overcautious model in which resources might be wasted in remediation of false positives. 

Accuracy for Maxent models was calculated as follows: 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
, where TP are true 

positives, TN are true negatives, FP are false positives and FN are false negatives. Significance of 

the univariate model was determined by calculating the χ2 statistic for each confusion matrix, 

with the null hypothesis being that the classifier was no better than random chance. 

Action values (environmental thresholds) are conditions in which a parameter (variable) 

is at the threshold of impairment, indicating potential exceedance of the E. coli standard. Action 

values were calculated for significant (p < 0.01) univariate models by averaging bootstrapped 

weights and estimating the parameter value at which the probability of impairment equals the 

logistic threshold. Fig. 2-2 demonstrates the concepts of the AUC performance metric, selected 

decision boundary, and the concept of the action value in relation to the selected decision 

boundary and Maxent model function (Eq. (2.3)). 
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Figure 2.2. Theoretical plots to illustrate the concept of the ROC, decision boundaries, 

and action values. (a) Plot of an ROC curve, where the x-axis represents the false positive rate, 

or the compliment of the specificity, and the y-axis represents the true positive rate, the 

sensitivity. The curve is integrated to obtain the AUC, the performance metric for each of the 

models. The box represents the point at the decision boundary. (b) Theoretical plot of a 

univariate Maxent model function (Eq. (2.3)) with values for alkalinity rescaled from 0 to 1. The 

solid red line represents Eq. (2.3), the dotted lines represent the upper and lower 95% 

confidence intervals, and the horizontal black line represents the decision boundary. The action 

values, or environmental thresholds, and associated confidence intervals are the intersections 

between the results of Eq. (2.3) and the decision boundary. 
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Multivariate Models and Sensitivity Analysis 

Although some authors state that collinearity is not as problematic in Maxent compared 

to traditional regression approaches, collinearity was explored and subsequently removed using 

Pearson correlation coefficients (Elith et al. 2011). Variables that were highly correlated (r > 0.8) 

were evaluated to determine which variable to include based on expertise, connections to 

previous models, and accuracy metrics within the analysis. The initial multivariate models 

included all noncollinear variables and were developed using 100 bootstrapped samples like the 

univariate models, with the addition of product feature classes to incorporate variable 

interaction. Average variable contribution was determined by calculating the increase in 

information gain associated with a change in each feature for each iteration of the model 

algorithm, normalized to percentages. The permutation importance of a feature is an indicator 

of variable sensitivity. In each model run, the feature training presence and background data 

are randomly permutated, and the resulting drop in training AUC is normalized to percentages 

for each variable and averaged over the 100 bootstrapped runs. 

A jack-knife sensitivity analysis was used to determine the best subset of covariates to 

include in a trimmed model. Each variable was removed from the analysis, and a comparison 

was made to determine if the removal of a variable caused a significant (p < .05) change in 

training or testing information gain. Student’s t-tests were performed on each jack-knifed 

model to evaluate significance, and variables were included if the information gain from either 

the testing or training sets decreased; decrease in information would correspond to a 

significant loss of information, providing criterion for inclusion of the variable in final models. 

 

Results 

Univariate model performance 

The sampling program resulted in 29 sampling trips over 14 sites, allowing for a 

potential of 406 samples for analysis. 127 samples were removed due to missing information in 

the dataset, leaving 279 total samples for model development. This included 95 impairments, 

identified by exceedance of the E. coli recreational water quality standard. Table 2.1 presents 

the summary statistics for E. coli and the associated land use in each sampling site’s drainage 
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area. Each training set included 279 background points, 76 points for training, and 19 points to 

evaluate performance on testing data. 

Table 2.2 summarizes the training and testing performance of the univariate Maxent 

models used to identify E. coli impairment based on environmental variables. Water 

temperature performed best based on AUCs, but had lower accuracy than conductivity, 

dissolved oxygen, and alkalinity. The plausible explanation of these differences is the latter 

variables had higher specificity rather than sensitivity at the chosen decision boundary (Table 

2.2). Accuracy was found to be highest for alkalinity and lowest for pH. 

 

Table 2.2. Summary of training and testing performance of Maxent models based on AUC 

metrics, accuracy based on maximum test sensitivity and specificity decision boundary (logistic 

threshold), and action values with 95% confidence intervals. If an upper bound of a confidence 

interval exceeds the maximum sampling value for a set of data, the maximum value is given. 

Variables 

Training 

AUC 

(+/-SE) 

Testing AUC 

(+/-SE) 
Accuracy Sensitivity Specificity 

Action Values (x) 

¥ 

(95% CI) 

Alkalinity (
𝑚𝑔

𝐿
) 

0.616 

(0.003) 

0.620 

(0.006) 
68.5 

0.537 0.761 

x>129 
𝑚𝑔

𝐿
  

(125, 134) 

BOD5 ( 
𝑚𝑔

𝐿
) 

0.572 

(0.004) 

0.554 

(0.008) 
60.6 

0.621 0.598 

x<0.976 
𝑚𝑔

𝐿
  

(0.825,1.09)  

x>6.19 
𝑚𝑔

𝐿
 

(4.51, 6.43) 

Conductivity 

(𝜇𝑆) 

0.628 

(0.003) 

0.638 

(0.006) 
65.6 

0.568 0.701 

x>306 𝜇𝑆 

(287,315) 

Dissolved 

Oxygen(
𝑚𝑔

𝐿
) 

0.635 

(0.003) 

0.640 

(0.007) 
67.7 

0.642 0.696 

x<9.39 
𝑚𝑔

𝐿
 

(8.68, 10.6) 

Discharge( 
𝑚3

𝑠
) 

0.556 

(0.004) 

0.553 

(0.006) 
63.8 

0.242 0.842 
* 
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Hardness(
𝑚𝑔

𝐿
) 

0.632 

(0.003) 

0.627 

(0.006) 
59.9 

0.684 0.554 

x>132 
𝑚𝑔

𝐿
 

(122, 152) 

NO3
-
 (

𝑚𝑔

𝐿
) 

0.581 

(0.004) 

0.579 

(0.007) 
63.4 

0.453 0.728 

x>1.78 
𝑚𝑔

𝐿
 

(1.63, 1.84) 

pH 
0.571 

(0.003) 

0.562 

(0.006) 
55.6 

0.537 0.565 
* 

PO4
3- (

𝑚𝑔

𝐿
) 

0.581 

(0.004) 

0.580 

(0.008) 
63.8 

0.421 0.750 

0.0642
𝑚𝑔

𝐿
<x<7.80 

𝑚𝑔

𝐿
 

(0.0873,0.766) ᴗ 

(6.27,9.01) ᴖ 

Water 

Temperature 

(OC) 

0.666 

(0.003) 

0.670 

(0.005) 
65.2 

0.674 0.641 

x>12.4 OC 

(11.3, 

15.5<x<20.0) 

8-variable 

model 

0.770 

(0.002) 

0.709 

(0.005) 
78.5 

0.789 0.783 
 

5-variable 

model 

0.753 

(0.002) 

0.723 

(0.006) 
77.8 

0.684 0.826 
 

4 variable 

model 

0.750 

(0.002) 

0.726 

(0.005) 
77.8 

0.695 0.821 
 

*Model was not significant. 

¥ Values of the variables that corresponded to impairment  

˘95% CI for the lower bound of the action value 

  ̑95% CI for the upper bound of the action value. 

 

Action values were developed for 8 significant univariate models by solving for the value 

of the variable when probability of impairment equals the logistic threshold. For example, the 

action value for alkalinity is 128 mg/L. This means that E. coli impairment is likely to occur when 

alkalinity is observed to be higher than this threshold. Action values and 95% confidence 
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intervals are included in Table 2.2. Action function graphs for each significant univariate model 

are presented in Fig. 2.S1 to aid in interpretation of Table 2.2, and summary statistics for each 

variable are given in Table 2.S1. 

 

Multivariate model performance 

Pearson correlations ranged from −0.269 to 0.834, with three variables identified as 

collinear; alkalinity, conductivity, and hardness. Conductivity was selected because of its use in 

previously developed fecal indicator models (Wilkes et al. 2011; Gonzalez et al. 2012; 

Piorkowski et al. 2013; Gonzalez and Noble 2014). The 8-variable model displayed improved 

accuracy on all univariate models. Variable contribution was dominated by water temperature, 

conductivity, and discharge in the 8-variable model, with water temperature contributing 36.4% 

of the information, and conductivity and discharge accounting for 22.6% and 12.1% of the 

information, respectively. The permutation importance for the 8-variable model demonstrated 

a similar pattern. A summary of accuracy metrics is shown in Table 2.2 and Table 2.3 illustrates 

the contribution of each variable in the multivariate models. 
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Figure 2.3. Bar graph displaying results of jack-knife sensitivity analysis.  Each color 

represents the information gain contributed for each parameter in the model, and features are 

removed one at a time to assess their importance in the trimmed model. 
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Table 2.3. Variable contribution and permutation importance for the multivariate models, 

normalized to percentages. 

 4-variable model 5-variable model 8-variable model 

Variable 
Percent 

Contribution 

Permutation 

Importance 

Percent 

Contribution 

Permutation 

Importance 

Percent 

Contribution 

Permutation 

Importance 

BOD5     3.6 5.9 

Conductivity 26.2 23.0 22.6 22.3 25.6 27.5 

Discharge 14.5 22.0 12.1 20.1 13.4 21.6 

Dissolved Oxygen   9.9 5.2 12.3 6.6 

NO3
- 9.5 8.5 8.9 8.6 8.9 10.3 

pH     3.9 1.7 

PO4
3-     2.7 2.5 

Water Temperature 49.9 46.5 36.4 33.7 39.7 34.0 

 

Conductivity was the most sensitive parameter based on sensitivity analysis, with other 

sensitive parameters including water temperature, dissolved oxygen, discharge, and NO3
-. The 

removal of dissolved oxygen improved model performance based on testing AUC, justifying 

development of two optimized multivariate models; a 5-variable model including all sensitive 

parameters, and a 4-variable model that excluded dissolved oxygen. 

Accuracy of the 5- and 4- variable optimized model was 77.8%. The patterns of variable 

contribution were consistent in each model, with water temperature accounting for most of the 

information gain in each model. Fig. 2.3 shows the variable contribution for the initial 

multivariate models, each model run during the sensitivity analysis, and the final 4-variable and 

5-variable models produced. The information gain for each model is also shown within this 

figure. 

Response surfaces were developed for each of the model runs to assess spatiotemporal 

trends. Each grid within the surface represents a single sample, with each sampling site 

representing a single column. The columns are oriented in a downstream fashion, with 

headwaters sites starting on the left (SC14) and sites further downstream existing on the right 



63 
 

(SC1). The temporal scale is represented by the rows, with each row indicating a specific 

sampling trip. Although the data resolution is coarse, the goal is to demonstrate the potential of 

visualizing trends in the probability of impairment over space and time. Fig. 2.4 displays the 

response surface for the estimated probability of impairment for the 4-variable model and the 

5- and 8-variable models are shown in Fig. 2.S2. Classification performance for the univariate 

models and multivariate models is shown in Table 2.S2. Mean probabilities for the 8-, 5-, and 4-

variable model were 0.338 (95% CI: 0.319, 0.358), 0.353 (0.334, 0.373), and 0.359 (0.340, 

0.378). Generally, the sites influenced by the greatest amount of developed or agricultural land 

use (SC5–SC1) had the highest probability of impairment. August had the highest probability of 

impairment, followed by May, November, and February. Mean probability of impairment and 

associated 95% confidence intervals are shown in Table 2.S3. 
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Figure 2.4. Response surface for the 4-variable Maxent model. Surface shows the 

probability of impairment for each sample for the monitoring program. This represents the 

mean probability of 100 bootstrapped runs. Rows are oriented by each sampling period, while 

columns represent each sampling site over the length of the stream; left to right indicates flow 

direction. Black cells denote samples in which a parameter was missing and were excluded from 

analysis, while circles with black centers represent samples in which a stream would be 

identified as impaired in the study. 
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Discussion 

Over 170,000 miles of US rivers and streams are listed as pathogen impaired based on 

FIOs. To address these impairments, characterization of sources and transport mechanisms is 

necessary (United States Environmental Protection Agency 2017), and statistical models can be 

used as an inferential tool to overcome these issues. We applied Maxent to identify individual 

and interacting factors influencing E. coli fate and transport that resulted in impairments using 

univariate and multivariate approaches. In this particular stream, water temperature, 

conductivity, discharge, and NO3
- were found to be the most influential group of factors driving 

fecal pollution. The results indicate that seasonality and agricultural runoff are the suggested 

causes of impairment in this watershed. Seasonality is demonstrated by influence of 

temperature in the models, whereas the influence of agricultural runoff is suggested by the 

other variables and the association between land use and E. coli in the watershed. Even small 

increases in agricultural land cause substantial increases in E. coli concentrations (Table 2.1), 

whereas similar increases in developed land do not have the same pronounced effect. This 

study highlights the need for multi-month sampling across a stream continuum to truly 

estimate spatiotemporal variability associated with impairment. 

The fact that water temperature dominated the information in this model suggests that 

seasonality plays an important role in E. coli survival. Although fecal indicators and pathogens 

have been found to possess diverse temperature-survival relationship (Hofstra 2011; Sterk et al. 

2013), the high August probability for E. coli impairment indicates favorable conditions for long-

term survival in the summer. Warming due to climate change could exacerbate this condition 

by increasing those favorable conditions (Weniger et al. 1983; Atherholt et al. 1998; Patz et al. 

2000; Guzman Herrador et al. 2015). However, August was not the only month with numerous 

E. coli impairments. Therefore, monitoring for FIOs only in the summer months could distort 

estimates of impairment in watersheds with year-round users. 

Although discharge was not predictive of E. coli impairment alone, its interactive effect 

stresses the importance of both flow dependent and independent processes associated with E. 

coli impairment. Dissolved solutes such as NO3
- and ions measured through conductivity are 

largely discharge-dependent; however, FIOs are not as strongly dependent on discharge. This 
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flow independence is due to additional ecological mechanisms such as nutrient limitation and 

competition (Surbeck et al. 2006; Drummond et al. 2015). Various forms of nitrogen are 

associated with increased concentration of FIOs in certain environments (Carrillo et al. 1985; 

Herrig et al. 2015), and results of the Maxent models suggest that nutrient loading in the form 

of NO3
- contributes to E. coli impairment in Sinking Creek. Other studies have found that 

dissolved organic carbon can affect magnitude and extent of fecal indicators (Surbeck et al. 

2010; Blazewicz et al. 2013; Cloutier et al. 2015), but this was not collected during this sampling 

program and was found to be insignificant using BOD5 as a surrogate for organic pollution. This 

interaction between nutrient levels and fecal pollution highlights the potential for synergistic 

effects of different sources of pollution, suggesting a limitation of TMDL development when 

only considering one pollutant at a time. 

Although machine learning application to microbial water quality problems is not 

unique, this study presents some beneficial techniques in this area of research. First, it 

demonstrates the ability to open the black box of Maxent, using action values to predict 

threshold of impairment based on a single variable. Multivariate action functions can be 

developed as well, but are not presented in this manuscript. The probabilistic approach to 

model validation and variable selection allows for inclusion of uncertainty, improving on 

deterministic methods traditionally used for validation and criteria for variable inclusion. 

Probabilistic methods have been used in TMDLs (Borsuk et al. 2002), frequency of water quality 

posting errors (Kim and Grant 2004), and uncertainty of different fecal indicator methodologies 

(Gronewold et al. 2008); this paper adds to this framework through identifying the probability 

of stream impairment given a set of environmental variables. This improves confidence in 

decision making for implementation of monitoring, management, and remediation strategies. 

Modeling microbial water quality is a challenge no matter the method used, but this study 

demonstrates that Maxent provides a valid approach to understand the factors driving 

impairment. 

