Italian Domination on Ladders and Related Products

Bradley Gardner
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd
Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Gardner, Bradley, "Italian Domination on Ladders and Related Products" (2018). Electronic Theses and Dissertations. Paper 3509. https://dc.etsu.edu/etd/3509

A thesis
presented to the faculty of the Department of Mathematics

East Tennessee State University

In partial fulfillment
of the requirements for the degree

Master of Science in Mathematical Sciences
by

Kaeli B. Gardner

December 2018

Teresa Haynes, Ph.D., Chair
Robert A. Beeler, Ph.D.

Frederick Norwood, Ph.D.

Keywords: graph theory, graph products, Italian domination

ABSTRACT
Italian Domination in Ladders and Related Products
by
Kaeli B. Gardner

An Italian dominating function on a graph $G=(V, E)$ is a function such that $f: V \rightarrow$ $\{0,1,2\}$, and for each vertex $v \in V$ for which $f(v)=0$, we have $\sum_{u \in N(v)} f(u) \geq 2$. The weight of an Italian dominating function is $f(V)=\sum_{v \in V(G)} f(v)$. The minimum weight of all such functions on a graph G is called the Italian domination number of G. In this thesis, we will consider Italian domination in various types of products of a graph G with the complete graph K_{2}. We will find the value of the Italian domination number for ladders, specific families of prisms, mobius ladders and related products including categorical products $G \times K_{2}$ and lexicographic products $G \cdot K_{2}$. Finally, we will conclude with open problems.

Copyright by Kaeli B. Gardner 2018
All Rights Reserved

DEDICATION

For April, my constant companion, my best friend, my biggest fan, and my forever love, without whose constant support and encouragement this would certainly not have been possible.

ACKNOWLEDGMENTS

I would like to thank my committee chair, Dr. Teresa Haynes, who not only introduced me to graph theory, but also taught me the beauty of proofs; Dr. Robert Beeler for always providing a fresh challenge and a sarcastic remark; Dr. Frederick Norwood for his inspiration, truly embodying the concept of a "Renaissance man;" and all of the ETSU Mathematics and Statistics faculty and staff for their instruction, guidance, and support over these past six years.

TABLE OF CONTENTS

ABSTRACT 2
DEDICATION 4
ACKNOWLEDGMENTS 5
1 INTRODUCTION 7
2 LITERATURE SURVEY 14
3 RESULTS 17
3.1 Italian Domination on Ladders 17
3.2 Characterizing the $G \square K_{2}$ with $\gamma_{I}\left(G \square K_{2}\right)=4$ 23
3.3 Prisms and related products 33
3.4 Categorical Products 36
3.5 Lexicographic Products 38
4 CONCLUDING REMARKS 42
BIBLIOGRAPHY 43
VITA 47

1 INTRODUCTION

In this thesis, we will consider Italian domination in ladders and related "prism" type graphs. Before we proceed into our discussion, it is necessary to enumerate and clarify basic definitions and notation used. Let $G=(V, E)$ be a simple graph without directed edges having vertex set $V=V(G)$ and edge set $E=E(G)$. The order of G is the number of vertices of $V(G)$, and the size of G is the number of edges in $E(G)$. For vertices $x, y \in V(G)$, we say that x and y are adjacent if the edge $x y \in E(G)$. The open neighborhood of a vertex $v \in V(G)$, denoted $N(v)$, includes all vertices $u \in V(G)$ such that v and u are adjacent. The closed neighborhood of a vertex $v \in V(G)$ is denoted $N[v]$, is $N(v) \cup\{v\}$. The degree of a vertex v is the cardinality of the open neighborhood of v. That is, $\operatorname{deg}_{G}(v)=|N(v)|$. The maximum degree of a graph G, denoted $\Delta(G)$, is $\max \left\{\operatorname{deg}_{G}(v) \mid v \in V(G)\right\}$. Similarly, the minimum degree of a graph G, denoted $\delta(G)$, is $\min \left\{\operatorname{deg}_{G}(v) \mid v \in V(G)\right\}$. A set of vertices $S \subseteq V(G)$ is said to be independent if for all $u, v \in S$, the edge $u v \notin E(G)$.

A path graph, denoted P_{n}, is a graph of order n and size $n-1$ whose vertices can be labeled by $v_{1}, v_{2}, \ldots, v_{n}$ and whose edges are $v_{i} v_{i+1}$ for $i=1,2, \ldots, n-1$. A cycle graph, denoted C_{n}, is a graph of order n and size n whose vertices can be labeled by $v_{1}, v_{2}, \ldots, v_{n}$ and whose edges are $v_{1} v_{n}$ and $v_{i} v_{i+1}$ for $i=1,2, \ldots, n-1$. A graph H is a subgraph of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$, in which case we write $H \subseteq G$. For a nonempty subset S of $V(G)$, the subgraph $G[S]$ of G induced by S has S as its vertex set, and two vertices u and v are adjacent in $G[S]$ if and only if u and v are adjacent in G. A subgraph $H \subseteq G$ is called an induced subgraph of G if there is a nonempty subset S of $V(G)$ such that $H=G[S]$. The complete graph, denoted
K_{n}, is a graph of order n in which every pair of distinct vertices are adjacent.
A graph is said to be connected if for any two vertices $u, v \in V(G), G$ contains a path connecting u and v as a subgraph. A trivial graph is said to be a graph with only one vertex and no edges; a graph which does not satisfy this definition is called nontrivial. Two graphs G and H are said to be isomorphic, denoted $G \cong H$, if there is a one-to-one and onto function $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.

A star graph, denoted $K_{1, n}$, is a graph in which one vertex v has $N[v]=V(G)$, and every other vertex u has $N(u)=\{v\}$.

The Cartesian product of graphs G and H, denoted $G \square H$, with disjoint vertex sets $V(G)$ and $V(H)$ is the graph with vertex set $V(G) \times V(H)$ and $\left(u_{1}, u_{2}\right)$ adjacent with $\left(v_{1}, v_{2}\right)$ whenever $\left(u_{1}=v_{1}\right.$ and u_{2} is adjacent to $\left.v_{2}\right)$ or $\left(u_{2}=v_{2}\right.$ and u_{1} is adjacent to v_{1}). Cartesian products are examined in detail in [14].

The Cartesian product $G \square K_{2}$ is called a prism over G, constructed by creating two copies of G labeled G and G^{\prime} with vertices labeled $v \in V(G)$ and $v^{\prime} \in V\left(G^{\prime}\right)$, and adding edges $v v^{\prime}$ between each pair of corresponding vertices of G and G^{\prime}. The most common examples of prism graphs are graphs of the form $C_{n} \square K_{2}$, denoted Π_{n}. The graph Π_{n} is an example of a cubic graph, a graph with every vertex having degree 3 .

Note that the Cartesian product $P_{n} \square K_{2}$ is a graph with $2 n$ vertices and $3 n-2$ edges. Such a graph is called a ladder, denoted L_{n}. A Möbius ladder, denoted M_{n}, is a cubic graph with an even number n of vertices, formed from a C_{n} by adding edges (called "rungs") $v_{i} v_{j}$ where $i=1,2, \ldots, \frac{n}{2}$ and $j=i+\frac{n}{2}$. It is so-named because (with the exception of $M_{6}=K_{3,3}$) M_{n} has exactly $\frac{n}{2}$ 4-cycles which link together by
their shared edges to form a topological Möbius strip. For our purposes, a Möbius ladder may be constructed from a ladder L_{n} by adding edges $u v^{\prime}$ and $u^{\prime} v$ as shown in Figure 1.

Figure 1: An octagonal prism, a ladder on 8 rungs, and a Möbius ladder with 8 rungs

The complement of a graph G, denoted \bar{G}, is a graph such that $V(\bar{G})=V(G)$ and $E(\bar{G})=\{x y \mid x y \notin E(G)\}$.

Complementary products were first introduced in [17] as a generalization of Cartesian products of graphs. We consider a subset of these products called complementary prisms. The complementary prism of a graph G, denoted $G \bar{G}$, is the disjoint union of G and \bar{G} formed by adding a perfect matching between corresponding vertices of G and \bar{G}

The categorical product of graphs, also known as the tensor product or direct product, is the graph denoted $G \times H$ such that $V(G \times H)=V(G) \times V(H)$. For vertices $v_{1}, v_{2} \in V(G)$ and $u_{1}, u_{2} \in V(H)$, vertices $\left(v_{1}, u_{1}\right)$ and $\left(v_{2}, u_{2}\right)$ are adjacent in $G \times H$ if and only if $v_{1} v_{2} \in E(G)$ and $u_{1} u_{2} \in E(H)$. In particular, the categorical
product $G \times K_{2}$ is equivalent to the bipartite double graph of G, also known as a Kronecker cover or bipartite double cover, constructed as follows: Begin by by making two copies of the vertex set of a graph G, labeled G and G^{\prime} and adding edges $u v^{\prime}$ and $u^{\prime} v$ for every edge $u v \in E(G)$. The bipartite double cover is examined in greater detail in [13]. See Figure 2a for an example.

(a) $P_{4} \times K_{2}$

(b) $P_{4} \cdot K_{2}$

Figure 2: Categorical and lexicographic graph products of P_{4} with K_{2}

The lexicographic product of graphs G and H, denoted $G \cdot H$, is a graph with $V(G \cdot H)=V(G) \times V(H)$, and edges as follows. For vertices $v_{1}, v_{2} \in V(G)$ and $u_{1}, u_{2} \in V(H)$, vertices $\left(v_{1}, u_{1}\right)$ and $\left(v_{2}, u_{2}\right)$ are adjacent in $G \cdot H$ if and only if one of the following conditions is met:
i. v_{1} is adjacent to v_{2} in G.
ii. $v_{1}=v_{2}$ and u_{1} is adjacent to u_{2} in H.

In particular, the lexicographic product $G \cdot K_{2}$ is equivalent to the double graph of G, constructed by making two copies of G, including its edge set, and adding edges $v u^{\prime}$ and $u v^{\prime}$ for every edge $u v \in E(G)$. Lexicographic products are examined in further detail in [29] and [30]. See Figure 2b for an example.

These and other kinds of graph products are explored in detail in [19].

A dominating set of a graph G is set $D \subseteq V(G)$ such that for all $v \in V(G)$, either $v \in D$, or $u \in N(V) \cap D$. Equivalently, a subset $D \subseteq V$ is a dominating set if and only if $|N[v] \cap D| \geq 1$ for all $v \in V(G)$. Thus, $N[D]=V(G)$. The minimum cardinality among all dominating sets of G is called the domination number of G and is denoted $\gamma(G)$.

