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ABSTRACT

Italian Domination in Ladders and Related Products

by

Kaeli B. Gardner

An Italian dominating function on a graph G = (V,E) is a function such that f : V →

{0, 1, 2}, and for each vertex v ∈ V for which f(v) = 0, we have
∑

u∈N(v) f(u) ≥ 2.

The weight of an Italian dominating function is f(V ) =
∑

v∈V (G) f(v). The minimum

weight of all such functions on a graph G is called the Italian domination number of

G. In this thesis, we will consider Italian domination in various types of products of a

graph G with the complete graph K2. We will find the value of the Italian domination

number for ladders, specific families of prisms, mobius ladders and related products

including categorical products G×K2 and lexicographic products G ·K2. Finally, we

will conclude with open problems.
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1 INTRODUCTION

In this thesis, we will consider Italian domination in ladders and related “prism”

type graphs. Before we proceed into our discussion, it is necessary to enumerate

and clarify basic definitions and notation used. Let G = (V,E) be a simple graph

without directed edges having vertex set V = V (G) and edge set E = E(G). The

order of G is the number of vertices of V (G), and the size of G is the number of

edges in E(G). For vertices x, y ∈ V (G), we say that x and y are adjacent if the edge

xy ∈ E(G). The open neighborhood of a vertex v ∈ V (G), denoted N(v), includes

all vertices u ∈ V (G) such that v and u are adjacent. The closed neighborhood of

a vertex v ∈ V (G) is denoted N [v], is N(v) ∪ {v}. The degree of a vertex v is the

cardinality of the open neighborhood of v. That is, degG(v) = |N(v)|. The maximum

degree of a graph G, denoted ∆(G), is max{degG(v) | v ∈ V (G)}. Similarly, the

minimum degree of a graph G, denoted δ(G), is min{degG(v) | v ∈ V (G)}. A set of

vertices S ⊆ V (G) is said to be independent if for all u, v ∈ S, the edge uv /∈ E(G).

A path graph, denoted Pn, is a graph of order n and size n− 1 whose vertices can

be labeled by v1, v2, . . . , vn and whose edges are vivi+1 for i = 1, 2, . . . , n− 1. A cycle

graph, denoted Cn, is a graph of order n and size n whose vertices can be labeled by

v1, v2, . . . , vn and whose edges are v1vn and vivi+1 for i = 1, 2, . . . , n−1. A graph H is

a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G), in which case we write

H ⊆ G. For a nonempty subset S of V (G), the subgraph G[S] of G induced by S has

S as its vertex set, and two vertices u and v are adjacent in G[S] if and only if u and

v are adjacent in G. A subgraph H ⊆ G is called an induced subgraph of G if there

is a nonempty subset S of V (G) such that H = G[S]. The complete graph, denoted
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Kn, is a graph of order n in which every pair of distinct vertices are adjacent.

A graph is said to be connected if for any two vertices u, v ∈ V (G), G contains a

path connecting u and v as a subgraph. A trivial graph is said to be a graph with

only one vertex and no edges; a graph which does not satisfy this definition is called

nontrivial. Two graphs G and H are said to be isomorphic, denoted G ∼= H, if there

is a one-to-one and onto function f : V (G)→ V (H) such that uv ∈ E(G) if and only

if f(u)f(v) ∈ E(H).

A star graph, denoted K1,n, is a graph in which one vertex v has N [v] = V (G),

and every other vertex u has N(u) = {v}.

The Cartesian product of graphs G and H, denoted G�H, with disjoint vertex

sets V (G) and V (H) is the graph with vertex set V (G)×V (H) and (u1, u2) adjacent

with (v1, v2) whenever (u1 = v1 and u2 is adjacent to v2) or (u2 = v2 and u1 is adjacent

to v1). Cartesian products are examined in detail in [14].

The Cartesian product G�K2 is called a prism over G, constructed by creating

two copies of G labeled G and G′ with vertices labeled v ∈ V (G) and v′ ∈ V (G′), and

adding edges vv′ between each pair of corresponding vertices of G and G′. The most

common examples of prism graphs are graphs of the form Cn�K2, denoted Πn. The

graph Πn is an example of a cubic graph, a graph with every vertex having degree 3.

Note that the Cartesian product Pn�K2 is a graph with 2n vertices and 3n − 2

edges. Such a graph is called a ladder, denoted Ln. A Möbius ladder, denoted Mn, is

a cubic graph with an even number n of vertices, formed from a Cn by adding edges

(called “rungs”) vivj where i = 1, 2, . . . , n
2

and j = i + n
2
. It is so-named because

(with the exception of M6 = K3,3) Mn has exactly n
2

4-cycles which link together by
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their shared edges to form a topological Möbius strip. For our purposes, a Möbius

ladder may be constructed from a ladder Ln by adding edges uv′ and u′v as shown in

Figure 1.

u v

u′ v′

(a) Π8

u v

u′ v′

(b) L8

u v

u′ v′

(c) M16

Figure 1: An octagonal prism, a ladder on 8 rungs, and a Möbius ladder with 8 rungs

The complement of a graph G, denoted G, is a graph such that V (G) = V (G)

and E(G) = {xy | xy /∈ E(G)}.

Complementary products were first introduced in [17] as a generalization of Carte-

sian products of graphs. We consider a subset of these products called complementary

prisms. The complementary prism of a graph G, denoted GG, is the disjoint union

of G and G formed by adding a perfect matching between corresponding vertices of

G and G

The categorical product of graphs, also known as the tensor product or direct

product, is the graph denoted G × H such that V (G × H) = V (G) × V (H). For

vertices v1, v2 ∈ V (G) and u1, u2 ∈ V (H), vertices (v1, u1) and (v2, u2) are adjacent

in G×H if and only if v1v2 ∈ E(G) and u1u2 ∈ E(H). In particular, the categorical
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product G × K2 is equivalent to the bipartite double graph of G, also known as a

Kronecker cover or bipartite double cover, constructed as follows: Begin by by making

two copies of the vertex set of a graph G, labeled G and G′ and adding edges uv′

and u′v for every edge uv ∈ E(G). The bipartite double cover is examined in greater

detail in [13]. See Figure 2a for an example.

(a) P4 ×K2 (b) P4 ·K2

Figure 2: Categorical and lexicographic graph products of P4 with K2

The lexicographic product of graphs G and H, denoted G · H, is a graph with

V (G · H) = V (G) × V (H), and edges as follows. For vertices v1, v2 ∈ V (G) and

u1, u2 ∈ V (H), vertices (v1, u1) and (v2, u2) are adjacent in G ·H if and only if one of

the following conditions is met:

i. v1 is adjacent to v2 in G.

ii. v1 = v2 and u1 is adjacent to u2 in H.

In particular, the lexicographic product G ·K2 is equivalent to the double graph of G,

constructed by making two copies of G, including its edge set, and adding edges vu′

and uv′ for every edge uv ∈ E(G). Lexicographic products are examined in further

detail in [29] and [30]. See Figure 2b for an example.

These and other kinds of graph products are explored in detail in [19].
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A dominating set of a graph G is set D ⊆ V (G) such that for all v ∈ V (G),

either v ∈ D, or u ∈ N(V ) ∩ D. Equivalently, a subset D ⊆ V is a dominating set

if and only if |N [v] ∩D| ≥ 1 for all v ∈ V (G). Thus, N [D] = V (G). The minimum

cardinality among all dominating sets of G is called the domination number of G and

is denoted γ(G).

Related to domination, a 2-dominating set is a subset D ⊆ V (G) such that for

every vertex v ∈ V (G), either v ∈ D or |N(v) ∩ D| ≥ 2. The minimum cardinality

among all 2-dominating sets is called the 2-domination number of G, denoted γ2(G).

