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ABSTRACT 

 

Black Bears (Ursus americanus) versus Brown Bears (U. arctos): Combining 

Morphometrics and Niche Modeling to Differentiate Species and Predict Distributions 

Through Time 

by 

 

Theron Michael Kantelis 

 

Late Pleistocene American black bears (Ursus americanus) often overlap in size with 

Pleistocene brown bears (U. arctos), occasionally making them difficult to diagnose. 

Large U. americanus have previously been distinguished from U. arctos by the length of 

the upper second molar (M2). However, the teeth of fossil U. americanus sometimes 

overlap size with U. arctos. As such, there is need for a more accurate tool to 

distinguish the two species. Here, 2D geometric morphometrics is applied to the 

occlusal surface of the M2 to further assess the utility of this tooth for distinguishing U. 

americanus and U. arctos specimens.  When combined with an Ecological Niche Model 

of U. americanus and U. arctos in North America from the Last Glacial Maximum, this 

morphometric technique can be applied to key regions. A case of two Pleistocene 

specimens previously identified as U. arctos from eastern North America exemplifies the 

utility of this combination. 
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CHAPTER 1 

INTRODUCTION 

Numerous Pleistocene fossil sites across North America have reported 

specimens of Ursus americanus and Ursus arctos (Kurtén and Anderson, 1980; 

Graham and Lundelius 2010). Occasionally, these two species of bear are even found 

at the same fossil locality, and sometimes alongside other genera of bear such as 

Arctodus or Tremarctos (Kurtén and Anderson, 1980; Graham and Lundelius 2010). 

While neither U. americanus or U. arctos is easily mistaken for tremarctine bears, the 

majority of the differences between U. americanus and U. arctos may be difficult to 

assess in the fossil record (Gordon 1977, DeMaster and Stirling 1981, Graham 1991, 

Pasitschniak-Arts 1993, Larivière 2001). Ursus arctos is described as having a dished 

facial profile, significantly longer claws on the paws of the forelimbs than the hind limbs, 

an upper second molar (M2) length greater than 31 mm, a lower first molar (m1) length 

and width greater than 20.4 and 10.5 mm respectively, and a prominent shoulder hump, 

whilst U. americanus possess no such hump, has claws of nearly equal length on all 

paws, and has a more concave profile (DeMaster and Stirling 1981, Pasitschniak-Arts 

1993, Larivière 2001). Aside from these features, modern U. arctos and U. americanus 

can be distinguished from each other by the larger size of U. arctos and often simply by 

the color of their pelage (DeMaster and Stirling 1981, Pasitschniak-Arts 1993, Larivière 

2001). It should be noted, however, that while the common names of U. arctos and U. 

americanus imply a simple brown and black coloration respectively, U. americanus has 

been well documented to range widely in color (Pasitschniak-Arts 1993, Larivière 2001, 

DeMaster and Stirling 1981).  
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While this is a fair list of distinguishing features for living members of U. arctos 

and U. americanus, many of these characteristics are not necessarily applicable to 

fossil specimens.  Coloration is not typically available in paleontology as the pelage is 

nearly always absent and is often discolored in the rare case of its preservation. The 

facial profile is difficult to distinguish without fleshy features and particularly if the skull is 

deformed or crushed. The shoulder hump present in U. arctos is not an osteological 

feature, so it does not readily preserve. Size is not necessarily reliable as studies have 

shown that Pleistocene and some Holocene U. americanus are able to achieve a size 

comparable to both modern and fossil members of U. arctos (Kurtén and Anderson 

1980, Wolverton and Lyman 1998). In addition to a general size increase, the size of the 

teeth in Pleistocene U. americanus were also greater, making the use of molar length 

and width in identification difficult (Graham 1991). This leaves the length of the front and 

hind claws for the two species. In many cases, these elements are not discovered with 

the fossil specimen, so an identification must be made based on what is available 

(Elftman 1931, Kurtén 1963, Mustoe and Carlstad 1995, Czaplewski et al. 1999, 

Czaplewski and Willsey 2013, Czaplewski and Puckette 2014). These identifications are 

not made off of a defining character, but morphological similarity. As stated in several of 

these articles, this strategy is not preferable due to this technique leaving the 

identifications somewhat ambiguous.  

As a result, there is a need for a greater number of diagnostic tools to identify 

these species in the fossil record. Preferably, this would be a method which does not 

rely on general morphological similarities. Due to the extreme level of general variability 

found in bears, it may require a larger number of specimens to accurately represent the 
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typical morphology of the species (Baryshnikov 2006). While the statement of extreme 

variability may sound extravagant, members of U. arctos alone have been attributed to 

upwards of 80 different species as well as several different genera (Pasitschniak-Arts 

1993). While all of these have been synonymized with U. arctos or now refer to 

subspecies, this exemplifies how the variability within Ursus can cause confusion in 

identification. Also, there is a precedent set for misidentified specimens. In 1991, 

Graham suggested the reassignment of several Pleistocene Ursus due to 

misunderstandings of how large U. americanus could be during that time period. These 

specimens had been assigned to U. arctos based on their size, as no modern U. 

americanus have reached that size. Despite the variation in Ursus, length and width 

measurements of the molars has shown to be one of the most effective ways to identify 

a specimen, fossil or otherwise (Graham 1991). Therefore, if a method is required to 

better identify specimens, it logically would originate at the molars.  