Related to domination, a 2-dominating set is a subset $D \subseteq V(G)$ such that for every vertex $v \in V(G)$, either $v \in D$ or $|N(v) \cap D| \geq 2$. The minimum cardinality among all 2-dominating sets is called the 2-domination number of G, denoted $\gamma_{2}(G)$. The concept of 2-domination is first introduced in [11] and may be generalized as n-domination. See also [3, 25]. A double dominating set of a graph G is a subset S of $V(G)$ such that $|N[v] \cap S| \geq 2$ for every $v \in V(G)$. The minimum cardinality of such a set is called the double domination number of G, denoted $\gamma_{\times 2}(G)$. Double domination was introduced in [16] and is generalized as k-tuple domination in $[8,9,15]$.

A Roman dominating function, or RDF, on a graph G is a function $f: V(G) \rightarrow$ $\{0,1,2\}$, such that for every $v \in V(G)$, if $f(v)=0$, then there is at least one $u \in N(v)$ where $f(u)=2$. For any Roman dominating function f on a graph G, and a set $I=\{0,1,2\}$, let $V_{i}=\{v \in V \mid f(v)=i$ for some $i \in I\}$. Since this partitions $V(G)$ into three distinct vertex sets and determines f, we write $f=\left(V_{0}, V_{1}, V_{2}\right)$. The weight of a Roman dominating function is the value $f(V)=\sum_{v \in V(G)} f(v)$, or equivalently, $f(V)=\left|V_{1}\right|+2\left|V_{2}\right|$. The minimum weight of a RDF on G is called the Roman domination number of G, denoted $\gamma_{R}(G)$. Roman domination was motivated by Stewart in [28], and a Roman dominating function was first formally defined in [7]. Since then, Roman domination has been studied in a number of papers. See for
example $[1,2,4,10,12,20,21,29,31,32]$.
An Italian dominating function, or IDF, on a graph G is a function $f: V \rightarrow$ $\{0,1,2\}$ such that for every $v \in V(G)$ such that $f(v)=0, \sum_{u \in N(v)} f(u) \geq 2$. In a manner similar to Roman domination, an IDF partitions G into three V_{i} sets for $i \in\{0,1,2\}$, such that $f=\left(V_{0}, V_{1}, V_{2}\right)$. The weight of an IDF is $\sum_{v \in V(G)} f(v)$, or equivalently, $f(V)=\left|V_{1}\right|+2\left|V_{2}\right|$. As with previous types of domination, the minimum weight among all Italian dominating functions of G is called the Italian domination number, denoted $\gamma_{I}(G)$. Italian domination was introduced in [6] as Roman \{2\}domination in 2016. The concept was further examined in a number of papers, such as $[18,23,26]$. Two examples of Italian dominating functions are given in Figure 3, where the vertex labels represent the Italian dominating function.

(a)

(b)

Figure 3: Italian domination examples

Finally, it is necessary to discuss some related terminology which was given by [23]. A graph is defined to be an $I 1$ graph if every minimum weight Italian dominating function uses only elements of the set $\{0,1\}$. Similarly, a graph is defined to be an I2 graph if every minimum weight Italian dominating function uses only elements the set $\{0,2\}$. Finally, a graph is an $I 1 a$ graph if the range of some minimum weight

Italian dominating function has range $\{0,1\}$.
As previously stated, in this thesis we will discuss Italian domination in ladder graphs and related products of various graphs together with K_{2}. First, we will conduct a survey of known results relevant to this thesis. Then, we will begin our discussion with Italian domination on a ladder L_{n}, various cartesian products of the form $G \square L_{n}$, selected categorical products of the form $G \times L_{n}$, and lexicographic products of the form $G \cdot L_{n}$. Finally, we will conclude with open problems.

2 LITERATURE SURVEY

In this section, we enumerate some known results relevant to this research. These results were the motivation behind the results proven in this thesis.

The following results and theorems are not an exhaustive list of known results related to Italian domination in graphs, but is rather a list of known results relevant to the results in this research. For a more complete overview of known results regarding Italian domination, the reader is referred to [6, 18, 23]. Though more broadly known today as Italian domination, this concept was introduced in [6] as Roman $\{2\}$-domination, denoted in that paper as $\gamma_{\{R 2\}}(G)$. In the interest of consistency, all the results taken from [6] have been restated using our notation, $\gamma_{I}(G)$, for the Italian domination number. To begin with, let us state several bounds on the Italian domination number.

Proposition 2.1. [6] For every graph G, $\gamma(G) \leq \gamma_{I}(G) \leq \gamma_{R}(G)$.

Observation 2.2. [6] For a graph $G, \gamma(G)<\gamma_{I}(G)<\gamma_{R}(G)$ is possible, even for paths.

Theorem 2.3. [6, 23] For every graph $G, \gamma_{I}(G) \leq 2 \gamma(G)$.

Proposition 2.4. [6] For every graph $G, \gamma_{I}(G) \leq \gamma_{2}(G)$.

The bound given in this proposition is sharp in the next result.

Corollary 2.5. [6] For every graph G with $\Delta(G) \leq 2, \gamma_{I}(G)=\gamma_{2}(G)$.

Using this Corollary, the Italian domination numbers for two major families of graphs is given by the following result.

Corollary 2.6. [6, 23] For paths P_{n} and cycles $C_{n}, \gamma_{I}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$, and $\gamma_{I}\left(C_{n}\right)=$ $\left\lceil\frac{n}{2}\right\rceil$.

We may further characterize the bound given by Proposition 2.1.

Proposition 2.7. [6, 23] For all $G, \gamma_{I}(G)=\gamma_{2}(G)$ if and only if G is I1a.
Theorem 2.8. [23] For all connected graphs G on $n \geq 3$ vertices, $\gamma_{I}(G) \leq \frac{3 n}{4}$.
Theorem 2.9. [23] Let G be a graph with $n \geq 3$ vertices and $\delta(G) \geq 2$. Then, $\gamma_{I}(G) \leq \frac{2 n}{3}$.

Theorem 2.10. [23] Let G be a graph on n vertices with $\delta(G) \geq 3$. Then, $\gamma_{I}(G) \leq \frac{n}{2}$.

Then, we state a result given in [23] characterizing the I1a graphs.

Proposition 2.11. [23] For all $G, \gamma_{I}(G)=\gamma_{2}(G)$ if and only if G is I1a.
Now, we state some related results for Italian domination in complementary prisms.

Theorem 2.12. [26] For any graph G :
i. $\gamma_{I}(G \bar{G})=2$ if and only if $G=K_{1}$.
ii. $\gamma_{I}(G \bar{G})=3$ if and only if $G=K_{2}$.
iii. If $\gamma_{I}(G)=3$ and G has an isolated vertex, then $\gamma_{I}(G \bar{G})=4$.
iv. If G is a star graph with order $n \geq 3$, then $\gamma_{I}(G \bar{G})=4$.
v. If $G=C_{4}$, then $\gamma_{I}(G \bar{G})=4$.

The above result is given in [26] as five distinct results, but we combine them here for brevity.

Finally, some bounds on the Roman domination number in lexicographic products are given in [29].

Corollary 2.13. [29] Let G and H be nontrivial connected graphs. Then, $2 \gamma(G) \leq$ $\gamma_{R}(G \cdot H)$.

Proposition 2.14. [29] Let G be a nontrivial connected graph and G a connected graph with $\gamma_{R}(H)=2$. Then, $\gamma_{R}(G \cdot H)=2 \gamma(G)$.

3 RESULTS

3.1 Italian Domination on Ladders

Recall that a ladder graph L_{n} is the cartesian product $P_{n} \square K_{2}$, with two copies of P_{n} labeled P_{n} and P_{n}^{\prime} where $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V\left(P_{n}^{\prime}\right)=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$. So, L_{n} has order $2 n$ and size $3 n-2$. In addition, we call an edge $v_{i} v_{i}^{\prime}$ where $v_{i} \in V\left(P_{n}\right)$ and $v_{i}^{\prime} \in V\left(P_{n}^{\prime}\right)$ a rung $r_{i} \in E\left(L_{n}\right)$.

Note that by Corollary 2.5, $\gamma_{I}\left(L_{n}\right) \leq 2\left(\gamma_{I}\left(P_{n}\right)\right)$, and by Corollary 2.6, we have that $\gamma_{I}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$. Thus, $\gamma_{I}\left(L_{n}\right) \leq n+1$, but this bound can be improved. We show that $\gamma_{I}\left(L_{n}\right)=n$. We give three lemmas before our result.

Lemma 3.1. Let L_{n} be a ladder on n rungs. It follows that $\gamma_{i}\left(L_{n}\right) \leq n$.

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be an Italian dominating function on L_{n}. Let each rung of L_{n} be constructed of corresponding vertices v_{i}, v_{i}^{\prime} where $v_{i} \in V\left(P_{n}\right)$ and $v_{i}^{\prime} \in V\left(P_{n}^{\prime}\right)$.

Let $f\left(v_{i}\right)=1$ if i is even, $f\left(v_{j}^{\prime}\right)=1$ if j is odd, and $f(x)=0$ otherwise. Then, f is an Italian dominating function of weight n, so we have that $\gamma_{I}\left(L_{n}\right) \leq n$.

To show equality, we first consider the following lemmas.

Lemma 3.2. If G is a connected graph with $\Delta(G)=3$, then there exists an $f=$ $\left(V_{1}, V_{2}, V_{3}\right)$ on G such that the set V_{2} is independent.

Proof. Let G be a connected graph with $\Delta(G)=3$. Among all γ_{I}-functions, let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be one that minimizes the number of edges in the induced subgraph $G\left[V_{2}\right]$. Suppose to the contrary that V_{2} is not independent. Then, there are two vertices $u, v \in V_{2}$ such that the edge $u v \in E(G)$. We consider the following cases.

Case 1. $\operatorname{deg}(v)=1$. If v has degree one, then v is a pendant vertex whose only neighbor is $u \in V_{2}$. Let g be an Italian dominating function such that $g(v)=0$, $g(x)=f(x)$ for all $x \neq v$. Now, g is an Italian dominating function of G with total weight less than f, a contradiction.

Case 2. $\operatorname{deg}(v)=2$. Since v has degree two, v has two neighbors, namely $u \in V_{2}$ and another neighbor w. We consider two further subcases.

Case 2a. $w \in V_{1} \cup V_{2}$. In this case, let g be the function such that $g(v)=0$, and $g(x)=f(x)$ for all $x \neq v$. Then, G is an Italian dominating function of G having total weight less than f, a contradiction.

Case 2b. $w \in V_{0}$. In this case, let g be the function such that $g(v)=0, g(w)=1$ $g(x)=f(x)$ for all $x \notin\{v, w\}$. Then, G is an Italian dominating function of G having total weight less than f, a contradiction.

Case 3. $\operatorname{deg}(v)=3$. Then v has three neighbors, namely $u \in V_{2}$, and two other neighbors w and y.

Notice first that if $w, y \in V_{1} \cup V_{2}$ the function g such that $g(v)=0$ and $g(x)=f(x)$ for all $x \neq v$, is an Italian dominating function on G with total weight less than f, a contradiction. Hence, we may assume that at least one of w and y is in V_{0}.

