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ABSTRACT 

Vulnerability Assessment of Groundwater to NO3 Contamination Using GIS, DRASTIC Model and 

Geostatistical Analysis 

by 

Adela Beauty Adu Agyemang 

The study employed Geographical Information System (GIS) technology to investigate the 

vulnerability of groundwater to NO3 content in Buncombe County, North Carolina in two different 

approaches.  In the first study, the spatial distribution of NO3 contamination was analyzed in a GIS 

environment using Kriging Interpolation. Cokriging interpolation was used to establish how NO3 

relates to landcover types and depth to water table of wells in the county. The second study used 

DRASTIC model to assess the vulnerability of groundwater in Buncombe County to NO3 

contamination. To get an accurate vulnerability index, the DRASTIC parameters were modified to 

fit the hydrogeological settings of the county. A final vulnerability map was created using regression 

based DRASTIC, a statistic method to measure how NO3 relates to each of the DRASTIC variables. 

Although the NO3 concentration in the county didn’t exceed the USEPA standard limit (10mg/L), 

some areas had NO3 as high as 8.5mg/L. 
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CHAPTER 1 

INTRODUCTION 

Water plays a vital role in both human life and society.  Both groundwater and surface water 

contribute to economic, social, health, recreational, and cultural activities and are critical in 

sustaining the environment and ecosystem (Anornu et al. 2012).  Groundwater is the water present 

beneath Earth's surface in soil and rock pore spaces and in the fractures of rock formations, whereas 

surface water is the water found above the ground.  Due to the rapid population growth, the volume 

and quality of surface water is diminishing with time leaving groundwater as the most reliable 

source of water in terms of its quality (Anornu et al. 2012). Challenges resulting from the effects of 

climate change and the contamination of surface water resulting from high population growth, 

industrialization, and irrigation practices have led to increased demand for groundwater (Anornu et 

al. 2012).   

Groundwater is the most significant water resource on earth (Tirkey et al. 2013). In many 

arid and semi-arid areas in the world, it serves as the sole source of water for drinking, irrigation, 

and industrial purposes (Haris et al. 2011). Groundwater quality can be affected by residential, 

municipal, commercial, industrial, and agricultural activities particularly in relation to excessive 

application of fertilizers and unsanitary conditions (Ramakrishnaiah et al. 2009; Haris et al. 2011). 

Fertilizers contain nitrogen compounds which increase the productivity of crops. However, when 

nitrogen in fertilizer exceeds absorptive capacity of plants, the excess is carried into groundwater in 

the form of nitrates (NO3) through infiltration of precipitation, irrigation, and other processes 

(Meisinger et al. 1991; Shamrukh et al. 2001). Even though a small amount of NO3 in water can be 

harmless, high levels of NO3 in water can affect human health.  Greater amounts of NO3 in the 

human body can cause methemoglobinemia, commonly called “blue baby syndrome", in infants, 
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stomach cancer, birth malformation and other issues (Avery 1999; Majumdar and Gupta 2000; 

Addiscott and Benjamin 2004).  Per US Environmental Protection Agency (EPA) standards, nitrate 

concentrations exceeding 10 milligrams per Liter (10mg/L) in drinking water can be harmful if 

ingested (EPA 1995). 

Different methods have been used in several studies to assess groundwater’s vulnerability to 

nitrate contamination and other pollutants.  These methods can be grouped into: Process-Based 

Methods, Statistical Methods, and Overlay and Index Methods (Tesoriero et al. 1998; 

Thirumalaivasan et al. 2003). Overlay and Index Methods overlay the layers of factors known to be 

controlling the movement of pollutants from the ground surface to the water strata to create a 

vulnerability index maps using specified vulnerability indices (Tirkey et al. 2013).    Process Based 

Methods use a structured set of activities or processes designed to assess groundwater vulnerability, 

whereas statistical methods mainly use statistical analysis to establish the relationship between the 

spatial variables and existing pollutants in groundwater.  One of the most widely used groundwater 

vulnerability mapping methods is the DRASTIC model, which falls within the Overlay and Index 

category (EPA 1993; Thirumalaivasan et al. 2003). DRASTIC model was developed by the EPA to 

assess groundwater vulnerability using hydrogeologic settings (Aller et al. 1987; Babiker et al. 2005; 

Al-Rawabdeh et al. 2013). DRASTIC is an acronym which stands for: Depth to water, net Recharge, 

Aquifer media, Soil media, Topography, Impact of vadose zone and hydraulic Conductivity. 

According to Aller et al. (1987), the DRASTIC parameters play a vital role in transporting 

contaminants into ground water. 
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Previous Studies Involving Nitrate in Groundwater 

Nitrate concentrations in groundwater has been studied in different areas worldwide. Power 

and Schepers (1989) associated nitrates in groundwater to non-point sources, like geological origins, 

point source septic tanks, improper use of animal manures, cultivation, precipitation, and fertilizers.  

A study by Burow et al. (2010) on NO3 concentrations in groundwater in the United States revealed 

that, NO3 is highest in shallow, oxygenated groundwater. Assaf and Saadeh (2009) identified a 

significant and persistent nitrate contamination of groundwater in Upper Litani Basin, Lebanon 

where most of the areas in the basin had nitrate concentrations exceeding the standard limit for 

drinking. Babiker et al. (2004) study of groundwater contamination by nitrate leaching from 

intensive vegetable cultivation indicated that, the landuse class “vegetable fields” was the principal 

source of nitrate contamination of groundwater in the Kakamigahara, Gifu Prefecture, central Japan. 

In Konya, Turkey, the average concentration of nitrate for1998 and 2001 was between 2.2 

and 16.1 mg/L; these concentrations tended to increase towards the center of the city (Nas and 

Berktay 2006).  The study of nitrogen balance and groundwater nitrate contamination in North China 

by Ju et al. (2006) showed that the groundwater in shallow wells (depth <15 m) was heavily 

contaminated with NO3. Studies found that, about 4% of private wells in Iowa have nitrate 

concentration levels exceeding 10mg/L, the maximum contaminant level of NO3 in drinking water 

(Kross et al. 1993). Ahn and Chon (1999) identified NO3 as one of the principal groundwater 

pollutants in both Gurogu area, an industrial district and Asan area, an agricultural district of Seoul, 

Korea. A study by Tang et al. (2004) also indicated that NO3 concentration in most wells with depth 

<40 m in Shijiazhuang region, China exceeds the drinking water standard set by the World Health 

Organization (WHO). 
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Previous Studies on Groundwater Vulnerability to Contamination Using DRASTIC Model 

DRASTIC model has been employed in several studies to assess groundwater and aquifer 

vulnerability in various parts of the world. The model produces regional maps delineating areas of 

low, moderate, and high vulnerability which could be followed up with further site-specific studies. 

Kim and Hamm (1999), Rundquist et al. (1991), Lynch et al. (1997), and Pathak et al. (2009) used 

DRASTIC to evaluate the potential for groundwater contamination in the Cheongju city area, South 

Korea, Nebraska, South Africa, and Kathmandu Valley, Nepal, respectively.  Babiker et al. (2005) 

assessed the aquifer vulnerability of Kakamigahara Heights Gifu Prefecture and Central Japan using 

DRASTIC model. Jamrah et al. (2008) also used the model in their study of groundwater 

vulnerability assessment in the coastal region of Oman.  In Saidi et al. (2010) study of groundwater 

vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using DRASTIC model, 

the risk map produced showed that, high risk areas in Hajeb-Jelma region were dependent on 

hydrogeological characteristics, land use, and human impacts.  

Although the DRASTIC method usually gives satisfactory results in evaluating groundwater 

vulnerability to pollution, the model is rigid in assigning weights and rates to its parameters, which 

in some cases doesn’t give the desired result (Rupert, M. G. 2001 Javadi et al. 2011).  However, to 

better address this issues, researchers have adopted several modifications of the original DRASTIC 

model for refined representation of a region’s specific hydrogeologic and land cover settings 

(Thirumalaivasan et al. 2003; Babiker et al. 2005). The modifications could be in the form of (i) 

incorporation of other parameters, (ii) removal of existing parameters, and (iii) manipulation of the 

assigned weights and ratings. Data sources such as groundwater flow, rate of groundwater flow, and 

source of groundwater recharge were used by Brown (1998) in addition to DRASTIC parameters in 

vulnerability assessment of Heretaunga plain aquifer, New Zealand (Thirumalaivasan et al. 2003). 
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Neshat et al. (2014) used modified DRASTIC in the form of manipulation of the assigned weights 

and rates in estimating groundwater vulnerability to pollution in Kerman agricultural area, Iran. 

Modified DRASTIC in the form of removal of existing parameters was used by Huan et al. (2012) in 

their study of the assessment and validation of groundwater vulnerability to NO3 based on a 

modified DRASTIC model in Jilin City of northeastern China. Several other studies including Fritch 

et al. (2000), Meng et al. (2007), Javadi et al. (2010), Wang et al. (2012), and Sener et al. (2013) 

have used modified DRASTIC model to test for groundwater susceptibility to contamination. 

 

Geostatistical Analysis Methods Used in Groundwater Contamination Studies 

Geostatistics is a branch of statistical sciences used to analyze and predict values associated 

with spatial or spatiotemporal phenomenon (Chiles and Delfiner 2009; Bohling 2005). Geostatistics 

analyzes and interprets the uncertainties caused by limited sampling of a property under study by 

creating a continuous interpolated surface of the property to predict the unknown locations. 

Geostatistical analysis has been used in several studies to assess groundwater quality in different 

locations worldwide. Interpolation, a geostatistical analytical method, is mostly used to predict 

unknown data points based a on a limited number of known points (Zhu et al. 2001; He and Jia 

2004; Hu et al. 2005; Lui et al. 2006; Ahmadi and Sedghamiz 2007; Sanders et al. 2012).   

Erxleben et al. (2002) used spatial interpolation methods to estimate snow distribution in the 

Colorado Rocky Mountains.  A comprehensive archive of climate data was constructed in Australia 

using spatial interpolation to estimate for missing data (Jeffery et al. 2001).  Spatial interpolation 

techniques were also used in China to develop monthly mean climate data (Hong et al. 2005). 

Kriging, an interpolation technique, was used by Nikroo et al. (2010) to determine groundwater 

depth and elevation in Mohr Basin of Fars province in Iran. Nas (2009) used Ordinary Kriging in 
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Turkey to predict the spatial patterns of water quality in rural areas.  Ordinary kriging was also used 

by Sanders et al. (2012) and Hu et al. (2005) to determine the spatial distribution of arsenic in North 

Carolina groundwater and trace nitrate in groundwater in the North China plain.  Mehrjardi et al. 

(2008) used Ordinary Kriging, Cokriging, and Inverse Distance Weighted (IDW) in Yazd-Ardakan 

Plain to predict the spatial distribution of groundwater quality and his results indicated that kriging 

and cokriging are superior to IDW in interpolating groundwater quality.  

Eight spatial interpolation methods were used to evaluate groundwater level in an arid inland 

oasis, northwest China and three kriging interpolation methods (simple, universal and ordinary) 

produced the best fit model (Yao et al. 2014). Ahmadi and Sedghamiz (2008), applied kriging and 

cokriging methods to map groundwater depth in a plain with variable climatic conditions (normal, 

wet, dry) and in 2007 used geostatistical analysis to study the variations of groundwater levels. 

Ordinary kriging was used by Nas and Berktay (2010) to determine the spatial distribution of 

groundwater quality parameters such as pH, electrical conductivity, Cl-, SO4
-2, hardness, andNO3

- 

concentrations in urban groundwater in Konya City, Turkey.  Morio et al. (2010) estimated the 

spatial distribution of contaminant concentrations in groundwater using flow guided interpolation.  

