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ABSTRACT 

Faces, Locations, and Tools: A Proposed Two-Stimulus P300 Brain Computer Interface  

by 

Marissa R. Jones 

Brain Computer Interface (BCI) technology can be important for those unable to communicate 

due loss of muscle control. The P300 Speller allows communication at a rate up to eight 

selections per minute. Given this relatively slow rate of communication highly accurate 

classification is of great importance. Previous studies have shown that alternative stimuli (e.g., 

faces) can improve BCI speed and accuracy. The present study uses two new alternative stimuli, 

locations and graspable tools in a two-stimulus paradigm. Functional MRI studies have shown 

that images of familiar locations produce brain responses in the parahippocampal place area and 

graspable tools produce brain responses in premotor cortex.  The current study shows that 

location and tool stimuli produce unique brain responses that can be used for classification in the 

two-stimulus paradigm. This study shows proof of concept for using two unique stimuli to 

improve speed and accuracy of the P300 Speller.  
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CHAPTER 1 

 

INTRODUCTION 

Brain Computer Interfaces 

Brain Computer Interfaces (BCIs) involve the measurement of neural signals produced 

by the electrical activity of the brain, a method or algorithm applied to decode these signals, and 

a systematic method for applying the decoded signals to a behavior (Sajda, Müller, & Shenoy, 

2008). Since researchers discovered the ability to apply these signals to operate an external 

device, the potential applications of BCI technology continues to grow. The uses of these 

recorded signals to operate BCIs can range from controlling external devices such as a robotic 

arm, to moving computer cursors, to creating works of art known as “Brain-Painting” 

(Münßinger et al., 2010;Velliste, Perel, Spalding, Whitford, & Schwartz, 2008). These types of 

devices have the potential to be useful for individuals who have lost limbs or muscle movement 

that is necessary for daily functioning. 

Presently, BCIs have been found to be particularly effective systems of communication 

for individuals who lost their ability to communicate due to loss of muscle control. Despite being 

unable to move or communicate, these individuals may retain cognitive functioning, and using 

BCIs can help bridge the gap between having thoughts and an inability to communicate those 

thoughts. Loss of movement and communication, as one can imagine, can take a toll on both 

these individuals and their loved ones. Those who develop amyotrophic lateral sclerosis (ALS), 

brainstem stroke, or severe traumatic brain injury who must now rely on a caretaker for day to 

day activities can benefit from using these systems of communication, as they require no muscle 

movement (Sellers, Krusienski, McFarland, Vaughan, & Wolpaw, 2006). The P300 Speller, for 
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examples, is a BCI communication method that can allow severely disabled individuals to 

convey their thoughts without having to rely on crucial muscle movement.  

The present state of functional BCI research involves improving upon the systems that 

are used in laboratories, and to make these systems more accessible and functional for in-home 

use (Vaughn et al., 2006). Since the first developed systems, there has been great improvement 

on the operation of these BCIs, but there are still more improvements to be made to increase both 

functionality and usability. Increased speed and accuracy of word selection, information transfer 

rates, and being more user friendly are only some of the areas in which improvements can be 

made to benefit those who must rely on these systems to communicate. Over the past few years, 

researchers have taken many different approaches in the attempt to improve BCI functionality. 

Altering the presentation of stimuli, enhancing signal processing, improving signal acquisition 

and classification, and examining cognitive variables that may affect performance have been of 

particular interest for BCI researchers (Krusienski, Sellers, McFarland, Vaughn, & Wolpaw, 

2008). In addition, increasing signal-to-noise ratio of recorded ERPs and testing novel stimulus 

paradigms for ERP BCIs have become crucial aspects of BCI research (Kubler, Kotchoubey, 

Kaiser, Wolpaw, & Birbaumer, 2001). 

Event-Related Potentials 

The neural activity in non-invasive BCIs used for communication is recorded using 

electroencephalogram (EEG). Event related potentials (ERPs) are electrical responses elicited in 

reaction to an internal or external event, and different ERPs are elicited by attending to various 

types of stimuli, such as an auditory or visual stimulus (Vallabhaneni, Wang, & He, 2005). ERPs 

are a series of positive and negative deflections that are identified by the time point at which the 
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reaction to a stimulus is elicited. A vast amount of ERP research has been conducted over the 

years to examine cognitive processes that may provide insight into the relationship between 

human consciousness and behavior. Research into these cognitive processes via ERPs are 

observed using EEG by time-locking ERP responses that correspond to stimulus events (Fabiani, 

Gratton, Karis, & Donchin, 1987). Several instances of the ERP response are recorded over 

multiple trials, or stimulus events. The recorded ERPs from multiple trials are averaged to 

produce an ERP because ERPs are small signals relative to the ongoing EEG.  

ERPs are often categorized as either exogenous or endogenous in relation to how a 

stimulus is processed. Exogenous ERPs are typically involuntary responses to the physical 

properties of a stimulus and occur between 0 and 75ms post stimulus presentation. Endogenous 

ERPs are more representative of the psychological and behavioral processes that are associated 

with a stimulus and typically occur approximately 100ms post stimulus presentation (Hillyard & 

Kutas, 1983) By identifying the time-locked responses that appear to occur in response to 

specific stimuli, insight may be gained as to how and why certain cognitive processes occur.      

The P300 ERP Component 

The P300 ERP was discovered in 1965 by Sutton, Braren, Zubin, and John, and is elicited 

by attending to rare occurring stimuli. The P300 is a positive component that occurs 

approximately 250 to 400ms following the presentation of stimuli. Peak amplitudes for the P300 

are best observed at parietal and central electrode locations (Picton, 1992). Donchin and Coles 

(1988) refer to the elicitation of a P300 component as context updating. Context updating is 

identified as the process in which an individual is presented with a stimulus, and then that 

individual goes through an evaluative process in which he or she assesses whether the presented 
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stimulus is consistent with previous stimulus presentations. When a new or rare stimulus is 

presented, cognitive evaluative processes occur (context updating), and a P300 ERP is elicited in 

response to the change of stimuli.  

One of the most often cited research paradigms examining the P300 component is what is 

known as the oddball task (Fabiani et al., 1987). In an oddball task, a participant is presented two 

different types of stimuli occurring at different frequencies, as shown in Figure 1.  

 

Figure 1. Example of an oddball task 

For example, one stimulus type (e.g., O), is presented randomly 80% of the time. The 

other stimulus type, (e.g., X) is presented less frequently at 20% of the time. Participants are 

instructed to pay attention to X’s and to attempt to ignore the frequently shown O’s. Each time 

the participants see the infrequently shown X’s, the P300 ERP is elicited in relation to attending 

to that rare occurring stimulus. 
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The P300 Speller 

  The P300 speller is a method of BCI communicated that operates based on an oddball 

paradigm. The P300 speller displays a matrix of letters, numbers, and computer commands, like 

that of a computer keyboard (see Figure 2). Groups of items in the matrix are intensified or 

‘flash’ at random intervals. In most standard P300 Speller BCIs, the ‘flash’ can consist of 

changing from grey to white, change from a different color to white, or will disappear and 

reappear. For the participant to make a character selection from the matrix, the participant pays 

close attention to the letter or character he or she would like to select. Each time the character of 

interest flashes, the participant updates a mental count of the character flash. When the 

participant attends to each individual flash of the desired character, a P300 response is elicited. 

The P300-Speller detects and examines these P300 responses, and is then able to discriminate 

between target characters versus non-target characters (i.e., letters the participant is trying to 

select versus letters the participant is not trying to select).   

 

 

 

 

 

 

 

Figure 2. Example 6x6 checker-board paradigm: showing a group of characters flashing.  
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N170 and N400 Components 

Positive and negative ERPs are elicited, or are more robust, in response to specific 

stimulus types and events. Two negative components referred to as the N170 and N400 

components have been shown to occur when participants recognize and process facial 

information. The N170 occurs in response to observing faces at lateral temporal electrode 

positions and occurs approximately 170ms following stimulus presentation (Bentin, 1996; Eimer, 

2000). The N400 occurs approximately between 200ms and 600ms (Kutas & Federmeier, 2011) 

over the right hemisphere electrode positions. Both of these components have been observed 

using unaltered facial images, inverted facial images, and even pictures of faces with drawn in 

facial features (Chen, Jin, Wang, & Cichocki, 2015; Jin,, Daly, Zhang, Wang, & Cichocki, 

2014). 