Suppose first that $w \in V_{0}$ and $y \in V_{0}$. Then let g be the function such that $g(v)=0, g(w)=g(y)=1$ and $g(x)=f(x)$ for all $x \notin\{v, w, y\}$. Now, $g=\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ is a function where $G\left[V_{2}^{\prime}\right]$ has fewer edges than $G\left[V_{2}\right]$, contradicting our choice of f.

Therefore, without loss of generality, we may assume that $w \in V_{0}$ and $y \in V_{1} \cup V_{2}$.
But now, the function g such that $f(v)=0$ and $f(w)=1$, and $g(x)=f(x)$ for all $x \notin\{v, w\}$ is an Italian dominating function of G with total weight less than f, a
contradiction.
Thus, if $\Delta(G)=3$, then there exists a γ_{I}-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ on G such that V_{2} is independent.

For two sets of vertices X and Y, let $[X, Y]$ denote the set of edges having an endpoint in X and an endpoint in Y. We then consider the following lemma.

Lemma 3.3. If G is a connected graph with $\Delta(G)=3$, then there exists a γ_{I}-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ on G such that V_{2} is independent and $\left[V_{1}, V_{2}\right]=\emptyset$.

Proof. By Lemma 3.2, there exists a γ_{I}-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that V_{2} is independent. Among all such γ_{I}-functions, select $f=\left(V_{0}, V_{1}, V_{2}\right)$ to minimize the edges in $\left[V_{1}, V_{2}\right]$. If $\left[V_{1}, V_{2}\right]=\emptyset$, then we are finished.

Suppose, to the contrary, that $\left[V_{1}, V_{2}\right] \neq \emptyset$. That is, there is an edge $u v \in E(G)$ where $u \in V_{1}$ and $v \in V_{2}$. We consider the following cases.

Case 1. $\operatorname{deg}(v)=1$. If v has degree one, then v is a pendant vertex whose only neighbor is $u \in V_{1}$. Let g be a function such that $g(v)=1$, and $g(x)=f(x)$ for all $x \neq v$. Then g is an Italian dominating function of G with total weight less than f, a contradiction.

Case 2. $\operatorname{deg}(v)=2$. Since v has degree two, v has two neighbors, namely $u \in V_{1}$ and another neighbor w. Since V_{2} is independent, $w \notin V_{2}$. If $w \in V_{1}$, then let g be a function such that $g(v)=0$, and $g(x)=f(x)$ for all $x \neq v$. This produces an IDF with total weight less than f, a contradiction.

Hence, we may assume that $w \in V_{0}$. In this case, let g be the function such that $g(v)=0, g(w)=1$, and $g(x)=f(x)$ for all $x \notin\{v, w\}$. Then g is an Italian dominating function with total weight less than f, a contradiction.

Case 3. $\operatorname{deg}(v)=3$. If v has degree 3 , then v has three neighbors, namely $u \in V_{1}$, and two other neighbors w, y. Notice first since V_{2} is independent, neither w nor y is in V_{2}. If $w \in V_{1}$ and $y \in V_{1}$, then we can immediately find an Italian dominating function of G, say g, such that $g(v)=0$ and $g(x)=f(x)$ for all $x \neq v$. In this case, g is an Italian dominating function on G with total weight less than f. Thus, at least one of w and y is in V_{0}.

Suppose that $w \in V_{0}$ and $y \in V_{0}$. If neither w nor y has a neighbor in $V_{2} \backslash\{v\}$, then let g be a function such that $g(v)=0, g(w)=1, g(y)=1$ and $g(x)=f(x)$ for all $x \notin\{v, w\}$. Then, $g=\left(V_{0}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\right)$ is a γ_{I}-function of G that has fewer edges in [$V_{1}^{\prime}, V_{2}^{\prime}$] than in [V_{1}, V_{2}], contradicting our choice of f.

Hence, at least one of w and y has a neighbor in $V_{2} \backslash\{v\}$. If both w and y have neighbors in $V_{2} \backslash\{v\}$, then let g be the function such that $g(v)=1$ and $g(x)=f(x)$ for all $x \neq v$. Then, g is an Italian dominating function with total weight less than $\gamma_{I}(G)$, a contradiction.

Thus, without loss of generality, we may assume that w has a neighbor in $V_{2} \backslash\{v\}$ and y does not. In this case, the function g such that $g(v)=0, g(y)=1$, and $g(x)=f(x)$ for all $x \notin\{v, y\}$ is an Italian dominating function of G with weight less than $\gamma_{I}(G)$, a contradiction.

Hence, exactly one of w and y is in V_{0}. Then, without loss of generality, let $y \in V_{0}$ and let $w \in V_{1}$. Then, the function g where $g(v)=0, g(y)=1$, and $g(x)=f(x)$ for all $x \notin\{v, y\}$, is an Italian dominating function of G with total weight less than $\gamma_{I}(G)$, a contradiction.

Thus, if $\Delta(G)=3$, then there exists a γ_{I}-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ on G such that
V_{2} is independent and $\left[V_{1}, V_{2}\right]$ is empty.

These lemmas are significant because they provide some very useful conditions on Italian dominating functions for any graph (not only graph products) with $\Delta(G)=3$. In particular, this includes all of the cubic graphs (which are 3-regular), a rich area of study for all forms of domination, Italian domination in particular. We will apply these results to ladders and related prism graphs.

We use these results to prove the following theorem regarding the Italian domination number of a ladder L_{n} with n rungs. We define the weight of a rung to be the total weight from an Italian dominating function assigned to any corresponding pair of vertices v_{i} and v_{i}^{\prime}. In other words, if both vertices in a rung are assigned a zero, that rung has a weight of zero. We call this a zero rung. If one vertex is assigned a one and one is assigned a zero, then that rung has weight one. A weight of two can be achieved by assigning v_{i} a two and v_{i}^{\prime} a zero, or vice-versa, or by assigning both v_{i} and v_{i}^{\prime} a one. Let r_{j} denote the $j^{\text {th }}$ rung, that is, the rung connecting v_{j} and v_{j}^{\prime}. Additionally, we call the rungs r_{1} and r_{n} end rungs.

Theorem 3.4. Let L_{n} be a ladder of the form $P_{n} \square K_{2}$ for $n \geq 3$. Then, $\gamma_{I}\left(L_{n}\right)=n$.

Proof. We select a γ_{I}-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ on L_{n} as follows. Note first that since L_{n} has $\Delta(G)=3$, then by Lemma 3.3 we can choose f such that the set V_{2} is independent, and $\left[V_{1}, V_{2}\right]=\emptyset(1)$. Moreover, subject to (1), select f such that the first zero rung r_{i} has the largest possible index i.

Now, suppose, to the contrary, that $\gamma_{I}\left(L_{n}\right) \leq n-1$. Then, there must be at least one zero rung in L_{n}. Notice immediately that if either of the end rungs are zero-rungs,
then since V_{2} is independent, the vertices of the end rung are not Italian dominated. So, we must have that $2 \leq i \leq n-1$.

Then, in order to Italian dominate this zero rung, f must assign a total weight of at least four to the rungs r_{i-1} and r_{i+1} (that is, the rungs immediately preceding and following r_{i}). Additionally, since r_{i} is the first zero rung, then all rungs r_{k} such that $k<i$ have weight at least one.

Since the set V_{2} is independent and $\left[V_{1}, V_{2}\right]=\emptyset$, the only possibilities are that for all vertices $v_{i-1}, v_{i-1}^{\prime}, v_{i+1}, v_{i+1}^{\prime}$, without loss of generality $v_{i-1}, v_{i+1}^{\prime} \in V_{2}$ and $v_{i+1}, v_{i-1}^{\prime} \in V_{0}$, or that $v_{i-1}, v_{i-1}^{\prime}, v_{i+1}, v_{i+1}^{\prime} \in V_{1}$. We consider these two cases:

Case 1. $v_{i-1}, v_{i-1}^{\prime}, v_{i+1}, v_{i+1}^{\prime} \in V_{1}$. Suppose that the rung r_{i-1} is an end rung. Then, the function g such that $g\left(v_{i-1}\right)=0, g\left(v_{i}\right)=1$, and $g(x)=f(x)$ for all $x \notin\left\{v_{i-1}, v_{i}\right\}$, and r_{i} is not the first zero rung, contradicting our choice of f. Hence, r_{i-1} is not an end rung.

Thus, the rung r_{i-2} exists, and one of its vertices, say v_{i-2}, has weight at least one. Furthermore, since $\left[V_{1}, V_{2}\right]=\emptyset, v_{i-2}, v_{i-2}^{\prime} \notin V_{2}$. Thus, $f\left(v_{i-2}\right)=1$. Now, let g be a function such that $g\left(v_{i-1}\right)=0, g\left(v_{i}\right)=1$, and $g(x)=f(x)$ for all $x \notin\left\{v_{i-1}, v_{i}\right\}$. Thus, g is a γ_{I}-function of L_{n} where r_{i} is not the first zero rung, contradicting our choice of f.

Case 2. $f\left(v_{i-1}\right)=2$ and $f\left(v_{i+1}^{\prime}\right)=2$. Since V_{2} is independent and $\left[V_{1}, V_{2}\right]=\emptyset$, if $i=2$, then let the function g such that $g\left(v_{i-1}^{\prime}\right)=g\left(v_{i}\right)=1, g\left(v_{i-1}\right)=0$, and $g(x)=f(x)$ for all $x \notin\left\{v_{i} \cdot v_{i-1}, v_{i-1}^{\prime}\right\}$. Hence, g is a γ_{i}-function of L_{n} satisfying (1) such that v_{i} is not the first zero rung, a contradiction.

Hence, we may assume that $f\left(v_{i-2}\right)=0$. Then, since r_{i} is the first zero rung, r_{i-2}
must have total weight at least 1 , implying that $f\left(v_{i-2}^{\prime}\right) \geq 1$. Let g be the function such that $g\left(v_{i-1}\right)=1, g\left(v_{i}\right)=1$, and $g(x)=f(x)$ for all $x \notin\left\{v_{i-1}, v_{i}\right\}$. Thus, g is a γ_{I}-function of L_{n} satisfying (1) where r_{i} is not the first zero rung, contradicting our choice of f.

Therefore, $\gamma_{I}\left(L_{n}\right) \geq n$, and so $\gamma_{I}\left(L_{n}\right)=n$.

3.2 Characterizing the $G \square K_{2}$ with $\gamma_{I}\left(G \square K_{2}\right)=4$

We begin with some observations regarding the graphs with $\Delta(G)=n-1$, where n is the order of G.

Observation 3.5. If G is a graph with $\Delta(G)=n-1$ with $n \geq 3$, then $\gamma_{I}(G)=2$.

