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Abstract

The blue hypergiant Cyg OB2 12 (B3Ia+) is a representative member of the class of very massive stars in a poorly
understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory.
PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density
structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper
levels of the forbidden lines of the He-like ions Si XIV and Mg XII. Comparison between the model and
observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere
or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal
plasma models, with average temperatures in excess of 10MK. The wind speed in Cyg OB2 12 is not high enough
to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used
archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not
detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if
Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the
second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue
hypergiants are likely products of massive binary evolution during which they either accreted a significant amount
of mass or already merged with their companions.

Key words: stars: individual (Cyg OB2 12) – stars: massive – stars: mass-loss – stars: winds, outflows –
supergiants – X-rays: stars

1. Introduction

Only a small number of stars have established masses in
excess of M100 . Though such heavy-weights are rare, their
formation, evolution, and deaths are of significant interest.

Very massive stars have the highest bolometric luminosities
among all stellar types, and are often located above the empiric
Humphreys–Davidson limit that restricts the domain of stable
stars (Humphreys & Davidson 1979) in the Hertzsprung-
Russell diagram (HRD). Their extremely large luminosities
allow us to observe them at large distances as well as in heavily
obscured regions (Barniske et al. 2008; Crowther et al. 2010).

Very massive stars display a rich variety of phenomena (e.g.,
luminous blue variables, LBVs) and populate various spectral
types. Among them are late-type nitrogen-sequence Wolf-
Rayet stars (WNh), Of/WNL transition type stars, and the blue
hypergiants with luminosity class Ia+. The latter class is the
subject of this study. The evolutionary relationship between
various types of very massive stars is not yet established,
despite large theoretical efforts (e.g., Sanyal et al. 2015).

Mass-loss plays a major role in determining the evolutionary
path of very massive stars. These stars may lose matter via
three mechanisms. First, matter can be lost via line-driven
winds, as is ubiquitous for all hot massive stars (e.g., Gräfener
& Hamann 2005). Alternatively, mass can be lost via super-
Eddington winds or LBV eruptions (Shaviv 2000; Quataert
et al. 2016). In binary systems, finally, mass transfer may occur
that significantly affects the evolution (Vanbeveren et al. 1998;
Langer 2012). Which of these mechanisms is most important in
the lives of blue hypergiants is not yet clear.

In the present paper we employ X-ray observations to
investigate the nature of one of the most massive and luminous
stars in the Milky Way, Cyg OB2 12 (HIP101364, VICyg12,
Schulte 12). Over the last decade, X-rays have become an
established diagnostic tool to probe massive stars (Oskinova
2016, and references therein).
Radiatively driven winds of early-type stars are typically fast

( >¥v 1000 km s−1) and intrinsically unstable (Lucy & White
1980; Feldmeier et al. 1997). In the winds from OB-type
supergiants, hydrodynamical instabilities lead to strong shocks
where some fraction of the wind is heated to a few million Kelvin.
The X-ray luminosity of these stars correlates with their
bolometric luminosity as µ -L L10X

7
bol (Pallavicini et al.

1981). The X-ray spectra of OB stars are thermal. The hottest
plasma is generated in the inner wind regions, and the X-ray lines
are broad and often blueshifted (Oskinova et al. 2006; Waldron &
Cassinelli 2007; Hervé et al. 2013; Puebla et al. 2016). The X-ray
luminosity displays slow variability on the timescale of days and
on the level of a few tens of percent (Oskinova et al. 2001; Ignace
et al. 2013; Nazé et al. 2013; Massa et al. 2014). In stars with very
dense winds, such as, e.g., Wolf-Rayet (WR) stars, X-rays may be
produced by the interaction of the fast wind flow with slower
wind structures far out in the wind (Oskinova et al. 2012;
Gayley 2016). This mechanism is manifested by broad and
blueshifted X-ray line profiles and associated plasma temperatures
of 10MK (Huenemoerder et al. 2015).
The majority of massive stars are found in binary or multiple

systems (e.g., Chini et al. 2012; Sana et al. 2012). In such
systems, the winds of the components may collide, leading to
the emission of X-rays from the wind collision zone (e.g.,
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Pittard 2009). The X-ray signatures of colliding wind binaries
are well-established (Rauw & Nazé 2016). The plasma
temperature is often higher than that measured from the
X-ray spectra of single stars. Colliding wind X-ray spectra may
show signs that the plasma departs from collisional ionization
equilibrium (Pollock et al. 2005). The X-ray line profiles may
display a variety of shapes (Henley et al. 2005). The X-ray light
curves of colliding wind binaries typically show orbital
variability.