Faces as Stimuli 

 Over the years many studies have sought to improve the speed and accuracy of P300 BCI 

systems through means of stimulus presentation. The use of familiar faces as potential stimuli for 

P300-Speller character matrices was first implemented by Kaufmann, Schulz, Gruzinger, and 

Kubler (2011). Their hypothesis was that the components elicited by face stimuli would provide 

additional ERP information to augment the P300 ERP. Thus, the paradigm could increase signal-

to-noise ratio through the addition of the N170 and N400 ERP components. It was thought that 

the additional information would create a more robust and detectable response, resulting in 

improved overall BCI performance. Kaufmann et al., (2011) superimposed the familiar, famous 

image of Albert Einstein sticking his tongue out over characters within the BCI matrix. In each 
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sequence of character flashes, the image itself would flash over the characters in the matrix, as 

opposed to the matrix characters themselves flashing (see Figure 3). 

 

 

 

 

 

 

Figure 3. Example 6x6 matrix row-column paradigm presenting images of faces (modified from 

Kaufmann et al. 2013). 

The use of facial images to discriminate target flashes from non-target flashes, instead of 

traditional character flashes or symbol flashes, has been shown to increase both speed and 

accuracy of BCI use for patients with neurodegenerative disorders (Kaufmann et al., 2013). The 

rationale behind this increase in performance is thought to be due to face sensitive ERPs (Zhang, 

Zhao, Jin, Wang, & Cichocki, 2012). 

To create a control image, Kaufmann pixelated the Einstein image to retain facial 

characteristics while still creating an indistinguishable and obviously different image from the 

original Einstein face. This unique control condition was developed based on the findings of 

Takano, Komatsu, Hata, Nakajima, and Kansaku (2009), who found that physical features of 

stimuli such as chromatic differences, brightness, or contrast can impact BCI performance. Using 

a row-column flash pattern to investigate the influence of face stimuli of performance measures, 
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they compared the face image paradigm to the pixelated image paradigm and the classic flashing 

of letter in the matrix typically used in the P300-Speller. The results of their findings indicated 

that flashing faces decreases the number of flashes required to reach high accuracy, in 

comparison to the classic character flashing that is typically used.  

 In 2013, Kaufmann et al. compared familiar personally-known faces to familiar famous 

faces based on the findings of Touryan, Gibson, Horne, and Weber (2011), who found that 

familiar family faces to elicit larger N400 responses than familiar famous faces. In the non-

disabled sample, it was found that performance was significantly different between the classic 

character flash condition (CF) and the face conditions (FF) but there was no significant 

difference between the two FF conditions. In the patient sample, there were two patients who 

were unable to use the BCI using the CF stimuli. However, when using the FF stimuli, one 

patient could spell with an average of 80% accuracy for famous FF and 84% accuracy with 

personally known FF. The third patient was able to spell with 100% accuracy in both face 

conditions. These findings are important because it indicates that those who seem to be 

inefficient in using the BCI may be able to use the system when face images are used as stimuli. 

To increase the speed of target selection, Kaufmann and Kubler (2014) introduced a 

paradigm that implemented a simultaneous presentation of two very different stimuli in the four 

quadrants of the matrix. The image of Einstein was presented in the top left and bottom right 

quadrants, and a yin-yang symbol was presented in the top right and bottom left quadrants.  (see 

Figure 4). The two-stimulus presentation was compared to the standard row-column (see Figure 

3 for comparison). The results showed that the two-stimulus paradigm was able to make 

selections more quickly than the one stimulus paradigm, despite a decrease in accuracy. 
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Indicating that a two-stimulus paradigm could be a viable alternative to the more common single 

stimulus paradigm. 

 

 

 

 

Figure 4. Example of two-stimulus paradigms (modified from Kaufmann et al. 2014). 

Facial Fusiform Area and Parahippocampal Place Area 

 In addition to EEG research, several different neuroimaging techniques, such as positron 

emission tomography (PET) and functional magnetic resonance imaging (fMRI), have supported 

the idea that recognition and perception of different types of stimuli elicit different cognitive 

responses. There has been sufficient evidence that to indicate that the processing of facial stimuli 

and object stimuli, activate distinct brain regions. (Kanwisher, McDermott, & Chun, 1997). The 

fusiform face area (FFA), which is comprised of the region in the mid-fusiform gyrus, is shown 

to be strongly activated by the viewing of faces compared to the viewing of objects (Haxby et al., 

1991; Kanwisher et al., 1997; McCarthy, Puce, Gore, & Allison, 1997; Sergent, Ohta, 

MacDonald, 1992; Tong, Nakayama, Vaughan, & Kanwisher, 1998).  

 While neuroimaging studies indicate that the FFA responds selectively to facial stimuli, 

research has also demonstrated activation to images of buildings and scenes depicting locations 

in space in the parahippocampal gyrus referred to as the parahippocampal place area (PPA) 

(Agguire, Zarahn, & D’Esposito, 1998; Epstein, Harris, Stanley, & Kanwisher, 1999; Malach, 
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Levy, & Hasson, 2002). The PPA, located in the ventromedial surface of the temporal lobe, has 

been shown to respond selectively to houses and places, but not to objects or faces (Epstein & 

Kanwisher, 1998). The strongest activation of the PPA was shown to occur in response to the 

viewing of complete images or photographs of scenes that depicted places, or even in images that 

showed empty landscapes with few discrete objects. Epstein et al. (1999) suggests that the spatial 

layout information of a scene may be itself be enough to activate the PPA, as the PPA may play a 

role in perceptual coding.  

Project Overview  

The main purpose of the current project is to determine if a two-stimulus paradigm can 

increase BCI performance. The project consists of three experiments. Experiment 1 is a standard 

oddball study to examine the ERPs produced by facial and location stimuli. Experiment 2 tested 

facial and location stimuli in a two-stimulus BCI paradigm. Based on the findings of Experiment 

2, Experiment 3 tested location and graspable object stimuli in a two-stimulus BCI paradigm.  

The purpose of the oddball experiment (i.e., Experiment 1) was to determine if the facial 

and location stimuli would produce significantly different ERPs to be used in Experiment 2, the 

facial-location two-stimulus BCI paradigm. In the event that unique ERPs were produced by the 

two distinct stimuli, we hypothesized that the facial classifier would produce higher performance 

when applied to the facial stimuli, and the location classifier would produce higher performance 

to the location stimuli. In contrast, when each classifier is applied to the different class of stimuli 

performance would be reduced. To further enhance performance, Experiment 3 was conducted. 

Location and graspable object stimuli were used in a two-stimulus BCI paradigm. In this case it 

was hypothesized that the unique spatially distant locations activated by these two stimuli would 
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result in more distinct ERPs, which would increase performance over the performance observed 

in the facial-location stimuli used in Experiment 2.  

 These studies, as discussed in the following sections, may provide a rationale for how and 

why a two-stimulus paradigm may be effective, and may also provide further evidence that the 

BCI system may detect ERPs that are specific to very different types of stimuli. Using an offline 

analysis, classifiers that are created specifically for facial stimuli and location stimuli are applied 

to collected online data. Predicted performance measures, such as accuracy, selections per 

minute, and bit rate are calculated to indicate whether each stimulus specific classifier would 

lead to increased performance when presenting corresponding stimuli on the BCI matrix.  
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CHAPTER 2 

EXPERIMENT 1 

The premise of the current study relies on the BCI system’s ability to detect differences 

in the ERPs produced by the two different stimulus types. Previous research has indicated that 

different types of stimuli can produce distinct cognitive responses. EEG research has provided 

substantial evidence showing that facial stimuli produce ERPs that are distinct from other types 

of visual stimuli, such as objects, symbols, houses and buildings, and locations in space (Haxby 

et al., 1991; Kanwisher et al., 1997; McCarthy et al., 1997; Sergent et al., 1992; Tong et al., 

1998). Various neuroimaging studies have indicated that the viewing of images of familiar 

places, locations, and landscapes produce specific, localized activity that is not produced in 

response to viewing other types of stimuli (Agguire et al., 1998; Epstein et al., 1999; Malach et 

al., 2002). There has yet to be any research into the ERPs that may be produced specifically in 

response to viewing stimuli such as houses, buildings, and locations. To provide a rationale for 

the use of two different types of stimuli, an oddball study as described in Chapter 1, was 

conducted to investigate whether two different stimulus types would produce significantly 

different ERPs.  