The concept of 2-domination is first introduced in [11] and may be generalized as

n-domination. See also [3, 25]. A double dominating set of a graph G is a subset S of

V (G) such that |N [v]∩S| ≥ 2 for every v ∈ V (G). The minimum cardinality of such a

set is called the double domination number of G, denoted γ×2(G). Double domination

was introduced in [16] and is generalized as k-tuple domination in [8, 9, 15].

A Roman dominating function, or RDF, on a graph G is a function f : V (G) →

{0, 1, 2}, such that for every v ∈ V (G), if f(v) = 0, then there is at least one

u ∈ N(v) where f(u) = 2. For any Roman dominating function f on a graph G, and

a set I = {0, 1, 2}, let Vi = {v ∈ V | f(v) = i for some i ∈ I}. Since this partitions

V (G) into three distinct vertex sets and determines f , we write f = (V0, V1, V2).

The weight of a Roman dominating function is the value f(V ) =
∑

v∈V (G) f(v), or

equivalently, f(V ) = |V1|+ 2|V2|. The minimum weight of a RDF on G is called the

Roman domination number of G, denoted γR(G). Roman domination was motivated

by Stewart in [28], and a Roman dominating function was first formally defined in

[7]. Since then, Roman domination has been studied in a number of papers. See for
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example [1, 2, 4, 10, 12, 20, 21, 29, 31, 32].

An Italian dominating function, or IDF, on a graph G is a function f : V →

{0, 1, 2} such that for every v ∈ V (G) such that f(v) = 0,
∑

u∈N(v) f(u) ≥ 2. In

a manner similar to Roman domination, an IDF partitions G into three Vi sets for

i ∈ {0, 1, 2}, such that f = (V0, V1, V2). The weight of an IDF is
∑

v∈V (G) f(v), or

equivalently, f(V ) = |V1|+2|V2|. As with previous types of domination, the minimum

weight among all Italian dominating functions of G is called the Italian domination

number, denoted γI(G). Italian domination was introduced in [6] as Roman {2}-

domination in 2016. The concept was further examined in a number of papers, such

as [18, 23, 26]. Two examples of Italian dominating functions are given in Figure 3,

where the vertex labels represent the Italian dominating function.

1

0

1

1

0

(a)

1

0

2

00

(b)

Figure 3: Italian domination examples

Finally, it is necessary to discuss some related terminology which was given by

[23]. A graph is defined to be an I1 graph if every minimum weight Italian dominating

function uses only elements of the set {0, 1}. Similarly, a graph is defined to be an I2

graph if every minimum weight Italian dominating function uses only elements the

set {0, 2}. Finally, a graph is an I1a graph if the range of some minimum weight
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Italian dominating function has range {0, 1}.

As previously stated, in this thesis we will discuss Italian domination in ladder

graphs and related products of various graphs together withK2. First, we will conduct

a survey of known results relevant to this thesis. Then, we will begin our discussion

with Italian domination on a ladder Ln, various cartesian products of the form G�Ln,

selected categorical products of the form G × Ln, and lexicographic products of the

form G · Ln. Finally, we will conclude with open problems.
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2 LITERATURE SURVEY

In this section, we enumerate some known results relevant to this research. These

results were the motivation behind the results proven in this thesis.

The following results and theorems are not an exhaustive list of known results

related to Italian domination in graphs, but is rather a list of known results relevant

to the results in this research. For a more complete overview of known results regard-

ing Italian domination, the reader is referred to [6, 18, 23]. Though more broadly

known today as Italian domination, this concept was introduced in [6] as Roman

{2}-domination, denoted in that paper as γ{R2}(G). In the interest of consistency,

all the results taken from [6] have been restated using our notation, γI(G), for the

Italian domination number. To begin with, let us state several bounds on the Italian

domination number.

Proposition 2.1. [6] For every graph G, γ(G) ≤ γI(G) ≤ γR(G).

Observation 2.2. [6] For a graph G, γ(G) < γI(G) < γR(G) is possible, even for

paths.

Theorem 2.3. [6, 23] For every graph G, γI(G) ≤ 2γ(G).

Proposition 2.4. [6] For every graph G, γI(G) ≤ γ2(G).

The bound given in this proposition is sharp in the next result.

Corollary 2.5. [6] For every graph G with ∆(G) ≤ 2, γI(G) = γ2(G).

Using this Corollary, the Italian domination numbers for two major families of

graphs is given by the following result.

14



Corollary 2.6. [6, 23] For paths Pn and cycles Cn, γI(Pn) = dn+1
2
e, and γI(Cn) =

dn
2
e.

We may further characterize the bound given by Proposition 2.1.

Proposition 2.7. [6, 23] For all G, γI(G) = γ2(G) if and only if G is I1a.

Theorem 2.8. [23] For all connected graphs G on n ≥ 3 vertices, γI(G) ≤ 3n
4
.

Theorem 2.9. [23] Let G be a graph with n ≥ 3 vertices and δ(G) ≥ 2. Then,

γI(G) ≤ 2n
3
.

Theorem 2.10. [23] Let G be a graph on n vertices with δ(G) ≥ 3. Then, γI(G) ≤ n
2
.

Then, we state a result given in [23] characterizing the I1a graphs.

Proposition 2.11. [23] For all G, γI(G) = γ2(G) if and only if G is I1a.

Now, we state some related results for Italian domination in complementary

prisms.

Theorem 2.12. [26] For any graph G:

i. γI(GG) = 2 if and only if G = K1.

ii. γI(GG) = 3 if and only if G = K2.

iii. If γI(G) = 3 and G has an isolated vertex, then γI(GG) = 4.

iv. If G is a star graph with order n ≥ 3, then γI(GG) = 4.

v. If G = C4, then γI(GG) = 4.

15



The above result is given in [26] as five distinct results, but we combine them here

for brevity.

Finally, some bounds on the Roman domination number in lexicographic products

are given in [29].

Corollary 2.13. [29] Let G and H be nontrivial connected graphs. Then, 2γ(G) ≤

γR(G ·H).

Proposition 2.14. [29] Let G be a nontrivial connected graph and G a connected

graph with γR(H) = 2. Then, γR(G ·H) = 2γ(G).

16



3 RESULTS

3.1 Italian Domination on Ladders

Recall that a ladder graph Ln is the cartesian product Pn�K2, with two copies of

Pn labeled Pn and P ′n where V (Pn) = {v1, v2, . . . , vn} and V (P ′n) = {v′1, v′2, . . . , v′n}.

So, Ln has order 2n and size 3n−2. In addition, we call an edge viv
′
i where vi ∈ V (Pn)

and v′i ∈ V (P ′n) a rung ri ∈ E(Ln).

Note that by Corollary 2.5, γI(Ln) ≤ 2(γI(Pn)), and by Corollary 2.6, we have

that γI(Pn) = dn+1
2
e. Thus, γI(Ln) ≤ n + 1, but this bound can be improved. We

show that γI(Ln) = n. We give three lemmas before our result.

Lemma 3.1. Let Ln be a ladder on n rungs. It follows that γi(Ln) ≤ n.

Proof. Let f = (V0, V1, V2) be an Italian dominating function on Ln. Let each rung of

Ln be constructed of corresponding vertices vi, v
′
i where vi ∈ V (Pn) and v′i ∈ V (P ′n).

Let f(vi) = 1 if i is even, f(v′j) = 1 if j is odd, and f(x) = 0 otherwise. Then, f

is an Italian dominating function of weight n, so we have that γI(Ln) ≤ n.

To show equality, we first consider the following lemmas.