For example, consider the star $K_{1, n}$ for $n \geq 3$. It is not difficult to see that $\gamma_{I}\left(K_{1, n}\right)=2$ where the vertex $v \in V\left(K_{1, n}\right)$ is the center of the star is assigned a two by the γ_{I}-function of $K_{1, n}$.

Note that a graph $G \square K_{2}$ is composed of two copies of G labeled G and G^{\prime}. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be an Italian dominating function on G. Applying f similarly to corresponding vertices in G^{\prime} will Italian dominate $G \square K_{2}$, so $\gamma_{I}\left(G \square K_{2}\right) \leq 2 w(f)$ where $w(f)$ denotes the total weight assigned by f to G. Our next observation follows directly.

Observation 3.6. Let G be a graph with Italian domination number $\gamma_{I}(G)$. Then $\gamma_{I}\left(G \square K_{2}\right) \leq 2 \gamma_{I}(G)$.

It follows from Observations 3.5 and 3.6 that for any graph G of order $n>2$ and $\Delta(G)=n-1$, we have $\gamma_{I}\left(G \square K_{2}\right) \leq 4$. We next show that equality holds.

Proposition 3.7. Let G be a graph of order $n \geq 4$ and $\Delta(G)=n-1$. Then, $\gamma_{I}\left(G \square K_{2}\right)=4$.

Proof. Observations 3.5 and 3.6 imply that $\gamma_{I}\left(G \square K_{2}\right) \leq 4$. Suppose, to the contrary, that $\gamma_{I}\left(G \square K_{2}\right) \leq 3$. Label the two copies of G in $G \square K_{2}$ as G and G^{\prime}.

Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a γ_{I}-function on $G \square K_{2}$.
Since $\gamma_{I}(G) \leq 3$, without loss of generality, we may assume that f assigns a total weight of at least two to G and a total weight of at most one to G^{\prime}.

Case 1. $\sum_{v^{\prime} \in V\left(G^{\prime}\right)} f\left(v^{\prime}\right)=0$. Then, since $n \geq 4$, at least one $v^{\prime} \in V\left(G^{\prime}\right)$ is adjacent to a neighbor $v \in V(G)$ such that $f(v)=0$, and so the graph is not Italian dominated, a contradiction.

Case 2. $\sum_{v^{\prime} \in V\left(G^{\prime}\right)} f\left(v^{\prime}\right)=1$. Then there is some $v^{\prime} \in V\left(G^{\prime}\right)$, such that $f\left(v^{\prime}\right)=1$.
Suppose that $\operatorname{deg}\left(v^{\prime}\right)=n-1$. Then, there is at least one vertex $u^{\prime} \in N\left(v^{\prime}\right)$ with corresponding vertex $u \in G$ such that $f\left(u^{\prime}\right)=f(u)=0$, so $G \square K_{2}$ is not Italian dominated, a contradiction.

Suppose that $\operatorname{deg}\left(v^{\prime}\right)<n-1$.
Then, there is a vertex $w^{\prime} \in V\left(G^{\prime}\right), w^{\prime} \notin N\left(v^{\prime}\right)$ such that $f\left(w^{\prime}\right)=0$. So, its corresponding vertex $w \in V(G)$ must have $f(w) \geq 2$.

Since $\Delta(G)=n-1$, there is a vertex $z^{\prime} \in G^{\prime}$ with $\operatorname{deg}\left(z^{\prime}\right)=n-1$, and $f\left(z^{\prime}\right)=0$. Note that $z^{\prime} \neq w^{\prime}$ and $z^{\prime} \neq v^{\prime}$. Similarly, its corresponding vertex $z \in V(G)$ must have $f(z) \geq 1$. But then, since the total weight of G is at most 2 and $f(w) \geq 2$, it follows that $f(z)=0$, a contradiction.

In any case, we arrive at a contradiction, thus $\gamma_{I}(G)=4$, as desired.

Proposition 3.8. If G is a graph of order $n \geq 4$ with a pair of non-adjacent vertices
u and v with $N[u]=N[v]=V(G) \backslash\{u, v\}$, then $\gamma_{I}\left(G \square K_{2}\right)=4$.

Proof. Let $G \square K_{2}$ be composed of two copies of G, labeled G and G^{\prime}. Let u and v be non-adjacent vertices of G, each with $N[u]=N[v]=V(G) \backslash\{u, v\}$, so $\operatorname{deg}(u)=$ $\operatorname{deg}(v)=n-2$.

First, note that a function that assigns $f(u)=f\left(v^{\prime}\right)=2$ and $f(x)=0$ for $x \in V\left(G \square K_{2}\right) \backslash\left\{u, v^{\prime}\right\}$ is an Italian dominating function of $G \square K_{2}$, so $\gamma_{I}\left(G \square K_{2}\right) \leq 4$.

Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a γ_{I}-function of $G \square K_{2}$ and suppose to the contrary that $\gamma_{I}(G) \leq 3$.

Then, without loss of generality, we may assume that $0 \leq \sum_{v \in V(G)} f(v) \leq 1$ and $2 \leq \sum_{v^{\prime} \in V\left(G^{\prime}\right)} f\left(v^{\prime}\right) \leq 3$.

If no vertex of G is assigned one, then every vertex of G must be adjacent to a vertex assigned a two in G. But since $n \geq 4$ and $\sum_{v^{\prime} \in V\left(G^{\prime}\right)} f\left(v^{\prime}\right)=2$, we have a contradiction.

Hence, we may assume that $\sum_{v \in V(G)} f(v)=1$ and so $\sum_{v^{\prime} \in V\left(G^{\prime}\right)} f\left(v^{\prime}\right)=2$.
Since $\Delta(G)=n-2$, there exists a $z \in V(G)$ such that w is not adjacent to z. Hence, the total weight assigned to the vertices of $N[z] \cap V(G)$ is 0 .

Thus, $f(z)=2$ in order to Italian dominate z^{\prime}. But then, every other vertex in G^{\prime} must be assigned a zero by f. It follows that w^{\prime} is not adjacent to z^{\prime}, and $f\left(w^{\prime}\right)=0$. Furthermore, the only vertex in $N\left(w^{\prime}\right)$ with positive weight is w with weight of one, and so w^{\prime} is not Italian dominated by f, a contradiction.

Thus, it must be that $\gamma_{I}\left(G \square K_{2}\right) \geq 4$, and so $\gamma_{I}\left(G \square K_{2}\right)=4$, as desired.

Proposition 3.9. If G is a graph of order $n \geq 4$ with a pair of non-adjacent vertices u and v with $N(u)=N(w)=V(G) \backslash\{v\}$ and $N(v)=V(G) \backslash\{u, w\}$ for some
$w \in V(G)$, then $\gamma_{I}\left(G \square K_{2}\right)=4$.

Proof. Let $G \square K_{2}$ be composed of two copies of G as defined, labeled G and G^{\prime}. Let u and v be non-adjacent vertices of G, with $N(u)=V(G) \backslash\{v\}$ and $N(v)=$ $V(G) \backslash\{u, w\}$ for some $w \in V(G)$.

First, note that a function that assigns $f(u)=f(v)=f\left(v^{\prime}\right)=f\left(w^{\prime}\right)=1$ and $f(x)=0$ for $x \in V\left(G \square K_{2}\right) \backslash\left\{u, v, v^{\prime}, w^{\prime}\right\}$ is an Italian dominating function of $G \square K_{2}$, so $\gamma_{I}\left(G \square K_{2}\right) \leq 4$.

Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a γ_{I}-function of $G \square K_{2}$ and suppose to the contrary that $\gamma_{I}(G) \leq 3$. Then, without loss of generality, we may assume that $0 \leq \sum_{v \in V(G)} f(v) \leq$ 1 and $2 \leq \sum_{v^{\prime} \in V\left(G^{\prime}\right)} f\left(v^{\prime}\right) \leq 3$.

If $\sum_{v \in V(G)} f(v)=0$, then every vertex in $V(G)$ must be adjacent to a vertex $v^{\prime} \in V\left(G^{\prime}\right)$ assigned a two. Since $n \geq 4$ and f assigns a total weight of at most three to the vertices in $V\left(G^{\prime}\right)$, we have a contradiction.

Hence, we must assume that $\sum_{v \in V(G)} f(v)=1$ and so $\sum_{v^{\prime} \in V\left(G^{\prime}\right)} f\left(v^{\prime}\right)=2$.
Assume that $f(x)=1$ for some $x \in V(G) \backslash\{u, v, w\}$. Since $x \in N(u) \cap N(v)$, we must have that $f\left(u^{\prime}\right)=f\left(v^{\prime}\right) \geq 1$. However, in in order for w to be Italian dominated by f, we must have $f\left(w^{\prime}\right) \geq 1$, and f assigns a total weight of at least four to $G \square K_{2}$, a contradiction.

Hence, we must assume that either $f(u)=1, f(v)=1$, or $f(w)=1$.
Assume that $f(u)=1$. Then, it must be that $f\left(v^{\prime}\right)=2$ in order for v to be Italian dominated by f. But then, $f\left(w^{\prime}\right)=0$ and so w is not Italian dominated, a contradiction.

Assume that $f(v)=1$. Then, $f(w)=0$, and since $w \notin N(v)$, we must have that
$f\left(w^{\prime}\right)=2$ in order for w to be Italian dominated. Further, since $f(u)=0$, it must be that $f\left(u^{\prime}\right) \geq 2$ in order for u to be Italian dominated, a contradiction.

Finally, assume that $f(w)=1$. Then, $f(v)=0$, and so $f\left(v^{\prime}\right)=2$ in order for v to be Italian dominated. Furthermore, $f\left(u^{\prime}\right) \geq 1$ in order for u to be Italian dominated, and so f assigns a total weight of at least four to $G \square K_{2}$, a contradiction.

In any case, we arrive at a contradiction. Thus $\gamma_{I}\left(G \square K_{2}\right) \geq 4$, and so $\gamma_{I}\left(G \square K_{2}\right)=$ 4, as desired.

Proposition 3.10. If G is a graph of order $n \geq 4$ with a pair of non-adjacent vertices u and v such that either $N[u]=N[w]=V(G) \backslash\{v, z\}$ and $N[v]=N[z]=$ $V(G) \backslash\{u, w\}$, or $N[u]=V(G) \backslash\{v, z\}, N[w]=V(G) \backslash\{v\}, N[v]=V(G) \backslash\{u, w\}$, and $N[z]=V(G) \backslash\{u\}$ for some $w, z \in V(G)$.

Proof. Let $G \square K_{2}$ be composed of two copies of G, labeled G and G^{\prime}. Let u and v be non-adjacent vertices of G, with $N[u]=V(G) \backslash\{v, z\}$ for some $z \in V(G)$ and $N[v]=V(G) \backslash\{u, w\}$ for some $w \in V(G)$.