 Gordon (1977) showed that modern U. arctos and U. americanus could be 

distinguished by the length and width of m1 and M2. The length and width of the m1 

had a 100 percent success rate in identifying the species and the length of the M2 had 

95 and 100 percent success rate for the two species, respectively. Gordon used 

between 51 and 144 specimens for each of these measurements, but neglected to 

mention where these specimens were sourced from. While Gordon tested other 

measurements of the teeth, these were either significantly less successful in one or both 

species, or were shown to be inconsistent by Graham in 1991. Between the m1 and M2, 

the M2 is the more common of the teeth due to its size and connection to skull rather 

than the mandible. As such, the M2 is the tooth of choice in this study. Length and width 
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measurements of the teeth have shown to be somewhat ineffective due to an overlap in 

size between Pleistocene U. americanus and U. arctos (Kurtén and Anderson 1980). As 

such, a geometric morphometric study would be preferred to a study of linear 

measurements; though there are complications. As previously stated, bears generally 

have a high degree of variability.  Within U. arctos and U. americanus, the number of 

premolars is variable, and even between the left and right and maxillary and mandibular 

premolars (Graham 1991, Baryshnikov et al. 2003, Baryshnikov 2006, Baryshnikov 

2007). Gordon (1977) and Graham (1991) attempted to test the presence of accessory 

cusps on the p4, m1, and P4, but were met with widely disparate success rates.  

Dentral terminology here follows to Baryshnikov (2007) “for describing the ursine 

M2. The different cusps and areas of a typical ursine M2 are detailed in Figure 1. 
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Figure 1. Morphological Regions of the Upper Second Molar of Ursus americanus in 
Occlusal View (ETVP 18252; left M2 shown). 1) Protocone, 2) Paracone, 3) 
Metaconule, 4) Metacone, 5) Hypocone, 6) Talon, 7) Post-Metacone Accessory Cusp 
(not always present), 8) Post-Hypocone Accessory Cusp (not always present). The 
shapes of these regions may be inconsistent between individuals and species, but their 
relative positions are consistent outside of pathologies.  
 

Development of a technique for differentiating the M2 of U. arctos and U. 

americanus is one aspect of this project.  Ursus occurs throughout the majority of North 

America, and fossil specimens from the Pleistocene appear to have been present within 

a quite different range from that of modern times. (Pasitschniak-Arts 1993, Larivière 

2001, Graham and Lundelius 2010). To better predict what species of Ursus would be 

found at a particular locale, this study also creates an ecological niche model of where 
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U. arctos and U. americanus are expected to have been present during the Last Glacial 

Maximum (LGM). By using modern bioclimatic variables to understand the habitat 

preferences of these species, bioclimatic variables from the LGM can be used to 

approximate the LGM range. This may help in identifying specimens whose 

identification should be reassessed. Specimens occurring significantly outside of their 

expected range could represent misidentification, or, if they were correctly identified, a 

substantial difference between the environmental preferences of Ursus species 

between the Pleistocene and now. There are periods of the Pleistocene which were 

different ecologically from today and the LGM, so this model cannot be perfect, but this 

model will give a general idea of where the species could have been present given the 

general climatic differences between the Pleistocene and present. As there are fossil 

specimens of that have been described as U. arctos that are well outside of their 

modern historic range, this aspect of the study should help to determine how unusual or 

expected that expanded range is (Graham and Lundelius 2010). 
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GEOMETRIC MORPHOMETRIC ANALYSIS OF THE M2 OF URSUS AMERICANUS 

AND U. ARCTOS 

 

Materials and Methods 

Data Acquisition  

For the analysis, 64 (34 U. americanus, 30 U. arctos) modern specimens 

(collected within the past 150 years) were collected from two collections, the East 

Tennessee State University comparative collection (ETVP) and the National Museum of 

Natural History’s (NMNH) mammal collection. From the ETVP, U. americanus 

specimens are largely from Tennessee, and U. arctos are largely from Alaska, with 

several belonging to U. a. middendorffi, the Kodiak subspecies. From the NMNH 

collection, specimens originate from the entirety of the modern historic range. Specimen 

numbers, and their origins can be seen in Appendix A (pg 64). The choice of specimens 

for this study attempts to mimic and therefore account for any regional geographic 

variation that might otherwise skew the results. This said, there aren’t any specimens in 

the sample that represent regions outside North America. The inclusion of such 

specimens could have given the results a “Eurasian” skew, and not accurately 

represented the differences between bears that might have actually occurred in the 

same region (Taberlet and Bouvet 1994).  

The ETVP collection Ursus collection is limited in geographic scope, and most 

available specimens were used that had complete M2’s with well-preserved cusps.   

Because of the vast collection at the NMNH, specimen choice focused on those with 

teeth in the best condition. Complete and relatively unworn were preferred, with careful 
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attention made to not disregard teeth that appeared to have an unusual shape or 

morphology (not to be confused with those bearing a pathology). While such teeth might 

be considered potential outliers in studies of most animals, bear teeth are well 

documented to be highly variable (Baryshnikov 2007), so this line of thought could 

potentially create a bias towards overly homologous teeth, when in reality, many teeth 

of relatively strange or unusual shape may need to be identified by the results of this 

study (Baryshnikov 2006).  

Data acquisition consisted of photographs taken perpendicular to the palate, 

such that the lens of the camera was parallel with the flat surface of the palate. Future 

studies might use 3D landmarks (e.g., using a microscribe), but care will need to be 

taken in landmark choice, as wear on the teeth could invalidate some of the landmarks 

chosen here. That said, 3D landmarks remove the concern of photograph orientation, 

so there are definite benefits to this strategy. 