However, not all hot massive stars are detectable X-ray
sources, e.g., single metal-enriched WR stars with spectral types
WO and WC are quite weak in X-rays (Oskinova et al. 2009;
Rauw et al. 2015). Single LBVs are also weak X-ray sources.
The winds of these stars are slow (a few ´100 km s−1) and
dense ( = ¼- - -

Ṁ M10 10 yr3 6 1 ) (e.g., Hillier et al. 2001).
The radiative driving instabilities and associated shocks, likely
do not develop in these winds. Moreover, the high wind density
makes it especially difficult for the X-rays to escape. The lack of
X-ray emission is observationally established for the majority of
LBVs. All LBVs that have been found to be X-ray-bright are
colliding wind systems (Oskinova 2005; Nazé et al. 2012).

In this paper we investigate the nature of the X-ray emission
of Cyg OB2 12 by means of high-resolution X-ray spectroscopy.
The object of our study is introduced more fully in Section 2.
The Chandra X-ray spectrum is addressed in Section 3, and the
conclusions from our study are presented in Section 4.

2. Cyg OB2 12

Cyg OB2 12 is among the most massive Galactic blue
hypergiants known. This star is a likely member of the
Cyg OB2 association. In agreement with Clark et al. (2012), we
adopt a distance of 1.75 kpc throughout this work. Cyg OB2 12
suffers significant reddening ( »A 10 magV ). Part of this high
extinction could be due to circumstellar matter that might have
been lost over the evolution of this very massive star. Maryeva
et al. (2016) suggested that such a circumstellar shell could
absorb up to 1 mag in the V-band. Whittet (2015) pointed out
that the properties of the interstellar matter (ISM) toward
Cyg OB2 12 are not special, while Gredel et al. (2001)
suggested that the significant X-ray luminosity of Cyg OB2 12
may affect the ISM in its vicinity.

Nebulae are commonly observed around LBV and post-LBV
stars as well as WR stars (e.g., Toalá et al. 2015; Steinke et al.
2016). Kobulnicky et al. (2012) have considered infrared (IR)
and millimeter (mm) emission from the Cyg OB2 region, but
they do not report on a circumstellar nebular around
Cyg OB2 12. To further search for circumstellar matter around
Cyg OB2 12, we scrutinized archival data obtained by the
Spitzer infrared telescope; however, no circumstellar nebula
heated by the intense radiation of Cyg OB2 12 is evident (see
Figure 1).

2.1. Stellar and Wind Parameters

Clark et al. (2012) provided a comprehensive study of
Cyg OB2 12. Stellar and wind parameters were derived from
the analysis of optical spectra by means of a non-LTE stellar
atmosphere model. For the wind velocity, a typical β-law was
used, with = - b

¥( ) ( )v r v b r1 , where ~b 1 is a parameter
that ensures a smooth connection between the β-law regime
and the hydrostatic layer. For the terminal wind velocity, Clark
et al. (2012) adopted =¥

-v 400 km s 1, while noting that any

values between 300 and -1000 km s 1 could not be strictly ruled
out. Similarly, it was noticed that while values of β below 2 or
above 4.5 could not be excluded, the best line fits were
obtained for b = 3.
For modeling the atmosphere and wind of Cyg OB2 12, we

made use of the non-LTE stellar atmosphere code PoWR (e.g.,
Hamann & Koesterke 1998; Hamann & Gräfener 2004; Todt
et al. 2015). The PoWR code solves the non-LTE radiative
transfer in a spherically expanding atmosphere simultaneously
with the statistical equilibrium equations and accounts at the
same time for energy conservation. Complex model atoms with
hundreds of levels and thousands of transitions are taken into
account. Iron and iron-group elements with millions of lines are
included through the concept of super-levels (Gräfener et al.
2002). An X-ray field with the observed intensity is artificially
added to account for its ionizing effect (Baum et al. 1992).
Radiation pressure is consistently included in the treatment of
the photosphere, hence providing a realistic description of the
photosphere-wind transition region (Sander et al. 2015).
With the parameters and abundances (enhanced nitrogen,