Experiment 1 Methods 

Participants 

 Twelve able-bodied participants (4 men, 8 women; age range 19-52) were recruited from 

East Tennessee State University. The study was approved by the East Tennessee State 

Institutional Review Board and each participant gave informed consent.  
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Data Acquisition and Processing 

Electroencephalograph (EEG) was recorded using a cap (Electro-Cap International, Inc.) 

embedded with 32 tin electrodes. Channels were referenced to the right mastoid and grounded to 

the left mastoid. The signal was digitized at 256 Hz and bandpass-filtered to [0.5 Hz,30 Hz] by 

two 16-channel g.tec g.USBamp amplifiers. Data collection and stimulus presentation was 

performed by the BCI2000 open-source software suite (Schalk, McFarland, Hinterberger, 

Birbaumer, & Wolpaw, 2004). Before the session, the impedance of each channel was reduced to 

below 40kΩ.  

Experimental Stimuli 

Two types of images were used to examine the differences in ERPs associated with 

specific stimulus types (face specific and location specific). The facial stimuli that was used was 

the familiar, famous image of Albert Einstein sticking out his tongue in black and white (Figure 

5a), as was used by previous BCI studies examining the effect of facial stimuli on BCI 

performance (Kaufmann et al., 2011; Kaufmann et al., 2013; Kaufmann & Kubler, 2014). The 

location stimulus chosen was an image of the White House (Figure 5b), also in black and white. 

The White House image was used because it not only included a famous landmark that is 

familiar to many people, but because it also included additional landscape information, such as 

trees and a fountain, that previous literature indicates would produce a cognitive response 

specific to processing location information.  
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Figures 5a (left) and 5b (right). Examples of images used for facial stimuli and location stimuli. 

In addition to examining the ERPs associated with image type, the effect of stimulus 

duration (the amount of time for one stimulus “flash”) was also examined. The character flash 

duration in a standard BCI paradigm is typically 62.5ms, whereas paradigms using facial 

stimulus presentation use a flash duration of 187.5ms. The longer flash duration is used to allow 

for participants to have adequate time to recognize the images as faces. Therefore, four 

conditions were tested: Einstein image with flash duration of 62.5ms (Face 62.5), Einstein image 

with flash duration of 187.5ms (Face 187.5), White House image with flash duration of 62.5 

(White House 62.5), and White House image with flash duration of 187.5 (White House 187.5). 

Experiment Procedure and Design 

Participants completed one session testing the four different stimulus presentation 

conditions. Presentation order was counter-balanced to control for potential order effects. Each 

participant was seated in a chair approximately 90cm away from a computer monitor. 

Participants were asked to complete an informed consent form and were debriefed on the 

experiment procedure. Following informed consent, each participant was fitted with a 32 

electrode EEG cap. Participants were then instructed to focus their attention on a grey square 

presented in the center of the computer monitor. Participants were instructed to keep a mental 
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count of the number of times the target stimulus (Face or White House) would flash in the center 

of the grey square. Three trial runs were completed for each of the four conditions for a total of 

12 trials. Each trial consisted of 15 (15%) target stimulus presentations and 85 (85%) non-target 

stimulus presentations, for a total of 100 stimulus presentations in randomized order. Therefore, 

each condition had a total of 300 stimulus presentations.  

Experiment 1 Results 

Statistical Analyses 

 Repeated measures analysis of the variance (ANOVA) was used to examine the four 

conditions. Comparisons between the four conditions were made based on the ERP amplitudes 

and latencies produced by the visual stimuli. ERP amplitudes and latencies produced by each of 

the four conditions were examined at two positive time windows and two negative time windows 

based on the calculated average waveform as shown in Figure 6. 

Waveform Analysis  

The specified time windows examined for positive amplitudes and latencies were 150-

320ms and 350-550ms. The specified time windows to examine N170 and N400 amplitudes and 

latencies were sets to 128-195 for the N170 component, and 191-300 for the N400 component, 

determined by visual inspection of grand mean waveforms. 

 

 

 

 



 

21 
 

      Cz                                Pz                                  PO7                                PO8 

 

Figure 6. Grand mean waveforms for Experiment 1: Face 62.5 (blue solid), Face 187.5 (blue 

dashed), White House 62.5 (red solid), White House 187.5 (red dashed). 

Repeated measures ANOVA examining positive amplitudes for time window 150-350ms 

at electrode location Pz found Mauchly’s test of Sphericity to not be significant (p=.152) 

indicating no violation of the assumption of sphericity. With sphericity assumed, the ANOVA 

indicated significant differences between the four conditions F (3, 33) =9.902, p<.0001. Post-hoc 

tests using Bonferroni corrections found significant differences for the comparison of positive 

amplitudes between Face 62.5 (M=5.16, SD=4.87) and White House 62.5 (M=2.05, SD=3.7), 

(p=.039), comparison between Face 62.5 and White House 187.5 (M=1.75, SD=3.57) (p=.044), 

comparison between Face 187.5 (M=5, 4.88) and White House 62.5 (p=.009), and comparison 

between Face 187.5 and White House 187.5 (p=.028). No differences, however, were found 

between the two Face conditions or between the two different White House conditions. 
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Repeated measures ANOVA examining positive latencies for time window 150-320ms at 

electrode location Pz found Mauchly’s test of Sphericity to not be significant (p=.448) indicating 

no violation of the assumption of sphericity. With sphericity assumed, the ANOVA indicated no 

significant differences between the latencies produced by Face 62.5 (M=263.7, SD=47.4), Face 

187.5 (M=238.6, SD=44.4), White House 62.5 (M=267.6, SD=59.8), and White House 187.5 

(M=239.9,SD=69), F (3, 33) =1.474, p=.239.  

Repeated measures ANOVA examining positive amplitudes for time window 350-550ms 

at electrode location Pz found Mauchly’s test of Sphericity to be significant (p<.001) indicating a 

violation of the assumption of sphericity. Greenhouse-Geisser was used to correct for the 

assumption violation, and indicated no significant differences between the amplitudes of Face 

62.5 (M=9.2, SD=4.6), Face 187.5 (M=9.8, SD=3.9), White House 62.5 (M=6.37, SD=4), and 

White House 187.5 (M=6.5, SD=5), F (1.271, 13.977) =3.642, p=.069.  

Repeated measures ANOVA examining positive latencies for time window 350-550ms at 

electrode location Pz found Mauchly’s test of Sphericity to not be significant (p=.934) With 

sphericity assumed, the ANOVA indicated no significant differences between the latencies 

produced by Face 62.5 (M=461.6, SD=41.6), Face 187.5 (M=460.6, SD=39.9), White House 

62.5 (M=482.4, SD=52.4), and White House 187.5 (M=468, SD=56.7), F (3, 33) =.911, p=.446.  

Repeated measures ANOVA examining negative amplitudes for time window 128-195ms 

at electrode location Pz found Mauchly’s test of Sphericity to not be significant (p=.278). With 

sphericity assumed, the ANOVA indicated no significant differences between the amplitudes 

produced by Face 62.5 (M=-5.1, SD=3.4), Face 187.5 (M=-5.8, SD=3.1), White House 62.5 

(M=-7.4, SD=3.2), and White House 187.5 (M=-6.1, SD=3.2), F (3, 33) =2.296, p=.096. 
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Repeated measures ANOVA examining negative latencies for time window 128-195ms at 

electrode location Pz found Mauchly’s test of Sphericity to not be significant (p=.077). With 

sphericity assumed, the ANOVA indicated no significant differences between the latencies 

produced by Face 62.5 (M=160.5, SD=20.6), Face 187.5 (M=155.6, SD=22.5), White House 

62.5 (M=165, SD=20.3), and White House 187.5 (M=156.9, SD=23.4), F (3, 33) =1.178, 

p=.333.  