 

 

 

 

 

 

 

 

Table 1. Landmark Descriptions and Placement. See Figure 2 for a visual 

representation of the placement of these landmarks. 
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Landmark Description 

1 Point of maximum curvature on labial side of the paracone 

2 Point of minimum curvature on labial side between the paracone and 

metacone 

3 Point of maximum curvature on labial side of the metacone 

4 Point of maximum curvature on posterior end of tooth 

5 Point of maximum curvature on lingual side of the anterior portion of 

lingual cingulum 

6 Most anterior tip of the paracone 

7 Apex of paracone 

8 Intersection of paracone and metacone blades 

9 Apex of metacone 

10 Most posterior end of the metacone 

11 Point of maximum curvature on lingual side of the metacone 

12 Intersection of the paracone, metacone, and protocone 

13 Intersection of the protocone, metaconule, and metacone. 
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Figure 2. Visual Display of Landmark Locations. USNM 227660 (U. americanus) 

displaying the locations of the thirteen landmarks used in this study. 
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As previously mentioned, landmarks were chosen based on consistency and 

ability to be recognized, as such, all landmarks chosen are type 1 and type 2 (Bookstein 

1991). Slinding landmarks and type 3 landmarks were avoided due to concerns of 

consistency within each species (Bookstein 1991). The landmarks chosen are listed and 

shown in Table 1, and Figure 2, respectively. Landmarks 1-6 were chosen to represent 

the recognizable and consistent locations on the exterior outline of the tooth, these 

being the widest point of the paracone, narrowest point between the paracone and 

metacone, widest point at the metacone, the most posterior, most lingual, and most 

anterior tips respectively. Landmarks 7 and 9 were chosen as they are the only cusp 

apices which are consistently recognizable, as all lingual side cusp apices are difficult to 

consistently recognize with a strong level of certainty. Only 35 of the 63 specimens 

(53.84%) would have been able to have additional landmarks placed along the lingual 

side cusps. The remaining specimens all had one or more potential landmark that could 

not be confidently identified. The protocone long, ridgelike, and often split, obscuring or 

duplicating the apex; the metaconule is reduced in U. americanus; the hypocone is 

often reduced in U. americanus; and the post hypocone is often absent or highly 

reduced in U. arctos. Landmark 8 and 10 were chosen to represent the boundaries of 

the paracone and metacone alongside landmark 6. Landmarks 11-13 were chosen to 

flesh out the remaining boundaries for the paracone and metacone, but also acted as 

proxies for the size and location of the lingual cusps.  
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Data Processing 

After photographs were taken, they were compiled into a TPS file using tpsUtil64 

(Version 1.74), part of the “tps” series of programs developed by F. James Rohlf (2015). 

This was done once for the teeth from ETSU, once for the teeth from NMNH, once to 

encompass both of them. From here, photographs had landmarks placed on them using 

tpsDIG2w32 software (Version 2.30) (Rohlf 2015). Any tooth whose landmarks could 

not be confidently assessed during the landmarking process was removed from the 

study. Once landmarked, the image sets had their consensus configuration determined 

through tpsRelw32 (Version 1.67) (Rohlf 2015). The aligned landmark data was saved 

from the consensus. After the aligned landmark data was saved, it was formatted using 

Microsoft Office Excel such that it was in a format applicable in the SPSS statistical 

package. Within SPSS, a trio of analyses were performed for each group of specimens: 

A Principal Component Analysis (PCA), a Discriminant Analysis, and a Step-Wise 

Discriminant Analysis. Deformation grids were added to the plots of the analyses for the 

sake of representing the shape differences along the axes. These deformation grids 

were generated by placing the principal component scores and discriminant function 

scores in a .nts file for use within tpsRegr (Version 1.42) (Rohlf 2015). 

In addition, a copy of the data file for specimens from the NMNH was split into U. 

americanus and U. arctos files, from which unwarped and averaged images were 

created in the tpsSuper (Version 2.03) and saved (Rohlf 2015). The averaged images 

hold no real statistical significance, but they do help to provide a visual representation of 

the differences between the two species. A thin-plate spline was also generated from 
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the NMNH specimens using the aligned U. americanus and U. arctos data from the 

averaged images in tpsSpline (Version 1.22) (Rohlf 2015). 

 

Results 

Principal Component Analysis 

The results from the principal component analysis consisted of eight principal 

components scoring an eigen value of greater than 1, with the top three principal 

components representing 50% of the cumulative variance at 27.867%, 12.851%, and 

9.520%. As the first 3 principal components represent 50% of the variance total, and 

proceeding components represent less than 10% of the variance each, scatter plots 

were only generated for the first three principal components. As is described below, 

principal components two and three appear to be showing within species variation, so 

they were not plotted against each other. Data for these and the remaining principal 

components can be seen in Table 2. A scatter plot of the first and second principal 

components can be seen in Figure 3, and a plot of the first and third principal 

components can be seen in Figure 4.  

The first principal component appears to be expressing an elongation of the tooth 

in U. arctos and an expansion of the lingual cusps, though the space between the 

intersection of the paracone metacone and protocone and the intersection of the 

protocone, metaconule, and metacone are is much smaller. An elongation of the tooth 

in U. arctos is not surprising considering the usefulness of that measurement in modern 

specimens (Gordon 1977, Graham 1991). The second principal component appears to 

show variation of the relative position of the cusp apices within each species as it does 
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not show any strong variation between the species. The third principal component 

appears to show variation of the length of the posterior portion of the metacone within 

each species without any strong variation between species. The component matrix in 

Table 3 shows the scores for these and the remaining components.  

 
 
Table 2. Total Variance Explained for Principal Component Analysis 

.  
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Figure 3. Scatter Plot of PC1 and PC2. The first principal component shows lateral 

compression or extension with an inverse effect along the anterior landmarks. The 

second principal component shows a vertical bending of the anterior landmarks of the 

tooth.  
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Figure 4. Scatter Plot of PC1 and PC3. The first principal component shows lateral 

compression or extension with an inverse effect along the anterior landmarks. The third 

principal component shows a twisting such that the lingual and labial sides of the middle 

of the tooth inversely compress or expand.  
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Table 3. Component Matrix for the Principal Component Analysis 
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Discriminant Functions 

The discriminant function analysis resulted in a high eigenvalue of 8.736 and a 

.103 Wilk’s lambda. These indicate that large proportion of the variance is explained by 

the discriminant function and that the two species have very low variability within their 

groups compared to the variability between each other. Eigenvalues, Wilk’s lambda, 

and Classification results can be seen in Table 4. The discriminant function showed a 

94.1% success rate at identifying U. americanus, and a 93.3% success rate at 

identifying U. arctos. Further inspection of the misidentified individuals suggests that 

one of the misidentified specimens (ETVP 5162) may actually be identified within the 

collection incorrectly, thus increasing the U. arctos identification success rate to 96.6%. 