 

Kriging and Cokriging 

Geostatistical methods such as kriging are extensively used in spatial hydrogeology to predict 

the concentration of contaminants and heavy metals in groundwater (Gaus et al. 2003; Babiker et al. 

2004; Nas and Berktay 2010). Kriging uses a statistical approach that requires a point map as input 

data and produces both a predicted interpolated raster map with an estimate of prediction uncertainty 

(Babiker et al. 2004). Kriging presumes that there is the existence of spatial autocorrelation among 
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measured data point and assign weight to unknown points based on the spatial arrangement and 

distance weight between known points.  It draws on semi-variance to calculate weight and gives the 

measure of accuracy of the interpolated surface (Salih et al. 2002). Ordinary kriging, the most widely 

used of the kriging method. The method assumes that the constant mean is unknown. Ordinary 

kriging is established using the equation:  

Z(s) = μ + ϵ(s)  

Where μ is an unknown constant. A detailed explanation of the kriging method is given in literature 

(Cressie 1990; Oliver and Webster 1990; Stein 2012).  

Cokriging is a multivariate extension of the kriging interpolation method. It uses 

autocorrelation and cross correlation to create a predicted interpolated surface using the same 

assumptions as kriging interpolation method. Ordinary cokriging uses the same method ordinary 

kriging in creating a predicted surface but incorporates a secondary variable in the model (Queiroz et 

al. 2008). The model assumes that; autocorrelation exist between the primary variable and the 

secondary variable. Cokriging model is created using the formula;   

Z1(s) = μ1 + ε1(s)  

Z2(s) = μ2 + ε2(s)  

Zn(s) = μn + εn(s)  

Where μ1…μn are constants, ε1…εn are the random errors at individual locations. The accuracy of a 

predicted surface (kriging) can be improved using cokriging.  

The performance of an interpolated surface can be assessed using cross validation or 

validation method. Cross-validation uses the entire dataset estimate the accuracy of a model. It 
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removes each data one at a time, predicts the associated value using the remaining data and 

compares the predicted value to the observed value. Validation divides the data into two unequal 

subsets; the training data (most data), and the test data (least data). The training dataset is used to 

develop the autocorrelation model and the accuracy of the model is compared with the test data.  The 

accuracy of the models produced from the subset data shows the accuracy of the overall model 

(Goovaerts 1997; Kitanidis 1997) 

 

Research Goals 

This research employed Geographical Information System (GIS) technology to investigate 

the vulnerability of groundwater to NO3 content in Buncombe County, North Carolina.  The research 

was conducted using two different approaches, separated into two different studies.  

The first study investigates how nitrate concentrations in the county relate to landcover and 

depth to water. The objectives of the first study are to: (1) analyze the spatial distribution of NO3 in 

groundwater wells in Buncombe County, and (2) evaluate if the extent to which NO3 concentrations 

in groundwater relate to landcover type and depth to water table. The goals of the second study are 

to: (1) assess the vulnerability of groundwater to contamination using DRASTIC model parameters 

established by the US EPA and (2) improve the vulnerability model using land cover and nitrate 

concentrations in the groundwater through advanced geospatial analysis.   
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CHAPTER 2 

PREDICTING GROUNDWATER NITRATE CONCENTRATIONS AND ITS RELATION TO 

LAND USE AND WATER DEPTH IN BUNCOMBE COUNTY 

Abstract 

High concentrations of nitrate (NO3) in groundwater can be harmful to human health if ingested, and 

may be the primary cause of blue baby syndrome, among other health impacts. In this study, the 

spatial distribution of NO3 in groundwater for 610 private drinking water wells in Buncombe 

County, North Carolina was modeled. While NO3 concentration in the sampled wells did not exceed 

the 10 mg/L limit established by the United States Environmental Protection Agency, some wells 

had NO3 concentrations approaching this limit (as high as 8.5mg/L).  Kriging interpolation was 

implemented within a Geographic Information System to predict NO3 concentrations across the 

county, and a cokriging model using land cover type and depth to water table as covariates was 

developed. Cross validation statistics of root mean square and root mean square standardized for 

both models were compared and the results showed that the predicted NO3 layer was improved when 

land cover type was integrated into the model.  The cokriging interpolated surface with land cover as 

a covariate had the lowest root mean square (0.979) when compared to the kriging interpolated 

surface (0.986), indicating a better fit for the co-kriging surface with land cover.  The addition of 

depth to water table did not improve the cokriging surface as the landcover did.  High NO3 value of 

2 mg/L and above were concentrated in hay/pasture land, developed open space, and deciduous 

forest containing 37%, 34%, and 29%, respectively. However, the study did not reveal any 

statistically significant difference in the presence of high NO3 concentration between these landcover 

types, indicating they all contribute to high NO3 content.   
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Keywords: Nitrate concentration, Land cover, Depth to water table, Spatial analysis, Statistical 

analysis   

 

1.0 Introduction 

Groundwater is the water present beneath Earth's surface in soil pore spaces and in the 

fractures of rock formations. Groundwater provides about 80% of usable water storage in the world. 

The quality of groundwater is as important as that of its availability and quantity because it 

represents our main source of drinking water (Rahman, 2008). Groundwater is an important source 

of water supply because of its low susceptibility to pollution compared to surface water (EPA, 

1985). Unfortunately, groundwater is vulnerable to pollution from underlying bedrock, human 

activities, and sewage discharge from industrial and agricultural sites (Babiker et al., 2005; Rahman, 

2008). Nitrate (NO3) is a widespread pollutant that enters the groundwater through the surface and is 

not naturally contained in the groundwater.  Predicting areas that are likely to contain high levels of 

NO3 may help to prevent the use of NO3 contaminated water, and provide developers and planners 

with information about areas in need for additional testing.  

 

1.1 Environmental and Health Concerns 

Nitrogen is a primary component of fertilizers based on its ability to boost the productivity of 

crops.  Global increase in the use of nitrogen fertilizer over the last few decades has led to increased 

NO3 in groundwater, threatening water quality (Burow et al., 2010).  When nitrogen in fertilizer 

exceeds the demand of plants and the ability of the soil to retain it, nitrogen leaches into groundwater 

in the form of NO3 through infiltration of precipitation, irrigation, and other processes (Meisinger et 
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al., 1991; Shamrukh et al., 2001).  Agricultural areas are susceptible to high levels of NO3 

concentrations due to the use of NO3 rich fertilizers (Zhang et al., 1996; Thorburn, et al., 2003; 

Burow et al., 2008).  Factors that affect NO3 concentration in groundwater include land use 

operations, shallow water table, and subsurface clay thickness (Townsend and Young, 1995).  Even 

though a small amount of NO3 in water can be harmless, at high levels it can be damaging to human 

health.  Increased concentration of NO3 in groundwater may represent a loss of fertility in the 

overlying soil, cause eutrophication from the discharge of groundwater into surface water, and 

become a health hazard to animals and humans (McClay et al., 2001). Since groundwater serves as 

the primary source of drinking water, the presence of NO3 in groundwater may cause health problem 

if ingested.  Greater amounts of NO3 in the body can cause methemoglobinemia, commonly called 

“blue baby syndrome" in infants, stomach cancer, birth malformation, and other issues (Addiscott 

and Benjamin, 2004; Avery, 1999; Majumdar and Gupta, 2000).  Infants below the age of six 

months and pregnant women with low stomach acidity are most at risk (Messier et al, 2014).  As 

such, the Environmental Protection Agency (EPA) has established a maximum contaminant level of 

10 milligrams per Liter (10 mg/L) for NO3 drinking water beyond which could be harmful to human 

health (EPA, 1995).  

 

1.2 NO3 concentrations in North Carolina 

NO3 concentrations in groundwater in the United States are highest in shallow, oxygenated 

groundwater (Burow et al 2010), most typically in areas beneath agricultural land with well-drained 

soils.  In North Carolina, more than 25% of the population relies on private wells for drinking water, 

located outside municipal water supply systems. A state-wide study by North Carolina Health and 

Human Services between 1998-2010 reported concentrations of NO3 in private well water that 
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ranged from 0.5 to 20mg/L (NCDHHS 2014).  A study by Messier et al (2014) indicated that high 

levels of NO3 concentrations in the southeastern plains of North Carolina are related to wastewater 

treatment residuals and localized animal feeding operations.  Excess nutrient and fertilizer loadings 

in eastern North Carolina have degraded overall water quality (Luettich et al, 2000; Burkholder et 

al., 2006).  A study by Harden and Spruill (2004) concluded that both agricultural and urban sites 

contributed to high percentages of NO3 point sources in central and eastern North Carolina.  

 

1.3 Study Objective 

Nitrate concentration exceeding US EPA limit of 10mg/L may cause methemoglobinemia, 

stomach cancer and other issues when ingested. Excess NO3 concentration in groundwater and its 

health implications has raised concerns, resulting in the need for further research to locate areas with 

high NO3. The objectives of this study are to: (1) analyze the spatial distribution of NO3 in groundwater 

wells in Buncombe County, North Carolina, and (2) evaluate the extent to which NO3 concentrations 

in groundwater relate to land cover type and depth to water table.  

2.0   Study Area 

This study was performed in Buncombe County, North Carolina (Fig 2.1).  Buncombe 

County is located in western North Carolina in the Blue Ridge Physiographic province. The county 

is bordered to the north by Madison and Yancey counties, to the south by Henderson county, to the 

east by Rutherford and McDowell, and to the west by Haywood county. The county also shares a 

border with the Appalachian Mountains to the west and the Black Mountains to the east. The county 

covers a total area of 660 square miles, of which 657 square miles is land and 3.5 square miles is 

water (US Census Bureau, 2010). The average annual temperature of Buncombe County is 55.83°F, 

and average annual precipitation is 40.92 inches.  
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 Physiographically, Buncombe County consists of high, smooth-rounded mountains 

surrounded by streams flowing in narrow valleys and underlain by bedrock consisting of igneous, 

meta-igneous, and sedimentary rocks (Aller et al. 1987).  Aquifers in Buncombe County are mostly 

found in the crystalline metamorphic and igneous rocks (Trap and Horn 1997) where fractures in the 

crystalline bedrock serve as the primary storage for groundwater (Drever 1997). Wells located in 

valleys typically have shallow water tables and are more susceptible to contamination than wells 

located in hilly areas.   
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Fig 2.1 Map of Buncombe County, North Carolina, USA (Study Area) 
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3.0 Methods 

The research methods used for the study were grouped into: database development and 

geocoding, exploratory non-spatial statistical analysis, exploratory spatial statistical analysis, and 

spatial statistical analysis.  Fig 2.2 shows the methodology used for this study.                        

                                                                                                         

  

 

  

 

  

 

 

 

 

 

 

Fig 2.2 Methodology for predicting groundwater nitrate concentration and its relation to land 

use and water depth in Buncombe County  
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3.1 Data Development and Geocoding 

Three different spatial variables were used in this study: NO3 concentration in groundwater 

wells, depth to water table, and land cover/land use. Wells data were acquired from the North 

Carolina Division of Water Resources (NCDWR) in spreadsheet form. Data included well owner’s 

identification number, well permit number, first and last name, well location addresses (including 

city, state, zip code), GPS coordinates (longitude and latitude), and collection date. The forested 

areas, and the urban areas located in the central part of the county did not have records of private 

drinking wells. The data were divide into two groups: only wells with nitrate concentration data and 

the entire well data information for the purpose of depth to water table analysis.  Well data 

containing no spatial information were discarded from the dataset.  