Repeated measures ANOVA examining negative amplitudes for time window 191-300ms 

at electrode location Pz found Mauchly’s test of Sphericity to not be significant (p=.170). With 

sphericity assumed, the ANOVA indicated no significant differences between the amplitudes 

produced by Face 62.5 (M=-4, SD=4.1), Face 187.5 (M=-4.5, SD=3.5), White House 62.5 (M=-

5.2, SD=2.9), and White House 187.5 (M=-4.8, SD=2.9), F (1.271, 13.977) =3.462, F (3, 33) 

=.571, p=.638. Repeated measures ANOVA examining negative latencies for time window 191-

300ms at electrode location Pz found Mauchly’s test of Sphericity to be significant, (p=.39), 

indicating a violation of the assumption of sphericity. Greenhouse-Geisser was used to correct 

for the assumption violation, and indicated no significant differences in the amplitudes of Face 

62.5 (M=250, SD=44.9), Face 187.5 (M=251.6, SD=46), White House 62.5 (M=238.9, 

SD=45.3), and White House 187.5 (M=254.2, SD=35.4), F (1.792, 19.708) =.406, p=.650.   

Experiment 1 Discussion 

Oddball data was collected to examine whether face stimuli and location stimuli would 

produce significantly different cognitive responses in the form of ERPs. This was to provide a 

rationale for using these specific stimulus types, the Einstein face and the White House location 

images, for Experiment 2.   
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Results of Experiment 1 showed significantly higher amplitudes produced by two Face 

conditions than the two White House conditions at time window of 150-320ms, indicating a 

stronger P300 response to the Face image. While statistical analyses indicated a significant 

difference in the P300 responses produced by the two different images, there was no indication 

of a statistical difference between the Face image and the White House images for the N170 and 

N400 responses. This contrasts with previous research that has suggested that the N170 response, 

specifically, ought to be uniquely associated with processing of facial stimuli. The results of the 

statistical analyses, however, indicate that an N170 response occurred in response to viewing 

both the Face image and the White House image.  

Despite there being an indication of only significant differences between the two image 

types in regards to the P300 response, it is possible that the BCI system may be sensitive enough 

to detect slight differences between the N170 and N400 responses produced by the two different 

image types.   
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CHAPTER 3 

EXPERIMENT 2 

The results of the Experiment 1 showed that unique ERPs were produced by the facial 

and location stimuli. Thus, the BCI system may be capable of producing significantly different 

classification coefficients to discriminate between the two types of stimuli.  

To be able to operate the P300 BCI, robust ERPs must be produced for the system to 

detect and translate the ERPs into character selections (Lotte, Congedo, L´ecuyer, Lamarche, & 

Arnaldi, 2007). These ERPs, traditionally the P300 response, are used to discriminate target 

versus non-target characters. Kaufmann’s research has provided support for the idea that the use 

of stimuli that elicit distinguishable components in addition to the P300 component can lead to 

increased rates of BCI performance. Studies in our own lab found no effect of stimulus type on 

performance; however, we did find significantly different ERPs produced by stimuli that are 

more complex than letters or numbers found in the BCI matrix. 

The current study aims to provide proof of concept. Two stimuli that produce distinct 

ERPs could be used to improve upon current BCI classification methods. If a matrix is presented 

with two images conveying different types of information, such as an image of a familiar face or 

an image of a familiar location, a specific classifier could be created for each stimulus. The 

unique classifiers could then be used to identify target characters, based on the notion that these 

images produce different enough ERPs for the BCI to detect. 

Previous studies indicate that the BCI can detect face-specific ERPs to improve 

classification methods. By superimposing an image of a face on half of the characters in the 

matrix, and superimposing another type of image on the other half of the characters in the matrix, 
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two different classifiers could be made specifically for each image type. One classifier could 

detect the face-specific ERPs, while the other classifier could detect ERPs specific to the other 

stimulus type. This could allow the BCI system discriminate targets from non-targets faster than 

current methods by eliminating half of the characters in the matrix as potential targets. For 

example, if a participant wishes to select the letter A from the matrix, a familiar facial image is 

superimposed over the letters A, C, E, while an image of a familiar place or location is 

superimposed over the letters B, D, and F. The face classifier would detect the ERP responses of 

the participant in response to attending to the facial image, while the other classifier would detect 

ERPs that are specific to an image depicting a specific location. When the participant attends to 

the letter A, a P300, an N170, and an N400 are elicited. Since the N170 and N400 components 

are face specific, the system identifies the target as one of the “face” characters, A, C, or E, 

thereby eliminating the “location” characters B, D, and F.  

Experiment 2 Methods 

Participants 

Ten able-bodied participants (4 men, 6 women; age range 19-31) were recruited from 

East Tennessee State University. Four of the participants had prior BCI experience, the 

remainder of participants were naïve to BCI use. The study was approved by the East Tennessee 

State Institutional Review Board and each participant gave informed consent.  

Data Acquisition and Processing 

Electroencephalograph (EEG) was recorded using a cap (Electro-Cap International, Inc.) 

embedded with 32 tin electrodes. Channels were referenced to the right mastoid and grounded to 

the left mastoid. Only electrodes Fz, Cz, P3, Pz, P4, PO7, PO8, and Oz were used for the 
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operation of the BCI (Krusienskiet et al., 2008). The EEG was digitized at 256 Hz and bandpass-

filtered to [0.5 Hz, 30 Hz] by two 16-channel g.tec g.USBamp amplifiers. Data collection and 

stimulus presentation was performed by the BCI2000 open-source software suite (Schalk, 

McFarland, Hinterberger, Birbaumer, & Wolpaw, 2004). Before the session, the impedance of 

each channel was reduced to below 40kΩ. Participants were seated approximately 90cm away 

from a computer monitor that displayed an 8x9 matrix of letters and numbers. The speller matrix 

was adapted from a BCI2000 system used in patients’ homes.  

Classification 

The classification technique known as Stepwise Linear Discriminate Analysis (SWLDA) 

as described by Draper and Smith (1981) is a commonly used method to determine classification 

coefficients. SWLDA has previously been shown to be an efficient method of classification for 

BCI research (Farwell & Donchin, 1988; Colwell Ryan, Throckmorton, Sellers, & Collins, 2014; 

Krusienski et al, 2006; Krusienski et al, 2008; Sellers & Donchin, 2006). By using forward 

regression and backward regression, the SWLDA algorithm selects the features that are extracted 

from the raw EEG signals that account for the most unique variance. Features are weighted by 

ordinary least-squares regression. Beginning with no features in the model, the feature that is the 

most statistically significant (p<0.1) is added to the model. A backward stepwise analysis then 

removes features that are found to be the least significant (p>0.15). There is a predetermined 

number of features included in the function, so that the process is repeated until reaching a 

maximum of 60, or until there are no more features that meet the criterion for entry or removal. 

The SWLDA procedure provides classification coefficients, which are then applied to the 

average ERP responses during the online testing phase.  
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To improve upon classification performance, multiple electrodes at various locations 

distributed over the scalp are used. A limitation to using a system with a larger number of 

electrodes is that the systems are more expensive and require more time to set up for at home 

users (Colwell et al., 2014). A filter method known as jumpwise selection is used to improve 

upon classification through optimal channel selection. Jumpwise selection uses a variant of 

SWLDA that selects electrodes instead of electrode specific features. Once the most statistically 

significant channels are selected, a SWLDA, as described above, is conducted on the specific 

features contained within the jumpwise defined electrode set. The advantage of jumpwise 

selection is that it reduces to the feature space to a unique set of features that are chosen from 

electrode locations that are optimized for each individual participant.  

Experiment Procedure and Design 

 The image of Einstein sticking his tongue out and the image of the White House that 

were used in Experiment 1 as the facial and location stimuli were also used for Experiment 2. 

Each participant completed one session using three different presentations of stimuli, facial 

stimuli only (Face; Figure 7a), location stimuli only (White House; Figure 7b), and a matrix 

comprised of both Faces and White Houses displayed using a checkerboard flash pattern (Figure 

7c).  
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Figure 7a (left), 7b (middle), and 7c (right). Examples of matrices of the stimulus presentation 

conditions.  