First, note that if $w=z$, then the result holds by Proposition 3.8.
Next, note that a function that assigns $f(u)=f(v)=f\left(w^{\prime}\right)=f\left(z^{\prime}\right)=1$ and $f(x)=0$ for $x \in V\left(G \square K_{2}\right) \backslash\left\{u, v, v^{\prime}, w^{\prime}\right\}$ is an Italian dominating function of $G \square K_{2}$, so $\gamma_{I}\left(G \square K_{2}\right) \leq 4$.

Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a γ_{I}-function of $G \square K_{2}$ and suppose to the contrary that $\gamma_{I}(G) \leq 3$. Then, without loss of generality, we may assume that $0 \leq \sum_{v \in V(G)} f(v) \leq$ 1 and $2 \leq \sum_{v^{\prime} \in V\left(G^{\prime}\right)} f(v) \leq 3$.

If $\sum_{v \in V(G)} f(v)=0$, then every vertex in $V(G)$ must be adjacent to a vertex
$v^{\prime} \in V\left(G^{\prime}\right)$ assigned a two. Since $n \geq 4$ and f assigns a total weight of at most three to the vertices in $V\left(G^{\prime}\right)$, we have a contradiction.

Hence, we must assume that $\sum_{v \in V(G)} f(v)=1$ and so $\sum_{v^{\prime} \in V\left(G^{\prime}\right)} f\left(v^{\prime}\right)=2$.
Assume that $f(x)=1$ for some $x \in V(G) \backslash\{u, v, w, z\}$. Since $x \in N[u] \cap N[v]$, we must have that $f\left(u^{\prime}\right)=f\left(v^{\prime}\right) \geq 1$. However, in order for w to be Italian dominated by f, we must have $f\left(w^{\prime}\right) \geq 1$, and f assigns a total weight of at least four to $G \square K_{2}$, a contradiction.

Hence, we must assume that either $f(u)=1, f(v)=1, f(w)=1$, or $f(z)=1$.
Without loss of generality, assume that $f(u)=1$. Then, it must be that $f\left(v^{\prime}\right) \geq 2$ in order for v to be Italian dominated by f. Also, $f(z)=0$, and since $z \notin N[u]$ we have $f\left(z^{\prime}\right) \geq 2$ in order for z to be Italian dominated, and so f assigns a total weight of at least 4 to $G \square K_{2}$, a contradiction.

Thus, $\gamma_{I}\left(G \square K_{2}\right) \geq 4$, and so $\gamma_{I}\left(G \square K_{2}\right)=4$, as desired.
A similar argument holds for the second condition

Proposition 3.11. If G is an isolate-free graph of order $n=4$, then $\gamma_{I}\left(G \square K_{2}\right)=4$.

Proof. The isolate-free graphs of order $n=4$ are given in $\Delta(G)=n-1$ and by Proposition 3.7, $\gamma_{I}\left(G \square K_{2}\right)=4$.

If $\Delta(G)=2$, then either $G=C_{4}$ or $G=P_{4}$.
If $G=C_{4}$, then by Proposition 3.8, $\gamma_{I}(G)=4$.
If $G=P_{4}$, then $G \square P_{4}=L_{4}$ and by Theorem 3.4, $\gamma_{I}(G)=4$.
If $\Delta(G)=1$, then $G=2 P_{2}$, and by Proposition 3.10, $\gamma_{I}(G)=4$.
Thus, if G is an isolate-free graph of order $n=4$, we have that $\gamma_{I}\left(G \square K_{2}\right)=4$, as desired.

We may now characterize the graphs of the form $G \square K_{2}$ where $\gamma_{I}(G)=4$.
Theorem 3.12. Let $G \square K_{2}$ where G is a graph of order $n \geq 4$. Then, $\gamma_{I}(G)=4$ if and only if one of the following is true:
i. $\Delta(G)=n-1$.
ii. G can be constructed from two non-adjacent vertices u and v such that one of the following holds:
a. $N(u)=N(v)=V(G) \backslash\{u, v\}$,
b. $N[u]=N[w]=V(G) \backslash\{v\}$ and $N[v]=V(G) \backslash\{u, w\}$ for some $w \in V(G)$, or
c. $N[u]=N[w]=V(G) \backslash\{v, z\}$ and $N[v]=N[z]=V(G) \backslash\{u, w\}$, or
$N[u]=V(G) \backslash\{v, z\}, N[w]=V(G) \backslash\{v\}, N[v]=V(G) \backslash\{u, w\}$, and $N[z]=V(G) \backslash\{u\}$ for some $w, z \in V(G)$.

Proof. Let $G \square K_{2}$ be composed of two copies of G labeled G and G^{\prime}. Let $f=$ $\left(V_{0}, V_{1}, V_{2}\right)$ be an γ_{I}-function of $G \square K_{2}$. Let $\gamma_{I}\left(G \square K_{2}\right)=4$.

Since $n \geq 4$, if G (respectively, G^{\prime}) is assigned a total weight of zero by f, then every vertex of G^{\prime} (respectively, G) is assigned at least two by f to Italian dominate the corresponding vertex. But then, the total weight of f is at least $2 n \geq 8$, a contradiction.

Thus, we may assume that f assigns a total weight of at least one and at most three to each of G and G^{\prime}. Without loss of generality, we consider the following two cases.

Case 1. $\sum_{v \in V(G)} f(v)=3$ and $\sum_{v^{\prime} \in V\left(G^{\prime}\right)} f\left(v^{\prime}\right)=1$. If $n \geq 5$, then there is at least one vertex in G^{\prime} not Italian dominated by f, a contradiction.

Hence, we may assume that $n=4$. Since the total weight assigned to G^{\prime} is one, let x^{\prime} be the vertex in $V\left(G^{\prime}\right)$ with $f\left(x^{\prime}\right)=1$. Then, there exist three vertices $u^{\prime}, v^{\prime}, w^{\prime}$ with $f\left(u^{\prime}\right)=f\left(v^{\prime}\right)=f\left(w^{\prime}\right)=0$. Thus, each of $f(u), f(v), f(w)$ is at least one, so it must be that $f(u)=f(v)=f(w)=1$, and each of $u^{\prime}, v^{\prime}, w^{\prime}$ is adjacent to x^{\prime}, implying that $\Delta\left(G^{\prime}\right)=\Delta(G)=n-1$, satisfying (i).

Case 2. $\sum_{v \in V(G)} f(v)=\sum_{v^{\prime} \in V\left(G^{\prime}\right)} f\left(v^{\prime}\right)=2$. We consider the following three subcases.
a. $f(u)=f\left(v^{\prime}\right)=2$ for some $u \in V(G), v^{\prime} \in V\left(G^{\prime}\right)$. If $u=v$, then u is adjacent to every vertex in G, thus $\Delta(G)=n-1$, and (i) is satisfied.

Thus, we must assume that $u \neq v$. Then, u must dominate $V(G) \backslash\{u, v\}$, so $\operatorname{deg}(u) \geq n-2$ in G. Additionally, if u is adjacent to v, then $\operatorname{deg}(u)=n-1$, and (i) is satisfied.

Hence, we must assume that u and v are not adjacent. Then $\operatorname{deg}(u)=n-2$ in G. Similarly, we can show that $\operatorname{deg}\left(v^{\prime}\right)=n-2$ in G^{\prime}, and so $\operatorname{deg}(v)=n-2$ in G, thus $N(u)=N(v)=V(G) \backslash\{u, v\}$ and (ii.a) is satisfied.
b. $f(u)=2$ for some $u \in V(G)$ and $f\left(v^{\prime}\right)=f\left(w^{\prime}\right)=1$ for some $v^{\prime}, w^{\prime} \in V\left(G^{\prime}\right)$. First, note that if $\Delta(G)=n-1$ then (i) is satisfied, and we are finished. Hence, assume that $\Delta(G) \leq n-2$. Thus, there is a vertex $x \in V(G)$ that is not adjacent to u. Then, $N[x]$ is assigned a total weight of at most one by f, and so x is not Italian dominated, a contradiction.
c. $f(u)=f(v)=f(w)=f(z)=1$. Assume that $n \geq 5$. Notice that if
$\Delta(G)=n-1$, then (i) holds, and we are finished. Similarly, if there are two nonadjacent vertices $v, u \in V(G)$ such that $N(u)=N(v)=V(G) \backslash\{u, v\}$, then (ii.a) is satisfied, and we are finished. Thus, there must be some vertex $x \in V(G)$ such that x is adjacent to at most one of u, v.

Assume that x is adjacent to neither of u, v. Then x is adjacent only to x^{\prime} in $G \square K_{2}$, and x is adjacent to at most a weight of one, and x is not Italian dominated, a contradiction.

Thus, it must be that x is adjacent to exactly one of u, v. Without loss of generality, assume x is adjacent to u. Then $f\left(x^{\prime}\right)=1$ and so x must be either w or z. Without loss of generality, assume $x=w$.

Now, $f\left(z^{\prime}\right)=1$ by hypothesis, and so either $f(z)=0$, or otherwise $z=u$ or $z=v$. Assume that $z=u$.

Since $n \geq 5$, there must be a vertex y such that $y \notin\{u, v, w\}$. By hypothesis and the above, $f\left(u^{\prime}\right)=f\left(w^{\prime}\right)=1$, and so y^{\prime} must be adjacent to both u^{\prime} and w^{\prime}. Additionally, y must be adjacent to u and v in order to be Italian dominated, and so $u, v, w \in N(y)$ for all $y \notin\{u, v, w\}$.

Notice that if u and v are adjacent, then $\operatorname{deg}(u)=n-1$ and (i) is satisfied. Thus, we must assume that u and v are not adjacent.

Then, since $f(v)=f\left(w^{\prime}\right)=1$, we have that v^{\prime} must be adjacent to w^{\prime}, and so v must be adjacent to w, and we have a contradiction, since w is not adjacent to v.

Thus, we must assume that $z \neq u$.
Assume that $z=v$.
Since $n \geq 5$, there must be a vertex y such that $y \notin\{u, v, w\}$. By hypothesis
and the above, $f\left(v^{\prime}\right)=f\left(w^{\prime}\right)=1$, and so y^{\prime} must be adjacent to both u^{\prime} and w^{\prime}. Additionally, y must be adjacent to u and v in order to be Italian dominated, and so every vertex $y \in V(G) \backslash\{u, v, w\}$ is adjacent to each of u, v, w.

Once again, notice that if u and v are adjacent, then $\operatorname{deg}(u)=n-1$ and (i) is satisfied. Thus, we must assume that u and v are not adjacent.

Then, we have that $N[u]=N[w]=V(G) \backslash\{v\}$ and $N[v]=V(G) \backslash\{u, w\}$, and (ii.b) is satisfied.

Hence, we must assume that $z \neq v$.
First, notice that if z is adjacent to neither u nor v, then $N[z]$ is assigned a total weight of one by f, and z is not Italian dominated. Hence, z must be adjacent to at least one of u and v. Similarly, v^{\prime} must be adjacent to at least one of w^{\prime} and z^{\prime}.