The remaining dataset was geocoded using ArcGIS Online World Geocode Service to create 

a well location point map in ArcGIS 10.3.  A total of 610 wells were matched during the geocoding 

process, and were subsequently used for kriging analysis.  The entire dataset of geocoded wells 

(2948) was used to create a depth to water table data layer, that was further used as a covariate for 

cokriging. Additionally, the National Land Cover Dataset (WLCD), available from the Multi-

Resolution Land Characteristics Consortium (MRLC) at a resolution of 30 m2, was used as a 

covariate (Geospatial Data Gateway: https://datagateway.nrcs.usda.gov/).  Fig 2.3 shows land cover 

types for Buncombe County.  The county has over 60% of its land covered by deciduous forests 

followed by developed open space (14%) and hay/pasture (13%). Emergent herbaceous wetland is 

the least represented land cover type within the county. 
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Fig 2.3 Land cover map of Buncombe County (Source: MRLC) 

 

3.2 Exploratory Non-Spatial Statistics 

Per USEPA statistical protocol, all NO3 concentration data below minimum detection limits 

(0.5 mg/L) were selected. Half of the values were kept at 0.5mg/L while the rest were assigned a 

concentration value of 0.25 mg/L. Descriptive statistics (mean, standard deviation, and range) were 

performed on the variables using Statistical Package for the Social Sciences, IBM SPSS statistics 23 

(George and Mallery, 2016). Exploratory analysis was also conducted to test for normality and 

correlation among the variables: NO3 concentration, land cover, and depth to water table.  
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To understand how NO3 concentrations within each well compare with the different land 

cover types, a buffer radius surrounding the groundwater well was used to extract land cover data. 

Several studies have used different buffer radii ranging from 250 to 1000 m (Barringer et al., 1990).  

A buffer radius of 400 m was used by Babiker et al. (2004) in their study of groundwater 

contamination by NO3 and land use. Eckhardt and Stackelberg (2005) chose a buffer radius of 800 m 

in their study of relationship groundwater quality to land use and McLay et al. (2001) selected a 

buffer radius of 500 m in studying groundwater NO3 concentration in a region of mixed agricultural 

land use. The land cover in each well location within the 500 m buffer area was extracted using 

zonal histogram and the majority land cover was assigned to each well. Based on the test of 

normality, Spearman’s correlation coefficient was calculated to measure the statistical dependence of 

NO3 on land cover and depth to water table. Histograms of the land cover data and depth to water 

table data were created to determine the percentages of the different land cover types and depth to 

water table in high NO3 yielding wells.  Additionally, one-way Analysis of Variance (ANOVA) was 

performed to compare the presence of high NO3 content in different landcover types.   

3.3 Exploratory Spatial Statistics using GeoDa 

The existence of spatial dependency in the NO3 and depth to water data was examined with 

GeoDa 1.8.14 (Anselin and Syabri, 2006). GeoDa is a software package used for spatial data 

analysis, data visualization, spatial autocorrelation, and spatial modeling. Spatial autocorrelation was 

examined in this study to check spatial dependency in the NO3 and depth to water data. The result 

from this check served as the basis for further analysis in ArcGIS environment. The NO3 data were 

imported into GeoDa and mapped. A spatial weight with a threshold distance of 15 miles was 

created using the spatial manager. The basis for choosing a threshold distance of 15 miles was to 

ensure that each well had at least one neighbor. Global and Local Moran’s I statistical tests were 
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then conducted to detect the presence of spatial autocorrelation in the NO3 data. Global Moran’s I 

detects autocorrelation at the global level whereas Local Moran’s I detects autocorrelation at the 

local level and calculates the similarity among neighbors and their significance. These similarities 

are shown in a Local Indicators of Spatial Association (LISA) cluster map and grouped into low 

values near low values, high values near high values, low values near high values and high values 

near low values. The LISA significance maps also show the number of significant observations and 

their corresponding level of significance. Spatial autocorrelation in the depth to water data was 

tested using the same procedure as the NO3 variable. 

3.4 Spatial Statistics using Kriging and Cokriging 

Kriging presumes that there is autocorrelation in the data, which was examined in the 

previous section (section 3.4). In this study, ordinary kriging interpolation was used, as the ordinary 

kriging method is simple and has satisfactory prediction accuracy in comparison to other kriging 

methods (Isaaks and Srivastava, 1989). The ordinary kriging interpolation created a predicted NO3 

concentration map from the NO3 point data to examine the variation and spatial extent of NO3 

contamination in Buncombe County. Variogram was created for NO3 using the NO3 point map. The 

variogram measures the mean of variance between unknown values and a nearby data value, 

depicting autocorrelation at various distances (Kupfersberger et al, 1998; Robinson et al, 2006).  

Circular, exponential, and gaussian models with different parameters were examined to obtain the 

model which best fits the variogram. Ordinary kriging was also performed to predict the water table 

surface using the water table point data from well locations.   

Land cover and depth to water table layers were used as covariates in a cokriging approach to 

further improve the NO3 concentration prediction surface. The parameters used for the interpolation 

were kept the same for all created surfaces. A cross validation comparison was performed for the 
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kriged NO3 surface and the cokriged NO3 surfaces to select the best model. The comparison was 

done based on models diagnostics. The mean standardized error (ME), root mean square error 

(RMS), root mean square standardized error (RMSSE), and average standard error (ASE) of each 

interpolation were used to assess the model’s performance. A model is said to be best if it has a ME 

nearest to zero, a small RMS, an ASE closest to the RMS, and a RMSSE closest to one. 

The NO3 concentrations for the kriged/cokriged surface were grouped into six categories 

using quantile classification to make the maps comparable. Quantile classification gives the same 

number of data values to grouped features. 

 

4.0 Results  

4.1 Wells Location and Exploratory Non-Spatial Statistics  

NO3 contaminated wells in Buncombe County had concentration values ranging from 0.25 

mg/L to 8.5 mg/L (Fig 2.4).  The mean NO3 concentration in the wells is 0.673 mg/L.  These wells 

were distributed across the county except the northeastern corner, Biltmore, and the forest zones. 

There were 43 drinking water wells with concentrations of 2.0 mg/L and above, and these were in 

the northern, northwestern, central, and southeastern part of the county. The remaining wells with a 

concentration between 0.5mg/L to 2.0mg/L were also found closer to locations with high NO3 (2.0 

mg/L and above). Descriptive statistics of NO3 and depth to water table are shown in Table 2.1. 

Depth to water table for county wells ranges from 0 to 1300 meters with a mean of 347.17m (Table 

2.1). Distribution of the wells and their individual depth to water table are shown in Fig 2.5. 
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Fig 2.4 Nitrate contaminated wells in Buncombe County  

 

  Table 2.1 Descriptive statistics of NO3 and depth to water table 

 Nitrate (ppm) Depth to water table (m) 

Mean 0.673 347.172 

Standard deviation 0.951 179.518 

Minimum 0.25 0 

Maximum 8.5 1300 
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Fig 2.5 Depth to water table of wells in Buncombe County       

The Shapiro-Wilk Test of normality indicated that the NO3 and depth to groundwater table 

were not normally distributed.  While the overall NO3 concentration did not show any correlation 

with landcover and depth to groundwater table, the wells with high NO3 content (2.0 mg/L) 

indicated correlation with landcover data (Spearman’s rho = 0.24 at p = 0.04).  No correlation was 

found between NO3 and depth to water table data.  Histogram analysis indicated that high level of 

NO3 (2mg/L) were concentrated near hay and pasture land (37%), developed urban open space 

(34%), and deciduous forest (29%) (Table 2.2).  ANOVA was performed to compare whether 

developed urban open space, deciduous forest, and hay and pasture land had significantly different 
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levels of NO3 in the county. The result did not find any significant difference in NO3 content 

between the mentioned land cover types; hence Tukey post hoc tests were not performed. 

Table 2.2 Percent landcover types in Buncombe County, and percent landcover type in/near 

high NO3 area.   

 

 

 

 

 

 

 

 

 

4.2 Exploratory Spatial Statistics – GeoDa 

The spatial autocorrelation test conducted using Global Moran’s I revealed that the nitrate 

concentration data were not spatially clustered at the global level. However, Local Moran’s I using 

LISA statistics identified 54 wells with high NO3 values close to other high NO3 values, and 79 

wells with low NO3 values close to other low NO3 values. Clusters of low near low values were 

found in the northern part of the county whereas high values with other high values are scattered in 

the western and southeastern parts of the county (Fig 2.6) 

Landcover type 

Pixel 

count 

% landcover 

in county 

% landcover in 

high NO3 area 

Open Water 7663 0.404  
Developed Urban Open 

Space 264258 13.921 34.286 

Developed low intensity 59816 3.151  
Developed medium intensity 27313 1.439  
Developed high intensity 8474 0.446  
Barren land 1435 0.076  
Deciduous forest 1149712 60.567 28.571 

Evergreen forest 69504 3.661  
Mixed forest 31100 1.638  
Shrub/Scrub 11015 0.58  
Herbaceous 22791 1.201  
Hay/Pasture 237599 12.517 37.143 

Cultivated crops 6041 0.318  
Woody wetlands 1484 0.078  
Emergent herbaceous 

wetland 45 0.002   
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The depth to water table data were significantly clustered at both the local and global level 

with Global Moran’s I = 0.017 (pseudo p value = 0.001 at 999 permutations). Locally, 1866 of the 

depth to water data were significant at p = 0.001, 366 at p = 0.01, and 192 at p= 0.05. Clusters of 437 

deeper wells were located close to wells with high depth, and 988 shallow depth wells were located 

close to wells with shallow depth. Clusters of deep wells were found in the northern, northwestern, 

and western parts of the county, whereas clusters of shallow wells were found in the southern 

/southeastern part of the county (Fig 2.6).   The results of the analysis using GeoDa (Fig 2.6) showed 

the existence of spatial autocorrelation in the NO3 and depth to water variables and therefore 

provided the basis for further analysis with Kriging and Cokriging. 
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Fig 2.6A   Cluster (i) and significance (ii) map of nitrate  

        

Fig 2.6B   Cluster (i) and significance (ii) map of depth to water table  

 

4.3 Spatial Statistics – Kriging and Cokriging 

The cross-validation matrix for the kriging and cokriging were compared to determine the best 

model. All the models produced from cokriging were better in terms of models accuracy metrics 

compared to the kriging model (Fig 2.7 and 2.8). A summary of the accuracy metrics of NO3 

concentration from kriging/cokriging is given in Table 2.3. Nitrate/depth to water table had root 

mean square error (RMS) of 0.98 whiles the kriging model recorded the highest RMS (0.986). The 

cokriged nitrate/land cover and nitrate/land cover/depth to water table had the smallest RMS error 

(RMS = 0.979).  As both RMS were 0.979, it was implied that adding depth to water table did not 

improve the nitrate/land cover/depth to water table model.  For all models, mean error (ME) was 
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centered around zero with a range from -0.0044 to -0.0052. Nitrate/ land cover however, had the 

smallest difference between RMS (0.979) and average standard error (ASE) (1.0941) and therefore, 

this model was considered the best model to predict nitrate concentration in groundwater for the 

study (Fig 2.8).  A prediction standard error map was produced for the NO3 kriging and NO3/ land 

cover cokriging interpolation maps (Fig 2.9 to 2.10). The cokriged interpolated surface had higher 

prediction errors at the extreme eastern/western and central part (around Asheville) of the county 

including the forested area. These parts of the county were the areas with missing data on well 

locations and NO3 concentrations. The kriged NO3 map on the other hand had high prediction errors 

in the same areas as the cokriged maps as well as areas around Candler, Biltmore Forest, Alexander, 

and Royal Pines.  