Streams are dynamic systems with multiple flow regimes, confounding an already 

difficult modeling process. Understanding how models behave in extreme situations is useful 

for regulation, monitoring, and management of these ecosystems. Over the long-term study 
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periods, samples from both drought and high water conditions were captured. Maxent has 

been suggested as a strong prediction of extreme values (Petrov et al. 2013), and this study 

found that Maxent sufficiently predicted impairment during the high flow sampling date of 

November 11, 2009. Depending on which multivariate model was used, accuracy ranged from 

72.8% to 90.9% for this sampling date. Five sampling dates resulted in at least one site being 

dry, indicating drought-like conditions. Maxent correctly predicted impairment in these 

situations 62.2% to 73.0% of the time. This suggests that Maxent can be useful for certain 

extreme situations, but is highly dependent on the environmental variables used for prediction. 

While this study presents proof of concept of using Maxent to infer source and 

mechanisms of impairment, there are some limitations to this study. Although the dataset has a 

large time scale (8 years), only collecting from 4 months makes the resolution coarse, reducing 

the scale at which inferences can be made. The list-wise deletion of samples before univariate 

modeling removed some data that could inform each of those models; however, using the 

same series of data in the multivariate models and list-wise deletion are commonly used 

procedures in statistical models. Future applications of Maxent will improve on the coarse 

resolution of the data by using monthly and potentially weekly sampling approaches, and 

research will be developed as to the best approach for handling missing data in Maxent. While 

AUC scores above 0.70 indicate good model fit, only considering physiochemical water quality 

parameters limits the potential to accurately predict impairment; however, this study 

demonstrates that these parameters are informative as a proof of concept for using Maxent as 

a modeling approach. Future areas of research include using Maxent to optimize water quality 

monitoring to identify causes of impairment with FIOs and specific pathogens in the most cost-

effective way using a variety of microbial, chemical, and physical parameters. 

It is a difficult task to develop and implement remediation strategies in watersheds with 

many diffuse causes of fecal impairment, but modeling can increase confidence in decision 

making through inferring mechanisms and sources of fecal pollution. Incorporating 

environmental variables into models allows for insights into the ecology of fecal indicators, 

identifying causes of chronic FIO impairment. Although one indicator cannot mimic the plethora 

of existing pathogens in water, incorporating modeling can fine tune an indicator’s utility, 
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ultimately informing the public concerning health risks, and aiding in overcoming the 

shortcomings of a single indicator monitoring strategy. 

 

Conclusions 

Characterizing E. coli impairment is essential because of the plethora of streams polluted 

with fecal wastes. This study used Maxent to identify water quality parameters associated with 

E. coli impairment in a low-order, mixed-use watershed. Univariate models generated action 

values, or thresholds of impairment, based on single parameters, while multivariate models 

extracted information concerning multivariate interaction. We presented a probabilistic 

approach to sensitivity analysis, improving confidence in variable selection. Maxent presents a 

flexible machine learning approach to aid in understanding mechanisms and sources of fecal 

pollution as well as a host of other complex decision boundary problems. We demonstrated 

that: 

• Models using alkalinity and water temperature were found to be either the most 

accurate or best performing univariate models; this stresses the importance of 

discharge composition and seasonality in E. coli impairment. Discharge, however, was 

not an influential univariate parameters by itself, stressing the importance of flow-

independent processes that correlate with impairment. 

• Sensitivity analysis indicated that the most information was lost when conductivity was 

removed from the multivariate models, and water temperature, discharge, dissolved 

oxygen, and NO3
- represent other sensitive parameters sensitive to E. coli impairment in 

this watershed. 

• Results suggest that E. coli impairment in this stream is driven by seasonality and 

agricultural  runoff. This suggests that multi-month sampling along a stream continuum 

is essential to characterize spatiotemporal variability, importance of flow in relation to 

other water quality parameters, and the potential synergistic effect of nutrient and fecal 

pollution. 

• Incorporating modeling can fine tune an indicator’s utility, informing the public 

concerning human health risks, enhancing our understanding of FIOs, assisting in water 
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quality decision making, and providing input variables for quantitative microbial risk 

assessment. 
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CHAPTER 3 

CANONICAL VARIABLE SELECTION FOR ECOLOGICAL MODELING OF FECAL INDICATORS 

DENNIS GILFILLAN, KIMBERLEE HALL, ANDREW JOYNER, PHILLIP SCHEUERMAN 

 

Abstract 

More than 270,000 km of rivers and streams are impaired due to fecal pathogens, 

creating an economic and public health burden. Fecal indicator organisms such as Escherichia 

coli are used to determine if surface waters are pathogen impaired, but they fail to identify 

human health risks, provide source information, or have unique fate and transport processes. 

Statistical and machine learning models can be used to overcome some of these weaknesses, 

including identifying ecological mechanisms influencing fecal pollution. In this study, canonical 

correlation analysis (CCorA) was performed to select parameters for the machine learning 

model, Maxent, to identify how chemical and microbial parameters can predict E. coli 

impairment and F+ somatic bacteriophage detections. Models were validated using a 

bootstrapping cross-validation. Three suites of models were developed; initial models using all 

parameters, models using parameters identified in CCorA, and optimized models after further 

sensitivity analysis. Canonical correlation analysis reduced the number of parameters needed to 

achieve the same degree of accuracy in the initial E. coli model (84.7%), and sensitivity analysis 

improved accuracy to 86.1%. Bacteriophage model accuracies were 79.2, 70.8, and 69.4% for 

the initial, CCorA, and optimized models, respectively; this suggests complex ecological 

interactions of bacteriophages are not captured by CCorA. Results indicate distinct ecological 

drivers of impairment depending on the fecal indicator organism used. E. coli impairment is 

driven by increased hardness and microbial activity, whereas bacteriophage detection is 

inhibited by high levels of coliforms in sediment. Both indicators were influenced by organic 

pollution and phosphorus limitation. 
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Introduction 

More than 270,000 km of rivers and streams are impaired by fecal pathogens, creating 

an economic and public health burden (United States Environmental Protection Agency 2017). 

Because pathogens are sporadically distributed, are costly to identify, and present health risks 

to laboratory workers, fecal indicator organisms are used to assess public health risk and 

evaluate impairment (Field and Samadpour 2007). Fecal indicator organisms (FIOs) should exist 

whenever pathogens are present, be versatile in their use, not reproduce in the water column, 

and have an enteric origin (Savichtcheva and Okabe 2006). Such FIOs as fecal coliform bacteria 

and Escherichia coli are traditionally used for determining surface water pathogen impairment. 

Although FIOs have ultimately reduced public health risk, three key weaknesses must be 

improved: (i) poor quantification of public health risk, (ii) issues related to pathogen–FIO 

correlation, and (iii) the inability to identify sources of impairment. 

Identifying public health risks based on FIOs is difficult because of geographic variability 

and results from epidemiologic studies are often site-specific. Although significant illness rates 

in children could be identified from water contaminated with >1000 E. coli 100 mL−1, the illness 

rate and risk vary based on local climate and cultural conditions (Moe et al. 1991). Colford et al. 

(2007) found that fecal indicator bacteria did not predict health effects at a marine bathing 

beach (Colford et al. 2007). They suggested, however, that their results may be site-specific and 

influenced by the lack of human sources and negative detection of enteric viruses. Fujioka et al. 

(2015) noted that the 2012 Recreational Water Quality Criteria did not improve strategies to 

assess bathers’ health risks in all types for recreational waters (Fujioka et al. 2015). Additionally, 

questions remain concerning human health risks associated with nonpoint sources of fecal 

pollution (Field and Samadpour 2007; Yates 2007). 

Because there are many aquatic pathogens that express different responses to 

environmental conditions, identifying a single indicator is difficult and has stimulated 

development of several indicators. Harwood et al. (2005) evaluated the use of total coliform 

bacteria, fecal coliform bacteria, Clostridium perfringens, and F-specific coliphages to predict 

presence of pathogens at wastewater reclamation facilities (Harwood et al. 2005). Although 

pathogens were detected, no strong correlations were identified between the pathogens and 
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fecal indicators. Buckalew et al. (2006) conducted a 3-yr study comparing the Idexx 

Laboratories, Inc. Colilert assay to membrane filtration and concluded that the Colilert assay 

was suitable for assessing fecal pollution in surface waters (Buckalew et al. 2006). The search 

for an indicator that reliably predicts human health risks and indicates potential sources is an 

ongoing effort. 

One of the primary limitations of the single indicator paradigm is limited or no source 

tracking potential. Microbial source tracking using genetic, chemical, or phenotypic methods 

are considered the gold standard for identifying human and nonhuman sources.(Shanks et al. 

2016) However, there are issues with geographic stability, environmental persistence, and 

reproducibility with many of these techniques (Field and Samadpour 2007; Yates 2007). 

McLellan and Eren (2014) suggested next generation sequencing, microbiome arrays, and 

better understanding of gut microbiomes may improve source indicators (McLellan and Eren 

2014). Pharmaceuticals and other chemical indicators such as caffeine and carbamazepine have 

been suggested, indicating both recent and persistent sources of human fecal pollution 

(Daneshvar et al. 2012). 

Another challenge in using a single indicator to evaluate human exposure to fecal 

pathogens and develop microbial risk assessments is the influence of environmental conditions 

on the fate and transport of FIOs and the pathogens they represent. Fate and transport 

mechanisms may be affected by rainfall and stormwater  runoff (Lipp et al. 2001; Kistemann et 

al. 2002), remobilization from sediments (Crabill et al. 1999), particle attachment (Lemarchand 

and Lebaron 2003), and other complex mechanisms. Ecological conditions including ultraviolet 

light exposure (Sinton et al. 2002), the presence of organic matter (Perkins et al. 2016), and 

microbial predators (McCambridge and McMeekin 1980) have also been shown to influence the 

survival, fate, and transport of FIOs. Savichtcheva and Okabe (2006) suggested that better 

understanding of factors influencing pathogen fate and transport from source to receiving 

streams can result in better characterization of human health risks (Savichtcheva and Okabe 

2006). 

Models can be used with FIOs to infer sources of fecal pollution and how environmental 

conditions influence fate and transport mechanisms. Atypical coliform ratios were incorporated 
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into multivariate logistic regression models to represent relative age of fecal pollution to 

identify virus presence (Black et al. 2007). Decision trees and other predictive models have 

been used to discriminate between human and nonhuman sources using suites of molecular 

indicators (Ballestè et al. 2010). Classification and regression trees were used to identify 

environmental and land use factors associated with pathogens, finding distinct indicators of 

their sporadic distribution (Wilkes et al. 2011). Classification and regression trees, regularized 

regression, and multivariate adaptive splines were used to investigate factors driving E. coli 

attachment to particles and virulence (Piorkowski et al. 2013). Models provide information to 

overcome the difficulties and deficiencies associated with using FIOs to assess pathogen 

impairment, providing a flexible approach that can be implemented in diverse watersheds. 

In this study, we present a way to incorporate traditional water quality monitoring data 

into models of two fecal indicators, E. coli and F+ specific bacteriophages, to infer what 

ecological factors drive impairment in a stream. Canonical correlations analysis (CCorA) was 

used as an initial variable selection procedure for the machine learning model, Maxent. The 

multivariate technique CCorA is useful when response and explanatory variables are difficult to 

define, maximizing correlations between two datasets for determining dominant variables in 

observed water quality (Noori et al. 2012; Hall et al. 2014) or to select variables for machine 

learning models on ungauged monitoring sites (Khalil et al. 2011). Maxent is typically applied to 

ecological niche modeling, fitting a log-linear model that incorporates a least absolute 

shrinkage and selection operator (LASSO), or L1 regularization, to reduce unnecessary 

parameters in probability estimation (Phillips et al. 2004; Phillips and Dudík 2008; Elith et al. 

2011). This approach incorporates mixed datasets and extracts information concerning 

mechanisms and sources of fecal pollution, providing a probabilistic approach decision-makers. 

The goal of this study was to demonstrate this technique using data collected from a 

mixed-use watershed in East Tennessee. Two methods of variable selection are introduced in 

this model paradigm; the use of CCorA to maximize interactions between microbial and 

chemical datasets, and further sensitivity analysis using a leave one variable out jack-knife 

approach. Models were validated using nonparametric bootstrapping, giving an estimate of 

model performance uncertainty and rationale for additional variable reduction. These models 
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can identify factors driving E. coli impairment and bacteriophage detection, inferring ecological 

mechanisms, sources, and processes unique to each of these fecal indicators. 

 

Materials and Methods  

Study Area and Data Collection 

Water samples were collected monthly for 12 months during 2011 from six sites on 

Sinking Creek, a 303(d) listed stream for E. coli impairment (n = 72 samples). Sinking Creek flows 

through national forest lands in its headwaters, urbanized areas in Johnson City, TN, and 

eventually through agricultural land before it seeps underground and enters the Watauga River. 

Sites were selected using a targeted sampling approach to represent a characteristic view of the 

watershed in terms of land use patterns, likely sources of contamination, and the influences of 

urbanization. 

Water samples were collected in sterile 1-L bottles in triplicate for total and fecal 

coliform bacteria in water (TCW/FCW), and in duplicate for heterotrophic plate counts (HPC). 

Water samples for E. coli were collected in sterile 100-mL bottles (IDEXX Laboratories). Water 

samples for nitrates (NO3
-), phosphates (PO4

3-), ammonia (NH3), 5-d biochemical oxygen 

demand (BOD5), alkalinity, and hardness were collected in sterile 2-L bottles. Sediment samples 

for total and fecal coliform bacteria in sediment (TCS/FCS), acridine orange direct counts, and 

microbial enzyme activity (MEA) analyses were collected in 59 ml (2 oz) sterile Whirl-pak bags. 

All samples were transported to the laboratory on ice and analyzed within appropriate holding 

times. Parameters, abbreviations, and indications of fecal pollution are all shown in Table 3.1. 

Microbial Analyses 

The TCW, FCW, and HPC analyses were conducted according to the Standard Methods 

for the Examination of Water and Wastewater using membrane filtration for coliforms and R2A 

agar for HPC (American Public Health Association 2005). For TCS/FCS sediment analyses, 0.5 g 

of sediment was added to 25 mL of sterile water + 1% (v/v) Tween 80. The samples were 

vortexed, allowed to settle for 30 min, and filtered according to Standard Methods for the 

Examination of Water and Wastewater (American Public Health Association 2005). E. coli 
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concentrations were determined using the Colilert Quanti-Tray method (American Public Health 

Association 2005). 

Samples for bacteriophage analysis were collected and analyzed in triplicate using the 

double-layer agar procedure described in USEPA Method 1601 using E. coli C3000 as the host 

strain (ATCC Number 15597) (United States Environmental Protection Agency 2001b). The host 

strain was cultured using ATCC 271 broth (10 g L−1 tryptone, 1 g L−1 yeast extract, 8 g NaCl, 10 

mL L−1 of 10% (w/v) glucose solution, 2 mL L−1 of 1 M CaCl2, 1 mL L−1 of 10 mg mL−1 thiamine) at 

37°C. The MEA analyses included dehydrogenase (DHA), acid and alkaline phosphatases 

(AcidP/AlkP), galactosidase (Gal), and glucosidase (Glu); these procedures were followed as 

outlined by Hall et al. (2014) (Hall et al. 2014). AcidP/AlkP, Gal, and Glu activity were 

determined using a spectrophotometer at an absorbance of 418 nm, while DHA activity was 

determined at an absorbance of 460 nm. All MEA analyses were completed in triplicate. 

Acridine orange direct counts were performed as described by Wilson et al. (1983) (Wilson et 

al. 1983). Filters were mounted and fixed on slides for enumeration at 1000× using the Olympus 

BH2 epifluorescent microscope. One sediment sample was processed per site, and three 

microscopic fields were enumerated on each slide. 