Each participant completed on experimental session that consisted of two calibration 

phases and one copy spelling phase. Participants were seated approximately 90cm away from a 

computer monitor that displayed an 8x9 matrix of letters and numbers. The speller matrix was 

adapted from a BCI2000 system used in a patient’s home.  After the participant was fitted for the 

electrode cap, an 8x9 matrix of letters and characters was presented on the computer monitor. 

For the calibration phase, participants were asked to focus their attention on a specific character 

in the matrix and to count how many times the letter flashes, while ignoring the images flashing 

over the other characters in the matrix. For example, as shown in Figure 7, the top left side of the 

display would show a word (e.g., WORDS) and the letter they should attend to is shown in 

parentheses at the end of the word. After a predetermined amount of flashes of each character (in 

this case 14) the matrix would stop flashing and after a 4-second pause the letter in parentheses 

would change to the next letter in the word (e.g., (O)).  

The session consisted of two calibration phases, counter-balanced, in which the 

participant made selections from a matrix presenting only the Face (Figure 7a) or only the White 

House (Figure 7b). Each participant spelled three six-letter words, 18 total characters, for each 
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calibration. Following each calibration phase, a SWLDA analysis derived classification 

coefficients specific to each stimulus type.   

Following calibration, participants completed an online copy-spelling task. The matrix 

presented the facial images over half of the matrix characters and the location images over the 

other half of the matrix characters (Figure 7c). Participants’ selected 36 predetermined 

characters, 18 of the selections were facial stimuli and the facial classifier was used for online 

feedback, and 18 of the selections were location stimuli and the location classifier was used for 

online feedback. In the current version of the software it is not possible to use two classifiers 

simultaneously. Therefore, following all participants’ sessions, offline analyses were conducted 

to examine how the facial classifier would perform when applied to the location data, and how 

the location classifier would perform when applied to the facial data. In a future implementation 

of the software the two classifiers will be used simultaneously. As mentioned previously, this 

will allow the system to rapidly eliminate half of the characters as potential target items.  

Experiment 2 Results 

Statistical Analyses 

 A 2x2 Factorial Analysis of the Variance (ANOVA) was conducted to examine the 

effects of classifier type (Face or White House) and the effects of stimulus type (Face or White 

House) on offline analysis performance measures. Offline analyses were performed on predicted 

accuracy, target flashes, selections per minute, and bitrate. Offline accuracy is expressed as the 

predicted percentage of correctly selected characters for each word. Offline selections per minute 

are the predicted total character selections made correctly or incorrectly in a given minute. 

Offline, predicted bitrate is calculated using the formula described by Pierce (1980).  
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Bitrate=log2N+P+(1-P) log2(1-P/N-1) 

Bitrate takes into account the number of possible targets (N) and the probability that the target is 

classified accurately (P). Dividing Bitrate by the trial duration in minutes results in bits per 

minute.  

Paired sampled t-tests were used to examine the differences between the waveforms 

produced by each participant. Waveform analyses were conducted on the calibration data 

acquired for the Face only and White House only conditions (Figure 12).  

Offline Performance 

Predicted BCI performance accuracy produced by each classifier type applied to each 

stimulus type are shown in Figure 8. Analyses did not indicate a significant main effect of 

classifier type, (F(1,9)=1.395, p=.268), or stimulus type (F(1,9)=1.598, p=.238). In addition, the 

classifier type by stimulus type interaction was not significant (F(1,9)=1.598, p=.238).  
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Figure 8. Experiment 2 offline accuracy: Predicted accuracy of each classifier type, White House 

classifier (solid black line) and Face classifier (dashed black line), when applied to each stimulus 

type. 

Mean target flashes produced by each classifier type applied to each stimulus type are 

shown in Figure 9. Analyses did not indicate a significant main effect of classifier type 

(F(1,9)=.000, p=1), or stimulus type (F(1,9)=1.823, p=.210) Analyses, however, indicated a 

significant interaction of classifier type by stimulus type (F(1,9)=17.053, p=.003). Pairwise 

comparisons indicated no significant differences between groups. 

90

91

92

93

94

95

96

97

98

99

100

White House Face

Stimulus Type

Offline Accuracy

Classifier Type White House Classifier Type White House



 

33 
 

 

Figure 9. Experiment 2 offline target flashes: Predicted target flashes of each classifier type, 

White House classifier (solid black line) and Face classifier (dashed black line), when applied to 

each stimulus type. 

Mean selections per minute produced by each classifier type applied to each stimulus 

type are shown in Figure 10. Analyses did not indicate a significant main effect either the 

classifier type (F(1,9)=.478, p=.507), or stimulus type (F(1,9)=2.304, p=.163). The analyses did 

indicate, however, a significant interaction of classifier type by stimulus type (F(1,9)=12.886, 

p=.006) on selections per minute. Pairwise comparisons did not indicate significant differences 

between groups. 
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Figure 10. Experiment 2 offline selections per minute: Predicted selections per minute of each 

classifier type, White House classifier (solid black line) and Face classifier (dashed black line), 

when applied to each stimulus type. 

Mean bitrates produced by each classifier type applied to each stimulus type are shown in 

Figure 11. Analyses did not indicate significant main effect either the classifier type 

(F(1,9)=1.312, p=.282), or stimulus type (F(1,9)=1.458, p=.258). The analyses did indicate 

significant interaction of classifier type by stimulus type (F(1,9)=17.289, p=.002) on bitrate. 

Pairwise comparisons indicated no significant differences between groups. 
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Figure 11. Offline bitrate: predicted bitrate of each classifier type, White House classifier (solid 

black line) and Face classifier (dashed black line), when applied to each stimulus type 

Waveform Analysis 

The specified time windows examined for positive amplitudes and latencies were 150-

320ms and 350-550ms. The specified time windows to examine N170 and N400 amplitudes and 

latencies were sets to 128-195 for the N170 component, and 191-300 for the N400 component. 

Five electrode locations Pz, Cz, PO7, and PO8 were examined. 
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      Cz                                  Pz                                 PO7                                PO8  

Figure 12. Grand mean waveforms for Experiment 2: Average waveforms for all ten participants 

for the two types of images, faces (blue line) and White House (red line) used in the BCI task for 

electrode locations Cz, Pz. PO7, and PO8. 

Comparison of ERPs elicited by the Faces (M=5.97, SD=1.26) and the White House 

(M=2.08, SD=1.63) at electrode location Pz during time window 150-300ms was shown to be 

significant (t(9)=7.642, p<.001). Comparison of responses to the Faces (M=5.92, SD=1.60) and 

the White House (M=2.26, SD=1.21) at electrode location Cz during time window 150-300ms 

was also shown to be significant (t(9)=6.059, p<.001). No significant differences, however, were 

found for amplitudes during time window 150-300ms at electrode locations PO7 and PO8. 

Furthermore, t-tests indicated no significant differences in latencies produced by Faces or White 

House during 150-300ms at any of the four electrode locations that were examined.  

Analyses indicated no significant differences between the amplitudes or the latencies 

produced by the Face and White House conditions during time window 350-550ms at any of the 

four electrode locations. In addition, analyses did not indicate significant differences between the 

amplitudes of latencies produced by either condition during time window 128-195ms at any of 

the four electrode locations. 
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Analyses did indicate a significant difference between the amplitudes produced by the 

Face (M=-1.49, SD=.89) and White House (M=-2.46, SD=1.26) conditions, during time window 

191-300ms at electrode location PO8 only (t (9)=3.277, p=.01). The remaining analyses of 

amplitudes and latencies during time window 191-300ms did not indicate significant differences 

between the two conditions at the other three electrode locations. 

Experiment 2 Discussion 

Offline analyses were used to provide evidence that a classifier created for a specific 

stimulus could result in better BCI performance. Despite no significant differences, offline 

accuracy predicted sufficiently high accuracy for each classifier type applied to each stimulus 

type. Due to the use of able-bodied undergraduates as a sample, high accuracies were anticipated 

and a ceiling effect may have prevented our ability to detect significant differences in accuracy. 

Unexpectedly, however, the White House classifier predicted the highest accuracy when applied 

to both the White House stimulus and Face stimulus. 