Images of the misidentified teeth, as well as the Casewise Statistics can be found in 

Appendix A. The Histogram plot of the discriminant function can be seen in Figure 5. 

The discriminant function appears to be representing the same shape variation as seen 

in the first principal component 
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Table 4. Eigenvalues (Top), Wilk’s Lambda (Middle), and Classification Results 

(Bottom). Classification results show a strong level of accuracy, and helped to reveal 

one possibly incorrectly identified specimen. 
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  Figure 5. Histogram Plot of the Discriminant Function. The discriminant function 

represents the same variation as the first principal component. 
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Much like the discriminant function, the stepwise discriminant function analysis 

resulted in a high, though lower than the discriminant function’s, eigenvalue of 5.059 

and a low, though higher than the discriminant function’s, .103 Wilk’s lambda. The 

stepwise discriminant specified variables Y3, Y10, Y13, Y8, and X6 as being particularly 

valuable in discrimination. These variables, with the exception of X6 appear to be 

clustered around the metacone and metaconule, suggesting that these cusps might be 

important in distinguishing the teeth of the two species. Variables Entered, Eigenvalues, 

Wilk’s lambda, and Classification results can be seen in Table 4. While the discriminant 

function misidentified some specimens, the stepwise discriminant function had zero 

misidentifications. This said, with ETVP 5162 potentially being misidentified within the 

collection, the success rate of U. arctos identification remains at 96.66%. Casewise 

Statistics can be found in Appendix A. The Histogram plot of the stepwise discriminant 

function can be seen in Figure 6. The stepwise discriminant function appears to be 

representing very similar shape variation as the discriminant function, though with more 

expansion and contraction in the posterior half of the tooth.  
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Table 5. Stepwise Eigenvalues (Top), Wilk’s Lambda (Middle), and Classification 

Results (Bottom). Classification results show a strong level of accuracy, though the 

presence of a possibly misidentified specimen within the collection lowers the accuracy 

of U. arctos identification to 96.66%.  
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Figure 6. Histogram Plot of the Stepwise Discriminant Function. The stepwise 

discriminant function represents very similar variation as the discriminant function. 
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Thin Plate Spline and Averaged Images 

The thin plate spline (Figure 7) shows several prominent differences between the 

M2 of the two species. In relation to U. americanus, U. arctos does have a longer tooth, 

as has been stated previously, but there are other prominent differences. This includes 

the following characters for U. arctos that distinguish it from U. americanus: paracone 

and metacone have much longer blades on the posterior side; widest point of the 

metacone on the labial side is shifted anteriorly; posterior portion of the metacone is 

compressed; the widest point of the metacone is more anterior; and the width of the 

lingual cusps is greater. While these differences are visible in the thin plate spline, they 

are also more clear in relationship to the actual tooth in the averaged (consensus) 

image (Figure 8).  
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Figure 7. Thin Plate Spline. This shows the differences in morphology when U. 

americanus is stretched to fit to the form of U. arctos. The outline of the tooth, labial 

cusps, and midline of the tooth have had their landmarks connected for the sake of 

recognition. 
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Figure 8. Averaged Images of the M2 of U. americanus (Right) and U. arctos (Left). 

These images help to illustrate the visual differences between the teeth, and how 

prominent they are between a large number of specimens. 
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The first major difference between the teeth of the two species of Ursus is that 

the protocone is more often split in U. americanus. In 27 of 37 (72.97%) specimens of 

U. americanus, the protocone is split. It is evident that the protocone is not always split, 

and not always split in the same location, by the lack of a clear division, but the cusps 

are definitely blurred between landmarks 11 and 12. While some of the same blurring is 

seen in U. arctos, it is substantially less. Only 12 of 25 (48%) of U. arctos specimens 

had a split protocone. In U. americanus, the labial cusps are more hexagonal, with 

points on the lingual side. In U. arctos the paracone is more strictly cuboid and the 

metacone is more triangular. While a presence of a post hypocone was recorded to be 

more common in U. americanus, both the hypocone and post hypocone are shown to 

be highly variable in size and position in both species. This region of the image shows 

the general shape of a cusp, but it is only very weakly and any details are very blurry. 

While the metaconule is also fairly blurry in both species, it is significantly more robust 

and distinct in U. arctos.  

 

Discussion 

Morphological Diagnosis 

Results from the Principal Components and Discriminant analyses show a strong 

indication that the morphology of the M2 of U. arctos and U. americanus can be used to 

distinguish the two species. However, an important aspect of this study is creating a 

diagnostic technique that doesn’t require a full statistical analysis. While the differences 

described in the results can be used as a general guide, the primary focus should be on 

the protocone, metacone, and metaconule as these are features with several landmarks 
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specified as important by the PCA and Discriminant analysis. As such, the criteria for 

identifying U. americanus and U. arctos by the M2 should go as follows: 1) if the tooth 

has a triangular shaped metacone and the metaconule is approximately equal in width 

to the metacone, then the tooth should be classified as U. arctos, 2) if the metacone is 

cuboid or hexagonal and the metaconule is visibly smaller than the metacone, then the 

tooth should be classified as U. americanus. In the case of uncertainty, secondary 

characteristics can be used to improve the diagnosis. While these secondary characters 

do appear to be indicative of species, they were variable enough that landmarks could 

not be regularly placed in locations associated with them. In U. americanus, the 

protocone is typically split and both the hypocone and a post-hypocone can usually be 

identified. The protocone is only rarely split in U. arctos and a post-hypocone is typically 

small to the point of being unidentifiable. With these traits, M2 from either modern or 

Pleistocene U. americanus and U. arctos can be classified to at least a conferred 

species designation, if not confidently to species.  