 

Chemical Analyses 

NO3
- , PO4

3-, NH3, alkalinity, and hardness analyses were performed in triplicate using 

colorimetric HACH™  methods and reagents as described by the manufacturer (HACH Company 

2006; HACH Company 2013). The BOD5 analyses were conducted in triplicate according to APHA 

(2005) (American Public Health Association 2005). 
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Table 3.1. Summary of parameters, abbreviations, units of measurement, and indicator role in 

Maxent models. 

Parameter Abbreviation Units† Indication 

Fecal coliform in water FCW CFU 100 mL−1 fecal pollution 

Total coliform in water TCW CFU 100 mL−1 heterotrophic activity 

Fecal coliform in sediment FCS CFU 100 mL−1 fecal deposition 

Total coliform in sediment TCS CFU 100 mL−1 heterotrophic activity 

Colilert (E. coli) E. coli MPN 100 mL−1 E. coli impairment 

F+- specific bacteriophage bacteriophage PFU mL−1 presence of viruses 

Heterotrophic plate count HPC CFU mL−1 heterotrophic activity 

Acridine orange direct counts AODC 
cells g 

sediment−1 
heterotrophic activity 

Acid phosphatase AcidP μg g sediment−1 P-cycling 

Alkaline phosphatase AlkP μg g sediment−1 P-cycling 

Dehydrogenase DHA μg g sediment−1 C-cycling 

Galactosidase Gal μg g sediment−1 C-cycling 

Glucosidase Glu μg g sediment−1 C-cycling 

Nitrates NO3
- mg L−1 nutrient  runoff 

Phosphates PO4
3- mg L−1 nutrient  runoff 

Ammonia NH3 mg L−1 nutrient  runoff 

Biochemical oxygen demand BOD5 mg L−1 organic pollution 

Hardness Hard mg L−1  runoff 

Alkalinity Alk mg L−1  runoff 

† CFU, colony-forming unit; MPN, most probable number; PFU, plaque-forming unit. 

 

Canonical Correlation Analysis  

Canonical correlation analysis (CCorA) was conducted to capture between group 

variation within chemical and microbial parameters, describing potential relationships between 
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biochemical gradients within Sinking Creek. Using CCorA allows simultaneous analysis of several 

predictor and explanatory variables by determining the largest correlations within each dataset 

and between the two datasets. Linear combinations of variables within each dataset are 

created (canonical variates) followed by determination of the largest correlation between the 

two datasets, which are referred to as canonical correlations. This is repeated, producing 

additional combinations of canonical variates that have the next highest correlation of all 

possible linear combinations, but uncorrelated with the previous combinations. Canonical 

Variates are created for the number of variables in the smallest of the two datasets. 

Canonical loadings are used to interpret the canonical structure by assessing the 

contribution of each variable to the structure. These loadings measure the correlation between 

the original variables and the sets of canonical variates (Dillon and Goldstein 1984). These 

strong associations were used as a variable selection procedure, and only canonical loadings 

>0.3 were considered to be valuable, given that this is the threshold at which approximately 

10% of the variance is explained by a given coefficient (Hair et al. 1998). For detailed 

explanation of CCorA, readers are referred to Hall et al. (2014) (Hall et al. 2014). 

 

Maxent 

Maxent is a log-linear model commonly used for ecological niche models. Maxent uses 

an iterative machine learning approach that can incorporate linear, quadratic, hinge, product, 

and threshold feature classes to minimize the relative entropy between the distributions 

positive sites (contain a species) compared with the null distribution (Phillips et al. 2004). In our 

case, the positive sites represent detection of bacteriophages or levels of E. coli above the 

Recreational Water Quality Criteria standard of 126 MPN 100 mL−1, but in a single sample 

rather than a geometric mean (United States Environmental Protection Agency 2012). 

The Maxent model fits a Gibbs distribution, which produces a model that is maximally 

informative at the impairment sites and minimally informative elsewhere (Elith et al. 2011). 

Parameters can be transformed using a variety of transformations mentioned above, but 

models in this study only used linear, quadratic, and product transformations. Maxent 

incorporates regularization, or a LASSO penalty, to minimize overfitting; this smooths the 
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probability distribution, giving sparse solutions, and removing many unnecessary parameters 

(Phillips et al. 2004; Phillips and Dudík 2008; Elith et al. 2011). Because of regularization, 

Maxent fits a penalized maximum likelihood model, minimizing the relative entropy dependent 

on the error-bound constraints. Multiple outputs exist for the Maxent models, but for the 

purposes of this study, the logistic output is used, which provides a clear interpretation of 

probability of impairment. Readers are referred to Phillips et al. (2004), Phillips and Dudík 

(2008), and Elith et al. (2011) for additional information concerning Maxent (Phillips et al. 2004; 

Phillips and Dudík 2008; Elith et al. 2011). 

 

Maxent Estimation 

Three suites of models were developed: an initial model including all parameters, a 

model using biochemical gradients identified in CCorA, and a final model after further jack-knife 

sensitivity analyses. All significant variables (canonical loadings >0.3) were included in the 

bacteriophage model; since E. coli concentrations were used to define impairment, this 

parameter was not included in the E. coli models because it would add redundancy to the 

model. Maxent performance was assessed using bootstrapping with cross-validation. 

Bootstrapping is a nonparametric resampling technique to make inferences about a population, 

identifying uncertainty in model performance and providing a rationale for variable removal in 

sensitivity analysis (Campolongo and Saltelli 1997). One thousand bootstrapped realizations 

were created, and a 20% subset was selected as a testing set within each realization. For this 

modeling approach, all background points are used in the development of the null model, and 

the impairment samples were bootstrapped. Model performance was evaluated using the area 

under the curve (AUC) of the receiving operating characteristic (ROC). The AUC is a metric of 

performance for binary classification. For a series of decision boundaries between two states, 

the true positive prediction rate (sensitivity) and false positive prediction rates (1 – specificity) 

of each sample are plotted as a ROC, and the area under that ROC is then integrated. An AUC of 

0.5 would indicate that the model is no better than random chance, and a value of 1.0 would 

indicate perfect model performance. 
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Many options exist for defining the logistic threshold, or decision boundary, but a 

threshold that maximizes test sensitivity and specificity was most appropriate for this 

analysis(Bean et al. 2012). Since the goal is a model that performs well on new datasets, low 

sensitivity sacrifices ability to recognize impairment, but low specificity indicates an 

overcautious model resulting in wasted resources. Accuracy was calculated using the following 

formula (Eq. 3.1): 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
           (3.1) 

where TP is the true positive predictions, TN is the true negative predictions, FP is the 

false positive predictions, and FN is the false negative predictions. Significance of the classifier 

was determined by calculating the χ2 statistic for each confusion matrix, with the null 

hypothesis being that the classifier was no better than random chance. To assess relative 

contribution of individual features in the models, variable contribution was determined in each 

model by calculating the increase in information gain associated with a parameter during an 

iteration of the machine learning algorithm, averaged over 1000 model runs, and normalized to 

percentages. 

 

Sensitivity Analysis 

Sensitivity of parameters was assessed using a leave one variable out jack-knife 

procedure. Sensitive parameters were determined by re-running the models without a given 

parameter, calculating the training and testing information gain, and determining how much 

the information gain changed with exclusion of the variable. Bootstrapping cross-validation was 

the same in the sensitivity analysis. Parameters in which information gain decreased 

demonstrated a loss of information, and significance (p < 0.01) was determined using a one-

tailed Student’s t test comparing the CCorA model and each parameter’s jack-knife model. 

Parameters that were found to be sensitive were included in a final optimized model using the 

same bootstrapping cross-validation procedures mentioned above. 
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Results 

Summary Statistics of Fecal Indicators Organisms 

Overall and site-specific summary statistics for the 17 covariates and 2 response 

variables are shown in Supplemental Table 3.S1. The geometric mean for E. coli at the sites 

selected for analysis was 34.0 most probable number (MPN) 100 mL−1 with a geometric 

standard deviation of 5.5. However, variation was high between the six sites. The E. coli 

concentrations were highest in the downstream Sites 2 and 4, with geometric means of 246.3 

MPN 100 mL−1 (geometric standard deviation [GSD] = 2.4) and 152.1 MPN 100 mL−1 (GSD = 2.0), 

respectively. Site 7 was found to have the lowest E. coli concentrations, with a geometric mean 

of 6.5 MPN 100 mL−1 (GSD = 3.4). Exceedance of the geometric mean standard for E. coli 

occurred in nine samples for Site 2, five for Site 4, none for Site 7, two for Site 10, and one 

exceedance for Sites 13 and 14. Overall, 18 samples were found to exceed the geometric mean 

standard. All months had at least one site in exceedance of the geometric mean standard 

except for February, September, and December. 

Although Site 2 had the highest geometric mean of 1.0 (GSD = 8.6), bacteriophages were 

only detected in January and November. Bacteriophages were detected 18 times, and at all 

sites at least once, with four detections at Sites 4, 7, and 10. Bacteriophages were not detected 

in March, April, July, September, and December. Supplemental Fig. 3.S1 displays the location of 

the sampling sites, with E. coli geometric mean criteria status and number of times 

bacteriophages were detected. 

 

Canonical Correlation Analysis Parameter Selection 

Canonical correlation analysis was performed using 18 parameters that included E. 

coli concentration, which was used as a response variable in the Maxent models. The rationale 

to include E. coli in the CCorA was because E. coli is an accepted FIO, and it might predict 

bacteriophage detections; however, bacteriophages were not considered an explanatory 

variable for E. coli impairment. The first squared canonical correlation coefficient is 0.59, and 

the correlation coefficient for the second axis was 0.25. Significance of canonical variate pairs 

was determined to be p = 0.05, and the first two canonical variate pairs were used to select 
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variables for the bacteriophage and E. coli models (p < 0.001 and p = 0.035, respectively). 

Alkalinity (0.85) and hardness (0.86) were most influential in the canonical structure of the first 

canonical variate pair, whereas BOD5 (-0.62) was found to be the most influential in the second 

canonical variate pair (Fig. 3.1). Overall, 12 covariates were found to be influential to the 

canonical structure and were selected as variables for the CCorA bacteriophage models and 11 

covariates were selected for the CCorA E. coli models. 

 

Figure 3.1. Canonical correlation analysis canonical loadings plot using the 17 

parameters and 1 response variable, E. coli. Only significant canonical correlations are shown, 

with the squared canonical coefficient of the first two canonical correlations being 0.59 and 

0.25. Significant loadings are only shown, with the threshold being 0.3. AcidP, acid 

phosphatase; Alk, alkalinity phosphatase; BOD5, biochemical oxygen demand; FCS, fecal 

coliform in sediment; FCW, fecal coliforms in water; Glu, glucosidase; Hard, hardness; HPC, 

heterotrophic plate count; TCS, total coliform in sediment; TCW, total coliform in water 

 

Maxent Models and Sensitivity Analysis 

Table 3.2 summarizes the performance metrics for the initial, CCorA, and optimized 

models for both E. coli and bacteriophages. The initial E. coli model was 84.7% accurate, 

achieving a training AUC of 0.885 and a testing AUC of 0.720 using 16 covariates. The initial 



91 
 

bacteriophage model was 79.2% accurate, with a training AUC of 0.869 and testing AUC of 

0.693, and using 17 covariates. 

Training AUC was decreased to 0.851 in the E. coli CCorA model, but testing AUC was 

improved to 0.735. Accuracy was not affected, but sensitivity improved from 0.500 to 0.556 

(data not shown). For the bacteriophage CCorA model, both training and testing AUC were 

lowered to 0.811 and 0.642 respectively, and the model was 70.8% accurate. Both initial and 

CCorA models for E. coli were highly significant (p < 0.001 for both), and the bacteriophage 

models were also significant for the initial and CCorA models (p = 0.001 and p = 0.028, 

respectively). 

Sensitivity analysis indicated that AcidP, BOD5, Glu, hardness, PO4
3-, HPC, and TCW (p < 

0.001 for all variables) were responsive parameters for the E. coli models. The parameters 

AcidP, BOD5, Glu, TCS, and TCW were found to be significantly sensitive variables for 

bacteriophage models (p < 0.001, p < 0.001, p < 0.001, p < 0.001, and p = 0.007, respectively). 

The most sensitive parameter was hardness for E. coli models and TCS for bacteriophage 

models. Optimized models were developed from the seven parameters identified in the E. coli 

sensitivity analysis, while the bacteriophage sensitivity analysis revealed five parameters to be 

used in optimized models. 

Optimized models produced lower training AUC, with values of 0.827 and 0.738 for the 

E. coli and bacteriophage models, respectively. Testing AUC were similar to the results from the 

CCorA, with the E. coli optimized model having a testing AUC of 0.731 and the bacteriophage 

optimized model having a testing AUC of 0.641. Accuracy improved for the E. coli optimized 

model, achieving 86.1% correct predictions. The optimized model for bacteriophage was 69.4% 

accurate. The optimized model for E. coli was strongly significant (p < 0.001), and the optimized 

model for bacteriophage was significant (p = 0.012). 
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Table 3.2. Summary of performance metrics for each of the six Maxent models. 

Maxent model Training AUC (SD)† Testing AUC (SD) ΔAUC (SD) Accuracy (LT)‡ 

E. coli initial model 0.885 (0.030) 0.720 (0.161) 
0.165 

(0.167) 
84.7 (0.419) 

E. coli CCorA§ model 0.851 (0.037) 0.735 (0.154) 
0.117 

(0.161) 
84.7 (0.442) 

E. coli optimized 

model 
0.827 (0.040) 0.731 (0.144) 

0.096 

(0.151) 
86.1 (0.449) 

Bacteriophage initial 

model 
0.869 (0.038) 0.693 (0.163) 

0.176 

(0.165) 
79.2 (0.458) 

Bacteriophage CCorA 

model 
0.811 (0.054) 0.642 (0.165) 

0.170 

(0.170) 
70.8 (0.455) 

Bacteriophage 

optimized model 
0.738 (0.070) 0.641 (0.148) 

0.097 

(0.154) 
69.4 (0.471) 

† AUC, area under the curve; SD = Standard deviation for 1000 bootstrapped runs. 

‡ LT = logistic threshold of the probability that maximizes test sensitivity and specificity. 

§ CCorA, canonical correlation analysis. 

 

Variable (Parameter) Contribution 

Table 3.3 shows the variable contribution, based on increases in information gain, for 

each covariate included in the six Maxent models. Hardness was the dominant contributor in 

the initial E. coli model, averaging 16.2% contribution over the 1000 bootstrapped runs. 

Heterotrophic plate count, BOD5, and NO3
- were also dominant contributors, increasing the 

average information gain by 13.4, 8.3, and 8.3%, respectively. For the bacteriophage initial 

model, TCS was the dominant contributor, with 21.7% of the information gain being attributed 

to TCS. Other strong contributors in the full model were DHA, BOD5, and Glu; each of these 

represents 9.9, 8.7, and 7.3% of the information gain in the model runs. 

Hardness was the dominant contributor in both the CCorA and optimized E. coli models, 

providing 28.2 and 33.2% of the information gain. Heterotrophic plate count, BOD5, AcidP, and 
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TCW contributed 13.8, 13.5, 11.5, and 10.9% of the information for the CCorA model and 17.5, 

14.7, 12, and 12.7% of the information in the optimized model. Analysis of response curves 

shows increased probability of impairment corresponding to increased HPC, hardness, and 

TCW, while BOD5 and AcidP demonstrated a negative relationship, with increased BOD5 and 

AcidP corresponding to lower probability of impairment. Response curves are shown for the 

optimized model for E. coli in Supplemental Fig. 3.S2. 

Total coliform in sediment was the dominant contributor in the CCorA and optimized 

bacteriophage models, contributing 33.5 and 53.2% of the information. Other dominant 

contributors for the CCorA models were Glu (13.1%), BOD5 (10.3%), and AcidP (7.5%), and 

contributors to the optimized model were Glu (16.9%), AcidP (11.2%), BOD5 (11%), and TCW 

(7.7%). Response curves showed decreased probability of detection from increased AcidP, Glu, 

and TCS, while increased BOD5 and TCW corresponded to increased probability of detection 

(Supplemental Fig. 3.S3). 