As with the previous arguments, every vertex in $V(G) \backslash\{u, v, w, z\}$ is adjacent to each of u, v, w, and z.

If the only edges in $G[\{u, v, w, z\}]$ are $u w$ and $v z$, then ii.c holds.
If u and v are adjacent to both w and z, then either i or $i i . a$ holds.
Thus, we may assume that without loss of generality, u is not adjacent to z, and so $v z \in E(G)$, and it follows that either ii.a, ii.b, or ii.c holds.

Therefore, the result holds for $n \geq 5$.
Hence, we may assume that $n=4$. Assume, for the purpose of contradiction, that G has an isolated vertex. Then, $G \square K_{2}$ will have a K_{2} component requiring a total weight of 2 assigned by f. Label this component P. Then, f assigns a total weight of two to the vertices in $Q=\left(G \square K_{2}\right)-P$.

By hypothesis, we have that $\Delta(G) \leq n-2=2$, and so we must have that
$\Delta\left(G \square K_{2}\right)=3$.
Suppose that $f\left(v_{m}\right)=2$ for some $v_{m} \in V(Q)$. Then, in order for Q to be Italian dominated, $N\left[v_{m}\right]=Q$, and so v_{m} has degree 5 , a contradiction.

Hence, we may assume that there are two vertices v_{p} and v_{q} such that $f\left(v_{p}\right)=$ $f\left(v_{q}\right)=1$. Then, $N\left(v_{p}\right)=N\left(v_{q}\right)$ necessarily and so $\operatorname{deg}\left(v_{p}\right)=\operatorname{deg}\left(v_{q}\right)=4$, again a contradiction.

Thus, we may assume that G is isolate-free. The only possible isolate-free graphs of order 4 with $\Delta(G) \leq 2$ are C_{4}, P_{4}, and $2 P_{2}$ (that is, the graph consisting of two copies of a P_{2} graph). If $G=C_{4}$, this satisfies (ii.a). If $G=P_{4}$ or $2 P_{2}$, this satisfies (ii.c).

The converse statements are shown by Propositions 3.7, 3.8, 3.9, and 3.10, and so the result holds.

3.3 Prisms and related products

Consider the prism $C_{n} \square K_{2}=\Pi_{n}$. By way of a construction similar to that of L_{n} above, we define corresponding vertices v_{i}, v_{i}^{\prime}, so one "copy" of C_{n} has vertices $v_{0}, v_{1}, \ldots, v_{n-1}$, and the other copy contains corresponding vertices $v_{0}^{\prime}, v_{1}^{\prime}, \ldots, v_{n-1}^{\prime}$.

Notice that we can construct such a prism by constructing a ladder L_{n}, and adding edges $v_{1} v_{n}$ and $v_{1}^{\prime} v_{n}^{\prime}$. As such, we may still define "rungs" constructed of corresponding vertices v_{i}, v_{i}^{\prime} as we did in the case of L_{n}.

Let $f\left(v_{i}\right)=1$ for $i \equiv 0(\bmod 2), f\left(v_{j}^{\prime}\right)=1$ for $j \equiv 1(\bmod 2)$, and $f(x)=0$ otherwise. This produces an IDF of weight n, so we have the upper bound $\gamma_{I}\left(\Pi_{n}\right) \leq n$.

Theorem 3.13. If Π_{n} is a prism of the form $C_{n} \square K_{2}$ for $n \geq 3$, then $\gamma_{I}\left(\Pi_{n}\right)=n$.

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a γ_{I}-function on Π_{n}. Note first that since Π_{n} has $\Delta(G)=3$, then by Lemma 3.3 we can choose f such that the set V_{2} is independent, and $\left[V_{1}, V_{2}\right]=\emptyset(1)$. Moreover, subject to (1), select f such that the first zero rung r_{i} has the largest possible index i.

Now, suppose, to the contrary, that $\gamma_{I}\left(\Pi_{n}\right) \leq n-1$. Then, there must be at least one zero rung in Π_{n}.

Then, in order to Italian dominate this zero rung, f must assign a total weight of at least 4 to the rungs r_{i-1} and r_{i+1} (that is, all computations on the indices are done modulo n). Additionally, since r_{i} is the first zero rung, then all rungs r_{k} such that $k<i$ have weight at least 1 .

Since the set V_{2} is independent, and $\left[V_{1}, V_{2}\right]=\emptyset$, the only possibilities are that for all vertices $v_{i-1}, v_{i-1}^{\prime}, v_{i+1}, v_{i+1}^{\prime}$, without loss of generality $v_{i-1}, v_{i+1}^{\prime} \in V_{2}$ and $v_{i+1}, v_{i-1}^{\prime} \in V_{0}$, or that $v_{i-1}, v_{i-1}^{\prime}, v_{i+1}, v_{i+1}^{\prime} \in V_{1}$. We consider these two cases:

Case 1. $v_{i-1}, v_{i-1}^{\prime}, v_{i+1}, v_{i+1}^{\prime} \in V_{1}$. Since Π_{n} has no end rungs, the rung r_{i-2} exists (modulo n), and one of its vertices, say v_{i-2}, has weight at least one. Furthermore, since $\left[V_{1}, V_{2}\right]=\emptyset, v_{i-2}, v_{i-2}^{\prime} \notin V_{2}$. Thus, $f\left(v_{i-2}\right)=1$. Now, let g be a function such that $g\left(v_{i-1}\right)=0, g\left(v_{i}\right)=1$, and $g(x)=f(x)$ for all $x \notin\left\{v_{i-1}, v_{i}\right\}$. Thus, g is a γ_{I}-function of Π_{n} where r_{i} is not the first zero rung, contradicting our choice of f.

Case 2. $f\left(v_{i-1}\right)=2$ and $f\left(v_{i+1}^{\prime}\right)=2$. By our choice of f, we must have that $f\left(v_{i+1}\right)=. f\left(v_{i-1}^{\prime}\right)=0$. Moreover, if $i \geq 3$, then $f\left(v_{i-2}\right)=0$ Then, since r_{i} is the first zero rung, r_{i-2} must have total weight at least one, implying that $f\left(v_{i-2}^{\prime}\right) \geq 1$. Let g be the function such that $g\left(v_{i-1}\right)=1, g\left(v_{i}^{\prime}\right)=1$, and $g(x)=f(x)$ for all $x \notin\left\{v_{i-1}, v_{i}^{\prime}\right\}$. Thus, g is a γ_{I}-function of Π_{n} satisfying (1) where r_{i} is not the first
zero rung, contradicting our choice of f.
Therefore, $\gamma_{I}\left(\Pi_{n}\right) \geq n-1$, and so $\gamma_{I}\left(\Pi_{n}\right)=n$.

Notice that we can construct such a Möbius ladder by constructing a prism Π_{n} of the form $C_{n} \square K_{2}$, omitting a pair of edges $v_{i} v_{i+1}$ and $v_{i}^{\prime} v_{i+1}^{\prime}$, and adding edges $v_{i} v_{i+1}^{\prime}$ and $v_{i}^{\prime} v_{i+1}$ to form a 'twist' in the ladder structure. Furthermore, since we can label the rungs our ladder arbitrarily, we may place the "twist" between any pair of rungs we wish.

Corollary 3.14. Let M_{m} be a Möbius ladder of order $m=2 n$ Then, $\gamma_{I}\left(M_{m}\right)=n$.
Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a γ_{I} function on M_{m}.
Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a γ_{I}-function on Π_{n}. Note first that since M_{m} has $\Delta(G)=$ 3 , then as before, by Lemma 3.3 we can choose f such that the set V_{2} is independent, and $\left[V_{1}, V_{2}\right]=\emptyset(1)$. Moreover, subject to (1), select f such that the first zero rung r_{i} has the largest possible index i.

Now, suppose to the contrary that $\gamma_{I}\left(M_{m}\right)=n-1$. Then there must be at least one zero rung in M_{m}. Then, in order to Italian dominate this zero rung, f must assign a total weight of at least four to the rungs r_{i-1} and r_{i+1} (that is, the rungs immediately preceding and following r_{i}). Notably, this is true regardless of whether the twist is between r_{i-1}, r_{i} or between r_{i}, r_{i+1}. Additionally, since r_{i} is the first zero rung, then all rungs r_{k} such that $k<i$ have weight at least one.

Once a rung r_{i} is fixed, we may label the vertices as v_{i} or v_{i}^{\prime} such that if the twist is located between r_{j} and r_{j+1}, the vertices v_{j}^{\prime} and v_{j+1}^{\prime} are adjacent, and correspondingly, the vertices v_{j} and v_{j+1} are adjacent. In other words, all vertices v_{i}^{\prime} where $j<i \leq n$ are located on the opposite "side" of M_{m} as those where $1 \leq i \leq j$.

Since the set V_{2} is independent, and $\left[V_{1}, V_{2}\right]=\emptyset$, the only possibilities are that for all vertices $v_{i-1}, v_{i-1}^{\prime}, v_{i+1}, v_{i+1}^{\prime}$, without loss of generality $v_{i-1}, v_{i+1}^{\prime} \in V_{2}$ and $v_{i+1}, v_{i-1}^{\prime} \in V_{0}$, or that $v_{i-1}, v_{i-1}^{\prime}, v_{i+1}, v_{i+1}^{\prime} \in V_{1}$. We consider these two cases:

Case 1. $v_{i-1}, v_{i-1}^{\prime}, v_{i+1}, v_{i+1}^{\prime} \in V_{1}$. Since M_{m} has no end rungs, the rung r_{i-2} exists (relabeling if necessary), and one of its vertices, say v_{i-2}, has weight at least one. Furthermore, since $\left[V_{1}, V_{2}\right]=\emptyset, v_{i-2}, v_{i-2}^{\prime} \notin V_{2}$. Thus, $f\left(v_{i-2}\right)=1$. Now, let g be a function such that $g\left(v_{i-1}\right)=0, g\left(v_{i}\right)=1$, and $g(x)=f(x)$ for all $x \notin\left\{v_{i-1}, v_{i}\right\}$. Thus, g is a γ_{I}-function of M_{m} where r_{i} is not the first zero rung, contradicting our choice of f.

Case 2. $f\left(v_{i-1}\right)=2$ and $f\left(v_{i+1}^{\prime}\right)=2$. By our choice of f, we must have that $f\left(v_{i+1}\right)=. f\left(v_{i-1}^{\prime}\right)=0$. Moreover, if $i \geq 3$, then $f\left(v_{i-2}\right)=0$. Then, since r_{i} is the first zero rung, r_{i-2} must have total weight at least one, implying that $f\left(v_{i-2}^{\prime}\right) \geq 1$. Let g be the function such that $g\left(v_{i-1}\right)=1, g\left(v_{i}^{\prime}\right)=1$, and $g(x)=f(x)$ for all $x \notin\left\{v_{i-1}, v_{i}^{\prime}\right\}$. Thus, g is a γ_{I}-function of M_{m} satisfying (1) where r_{i} is not the first zero rung, contradicting our choice of f.