The predicted target flashes indicated that classifiers applied to the corresponding 

stimulus would require significantly fewer target flashes to make an accurate character selection. 

The White House classifier applied to the White House stimulus and the Face classifier applied 

to the Face stimulus required the least amount of target flashes required to make a character 

selection. Predicted selections per minute indicated that classifiers applied to the corresponding 

stimulus could influence the amount of character selections made per minute. The White House 

classifier applied to the White House stimulus and the Face classifier applied to the Face 

stimulus predicted the highest number of selections per minute, as well as the highest bitrate. 
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The ERPs produced by the two stimuli differed in the amplitudes at the first positive 

window for electrodes Pz and Cz. The only significant difference in negative amplitude was at 

the second negative time window at electrode location PO8. Based on our findings, it appears 

that the BCI system can discriminate between the ERPs produced by each stimulus type. Offline 

performance measures indicate that having a specific classifier for specific stimuli in the matrix 

could result in increased BCI performance on levels of target flashes, selections per minute, and 

bitrate. 

 

 

 

 

 

 

 

 

 

 

 

 



 

39 
 

CHAPTER 4 

EXPERIMENT 3  

Oddball data was collected to examine whether face stimuli and location stimuli would 

produce significantly different ERPs. This was to provide a rationale for using these specific 

stimulus types, the Einstein face and the White House location images, for Experiment 2. 

Differences between the N170 and N400 components, often associated with facial processing, 

were expected but not found. The two different stimuli did appear to produce differing P300 

responses.  

 Previous research has shown that the use of two-stimulus paradigms may increase BCI 

performance (Kaufmann et al., 2014). In contrast to previous research, Experiment 2 examined 

the use of two types of stimuli, facial and location, which have been shown to produce distinct 

ERPs. This was done with the intent to provide a rationale for the development of classifiers that 

identify specific stimuli in a two-stimulus matrix presentation. To further investigate the use of 

two-stimulus paradigms, Experiment 3 examined a third type of stimuli (i.e. graspable objects) to 

determine if they would produce distinctly different ERPs from location stimuli. 

Graspable Objects as Stimuli: Tools 

 Based on the offline performance analysis of Experiment 2, the use of facial and location 

stimuli were sufficient stimuli to provide evidence for the use of a two-stimulus, two-classifier 

paradigm. The main hypothesis was that these stimuli would produce significantly different 

N170 and N400 components. However, this result was not observed. The observed differences 

were in the P300 component. The rationale behind using facial stimuli was based on previous 
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EEG studies, as well as neuroimaging studies that identified the FFA. The location stimuli were 

chosen due to neuroimaging indicating distinct activation in the PPA.  

 Functional MRI studies can discriminate the FFA from the PPA due to the high spatial 

resolution that MRI produces. In our study, we hypothesized that these differences would also be 

observed in the scalp recorded EEG. We expect this result was not observed due to the close 

proximity of the PPA and FFA. The PPA is located at the medial portion of the fusiform gyrus, 

whereas the FFA is located at a nearby cortical region in the mid-fusiform gyrus. Therefore, 

Experiment 3 examined another possible stimulus, images of tools, which activate more frontal 

areas such as the premotor and motor cortex.  

Neuroimaging studies have shown a unique cognitive response to graspable objects such 

as tools (Creem-Regehr, & Lee, 2005). Tools are considered a unique class of objects, due to the 

relationship between object recognition as well as the potential actions that can be performed 

with the object (Handy, Grafton, Shroff, Ketay, & Gazzaniga, 2003). Viewing images of tools 

has been shown to activate the premotor cortex, and research has suggested that the priming of 

visual systems by viewing tools also primes motor systems (Grafton, Fadiga, Arbib, & 

Rizzolatti, 1997; Tucker & Ellis, 2004).  

 Experiment 2 examined the two-stimulus, two-classifier paradigm with facial (Face) and 

location (White House) stimuli, and results indicated that the White House classifier when 

applied to the White House stimulus and the Face classifier applied to the Face stimulus resulted 

in significantly less target flashes, greater selections per minute, and higher bitrate compared to 

each classifier applied to the non-corresponding stimulus. Because of the slightly higher 

performance produced by the location stimuli for our sample, Experiment 3 compared location 
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stimuli and tool stimuli to examine whether tool stimuli could produce a more distinct ERP 

response from the location stimuli, thus further supporting that the two-stimulus paradigm could 

impact BCI performance.   

Experiment 3 Methods 

Participants 

Twenty-four able-bodied participants (10 men, 14 women; age range 19-42) were 

recruited from East Tennessee State University. Seven of the participants had prior BCI 

experience, the remainder of participants were naïve to BCI use. Sample size was determined 

using a Bayes factor (Rouder, Speckman, Sun, Morey, & Iverson, 2009) stopping criterion of 

BF01 = 30. The study was approved by the East Tennessee State Institutional Review Board and 

each participant gave informed consent.  

Data Acquisition and Processing 

Data acquisition and processing as described in Experiment 2 was also used for 

Experiment 3. 

Classification 

Stepwise Linear Discriminate Analysis (SWLDA) as described in the Experiment 2 was 

also used for Experiment 3.  

Experimental Stimuli, Procedure, and Design 

Participants completed one experimental session consisting of two calibration phases and 

one copy-spelling phase. Participants were seated approximately 90cm away from a computer 

monitor that displayed an 8x9 matrix of letters and numbers. The speller matrix was adapted 
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from a BCI2000 system used in a patient’s home. After the participant was fitted for the 

electrode cap, an 8x9 matrix of letters and characters was presented on the computer monitor. 

For the White House calibration phase, participants were asked to focus their attention on a 

specific character in the matrix and to count how many times the image appeared, while ignoring 

the images flashing over the other characters in the matrix. For example, as shown in Figure 7, 

the top left side of the display would show a word (e.g., WORDS) and the letter they should 

attend to is shown in parentheses at the end of the word. After a predetermined amount of flashes 

of each character (in this case 10) the matrix would stop flashing and after a 4-second pause the 

letter in parentheses would change to the next letter in the word (e.g., (O)). For the Tool 

calibration, participants were asked to perform a motor imagery task by focusing their attention 

on a specific character in the matrix and to imagine themselves using the object each time the 

image of the object flashes. This was done to elicit a stronger response in the premotor cortex 

than simply counting the number of character flashes. Following each calibration phase, a 

SWLDA analysis derived classification coefficients specific to each stimulus type.   

Following calibration, participants completed an online copy-spelling task. The matrix 

presented the facial images over half of the matrix characters and the location images over the 

other half of the matrix characters (Figure 13). Participants’ selected 36 predetermined 

characters, 18 of the selections were graspable object stimuli and the graspable object classifier 

was used for online feedback, and 18 of the selections were location stimuli and the location 

classifier was used for online feedback. In the current version of the software it is not possible to 

use two classifiers simultaneously. Therefore, following all participants’ sessions, offline 

analyses were conducted to examine how the graspable object classifier would perform when 

applied to the location data, and how the location classifier would perform when applied to the 
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graspable object data. In a future implementation of the software the two classifiers will be used 

simultaneously. As mentioned previously, this will allow the system to rapidly eliminate half of 

the characters as potential target items. 

 

 

 

 

 

 

Figure 13. Example of one-stimulus matrices: Displaying the image of the White House only 

(left) and one-stimulus matrix displaying the image of the Tool only (right). 

Experiment 3 Results 

Statistical Analyses 

  Repeated measures analysis of the variance (ANOVA) was used to examine the effects 

of classifier type (White House or Tool) and the effects of stimulus type (White House or Tool) 

on offline analysis performance measures. Offline analyses were performed on predicted 

accuracy, target flashes, selections per minute, and bitrate. Offline accuracy is expressed as the 

predicted percentage of correctly selected characters for each word. Offline selections per minute 

are the predicted total character selections made correctly or incorrectly in a given minute. 

Offline, predicted bitrate is calculated using the formula described by Pierce (1980).  

Bitrate=log2N+P+(1-P) log2(1-P/N-1)  
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Bitrate takes into account the number of possible targets (N) and the probability that the target is 

classified accurately (P). Dividing Bitrate by the trial duration in minutes results in bits per 

minute.  