 

Table 3.3. Variable contribution for each of the six models developed, averaged over 1000 runs 

and normalized to percentages. Only significant variables from the canonical correlation 

analysis (CCorA) are included in the table (canonical loadings > 0.3). 

Variable† 

E. coli Bacteriophages 

Initial 

 model 

CCorA  

model 

Optimized  

model 

Initial  

model 

CCorA 

 model 

Optimized  

model 

FCW 3.8 4.6  4.4 5.7  

TCW 7.1 10.9 12.7 2.6 4 7.7 

FCS 1.9 2.8  1.8 2.4  

TCS 2.8 3.6  21.7 33.5 53.2 

E. coli    3.6 4.6  

HPC 13.4 13.8 17.5 4.2 5.8  

AODC 3.3   5.7   

AcidP 7.4 11.5 12 5.7 7.5 11.2 

AlkP 1.3   3.3   
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DHA 5.6   9.9   

Gal 2.3   3.9   

Glu 6 6 6.5 7.3 13.1 16.9 

NO3
- 8.3   5.4   

PO4
3- 2.6 3.1 3.4 3 4.2  

NH3 4.8   4.2   

BOD5 8.3 13.5 14.7 8.7 10.3 11 

Alkalinity 1.3 2  3.7 6  

Hardness 16.2 28.2 33.2 1 2.8  

† See Table 1 for variable definitions. 

 

Probability of Impairment 

Mean probability of impairment for E. coli models ranged from 0.282 to 0.369 for all 

three models, while the bacteriophage models’ mean probabilities ranged from 0.322 to 0.416. 

Generally, E. coli probabilities were higher in the summer months than in the other seasons. 

August had the highest mean probability of impairment for the initial (0.434) and optimized 

(0.504) models, whereas July showed the highest probability of impairment in the CCorA model 

(0.473). Bacteriophage models displayed a different pattern, with November having the highest 

probability of impairment in the initial model at 0.466 but April having the highest mean 

probability in the CCorA (0.509) and optimized (0.524) bacteriophage model. Figure 3.2 shows 

the probability of impairment and associated 95% confidence interval for each of the six 

models, stratified by month.  

All three E. coli models found the highest mean probability at Site 4, with values of 0.435 

(initial), 0.438 (CCorA), and 0.553 (optimized). Using the optimized model, the estimated 

probability of impairment was similar at Site 2 (0.552) to Site 4. However, Site 2 had greater 

variability throughout the year, and the upper limit of the 95% confidence interval was 0.650 

compared with 0.632 for Site 4. Using the bacteriophage models, each model predicted the 

mean probability of impairment to be highest at Site 14, with values of 0.427 (initial), 0.425 

(CCorA), and 0.455 (optimized). However, based on the upper limits of the 95% confidence 
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interval Site 4 exhibited the highest probability of impairment. Mean probability of impairment 

and 95% confidence intervals for each model are presented in Table 3.4; these are presented 

for the overall stream model and stratified by month and site. To assist in visualizing the 

spatiotemporal trends associated with probability of impairment, response surfaces were 

developed for the optimized models (Fig. 3.3), and the other models are presented in 

Supplemental Fig. 3.S4. To read these plots, the sites are represented by each row, and the 

months are represented by each column. Each sampling trip represents a grid in the surface. 

These plots show a distinct E. coli hot spot in Sites 2 and 4 during the months of June, July, and 

August, and the standard deviation can help infer uncertainty associated with each probability. 

For the bacteriophage optimized model, increased probability of detection during the late fall 

and early winter months is shown, which corresponds to most of the bacteriophage detections. 

Although conditions were characteristic for bacteriophage detection in April, as indicated by 

the higher probability, it is unusual that no detections of bacteriophages occurred during that 

month. 
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Figure 3.2. Plot of probability of impairment for the (A) initial, (B) canonical correlation 

analysis, and (C) optimized model with 95% confidence intervals based on each month of 

sampling. Triangles represent mean bacteriophage probability of detection, and circles 

represent mean E. coli probability of exceedance of the 2012 recreational water quality 

geometric mean criteria.(United States Environmental Protection Agency 2012) 
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Table 3.4. Summary of mean probability of impairment with associated 95% confidence 

intervals for each E. coli and bacteriophage model. Results are also stratified by month and site 

to show differences in spatiotemporal trends of impairment. 

 E. coli Bacteriophage 

Initial model 

mean 

probability 

(95% CI) 

CCorA† 

model mean 

probability 

(95% CI) 

Optimized 

model mean 

probability 

(95% CI) 

Initial model 

mean 

probability 

(95% CI) 

CCorA model 

mean 

probability 

(95% CI) 

Optimized 

model mean 

probability 

(95% CI) 

Overall 0.282 0.324 0.369 0.322 0.371 0.416 

(0.249,0.315) (0.291,0.356) (0.338,0.401) (0.291, 0.354) (0.339, 0.403) (0.383, 0.449) 

January 0.225 0.253 0.265 0.435 0.471 0.518 

(0.099,0.351) (0.115,0.391) (0.140,0.390) (0.339,0.531) (0.421,0.520) (0.472,0.563) 

February 0.197 0.225 0.270 0.459 0.476 0.521 

(0.109,0.286) (0.134,0.317) (0.176,0.363) (0.339,0.580) (0.390,0.561) (0.429,0.612) 

March 0.245 0.277 0.311 0.188 0.291 0.344 

(0.137,0.354) (0.178,0.375) (0.212,0.411) (0.137,0.240) (0.192,0.390) (0.251,0.436) 

April 0.309 0.341 0.319 0.368 0.509 0.524 

(0.159,0.459) (0.213,0.469) (0.222,0.416) (0.280,0.455) (0.486,0.533) (0.493,0.554) 

May 0.313 0.366 0.375 0.297 0.382 0.452 

(0.123,0.504) (0.202,0.530) (0.268,0.482) (0.217,0.376) (0.333,0.432) (0.407,0.498) 

June 0.315 0.349 0.444 0.276 0.339 0.411 

(0.155,0.475) (0.179,0.520) (0.299,0.588) (0.159,0.393) (0.207,0.471) (0.276,0.547) 

July 0.410 0.473 0.472 0.316 0.374 0.397 

(0.254,0.566) (0.279,0.667) (0.287,0.657) (0.209,0.422) (0.281,0.468) (0.325,0.468) 

August 0.434 0.454 0.504 0.189 0.204 0.216 

(0.302,0.567) (0.328,0.580) (0.344,0.665) (0.002,0.376) (0.002,0.406) (0.165,0.416) 

September 0.198 0.278 0.367 0.205 0.244 0.249 

(0.146,0.249) (0.193,0.363) (0.257,0.478) (0.079,0.331) (0.087,0.400) (0.103,0.395) 

October 0.289 0.335 0.392 0.312 0.323 0.401 
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(0.178,0.401) (0.193,0.415) (0.275,0.478) (0.238,0.386) (0.228,0.418) (0.331,0.470) 

November 0.285 0.310 0.363 0.466 0.461 0.485 

(0.138,0.432) (0.178,0.443) (0.222,0.504) (0.396,0.537) (0.396,0.526) (0.431,0.539) 

December 0.161 0.224 0.350 0.357 0.378 0.476 

(0.060,0.262) (0.113,0.334) (0.228,0.472) (0.191,0.524) (0.204,0.552) (0.262,0.690) 

Site 2 0.393 0.438 0.552 0.198 0.214 0.304 

(0.217,0.569) (0.260,0.615) (0.453,0.650) (0.059,0.338) (0.057,0.371) (0.102,0.505) 

Site 4 0.435 0.483 0.553 0.309 0.341 0.388 

(0.338,0.532) (0.382,0.583) (0.473,0.632) (0.140,0.478) (0.163,0.519) (0.209,0.567) 

Site 7 0.250 0.340 0.444 0.280 0.324 0.359 

(0.122,0.377) (0.222,0.458) (0.377,0.512) (0.155,0.405) (0.188,0.461) (0.212,0.506) 

Site 10 0.279 0.344 0.360 0.310 0.334 0.347 

(0.193,0.365) (0.290,0.399) (0.297,0.424) (0.155,0.465) (0.179,0.488) (0.187,0.506) 

Site 13 0.170 0.210 0.278 0.320 0.346 0.371 

(0.101,0.238) (0.145,0.274) (0.232,0.324) (0.228,0.412) (0.262,0.429) (0.246,0.496) 

Site 14 0.251 0.259 0.262 0.427 0.425 0.455 

(0.166,0.336) (0.192,0.326) (0.232,0.292) (0.382,0.473) (0.384,0.466) (0.405,0.506) 

† CCorA, canonical correlation analysis. 
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Discussion 

The fate, transport, and source of FIOs and pathogens are challenging to untangle. Their 

ecology allows them to grow and persist, confounding the monitoring process(Byappanahalli, 

Fowler, et al. 2003; Surbeck et al. 2010). Flexible strategies are needed to overcome these 

difficulties. Statistical and machine learning models are potential solutions to infer mechanisms 

of fecal pollution, providing information concerning environmental controls and source. This 

paper presents a probabilistic approach blending traditional multivariate statistics and machine 

learning, to understand pathogen impairment. This approach is flexible, can use a variety of 

datasets, and can extract information in two phases: first through maximizing the correlations 

between two datasets, and second through Maxent modeling with sensitivity analysis to 

determine drivers of impairment. This technique provides an adequate approach to infer how 

environment shapes an indicator’s niche, aiding in understanding source, fate, and transport of 

fecal pollution. Ecological niche models can provide important information about the behavior 

and stability of populations within the microbial community. Better understanding about the 

integration and interaction of FIOs and enteric pathogens in microbial communities can aide in 

understanding sources and community interactions that influence fate and can provide insight 

to improve the efficacy of fecal indicators to predict human health risks (Kay et al. 2008; 

Cloutier et al. 2015). 



100 
 

 

Figure 3.3. Responses surface plots (A, C) and associated standard deviation (B, D) for 

the optimized of (A) E. coli and (B) bacteriophage models. Rows in the plots represent each 

sampling site, and columns represent each month that a sample was taken from the site. 

Response surface plots and standard deviations for the initial and canonical correlation analysis 

models for E. coli and bacteriophage are presented in Supplemental Fig. S3. 
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Canonical correlation analysis has been used previously to identify factors influencing 

fate and transport of fecal pollution, and this approach can identify dominant trends within 

heterogeneous watersheds (Hall et al. 2014). Continuous monitoring of this system for more 

than 10 years has established that alkalinity, hardness, and BOD5 are typically low with low 

variability during dry periods and areas are not influenced by urban and industrial point 

sources. This suggests that variation in these parameters is influenced by runoff entering 

Sinking Creek. There is a single identified permitted point source on Sinking Creek but a mix of 

urban, residential, forested, and agricultural areas adjacent to Sinking Creek. Although point 

sources, leaking wastewater lines, and failed septic tanks are possible sources, our efforts and 

efforts by the city wastewater department have not identified any large failures that would 

explain the trends in these water quality parameters. Previous use of multivariate statistical 

models to identify clusters of sites with similar water quality trends suggested that runoff is a 

large input (Hall et al. 2014). This suggestion is also supported by the local geology, terrain, and 

soil type. The local soils are predominantly Alfisols and Ultisols, which are moderately to heavily 

leached mineral soils with low organic content that experience intense weathering and leaching 

of calcium, magnesium, and potassium. In combination, this seems to support our conclusion 

that the alkalinity, hardness, and BOD5 changes support the dominant influence of runoff. 

Heterotrophic activity is also influential in this stream, based on loadings of coliform species, 

indicating that coliform processing of organic matter influences water chemistry greatly; fecal 

coliform survival is enhanced with moderate amounts of organic material (Whitman et al. 

2006). However, the negative loading of HPC indicates that the presence of coliform species is 

negatively impacted by competition. Canonical correlation analysis allows for inferences into 

interactions between water chemistry and microbial activity, aiding in understanding processes 

associated with impairment. 

Probabilistic approaches to modeling water quality allow for inclusion of uncertainty, 

improving on deterministic methods traditionally used. These have been suggested for use in 

total maximum daily load development (Borsuk et al. 2002), frequency of water quality posting 

errors (Kim and Grant 2004), and uncertainty of different fecal indicator methodologies 
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(Gronewold et al. 2008). These approaches allow decision-makers to assess confidence in 

model predictions, improving confidence in implementation of monitoring, management, and 

remediation strategies. This study adds to the probabilistic approaches by estimating 

probability of impairment based on environmental factors, enhancing appropriation of source 

and processes driving fecal pollution. 

E. coli impairment was driven largely by runoff, heterotrophic activity, and both P and C 

cycling. Hardness was dominant in both the CCorA and Maxent models, indicating that erosion 

of soils and geologic formations influence the presence of elevated levels of E. coli. Depending 

on oxic conditions, calcium can be used for biofilm formation, suggesting a reservoir of E. coli to 

be exchanged between water column and sediment (Mugnai et al. 2015). Microbial activity can 

also influence the ecology of E. coli, which are influenced by competition and predation. 

Indigenous bacteria in water, sediments, and on surfaces compete with E. coli for resources and 

space. Protozoa control E. coli persistence and numbers through predation (Cooley et al. 2006; 

Korajkic et al. 2013). High HPC indicates microbial runoff from soil erosion or a favorable niche 

within the suspended material from continuous inputs. Although PO4
3- was not a strong 

contributor to impairment in the models, the influence of AcidP indicates that deposition of P in 

sediments exerts an influence on E. coli ecology. Microcosm experiments have shown that E. 

coli can grow and survive at very low concentrations of P (0.07 mg L-1), below the minimum 

values for PO4
3- found in this study (Surbeck et al. 2010). Increased AcidP and AlkP indicate 

phosphate limitation because microbial populations increase production of these enzymes to 

satisfy their need for phosphate (Vadstein et al. 1988; Hill et al. 2010; Hill et al. 2012). 

Acid phosphatase had a similar influence on bacteriophage detection and E. coli, 

suggesting that Sinking Creek is P limited. Sediment coliforms exerted a strong influence on 

bacteriophage detections, where high levels of TCS inhibited bacteriophage detection. This 

suggests that high bacterial activity in sediments leads to the inability of bacteriophage to 

persist in the water column. One of the striking issues about variable contribution is that while 

BOD5 demonstrated a net positive influence on bacteriophages, the response was inverse for E. 

coli (Supplemental Fig. 3.S1 and 3.S2). This is likely due to seasonal influences on organic matter 

processing, where higher levels of BOD5 correspond to leaf litter processing in the fall and 
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winter. Seasonal patterns of survival were divergent for both species; E. coli impairment more 

readily occurred in the summer months, while bacteriophage detections were more readily 

occurring in the spring and colder months. Rainfall and flow vary greatly with seasons in this 

region, and their influence is part of what we capture in the seasonal variation that we have 

described. The role of flow conditions in total maximum daily load development is an important 

consideration that warrants attention in future studies, but sufficient stream flow samples were 

not collected in this study to evaluate with any level of statistical confidence the role of flow 

conditions on model development. However, these slight differences highlight a key point to 

consider when developing policy regarding pathogen impairment. Because of the diversity of 

pathogens with diverse environmental and ecological responses, multiple indicators are 

necessary to predict all pathogens associated public health risks. 