Therefore, $\gamma_{I}\left(M_{m}\right) \geq n-1$, and so $\gamma_{I}\left(M_{m}\right)=n$.

3.4 Categorical Products

Recall that the categorical product $G \times K_{2}$ is equivalent to the bipartite double graph of G, also known as a Kronecker cover or bipartite double cover. This graph is constructed by making two copies of the vertices of G (no edges), labeled G and G^{\prime} and constructing edges $u v^{\prime}$ and $u^{\prime} v$ for every edge $u v \in E(G)$.

Proposition 3.15. Let $G=P_{n}$. Then $\gamma_{I}\left(G \times K_{2}\right)=2\left\lceil\frac{n+1}{2}\right\rceil$.

Proof. Notice that the graph $P_{n} \times K_{2} \cong 2 P_{n}$, where $2 P_{n}$ is a graph composed of two disjoint copies of P_{n}. By $[6], \gamma_{I}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$, and so $\gamma_{I}\left(G \times K_{2}\right)=2\left\lceil\frac{n+1}{2}\right\rceil$.

Proposition 3.16. Let $G=C_{n}$. Then $\gamma_{I}\left(C_{n}\right)=n$.

Proof. Notice that the graph $C_{n} \times K_{2} \cong C_{2 n}$ for n odd, and $C_{n} \times K_{2} \cong 2 C_{n}$ for n even. By [6], $\gamma_{I}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$, and so $\gamma_{I}\left(G \times K_{2}\right)=n$ for n odd, and for n even, $\gamma_{I}\left(G \times K_{2}\right)=2\left\lceil\frac{n}{2}\right\rceil=n$.

Proposition 3.17. Let $G=K_{n}$. Then $\gamma_{I}\left(G \times K_{2}\right)=4$.

Proof. Notice that the graph $K_{n} \times K_{2} \cong K_{n, n}$. Since $K_{n, n}$ is a complete bipartite graph, it is composed of two disjoint independent vertex sets A and B, where every $v \in A$ has all of $B \in N(v)$ (and vice versa).

Without loss of generality, assigning $v \in A$ a two or assigning two $v_{1}, v_{2} \in A$ with one will Italian dominate all of B. Thus, $\gamma_{I}\left(K_{n, n}\right) \leq 4$.

Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a γ_{I}-function on $K_{n, n}$. Assume, to the contrary, that $\gamma_{I}\left(K_{n, n}\right)=3$. Then one of the partite sets is assigned a total weight of zero or one by f. Again, without loss of generality, if $A \cap V_{0}=A$, then B is not Italian dominated. Similarly, if only one $v \in A$ has $f(v)=1$, and $A \cap V_{0}=A \backslash\{v\}, B$ is not Italian dominated. In either case, f is not a γ_{I} function, and so $\gamma_{I}\left(K_{n, n}\right) \geq 4$, thus $\gamma_{I}\left(K_{n, n}\right)=4$.

Proposition 3.18. Let $G=L_{n}$. Then $\gamma_{I}\left(G \times K_{2}\right)=2 n$.

Proof. Notice that the graph $L_{n} \times K_{2} \cong 2 L_{n}$. Then, $\gamma_{I}\left(L_{n} \times K_{2}\right)=2 \gamma_{I}\left(L_{n}\right)=2 n$.

Proposition 3.19. Let $G=\Pi_{n}$. Then $\gamma_{I}\left(G \times K_{2}\right)=2 n$.

Proof. Notice that the graph $\Pi_{n} \times K_{2} \cong \Pi_{2 n}$ for n odd, and $\Pi_{n} \times K_{2} \cong 2 \Pi_{n}$ for n even. In either case, $\gamma_{I}\left(\Pi_{n} \times K_{2}\right)=2 n$.

3.5 Lexicographic Products

Recall that the lexicographic product $G \cdot K_{2}$ is equivalent to the double graph of G, constructed from two copies of G and adding edges $u v^{\prime}$ and $u^{\prime} v$ for every edge $u v \in E(G)$.

As an observation, let G be a graph and let D be a dominating set of G. Consider the lexicographic product $G \cdot K_{2}$, resulting in two copies of G, labeled G and G^{\prime}. Furthermore, in each of these we can identify a copy of the dominating set, say D and D^{\prime}. Let g be an Italian dominating function such that $g(v)=1$ for all $v \in D \cup D^{\prime}$, and $g(v)=0$ otherwise. Since this function results in a dominating set on each of G, $G^{\prime}, D \cup D^{\prime}$ is an Italian dominating set on $G \cdot K_{2}$. As expected, $\gamma_{I}\left(G \cdot K_{2}\right) \leq 2 \gamma(G)$.

We will further explore this concept to arrive at a value for the Italian domination number of $P_{n} \cdot K_{2}$. In such a graph, we call a non-adjacent pair of vertices v, v^{\prime} a row (as opposed to a rung, since the edge $v v^{\prime}$ does not exist). First, we consider the following lemma.

Lemma 3.20. Let P_{n} be a path graph. Consider the lexicographic product $P_{n} \cdot K_{2}$ containing two copies of P_{n} labeled P_{n} and P_{n}^{\prime}. Let $v_{i} \in V\left(P_{n}\right)$ and $v_{i}^{\prime} \in V\left(P_{n}^{\prime}\right)$. Then, we may choose a γ_{I}-function f of $P_{n} \cdot K_{2}$ such that if $f\left(v_{i}\right)=0$, then $f\left(v_{i}^{\prime}\right)=0$.

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a γ_{I} function on $P_{n} \cdot K_{2}$. Suppose, to the contrary, that we must have $f\left(v_{i}\right)=0$ and $f\left(v_{i}^{\prime}\right) \geq 1$ for some i. We call this property P. Choose f
such that (1) the number of rows with property \mathcal{P} is minimized, and (2) subject to (1), the index i is maximized for the first row with property \mathcal{P}.

Consider the case if $f\left(v_{i}\right)=0$ and $f\left(v_{i}^{\prime}\right)=2$. Since $N\left(v_{i}\right)=N\left(v_{i}^{\prime}\right)$, then let g be the function such that $g\left(v_{i}\right)=1$ and $g\left(v_{i}^{\prime}\right)=1$. All of $N\left(v_{i}\right)=N\left(v_{i}^{\prime}\right)$ is still Italian dominated, so we may assume that V_{2} is empty. Hence, we may assume, without loss of generality, that $f\left(v_{i}\right)=0$, and $f\left(v_{i}^{\prime}\right)=1$.

Now, consider the vertices v_{1}, v_{1}^{\prime}. Note that if $f\left(v_{1}\right)=f\left(v_{1}^{\prime}\right)=0$, then it is necessary that $f\left(v_{2}\right)=f\left(v_{2}^{\prime}\right)=1$.

Further, if $f\left(v_{1}\right)=1$ and $f\left(v_{1}^{\prime}\right)=0$, then it is still necessary that $f\left(v_{2}\right)=f\left(v_{2}^{\prime}\right)=$ 1 , and we may define a function g such that $g\left(v_{1}\right)=0$, and $g(x)=f(x)$ for $x \notin\left\{v_{1}\right\}$. Then, g has total weight less than $\gamma_{I}\left(P_{n} \cdot K_{2}\right)$, a contradiction. Thus, we may assume that either $f\left(v_{1}\right)=f\left(v^{\prime} 1\right)=1$, or $f\left(v_{2}\right)=f\left(v_{2}^{\prime}\right)=1$ and $f\left(v_{1}\right)=f\left(v_{2}\right)=0$.

That is, there is a pair of corresponding vertices v_{k}, v_{k}^{\prime} such that $f\left(v_{k}\right)=f\left(v_{k}^{\prime}\right)=1$, and so, $i \geq 2$. For $i-1$, we consider the following three cases.

Case 1. $f\left(v_{i-1}\right)=f\left(v_{i-1}^{\prime}\right)=1$. Since i is the largest index of a row having property \mathcal{P}, then either $f\left(v_{i+1}\right)=f\left(v_{i+1}^{\prime}\right)=0$ or $f\left(v_{i+1}\right)=f\left(v_{i+1}^{\prime}\right)=1$.

$$
\text { If } f\left(v_{i+1}\right)=f\left(v_{i+1}^{\prime}\right)=0 \text {, then let } g \text { be the function such that } g\left(v_{i}^{\prime}\right)=0, g\left(v_{i+1}^{\prime}\right)=1 \text {, }
$$ and $g(x)=f(x)$ for all $x \notin\left\{v_{i}^{\prime}, v_{i+1}^{\prime}\right\}$ is a γ_{I}-function on $P_{n} \cdot K_{2}$ with a larger index i for a row with property \mathcal{P}, contradicting our choice of f.

If $f\left(v_{i+1}\right)=f\left(v_{i+1}^{\prime}\right)=1$, then let g be the function such that $g\left(v_{i}^{\prime}\right)=0$ and $g(x)=f(x)$ for all $x \notin\left\{v_{i}^{\prime}\right\}$. Then, g is an IDF with total weight less than $\gamma_{I}\left(P_{n} \cdot K_{2}\right)$, a contradiction.

Case 2. $f\left(v_{i-1}\right)=f\left(v_{i-1}^{\prime}\right)=0$. Then, it is necessary that $f\left(v_{i+1}\right)=f\left(v_{i+1}^{\prime}\right)=1$
in order to Italian dominate v_{i} and not be a row with property \mathcal{P} and index greater than i. Moreover, at least one of v_{i-2} and v_{i-2}^{\prime} is assigned a one by f in order to Italian dominate v_{i-1} and v_{i-1}^{\prime}.

If $f\left(v_{i-2}\right)=f\left(v_{i-2}^{\prime}\right)=1$, then let g be the function such that $f\left(v_{i}^{\prime}\right)=0$. Then, g is an IDF with total weight less than $\gamma_{I}\left(P_{n} \cdot K_{2}\right)$, a contradiction.

Hence, we must assume that exactly one of v_{i-2} and v_{i-2}^{\prime} is assigned a one by f. Without loss of generality, assume that $f\left(v_{i-2}\right)=1$ and $f\left(v_{i-2}^{\prime}\right)=0$. Then, we must have that $f\left(v_{i-3}\right)=f\left(v_{i-3}\right)^{\prime}=1$ in order to Italian dominate v_{i-2}^{\prime}. Let g be the function such that $g\left(v_{i-2}\right)=0, g\left(v_{i}\right)=1$, and $g(x)=f(x)$ for all $x \notin\left\{v_{i-2}, v_{i}\right\}$. Then, g is a γ_{I}-function with fewer rows having property \mathcal{P}, contradicting our choice of f.