 

Further Implications 

An unexpected result from the PCA analysis of specimens from both collections 

was the separation of the ETVP and NMNH U. arctos specimens. Most of the ETVP 

specimens were Kodiak (U. arctos middendorffi), so this may be an indication of a 

difference in the morphology of the M2 between the continental brown bear (sampled at 

NMNH) and the Kodiak subspecies (ETVP sample). It appears that the U. arctos 

middendorffi lingual cusps are more blade like, making their divisions less distinct. 

Future studies should be conducted to see if the separation seen in the PCA and visual 
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difference is indicative of a true characteristic, or a trend within the species. The visual 

difference might not be consistent enough to be considered as a diagnostic tool, and the 

separation in the PCA might be due to a slight difference in the angle the photograph 

was taken. If a future study does show a true difference in these M2, then that might 

show that the technique is useful amongst a wide variety of Ursus species and 

subspecies. Distinguishing U. americanus from U. thibetanus can be difficult at times, 

and would likely be further complicated in the fossil record as one approaches their 

most recent common ancestor (Larivière 2001). Careful analysis of the M2 may be 

useful in distinguishing the two species. In addition, genetic studies show that other 

extant species of bear may also be closely related to U. americanus, presenting another 

possible candidate for analysis (Kutschera et al. 2014). While this technique has not 

been vetted against ursids outside of Ursus, it seems likely that it would be similarly 

effective.  

Further analysis of the morphology of the M2 could reveal more than just 

evolutionary relationships. As the teeth are primarily used for food acquisition and 

processing, differences in morphology may be reflective of diet. While U. americanus 

and U. arctos are largely omnivorous, there are extant bears adapted for 

hypercarnivory, hypocarnivory, insectivory, and herbivory of hard plants (Baryshnikov 

2007). Using the characters of the M2 of these different, specialized species could 

assist in revealing the diet of extinct bears, such as Arctodus simus and Arctotherium, 

whose diet is debated (e.g., Matheus 1995, Sorkin 2006, Figueirido et al. 2010, Meloro 

2011). A comprehensive study of the morphology of the teeth of various fossil and 
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extant bear species that gives attention to functional morphology may be useful in 

showing why Arctodus and other extinct bears may have different morphologies. 

While learning more about the morphology of the M2 could be useful in 

distinguishing other species of ursids and learning more about the diets of extinct 

ursids, the results of this study can directly be used for future work without secondary 

research. With a new method for diagnosing Pleistocene ursines from North America, 

specimens from locales which were difficult to diagnose can be reexamined to more 

strongly confirm their designation, or correct it. Genetic studies suggest that there may 

be specimens which are incorrectly labeled, or there is an important clade of U. arctos 

which is relatively absent from the fossil record (Davison et al. 2011). Davison et al. 

(2011) found that there should be a clade known as Clade 4 of U. arctos which migrated 

south of Beringia into Canada as early as 33,000 cal years BP. Very few fossils of U. 

arctos have been reliably identified and dated to older than 12,000 cal years BP 

(Matheus 2004). This study could be crucial in identifying any members of this clade 

which have been misidentified. A potential similar situation can be seen in the Meachen 

et al. (2016) study in which they suggested several wolves from Natural Trap Cave were 

misidentified and actually represented the Beringian morphotype. Both the Beringian 

wolf case and the Clade 4 of U. arctos, feature a group of animals moving south of 

Beringia that have not previously been identified in the fossil record.  
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CHAPTER 3 

ECOLOGICAL NICHE MODEL OF U. AMERICANUS AND U. ARCTOS PROJECTED 

TO THE LAST GLACIAL MAXIMUM 

 

 In addition to the morphological study of the upper second molar, a small 

ecological niche study was performed to assist in selecting locations where the results 

of said study might be best used. As stated previously, there is potential for an overlap 

in U. arctos and U. americanus populations south of the Cordellian and Laurentide ice 

sheets as early as 31,000 cal years BP (Davison et al. 2011). The contiguous United 

States is quite a range of land in which to search for misidentified fossils, so a method 

for narrowing the search radius would be greatly beneficial. This would allow focused 

searching for areas where both species are predicted to have occurred, or see where a 

species has been identified outside of its expected range. While some areas are known 

to not contain U. arctos currently, such as eastern North America (Feldhamer et al. 

2009), there are fossil specimens from the Pleistocene that have been identified as U. 

arctos as far east as Maine (Graham and Lundelius 2010). As such, it is important to not 

disregard that the Pleistocene was a very different time both climatically and 

ecologically and modern preconceptions of where these species should not be used.  

For an ecological niche study, bioclimatic variables are required. While 

bioclimatic variables are readily available from much of recent history, there aren’t any 

that span the entirety of the Pleistocene. However, climatic data for the Last Glacial 

Maximum (LGM) has been created and is available through WorldClim. The LGM, as 

the period with the most glaciation out of the 31,000 years that U. arctos could have 
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been present south of Beringia, acts as a good extreme for comparison with the modern 

climate. Something worth noting though, is that while this LGM bioclimatic data is 

incredibly useful, it cannot be perfectly accurate. Davis et al. (2014) suggest that 

ecological niche model projections of the LGM may have some strong biases. This data 

has been generated from a series of paleoenvironmental studies, not collected from 

weather stations across the world. As such, it should be subject to scrutiny, and will not 

be wholly accurate.  