Table 2.3 Comparison of cross validation statistics of kriging and cokriging interpolated 

surfaces 

Prediction errors NO3 NO3 +  

Landcover 

NO3 +  

Depth to Water 

 NO3 + Landcover 

+ Depth to Water 

ME -0.0044 -0.0047 -0.0048  -0.0052 

RMS 0.986 0.979 0.980  0.979 

RMSSE 0.9469 0.8956 0.8989  0.8975 

ASE 1.0390 1.0941 1.0908  1.0919 
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Fig 2.7 Kriging interpolation map of NO3 concentrations, Buncombe County 
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Fig 2.8 Prediction map of NO3 concentrations cokriged with land cover 
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Fig 2.9 Prediction error map of NO3 kriging interpolated surface 
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Fig 2.10 Prediction error map of NO cokriged with land cover 

 

5.0 Discussion 

5.1 Non-spatial Statistical Analysis 

The non-spatial statistical analysis revealed that landcover type in the county was 

significantly correlated with high NO3 content (0.24 at p = 0.04), and high NO3 concentrations were 

seen in developed urban open space, deciduous forest, and hay/pasture areas.  The study did not 

reveal any statistically significant differences in the presence of high NO3 concentration between 

these landcover types, indicating they all contribute to high NO3 content.  Previous studies correlated 
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high NO3 content with urban areas where fertilizers were often applied to the lawns, parks, and golf 

courses (Nas and Berktay, 2006).  Hay and pasture lands are known source of high NO3 derived from 

animal manure and agricultural runoff (Hallberg and Keeney, 1993; Kross et al., 1993).  In natural 

undisturbed forest the NO3 content should be low, but studies have found that, high NO3 content in 

forested areas are indicative of anthropogenic disturbance (Lowrance, 1992; Hallberg and Keeney, 

1993; Nolan et al., 1997).  This study did not show any correlation between NO3 and depth to water 

table. Most wells found in Buncombe County have high depth ranging from 300m to 400m. Unlike 

shallow groundwaters less than 30m (McLay et al, 2001), which have a strong correlation with NO3, 

deep groundwaters have a weak relationship with NO3. This explains why NO3 and depth to water 

table have no statistical correlation.   

 

5.2 Spatial Statistical Analysis 

This study indicated that nitrate concentration was not beyond the EPA limit, however some 

areas indicated higher NO3 than other areas. The spatial distribution of NO3 indicated that areas like 

Barnardsville, Biltmore Forest, Woodfin, and Black Mountain had very low NO3 concentration 

below 0.5 mg/L. Swannanoa also had low NO3 concentration levels above 0.5 mg/L but not 

exceeding 0.8 mg/L. High concentrations were recorded in Candler, Weaverville, Leicester 

Fairview, Arden, and some areas in Asheville. The study also examined land cover and depth to 

groundwater table, which have the potential to impact NO3 concentration. Relating land cover type 

to the concentrations of NO3 in groundwater in the county, evergreen forested areas had low 

concentrations whereas areas with hay/pasture land cover type had high concentration levels. 

National forest and incorporated areas did not have enough well samples and were excluded from 

the study. The predicted error also indicated the same, where low predicted error was indicated in the 
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N, NW, W, and SE parts of the study area. Moderate level of NO3 concentrations (neither as low as 

forested areas or as high as hay/pasture) were found in areas with the following land cover types; 

developed open space, developed low intensity, medium intensity, and high intensity. Kriging 

interpolated surface (fig 2.7) and cokriging interpolated surfaces (fig 2.8) indicated that the NO3 

interpolated surface was improved when cokriged with land cover, confirming the results from non-

spatial statistical analysis.  

5.3 Study Limitations and Future Research 

Although the study objectives were accomplished, there were some unavoidable limitations. 

First of all, data on private drinking wells were not available for the National Forest areas and the 

incorporated urban areas.  This affected the prediction errors from the kriging / cokriging 

interpolated maps. Secondly, nitrate data were available for only 610 wells and out of 623. Other 

private drinking wells not included in the data may have very high nitrate concentrations which 

could have impacted the results and findings of this study. There were private drinking wells with 

missing information on depth to water table as well. All this information could have helped to 

improve the accuracy of the predicted models.  

Despite the limitations, future studies can be conducted using this study as the basis to 

perform more site-specific study in high nitrate areas to monitor the wells located in those areas and 

detect the cause of the high nitrate content. It is recommended that further research be done 

especially in deciduous forested areas and developed open space landcover areas to find out why 

nitrate content is high in those regions. Further, this study also serves as a guide for estate planners 

and developers on choice of site and how vulnerable the area may be to contamination. 
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 6.0 Conclusion 

Land cover type used in cokriging with the NO3 point map influenced the level of NO3 

concentrations in parts of the county. NO3 cokriged with land cover produced the model which best 

represented the NO3 concentrations in the county. The evergreen forested areas, developed intensity 

(low, medium, high), barren land, and wetlands had very low NO3 concentrations, whereas 

hay/pasture, developed open urban space, and deciduous forest areas had high NO3 concentration. 

The eastern part of Buncombe County (mountainous areas) recorded very low concentrations 

of NO3 in groundwater compared to the central, northern, and southern parts. Nearly half of the 

county had NO3 concentration of 0.5 mg/L or below. The level of nitrate concentrations within the 

whole county ranged from 0.25 mg/L to 8.5 mg/L. Even though higher NO3 concentrations were 

found in some regions, none of the regions’ NO3 concentrations exceeded the maximum 

concentration level set by the US EPA (10 mg/L), beyond which is considered to be harmful to 

human health.  
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CHAPTER 3 

A GIS BASED DRASTIC MODEL FOR VULNERABILITY ASSESSMENT OF 

GROUNDWATER TO NITRATE CONTAMINATION IN BUNCOMBE COUNTY, NC 

Abstract 

High concentrations of nitrate (NO3) in groundwater can be harmful to human health if ingested, and 

may be the primary cause of blue baby syndrome, among other health impacts. This study employed 

Geographical Information System (GIS) technology to investigate the vulnerability of groundwater 

to NO3 content in Buncombe County, North Carolina. The study used DRASTIC model established 

by the United States Environmental Protection Agency(USEPA) to assess the vulnerability of 

groundwater in Buncombe County to NO3 contamination. To get an accurate vulnerability index for 

the County, the DRASTIC model was modified to fit the hydrogeological settings of the county. A 

third vulnerability map was created using regression-based DRASTIC, a statistical method, to 

measure how NO3 relates to each of the DRASTIC variables. The study resulted in three 

vulnerability index maps indicating areas with very low to very high vulnerability potential and the 

spatial distribution of NO3 concentrations in the county. Comparison of the three models indicated 

that the regression-based DRASTIC model best depicted the spatial distribution of NO3 

concentrations in the county. Although the NO3 concentrations in groundwater did not exceed the 

USEPA standard limit for drinking water (10 mg/L), some areas in the county had NO3 as high as 

8.5 mg/L. 

 

Keywords: EPA DRASTIC Model, Modified DRASTIC model, Regression-based DRASTIC model, 

GIS, Kriging, NO3, Groundwater 
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1.0 Introduction 

Water plays a vital role in human life and society as a whole.  Both groundwater and surface 

water contribute to economic, social, health, recreational, and cultural activities and are critical in 

sustaining the environment and ecosystem (Anornu et al., 2012).  Groundwater is the water present 

beneath Earth's surface in soil and rock pore spaces and in the fractures of rock formations, whereas 

surface water is the water found above the ground.  Due to rapid population growth, the volume and 

quality of surface water with time is diminishing leaving groundwater as the most reliable source of 

water in terms of quality (Anornu et al, 2012). Challenges resulting from the effects of climate 

change and the contamination of surface water resulting from high population growth, 

industrialization, and irrigation practices, have led to increased demand for groundwater (Anornu et 

al, 2012).   

Groundwater is the most significant water resource on earth (Tirkey et al, 2013).  It provides 

about 80% of usable global water storage and contributes immensely to agricultural, industrial, and 

other municipal uses, especially in areas lacking other sources of water (Shirazi et al, 2012).  The 

quality of groundwater is as important as its availability and quantity because it represents the 

primary source of drinking water worldwide (Rahman, 2008).  According to Kemper (2004), about 

two billion people around the world depend on groundwater for their day to day activities.  

Groundwater is an important source of water supply because of its low susceptibility to pollution 

compared to surface water (EPA, 1985).  Unfortunately, groundwater is vulnerable to pollution, 

which may be caused by underlying bedrock, human activities, and sewage discharge from industrial 

and agricultural sites (Babiker et al., 2005).  Groundwater vulnerability refers to the tendency for 

contaminants released onto the ground surface or in the aquifer’s uppermost layer to transport into 

the groundwater system (National Research Center, 1993; Javadi et al., 2010; Shirazi et al., 2012).  
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The study of groundwater per Tirkey et al. (2013) is based on the idea that groundwater vulnerability 

to contamination is related to land use activities and varies with land areas.  Any activity whereby 

chemicals or wastes may be released into the environment has the potential to pollute groundwater.  

Due to high population growth and industrialization, substantial amounts of domestic, industrial, and 

agricultural sewage are released into the environment as runoff leading to groundwater pollution 

(Rahman, 2008).  Compared to surface water pollution, groundwater pollution is difficult to detect 

and even more difficult to treat.  After detection, treatment of polluted groundwater may take years, 

decades, or even centuries (Todd, 1980; Rahman, 2008). 

Groundwater contamination caused by excess nitrate (NO3) concentrations is a worldwide 

problem and is usually identified with sources such as intensive agriculture, high density housing 

with unsewered sanitation, and liquid manure spreading onto land through irrigation (Keeney, 1986; 

Eckhardt and Stackelburg, 1995; Spalding and Exner, 1993).  Groundwater is contaminated by 

nitrate when nitrogen released onto the earth’s surface infiltrates into the ground.  Nitrogen increases 

the productivity of crops and is consistently and extensively used in fertilizers.  However, when 

nitrogen in fertilizer exceeds the demand of plants and the absorptive capacity of the soil to absorb, it 

gets carried into groundwater in the form of NO3 through infiltration of precipitation, irrigation and 

other processes (Meisinger et al., 1991; Shamrukh et al., 2001). Increased concentration of NO3 in 

groundwater may represent a loss of fertility in the overlying soil, cause eutrophication from the 

discharge of groundwater into surface water at springs and become a health hazard to animals and 

humans (McClay et al., 2001).  Even though a small amount of NO3 in water can be harmless, high 

levels of NO3 in water can affect human health.  Since groundwater serves as the main source of 

drinking water, the presence of NO3 in groundwater in excess may cause health problem when 

ingested.  Greater amounts of NO3 in the body can cause methemoglobinemia, commonly called 
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“blue baby syndrome".  Infants below the age of six months and pregnant women with low stomach 

acidity are most at risk from methemoglobinemia (Messier et al., 2014).  As such, the Environmental 

Protection Agency (EPA) has established a maximum NO3 contaminant level of 10 milligrams per 

Liter (10 mg/L) for drinking water, beyond which NO3 in groundwater could be harmful (EPA, 

1995).  

Several methods have been developed to assess the potential for groundwater to be 

contaminated by NO3 or other pollutants.  These methods can be grouped into three categories: 

Overlay and Index Methods, Process Based Methods, and Statistical Methods (Tesoriero et al., 1998; 

Thirumalaivasan et al., 2003).  Overlay and Index methods overlay the layers of factors known to 

influence the movement of pollutants from the ground surface to the water table to create a 

vulnerability index map using specified vulnerability indices (Tirkey et al, 2013).  Process Based 

Methods use a structured set of activities or processes designed to assess groundwater vulnerability, 

whereas Statistical Methods mainly use statistical analysis to establish the relationship between the 

spatial variables and existing pollutants in groundwater.  One of the most widely used groundwater 

vulnerability mapping methods is the “DRASTIC” model, which falls under the Overlay and Index 

category (EPA, 1993; Thirumalaivasan et al., 2003).     