Lemma 3.2. If G is a connected graph with ∆(G) = 3, then there exists an f =

(V1, V2, V3) on G such that the set V2 is independent.

Proof. Let G be a connected graph with ∆(G) = 3. Among all γI-functions, let

f = (V0, V1, V2) be one that minimizes the number of edges in the induced subgraph

G[V2]. Suppose to the contrary that V2 is not independent. Then, there are two

vertices u, v ∈ V2 such that the edge uv ∈ E(G). We consider the following cases.
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Case 1. deg(v) = 1. If v has degree one, then v is a pendant vertex whose only

neighbor is u ∈ V2. Let g be an Italian dominating function such that g(v) = 0,

g(x) = f(x) for all x 6= v. Now, g is an Italian dominating function of G with total

weight less than f , a contradiction.

Case 2. deg(v) = 2. Since v has degree two, v has two neighbors, namely u ∈ V2

and another neighbor w. We consider two further subcases.

Case 2a. w ∈ V1 ∪ V2. In this case, let g be the function such that g(v) = 0, and

g(x) = f(x) for all x 6= v. Then, G is an Italian dominating function of G having

total weight less than f , a contradiction.

Case 2b. w ∈ V0. In this case, let g be the function such that g(v) = 0, g(w) = 1

g(x) = f(x) for all x /∈ {v, w}. Then, G is an Italian dominating function of G having

total weight less than f , a contradiction.

Case 3. deg(v) = 3. Then v has three neighbors, namely u ∈ V2, and two other

neighbors w and y.

Notice first that if w, y ∈ V1∪V2 the function g such that g(v) = 0 and g(x) = f(x)

for all x 6= v, is an Italian dominating function on G with total weight less than f , a

contradiction. Hence, we may assume that at least one of w and y is in V0.

Suppose first that w ∈ V0 and y ∈ V0. Then let g be the function such that

g(v) = 0, g(w) = g(y) = 1 and g(x) = f(x) for all x /∈ {v, w, y}. Now, g = (V ′0 , V
′
1 , V

′
2)

is a function where G[V ′2 ] has fewer edges than G[V2], contradicting our choice of f .

Therefore, without loss of generality, we may assume that w ∈ V0 and y ∈ V1∪V2.

But now, the function g such that f(v) = 0 and f(w) = 1, and g(x) = f(x) for

all x /∈ {v, w} is an Italian dominating function of G with total weight less than f , a

18



contradiction.

Thus, if ∆(G) = 3, then there exists a γI-function f = (V0, V1, V2) on G such that

V2 is independent.

For two sets of vertices X and Y , let [X, Y ] denote the set of edges having an

endpoint in X and an endpoint in Y . We then consider the following lemma.

Lemma 3.3. If G is a connected graph with ∆(G) = 3, then there exists a γI-function

f = (V0, V1, V2) on G such that V2 is independent and [V1, V2] = ∅.

Proof. By Lemma 3.2, there exists a γI-function f = (V0, V1, V2) such that V2 is

independent. Among all such γI-functions, select f = (V0, V1, V2) to minimize the

edges in [V1, V2]. If [V1, V2] = ∅, then we are finished.

Suppose, to the contrary, that [V1, V2] 6= ∅. That is, there is an edge uv ∈ E(G)

where u ∈ V1 and v ∈ V2. We consider the following cases.

Case 1. deg(v) = 1. If v has degree one, then v is a pendant vertex whose only

neighbor is u ∈ V1. Let g be a function such that g(v) = 1, and g(x) = f(x) for all

x 6= v. Then g is an Italian dominating function of G with total weight less than f ,

a contradiction.

Case 2. deg(v) = 2. Since v has degree two, v has two neighbors, namely u ∈ V1

and another neighbor w. Since V2 is independent, w /∈ V2. If w ∈ V1, then let g be

a function such that g(v) = 0, and g(x) = f(x) for all x 6= v. This produces an IDF

with total weight less than f , a contradiction.

Hence, we may assume that w ∈ V0. In this case, let g be the function such

that g(v) = 0, g(w) = 1, and g(x) = f(x) for all x /∈ {v, w}. Then g is an Italian

dominating function with total weight less than f , a contradiction.
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Case 3. deg(v) = 3. If v has degree 3, then v has three neighbors, namely u ∈ V1,

and two other neighbors w, y. Notice first since V2 is independent, neither w nor y

is in V2. If w ∈ V1 and y ∈ V1, then we can immediately find an Italian dominating

function of G, say g, such that g(v) = 0 and g(x) = f(x) for all x 6= v. In this case, g

is an Italian dominating function on G with total weight less than f . Thus, at least

one of w and y is in V0.

Suppose that w ∈ V0 and y ∈ V0. If neither w nor y has a neighbor in V2 \ {v},

then let g be a function such that g(v) = 0, g(w) = 1, g(y) = 1 and g(x) = f(x) for

all x /∈ {v, w}. Then, g = (V ′0 , V
′
1 , V

′
2) is a γI-function of G that has fewer edges in

[V ′1 , V
′
2 ] than in [V1, V2], contradicting our choice of f .

Hence, at least one of w and y has a neighbor in V2 \ {v}. If both w and y have

neighbors in V2 \ {v}, then let g be the function such that g(v) = 1 and g(x) = f(x)

for all x 6= v. Then, g is an Italian dominating function with total weight less than

γI(G), a contradiction.

Thus, without loss of generality, we may assume that w has a neighbor in V2 \{v}

and y does not. In this case, the function g such that g(v) = 0, g(y) = 1, and

g(x) = f(x) for all x /∈ {v, y} is an Italian dominating function of G with weight less

than γI(G), a contradiction.

Hence, exactly one of w and y is in V0. Then, without loss of generality, let y ∈ V0

and let w ∈ V1. Then, the function g where g(v) = 0, g(y) = 1, and g(x) = f(x)

for all x /∈ {v, y}, is an Italian dominating function of G with total weight less than

γI(G), a contradiction.

Thus, if ∆(G) = 3, then there exists a γI-function f = (V0, V1, V2) on G such that
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V2 is independent and [V1, V2] is empty.

These lemmas are significant because they provide some very useful conditions on

Italian dominating functions for any graph (not only graph products) with ∆(G) = 3.

In particular, this includes all of the cubic graphs (which are 3-regular), a rich area

of study for all forms of domination, Italian domination in particular. We will apply

these results to ladders and related prism graphs.

We use these results to prove the following theorem regarding the Italian domi-

nation number of a ladder Ln with n rungs. We define the weight of a rung to be the

total weight from an Italian dominating function assigned to any corresponding pair

of vertices vi and v′i. In other words, if both vertices in a rung are assigned a zero,

that rung has a weight of zero. We call this a zero rung. If one vertex is assigned a

one and one is assigned a zero, then that rung has weight one. A weight of two can

be achieved by assigning vi a two and v′i a zero, or vice-versa, or by assigning both

vi and v′i a one. Let rj denote the jth rung, that is, the rung connecting vj and v′j.

Additionally, we call the rungs r1 and rn end rungs.

Theorem 3.4. Let Ln be a ladder of the form Pn�K2 for n ≥ 3. Then, γI(Ln) = n.

Proof. We select a γI-function f = (V0, V1, V2) on Ln as follows. Note first that

since Ln has ∆(G) = 3, then by Lemma 3.3 we can choose f such that the set V2 is

independent, and [V1, V2] = ∅ (1). Moreover, subject to (1), select f such that the

first zero rung ri has the largest possible index i.

Now, suppose, to the contrary, that γI(Ln) ≤ n− 1. Then, there must be at least

one zero rung in Ln. Notice immediately that if either of the end rungs are zero-rungs,
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then since V2 is independent, the vertices of the end rung are not Italian dominated.