 

Materials and Methods 

Location data for both U. americanus and U. arctos were obtained from the 

Global Biodiversity Information Facility (GBIF). Environmental data, in the form of 

bioclimatic variables, was obtained from WorldClim, this included both modern data and 

data from the LGM. All data processing was performed in Microsoft Office Excel and 

ESRI ArcGis. For several specific tasks, the SDMtoolbox add-on for ArcGis, developed 

by Jason L. Brown, was used.  

 Bioclimatic variables were chosen for this study were 1, 4, 12, and 15 which 

correspond to Annual Mean Temperature, Temperature Seasonality, Annual 

Precipitation, and Precipitation Seasonality, respectively. Only a limited number of the 

total possible bioclimatic variables were chosen to avoid the possibility of overfitting. 

These particular variables were chosen to represent the general environmental 

conditions at the time. Bioclimatic data was downloaded at 5 arc-minutes in ESRI Grid 

and CCSM4 types. ESRI Grids were used in the modern model and CCSM4 in the LGM 

model. All bioclimatic variables were masked to North America. Species data from GBIF 
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was rarefied to 8 km and masked to North America. Eurasian U. arctos were considered 

for inclusion, but ultimately excluded. This was done to avoid any complications caused 

by differences in environmental preferences between the North American and Eurasian 

clades. While North American clades are descended from Eurasian clades, genetic 

studies have shown that there is not any significant level of interbreeding with Eurasian 

clades once U. arctos actually extends into North America. Once rarefied and masked, 

species data was divided into 80% training and 20% testing subsets.  

 Both ecological niche models were performed using Maxent. As Maxent is a 

relatively easy to use, common, and stable modeling package, it was the software of 

choice. Maxent models were ran using 10 percentile training presence as the threshold 

rule. Young et al. suggests that this threshold rule is suitable for testing subsets greater 

than 10%. Maxent first generated an ecological niche model for the present distribution 

of both U. arctos and U. americanus. From the data of the present ecological niche 

model, the LGM model could be created using the LGM bioclimatic variables. Rasters 

from the four niche models were converted to binary at a .5 threshold. At this threshold, 

a presence estimate of less than 50% would be considered absence and an estimate of 

greater than 50% would be considered presence. While this does simplify the map, it 

allows for comparison between modern and LGM models and helps to counter 

overfitting of the model. Presence maps that have not been simplified to binary are still 

important, as they show a total range, and are useful in the case that the binary map 

under-fits the total range. Once converted to binary, the LGM projection rasters were 

reclassified to 1 and 4 as opposed to the 0 and 1 of binary for raster addition and 
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subtractions. Modern model rasters were subtracted from the LGM model rasters to 

allow for visual representation of the differences. 

 

Results 

 The ecological niche models for the modern (Figures 9 and 20) and LGM 

(Figures 10 and 11) distributions of both U. americanus and U. arctos can be seen in 

the figures below. Accuracy metrics suggest a strong, though imperfect level of 

accuracy. Both area under the curve (AUC) values for the Sensitivity versus Specificity 

charts (Figure 12) generated by Maxent scored above 8.5, with the Ecological Niche 

Model for U. arctos scoring at slightly higher.  

 The modern ecological niche model for U. americanus (Figure 9) shows the 

strongest presence along the west coast, followed by the Rocky Mountains and east 

coast with a preference for the upper east coast. The only areas of strong absence are 

the northern most portion of Canada and Alaska, the Yucatan Peninsula, and the 

Sonoran and Mojave Deserts. For U. arctos, the modern ecological niche model shows 

the strongest presence along the Canadian and Alaskan west coast and the Rocky 

Mountains. Areas of moderate to light presence include the Chihuahua Mountains in 

Mexico and most of Canada reaching to the east coast. Areas of absence include the 

Arctic, the middle and eastern areas of the United States, and portions of Mexico and 

the western United States.  
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Figure 9. Modern Ecological Niche Model for U. americanus.  
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Figure 10. Modern Ecological Niche Model for U. arctos. Note that this model is 

restricted to North America, so it does not take the Eurasian range into account.  
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Figure 11. Last Glacial Maximum Ecological Niche Model for U. americanus. This model 

represents the range of U. americanus at approximately 21,000 years cal BP.  
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Figure 12. Last Glacial Maximum Ecological Niche Model for U. arctos. This model 

represents the range of U. americanus at approximately 21,000 years cal BP. 
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Figure 13. Sensitivity vs. Specificity charts for the Ecological Niche Models. A value of 

.5 is equivalent to random chance, with a value of 1 being absolute certainty. 
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The LGM ecological niche model for U. americanus shows strong presence 

along the west coast, narrowing to the coast line along the northern portions, the 

Chihuahua Mountains, the east of the United States, and portions of most of the 

midcontinent. Ursus americanus does show absence across nearly the entirety of 

Canada aside from portions of the south and a narrow strip of the west coast. This is 

likely due to the presence of the Cordilleran and Laurentide ice sheets spread across 

Canada. The LGM ecological niche model for U. arctos shows very strong presence 

along the Canadian and Alaskan west coast, most of the United States west coast, and 

much of the western half of the United States. There is strong, though lighter presence 

throughout much of Mexico, and light presence spreading throughout much of the 

continent, all the way to the east coast.  

When converted to a binary map, and compared to the modern distribution 

(Figures 14, 15, and 16), U. americanus is shown by the ecological niche model to have 

a greater range along the west coast and southern range, but reduced presence in the 

north. In U. arctos, the ecological niche model shows a much greater area of presence 

along the west coast and western half of the United States. This said, there is less 

presence along the north-western coast of Alaska and parts of Canada. There are three 

principal areas of overlap for the two species in the LGM ecological niche model: A 

large portion of the western corner of the United States, a narrow strip along the 

Canadian west coast, and a portion of the central United States.   
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Figure 14. Comparison of the U. americanus Modern and LGM Ecological Niche Model. 

Areas of high presence (>.5) of U. americanus compared between the current to LGM 

model. 
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Figure 15. Comparison of the U. arctos Modern and LGM Ecological Niche Model. 