 

1.1 Background Information 

The DRASTIC model was developed in the United States with the support of the EPA as a 

tool to assess aquifer vulnerability in multiple hydrogeologic settings based on a vulnerability index 

(Aller et al., 1987; Babiker et al., 2005; Al-Rawabdeh et al., 2013).  A hydrogeologic setting is a 

composite description of all main geologic and hydrologic factors that affect the movement of 

groundwater into, through, and out of a zone or region. DRASTIC is one of the most widely used 
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models to assess groundwater vulnerability to potential contaminants (Al-Rawabdeh et al., 2013). It 

is a weight-and-rating based model that integrates several factors to produce the desired vulnerability 

index map of a chosen region. DRASTIC uses a seven parametric system consisting of Depth to 

water (D), net Recharge (R), Aquifer media (A), Soil media (S), Topography (T), Impact of vadose 

zone (I), and hydraulic Conductivity (C) to create the vulnerability map. Table 3.1 gives the detailed 

description of each parameter. 

Table 3.1 Description of DRASTIC model parameters 

Parameters Description 

D Depth to water is the depth from the ground surface to the water table or to the 

confining layer of a confined aquifer. 

R Net recharge is the amount of water released onto the ground surface that 

infiltrates and reaches the aquifer. 

A Aquifer media refers to the type of underlying rock that serves as the aquifer. 

S Soil media is the uppermost portion of the vadose zone and describes soil cover 

characteristics. 

T Topography is the slope variability of the land surface.  

I Impact on vadose zone refers to the unsaturated zone above the water table. 

C Hydraulic conductivity describes the ability of water to flow within the aquifer 

material. 

 

Constant weights are assigned to these parameters based on their pollution potentials and a 

variable rating based on ranges or significance of the media type.   DRASTIC model has been used 

by several researchers for groundwater and aquifer vulnerability assessment worldwide (Saidi et al., 

2010; Secunda et al., 1998; Neshat et al., 2014).  Fritch et al. (2000) used DRASTIC to assess the 

Paluxy aquifer’s vulnerability to contamination in central Texas, USA.  Babiker et al. (2005) used 

DRASTIC model to assess aquifer vulnerability of Kakamigahara Heights Gifu Prefecture and 

Central Japan. Jamrah et al (2008) also used the model in their study of groundwater vulnerability 

assessment in the coastal region of Oman.  DRASTIC models produce regional maps delineating 
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areas of low, moderate, and high vulnerability, which could be followed up with further site specific 

studies.  

DRASTIC model is, however, rigid in assigning weights and rates to its parameters, which in 

some cases does not result in accurate assessments (Rupert, 2001).   Researchers have indicated 

some disadvantages, where the influence of regional topography, geology, and land cover 

characteristics are not considered in the model computation, as such the same weights and rating 

values are used everywhere (Javadi et al., 2011). However, to better address this issue, researchers 

have adapted to several modifications of the original DRASTIC model have been adopted to refine 

the representation of a region’s specific hydrogeologic and land cover settings (Thirumalaivasan et 

al., 2003; Babiker et al., 2005).  The modifications could be in the form of (i) incorporation of other 

parameters, (ii) removal of existing parameters, and (iii) manipulation of the assigned weights and 

ratings. Data sources such as groundwater flow, rate of groundwater flow, and source of 

groundwater recharge were used by Brown (1998) in addition to DRASTIC parameters in the study 

of vulnerability assessment of the Heretaunga plain aquifer in New Zealand (Thirumalaivasan et al, 

2003). Neshat et al. (2014) used a modified DRASTIC by manipulating the assigned weights and 

rates in estimating groundwater vulnerability to pollution in the Kerman Agricultural Area of Iran. A 

modified DRASTIC was also implemented by removing existing parameters in a nitrate based study 

in Jilin City of northeastern China (Huan et al., 2012). Several other studies including Wang et al., 

(2012), Sener et al., (2013), Fritch et al., (2000), Meng et al., (2007), and Javadi et al., (2010) have 

used modified DRASTIC models to test for groundwater susceptibility to contamination. Several 

studies indicated that DRASTIC model results could be used to detect nitrate pollution in 

groundwater (Javadi, et al., 2010; Huan et al., 2012; Remesan and Panda, 2008). A study by 

Antonakos and Lambrakis (2006) focused on the development and testing of three hybrid methods 
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for the assessment of aquifer vulnerability to nitrates based on DRASTIC modeling in NE Korinthia, 

Greece. Similar studies by Al-Adamat et al. (2003), Neshat et al. (2014), and Javadi et al. (2010) 

also revealed that modified DRASTIC models using nitrate could be effectively used to predict 

groundwater vulnerability.  

 

1.2 Study Objective 

The main objectives of this study are to (i) assess the vulnerability of groundwater to 

contamination using DRASTIC parameters established by the US EPA and (ii) improve the 

vulnerability model using land cover and nitrate concentrations in the groundwater through advanced 

geospatial analyses. 

 

2.0 Study Area  

Buncombe County, North Carolina was selected as a case study to demonstrate the 

applicability of the proposed method (Fig 3.1).  Buncombe County is located in the western North 

Carolina in the Blue Ridge Physiographic province. The county is bordered to the north by Madison 

and Yancey counties, to the south by Henderson County, to the east by Rutherford and McDowell 

counties and to the west by Haywood County. Buncombe County is also bordered to the west by the 

Appalachian Mountains and to the east by Black Mountains. The county covers a total area of 660 

mi2, of which 657 mi2 is land and 3.5 mi2 is water (US Census Bureau, 2010).  The average annual 

temperature of Buncombe County is 55.83°F, and the average annual precipitation is 40.92in.  

Buncombe County consists of high, smooth-rounded mountains surrounded by streams 

flowing in narrow valleys and is underlain by bedrock consisting of igneous, meta-igneous, and 

sedimentary rocks (Aller et al., 1987).  Aquifers in Buncombe County are mostly found in the 
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crystalline metamorphic and igneous rocks (Trap and Horn, 1997) where fractures serve as the 

primary storage for groundwater (Drever, 1997). Wells located in valleys typically have shallow 

water tables and are more susceptible to contamination than wells located in hilly areas (Burow et 

al., 2010).   
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Fig 3.1 Map of Buncombe County, North Carolina, USA (Study Area) 
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3.0 Method of study 

The methods of consisted of three steps: (1) Input Data Collection, (2) Vulnerability Model 

Preparation, and (3) Model calibration and Preparation of Final Vulnerability Map.  The flowchart 

represents a step-by-step research plan (fig 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Methodology for groundwater vulnerability assessment using DRASTIC Model in GIS 
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3.1 Input Data Collection 

DRASTIC parameters used in the study include Depth to water, net Recharge, Aquifer 

media, Soil media, Topography (percent slope), Impact of vadose zone, and hydraulic Conductivity.  

Additional parameters used are land cover and nitrate concentrations in private drinking water wells.  

Data used for this study were obtained from the Geospatial Data Gateway (Geospatial Data 

Gateway: https://datagateway.nrcs.usda.gov/) and North Carolina Department of Natural Resources 

Center. The following sections explain each parameter in detail.  

Depth to water table (D): The depth to water table data obtained from the North Carolina 

Department of Natural Resources Center was geocoded in ArcMap using the ArcGIS Online 

Geocoding Service to create a point map. The Geostatistical Analyst (GA) tool in ArcMap was then 

used to create a continuous predicted depth water table surface (using ordinary kriging interpolation) 

then converted into a raster file for further analysis. The depth to water table map was then classified 

into ranges with ratings ranging from 1 for deeper water tables (lowest impact on vulnerability) to 10 

for shallow water tables (highest impact on vulnerability) assigned to each class. The depth to water 

map is given in Fig 3.3A.  

Net Recharge (R): In this study, average annual precipitation recorded in inches was used as the 

major source of recharge. The recharge map was classified using the class ranges provided by EPA’s 

DRASTIC model from 1 for low recharge value (lowest impact on vulnerability) to 10 for high 

recharge value (highest impact on vulnerability) (Table 3.1). Ratings were then assigned to the 

individual classes. The net recharge map of the area is given in Fig 3.3A. 

Aquifer media (A): The map for the aquifer media layer was prepared from Buncombe County’s 

geology map. Several rock types are present in the county including Ashe Metamorphic Suite and 

Tallulah Falls Formation (Muscovite-biotite gneiss), Brevard Fault Zone, Amphibolite, Meta-



61 
 

ultramafic Rock, Great Smokey Group, Henderson Gneiss, and Biotite Gneiss and Schist.  Weights 

and ratings were assigned to the aquifer media based on the type of rock formation and the degree of 

permeability. Metamorphic rock/Serpentine, which is the most vulnerable to contamination due to its 

high permeability, was given a rating of 8. The least vulnerable aquifer media; granite gneiss with 

amphibolite, was assigned the lowest rating value of 2 due to its low permeability rate. The types of 

aquifer media within the county are given in Fig 3.3A. 

Soil media (S): Hydrologic soil group data in Buncombe County were used to create the soil media 

layer (Fig 3.3A). Soils are classified into hydrologic groups based on their runoff potentials. In the 

hydrologic soil group, A represents soil with high infiltration rates which consist mainly of deep, 

well-drained to excessively drained sands or gravelly sands. Group B represents soil with moderate 

infiltration rates which consist of well-drained soils that have moderately fine to moderately coarse 

texture. This soil group has a moderate rate of water transmission. The goup C soil group has low 

infiltration rates and is made up of soils that retard the downward movement of water. D is the soil 

group with the lowest infiltration rate and mainly consist of clay. Some areas in the ounty also had 

mixed hydrogeologic soil groups such as A/D, B/D and C/D. These soil groups were rated according 

to their rate of infiltration. Higher ratings were assigned to the group with the highest infiltation rate 

and lower ratings were assigned to the group with the lowest infiltration rate.  

Topography (T): For the topography map, a digital elevation model (DEM) at a resolution of 3 m2 

was used to create the percent slope of the area. Hilly areas were assigned low rating values and 

lowlands were given high rating values. The topography map of the study area is given in Fig 3.3B. 

Impact of vadose zone (I): In this study, percent sand was used as the vadose zone since sand is the 

medium through which water can easily penetrate. High percent sand shows high infiltration rates, 

hence high vulnerability, whereas low percent sand shows low infiltration rates, hence low 
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vulnerability. Rating was assigned from 10 (high percent sand) to 1 (low percent) sand. Fig 3.3B 

represents the vadose zone of the study area. 

Hydraulic Conductivity (C): Hydraulic conductivity of the aquifer is determined by the amount 

and connectivity of void spaces within the aquifer which may occur as a result of factors like 

fracturing and bedding planes. The hydraulic conductivity of the area varied from 0 to 9.2 x10- 5 m/s.  

Rating was assigned to the hydraulic conductivity layer based on the rate of movement of water in 

the soil. High values were assigned high ratings, whereas low values were assigned low rating 

values. Buncombe County’s hydraulic conductivity is given in Fig 3.3B 

Land cover (LC): Land cover refers to the physical material such as grass, trees, bare ground, 

developed open space, hay/pasture, and forest found on the surface of the earth. Land cover within a 

zone tends to have impact on groundwater depending on the type of land cover present. The most 

vulnerably landcover types in Buncombe County are hay/pasture and developed open spaces while 

the least vulnerable land cover types are the forested zones. In the modified DRASTIC, Buncombe 

County’s land cover (Fig 3.3B) was incorporated into the model. Land cover data were obtained 

from the Geospatial Data Gateway. Parameters included in the modified DRASTIC and the assigned 

weight for the individual parameters are shown in table 3.2. 