So, we must have that 2 ≤ i ≤ n− 1.

Then, in order to Italian dominate this zero rung, f must assign a total weight of

at least four to the rungs ri−1 and ri+1 (that is, the rungs immediately preceding and

following ri). Additionally, since ri is the first zero rung, then all rungs rk such that

k < i have weight at least one.

Since the set V2 is independent and [V1, V2] = ∅, the only possibilities are that

for all vertices vi−1, v
′
i−1, vi+1, v

′
i+1, without loss of generality vi−1, v

′
i+1 ∈ V2 and

vi+1, v
′
i−1 ∈ V0, or that vi−1, v

′
i−1, vi+1, v

′
i+1 ∈ V1. We consider these two cases:

Case 1. vi−1, v
′
i−1, vi+1, v

′
i+1 ∈ V1. Suppose that the rung ri−1 is an end rung.

Then, the function g such that g(vi−1) = 0, g(vi) = 1, and g(x) = f(x) for all

x /∈ {vi−1, vi}, and ri is not the first zero rung, contradicting our choice of f . Hence,

ri−1 is not an end rung.

Thus, the rung ri−2 exists, and one of its vertices, say vi−2, has weight at least

one. Furthermore, since [V1, V2] = ∅, vi−2, v′i−2 /∈ V2. Thus, f(vi−2) = 1. Now, let g

be a function such that g(vi−1) = 0, g(vi) = 1, and g(x) = f(x) for all x /∈ {vi−1, vi}.

Thus, g is a γI-function of Ln where ri is not the first zero rung, contradicting our

choice of f .

Case 2. f(vi−1) = 2 and f(v′i+1) = 2. Since V2 is independent and [V1, V2] = ∅,

if i = 2, then let the function g such that g(v′i−1) = g(vi) = 1, g(vi−1) = 0, and

g(x) = f(x) for all x /∈ {vi.vi−1, v′i−1}. Hence, g is a γi-function of Ln satisfying (1)

such that vi is not the first zero rung, a contradiction.

Hence, we may assume that f(vi−2) = 0. Then, since ri is the first zero rung, ri−2
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must have total weight at least 1, implying that f(v′i−2) ≥ 1. Let g be the function

such that g(vi−1) = 1, g(vi) = 1, and g(x) = f(x) for all x /∈ {vi−1, vi}. Thus, g is a

γI-function of Ln satisfying (1) where ri is not the first zero rung, contradicting our

choice of f .

Therefore, γI(Ln) ≥ n, and so γI(Ln) = n.

3.2 Characterizing the G�K2 with γI(G�K2) = 4

We begin with some observations regarding the graphs with ∆(G) = n− 1, where

n is the order of G.

Observation 3.5. If G is a graph with ∆(G) = n− 1 with n ≥ 3, then γI(G) = 2.

For example, consider the star K1,n for n ≥ 3. It is not difficult to see that

γI(K1,n) = 2 where the vertex v ∈ V (K1,n) is the center of the star is assigned a two

by the γI-function of K1,n.

Note that a graph G�K2 is composed of two copies of G labeled G and G′.

Let f = (V0, V1, V2) be an Italian dominating function on G. Applying f similarly

to corresponding vertices in G′ will Italian dominate G�K2, so γI(G�K2) ≤ 2w(f)

where w(f) denotes the total weight assigned by f to G. Our next observation follows

directly.

Observation 3.6. Let G be a graph with Italian domination number γI(G). Then

γI(G�K2) ≤ 2γI(G).

It follows from Observations 3.5 and 3.6 that for any graph G of order n > 2 and

∆(G) = n− 1, we have γI(G�K2) ≤ 4. We next show that equality holds.
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Proposition 3.7. Let G be a graph of order n ≥ 4 and ∆(G) = n − 1. Then,

γI(G�K2) = 4.

Proof. Observations 3.5 and 3.6 imply that γI(G�K2) ≤ 4. Suppose, to the contrary,

that γI(G�K2) ≤ 3. Label the two copies of G in G�K2 as G and G′.

Let f = (V0, V1, V2) be a γI-function on G�K2.

Since γI(G) ≤ 3, without loss of generality, we may assume that f assigns a total

weight of at least two to G and a total weight of at most one to G′.

Case 1.
∑

v′∈V (G′) f(v′) = 0. Then, since n ≥ 4, at least one v′ ∈ V (G′) is

adjacent to a neighbor v ∈ V (G) such that f(v) = 0, and so the graph is not Italian

dominated, a contradiction.

Case 2.
∑

v′∈V (G′) f(v′) = 1. Then there is some v′ ∈ V (G′), such that f(v′) = 1.

Suppose that deg(v′) = n− 1. Then, there is at least one vertex u′ ∈ N(v′) with

corresponding vertex u ∈ G such that f(u′) = f(u) = 0, so G�K2 is not Italian

dominated, a contradiction.

Suppose that deg(v′) < n− 1.

Then, there is a vertex w′ ∈ V (G′), w′ /∈ N(v′) such that f(w′) = 0. So, its

corresponding vertex w ∈ V (G) must have f(w) ≥ 2.

Since ∆(G) = n− 1, there is a vertex z′ ∈ G′ with deg(z′) = n− 1, and f(z′) = 0.

Note that z′ 6= w′ and z′ 6= v′. Similarly, its corresponding vertex z ∈ V (G) must

have f(z) ≥ 1. But then, since the total weight of G is at most 2 and f(w) ≥ 2, it

follows that f(z) = 0, a contradiction.

In any case, we arrive at a contradiction, thus γI(G) = 4, as desired.

Proposition 3.8. If G is a graph of order n ≥ 4 with a pair of non-adjacent vertices
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u and v with N [u] = N [v] = V (G) \ {u, v}, then γI(G�K2) = 4.

Proof. Let G�K2 be composed of two copies of G, labeled G and G′. Let u and v

be non-adjacent vertices of G, each with N [u] = N [v] = V (G) \ {u, v}, so deg(u) =

deg(v) = n− 2.

First, note that a function that assigns f(u) = f(v′) = 2 and f(x) = 0 for

x ∈ V (G�K2)\{u, v′} is an Italian dominating function of G�K2, so γI(G�K2) ≤ 4.

Let f = (V0, V1, V2) be a γI-function of G�K2 and suppose to the contrary that

γI(G) ≤ 3.

Then, without loss of generality, we may assume that 0 ≤
∑

v∈V (G) f(v) ≤ 1 and

2 ≤
∑

v′∈V (G′) f(v′) ≤ 3.

If no vertex of G is assigned one, then every vertex of G must be adjacent to a

vertex assigned a two in G. But since n ≥ 4 and
∑

v′∈V (G′) f(v′) = 2, we have a

contradiction.

Hence, we may assume that
∑

v∈V (G) f(v) = 1 and so
∑

v′∈V (G′) f(v′) = 2.

Since ∆(G) = n − 2, there exists a z ∈ V (G) such that w is not adjacent to z.

Hence, the total weight assigned to the vertices of N [z] ∩ V (G) is 0.

Thus, f(z) = 2 in order to Italian dominate z′. But then, every other vertex in G′

must be assigned a zero by f . It follows that w′ is not adjacent to z′, and f(w′) = 0.

Furthermore, the only vertex in N(w′) with positive weight is w with weight of one,

and so w′ is not Italian dominated by f , a contradiction.

Thus, it must be that γI(G�K2) ≥ 4, and so γI(G�K2) = 4, as desired.

Proposition 3.9. If G is a graph of order n ≥ 4 with a pair of non-adjacent vertices

u and v with N(u) = N(w) = V (G) \ {v} and N(v) = V (G) \ {u,w} for some
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w ∈ V (G), then γI(G�K2) = 4.