Offline Performance 

 Repeated measures ANOVA examining offline accuracy produced by each classifier type 

applied to each stimulus type (Figure 14) found Mauchly’s test of Sphericity to not be significant 

(p=.214) indicating no violation of the assumption of sphericity. With sphericity assumed, the 

ANOVA indicated significant differences between the four conditions F (3, 33) = 8.42, p<.001. 

Post-hoc tests using Bonferroni corrections indicated the following significant differences: the 

comparison between accuracy for the White House classifier applied to White House stimuli 

(M=99.08, SD=3.11) was significantly higher than the Tool classifier applied to White House 

stimuli (M=93.42, SD=8.9), p=.013, and the White House classifier applied to Tool stimulus 

(M=89.79, SD=14.5), p=.013. The Tool classifier applied to Tool stimuli (M=97.79, SD=3.34) 

was significantly higher than the White House classifier applied to the Tool stimuli (M=89.79, 

SD=14.50), p=.019. 
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Figure 14. Experiment 3 offline accuracy: Predicted accuracy of each classifier type, White 

House classifier (solid black line) and Tool classifier (dashed black line), when applied to each 

stimulus type. 

 Repeated measures ANOVA examining offline target flashes produced by each classifier 

type applied to each stimulus type (Figure 15) found Mauchly’s test of Sphericity to not be 

significant (p=.674). With sphericity assumed, the ANOVA indicated significant differences 

between the four conditions F (3, 33) = 22.21, p<.001. Post-hoc tests using Bonferroni 

corrections indicated the following significant differences: the comparison between target flashes 

for the White House classifier applied to White House Stimuli (M=2.58, SD=1.13) was 

significantly lower than the Tool classifier applied to White House stimuli (M=4.00, SD=1.10), 

p<.001, and the White House classifier applied to Tool stimuli (M=4.04, SD= .99), p<.001. The 

comparison between target flashes for the Tool classifier applied to Tool stimuli (M=3.04, 
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SD=1.12) was significantly lower than the Tool classifier applied to White House stimuli, 

p<.001, and the White House classifier applied to Tool stimuli, p<.001. 

 

Figure 15. Experiment 3 Offline target flashes: Predicted target flashes of each classifier type, 

White House classifier (solid black line) and Face classifier (dashed black line), when applied to 

each stimulus type. 

Repeated measures ANOVA examining offline selections per minute produced by each 

classifier type applied to each stimulus type (Figure 16) found Mauchly’s test of Sphericity to 

not be significant (p=.326). With sphericity assumed, the ANOVA indicated significant 

differences between the four conditions F (3, 33) = 19.93, p<.001. Post-hoc tests using 

Bonferroni corrections indicated the following significant differences: the comparison between 

the White House classifier applied to White House stimuli (M=5.46, SD=1.7) was significantly 

higher than the Tool classifier applied to White House stimuli (M=3.83, SD=.98), p<.001, and 

the White House classifier applied to Tool stimulus (M=3.74, SD=.80), p<.001. Comparison 
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between the Tool classifier applied to Tool stimulus (M=4.74, SD=1.13) was significantly higher 

than the Tool classifier applied to White House stimulus, p=.001, and the White House classifier 

applied to Tool stimuli, p<.001.  

 

Figure 16. Experiment 3 offline selections per minute: Predicted selections per minute of each 

classifier type, White House classifier (solid black line) and Face classifier (dashed black line), 

when applied to each stimulus type. 

Repeated measures ANOVA examining offline bitrate produced by each classifier type 

applied to each stimulus type (Figure 17) found Mauchly’s test of Sphericity to not be significant 

(p=.314). With sphericity assumed, the ANOVA indicated significant differences between the 

four conditions F (3, 33) = 26.094, p<.001. Post-hoc tests using Bonferroni corrections indicated 

the following significant differences: the White House classifier applied to White House stimuli 

(M=33.39, SD=11.02) was significantly higher than the Tool classifier applied to White House 

stimuli (M=21.53, SD=7.87), p<.001, and the White House classifier applied to Tool stimuli 
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(20.07, SD=7.67), p<.001. The comparison between the Tool classifier applied to Tool stimulus 

(M=28.30, SD=7.88) was significantly higher than the Tool classifier applied to White House 

stimulus, p<.001, and the White House classifier applied to Tool stimulus, p<.001. 

 

Figure 17: Experiment 3 offline bitrate: Predicted bitrate of each classifier type, White House 

classifier (solid black line) and Face classifier (dashed black line), when applied to each stimulus 

type. 

Waveform Analysis 

The specified time windows examined for positive amplitudes and latencies were 150-

320ms and 350-550ms. The specified time windows to examine N170 and N400 amplitudes and 

latencies were sets to 128-195 for the N170 component, and 191-300 for the N400 component. 

Eight electrode locations Pz, Cz, PO7, PO8, F3, F4, FC5, and FC6 were examined (Figure 18). 

Paired samples t-tests were used to compare differences between the two types of stimuli. 
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         Cz                                  Pz                PO7                                PO8 

 

               F3   F4     FC5          FC6 

Figure 18. Grand mean waveforms for Experiment 3: Average waveforms for all 24 participants 

for the two types of images, Tool (blue line) and White House (red line) used in the BCI task for 

electrode locations Cz, Pz. PO7, PO8, F3, F4, FC5, and FC6. 

 Comparison of amplitudes of Tool (M=2.58, SD=1.02) and White House (M=3.38, 

SD=1.79) at electrode location PO8 during positive time window 150-300ms was shown to be 

significant, t (23) =-2.716, p=.012. No significant differences were found for amplitudes during 

time window 150-300ms at electrode locations Pz, Cz, PO7, F3, F4, FC5, and FC6.  

Comparison of latencies of Tool (M=200.03, SD=60.32) and White House (M=249.51, 

SD=47.83) at electrode location PO8 during time window 150-300ms was shown to be 

significant, t (23) =-2.898, p=.008. Comparison of latencies of Tool (M=248.86, SD=34.94) and 

White House (M=228.51, SD=40.1) at electrode location FC6 during time window 150-300ms 
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was shown to be significant, t (23) =3.326, p=.003. No significant differences were found for 

latencies during time window 150-300ms at electrode locations Pz, Cz, PO7, F3, F4, and FC5. 

 Comparison of amplitudes of Tool (M=2.01, SD=1.85) and White House (M=3.01, 

SD=1.46) at electrode location Pz during positive time window 350-550ms was shown to be 

significant, t(23)=-3.72, p=.001. Comparison of amplitudes of Tool (M=2.64, SD=1.93) and 

White House (M=3.37, SD=1.56) at electrode location Cz during positive time window 350-

550ms was shown to be significant, t(23)=-2.492, p=.020. Comparison of amplitudes of Tool 

(M=3.88, SD=2.62) and White House (M=2.83, SD=1.78) at electrode location PO7 during 

positive time window 350-550ms was shown to be significant, t(23)=2.385, p=.026. Comparison 

of amplitudes of Tool (M=2.00, SD=1.26) and White House (M=2.76, SD=1.54) at electrode 

location PO8 during positive time window 350-550ms was shown to be significant, t(23)=-2.168, 

p=.041.  Comparison of amplitudes of Tool (M=3.36, SD=2.13) and White House (M=4.51, 

SD=2.77) at electrode location F3 during positive time window 350-550ms was shown to be 

significant, t(23)=-2.931, p=.008. Comparison of amplitudes of Tool (M=3.47, SD=4.67) and 

White House (M=4.67, SD=3.11) at electrode location F4 during positive time window 350-

550ms was shown to be significant, t(23)=-3.570, p=.002. Comparison of amplitudes of Tool 

(M=2.88, SD=1.64) and White House (M=3.76, SD=1.71) at electrode location FC5 during 

positive time window 350-550ms was shown to be significant, t(23)=-3.060, p=.006. 