depleted carbon and oxygen) adopted from Clark et al. (2012),
the synthetic spectrum obtained with PoWR compares well
with the observed optical spectrum of Cyg OB2 12 published
by the same authors and by Maíz Apellániz et al. (2016), thus
confirming their analysis. Our model Hα line is also in good
agreement with the observation shown in Figure 1 of Clark
et al. (2012).4 Our fit of Hα and the other Balmer lines required
a clumping factor D=6 in the wind. Clark et al. (2012)
mention that they applied a clumping value (defined as the
inverse of our clumping factor D) of 0.04 at final velocity, but
with a radial onset of clumping at 200 km s−1. This seems to
result in a similar degree of clumping as our model in those
regions where Balmer emissions form. One must keep in mind
that there is a degeneracy between clumping factor (at relevant
layers) and mass-loss rate when fitting recombination-fed
emission lines (Hamann & Koesterke 1998).
In a recent work, Whittet (2015) reassessed the interstellar

environments and dust properties toward Cyg OB2 12 and
obtained = R 3.05 0.1V and =-E 3.33B V mag. Comparing
the photometric measurements with the spectral energy

Figure 1. Color composite Spitzer IRAC image (blue: 3.6 μm, green: 4.5 μm,
red: 8.0 μm) with Cyg OB2 12 (bright star close to the center. The image size is
24 ×27 . North is up and east is left.

4 Monitoring observations show significant Hα variability (Chentsov et al.
2013, see Section 2.2).
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distribution from the model (see Figure 2), we obtained good
agreement when adopting these values.5

Our slightly lower reddening leads to a bolometric
luminosity of =L Llog 6.22bol compared to 6.28 by Clark
et al. (2012). The set of fundamental parameters that we adopt
in the following is compiled in Table 1.

With the help of the PoWR model we investigated whether
the wind of Cyg OB2 12 can be radiatively driven. The PoWR
models compute the work ratio Q defined as the mechanical
work per unit time done by the radiation field as compared to
the mechanical luminosity of the wind

*

ò

ò
º

-

+

r
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

( )
( )( )

Q
g r dr

v dr
, 1

r r

dP

dr

r

dv

dr

GM

r

rad
1 g

2

where grad is the radiative acceleration, Pg is the gas pressure,
and other symbols have their usual meanings. A hydrodyna-
mically consistent model must give Q=1. When >Q 1 the
model predicts that the radiation pressure should actually drive
a stronger wind (i.e., with higher Ṁ and/or ¥v ). Correspond-
ingly, when <Q 1 the model indicates that the radiative
acceleration is not sufficient for driving a wind with the
adopted parameters.

Using the model parameters from Table 1, we computed this
work ratio and obtained »Q 1, implying that the stellar wind
of Cyg OB2 12 is consistent with being radiatively driven. As a
test, we also computed models with =¥

-v 1000 km s 1. The
effect of a higher terminal speed for the lines in the optical part
of the spectrum is marginal; however, the work ratio Q
becomes significantly smaller than unity, implying that such a
high wind velocity could not be maintained by radiative
driving.

Hence we adopt =¥
-v 400 km s 1 as most consistent.

Taking this as an upper limit for possible velocity

discontinuities, the strong-shock condition yields 6 MK for
the maximum temperature a shock could produce.
The main goal of the present study is to analyze the X-ray

spectrum of Cyg OB2 12. For this task, detailed knowledge of
stellar wind opacities and the radiation field is required. To
compute these quantities, we employed the PoWR code to
compute the “cool” wind opacity. This is sufficient because,
since no signatures of absorption in the “hot” X-ray emitting
plasma are seen in X-ray spectra, the hot plasma component is
thus optically thin. Figure 3 shows the radius in the wind where
the optical depth for X-rays becomes unity. For the X-rays at
wavelengths longward of » Å8 , the wind is optically thick
below *» R2 . Therefore, if X-ray emission were produced
below this radius, one would expect severe wind absorption
(Cassinelli et al. 1981; Ignace et al. 2000).