Proof. Let G�K2 be composed of two copies of G as defined, labeled G and G′.

Let u and v be non-adjacent vertices of G, with N(u) = V (G) \ {v} and N(v) =

V (G) \ {u,w} for some w ∈ V (G).

First, note that a function that assigns f(u) = f(v) = f(v′) = f(w′) = 1 and

f(x) = 0 for x ∈ V (G�K2)\{u, v, v′, w′} is an Italian dominating function of G�K2,

so γI(G�K2) ≤ 4.

Let f = (V0, V1, V2) be a γI-function of G�K2 and suppose to the contrary that

γI(G) ≤ 3. Then, without loss of generality, we may assume that 0 ≤
∑

v∈V (G) f(v) ≤

1 and 2 ≤
∑

v′∈V (G′) f(v′) ≤ 3.

If
∑

v∈V (G) f(v) = 0, then every vertex in V (G) must be adjacent to a vertex

v′ ∈ V (G′) assigned a two. Since n ≥ 4 and f assigns a total weight of at most three

to the vertices in V (G′), we have a contradiction.

Hence, we must assume that
∑

v∈V (G) f(v) = 1 and so
∑

v′∈V (G′) f(v′) = 2.

Assume that f(x) = 1 for some x ∈ V (G) \ {u, v, w}. Since x ∈ N(u) ∩N(v), we

must have that f(u′) = f(v′) ≥ 1. However, in in order for w to be Italian dominated

by f , we must have f(w′) ≥ 1, and f assigns a total weight of at least four to G�K2,

a contradiction.

Hence, we must assume that either f(u) = 1, f(v) = 1, or f(w) = 1.

Assume that f(u) = 1. Then, it must be that f(v′) = 2 in order for v to be

Italian dominated by f . But then, f(w′) = 0 and so w is not Italian dominated, a

contradiction.

Assume that f(v) = 1. Then, f(w) = 0, and since w /∈ N(v), we must have that
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f(w′) = 2 in order for w to be Italian dominated. Further, since f(u) = 0, it must be

that f(u′) ≥ 2 in order for u to be Italian dominated, a contradiction.

Finally, assume that f(w) = 1. Then, f(v) = 0, and so f(v′) = 2 in order for v to

be Italian dominated. Furthermore, f(u′) ≥ 1 in order for u to be Italian dominated,

and so f assigns a total weight of at least four to G�K2, a contradiction.

In any case, we arrive at a contradiction. Thus γI(G�K2) ≥ 4, and so γI(G�K2) =

4, as desired.

Proposition 3.10. If G is a graph of order n ≥ 4 with a pair of non-adjacent

vertices u and v such that either N [u] = N [w] = V (G) \ {v, z} and N [v] = N [z] =

V (G) \ {u,w}, or N [u] = V (G) \ {v, z}, N [w] = V (G) \ {v}, N [v] = V (G) \ {u,w},

and N [z] = V (G) \ {u} for some w, z ∈ V (G).

Proof. Let G�K2 be composed of two copies of G, labeled G and G′. Let u and v

be non-adjacent vertices of G, with N [u] = V (G) \ {v, z} for some z ∈ V (G) and

N [v] = V (G) \ {u,w} for some w ∈ V (G).

First, note that if w = z, then the result holds by Proposition 3.8.

Next, note that a function that assigns f(u) = f(v) = f(w′) = f(z′) = 1 and

f(x) = 0 for x ∈ V (G�K2)\{u, v, v′, w′} is an Italian dominating function of G�K2,

so γI(G�K2) ≤ 4.

Let f = (V0, V1, V2) be a γI-function of G�K2 and suppose to the contrary that

γI(G) ≤ 3. Then, without loss of generality, we may assume that 0 ≤
∑

v∈V (G) f(v) ≤

1 and 2 ≤
∑

v′∈V (G′) f(v) ≤ 3.

If
∑

v∈V (G) f(v) = 0, then every vertex in V (G) must be adjacent to a vertex
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v′ ∈ V (G′) assigned a two. Since n ≥ 4 and f assigns a total weight of at most three

to the vertices in V (G′), we have a contradiction.

Hence, we must assume that
∑

v∈V (G) f(v) = 1 and so
∑

v′∈V (G′) f(v′) = 2.

Assume that f(x) = 1 for some x ∈ V (G) \ {u, v, w, z}. Since x ∈ N [u]∩N [v], we

must have that f(u′) = f(v′) ≥ 1. However, in order for w to be Italian dominated

by f , we must have f(w′) ≥ 1, and f assigns a total weight of at least four to G�K2,

a contradiction.

Hence, we must assume that either f(u) = 1, f(v) = 1, f(w) = 1, or f(z) = 1.

Without loss of generality, assume that f(u) = 1. Then, it must be that f(v′) ≥ 2

in order for v to be Italian dominated by f . Also, f(z) = 0, and since z /∈ N [u] we

have f(z′) ≥ 2 in order for z to be Italian dominated, and so f assigns a total weight

of at least 4 to G�K2, a contradiction.

Thus, γI(G�K2) ≥ 4, and so γI(G�K2) = 4, as desired.

A similar argument holds for the second condition

Proposition 3.11. If G is an isolate-free graph of order n = 4, then γI(G�K2) = 4.

Proof. The isolate-free graphs of order n = 4 are given in ∆(G) = n − 1 and by

Proposition 3.7, γI(G�K2) = 4.

If ∆(G) = 2, then either G = C4 or G = P4.

If G = C4, then by Proposition 3.8, γI(G) = 4.

If G = P4, then G�P4 = L4 and by Theorem 3.4, γI(G) = 4.

If ∆(G) = 1, then G = 2P2, and by Proposition 3.10, γI(G) = 4.

Thus, if G is an isolate-free graph of order n = 4, we have thatγI(G�K2) = 4, as

desired.
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We may now characterize the graphs of the form G�K2 where γI(G) = 4.

Theorem 3.12. Let G�K2 where G is a graph of order n ≥ 4. Then, γI(G) = 4 if

and only if one of the following is true:

i. ∆(G) = n− 1.

ii. G can be constructed from two non-adjacent vertices u and v such that one of

the following holds:

a. N(u) = N(v) = V (G) \ {u, v},

b. N [u] = N [w] = V (G)\{v} and N [v] = V (G)\{u,w} for some w ∈ V (G),

or

c. N [u] = N [w] = V (G) \ {v, z} and N [v] = N [z] = V (G) \ {u,w},

or

N [u] = V (G) \ {v, z}, N [w] = V (G) \ {v}, N [v] = V (G) \ {u,w}, and

N [z] = V (G) \ {u} for some w, z ∈ V (G).

Proof. Let G�K2 be composed of two copies of G labeled G and G′. Let f =

(V0, V1, V2) be an γI-function of G�K2. Let γI(G�K2) = 4.

Since n ≥ 4, if G (respectively, G′) is assigned a total weight of zero by f , then

every vertex of G′ (respectively, G) is assigned at least two by f to Italian dominate

the corresponding vertex. But then, the total weight of f is at least 2n ≥ 8, a

contradiction.

Thus, we may assume that f assigns a total weight of at least one and at most

three to each of G and G′. Without loss of generality, we consider the following two

cases.
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Case 1.
∑

v∈V (G) f(v) = 3 and
∑

v′∈V (G′) f(v′) = 1. If n ≥ 5, then there is at

least one vertex in G′ not Italian dominated by f , a contradiction.