Nitrate data 

  Data on nitrate concentrations in 623 groundwater wells in Buncombe County were 

acquired from the North Carolina Division of Water Resources. Each well data record contained 

information on address location or latitude and longitude from a cartesian coordinate system. The 

dataset was geocoded using the ArcGIS Online World Geocode Service to create a nitrate 

concentration location point map in ArcGIS 10.3. A total of 610 nitrate concentrated wells were 
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matched during the geocoding process and was used for further analysis. The point map created was 

used to generate a continuous predicted nitrate surface with the Geostatistical Analyst tool in 

ArcMap using ordinary kriging interpolation. 

 

 

Fig 3.3: Parameters used in EPA vulnerability analysis: Depth to water (A), Net recharge (B), 

Aquifer media (C), and Soil media (D) 
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Fig 3.4: Parameters used in EPA vulnerability analysis: Topography (A), Impact of vadose 

zone (B), Hydraulic conductivity (C) and Land cover types (D)  
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Table 3.2 DRASTIC parameters and ratings used in the study 

Parameters Range Rating EPA based 

weight 

(DRASTIC) 

weight 

(Modified 

DRASTIC) 

Depth to water table (D) in (meters) 99-1300 1 5 - 

Net recharge (R) in (inches) 36-69 10 4 1 

Aquifer media (A) 

 

metamorphic rock/ serpentine 

schist/ phylonite 

metasedimentary rock/ mica schist 

amphibolite/ metasedimentary rock 

biotite gneiss/ amphibolite 

gneiss/ mica schist 

granitic gneiss/ amphibolite 

8 

7 

6 

5 

4 

3 

2 

 

 

 

3 

 

 

 

- 

Soil media (S) 

 

A 

B 

C 

A/D 

B/D 

C/D 

10 

8 

6 

4 

3 

1 

 

 

2 

 

 

4 

Topography (T) in 

(Percent Slope) 

0-2 

2-6 

6-12 

12-18 

>18 

10 

9 

5 

3 

1 

 

 

1 

 

 

3 

Impact of vadose zone (I)  

 

1-36 

37-45 

46-51 

52-58 

59-61 

62-63 

64-68 

66-76 

77-98 

2 

3 

4 

5 

6 

7 

8 

9 

10 

5 - 

Hydraulic Conductivity (C) in 

(micrometer/sec) 

 

1-5 

6-9 

10-12 

13-14 

15-17 

18-20 

21-24 

25-31 

32-92 

2 

3 

4 

5 

6 

7 

8 

9 

10 

3 2 

Land Cover (LC) Hay/Pasture 

Developed, Open Space 

Developed, Low Intensity/Cultivated 

Crops 

Developed, Medium Intensity 

Developed, High Intensity 

Barren Land 

Shrub/Scrub 

Deciduous Forest/Evergreen Forest 

/Mixed Forest/Herbaceous 

Woody Wetlands 

Open Water/Emergent Herbaceous  

10 

9 

8 

 

7 

6 

5 

4 

3 

3 

2 

     1 

 

 

 

 

 

 

 

- 

 

 

 

 

 

 

5 
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3.2 Vulnerability Model Preparation 

The input parameter layers were grouped using ranges proposed by EPA and ratings on a 

scale of 1 to 10 were assigned to each range based on its pollution potential (Table 3.2).  All the 

factors were assigned weights proposed by the US EPA, based on the significance of each factor in 

transporting contaminants. Raster calculator was then used to calculate the DRASTIC index 

vulnerability model using the following equation: 

Drastic index = 𝐷𝑟𝐷𝑤 + 𝑅𝑟𝑅𝑤  + 𝐴𝑟𝐴𝑤  + 𝑆𝑟𝑆𝑤  + 𝑇𝑟𝑇𝑤  + 𝐼𝑟𝐼𝑤  + 𝐶𝑟𝐶𝑤   

Where D, R, A, S, T, I, and C represent the seven parameters and the r and w subscripts represent the 

ratings and assigned weights of each of the parameters. The model yielded a numeric vulnerability 

index map. Higher values depicted areas with high vulnerability and lower values depicted areas 

with low vulnerability. Using quantile classification, the vulnerability index map was regrouped into 

no risk, low, moderate, high, and very high pollution potential areas. 

Modified DRASTIC: To better represent the groundwater vulnerability of Buncombe County, based 

on regional hydrogeology, topography, and land cover distribution, a knowledge-based heuristic 

method was adopted.  Rating values for the DRASTIC parameters were maintained while the 

weights of the EPA DRASTIC model were modified (Table 3.2).  The modification, included (a) 

reduction in weights of depth to water table and aquifer media as deep seated groundwater in 

crystalline bedrock are less likely to get contaminated (Lindsey and Bickford, 1999); (b) increase in 

weights of the surficial deposits or soil media, as for deeper aquifers, the contaminant loading from 

the surface may play an important role in groundwater vulnerability; (c) increase in weights of 

topographic slope, as in a mountainous region the valleys become more vulnerable to contaminants, 

due to water accumulation from increased runoff; (d) finally addition of a land cover layer for 

analysis, as land cover is a known source of contamination in North Carolina.  
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The modified DRASTIC vulnerability index was calculated using the equation:  

Drastic index =  𝑅𝑟𝑅𝑤  + 𝑆𝑟𝑆𝑤  + 𝑇𝑟𝑇𝑤  + 𝐶𝑟𝐶𝑤  +𝐿𝐶𝑟𝐿𝐶𝑤   

The vulnerability index map produced was grouped into very low vulnerability zones, low 

vulnerability zones, medium vulnerability zones, high vulnerability and very high vulnerability 

zones using quantile classification. 

Regression DRASTIC Model 

A data-driven approach was taken to assign weights to each DRASTIC layer and land cover.  

In this approach, the distribution of high nitrate content greater than 1mg/L was used, where 70% 

data were used to train the DRASTIC model, and 30% were left for model validation.  The Ordinary 

Least Square (OLS) regression, Spatial Lag, and Spatial Error models were considered to predict the 

groundwater vulnerability using nitrate as the dependent variable and the individual DRASTIC 

layers and landcover layer as independent variables.  

The relationship between the variables were modeled using the equation: 

                       Y = β1 X1 + β2 X2 + β3 X3 ……… + βn Xn + εi 

Where 1, 2,….., n are number of variables, Y is nitrate, X1, X2, …. Xp are the DRASTIC and land 

cover parameters, and β1, β2, …..., βp are regression coefficients, i.e., the weights used in the model. 

The regression equation was then used in ArcMap to calculate the regression DRASTIC index map. 

The vulnerability index map was classified using quantile into very low vulnerability zones, low 

vulnerability zones, medium vulnerability zones, high vulnerability and very high vulnerability 

zones. 
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4.0 Results  

4.1 Descriptive Statistics 

Gneiss coupled with mica schist represents the most dominant aquifer type in Buncombe 

County, followed by metasedimentary/mica schist, whereas the least dominant aquifer type is 

amphibolite/metasedimentary. Land cover type, conversely, is highly dominated by deciduous forest, 

followed by hay/pasture and developed open space. The least dominant of the land cover type in the 

county is emergent herbaceous wetland. Buncombe County’s terrain elevation ranges from 395.53m 

(lowest area) to 1939.44m (highest area) with a percent rise (% slope) from 0 to 730. Almost all the 

areas in Buncombe County fall within 0 to 120% with just a few above the 120% rise. Hydrologic 

soil group B is the most dominant soil group in the county, followed by group A, while the least 

dominant soil type is group C/D. Table 3.3 summarizes the descriptive statistics for depth to water 

table (D), net recharge (R), impact of vadose zone (i.e., % sand), and the hydraulic conductivity (C) 

of the aquifers in the county. 

 

Table 3.3 Descriptive statistics of Depth to water, net Recharge, Impact of vadose zone, and 

hydraulic Conductivity parameters 

 D (m) R (In) I (%) C (µm/s) 

Mean 347.172 52.5 50.38168 17.25516 

Standard deviation 179.5178 9.9582 15.41168 10.74713 

Minimum 0 36 0 0 

Maximum 1300 69 97.9 92 

Range 1300 33 97.9 92 
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4.2 EPA DRASTIC model 

The DRASTIC index model calculated per EPA weighting and rating system provided a 

numerical range of values where higher DRASTIC values equate to greater potential of groundwater 

vulnerability within the study area.  The computed DRASTIC index values varied from 62 to 170 

and were categorized into five groups: very low (62-93), low (94-102), moderate (103-110), high 

(111-122) and very high (123-170) vulnerability (Table 3.4).  The results showed that, out of the 

total area of the county, 418.41 km² (24.57%) of the area fell in the very low vulnerability zone with 

the DRASTIC index ranging from 62 to 93. A total area of 276.2 km² (16.22%) was found within 

low vulnerability zones with a DRASTIC index value from 94 to 102.  Moderate and high 

vulnerability zones covered by 324.32 km² and 312.2 km², representing 19.04% and 18.33% of the 

total area with DRASTIC index ranging from 103 to 110 and 111 to 122, respectively.  The 

DRASTIC vulnerability map showed that 371.8km ² (21.83%) of the study area was classified as 

having a very high pollution potential with DRASTIC index values ranging from 123 to 170.   

 

Table 3.4 DRASTIC index values and their respective vulnerability zones and areas covered 

within the zones. 

DRASTIC index value Vulnerability Zone Area (km²) % Area 

62 – 93 Very low 418.41 24.57 

94 – 102 Low  276.20 16.22 

103 – 110 Moderate   324.32 19.04 

111 – 122 High  312.20 18.33 

123 – 170 Very high 371.80 21.83 
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Based on the vulnerability map, a color scheme ranging from green to red was applied to the 

individual vulnerability zones with green representing the least vulnerable zone and red the most 

vulnerable zone.  The high vulnerable zone areas were distributed across the county, mostly in the 

eastern part, and some near the western boundary of the county. Very low to low vulnerability areas 

were concentrated in the central part of the county.  Asheville, which is one of the most populated 

areas, lies in a low vulnerability zone together with other cities like Leicester, Alexander, Candler, 

and Woodfin.   

 

Fig 3.5 EPA DRASTIC index vulnerability map of Buncombe County, NC 
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4.3 Modified DRASTIC model 

The DRASTIC index provided vulnerability values ranging from 24 to 150.  The vulnerability map 

was categorized into five classes using natural breaks: no risk vulnerability (24-65), low (66-80), 

moderate (81-96), high (97-111), and very high vulnerability (112-150) (Table 3.5).  The results 

showed that, out of the total area, 379.85 km² (22.31%) lies in the no risk vulnerability zone with 

DRASTIC index ranging from 24 to 59. An area of 599.46 km² (35.2%) was assigned to the low 

vulnerability zone with DRASTIC index values from 66 to 80.  A moderate and high vulnerability 

zone within the county was covered by 32129 km² and 224 km² representing 18.87%, and 13.15%, 

with DRASTIC index values from 81 to 96, and 97 to 111, respectively.  

 Table 3.5 Modified DRASTIC index values and their respective vulnerability zones and areas 

covered within the zones. 

DRASTIC index value Vulnerability Zone Area (km²) % Area 

24 - 65 Very low  379.85 22.31 

66 - 80 Low  599.46 35.20 

81 - 96 Moderate   321.29 18.87 

97 - 111 High  224 13.15 

112 - 150 Very high 178.21 10.47 

 

The DRASTIC vulnerability map showed that about 10.47% of the area was classified as 

being very highly vulnerable with DRASTIC index values ranging between 112 and 150, covering 

about 178.21 km² of the study area.  Similarly, a color scheme ranging from green to red was applied 

to the individual vulnerability zones with green representing the least vulnerable zone and red the 

most vulnerable zone.  High vulnerability areas were found mainly in the central and western part of 

the county as well as some areas in the eastern side.  No to low groundwater vulnerability were 
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identified in the eastern/northeastern part and along the western boundary.  Moderate and high 

vulnerability zones were distributed across the county with most of those areas centered in the 

central part of the county. Most of Asheville lies in moderate to very high vulnerable zones together 

with other cities like Leicester, Alexander, Candler and Woodfin.  