Requiring one bacterial species, such as E. coli, to mimic all pathogens limits its 

effectiveness. Even with the plethora of alternate indicators suggested for use, strong 

correlations with pathogens are inconsistent, questions arise concerning quantifying human 

health risk, and universal source-tracking methods are still needed. It is recommended that 

policy shift in two ways: (i) advocating for the use of alternate indicators for watersheds to 

better characterize pathogen distribution, and (ii) encouraging cooperation between modelers, 

molecular biologists, spatial scientists, chemists, and epidemiologists to develop a 

geographically flexible framework to evaluate source and risk. The use of common water 

quality parameters and estimations of microbial activity improves understanding of the ecology 

behind bacteriophage detection and elevated E. coli levels, using modeling to inform decision 

making concerning fecal pollution and guiding management strategies to reduce impairment. 

Also, as suggested above, better understanding of the ecological behavior of fecal indicators 

and pathogens can inform development and implementation of more effective indicators. 

Pathogens in both surface and groundwater present an economic and public health burden, but 

the use of models alongside alternate indicators can improve response and thus reduce the 

negative impacts associated with fecal pollution. 
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Supplemental Material 

The supplemental material includes a map of the stream and with sampling sites. With 

sites violating 2012 standards and sites with bacteriophage detections noted (Fig. 3.S1). The 

response curves for probability of impairment vs individual parameters for the E. coli models 

(Fig. 3.S2) and the bacteriophage models (Fig. 3.S3) are included in the supplemental material. 

A response surface plot for the models is included (Fig. 3.S4). Also included is a table providing 

the minimum and maximum values for the parameters used in the models (Table 3.S1). 
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CHAPTER 4 

MICROBIAL COMMUNITY METABOLISM ASSOCIATED WITH POLLUTION ALONG A STREAM 

CONTINUUM 

DENNIS GILFILLAN, PHILLIP SCHEUERMAN 

 

Abstract 

Microbial activity is essential to stream ecosystems because of secondary production of 

organic matter and nutrient cycling. Microbial community metabolism can be evaluated 

through monitoring single source carbon degradation using a plethora of carbon substrates 

allows for the creation of metabolic fingerprints of a community. Using phenotypic techniques 

can provide insights into functional shifts in a community, indicating ecosystem change and 

potential anthropogenic disturbances. This study incorporates microbial metabolism, in the 

form of Biolog EcoPlates, and multivariate statistical techniques to characterize microbial 

metabolism along a stream continuum. Water and sediment samples were collected on a 

monthly basis at eight sites from November 2016 to October 2017 on Sinking Creek, a tributary 

of the Watauga River in Tennessee. Carbon substrate utilization was measured for 31 

substrates to develop metabolic fingerprints, and water samples were analyzed for Escherichia 

coli, nitrates, and biochemical oxygen demand. Sediment-water interactions were analyzed 

using canonical correlation analysis to summarize between group variations. Dominant 

substrates were used to inform multiple linear regression models for three different types of 

pollution; fecal (E. coli), nutrient (NO3
-), and organic matter (BOD5). Results indicate both site-

specific and seasonal differences in overall metabolism, substrate groupings, and individual 

substrates. Sediment-water interactions were summarized by mostly metabolic inhibition, 

especially in sediments. Metabolic fingerprints for degree of pollution were developed using 

four substrates for fecal and nutrient, while only two substrates were identified to model 

organic matter pollution. Microbial activity shifts along the river continuum, and characterizing 

these shifts can assist in identifying anthropogenic stressors on water quality not readily seen in 

traditional monitoring strategies.  

  



112 
 

Introduction 

The river continuum concept (RCC) is an important perspective for characterizing 

relationships between abiotic and biotic components of stream ecology. The RCC posits that 

organic matter and nutrient processing is governed by physical gradients, and biota are 

strategically organized to maximize energy efficiency longitudinally along this continuum 

(Vannote et al. 1980; Creed et al. 2015; Tornwall et al. 2015). Anthropogenic activity also 

influences stream ecosystem dynamics, and identifying these disturbances is essential for 

ecological risk assessment. Agricultural intensity was found to be associated with shifts in the 

macroinvertebrate community composition in the Pomahaka river in New Zealand, and 

monitoring this intensity may provide a useful tool for identifying conditions for decline in 

stream health (Harding et al. 1999). Ecological fish guilds have been suggested as good 

indicators of stream integrity; a successional gradient of fish community structure matches 

many predictions of the RCC (Aarts et al. 2003). Studies surrounding the RCC have largely 

focused on macroinvertebrates (Grubaugh et al. 1997; Harding et al. 1999; Tomanova et al. 

2007; Rosi-Marshall et al. 2016) and fish (Aarts et al. 2003; Chick et al. 2006; Tornwall et al. 

2015), but less importance has been focused on the role of microorganisms within the RCC 

(Savio et al. 2015). 

Microbial activity is essential to stream ecosystems because of secondary production of 

organic matter and nutrient cycling (Garland and Mills 1991; Garland 1997; Christian and Lind 

2007; Tiquia 2010). While microbes are the most abundant and diverse organisms on Earth, 

information is limited concerning patterns governing their spatial distribution (Whitman et al. 

1998). One common theory suggests that microbes hold tremendous dispersal potential, 

leading to a cosmopolitan distribution governed by environmental stressors (Beijerinck 1913; 

Fierer and Jackson 2006; Fierer et al. 2007; Fierer 2008; Nemergut et al. 2011). Although 

modern phylogenetic techniques have enhanced understanding of complex microbial 

community structures (Alban and Tiedje 2006), phenotypic approaches can assess traits such as 

microbial metabolism, identifying traits integral to ecosystem function(Green et al. 2008; 

Krause et al. 2014). Microbial communities respond subtly to environmental shifts, making 

community metabolism a valuable indicator of ecosystem degradation (Garland and Mills 1991; 
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Boivin et al. 2002; Maier et al. 2009; Tiquia 2010). Prokaryotes are especially important in 

headwaters streams because low nutrient concentrations and high proportions of dissolved 

nutrients in organic form exist in these oligotrophic environments, and these conditions favor 

heterotrophic bacteria over phytoplankton and bacterial predators (Cotner and Biddanda 

2002). 

Microbial community metabolism can be evaluated through monitoring single source 

carbon degradation; using a plethora of carbon substrates allows for community level 

physiologic profiles (CLPPs) to be produced, creating metabolic fingerprints of each sample 

(Garland 1997; Preston-Mafham et al. 2002). CLPPs are a low cost method, providing insights 

into community physiology, with applications in a wide variety of research areas, including 

water quality (Choi and Dobbs 1999; Christian and Lind 2007; Tiquia 2010), dairy waste 

activated sludge (Gryta et al. 2014), fecal source tracking (Hagedorn et al. 2003), soil 

functionality (Acosta-Martinez et al. 2007; Rutgers et al. 2016), and constructed wetlands 

(Zhang et al. 2010). Initial interest in metabolic fingerprinting came about because there is no 

inoculation phase; samples can be added directly to wells either as a water sample or a 

suspension (Garland and Mills 1991; Garland 1997; Preston-Mafham et al. 2002). While 

weaknesses such as the effects of inoculum density, appropriate incubation temperature, and 

culture-dependence exist, suggestions to overcome these limitations have been proposed 

(Preston-Mafham et al. 2002; Christian and Lind 2006; Stefanowicz 2006; Christian and Lind 

2007). Despite these limitations, carbon degradation is a cost-effective method to investigate 

metabolic potential of the cultivatable portion of the community capable of utilizing given 

substrates, serving as a proxy to characterize various patterns of preferential substrate 

degradation based on spatiotemporal and environmental gradients (Grover and Chrzanowski 

2000; Preston-Mafham et al. 2002; Stefanowicz 2006). 

Using phenotypic techniques such as CLPPs provides insights into functional shifts in a 

community, indicating ecosystem change and potential anthropogenic disturbances. Industrial 

pollution has been shown to increase antibiotic resistance in fecal bacteria, with mercury in 

sediments and proximity to the source associated with higher resistance to antibiotics 

(McArthur and Tuckfield 2000). Chlorophyll concentrations have been negatively correlated 
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with metabolic diversity in heterotrophic bacteria, suggesting that increased exposure to 

autotrophs reduces plasticity of microbial communities (Sala and Estrada 2006; Tiquia 2010). 

Additionally, aquatic ecosystems provide multiple habitats for microorganisms to colonize, and 

the exchange of surface and groundwater within these environments creates potential for 

community transport (Storey et al. 1999; Maier et al. 2009). By considering metabolic 

interactions between these habitats, complex dynamics of organic matter processing can be 

better characterized. 

The hyporheic zone is defined as the stream habitat in which the sediments are 

hydrologically linked to the stream channel, and hyporheic exchange describes the interactions 

between surface and ground water in this zone. Ground and surface water ecosystems are 

highly dependent on one another; surface water provides energy to groundwater systems 

through deposition of dissolved and particulate matter, while hyporheic exchange inputs 

nutrients from groundwater systems to surface water (Ghiorse and Wilson 1988; Ford and 

Naiman 1989). As hyporheic zone bacteria incorporate and oxidize organic carbon, electron 

acceptors are used in order of decreasing free energy yield, and dissolved oxygen is readily 

depleted because it is the energetically favored electron acceptor (Christian and Lind 2007). As 

dissolved oxygen is depleted, consortia of bacteria shift assemblages to utilize less energetically 

favorable acceptors; this lowers redox potential and increases concentrations of chemically 

reduced nutrients (Liikanen and Martikainen 2003). Understanding sediment-water dynamics 

between microbial communities is essential to characterize the flow of organic matter within 

the river continuum, and can assist in identifying processes linked to sources of pollution.  

As a consequence of human activities, pollutants are discharged into streams via point 

and nonpoint sources, altering the natural state of the river continuum through the deposition 

of fecal wastes, excess nutrients, organic matter, and other types of pollution. Fecal pollution 

monitored through indicator organisms such as Escherichia coli presents a public health risk due 

to pathogens in human and animal wastes, representing the primary cause of noncompliance in 

the United States’ waterbodies (Field and Samadpour 2007; McLellan and Eren 2014; United 

States Environmental Protection Agency 2017). The well documented ability of E.coli to reside 

in sediments and beach environments is due to rich organic matter supplies, reduced predation 
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and protection from light inactivation (LaLiberte and Grimes 1982; Alm et al. 2003; 

Byappanahalli, Fowler, et al. 2003; Jamieson, Douglas M Joy, et al. 2005; Whitman et al. 2006; 

Maier et al. 2009). Pyrosequencing has revealed that sediment housed more pathogens than 

the corresponding water column from mixed use sites (Ibekwe et al. 2013). Many of these 

pathogens are introduced into the sediments through runoff, so characterizing the interactions 

between aquatic and benthic microbial communities can improve identifying patterns of fecal 

pollution, deposition, and persistence. Nutrient pollution degrades ecosystem services through 

eutrophication, reducing the utility of surface waters (Carpenter et al. 1998). Nutrients can be 

introduced into ecosystems through  runoff from land surfaces as well as through microbially-

mediated cycling within water and sediments (Song et al. 2004; Qu et al. 2005). Bacteria in the 

hyporheic zone often input nutrients in greater quantities than allochthonous sources such as 

agricultural and urban  runoff (Heinen and McManus 2004; Song et al. 2004). Untangling these 

natural and anthropogenic drivers of nutrient pollution can assist in remediation efforts and 

identifying sources in rivers and streams.  

Multivariate statistical analyses are common practice in microbial ecology, and CLPPs 

are typically analyzed using some form of unconstrained analysis such as principal component 

analysis or cluster analysis (Zak et al. 1994; Preston-Mafham et al. 2002). Hypothesis-based 

constrained analysis are useful for many ecologically relevant questions concerning the RCC 

(Buttigieg and Ramette 2014). For example, canonical correlation analysis (CCorA) can assess 

the interactions between two different types of samples, i.e., water or sediment, to summarize 

and extract information concerning between group variation (Khalil et al. 2011; Hall et al. 

2014). Multiple linear regression (MLR) can be used to assess what metabolic fingerprints 

correspond to degree of pollution in a watershed. While minimal studies exist concerning the 

links between pollution gradients and metabolism (Harbott and Grace 2005; Walsh et al. 2005), 

microbial activity presents an alternative tool to assess these relationships, aiding in source 

identification and strategizing remediation.  

This study incorporates CLPPs and multivariate statistical techniques to characterize 

microbial metabolism along a stream continuum in the Southern Appalachian Mountains. 

Spatiotemporal analysis identified unique patterns of substrate utilization; these were further 
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investigated using CCorA and MLR. CCorA was used to summarize interactions between aquatic 

and benthic microbial communities to utilize various carbon substrates to better characterize 

metabolic exchange between these environments. Dominant degraded substrate patterns were 

then used to inform MLR models on three pollutants; fecal pollution as measured by E. coli 

concentrations, nutrient pollution in the form of nitrates (NO3
-), and organic pollution in the 

form of biochemical oxygen demand (BOD5).  

 

Methods 

Data Collection 

Samples were collected on a monthly basis at eight sites from November 2016 to 

October 2017 on Sinking Creek, a tributary of the Watauga River in Tennessee, USA (Fig. 4.S1). 

Water samples were collected by hand in sterile 2-oz Whirl-pak bags for heterotrophic plate 

counts (HPC) and CLPP analysis; HPC were collected in duplicate while CLPP was collected in 

triplicate. Water samples for Colilert® were collected in sterile 100 mL bottles (IDEXX 

Laboratories, Westbrook, Maine). Sediment samples were collected in 2-oz Whirl-paks and 

stored in a similar fashion to the water samples for analysis for acridine orange direct counts 

(AODC) and sediment CLPPs. Triplicate 2 L samples of water were collected for the analysis of 

NO3
- and BOD5 within the water column. Samples were stored on ice and delivered to the 

laboratory and sample preparation was performed within 6 hours for each analysis.  
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Microbial and Chemical Analysis 

HPCs were conducted according to Standard Methods for the Examination of Water and 

Wastewater (American Public Health Association 2005). E. coli concentrations were determined 

using the Colilert® Quanti-Tray method (American Public Health Association 2005). One 

Colilert® sample was collected and processed per site. AODCs were performed as described by 

Wilson et al. (1983) (Wilson et al. 1983; Hall et al. 2014).. Water samples for NO3
- were analyzed 

by ion chromatography (American Public Health Association 2005). BOD5 was determined using 

the 5-day BOD5 test (American Public Health Association 2005). 

Biolog EcoPlatesTM were used to develop the CLPPs. These are microtiter plates with 31 

ecologically relevant carbon substrates and a control well used to correct for effects of 

background color (Garland and Mills 1991; Garland 1997). As the microbial communities 

degrade the respective carbon sources, wells change from clear to purple due to a reaction with 

the tetrazolium dye included in each well (Garland and Mills 1991). The benefit of these plates 

is that they allow for samples to be inoculated in triplicate, allowing in-plate replication. This 

replication increases the probability that the CLPP developed indeed represents the microbial 

community studied (Stefanowicz 2006). For water samples, each well was inoculated with 150 

µL of water sample. For sediment samples, 0.3 g of sediment was vortexed with 30 mL of 

Phosphate Buffer Saline solution and allowed to settle before inoculation. Each well was then 

inoculated with 150 µL of the suspension. Both water and sediment sample were incubated at 

25oC. Plates were read immediately after inoculation and every 24 hours for 120 hours with a 

MicroSkan MCC plate (Thermo-Scientific, Waltham, MA USA)reader using a 595 nm filter. 
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Constructing the CLPPs 

Optical density (OD) for each individual well were corrected by subtracting the OD from 

the control within each replicate, and those wells in which the OD was less than the control well 

were recorded as zero. Mean values of OD for each substrate were calculated, and average well 

color development (AWCD) was calculated. AWCD is the mean of the OD for all 31 substrates 

and is calculated using Eq. (4.1), where ODi is the corrected optical density for substrate i and n 

is the number of substrates utilized within the CLPP.  