Hence, we may assume that n = 4. Since the total weight assigned to G′ is one,

let x′ be the vertex in V (G′) with f(x′) = 1. Then, there exist three vertices u′, v′, w′

with f(u′) = f(v′) = f(w′) = 0. Thus, each of f(u), f(v), f(w) is at least one, so it

must be that f(u) = f(v) = f(w) = 1, and each of u′, v′, w′ is adjacent to x′, implying

that ∆(G′) = ∆(G) = n− 1, satisfying (i).

Case 2.
∑

v∈V (G) f(v) =
∑

v′∈V (G′) f(v′) = 2. We consider the following three

subcases.

a. f(u) = f(v′) = 2 for some u ∈ V (G), v′ ∈ V (G′). If u = v, then u is adjacent

to every vertex in G, thus ∆(G) = n− 1, and (i) is satisfied.

Thus, we must assume that u 6= v. Then, u must dominate V (G) \ {u, v}, so

deg(u) ≥ n− 2 in G. Additionally, if u is adjacent to v, then deg(u) = n− 1, and (i)

is satisfied.

Hence, we must assume that u and v are not adjacent. Then deg(u) = n − 2 in

G. Similarly, we can show that deg(v′) = n − 2 in G′, and so deg(v) = n − 2 in G,

thus N(u) = N(v) = V (G) \ {u, v} and (ii.a) is satisfied.

b. f(u) = 2 for some u ∈ V (G) and f(v′) = f(w′) = 1 for some v′, w′ ∈ V (G′).

First, note that if ∆(G) = n − 1 then (i) is satisfied, and we are finished. Hence,

assume that ∆(G) ≤ n− 2. Thus, there is a vertex x ∈ V (G) that is not adjacent to

u. Then, N [x] is assigned a total weight of at most one by f , and so x is not Italian

dominated, a contradiction.

c. f(u) = f(v) = f(w) = f(z) = 1. Assume that n ≥ 5. Notice that if
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∆(G) = n − 1, then (i) holds, and we are finished. Similarly, if there are two non-

adjacent vertices v, u ∈ V (G) such that N(u) = N(v) = V (G) \ {u, v}, then (ii.a) is

satisfied, and we are finished. Thus, there must be some vertex x ∈ V (G) such that

x is adjacent to at most one of u, v.

Assume that x is adjacent to neither of u, v. Then x is adjacent only to x′ in

G�K2, and x is adjacent to at most a weight of one, and x is not Italian dominated,

a contradiction.

Thus, it must be that x is adjacent to exactly one of u, v. Without loss of gen-

erality, assume x is adjacent to u. Then f(x′) = 1 and so x must be either w or z.

Without loss of generality, assume x = w.

Now, f(z′) = 1 by hypothesis, and so either f(z) = 0, or otherwise z = u or z = v.

Assume that z = u.

Since n ≥ 5, there must be a vertex y such that y /∈ {u, v, w}. By hypothesis

and the above, f(u′) = f(w′) = 1, and so y′ must be adjacent to both u′ and w′.

Additionally, y must be adjacent to u and v in order to be Italian dominated, and so

u, v, w ∈ N(y) for all y /∈ {u, v, w}.

Notice that if u and v are adjacent, then deg(u) = n−1 and (i) is satisfied. Thus,

we must assume that u and v are not adjacent.

Then, since f(v) = f(w′) = 1, we have that v′ must be adjacent to w′, and so v

must be adjacent to w, and we have a contradiction, since w is not adjacent to v.

Thus, we must assume that z 6= u.

Assume that z = v.

Since n ≥ 5, there must be a vertex y such that y /∈ {u, v, w}. By hypothesis

31



and the above, f(v′) = f(w′) = 1, and so y′ must be adjacent to both u′ and w′.

Additionally, y must be adjacent to u and v in order to be Italian dominated, and so

every vertex y ∈ V (G) \ {u, v, w} is adjacent to each of u, v, w.

Once again, notice that if u and v are adjacent, then deg(u) = n − 1 and (i) is

satisfied. Thus, we must assume that u and v are not adjacent.

Then, we have that N [u] = N [w] = V (G) \ {v} and N [v] = V (G) \ {u,w}, and

(ii.b) is satisfied.

Hence, we must assume that z 6= v.

First, notice that if z is adjacent to neither u nor v, then N [z] is assigned a total

weight of one by f , and z is not Italian dominated. Hence, z must be adjacent to at

least one of u and v. Similarly, v′ must be adjacent to at least one of w′ and z′.

As with the previous arguments, every vertex in V (G) \ {u, v, w, z} is adjacent to

each of u, v, w, and z.

If the only edges in G[{u, v, w, z}] are uw and vz, then ii.c holds.

If u and v are adjacent to both w and z, then either i or ii.a holds.

Thus, we may assume that without loss of generality, u is not adjacent to z, and

so vz ∈ E(G), and it follows that either ii.a, ii.b, or ii.c holds.

Therefore, the result holds for n ≥ 5.

Hence, we may assume that n = 4. Assume, for the purpose of contradiction, that

G has an isolated vertex. Then, G�K2 will have a K2 component requiring a total

weight of 2 assigned by f . Label this component P . Then, f assigns a total weight

of two to the vertices in Q = (G�K2)− P .

By hypothesis, we have that ∆(G) ≤ n − 2 = 2, and so we must have that
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∆(G�K2) = 3.

Suppose that f(vm) = 2 for some vm ∈ V (Q). Then, in order for Q to be Italian

dominated, N [vm] = Q, and so vm has degree 5, a contradiction.

Hence, we may assume that there are two vertices vp and vq such that f(vp) =

f(vq) = 1. Then, N(vp) = N(vq) necessarily and so deg(vp) = deg(vq) = 4, again a

contradiction.

Thus, we may assume that G is isolate-free. The only possible isolate-free graphs

of order 4 with ∆(G) ≤ 2 are C4, P4, and 2P2 (that is, the graph consisting of two

copies of a P2 graph). If G = C4, this satisfies (ii.a). If G = P4 or 2P2, this satisfies

(ii.c).

The converse statements are shown by Propositions 3.7, 3.8, 3.9, and 3.10, and so

the result holds.

3.3 Prisms and related products

Consider the prism Cn�K2 = Πn. By way of a construction similar to that of

Ln above, we define corresponding vertices vi, v
′
i, so one “copy” of Cn has vertices

v0, v1, . . . , vn−1, and the other copy contains corresponding vertices v′0, v
′
1, . . . , v

′
n−1.

Notice that we can construct such a prism by constructing a ladder Ln, and

adding edges v1vn and v′1v
′
n. As such, we may still define “rungs” constructed of

corresponding vertices vi, v
′
i as we did in the case of Ln.

Let f(vi) = 1 for i ≡ 0 (mod 2), f(v′j) = 1 for j ≡ 1 (mod 2), and f(x) = 0

otherwise. This produces an IDF of weight n, so we have the upper bound γI(Πn) ≤ n.

Theorem 3.13. If Πn is a prism of the form Cn�K2 for n ≥ 3, then γI(Πn) = n.

33



Proof. Let f = (V0, V1, V2) be a γI-function on Πn. Note first that since Πn has

∆(G) = 3, then by Lemma 3.3 we can choose f such that the set V2 is independent,

and [V1, V2] = ∅ (1). Moreover, subject to (1), select f such that the first zero rung

ri has the largest possible index i.

Now, suppose, to the contrary, that γI(Πn) ≤ n− 1. Then, there must be at least

one zero rung in Πn.

Then, in order to Italian dominate this zero rung, f must assign a total weight

of at least 4 to the rungs ri−1 and ri+1 (that is, all computations on the indices are

done modulo n). Additionally, since ri is the first zero rung, then all rungs rk such

that k < i have weight at least 1.