2.2. Spectral and Photometric Variability at Optical
and Radio Wavelengths

Cyg OB2 12 is a well-known variable. Gottlieb & Liller
(1978) noticed an irregular variability with D »B 0.3 mag.
Among other targets, Laur et al. (2012) also observed
Cyg OB2 12 for 300 days in 2011 and confirmed its irregular
variability. No clear period was detected, but a timescale for
variability of the order of 30 days was established. They found
a mild trend in the observed V−I color, and suggested that
this could be a manifestation of spectral-type variability.
Morford et al. (2016) reported Cyg OB2 12 variability at radio
wavelengths.
Salas et al. (2015) conducted a 1.5-year-long photometric

study of variability of stars in the CygnusOB2 association.
They concluded that Cyg OB2 12 is an irregular or long-period
variable with a period of 54days, which is a factor of 10 longer
than our estimate of the wind flow time. The light curve of
Cyg OB2 12 in the I-band exhibits changes with an amplitude
of D =I 0.18 mag.
Besides photometric variability, Cyg OB2 12 also shows

spectral variability. Souza & Lutz (1980) found evidence for
spectral and radial-velocity changes. In particular, the Hα line
centroid moves by more than -30 km s 1. Klochkova &
Chentsov (2004) and Chentsov et al. (2013) presented a time
series of high-resolution spectra of Cyg OB2 12. They found
spectroscopic manifestations of an unstable stellar wind,
namely line profile asymmetries and variations that differ from
line to line. They suggested that the Hα line profile indicates
that some fraction of the wind falls back onto the star.
Clark et al. (2012) gave a detailed review of Cyg OB2 12’s

variability, and concluded that there is no significant evidence
for a long-term evolution of the spectral type over the past
50years. Short-term variability as observed in Cyg OB2 12 is
commonly seen in other luminous blue hypergiants and
supergiants as well.
Scuderi et al. (1998) measured the radio spectrum of

Cyg OB2 12 and concluded that it is fully consistent with
being thermal. Recently, Morford et al. (2016) obtained the first
ever resolved detection of Cyg OB2 12 at 21 cm and measured
an unclumped mass-loss rate » ´ -Ṁ 5.4 10 6. Furthermore,
they observed a 50 % increase in the mass-loss rate over the
14 d period and discussed previous detections of radio flux
variability.

Figure 2. Spectral energy distribution (SED) for Cyg OB2 12; photometric
measurements in UBV and JHK bands are represented by blue boxes with the
magnitudes imprinted. The synthetic SED from a PoWR model with
parameters from Table 1 is shown as a red solid line.

5 Clark et al. (2012) used =-E 3.84B V mag with a reddening para-
meter =R 2.65V .
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2.3. Binarity Status

The multiplicity of Cyg OB2 12 was carefully investigated
by many authors as a possible explanation for its outstanding
luminosity and variability. From the analysis of spectroscopic
time series, Klochkova & Chentsov (2004) and Chentsov et al.
(2013) excluded Cyg OB2 12 as a double-lined spectroscopic
binary, but they could not principally rule out a possible
binarity.

Caballero-Nieves et al. (2014) conducted a high angular
resolution survey of massive OB stars in the Cygnus OB2
association using the fine guidance sensor of the Hubble Space
Telescope (HST). A highlight of this study was the discovery of
a companion to Cyg OB2 12 with a separation of 63.6 mas.
Under the assumption that the projected separation corresponds
to the apastron separation, and for a total system mass of

M120 , the orbital period would be »30 years and the orbital
separation *» R104 or »110 au. The secondary is D »V 2.3
fainter than the primary.

Maryeva et al. (2016) used speckle interferometry and
confirmed the detection of a second component in Cyg OB2 12.
They were able to measure the changes in the position angle of
the secondary component, and suggested that the binary period
is ∼100 years. They discovered an even fainter third comp-
onent in the Cyg OB2 12 system.