𝐴𝑊𝐶𝐷 =  
∑ 𝑂𝐷𝑖

𝑛
𝑖=1

𝑛
           (4.1) 

In addition to determining the OD for each substrate and overall AWCD, substrates were 

grouped into the following chemical structures: amines, amino acids, carbohydrates, carboxylic 

acids, phenolic compounds, phosphorylated compounds, and polymers. ODs were averaged 

within each group to obtain a group AWCD (GAWCD) for the respective chemical structures. 

 

Data Analysis 

Pearson’s correlation analysis was performed first to determine if there were any effects 

due to inoculum density. This was calculated by comparing the AWCD for each incubation 

period (24, 48, 72, 96 and 120 hours of incubation), the HPC for the aquatic samples, and the 

AODC for the sediment samples. AWCDs were compared for spatiotemporal differences using 

separate one-way analysis of variance (ANOVA) for each time of incubation. One-way ANOVA 

was also performed on individual substrate OD and the GAWCD of each chemical group using 

120 hours of incubation as the time for comparison. Seasons are defined using the astronomical 

definition, where winter starts on the winter solstice, spring the spring equinox, summer the 

summer solstice, and autumn (fall) the autumnal equinox. 

Initial multivariate data analysis included all 62 substrate ODs (31 for water, 31 for 

sediment).  the selected time point for analysis was 120 hours of incubation. Variance inflation 

factors (VIF) were calculated for each substrate using separate MLRs to reduce collinearity of 

the CLPPs. MLR is an extension of ordinary least squares regression with multiple explanatory 

variables for a single response variable. The assumption in MLR is that there are gradients 

associated with changes in the explanatory variables that can be used to predict changes in the 
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response variable (Buttigieg and Ramette 2014). VIFs are used to assess the collinearity within a 

set of independent variables, and this is calculated by performing separate MLRs in which each 

independent variable is selected as a new independent variable, and all other independent 

variables are used as covariates (Marquardt 1970). An explanation of variance (R2) is calculated, 

which represents the amount of variance is explained by the other independent variables. The 

VIF is then calculated as follows (Eq. (4.2)): 

VIF = 
1

1−𝑅2           (4.2) 

An VIF of 1 would indicate there is no collinearity present in the independent variables, 

and the higher the values, the more collinear the independent variables possess. Variables were 

removed with a VIF above 5, indicating that the other variables can explain 80% of the variance 

of a given variable. VIF were recalculated, and if the significantly associated variables were still 

showing collinearity, they were removed from analysis. Two multivariate analyses were applied 

after reduction of collinearity; CCorA and MLR. 

CCorA was used to explore the possible interactions of the aquatic and benthic microbial 

metabolism. CCorA is a useful multivariate technique when interactions between two datasets 

exists, maximizing correlations between them for determining dominant variables in observed 

water quality (Noori et al. 2012; Hall et al. 2014) or as a variable selection technique (Shu and 

Ouarda 2007; Khalil et al. 2011). In this study, CCorA captured between group variations of the 

sediment and water CLPPs, describing functional interaction between aquatic and benthic 

communities. CCorA allows simultaneous analysis of several predictor and explanatory 

variables by determining the largest correlations within each data set and between the two 

data sets. Linear combinations of variables within each data set are created (canonical 

variables) followed by determination of the largest correlation between the two data sets, 

which are referred to as canonical correlations. These canonical correlations are a measure of 

the strength of association between the two data sets (Johnson and Wichern 1992). 

The process results in the successive extraction of canonical variables so the second 

canonical variable pair (CVP) is the second most highly correlated pair out of all possible linear 

combinations that are uncorrelated with the first CVP, resulting in the generation of CVPs of 

gradually decreasing explanatory power. Canonical loadings are used to interpret the canonical 



120 
 

structure by assessing the contribution of each variable to the structure. These loadings 

measure the correlation between the original variables and the corresponding canonical 

variable. These loadings reflect the variance shared between the canonical variables and the 

original variables, with higher absolute values of loadings demonstrating stronger associations 

(Dillon and Goldstein 1984). These strong associations were used as a variable selection 

procedure, and only canonical loadings greater than 0.3 were considered to be valuable, given 

that this is the threshold at which approximately 10% of the variance is explained by a given 

coefficient (Hair et al. 1998; Hall et al. 2014). 

MLR models were developed to predict three different measures of pollution; Fecal 

pollution as measured by E. coli concentrations, nutrient pollution based on nitrates 

concentrations in water, and organic pollution as measured by BOD5. E. coli concentrations 

were log transformed before analysis. Explanatory variables were selected through the 

previously mentioned CCorA procedure, and a feed-forward regression technique whereby the 

substrate with the largest correlation with the response variable is considered first for entry 

into the model. If the coefficients of the model are significantly different from zero (p<0.05), 

the variable is included in the model. This is repeated until no more variables can be included 

based on the significance criteria.  
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Results 

Effects of inoculum density and spatiotemporal metabolic patterns 

Variation in inoculum density can influence interpretation of CLPPs (Garland 1997; 

Christian and Lind 2007); however, no significant correlations were found between inoculum 

density and color development in water samples (p>0.06) or sediment samples (p>0.20) at each 

of the readings. This suggests that cell density in this case was responsible for less of the 

observed variation than were other factors (Choi and Dobbs 1999). AWCD in water samples 

were significantly different between sites for each incubation period (p<0.002), except for the 

first 24-hour readings (p = 0.097) (Table 4.1). Generally, SC12 and SC13 showed the highest 

AWCD at each of the incubation periods (Figure 4.1a). Significant differences were found at all 

incubation periods (p<0.015) for sediment sampling sites, with SC1 having the highest AWCD at 

each of the time periods (Table 4.1).  

Seasonal differences were also found in both water and sediment AWCD. In water 

samples, only seasonal differences were detected at the 24 hours incubation period (p<0.001), 

with 2 distinct groups of seasons; spring and summer AWCD comprise one group while autumn 

and winter AWCD comprise a second group (Table 4.1). Sediment samples showed pronounced 

seasonal variation at all incubation periods (p<0.001); the same distinct groupings were found 

within the sediment samples. Generally, AWCD was higher in the spring and summer for both 

the water and sediment samples (Figure 4.1b). 
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Figure 4.1. Average well color development (AWCD) over the incubation period for 

water (a) and sediment samples (b). Water AWCD are grouped by site while sediment AWCD 

are group by season to display the more significant trends. Error bars represent the 95 % 

confidence intervals of the mean AWCD. 
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GAWCD at 120 hours of incubation was found to be different between sites for amino 

acids (p <0.001) (Figure 2a), carboxylic acids (p <0.001) (Figure 2b), phosphorylated compounds 

(p = 0.008), and polymers (p = 0.013), while only phosphorylated compounds were found to 

have seasonal differences (p = 0.001). Sediment GAWCD site differences were found in 

carbohydrates (p= 0.031), amino acids (p=0.015), amines (p<0.001) (Figure 2c), and phenolic 

compounds (p=0.005) (Figure 2d), while all GAWCD were found to be significantly difference 

based on season (p = 0.008).  

 

Figure 4.2. Box and whisker plots of the group average well color development (GAWCD) 

for amino acids in water (a), carboxylic acids (b) in water, amines in sediment (c), and phenolic 

compounds (d). Boxes represent the 25th and 75th percentile, with the lines denoting the 

median. Whiskers represent the 5th and 95th percentiles. 
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Nineteen substrates in water showed site specific differences that were significant, 

while 11 substrates in water showed significant seasonal differences. Twelve substrates in 

sediment showed significant site specific differences, while 6 substrates demonstrated 

significant season variation. Degree of significance is shown in Fig. 4.3 as well as how the 

substrates were grouped based on chemical structure.  

 

Table 4.1. Mean AWCD of each site and season and the associated standard error (SE) for water 

and sediment samples during the incubation period. Geometric means and geometric standard 

deviation (GSD) for the standard plate counts and AODC are shown for water samples and 

sediment samples, respectively. W Water samples, S Sediment samples 

 AWCD 

 (SE)  

24hrs 

AWCD  

(SE)  

48 hrs 

AWCD  

(SE)  

72 hrs 

AWCD  

(SE)  

96 hrs 

AWCD  

(SE)  

120 hrs 

HPC 

(GSD) 

(CFU/mL) 

AODC  

(GSD) 

(108 

cells/g) 

SC1W 0.034 

(0.005) 

0.198 

(0.033) 

0.402 

(0.048) 

0.566 

(0.058) 

0.675 

(0.062) 

480 

(1.53) 

 

SC4W 0.037 

(0.004) 

0.241 

(0.033) 

0.474 

(0.056) 

0.668 

(0.067) 

0.797 

(0.067) 

469 

(1.24) 

 

SCBWW 0.033 

(0.004) 

0.209 

(0.023) 

0.439 

(0.042) 

0.606 

(0.052) 

0.723 

(0.057) 

421 

(1.51) 

 

SCAWW 0.031 

(0.003) 

0.173 

(0.021) 

0.369 

(0.042) 

0.515 

(0.045) 

0.634 

(0.052) 

429 

(1.50) 

 

SC8W 0.047 

(0.011) 

0.267 

(0.048) 

0.477 

(0.055) 

0.621 

(0.059) 

0.707 

(0.060) 

455 

(1.44) 

 

SC12W 0.062 

(0.009) 

0.388 

(0.030) 

0.633 

(0.024) 

0.785 

(0.029) 

0.884 

(0.030) 

308 

(1.41) 

 

SC13W 0.043 

(0.007) 

0.379 

(0.023) 

0.638 

(0.027) 

0.803 

(0.031) 

0.907 

(0.030) 

199 

(1.45) 

 

SC14W 0.041 0.324 0.566 0.726 0.829 248  
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(0.007) (0.023) (0.033) (0.040) (0.041) (1.57) 

SC1S 0.147 

(0.025) 

0.801 

(0.089) 

1.144 

(0.066) 

1.370 

(0.068) 

1.482 

(0.054) 

  

SC4S 0.098 

(0.015) 

0.677 

(0.055) 

1.019 

(0.046) 

1.218 

(0.052) 

1.355 

(0.053) 

 1.96 

(2.31) 

SCBWS 0.096 

(0.013) 

0.705 

(0.057) 

1.056 

(0.052) 

1.259 

(0.053) 

1.383 

(0.046) 

 1.36 

(2.42) 

SCAWS 0.102 

(0.019) 

0.693 

(0.061) 

1.062 

(0.053) 

1.273 

(0.059) 

1.403 

(0.046) 

 1.97 

(1.99) 

SC8S 0.096 

(0.015) 

0.710 

(0.056) 

1.063 

(0.067) 

1.275 

(0.069) 

1.399 

(0.062) 

 1.52 

(2.39) 

SC12S 0.092 

(0.016) 

0.713 

(0.081) 

1.120 

(0.068) 

1.348 

(0.069) 

1.463 

(0.062) 

  

SC13S 0.060 

(0.011) 

0.575 

(0.051) 

0.943 

(0.046) 

1.172 

(0.051) 

1.298 

(0.051) 

 1.97 

(1.69) 

SC14S 0.051 

(0.011) 

0.466 

(0.057) 

0.839 

(0.059) 

1.047 

(0.066) 

1.169 

(0.067) 

 1.72 

(2.00) 

WinterW 0.025 

(0.003) 

0.224 

(0.022) 

0.474 

(0.048) 

0.621 

(0.055) 

0.726 

(0.055) 

646 

(1.32) 

 

SpringW 0.050 

(0.005) 

0.299 

(0.026) 

0.511 

(0.030) 

0.676 

(0.032) 

0.773 

(0.030) 

487 

(2.22) 

 

SummerW 0.048 

(0.005) 

0.283 

(0.024) 

0.521 

(0.034) 

0.709 

(0.040) 

0.831 

(0.043) 

203 

(2.48) 

 

FallW 0.030 

(0.003) 

0.254 

(0.027) 

0.481 

(0.038) 

0.620 

(0.040) 

0.733 

(0.044) 

300 

(1.65) 

 

 

WinterS 0.038 

(0.004) 

0.423 

(0.040) 

0.884 

(0.042) 

1.083 

(0.041) 

1.224 

(0.041) 

  

SpringS 0.111 0.768 1.123 1.345 1.457   
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(0.007) (0.032) (0.031) (0.032) (0.028) 

SummerS 0.138 

(0.010) 

0.781 

(0.031) 

1.106 

(0.036) 

1.333 

(0.039) 

1.461 

(0.035) 

 2.18 

(3.14) 

FallS 0.038 

(0.006) 

0.517 

(0.031) 

0.860 

(0.034) 

1.054 

(0.034) 

1.185 

(0.035) 

 1.38 

(5.62) 

  

Sediment-water interactions 

VIF indicated that 12 substrates exhibited high collinearity (VIF>5) within the aquatic 

CLPPs and these were removed from subsequent analysis; only four substrates were found to 

be highly collinear within the benthic CLPPs. This left 19 substrates for the water dataset and 27 

substrates for the sediment dataset. 19 CVPs were developed as linear combinations of the 

original variables. Of these pairs, only two CVPs were found to be significant (p =0.001 and 

p=0.014, for CVP 1 and CVP 2, respectively). The squared canonical correlation coefficient for 

CVP 1 was 0.753 and the canonical correlations for CVP 2 was 0.699. This can be interpreted in 

the following ways; in the first canonical variable pair, the 75.3 % of the variation in the water 

canonical variable 1 can be explained by the variation in the sediment canonical variable 1, and 

while 69.9% of the variation in water canonical variable 2 can be explained by the variation in 

sediment canonical variable 2.  

 



127 
 

 

Figure 4.3. Plot of individual substrates, their corresponding chemical groupings, and the 

patterns of spatial and seasonal variation. Degree of significance is denoted by color of the 

corresponding cell, with darker colors denote lower p-values. All substrates showed some 

significant spatial and seasonal variation except for D-Cellobiose. 

Well Chemical Group Legend

p<0.001 p<0.01 p<0.05

Aquatic 

spatial 

variation

Aquatic 

seasonal 

variation 

Benthic 

spatial 

variation

Benthic 

seasonal 

variation

Amines

G4 Phenylethyl amine

H4 Putrescine

Amino Acids

A4 L-Arginine

B4 L-Asparagine

C4 L-Phenylalanine

D4 L-Serine

E4 L-Threonine

F4 Glycyl-L-Glutamic Acid

Carbohydrates

A2 β-Methyl-D-Glucoside

A3 D-Galatctonic-Acid-γ-Lactone

B2 D-Xylose

C2 i-Erythritol

D2 D-Mannitol

E2 N-Acetyl-D-Glucosomine

G1 D-Cellobiose

H1 α-D-Lactose

Carboxylic Acids

B1 Pyruvic Acid  Methyl Ester

B3 D-Galacturonic Acid

E3 γ-Hydroxybutyric Acid

F2 D-Glucosaminic Acid

F3 Itaconic Acid

G3 α-Ketobuyric Acid

H3 D-Malic Acid

Phenolic Compounds

C3 2-Hydroxy Benzoic Acid

D3 4-Hydroxy Benzoic Acid

Phosphorylated Compounds

G2 Glucose-1-Phosphate

H2 D,L-α-Glycerol Phosphate

Polymers

C1 Tween 40

D1 Tween 80

E1 α-Cyclodextrin

F1 Glycogen
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Loadings measure the strength of associations between the original variables and their 

canonical variables, and substrates with loadings greater than 0.3 were retained for future 

analyses. Overall, metabolic inhibition influenced the canonical structure more than substrate 

utilization (Figure 4.4). Substrates identified with the greatest influence on the canonical 

structure were metabolic inhibition of α-Ketobuyric Acid, Glycyl-L-Glutamic Acid, γ-

Hydroxybutyric Acid, and α-D-Lactose in sediment; metabolic inhibition of Pyruvic Acid Methyl 

Ester and D-Mannitol in water were also influential (Table 4.2). The ability to degrade D-Malic 

acid in water was found to be weakly influential as well as the ability to degrade N-Acetyl-D-

Glucosomine, D-Cellobiose, and L-Serine in sediment.  