Areas of high presence (>.5) of U. arctos compared between the current to LGM model. 
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Figure 16. Area of significant presence (>.5) overlap between U. americanus and U. 

arctos at the LGM (~21,000 cal years BP). 
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Discussion 

The ecological niche models have a strong level of accuracy based upon their 

AUC scores, and a comparison with the modern historic range of both species shows a 

strong similarity. The U. americanus historic range (Pelton et al. 1999) matches the 

niche model closely, and while the U. arctos model includes everywhere that U. arctos 

occurs, it does seem to over fit as it shows light presence along the east coast 

(Feldhamer et al. 2003). This said, the LGM niche model, as well as several fossil 

localities suggest that U. arctos used to inhabit this area (Graham and Lundelius 2010). 

This suggests that the model may not actually be overfitting, but simply cannot account 

for some other environmental factor. A difference in available food or vegetation 

between the LGM and present could be the cause of this range reduction. While a 

vegetation index can be included in modern ecological niche models, they have not 

been created for the LGM. Niche models could be created to account for the presence 

or absence of the food items for U. arctos, but as U. arctos can consume a very wide 

variety of food items, the scale of that task puts it outside the scope of this study.  

 The large area of strong presence for U. arctos south of Beringia in the LGM 

ecological niche model suggests that U. arctos would have been successful throughout 

much of North America. The presence of U. arctos fossils as far east as Maine suggest 

that the light presence in that area may have been stronger than indicated, or at least 

stronger at a later point in the Pleistocene (Graham and Lundelius 2010).  

With a particularly low presence in the southeast of the United States from U. 

arctos, and the opposite with U. americanus, this may be the only area south of the ice 

sheets where the two species did not coexist, or were unlikely to do so. In all other 
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areas south of the ice sheet, both species have potential presence, but at varying 

degrees. As such, identifications should not be made based on location. This is 

especially important in the areas of strong overlap, namely the west coast and Rocky 

Mountains. These are areas where a careful identification is especially important, as 

both species could easily be present. The other two areas of concern are the southeast 

and the majority of Canada. These are areas where one species is present, and the 

other is largely absent. Specimens found in these areas that have been identified as a 

species other than that expected by the ecological niche model should be closely 

analyzed based upon the morphological study shown previously. This said, it is possible 

that the ecological niche model is not accurately representing these areas, or that the 

specimen has wandered from its typical range, so these specimens should not be 

identified based solely on their location.  
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CHAPTER 4 

CASE STUDY AND CONCLUSIONS 

 Through a morphometric analysis of the second upper molar, this study has 

strived to develop an improved technique for the identification of Ursus species in North 

America.   In addition, niche models were developed to help identify areas where each 

fossil species was likely to occur during the LGM. While the morphological analysis and 

the ecological niche models can be used independently, they can also be used in 

conjunction to assess the record of LGM bears across North America. The niche 

models can be used to identify fossil sites where one or both species of Ursus would be 

expected to occur, and the morphological analyses can be used to assist in the 

identification of any specimens found at those localities. Additionally, this pair of studies 

can be used in conjunction with FAUNMAP to check for localities that report a specimen 

outside of its expected range or report one expected species but not the other.  

 While this study appears successful in generating a technique for identifying 

specimens and locating where they are likely to occur, this success is based on AUC 

values and degrees of separation. The real degree of success is to be seen in the 

successful application of these techniques. FAUNMAP lists six specimens of U. arctos 

in the eastern half of North America that date to the Pleistocene. While the ecological 

niche model for the LGM shows that there was some presence of U. arctos in this area, 

the presence is at a very low number, so fossils from this area might be uncommon.  

Two Pleistocene specimens previously identified as Ursus arctos from the 

Carnegie Museum of Natural History were borrowed for analysis. This includes CM 

12617, from Welsh Cave, KY, and CM 12999 from Organ Cave, WV. Both specimens 
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are reported in the literature as U. arctos (Guilday 1968, Guilday et al. 1977). Guilday 

(1968) and Guilday et al. (1977) do not state how these two specimens are identified, 

but as CM 12617 is 34mm long and CM 12999 is 33mm long, it seems that if Kurtén 

and Anderson’s (1980) method of identification by tooth length was considered, it would 

not have been particularly useful. Kurtén and Anderson (1980) stated, and Graham 

(1991) restated, that the M2 of fossil U. americanus never exceeded 34mm in length, 

and that fossil U. arctos rarely had M2 of such a short length. At 33mm and 34 mm in 

length, the M2s of these two specimens would be difficult to identify by tooth length. 

Hence, these two specimens were a prime candidate for a case study attempting to 

support their identification, or re-identify them.  

 The method for visually identifying the two species described on page 33, was 

applied to both teeth, with mixed results. Images of these teeth can be found in 

Appendix A. CM 12617 was determined to be correctly identified based on the presence 

of a large metaconule and triangular metacone. CM 12999 was determined to be 

incorrectly identified based on a relatively small metaconule, and cuboid metacone. It 

should be noted that CM 12999 is unusual in that it appears to have an accessory cusp 

sitting posterior to the metacone, potentially compacting it. While this accessory cusp 

could be masking a more triangular shape for the metacone, the small size of the 

metaconule suggests that this is not the case. As such this study refers CM 12999 to U. 

americanus.  

 In order to strengthen this referral, as this would be the first application of this 

technique to a fossil specimen, photographs of CM 12617 and 12999 were landmarked 
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and included in a principal component analysis and discriminant analysis alongside the 

specimens from the NMNH and ETVP collections.  

 The principal component analysis shows very similar eigenvalues and principal 

components to the previous principal component analysis (Tables 6 and 7). The two 

scatterplots (Figures 17 and 18) show that the fossil specimens plot within the morpho 

space of their expected identifications, though they are not nestled closely within that 

morpho space.  