Since the set V2 is independent, and [V1, V2] = ∅, the only possibilities are that

for all vertices vi−1, v
′
i−1, vi+1, v

′
i+1, without loss of generality vi−1, v

′
i+1 ∈ V2 and

vi+1, v
′
i−1 ∈ V0, or that vi−1, v

′
i−1, vi+1, v

′
i+1 ∈ V1. We consider these two cases:

Case 1. vi−1, v
′
i−1, vi+1, v

′
i+1 ∈ V1. Since Πn has no end rungs, the rung ri−2 exists

(modulo n), and one of its vertices, say vi−2, has weight at least one. Furthermore,

since [V1, V2] = ∅, vi−2, v′i−2 /∈ V2. Thus, f(vi−2) = 1. Now, let g be a function such

that g(vi−1) = 0, g(vi) = 1, and g(x) = f(x) for all x /∈ {vi−1, vi}. Thus, g is a

γI-function of Πn where ri is not the first zero rung, contradicting our choice of f .

Case 2. f(vi−1) = 2 and f(v′i+1) = 2. By our choice of f , we must have that

f(vi+1) = .f(v′i−1) = 0. Moreover, if i ≥ 3, then f(vi−2) = 0 Then, since ri is the

first zero rung, ri−2 must have total weight at least one, implying that f(v′i−2) ≥ 1.

Let g be the function such that g(vi−1) = 1, g(v′i) = 1, and g(x) = f(x) for all

x /∈ {vi−1, v′i}. Thus, g is a γI-function of Πn satisfying (1) where ri is not the first
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zero rung, contradicting our choice of f .

Therefore, γI(Πn) ≥ n− 1, and so γI(Πn) = n.

Notice that we can construct such a Möbius ladder by constructing a prism Πn of

the form Cn�K2, omitting a pair of edges vivi+1 and v′iv
′
i+1, and adding edges viv

′
i+1

and v′ivi+1 to form a ’twist’ in the ladder structure. Furthermore, since we can label

the rungs our ladder arbitrarily, we may place the “twist” between any pair of rungs

we wish.

Corollary 3.14. Let Mm be a Möbius ladder of order m = 2n Then, γI(Mm) = n.

Proof. Let f = (V0, V1, V2) be a γI function on Mm.

Let f = (V0, V1, V2) be a γI-function on Πn. Note first that since Mm has ∆(G) =

3, then as before, by Lemma 3.3 we can choose f such that the set V2 is independent,

and [V1, V2] = ∅ (1). Moreover, subject to (1), select f such that the first zero rung

ri has the largest possible index i.

Now, suppose to the contrary that γI(Mm) = n− 1. Then there must be at least

one zero rung in Mm. Then, in order to Italian dominate this zero rung, f must

assign a total weight of at least four to the rungs ri−1 and ri+1 (that is, the rungs

immediately preceding and following ri). Notably, this is true regardless of whether

the twist is between ri−1, ri or between ri, ri+1. Additionally, since ri is the first zero

rung, then all rungs rk such that k < i have weight at least one.

Once a rung ri is fixed, we may label the vertices as vi or v′i such that if the twist

is located between rj and rj+1, the vertices v′j and v′j+1 are adjacent, and correspond-

ingly, the vertices vj and vj+1 are adjacent. In other words, all vertices v′i where

j < i ≤ n are located on the opposite “side” of Mm as those where 1 ≤ i ≤ j.
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Since the set V2 is independent, and [V1, V2] = ∅, the only possibilities are that

for all vertices vi−1, v
′
i−1, vi+1, v

′
i+1, without loss of generality vi−1, v

′
i+1 ∈ V2 and

vi+1, v
′
i−1 ∈ V0, or that vi−1, v

′
i−1, vi+1, v

′
i+1 ∈ V1. We consider these two cases:

Case 1. vi−1, v
′
i−1, vi+1, v

′
i+1 ∈ V1. Since Mm has no end rungs, the rung ri−2

exists (relabeling if necessary), and one of its vertices, say vi−2, has weight at least

one. Furthermore, since [V1, V2] = ∅, vi−2, v′i−2 /∈ V2. Thus, f(vi−2) = 1. Now, let g

be a function such that g(vi−1) = 0, g(vi) = 1, and g(x) = f(x) for all x /∈ {vi−1, vi}.

Thus, g is a γI-function of Mm where ri is not the first zero rung, contradicting our

choice of f .

Case 2. f(vi−1) = 2 and f(v′i+1) = 2. By our choice of f , we must have that

f(vi+1) = .f(v′i−1) = 0. Moreover, if i ≥ 3, then f(vi−2) = 0. Then, since ri is the

first zero rung, ri−2 must have total weight at least one, implying that f(v′i−2) ≥ 1.

Let g be the function such that g(vi−1) = 1, g(v′i) = 1, and g(x) = f(x) for all

x /∈ {vi−1, v′i}. Thus, g is a γI-function of Mm satisfying (1) where ri is not the first

zero rung, contradicting our choice of f .

Therefore, γI(Mm) ≥ n− 1, and so γI(Mm) = n.

3.4 Categorical Products

Recall that the categorical product G ×K2 is equivalent to the bipartite double

graph of G, also known as a Kronecker cover or bipartite double cover. This graph is

constructed by making two copies of the vertices of G (no edges), labeled G and G′

and constructing edges uv′ and u′v for every edge uv ∈ E(G).

Proposition 3.15. Let G = Pn. Then γI(G×K2) = 2dn+1
2
e.
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Proof. Notice that the graph Pn ×K2
∼= 2Pn, where 2Pn is a graph composed of two

disjoint copies of Pn. By [6], γI(Pn) = dn+1
2
e, and so γI(G×K2) = 2dn+1

2
e.

Proposition 3.16. Let G = Cn. Then γI(Cn) = n.

Proof. Notice that the graph Cn × K2
∼= C2n for n odd, and Cn × K2

∼= 2Cn for

n even. By [6], γI(Cn) = dn
2
e, and so γI(G × K2) = n for n odd, and for n even,

γI(G×K2) = 2dn
2
e = n.

Proposition 3.17. Let G = Kn. Then γI(G×K2) = 4.

Proof. Notice that the graph Kn × K2
∼= Kn,n. Since Kn,n is a complete bipartite

graph, it is composed of two disjoint independent vertex sets A and B, where every

v ∈ A has all of B ∈ N(v) (and vice versa).

Without loss of generality, assigning v ∈ A a two or assigning two v1, v2 ∈ A with

one will Italian dominate all of B. Thus, γI(Kn,n) ≤ 4.

Let f = (V0, V1, V2) be a γI-function on Kn,n. Assume, to the contrary, that

γI(Kn,n) = 3. Then one of the partite sets is assigned a total weight of zero or

one by f . Again, without loss of generality, if A ∩ V0 = A, then B is not Italian

dominated. Similarly, if only one v ∈ A has f(v) = 1, and A∩ V0 = A \ {v}, B is not

Italian dominated. In either case, f is not a γI function, and so γI(Kn,n) ≥ 4 , thus

γI(Kn,n) = 4.

Proposition 3.18. Let G = Ln. Then γI(G×K2) = 2n.

Proof. Notice that the graph Ln×K2
∼= 2Ln. Then, γI(Ln×K2) = 2γI(Ln) = 2n.

Proposition 3.19. Let G = Πn. Then γI(G×K2) = 2n.
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Proof. Notice that the graph Πn × K2
∼= Π2n for n odd, and Πn × K2

∼= 2Πn for n

even. In either case, γI(Πn ×K2) = 2n.