 

 

Fig 3.6   Modified DRASTIC index vulnerability map of Buncombe County, NC 
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4.4 Regression based DRASTIC model 

Out of the seven DRASTIC parameters, only topography (0.395 at p<0.09), hydraulic conductivity 

(0.306 at p<0.049) and land cover (0.309 at p<0.046) indicated significant correlation with the 

nitrate data.  

Using 70% of the NO3 concentration data as dependent variable and the corresponding 

DRASTIC, and landcover as independent variables a regression-based model was created to predict 

groundwater vulnerability.  The combined DRASTIC and landcover model accounted for 27% of the 

variability (adjusted R² = 0.27, p = 0.015). The analyses of individual independent variables are 

summarized in Table 3.6, and indicate that topography, hydraulic conductivity, and land cover 

significantly contribute to groundwater vulnerability. After removing the variables with high p values, 

the adjusted R² value did not change. The residuals were normally distributed, satisfying the criteria 

for evaluating a linear relationship (Fig 3.7).  A test for spatial autocorrelation was performed, but 

neither spatial lag nor spatial error models were significant, so an OLS regression model using the 

significant variables was used to prepare a regression DRASTIC index.  The coefficients of the 

independent variables were assigned as weights in ArcMap with raster calculator using the equation: 

                       Y(N03) = 0.69 + 0.23T + 0.45C + 0.22LC  

Where Y is the dependent variable (nitrate), and the independent variables are topography (T), 

hydraulic conductivity (C), and land cover (LC) respectively. 
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Table: 3.6 Regression model result using all variables and only significant variables 

 All Variables Significant Variables 

Variable Coefficient Probability  Coefficient Probability  

CONSTANT 2.09 0.38  0.69 0.27  

Water_depth 0.18 0.29  - -  

Net_Recharge 0.16 0.65  - -  

Aquifer_media -0.21 0.19  - -  

Soil_media -0.04 0.77  - -  

Topography 0.26 0.07  0.23 0.05  

Impact_vz 0.12 0.32  - -  

H_Conductivity 0.59 0.01  0.45 0.02  

Land Cover 0.21 0.04  0.22 0.02  

 

 

Normal Q-Q Plot of residuals 

 
Fig 3.7 Relationship between observed and expected normal values of nitrate concentrations 

The regression DRASTIC index vulnerability map (Fig 3.8) yielded values ranging from 2.97 

to 10.7.  The index values were categorized into a very low risk zone: 2.974–4.313, which covers 

27.18% of the county, a low risk zone: 4.314–5.095(28.33%), a medium risk zone: 5.096–
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5.865(19.25%), and high and very high vulnerability risk zones: 5.866–6.774(13.22%) and 6.775–

10.705(12.01%) respectively. Table 3.7 summarizes the vulnerability category of the regression-

based DRASTIC model and the area covered by each category. 

 

Fig 3.8 Regression DRASTIC index vulnerability map of Buncombe County, NC 

 

 

 

 



76 
 

Table 3.7 Modified DRASTIC index values and their respective vulnerability zones and areas 

covered within the zones. 

DRASTIC index value Vulnerability Zone Area (km²) % Area 

2.974 – 4.313  Very low 463.62 27.18 

4.314 – 5.095  Low  483.23 28.33 

5.096 – 5.865  Moderate   328.38 19.25 

5.866 – 6.774  High  225.40 13.22 

6.775 – 10.705  Very high 204.91 12.01 

 

4.5 Model Validation  

All three vulnerability maps were overlaid with the interpolated nitrate concentration surface 

to visually compare the spatial distribution of nitrate concentration with respect to the three 

vulnerability index maps (Fig. 3.9). In the regression-based DRASTIC model, high nitrate 

concentrations were mostly seen in high vulnerability areas with few appearing in medium to low 

vulnerability zones.  Unlike the regression DRASTIC, the EPA DRASTIC index vulnerability map 

did not accurately represent the nitrate concentrations within the county.  Most of the high nitrate 

concentrations fell within no and low vulnerability zones with only a few located in medium to high 

vulnerability zones.  Even though modified DRASTIC did not provide the best result in terms of 

representing nitrate concentration within the county, it provided a better result when compared to the 

EPA DRASTIC model.  

Additionally, using 30% of the data set aside for model validation, percentages of high nitrate 

concentrations (>1ppm/L) within each vulnerability category of the three DRASTIC maps were 

compared in table 3.8. The regression DRASTIC model correctly plotted 34.4% of high nitrate 

concentration values in medium to very high vulnerability categories when compared to the EPA and 
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Modified DRASTIC models, which plotted 11.9% and 14.3%, respectively.  The visual and 

quantitative validation result showed that the regression DRASTIC model best represented the 

groundwater vulnerability to pollutants in Buncombe County using nitrate concentrations as a 

reference.   

 

Table 3.8 Percentage of high nitrate within the vulnerability category for EPA, Modified and 

Regression DRASTIC models. 

Nitrate Conc 

(ppm/L) 

Vulnerability 

Category 

EPA DRASTIC 

(% of Nitrate) 

Modified 

DRASTIC 

(% of Nitrate) 

Regression 

DRASTIC 

(% of Nitrate) 

2.0 – 3.4 Medium 9.5 7.1 21.4 

3.4-5.6 High 0 4.8 4.8 

5.6-8.5 Very High 2.4 2.4 7.1 

Total 11.9 14.3 34.4 
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Fig 3.9 Comparison of EPA DRASTIC, Modified DRASTIC and Regression DRASTIC index 

vulnerability map  

 

5.0 Discussion 

5.1 Model Comparison 

The EPA-recommended DRASTIC method has been used by several researchers to assess 

aquifer vulnerability in different areas.  Though the EPA DRASTIC model usually provides 

reasonable results for vulnerability assessment of shallow groundwater areas, the accuracy of the 

models often depends on the area’s regional hydrogeological setting. Often EPA DRASTIC models 

are modified to not only include specific intrinsic hydrogeological properties (hydraulic 
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conductivity, porosity), but also to take account of the proximity of contaminant sources and their 

particular characteristics (location, chemical interaction with surface water) that could impact the 

quality of groundwater (Meng et al., 2007; Javadi et al., 2010). Since nitrate is not normally present 

in groundwater under natural conditions, it is often used as a good indicator of contaminant 

movement based on land cover type (e.g., agricultural lands, hay and pasture fields, urban areas with 

high use of fertilizers, etc).  In this study, an experience-based modified DRASTIC method was used 

where the assigned weight for DRASTIC parameters were adjusted, and land cover data were added 

to represent the current source of potential nitrate contaminant. Similar studies conducted using 

experience-based approaches revealed that the method works well for regional scale vulnerability 

assessment, however due to the use of relative weights based on the expert opinion, it lacks a more 

rigorous data-driven methodology (Gupta, 2014; Wang et al., 2012, Sener et al., 2013).  To 

overcome the limitations of a relative weight based approach, this study also used a data-driven 

statistical approach (Regression DRASTIC).  High nitrate concentration data from private drinking 

water wells were used as a dependent variable to model the groundwater vulnerability using 

DRASTIC variables and landcover as independent variables. Several studies used the linear 

regression approach and found successful improvement in groundwater vulnerability prediction 

(Saha and Alam, 2014; Chenini and Khemiri, 2009; Muthulakshmi et al., 2013).   

In the present study, all three different types of DRASTIC models identified areas vulnerable 

to groundwater contamination in relation to other areas.  In the EPA DRASTIC model, very low to 

low vulnerability were seen in valleys around the central and extreme western part of the county, 

whereas medium to high vulnerability were located in the eastern, northeastern, and southeastern 

parts of county in the ridges with some traces of low vulnerability. This output was not realistic as 

areas of low elevation indicated no to low vulnerable zone, where in reality, most groundwater 
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pollution is generally accumulated in the valley region from surface runoff, agricultural practice, and 

presence of hay and pasture land in valley region on Buncombe County. Unlike the EPA, the 

modified and the regression-based DRASTIC models provided a reversed result in terms of 

vulnerability categories and their location. Medium to high vulnerability were located in the central, 

southern (valley areas), and some areas in the northern part of the county for both the modified and 

regression-based DRASTIC models. Very low to low vulnerability areas were situated in the eastern 

and extreme western part of the county, mostly in the ridges. Both outputs are realistic in terms of 

presence of pollutants, especially Nitrates.  Cities like Alexander, Swannanoa, Candler Royal Pines, 

and Arden were located within medium to high vulnerability zones.  However, when the models 

were overlaid with the nitrate concentration map, the regression-based DRASTIC model best 

depicted areas with high nitrate (2 mg/L and above). These areas were found in the medium and high 

vulnerability zones.  

5.2 Model Parameters 

In the Modified DRASTIC model topography, hydraulic conductivity of soil, landcover, soil 

media, and net recharge were considered, while depth of water table, aquifer media, and impact of 

vadose zone were eliminated from the model input.  Depth to water table is an important factor in 

shallow aquifers, but there is the tendency for natural attenuation to occur as the contaminants 

percolate through aquifer with a deeper water table (Al-Zabet, 2002; Gupta, 2014). All wells located 

in Buncombe County are deep wells with an average depth of 347m. Therefore, the depth of water 

table was not incorporated in the modified model. Aquifer media controls the route and path of 

contaminant transport. In the study area, the crystalline deep fractured aquifers are mainly made up 

of metasedimentary rocks, and did not influence the aquifer vulnerability model based on an 

agricultural contaminant like nitrate.  A study from Lindsey and Bickford (1999) examining 
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crystalline rocks of Pennsylvania, indicated that crystalline aquifers are less susceptible to 

agricultural and landuse contaminants.  The impact of vadose zone is difficult to estimate and 

regional vadose zone maps are generally not available for planning purposes (Li and Zhao, 2011), 

and were not available for Buncombe County, NC.  Often impact of vadose zone is estimated from 

soil texture, thickness, and hydraulic conductivity (Bartzas et al., 2015).  In this study, soil texture in 

terms of hydrologic soil group, and hydraulic conductivity were used, thus impact of vadose zone 

layer was eliminated from the modified DRASTIC model. 

The Regression DRASTIC model further refined the association between groundwater 

vulnerability and the related variables. The topography, soil hydraulic conductivity, and land cover 

indicated positive significant correlation with nitrate concentrations, as a representation to 

groundwater vulnerability.  Different studies also found that hydraulic conductivity, topography, and 

land cover positively relate to groundwater vulnerability (Saha and Alam, 2014; Muhammad et al., 

2015; Colins et al., 2016).  Topography refers to slope variability of the land surface. The degree of 

slope determines the likelihood of a pollutant to run off or remain on the ground surface long enough 

to infiltrate into the ground. Steep slope terrain has high runoff, hence low vulnerability, whereas 

shallow slope terrain has low runoff, hence high vulnerability to water quality. The central part of 

the county had lower elevations while the eastern part and the extreme west had higher elevations.   