 The discriminant function and stepwise discriminant function show eigenvalues 

and Wilk’s lambdas very similar to the previous discriminant functions (Tables 8 and 9). 

However, the discriminant function did not misidentify as many specimens as U. arctos, 

increasing its success rate somewhat (See Appendix A). Additionally, the fossil 

specimens are classified as their expected groups, with CM 12617 classified as U. 

arctos and CM 12999 classified as U. americanus (Figures 19 and 20). 

The results of the principal component analysis and discriminant functions 

indicate that these two fossil specimens do not share the same species morpho space 

and are classified differently statistically. This difference in principal component and 

discriminant function scores agrees with the results of the morphological diagnosis, so 

this study would redesignate CM 12999 as U. americanus. This case study serves of an 

example of how this type of study is useful, and exemplifies the difficulty of identification 

without it. In the future, this analysis can be used to facilitate the identifications of Ursus 

specimens across North America, and potentially uncover previously under represented 

clades within U. arctos that have been misidentified.  
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Table 6. Total Variance Explained for the Case Study Principal Component Analysis.    
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Figure 17. Scatter Plot of the Case Study PC1 and PC2. The first principal component 

shows lateral compression or extension with an inverse effect along the anterior 

landmarks. The second principal component shows a vertical bending of the anterior 

landmarks of the tooth. 
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Figure 4. Scatter Plot of the Case Study PC1 and PC3. The first principal component 

shows lateral compression or extension with an inverse effect along the anterior 

landmarks. The third principal component shows a twisting such that the lingual and 

labial sides of the middle of the tooth inversely compress or expand.  
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Table 7. Component Matrix for the Case Study Principal Component Analysis 
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Table 8. Eigenvalues (Top), Wilk’s Lambda (Middle), and Classification Results 

(Bottom) of the Case. Classification results show a strong level of accuracy. 
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Figure 19. Histogram Plot of the Case Study Discriminant Function. The discriminant 

function represents the same variation as the first principal component. 
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Table 9. Stepwise Eigenvalues (Top), Wilk’s Lambda (Middle), and Classification 

Results (Bottom) of the Case Study. Classification results show a strong level of 

accuracy, though the presence of a possibly misidentified specimen within the collection 

lowers the accuracy of U. arctos identification to 96.66%.  
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Figure 20. Histogram Plot of the Case Study Stepwise Discriminant Function. The 
stepwise discriminant function represents very similar variation as the discriminant 
function. 
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APPENDIX 

Additional Tables and Figures 

Specimen Species State or Territory 

USNM 236227 U. americanus Colorado 

USNM 224509 U. americanus Colorado 

USNM 223943 U. americanus Florida 

USNM 234242 U. americanus Florida 

USNM 227660 U. americanus Idaho 

USNM 216420 U. americanus Idaho 

USNM A03061 U. americanus New York 

USNM 187876 U. americanus New York 

USNM 228262 U. americanus New Mexico 

USNM 231359 U. americanus New Mexico 

USNM 206132 U. americanus Alaska 

USNM 087617 U. americanus British Colombia 

USNM 081198 U. americanus Quebec 

USNM 205950 U. americanus California 

USNM 248531 U. americanus Washington 

USNM 159368 U. americanus Louisiana 

USNM 135141 U. americanus Louisiana 

USNM 227926 U. americanus Wyoming 

ETVP 18252 U. americanus Tennessee 

ETVP 18244 U. americanus Tennessee 

ETVP 7170 U. americanus Tennessee 

ETVP 7169 U. americanus Quebec 

ETVP 5011 U. americanus  ? 

ETVP 18233 U. americanus Tennessee 

NAUQSP 7607 U. americanus Maine 

CC.279 U. americanus  ? 

CC.388 U. americanus  ? 

NVPL 6918 U. americanus Tennessee 

ETVP 7173 U. americanus  ? 

ETVP 10138 U. americanus Tennessee 

ETVP 7179 U. americanus  ? 

ETVP 10129 U. americanus Tennessee 

ETVP 10139 U. americanus Tennessee 

ETVP 18175 U. americanus Tennessee 

USNM 211240 U. arctos Montana 
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USNM 225621 U. arctos Montana 

USNM 098324 U. arctos Chihuahua 

USNM 098320 U. arctos Chihuahua 

USNM A31276 U. arctos Idaho 

USNM 233241 U. arctos Idaho 

USNM 113410 U. arctos Colorado 

USNM 113411 U. arctos Colorado 

USNM 228228 U. arctos Yukon 

USNM 227977 U. arctos Yukon 

USNM 223945 U. arctos British Colombia 

USNM 223689 U. arctos British Colombia 

USNM 262374 U. arctos New Mexico 

USNM 223034 U. arctos Utah 

USNM 228226 U. arctos California 

USNM 235445 U. arctos Wyoming 

USNM 203524 U. arctos North Dakota 

USNM 242652 U. arctos Arizona 

USNM 243786 U. arctos Washington 

USNM 222107 U. arctos Alberta 

ETVP 5162 U. arctos  ? 

ETVP 18264 U. arctos Alaska 

AKGBR 9904282 U. arctos Alaska 

AKGBR 0304553 U. arctos Alaska 

AKGBR 0502474 U. arctos Alaska 

AKGBR 1002343 U. arctos Alaska 

AHGBR 0304912 U. arctos Alaska 

AKGBR U. arctos Alaska 

ETVP 10145 U. arctos  ? 

ETVP 10501 U. arctos  ? 
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Misidentified Specimens

 

USNM 206132  
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USNM 228228
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ETVP 10138  
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ETVP 5162 (Believed to actually be misidentified, and should be assigned to U. 

americanus) 
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Carnegie Specimens 

CM 12617 
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CM 12999  
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Case Study Casewise Statistics 
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