 

Table 4.2. Canonical loadings of each of the substrates with at least 1 loading above the 0.3 

threshold. 

Well Substrate Water 

Canonical 

Loadings  

(CVP 1) 

Water 

Canonical 

Loadings  

(CVP 2) 

Sediment 

Canonical 

Loadings  

(CVP 1) 

Sediment 

Canonical 

Loadings  

(CVP 2) 

A2 β-Methyl-D-Glucoside -0.491 
   

A3 D-Galactonic-Acid-γ-

Lactone 

-0.376 
   

A4 L-Arginine 
  

-0.386 
 

B1 Pyruvic Acid Methyl Ester -0.632 
   

B2 D-Xylose -0.522 
 

-0.404 
 

C3 2-Hydroxy Benzoic Acid 
  

-0.313 
 

D2 D-Mannitol -0.588 
   

D4 L-Serine 
   

0.319 

E1 α-Cyclodextrin 
  

-0.512 
 

E2 N-Acetyl-D-Glucosomine 
  

0.464 -0.316 
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E3 γ-Hydroxybutyric Acid 
  

-0.586 
 

E4 L-Threonine 
  

-0.481 
 

F1 Glycogen -0.443 -0.393 
  

F3 Itaconic Acid 
  

-0.346 
 

F4 Glycyl-L-Glutamic Acid 
  

-0.617   

G1 D-Cellobiose 
 

-0.385 0.323 
 

G2 Glucose-1-Phosphate 
  

-0.386 
 

G3 α-Ketobuyric Acid 
  

-0.681 
 

G4 Phenylethyl amine 
  

-0.454 
 

H1 α-D-Lactose 
  

-0.583 
 

H3 D-Malic Acid 0.353 
 

-0.486 
 

H4 Putrescine -0.314 
 

-0.540 
 

 

Relationships with pollution 

Models were used to assess potential relationships between microbial activity and 

degree of pollution, and significant predictive models were developed for degree of fecal 

(p=0.003), nutrient (p<0.001), and organic pollution (p=0.001) (Table 4.3). Results for the fecal 

pollution model identified four substrates that predict levels of log transformed E. coli values: 

pyruvic acid methyl ester in water, α-D Lactose in sediment, D-Xylose in water, and Putrescine 

in water. These substrates explained 40.6% of the variance associated with log transformed E. 

coli values. Nutrient pollution models identified D-Malic Acid in water, L-Threonine in sediment, 

L-Arginine in sediment, and Pyrivic Acid Methyl Ester in water as significant predictor of 

nitrates, explaining 58.3% of the variance. BOD5 was found to be predicted by the patterns of 

two substrates; Putrescine in sediment and D-Malic Acid in water. This explained only 13.9% of 

the total variance. The degradation of D-Xylose affected the degree of fecal pollution the 

strongest and the degradation of D-Malic acid in water affected the amount of organic pollution 

strongest; however, the inhibition of D-Malic acid in water affected the amount of nutrient 

pollution the strongest.  
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Figure 4.4. Canonical loadings for the sediment-water interactions. Only influential (loadings > 

0.3) are shown in the figure, and only significant canonical axes are shown. Labels for each 

substrate correspond to the well in which the substrate is present, and these abbreviations can 

be found in figure 3 or table 2. 
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Table 4.3. Performance metrics, included substrates, and standardized coefficients for the three 

pollution models developed. Asterisks indicate p-values of less than 0.05 (*), 0.01 (**), and 

0.001 (***). W water samples S sediment samples 

Model Adjusted R2 Substrate Standardized 

coefficients 

Fecal (Log E. coli) 0.406** B1w 

B2w 

H1s 

H4w 

0.252* 

0.350** 

0.294** 

-0.235* 

Nutrient (NO3
-) 0.583*** A4s 

B1w 

E4s 

H3w 

-0.264** 

0.224* 

0.324*** 

-0.529*** 

Organic (BOD5) 0.139** H3w 

H4s 

0.368* 

0.222** 

 

Discussion 

Riverine systems transport anthropogenic and natural sources of nutrients and organic 

matter downstream, linking the water column to the landscape through surface  runoff. These 

terrestrial inputs cause shifts in microbial community activity, structure, and function; due to 

their role in nutrient cycling (Christian and Lind 2007), characterizing these complex 

relationships can aid in identifying and remediating human-driven ecologic degradation. This 

study used EcoPlates to assess changes in metabolism along a stream continuum within aquatic 

and benthic assemblages of microorganisms, identifying relationships between these habitats 

and different types of pollutants. Phenotypic approaches such as EcoPlates are low cost proxies 

to characterize microbial metabolism. While the substrates existent in the EcoPlates might not 

represent the exact organic matter present in situ, EcoPlates provide as set of environmentally 

relevant substrates that can discriminate between community metabolism effectively (Grover 

and Chrzanowski 2000). 
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Generally the most upstream sites (SC14, SC13, and SC12) had higher rates of aquatic 

metabolism, suggesting these assemblages were more equipped to utilize a wide variety of 

allochthonous substrates as described in the RCC (Vannote et al. 1980; Rosi-Marshall et al. 

2016). However, the heterogeneity of inputs from mixed land use after SC12 do not allow for a 

clear established gradient in terms of overall metabolism, as measured through AWCD. Sinking 

Creek is an intermittent stream because some sites (SC1 and SC12) experienced dry periods. 

Water availability in soils stimulates microbial activity because of increases in nutrients and 

organic matter (Belnap et al. 2004; Williams 2006). The assemblages at SC1 demonstrated 

pronounced increase in overall metabolism, consistent with Timoner et al. (2014) who reported 

that rehydration events lead to increased functional diversity in sediment biofilms (Timoner et 

al. 2014); a similar but not as drastic difference was also seen in SC12. These desiccation events 

cause physiologic adaptations and community sorting based on drought tolerance (Fierer et al. 

2003; Schimel et al. 2007; Timoner et al. 2014). 

Although explanations for seasonal preference of organic substrates are limited (Pettine 

et al. 1999), this study identifies two temporal regimes for community metabolism; one 

consisting of spring and summer, and the second consisting of fall and winter, similar to 

Urakawa et al. (2013) (Urakawa et al. 2013). These regimes were more pronounced in the 

sediments. Oest et al. 2018 found a different seasonal pattern in sediment; Summer and Fall 

sediment communities possessed more versatile substrate profiles than Spring and Winter 

sediment communities (Oest et al. 2018). Duarte et al. 2016 found that seasonal changes in 

water chemistry influenced microbial activity and diversity more so than warming alone (Duarte 

et al. 2016). Also, seasonal changes in anthropogenic inputs such as fertilization, landscaping 

activities, or overflows of municipal and industrial wastewater discharge could alter the 

composition of allochthonous organic matter, shaping bacterial assemblages based on these 

patterns (Sala et al. 2006; Sala et al. 2008; Tiquia 2010). 

Hyporheic sediments are known to have heterogeneous physiochemical conditions, 

affecting nitrogen cycling due to complex processes requiring diverse environmental conditions 

(Storey et al. 1999). Amino acids and amines are both nitrogen-rich, with available ammonium 

side chains for assimilation by heterotrophic bacteria (Pettine et al. 1999), and strong 
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preferences for these substrates suggests that nitrogen limitation is a strong influence on 

community function. High use of amino acids or amines suggests nitrogen deprivation (Oest et 

al. 2018), while low use would suggest the presence more energetically favorable sources of 

nitrogen, and could indicate inputs of fertilizers, agricultural wastes, and potential sewage 

leakages (Carpenter et al. 1998). 

Bacterial communities processed phosphorylated organic compounds uniquely between 

sites, suggesting different conditions for assimilation of another essential nutrient, phosphorus. 

Low utilization of these substrates would indicate more freely available forms of phosphorus, 

and potential sources of pollution from urban, industrial, or agricultural sources (Carpenter et 

al. 1998). Phosphorylated compounds were the only substrate group which exhibited aquatic 

seasonal variation, suggesting either changes in terrestrial inputs, in-stream availability of 

phosphorus, or environmental factoring governing nutrient cycling. Productivity in aquatic 

ecosystems increases in the warmer months, and in lake ecosystems it is found to correlate 

with total phosphorus, suggesting that the production-phosphorus relationship stimulate 

changes in microbial metabolism (Hanson et al. 2003). This could explain the increased 

utilization of phosphorylated compounds in comparisons to cooler, less productive months.  

Carboxylic acids are frequently found in aquatic systems; they are a product of bacterial 

fatty acid degradation (Christian and Lind 2007), photochemical degradation of high molecular 

weight dissolved organic carbon (Bertilsson and Tranvik 2000), or as the end product of 

fermentative metabolism (Ding and Sun 2005). Headwaters sites (SC12, SC13, SC14) processed 

these compounds more rapidly than downstream sites, in line with Berggren et al. (2010) who 

found bacterial carbon demand is preferential to carboxylic acids in forested streams (Berggren 

et al. 2010). Organic acids such as carboxylic acids degrade more quickly in aerobic settings 

based on marine studies, independent of bacterial abundance (Ding and Sun 2005); however, 

Christian and Lind (2007) found that anaerobic conditions induced the highest activity of 

carboxylic acid degradation in the sediment-water interface (Christian and Lind 2007). The 

reduced ability to process carboxylic acids as the stream flows downstream could be due to 

increased productivity as hypothesized by the RCC, creating higher molecular weight dissolved 
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organic carbon that not as easily degraded by microbial assemblages (Cotner and Biddanda 

2002). 

The influence of water stress from desiccation and rewetting of sediments at two sites 

(SC1 and SC12) is further supported by the abilities of these assemblages to utilize phenolic 

compounds. Leflaive et al. 2008 found that phenolic compounds were the preferred substrates 

in nutrient depleted aquatic microcosms (Leflaive et al. 2008). The rewetting and desiccation 

experienced by these assemblages foster communities that rapidly respond to water 

availability, affording opportunistic species to capitalize on a wide variety of complex organic 

compounds such as phenolic compounds (Timoner et al. 2014).  

Hyporheic zones provide an environment for rapidly exchanging nutrients and organic 

matter along steep oxygen gradients, creating a reservoir for diverse microbial activity (Gantzer 

and Stefan 2003; Vreča 2003; Qu et al. 2005). Results from this study revealed that in this 

stream substrate inhibition was a strong influence on sediment-water interactions, and these 

patterns connect to certain degradation pathways. α-Ketobutyric Acid is a degradation product 

of threonine, an amino acid, and the strong canonical loading supports that metabolic inhibition 

of α-Ketobutyric Acid in sediment, and to a lesser degree inhibition of threonine in sediment, is 

important to understanding heterogeneity of metabolism within this stream (Bell and Turner 

1976). This also supports the influence of nitrogen on metabolic activity in microbial 

communities. Another dominant inhibitory substrate is pyruvic acid methyl ester, whose 

conjugate base pyruvate is a precursor to the tricarboxylic acid cycle; α-Ketobuyric Acid is also a 

key intermediate within this cycle (Burton and Krebs 1953). The conjugate base of Glycl-L-

Glutamic acid, glutamate, is another key organic compound associated with cellular 

metabolism, and sediment metabolic inhibition of Glycl-L-Glutamic acid further supports the 

dominance of inhibition of sediment respiration in capturing heterogeneity of this aquatic 

system.  

Models identified substrates utilization patterns that were indicative of degree of fecal, 

nutrient, and organic pollution. The dominant substrate in fecal pollution models was D-xylose; 

strains of E. coli are known to use D-xylose as a complete source of carbon and energy  (Blum 

2008). The ability to ferment lactose is another important characteristic of E. coli, helping 
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differentiate E. coli from Shigella and Salmonella (de Sousa 2006). The degradation of D-lactose 

in sediments also suggests potential colonization and resuspension into the water column. 

Hagehorn et al. (2003) found that fecal bacteria utilized D-lactose more often in human rather 

than non-human isolates (Hagedorn et al. 2003). Putrescine is a polyamine, a class of amines 

widely distributed in living organisms, where they are deeply involved in the regulation of 

cellular functions (Igarashi and Kashiwagi 2000). Although E. coli can utilize putrescine as a 

carbon and nitrogen source using two alternate degradation pathways (Shaibe et al. 1985; 

Kurihara et al. 2005; Schneider and Reitzer 2012), the negative coefficient suggests that 

environmental strains of E. coli are less efficient at utilizing this substrate. The most influential 

substrate in nutrient models was metabolic inhibition of D-Malic acid. Malates have been 

shown to inhibit nitrogen fixation at high concentrations (Bergersen 1997), and microbial 

production of malates occurs in nitrogen starvation conditions (Chi et al. 2016). The two amino 

acids identified as influential substrates displayed contrasting patterns; the ability to degrade L-

threonine is offset by the inhibition of metabolizing L-Arginine. This suggest that the ability to 

degrade more complex dissolved organic nitrogen sources diminishes as increased amounts of 

inorganic nitrogen are available in the environments. The interlinking between these types of 

pollution and the degradation of organic matter is further supported by the inclusion of D-malic 

acid and Putrescine from the fecal and nutrient models within the organic matter pollution 

model. 

The use of CLPPs and as metabolic fingerprints represents an attractive low-cost 

alternative to evaluate microbial functional diversity, and these CLPPs provide key information 

concerning changes in metabolism along a stream continuum. In this investigation, 

spatiotemporal gradients were found in both aquatic and benthic communities; aquatic 

communities differed strongest in their ability to degrade amino acids and carboxylic acids 

along the stream continuum, while sediment communities had the strongest differences in 

their ability to degrade amines and phenolic compounds. Seasonal differences were 

pronounced in the sediments for all substrate groupings. Metabolic inhibition primarily 

captured the between group variation, suggesting that interruptions in degradation pathways 

provide greater insights into community dynamics. The importance of differences in nutrient 
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cycling, especially for nitrogen, was identified using these metabolic fingerprints, and certain 

substrates were associated with degree of different types of pollution. Water stress was also 

identified as a potential driver of functional changes in certain sites. Overall, CLPPs were a 

useful tool to identify factors most influential to community function; this method has strong 

potential to be used as an effective ecological indicator to identify changes to river continuums 

attributable to urbanization and different sources of pollution.  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE DIRECTIONS 

 

Fecal pollution is best viewed as an ecological phenomenon, requiring creative 

strategies to monitor its spatiotemporal variability, appropriate sources of contamination, and 

identify effective remediation strategies. This dissertation incorporates machine learning 

models, long-term monitoring data, and microbial metabolism to better understand how 

environmental factors shape the niche of fecal indicators in a secondary habitat, a lower order 

oligotrophic stream in Northeast Tennessee. Chapters 2 and 3 reshape the question into a 

decision making approach, addressing factors separating compliance from impairment based 

on water quality parameters. This is important to inform load allocation models, evaluate 

multiple sources of impairment, and assess management alternatives. While the single 

indicator paradigm is a useful sentinel for point sources, utilizing water quality data and other 

microbial indicators can enhance monitoring programs in areas impacted by nonpoint sources 

of pollution, accelerating restoration of impaired watersheds. Chapter 4 demonstrates the 

potential of Biolog EcoPlates as an alternative microbial indicator in aquatic systems. This 

chapter evaluated spatiotemporal variability of microbial metabolism along a stream 

continuum, identifying interactions between aquatic and benthic communities and connecting 

these to the degree of pollution. Together, these present a microbial ecology approach for 

understanding human disruption to aquatic ecosystems, and identifying environmental 

conditions and community dynamics associated with fecal and other types of pollution. 

Stream impairment seasonality was exhibited in two different indicators over multiple 

years and different resolutions (quarterly versus monthly sampling programs). This stresses the 

need for multiple year and month sampling to capture heterogeneity in fecal indicator 

concentrations. A five-sample 30-day geometric mean concentration once every five years does 

not capture this variability, and sampling in the summer months distorts exposure assessments 

for management of impaired watersheds. Metabolic patterns of seasonal variability were also 

identified in microbial communities, suggesting that functional diversity shifts over time, 

potentially fostering conditions for the formation of a fecal indicator niche. Including 
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seasonality in monitoring programs improves characterization of the temporal variability of 

fecal indicators, refining estimations of yearly risk and identifying appropriate management 

strategies.  