3.5 Lexicographic Products

Recall that the lexicographic product G ·K2 is equivalent to the double graph of

G, constructed from two copies of G and adding edges uv′ and u′v for every edge

uv ∈ E(G).

As an observation, let G be a graph and let D be a dominating set of G. Consider

the lexicographic product G · K2, resulting in two copies of G, labeled G and G′.

Furthermore, in each of these we can identify a copy of the dominating set, say D

and D′. Let g be an Italian dominating function such that g(v) = 1 for all v ∈ D∪D′,

and g(v) = 0 otherwise. Since this function results in a dominating set on each of G,

G′, D ∪D′ is an Italian dominating set on G ·K2. As expected, γI(G ·K2) ≤ 2γ(G).

We will further explore this concept to arrive at a value for the Italian domination

number of Pn · K2. In such a graph, we call a non-adjacent pair of vertices v, v′ a

row (as opposed to a rung, since the edge vv′ does not exist). First, we consider the

following lemma.

Lemma 3.20. Let Pn be a path graph. Consider the lexicographic product Pn · K2

containing two copies of Pn labeled Pn and P ′n. Let vi ∈ V (Pn) and v′i ∈ V (P ′n). Then,

we may choose a γI-function f of Pn ·K2 such that if f(vi) = 0, then f(v′i) = 0.

Proof. Let f = (V0, V1, V2) be a γI function on Pn ·K2. Suppose, to the contrary, that

we must have f(vi) = 0 and f(v′i) ≥ 1 for some i. We call this property P. Choose f
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such that (1) the number of rows with property P is minimized, and (2) subject to

(1), the index i is maximized for the first row with property P .

Consider the case if f(vi) = 0 and f(v′i) = 2. Since N(vi) = N(v′i), then let g be

the function such that g(vi) = 1 and g(v′i) = 1. All of N(vi) = N(v′i) is still Italian

dominated, so we may assume that V2 is empty. Hence, we may assume, without loss

of generality, that f(vi) = 0, and f(v′i) = 1.

Now, consider the vertices v1, v
′
1. Note that if f(v1) = f(v′1) = 0, then it is

necessary that f(v2) = f(v′2) = 1.

Further, if f(v1) = 1 and f(v′1) = 0, then it is still necessary that f(v2) = f(v′2) =

1, and we may define a function g such that g(v1) = 0, and g(x) = f(x) for x /∈ {v1}.

Then, g has total weight less than γI(Pn ·K2), a contradiction. Thus, we may assume

that either f(v1) = f(v′1) = 1, or f(v2) = f(v′2) = 1 and f(v1) = f(v2) = 0.

That is, there is a pair of corresponding vertices vk, v
′
k such that f(vk) = f(v′k) = 1,

and so, i ≥ 2. For i− 1, we consider the following three cases.

Case 1. f(vi−1) = f(v′i−1) = 1. Since i is the largest index of a row having

property P , then either f(vi+1) = f(v′i+1) = 0 or f(vi+1) = f(v′i+1) = 1.

If f(vi+1) = f(v′i+1) = 0, then let g be the function such that g(v′i) = 0, g(v′i+1) = 1,

and g(x) = f(x) for all x /∈ {v′i, v′i+1} is a γI-function on Pn ·K2 with a larger index

i for a row with property P , contradicting our choice of f .

If f(vi+1) = f(v′i+1) = 1, then let g be the function such that g(v′i) = 0 and

g(x) = f(x) for all x /∈ {v′i}. Then, g is an IDF with total weight less than γI(Pn ·K2),

a contradiction.

Case 2. f(vi−1) = f(v′i−1) = 0. Then, it is necessary that f(vi+1) = f(v′i+1) = 1

39



in order to Italian dominate vi and not be a row with property P and index greater

than i. Moreover, at least one of vi−2 and v′i−2 is assigned a one by f in order to

Italian dominate vi−1 and v′i−1.

If f(vi−2) = f(v′i−2) = 1, then let g be the function such that f(v′i) = 0. Then, g

is an IDF with total weight less than γI(Pn ·K2), a contradiction.

Hence, we must assume that exactly one of vi−2 and v′i−2 is assigned a one by

f . Without loss of generality, assume that f(vi−2) = 1 and f(v′i−2) = 0. Then, we

must have that f(vi−3) = f(vi−3)
′ = 1 in order to Italian dominate v′i−2. Let g be

the function such that g(vi−2) = 0, g(vi) = 1, and g(x) = f(x) for all x /∈ {vi−2, vi}.

Then, g is a γI-function with fewer rows having property P , contradicting our choice

of f .

Case 3. Without loss of generality, f(vi−1) = 1, and f(v′i−1) = 0. Now, at

least one of vi+1 and v′i+1 must be assigned a one by f in order to Italian dominate

vi. Further, since i is the largest index for a row with property P , it follows that

f(vi+1) = f(v′i+1) = 1. Let g be the function such that g(v′i) = 0, g(v′i−1) = 1. Then,

g is a γI-function with fewer rows having property P , contradicting our choice of f .

Thus, we may choose a γI-function f of Pn · K2 such that if f(vi) = 0, then

f(v′i) = 0, as desired.

Importantly, while this lemma states a useful result for Pn ·K2, this is not generally

true for G ·Kn.

We will use the preceding lemma to show equality of our previous upper bound

for γI(Pn ·K2).

Theorem 3.21. For any path graph Pn, we have that γI(Pn ·K2) = 2(bn+2
3
c).
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Proof. Note that by [5], γ(Pn) = bn+2
3
c.

Using our previous notation for the constituent parts of G ·K2, let D be a γ-set of

Pn, and let D′ be the corresponding γ-set of P ′n. Then, the function f = (V0, V1, V2)

such that V2 = ∅, V1 = D ∪ D′, and V0 = V (Pn · K2) \ V1 is an Italian dominating

function on Pn ·K2. Thus, γI(Pn ·K2) ≤ 2γ(Pn) = 2(dn+1
2
e).

To show that γI(Pn · K2) ≥ 2γ(Pn), suppose to the contrary that γI(Pn · K2) ≤

2γ(Pn)− 1.

Let g = (V0, V1, V2) be a γI-function on Pn ·K2. By Lemma 3.20, we may choose

g such that if g(vi) = 0, then g(v′i) = 0.

Since the total weight of g is at most 2γ(Pn)− 1, then, without loss of generality,

the total weight assigned to G is at most γ(Pn)− 1. That is, the set (V1 ∪V2)∩V (G)

does not dominate Pn. That is, there exists some vertex v ∈ V (Pn) such that g(v) = 0

and g(x) = 0 for all x ∈ N(v) ∩ V (Pn).

However, since g is a γI-function of Pn · K2, there must be some vertex x′ ∈

N(v) ∩ V (P ′n) such that f(x′) ≥ 1, contradicting our choice of g.

Therefore, γI(Pn · K2) ≥ 2γ(G), and so γI(Pn · K2) = 2γ(Ln) = 2(bn+2
3
c), as

desired.
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4 CONCLUDING REMARKS

Research into the parameters of Italian domination in graph products is ongoing,

and a rich area of study. We conclude by presenting several open questions suggested

by this research.

1. Certain prisms and Möbius ladders are also circulant graphs. Further explore

the Italian domination numbers of circulant graphs.

2. A graph of the form G�Pn is called a generalized prism graph. Further explore

the Italian domination numbers of generalized prism graphs.

3. Use Lemmas 3.2 and 3.3 to explore the parameters of Italian domination in the

cubic graphs.

4. Characterize the prisms for which γI(G) = γR(G).

5. Explore Italian domination in graph products G�H, G×H, and G ·H where

H 6= K2.

6. Further refine the upper bound γI(G · Ln) ≤ 2γ(G).
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