Case 3. Without loss of generality, $f\left(v_{i-1}\right)=1$, and $f\left(v_{i-1}^{\prime}\right)=0$. Now, at least one of v_{i+1} and v_{i+1}^{\prime} must be assigned a one by f in order to Italian dominate v_{i}. Further, since i is the largest index for a row with property \mathcal{P}, it follows that $f\left(v_{i+1}\right)=f\left(v_{i+1}^{\prime}\right)=1$. Let g be the function such that $g\left(v_{i}^{\prime}\right)=0, g\left(v_{i-1}^{\prime}\right)=1$. Then, g is a γ_{I}-function with fewer rows having property \mathcal{P}, contradicting our choice of f.

Thus, we may choose a $\gamma_{I^{-}}$-function f of $P_{n} \cdot K_{2}$ such that if $f\left(v_{i}\right)=0$, then $f\left(v_{i}^{\prime}\right)=0$, as desired.

Importantly, while this lemma states a useful result for $P_{n} \cdot K_{2}$, this is not generally true for $G \cdot K_{n}$.

We will use the preceding lemma to show equality of our previous upper bound for $\gamma_{I}\left(P_{n} \cdot K_{2}\right)$.

Theorem 3.21. For any path graph P_{n}, we have that $\gamma_{I}\left(P_{n} \cdot K_{2}\right)=2\left(\left\lfloor\frac{n+2}{3}\right\rfloor\right)$.

Proof. Note that by [5], $\gamma\left(P_{n}\right)=\left\lfloor\frac{n+2}{3}\right\rfloor$.
Using our previous notation for the constituent parts of $G \cdot K_{2}$, let D be a γ-set of P_{n}, and let D^{\prime} be the corresponding γ-set of P_{n}^{\prime}. Then, the function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that $V_{2}=\emptyset, V_{1}=D \cup D^{\prime}$, and $V_{0}=V\left(P_{n} \cdot K_{2}\right) \backslash V_{1}$ is an Italian dominating function on $P_{n} \cdot K_{2}$. Thus, $\gamma_{I}\left(P_{n} \cdot K_{2}\right) \leq 2 \gamma\left(P_{n}\right)=2\left(\left\lceil\frac{n+1}{2}\right\rceil\right)$.

To show that $\gamma_{I}\left(P_{n} \cdot K_{2}\right) \geq 2 \gamma\left(P_{n}\right)$, suppose to the contrary that $\gamma_{I}\left(P_{n} \cdot K_{2}\right) \leq$ $2 \gamma\left(P_{n}\right)-1$.

Let $g=\left(V_{0}, V_{1}, V_{2}\right)$ be a γ_{I}-function on $P_{n} \cdot K_{2}$. By Lemma 3.20, we may choose g such that if $g\left(v_{i}\right)=0$, then $g\left(v_{i}^{\prime}\right)=0$.

Since the total weight of g is at most $2 \gamma\left(P_{n}\right)-1$, then, without loss of generality, the total weight assigned to G is at most $\gamma\left(P_{n}\right)-1$. That is, the set $\left(V_{1} \cup V_{2}\right) \cap V(G)$ does not dominate P_{n}. That is, there exists some vertex $v \in V\left(P_{n}\right)$ such that $g(v)=0$ and $g(x)=0$ for all $x \in N(v) \cap V\left(P_{n}\right)$.

However, since g is a γ_{I}-function of $P_{n} \cdot K_{2}$, there must be some vertex $x^{\prime} \in$ $N(v) \cap V\left(P_{n}^{\prime}\right)$ such that $f\left(x^{\prime}\right) \geq 1$, contradicting our choice of g.

Therefore, $\gamma_{I}\left(P_{n} \cdot K_{2}\right) \geq 2 \gamma(G)$, and so $\gamma_{I}\left(P_{n} \cdot K_{2}\right)=2 \gamma\left(L_{n}\right)=2\left(\left\lfloor\frac{n+2}{3}\right\rfloor\right)$, as desired.

4 CONCLUDING REMARKS

Research into the parameters of Italian domination in graph products is ongoing, and a rich area of study. We conclude by presenting several open questions suggested by this research.

1. Certain prisms and Möbius ladders are also circulant graphs. Further explore the Italian domination numbers of circulant graphs.
2. A graph of the form $G \square P_{n}$ is called a generalized prism graph. Further explore the Italian domination numbers of generalized prism graphs.
3. Use Lemmas 3.2 and 3.3 to explore the parameters of Italian domination in the cubic graphs.
4. Characterize the prisms for which $\gamma_{I}(G)=\gamma_{R}(G)$.
5. Explore Italian domination in graph products $G \square H, G \times H$, and $G \cdot H$ where $H \neq K_{2}$.
6. Further refine the upper bound $\gamma_{I}\left(G \cdot L_{n}\right) \leq 2 \gamma(G)$.

BIBLIOGRAPHY

[1] Alawi Alhashim, Wyatt J. Desormeaux, and Teresa W. Haynes. Roman domination in complementary prisms. Australas. J. Combin., 68:218-228, 2017.
[2] José D. Alvarado, Simone Dantas, and Dieter Rautenbach. Relating 2-Rainbow Domination To Roman Domination. Discussiones Mathematicae Graph Theory, 37(4):53-961, 2017.
[3] Mostafa Blidia, Mustapha Chellali, and Lutz Volkmann. Bounds of the 2domination number of graphs. Util. Math., 71:209-216, 2006.
[4] Erin W. Chambers, Bill Kinnersley, Noah Prince, and Douglas B. West. Extremal problems for Roman domination. SIAM J. Discrete Math., 23(3):1575-1586, 2009.
[5] Gary Chartrand, Linda Lesniak, Ping Zhang. Graphs and Digraphs. 6th ed., CRC Press, Monterey, Calif., 2016.
[6] Mustapha Chellali, Teresa W. Haynes, Stephen T. Hedetniemi, and Alice A. McRae. Roman \{2\}-domination. Discrete Appl. Math., 204:22-28, 2016.
[7] Ernie J. Cockayne, Paul A. Dreyer, Jr., Sandra M. Hedetniemi, and Stephen T. Hedetniemi. Roman domination in graphs. Discrete Math., 278(1-3):11-22, 2004.
[8] Arnel Marino Cuivillas and Sergio R. Canoy, Jr. Double domination in the Cartesian and tensor products of graphs. Kyungpook Math. J., 55(2):279-287, 2015.
[9] Wyatt J. Desormeaux, Teresa W. Haynes, and Lamont Vaughan. Double domination in complementary prisms. Util. Math., 91:131-142, 2013.
[10] Henning Fernau. Roman domination: a parameterized perspective. Int. J. Comput. Math., 85(1):25-38, 2008.
[11] John Frederick Fink and Michael S. Jacobson. n-domination in graphs. In Graph theory with applications to algorithms and computer science, Wiley-Intersci. Publ., pages 283-300. Wiley, New York, 1985.
[12] Xueliang Fu, Yuansheng Yang, and Baoqi Jiang. Roman domination in regular graphs. Discrete Math., 309(6):1528-1537, 2009.
[13] Zhiyong Gan, Dingjun Lou, Xuelian Wen, and Zan-Bo Zhang. Bipartite Double Cover and Perfect 2-Matching Covered Graph with Its Algorithm. Frontiers of Math. in China. 10(3):621, 2015.
[14] Richard H. Hammack, Wilfried Imrich, and Sandi Klavžar. Handbook of product graphs. 2nd ed. Safari Tech Books, Boca Raton, Fla., 2011.
[15] Jochen Harant and Michael A. Henning. On double domination in graphs. Discuss. Math. Graph Theory, 25(1-2):29-34, 2005.
[16] Frank Harary and Teresa W. Haynes. Double domination in graphs. Ars Combin., 55:201-213, 2000.
[17] Teresa W. Haynes, Michael A. Henning, Peter J. Slater, and Lucas C. van der Merwe. The complementary product of two graphs. Bull. Inst. Combin. Appl., 51:21-30, 2007.
[18] Michael A. Henning and William F. Klostermeyer. Italian Domination in Trees. Discrete Appl. Math., 217:557-564, 2017.
[19] Wilfried Imrich, Sandi Klavžar, and Douglas F Ral. Topics in graph theory : graphs and their cartesian product. A K Peters, Wellesley, Mass., 2008.
[20] Mathieu Liedloff, Ton Kloks, Jiping Liu, and Sheng-Lung Peng. "Roman domination over some graph classes." In Graph-theoretic concepts in computer science, Volume 3787 of Lecture Notes in Comput. Sci., pages 103-114. Springer, Berlin, 2005.
[21] Chun-Hung Liu and Gerard J. Chang. Roman domination on strongly chordal graphs. J. Comb. Optim., 26(3):608-619, 2013.
[22] Chun-Hung Liu and Gerard Jennhwa Chang. Upper bounds on Roman domination numbers of graphs. Discrete Math., 312(7):1386-1391, 2012.
[23] G. MacGillivray, W. Klostermeyer. Roman, Italian, and 2-domination. Unpublished Manuscript, 2016.
[24] Polona Pavlič, Janez Žerovnik. Roman Domination Number of the Cartesian Products of Paths and Cycles. Elec. J. Of Comb., 19(3), 2012.
[25] Marcin Krzywkowski. On trees with double domination number equal to 2domination number plus one. Houston J. Math., 39(2):427-440, 2013.
[26] Haley D. Russell. Italian Domination in Complementary Prisms. Unpublished Master's Thesis. East Tennessee State University, Johnson City, TN. 2018.
[27] Vladimir Samodivkin. Roman domination in graphs: the class $R_{U V R}$. Discrete Math. Algorithms Appl., 8(3):1650049, 14, 2016.
[28] Ian Stewart. Defend the Roman Empire! Sci. Amer., 281(6):136, 1999.
[29] Tadeja Kraner Šumenjak, Polona Pavlič, and Aleksandra Tepeh. On the Roman Domination in the Lexicographic Product of Graphs. Discrete Appl. Math., 160(13-14):2030-2036, 2012.
[30] Tadeja Kraner Šumenjak, Douglas F. Rall, and Aleksandra Tepeh. Rainbow Domination in the Lexicographic Product of Graphs. Discrete Appl. Math., 161(13-14):2133-2141, 2013.
[31] Hua-Ming Xing, Xin Chen, and Xue-Gang Chen. A note on Roman domination in graphs. Discrete Math., 306(24):3338-3340, 2006.
[32] Ismael González Yero and Juan Alberto Rodrìguez Velázquez. Roman domination in Cartesian product graphs and strong product graphs. Appl. Anal. Discrete Math., 7(2):262-274, 2013.

VITA

KAELI B GARDNER

Education:	B.S. Mathematics, East Tennessee State University
Johnson City, TN 2016	
M.S. Mathematics, East Tennessee State University	
Johnson City, TN 2018	

Professional Experience: Summer Math Instructor, Method Schools, Murietta, CA, 2018

Publications: "Universal Cycles of Restricted Words," with Anant Godbole.

Midwestern Conference on Combinatorics and Combinatorial Computing, 30. 2018.