In the study, the lowlands indicated areas of high groundwater vulnerability.  The rate of ground 

water movement in the soil and fractured crystalline aquifer is controlled by hydraulic conductivity, 

and the average hydraulic conductivity was 1.7 X10⁻5 m/s, indicative of a high hydraulic 

conductivity media.  Land cover in Buncombe County included deciduous and evergreen forest, bare 

ground, developed open space, hay/pasture, and croplands.  The dominance of agricultural land, 

hay/pasture area, developed open spaces, and possibly urban parks or golf courses has influenced the 
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nitrate content, and consequently groundwater vulnerability. Additionally, the regression DRASTIC 

model showed high vulnerable areas along drainage lines, which might indicate possible surface 

water-groundwater interaction through fractured bedrock. Further study is required to examine the 

potential of possible surface water-groundwater interaction.  

 

5.3 Study Limitations and Future Research 

Most of the residents located in the urban jurisdictions are provided with municipal drinking 

water and therefore do not depend on groundwater for drinking supplies. Such residents might not be 

directly affected by the existence of contaminants in groundwater even though those areas were 

highly vulnerable. Another limitation was the use of only nitrate concentrations as a check to 

groundwater vulnerability in the county. Using other chemicals mostly found in water in addition to 

nitrate could have yielded a more reliable vulnerability result. The nitrate data had missing 

information on wells in the central and forested areas in the county which could have affected the 

accuracy of the interpolated surface for nitrate concentrations (underestimation/overestimation of 

nitrate concentration in those areas). Overlaying this map on the three DRASTIC models to compare 

the distribution of nitrate concentration with respect to the DRASTIC maps may not lead to a 

completely transparent comparison. 

Although the study had some limitations, future research should still be conducted using this 

study as the basis to perform more site-specific studies, especially in areas within medium to high 

vulnerability zones. Since this study points out areas with very low vulnerability to high 

vulnerability, it could serve as the baseline for estimating water quality in Buncombe County and 

can be used in further research to assess the kind of contaminants that may impact the groundwater 

within the area. Eventually, measures can be put in place to treat the contaminants. This study also 
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serves as a guide to estate planners and developers on site selection and how vulnerable the area is to 

contamination. 

 

6.0 Conclusion 

This research aimed to assess groundwater vulnerability to nitrate pollution in Buncombe 

County, NC located in Blue Ridge Physiographic Province.  Assessment of groundwater 

vulnerability in the study area has been achieved by using EPA recommended DRASTIC model, 

experience based heuristic DRASTIC model using landcover, and statistical based regression 

DRASTIC model using landcover and nitrate concentration in groundwater.  The study delineated 

areas with low, medium, high and very high, vulnerability using all three different methods.     

- High groundwater vulnerable areas were mostly concentrated in the central part of the 

county along lowland and valleys where hay and pasture land, and development are 

more dominant.  High vulnerable areas were also found along drainage lines, which 

indicate possible surface water-groundwater interaction via bedrock fault and fracture 

systems in the Blue Ridge Province.  

- Nitrate concentration in the study area correlated significantly with topography, soil 

hydraulic conductivity, and landcover.  Depth to water table, net recharge, aquifer media, 

soil media and impact of vadose zone were not significantly correlated with nitrate 

concentrations. 

- Regression DRASTIC plotted 34.4% of known high nitrate concentration values in 

medium to very high vulnerability categories when compared to 11.9% for EPA and 

14.3% for Modified DRASTIC.   
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- The Regression DRASTIC model was used to create the final groundwater vulnerability 

map and could explain 27% of the variability of the independent variables including 

topography, soil hydraulic conductivity, and landcover.     

The final groundwater vulnerability map can be useful in determining the most vulnerable 

areas that need detailed site specific investigation and monitoring, especially in terms of delineating 

vulnerable zones due to nitrate concentrations.  Additionally, groundwater vulnerability maps using 

this approach can be useful for policy makers and developers during groundwater management and 

protection especially in urban, agricultural, and pasture lands.  Finally, with efficiency in GIS 

environment, DRASTIC is an established and effective tool for analyzing groundwater vulnerability. 
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CHAPTER 4 

DISCUSSION AND MAJOR FINDINGS 

The first study predicted groundwater nitrate concentrations and its relation to land use and 

depth to water table in Buncombe County, NC using spatial and non-spatial statistical data analysis 

methods such as exploratory descriptive statistics, exploratory spatial data analysis, kriging and 

cokriging. 

The study presented some major finding which are: 

1. Nitrate contaminated wells in Buncombe County had concentrations ranging from 0.25 mg/L 

to 8.5 mg/L. Even though none of the concentrations exceeded the 10 mg/L standard limit set 

by the USEPA, some areas had NO3 concentrations approaching the EPA limit. The nitrate 

contaminated wells were distributed across the county except for the northeastern corner, 

Biltmore, urban areas, and forested areas. 

2. The Shapiro-Wilk Test of normality revealed that NO3 concentrations and the depth to water 

table were not normally distributed. Wells with high NO3 content (2.0mg/L) were positively 

correlated with landcover data (Spearman’s rho=0.24 at p=0.04). 

3. Histogram analysis conducted revealed that 37.14% of high NO3 concentration wells were 

located near hay and pasture land, 34.29% near developed urban open space, and 28.57% 

near deciduous forest. ANOVA test however indicated there is no significant difference in 

NO3 content between hay and pasture, developed urban open space, and deciduous forest 

land cover types. 

4. The spatial autocorrelation test using Moran’s I showed a significant cluster in the depth to 

water table data at both the local and global levels. Global Moran’s I had a value of 0.017, 

which was significant (pseudo p value = 0.001) at 999 permutations. Clusters of shallow 
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wells were located near wells with shallow depths and deep wells were located near other 

deep wells. The NO3 data conversely were spatially clustered only at the global level of 

Moran’s I. The existence of autocorrelation in both data provided the basis for further 

analysis with kriging and cokriging. 

5. Kriging interpolation method was used to create a predicted spatial distribution map of NO3 

concentrations in Buncombe County groundwater. 

6. Cokriging interpolation was used to evaluate the effect of landcover and depth to water table 

on the spatial distribution of NO3 concentrations across the county. The cross-validation 

matrix of the interpolated surfaces (kriging and cokriging) indicated that NO3 cokriged with 

landcover provided the best model in terms of accuracy metrics. 

7. The spatial distribution map of NO3 concentrations in Buncombe County indicated that areas 

like Barnardsville, Biltmore Forest, Woodfin, and Black Mountain had very low NO3 

concentrations (below 0.5 mg/L). Swannanoa had low NO3 concentration level above 0.5 

mg/L but not exceeding 0.8 mg/L. High NO3 content were present in Candler, Weaverville, 

Leicester Fairview, Arden, and some areas in Asheville.  

The second study assessed groundwater vulnerability to NO3 contamination in Buncombe County 

using EPA, Modified, and Regression-based DRASTIC methods. The parameters used in this study 

were Depth to water table (D), Net recharge (R), Aquifer media (A), Soil media (S), Topography 

(T), Impact of vadose zone (I), hydraulic conductivity (C), and Landcover (LC). 

The major findings from this study are as follows: 

1. EPA DRASTIC model was prepared using D, R, A, S, T, I, C. The vulnerability index model 

calculated per the USEPA weighting and rating system provided a numerical range of values 

(62-170) where high values represent high vulnerability and low values represent low 
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vulnerability. The EPA DRASTIC index values were categories into very low vulnerability 

zone: 62-95 which covers (29.25%) of the county, low risk zone: 96-109 (28.62%), medium 

risk zone: 110-123 (20.73%), high and very high vulnerability risk zones: 124-139 (19.63%) 

and 140-170 (1.65%). 

2. Modified DRASTIC model was created using R, S, T, C, LC parameters. The model’s 

vulnerability index provided values ranging from 24 to 150. The vulnerability map showed 

that, 21.07% of the county’s total area lies in the “very low vulnerability zone” with 

DRASTIC index value: 24 to 59. An area of 549 km² (32.24%) was found within low 

vulnerability zones with DRASTIC index values from 60 to 78.  A moderate and high 

vulnerability zone within the county was covered by 389km² and 267 km², representing 

22.85% and 15.67% with DRASTIC index values from 79 to 95, and 96 to 114, respectively.  

About 8.15% (139km²) of the county was classified as very high vulnerability potential area 

with DRASTIC index values ranging between 115 and 150. 

3. Correlation analysis conducted showed the existence of significant correlation between T, C, 

and LC and the nitrate data. These parameters were used as independent variables to predict 

NO3 (dependent variable) in groundwater and the results indicated that the DRASTIC and 

landcover accounted for 27% variability (adjusted R²=0.27, p = 0.015). OLS regression 

model with the significant variables (T, C, LC) was used to prepare a regression-based 

DRASTIC index and the coefficients of each parameter was assigned as DRASTIC weights. 

The vulnerability map created using regression yielded a numeric range of values which 

varied from 2.97 to 10.7.  The index map indicated that, 36.16% of the county’s total area 

with index value ranging from 2.974 to 4.867 lay in a very low vulnerability zone, 37.99% 
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(4.688-5.804) lay in a low vulnerability zone, 15.43% (5.805-6.900) in medium vulnerability, 

7.21% (6.901-8.145) and 3.21% (8.146-10.7) in high and very high vulnerability zones. 

4. The spatial distribution of nitrate concentration with respect to EPA, Modified, and 

Regression-based vulnerability index maps indicated that, the regression based vulnerability 

map best represented the spatial distribution of NO3 concentrations in Buncombe County. 

High NO3 concentrations were mostly seen in high vulnerability areas with few appearing in 

medium to low vulnerability zones.  Modified DRASTIC provided a better representation of 

NO3 concentrations whereas EPA DRASTIC on the other hand showed a reverse result: most 

of the high nitrate concentrations fell within very low and low vulnerability zones with only 

few located in medium to high vulnerability zones. 

Study Limitations and Future Research for Study 1 

Although the study objectives were accomplished, there were some unavoidable limitations. 

First of all, data on private drinking wells were not available for the National Forest areas and the 

incorporated urban areas.  This affected the prediction errors from the kriging / cokriging 

interpolated maps. Secondly, nitrate data were available for only 610 wells and there may be other 

private drinking wells not included in the data. These wells may have very high nitrate 

concentrations which could have impacted the results and findings of this study. Private drinking 

wells with missing information on depth to water table were excluded from the study. All this 

information could have helped to improve the accuracy of the predicted models. 

Despite the limitations, future studies can be conducted using this study as the basis to 

perform more site-specific research in high nitrate areas to monitor the wells located in those areas 

and detect the cause of the high nitrate content. It is recommended that further research be done 
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especially in deciduous forested areas and developed open space landcover areas to find out why 

nitrate content is high in those regions. 

Study Limitations and Future Research for Study 2 

Most of the residents located in the urban jurisdictions are provided with municipal drinking 

water and therefore do not depend on groundwater for drinking supplies. Such residents might not be 

directly affected by the existence of contaminants in groundwater even though those areas may be 

highly vulnerable. Another limitation was the use of only nitrate concentrations as a check to 

groundwater vulnerability in the county. Using other chemicals mostly found in water in addition to 

nitrate could have yielded a more reliable vulnerability result. The nitrate data had missing 

information on wells in the central and forested areas in the county which could have affected the 

accuracy of the interpolated surface for nitrate concentrations (underestimation/overestimation of 

nitrate concentration in those areas). Overlaying this map on the three DRASTIC models to compare 

the distribution of nitrate concentrations with respect to the DRASTIC maps may not lead to a 

completely transparent comparison. 

Although the study had some limitations, future research should still be conducted using this 

study as the basis to perform more site-specific studies, especially in areas within medium to high 

vulnerability zones. Since this study points out areas with low vulnerability to high vulnerability, it 

could serve as the baseline for estimating water quality in Buncombe County and can be used in 

further research to assess the kind of contaminants that may impact the groundwater within the area. 

Eventually, measures can be implemented to treat the contaminants. This study also serves as a 

guide to estate planners and developers on site selection and how vulnerable the area is to 

contamination. 
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