Comparison of amplitudes of Tool (M=2.95, SD=1.52) and White House (M=3.65, SD=1.87) at 

electrode location FC6 during positive time window 350-550ms was shown to be significant, 

t(23)=-3.807, p=.001.  Analyses did not indicate significant differences between the latencies 

produced by the conditions during time window 350-550ms at any of the eight electrode 

locations. 
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Comparison of amplitudes of Tool (M=-0.72, SD=1.48) and White House (M=-2.18, 

SD=2.06) at electrode location PO8 during the first negative time window 128-195ms was 

shown to be significant, t(23)=3.251, p=.004. No significant differences were found for 

amplitudes during negative time window 128-195ms at electrode locations Pz, Cz, PO7, F3, F4, 

and FC5. Comparison of latencies of Tool (M=173.82, SD=27.01) and White House (M=188.31, 

SD=15.49) at electrode location P07 during the first negative time window 128-195ms was 

shown to be significant, t(23)=-2.395, p=.025. No significant differences were found for 

amplitudes during negative time window 128-195ms at electrode locations Pz, Cz, PO8, F3, F4, 

FC5, and FC6.  

Comparison of amplitudes of Tool (M=-0.73, SD=.98) and White House (M=-2.01, 

SD=1.25) at electrode location Pz during the second negative time window 191-300ms was 

shown to be significant, t(23)=5.234, p<.001. Comparison of amplitudes of Tool (M=-1.74, 

SD=.97) and White House (M=-2.22, SD=1.27) at electrode location Cz during the second 

negative time window 191-300ms was shown to be significant, t(23)=2.348, p=.028. Comparison 

of amplitudes of Tool (M=-1.72, SD=1.48) and White House (M=-2.87, SD=1.86) at electrode 

location PO7 during negative time window 191-300ms was shown to be significant, t(23)=3.886, 

p=.001. Comparison of amplitudes of Tool (M=-1.59, SD=0.88) and White House (M=-2.6, 

SD=1.84) at electrode location F3 during negative time window 191-300ms was shown to be 

significant, t(23)=2.939, p=.007. Comparison of amplitudes of Tool (M=-1.51, SD=0.76) and 

White House (M=-2.61, SD=1.79) at electrode location F4 during negative time window 191-

300ms was shown to be significant, t(23)=3.043, p=.006. Comparison of amplitudes of Tool 

(M=-1.41, SD=0.85) and White House (M=-2.17, SD=1.29) at electrode location FC5 during 

negative time window 191-300ms was shown to be significant, t(23)=2.365, p=.027. Comparison 
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of amplitudes of Tool (M=-1.25, SD=0.72) and White House (M=-1.99, SD=1.35) at electrode 

location FC6 during negative time window 191-300ms was shown to be significant, t(23)=2.680, 

p=.013. Analyses did not indicate significant difference in amplitude at electrode location PO8. 

Analyses also did not indicate significant differences between the latencies produced by the 

conditions during time window 128-195ms at any of the eight electrode locations. 

Experiment 3 Discussion 

In Experiment 3, offline analyses were used to provide evidence that a classifier created 

for a specific stimulus could result in better BCI performance in areas of accuracy, selections per 

minute, and bitrate in a two-stimulus presentation paradigm. Offline analyses of accuracy, 

selections per minute, and bitrate indicated significantly higher accuracy, selections per minute, 

and bitrate for the White House classifier applied to White House stimulus and for the Tool 

classifier applied to Tool stimulus than classifiers applied to the non-corresponding stimulus. 

These findings support our hypothesis that a stimulus specific classifier when applied to the 

corresponding stimulus can result in increases in BCI performance.  

Functional MRI research indicating activation in the parahippocampal place area in 

response to visual processing of location stimuli (Agguire et al., 1998; Epstein et al., 1999; 

Malach et al., 2002) as well as activation in the premotor cortex in response to stimuli such as 

graspable objects (Creem-Regehr, & Lee, 2005; Grafton et al.,1997; Tucker & Ellis, 2004;) 

prompted the examination of parietal locations (PO7 and PO8) and frontal locations (F3, F4, 

FC5, and FC6) in addition to locations Pz an Cz. Due to lack of EEG research on the ERPs 

produced by these stimulus types, exploratory analyses were conducted. Higher amplitudes 

produced by the White House image were expected at parietal locations and higher amplitudes 
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produced by the Tool image were expected at frontal locations. Waveform analyses comparing 

the ERPs produced by the two stimulus types showed higher amplitude produced by the White 

House image than the Tool image at each of the examined electrode locations, except for PO7 in 

positive time window 350-550ms. This finding was unexpected, as higher amplitude for the Tool 

image was expected at frontal locations due to electrode proximity to the premotor cortex.  

The findings of the offline performance measures indicating slightly higher performance 

in our sample for the White House classifier applied to White House stimulus was supported by 

the higher amplitudes found for the White House image at most of the electrode locations at the 

examined time points. The White House image appears to have produced the most robust 

cognitive response, possibly resulting in better target discrimination as depicted in offline 

predicted accuracy, selections per minute, and bitrate for our sample. The findings of Experiment 

3 demonstrate that different types of stimuli could be used to add additional information to the 

classification algorithm. These findings offer support for the use of two types of stimuli to elicit 

different ERPs to be detected by a classifier. With this information, future research will develop 

stimulus specific classifiers to be tested online in a two-stimulus presentation paradigm. With the 

development of two stimulus specific classifiers, when the ERPs elicited by one of the two 

different stimuli, the system should be able to eliminate half of the characters in the matrix as 

potential targets. Thus, decreasing the number of potential selection errors.  
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CHAPTER 5 

CONCLUSION 

P300 BCI technology has shown to be an effective method of communication, however, 

due to the relatively slow rate of communication there are many improvements to be made. The 

first online P300-based BCI study resulted in accuracy of 35 percent (Donchin, Spencer, & 

Wijesinghe, 2000). Since this time, online accuracy is consistently near 100 percent and provides 

a rate of communication up to eight character selections per minute. Although a great deal of 

progress has been made, further improvements in speed and accuracy are needed for the 

technology to rival assistive communication devices that rely on muscle movement. Therefore, 

techniques to ensure highly accurate and fast classification are important. 

Recent studies have shown that ERP components associated with facial stimuli can 

improve BCI performance in a two-stimulus presentation paradigm (Kaufmann et al., 2014). The 

present work extends these findings and incorporated two additional types of novel stimuli, 

location and graspable objects. Prior to this study, ERPs produced by location and graspable 

objects have not been examined; however, fMRI data has provided evidence that these stimuli 

activate different brain regions. Thus, the purpose of the present study was to determine if 

location and graspable objects produce differential ERPs that can subsequently lead to an 

improvement in BCI speed and accuracy.  

 Experiment 2, using facial and location stimuli, showed no differences in face specific 

components; nonetheless, other ERP differences were observed and the location stimuli 

produced slightly better performance than facial stimuli. Kaufmann et al. (2011) first examine 

facial stimuli in able-bodied subjects, based on their positive results, they extended the paradigm 
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to people with severe speech and communication disorders and confirmed that facial stimuli 

produced higher speed and accuracy in this population as well. The findings of our project 

indicate that location stimuli produce comparable performance to facial stimuli. Extrapolating 

the results of the current study, we suggest that location stimuli may be beneficial for people 

with severe speech and communication disorders. This hypothesis should be tested in future 

studies.  

In Experiment 3, location stimuli were compared to graspable object stimuli. As with 

Experiment 2, differential ERPs were observed for the two classes of stimuli and performance 

was once again higher is the location stimulus condition. These results support our hypothesis 

that unique classifiers may provide higher performance in a two-stimulus paradigm, as compared 

to the current methodologies that rely on a single classifier.  

As with most P300 BCI research conducted in laboratory settings, an inherent limitation 

to our study design is the use of able-bodied participants as our sample. The goal of the current 

study, however, was to provide proof of concept using offline analyses. Nonetheless, due to the 

early stages of this line of research, it would not be appropriate to test the current paradigm with 

people who have severe speech and physical impairments. Another limitation of the study design 

is that it did not afford us the opportunity to compare graspable object stimuli to facial stimuli. 

Further investigation comparing graspable object stimuli to facial stimuli may be beneficial to 

determine which would be more useful in the two-stimulus paradigm. Overall, evidence suggests 

that these three stimuli may be effective in a two-stimulus two-classifier paradigm, and these 

findings provide justification for progressing further in the development of such a paradigm. 
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