Knowledge of watershed hydrology is essential to characterize fate and transport 

processes associated with introduction and persistence of fecal indicators, but flow 

independent processes confound modeling and monitoring programs. This research identified 

runoff, hyporheic exchange, and desiccation as dominant processes in shaping microbial niches. 

Although discharge is strongly associated with dissolved solutes such as NO3
-, PO4

3-, and ions 

measured through conductivity, bacterial community structure is also governed by other 

ecological factors as well, such as population of heterotrophic bacteria, enzyme activity, and 

other metabolic indicators. Sediment-water interactions were strongly associated with 

bacteriophage detections and E. coli impairment, with glucosidase and acid phosphatase 

enzyme activity contributing to the overall information gain of Maxent models. Coliforms in 

sediments were responsible for over half of the information in bacteriophage models, further 

supporting sediment-water interactions as important mechanisms of fecal pollution. 

Desiccation influenced community function, increasing the metabolic potential of this 

community to degrade complex substrates, i.e., phenolic compounds. Each of these aspects of 

hydrology warrant further attention to better characterize microbial water quality for 

appropriate exposure assessment and more accurate loading estimates.  

While the use of Maxent has been well demonstrated at the macroscale, this study 

introduces its application to ecological niches at the microscale. Our research also contributes 

to the Maxent literature through presenting procedures for use of coefficients, i.e., action 

values in Chapter 2, probabilistic evaluation of model accuracy, and alternative approaches to 

variable selection using information gain and nonparametric bootstrapping. Action values were 

generated to predict a threshold of impairment given a single water quality parameter to 

demonstrate a coefficient extraction technique, opening the black box of Maxent. Probabilistic 

methods have been used in a variety of water quality monitoring and modeling projects, but 

this paper adds to this framework through using a probabilistic sensitivity analysis as a variable 

selection technique and for the generation of model validation metrics. Although modeling 
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microorganisms in the environment is a headache on the best of days, to paraphrase one of our 

reviewers for Chapter 2, this modeling approach extracts information concerning mechanisms 

associated with the formation of an ecologic niche for fecal indicators, guiding decision making 

and optimizing water quality monitoring strategies.  

Chapter 3 stressed the difficulty of the single indicator paradigm through revealing 

different ecologies of two fecal indicator organisms. E. coli impairment seems to be dominated 

by runoff, identified by hardness as the dominant contributor. Ions that are measured through 

hardness and alkalinity may be introduced to soil and geologic formation common to East 

Tennessee, and runoff is further supported by increased counts of heterotrophic and coliform 

bacteria. Microbial activity and BOD5 seemed to inhibit impairment. Bacteriophage detections 

were strongly inhibited by coliform bacteria in sediment, suggesting competitive exclusion as a 

strong deterrent for detection. Enzyme activity seemed to follow a similar trend as E. coli 

impairment, but BOD5 was found to increase detections. It is myopic to consider one indicator 

to mimic all pathogens, and policy needs to shift to a multiple indicator approach. This can 

overcome some of the difficulties of source tracking and the differential ecologies of 

pathogens. Modeling can also help with optimization of key water quality monitoring 

parameters and best indicator(s) for a given watershed based on inputs and ecological 

activities.  

This dissertation also incorporated microbial ecology, in the form of metabolic potential 

of microbial communities, to characterize spatiotemporal variability in community function to 

connect this to pollution gradients. Communities differed in their ability to use a wide variety of 

substrates, including amino and carboxylic acids in water, amines in sediments, and phenolic 

compounds in sediments. Sediments were identified as a substantial contributor to group 

variation in aquatic and benthic communities, especially in metabolic inhibition of single 

sources of carbon. This suggests that sediment microbial activity could be a substantial 

contributor to instream water quality and needs to be addressed in future research as a 

potential source of inorganic nutrients and fecal indicators. Sediment substrate activity was also 

indicative of degrees of pollution, with increased utilization of α-D lactose being associated with 

higher E. coli concentrations. This suggests that sediment is a potential reservoir for E. coli in 
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this stream, and there is possibility for resuspension, extended residence times, and increased 

duration for exposure. The ability to degrade lower molecular weight amino acids in sediment 

was positively correlated with degree of nutrient pollution, while higher molecular weight 

amino acid degradation had an inhibitory effect, suggesting a two-fold association; ability to 

degrade amino acids contributing to loading of inorganic nutrients, while ability to degrade 

more complex amino acids causes competitive exclusion because of the uptake of more 

nitrogen. 

Although monitoring for fecal indicators has protected human health, the question remains 

whether we have lost sight of the original purpose of fecal indicators, i.e., the indirect 

monitoring of pathogens to reduce human health risk, and instead focused on the indicator 

rather than the “disease.” A single indicator approach cannot be effective to mimic all 

pathogens, and our paradigm needs to shift to focus on reliably identifying human versus 

nonhuman sources, connecting this information to predict distribution of pathogens, and finally 

characterizing the ecology of these pathogens to design programs to prevent exposure. This 

research highlights, however, the benefit of using models and other microbial indicators, i.e., 

metabolic activity of communities, to better understand how environment shapes the niche of 

fecal indicators but could be easily transferred to understanding ecology of multiple pathogens. 

Other directions of research include: 

- Incorporation and standardization of Next Generation Sequencing high throughput 

techniques to develop consortium indicators for source identification, identify 

pathogens within a watershed, and connect to currently used monitoring and modeling 

techniques 

- Incorporation of Maxent or other multivariate models to identify key processes 

associated with fecal pollution, and extract information for inclusion in TMDL process 

models to include such characteristics as nutrient conditions, heterotrophic 

competition, and predation.  

- Opening the discussion concerning creation of mixed TMDL models for watersheds 

dealing with multiple synergistic impairments, i.e. nutrient and fecal pollution from 

nonpoint agricultural sources 
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- Connecting microbial metabolism in a stream continuum to the community structure 

using geospatial analysis and next generation sequencing techniques 

- Developing programs that educate and engage citizen to stimulate involvement and 

procurement of funds to finance nonpoint sources of pollution management programs 

The problem of fecal pollution is complex, requiring an interdisciplinary approach to reduce 

this issue. Even with the plethora of alternate indicators suggested for use, strong correlations 

with pathogens are inconsistent, quantifying human health risk is highly uncertain, and 

universal source-tracking methods are still needed. It is recommended that policies shift in two 

ways: (i) advocating for the use of multiple indicators to better characterize pathogen 

distribution, and (ii) encouraging cooperation between modelers, molecular biologists, spatial 

scientists, chemists, and epidemiologists to develop a geographically and ecologically flexible 

framework for source identification, exposure assessment, and risk characterization. The use of 

common water quality parameters, estimations of microbial activity, and flexible modeling 

approaches improves understanding of the ecology behind fecal indicators. Pathogens in both 

surface and groundwater present an economic and public health burden, but the use of models 

alongside multiple indicators can improve decision making, reducing the negative impacts 

associated with fecal pollution. 
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APPENDIX 

Supplemental Files for each Chapter  

 

Supplemental Files for Chapter 2 

 

Figure 2.S1. Action functions for each of the univariate models with each variable scaled from 0 

to 1 and the vertical axis representing the probability of impairment. Red line represents the 

logistic threshold, and dotted lines represent the 95% CI for the parameters estimated. Action 
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function for (A) alkalinity, (B) BOD5, (C) conductivity, (D) dissolved oxygen, (E) hardness, (F) NO3
-  

, (G) PO4
3-, and (H) water temperature are shown. 

 

 

Figure 2.S2. Response surfaces for the 8-variable (A) and 5-variable model (B) showing the 

probability of each sample for the monitoring program. This represents the mean probability of 

100 bootstrapped runs. Rows are oriented by month of sampling, while columns represent each 

sampling site. 
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Table 2.S1. Summary statistics of data used in univariate and multivariate Maxent models of 

Escherichia coli impairment. 

 Mean Standard 

Deviation 

Minimum Maximum 

Alkalinity (mg/L) 99.62 52.25 4.00 210.00 

BOD5 (mg/L) 1.66 1.42 0.02 6.43 

Conductivity (μS) 218.98 123.06 11.00 676.00 

Discharge (m/s2) 0.77 2.74 0.00 32.75 

Dissolved Oxygen (mg/L) 10.19 1.96 0.79 15.90 

Hardness (mg/L) 126.15 57.03 7.30 256.70 

Nitrates (mg/L) 1.44 0.89 0.00 5.37 

pH 7.56 0.45 6.25 8.74 

Phosphates (mg/L) 0.36 0.72 0.00 10.04 

Water Temperature (oC) 12.39 4.40 1.30 24.50 

 

Table 2.S2. Classification performance for all models run based on maximum test sensitivity and 

specificity as the logistic threshold (decision boundary). 

Variables 
Logistic 

Threshold 
TN FN FP TP χ^2 

Alkalinity 0.488 140 44 44 51 24.61 

BOD5 0.495 110 36 74 59 12.04 

Conductivity 0.490 129 41 55 54 19.05 

Dissolved Oxygen 0.493 128 34 56 61 29.30 

Discharge 0.482 155 72 29 23 2.86 

Hardness 0.469 102 30 82 65 14.34 

Nitrates 0.493 134 52 50 43 9.16 

pH 0.491 104 44 80 51 2.63 

Phosphates 0.484 138 55 46 40 8.54 

Water Temperature 0.463 118 31 66 64 24.58 
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8 variables 0.383 144 20 40 75 82.94 

4 variables 0.424 152 30 32 65 70.52 

5 variables 0.430 151 29 33 66 71.26 

 

 

 

 

 

Table 2.S3. Probability of Impairment and associated 95% confidence intervals for the total 

creek, each site, and each month that was sampled.  

 

8-variable 

Mean Probability  

(95% CI) 

5-variable 

Mean Probability 

(95% CI) 

4-variable 

Mean Probability 

(95% CI) 

Sinking Creek 0.338 

(0.319, 0.358) 

0.353 

(0.334, 0.373) 

0.359 

(0.340, 0.378) 

SC1 0.427 

(0.343, 0.512) 

0.456 

(0.379, 0.534) 

0.455 

(0.376, 0.535) 

SC2 0.434 

(0.364, 0.503) 

0.453 

(0.384, 0.522) 

0.456 

(0.384, 0.527) 

SC3 0.410 

(0.334, 0.485) 

0.430 

(0.355, 0.505) 

0.434 

(0.359, 0.508) 

SC4 0.409 

(0.332, 0.486) 

0.418 

(0.351, 0.508) 

0.430 

(0.349, 0.510) 

SC5 0.403 

(0.337, 0.470) 

0.418 

(0.353, 0.483) 

0.413 

(0.348, 0.477) 

SC6 0.373  

(0.314,0.433) 

0.385  

(0.326, 0.444) 

0.386 

(0.327,0.445) 

SC7 0.359 

(0.295,0.423) 

0.372  

(0.308, 0.435) 

0.371 

(0.307, 0.434) 
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SC8 0.336 

(0.269,0.403) 

0.351 

(0.285, 0.418) 

0.360 

(0.295, 0.425) 

SC9 0.317 

(0.242,0.391) 

0.331 

(0.255, 0.406) 

0.343 

(0.271, 0.416) 

SC10 0.289 

(0.232,0.347) 

0.305 

(0.247, 0.364) 

0.315 

(0.258, 0.372) 

SC11 0.292 

(0.221, 0.363) 

0.303 

(0.233, 0.373) 

0.316 

(0.249, 0.382) 

SC12 0.276 

(0.202, 0.350) 

0.288 

(0.214, 0.362) 

0.303  

(0.233, 0.374) 

SC13 0.189 

(0.140, 0.237) 

0.195 

(0.146, 0.245) 

0.211 

(0.167, 0.255) 

SC14 0.176 

(0.132, 0.221) 

0.184 

(0.139, 0.230) 

0.187 

(0.148, 0.226) 

February 0.225  

(0.223, 0.228) 

0.211  

(0.209, 0.214) 

0.191  

(0.188, 0.194) 

May 0.353  

(0.351, 0.356) 

0.352  

(0.349, 0.355) 

0.344  

(0.342, 0.347) 

August 0.535  

(0.531, 0.538) 

0.529  

(0.526, 0.532) 

0.511  

(0.508, 0.514) 

November 0.317  

(0.312, 0.323) 

0.315  

(0.309, 0.321) 

0.299  

(0.294, 0.305) 
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Supplemental Files for Chapter 3 

 

 

Figure 3.S1. Map of sampling sites, total watershed area, and individual sampling site drainage 

areas. Sampling sites that are in violation of the 2012 recreational water quality criteria are 

represented by red circles and those that do not violate one of the criteria are represented by 

blue circles. Bacteriophage detections are represented by pink bar graphs. For reference, Site 

13 is equal to one bacteriophage detection.  
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Figure 3.S2. Response curves for each variable included in the optimized E. coli model. These curves show how probability of 

impairment changes as each parameter is changed, keeping all other environmental variables at their mean value. The curves show 

the mean response (red) +/- one standard deviation (blue). 
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Figure 3.S3. Response curves for each variable included in the optimized bacteriophage model. These curves show how probability 

of impairment changes as each parameter is changed, keeping all other environmental variables at their mean value. The curves 

show the mean response (red) +/- one standard deviation (blue).
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Figure 3.S4. Responses surface plots for the initial (A,C) and CCorA (E, G) models and associated 

standard deviations (B, D, F, H, respectively). A and E represent the initial and CCorA E. coli 

models, while C and G represent the initial and CCorA bacteriophage models. Rows in the plots 

represent each sampling site and columns represent each month that a sample was taken from 

the site. 
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Table 3.S1. Mean, standard deviation, and maximum and minimum values for the 

parameters used in the Maxent models. All means and standard deviations (SD) are 

arithmetic means, unless noted otherwise.  

Parameter Mean (SD) Max, Min 

FCW 304.5 (4.2) † 3387.7, 50.0 

TCW 1151.3 (4.8) † 3508.8, 50.0 

FCS 88.2 (3.2) † 1168.3, 25.0 

TCS 712.7 (6.5) † 16655.3, 25 

Colilert 34.0 (5.5) † 1299.7, 1.0 

Bacteriophage 0.7 (3.0) † 1212.0, 0.5 

SPC 309.0 (2.3) † 1984.3, 28.3 

AODC 1.26x108(1.9) † 6.8x108, 

284x107 

AcidP 61.7 (45.9) † 266.2, 0.1 

AlkP 211.7 (207.9) 858.6, 3.3 

DHA 27.6 (15.6) 84.4, 5.0 

Gal 21.8 (26.7) 128, 0.5 

Gluc 118.8 (119.47) 504.2, 3.4 

NO3
- 1.2 (0.5) 2.7, 0.3 

PO4
3- 0.3 (0.2) 1.1, 0.0 

NH4 0.1 (0.05) 0.3, 0.0 

BOD5 1.1 (0.6) 2.5, 0.3 

Hard 111.4 (67.8) 219.0, 10.0 

Alk 97.9 (61.7) 196.3, 8.0 

†Geometric mean and geometric standard deviation 
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Supplemental Files for Chapter 4 

 

Figure 4.S1. Map of sampling locations used for Chapter 4. The inset map shows the state of 

Tennessee, and the location of Sinking Creek. Samples were taken from November 2016 to 

October 2017 on an monthly basis. The outline represents the watershed boundary of Sinking 

Creek, and 2006 NLCD has been clipped to the watershed.(Fry et al. 2011) Stream flows from its 

headwaters at SC14 downstream to SC1. Note that two sites are not in Figure 2.1, SCAW and 

SCBW.  
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