The brightness ratio (D »V 2.3) suggests that the secondary,
most likely also a hot star, must have a much smaller radius
(e.g., like an OB star of lower luminosity class). The wind of
such a putative companion is expected to be quite fast. For the
purpose of an estimate, we might imagine an O9.5 II star with
parameters as recently derived for δOri: »L Llog 4.8bol ,

» ´ -
Ṁ M2 10 7 yr−1, and »¥v 2000 km s−1 (Shenar et al.

2015). When such a fast wind collides with the denser and

slower wind of a B hypergiant, strong X-ray emission and high
shock temperatures should result (e.g., Stevens et al. 1992).

3. Chandra Observations of Cyg OB2 12

In this paper we report X-ray observations6 of Cyg OB2 12
obtained on 2015 January 14 with an exposure time of 138 ks
using the Chandra HETG spectrometer (Canizares et al. 2005).
The HETGS spectra cover a wavelength range from about 1 to
30Å, as dispersed by two types of grating facets, the High
Energy Grating (HEG) and the Medium Energy Grating
(MEG), with resolving powers ranging from 100 to 1000,
and an approximately constant FWHM of 0.012Å for HEG
and 0.023Å for MEG.
The Chandra data were reprocessed with standard Chandra

Interactive Analysis of Observations (CIAO) programs (Frus-
cione et al. 2006) to apply the most recent calibration data
(CIAO version 4.6 and calibration database version 4.6.5). The
data are thus composed of four orders per source per
observation: the positive and negative first orders for each
grating (MEG and HEG), which have different efficiencies and
resolving powers. The default binning over-samples the
instrumental resolution by about a factor of four. The merged
HETGS flux spectrum is shown in Figure 4.
When operating together with HETGS, the ACIS-S also

simultaneously obtains a zeroth-order, low-resolution X-ray
spectrum that can be a useful complement to the high-
resolution spectrum, especially in the vicinity of FeK, though
care must be taken to assess photon event pileup. Figure 5
shows the zeroth-order spectrum of Cyg OB2 12.
We modeled the spectrum primarily using the Interactive

Spectral Interpretation System (Houck & Denicola 2000),
which implements interfaces to the AtomDB (Foster et al.
2012) and to XSPEC models (Arnaud 1996). We fit a
three-temperature apec model to the high-resolution and
zeroth-order spectrum. We allowed relative abundances of
prominent species (Mg, Si, S, Fe) to float since this gave a
somewhat better fit. Formally, the best fit to the X-ray spectrum
(as shown in the figures of this paper) was obtained with
slightly sub-solar abundances (factors compared to solar: 0.6
for Mg, 0.7 for Si, 0.9 for S, and 0.8 for Fe). This could be in
part due to degeneracies between discrete temperature
components, abundances, and absorption (both line-of-sight
and wind-intrinsic), and not be considered to be real.
Since the absorption is large, ~ -N 10 cmH

22 2, the lowest-
temperature component in the tree-temperature model, is
poorly constrained. Using a two-temperature model we obtain
a fit of similar quality with a slightly lower absorption and
lower temperature for the middle component. This illustrates
some of the degeneracy in global modeling. Either fit can serve

Table 1
Fundamental Parameters of Cyg OB2 12 (Spectral Type B3–4 Ia+)

*T
a

*R a

*M a Ṁlog a
¥v
a d -EB V

b Llog bol
b MV

b
GEdd Llog x

(kK) ( R ) ( M ) ( -
M yr 1) ( -km s 1) (kpc) (mag) ( )L (mag) -( )erg s 1

13.7 229 110 −5.52 400 1.75 3.33 6.22 −9.82 0.38 33.8

Notes.
a Stellar and wind parameters adopted from Clark et al. (2012).
b

-EB V taken from the paper by Whittet (2015), which led in consequence to a slight revision of Lbol and MV (see text). Lx refers to the –0.2 10.0 keV band.

Figure 3. Radius (in units of R*) where the continuum optical depth reaches
unity, as a function of wavelength in the X-ray range, calculated from the
PoWR model for the “cool” wind component of Cyg OB2 12 with the
parameters from Table 1.

6 Chandra Observation Identifier 16659.
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as an equally good basis for detailed line measurement by
providing a continuum model and approximate temperatures.
We list the model parameters in Table 2. The models are in
good agreement with those previously published based on the
analysis of low-spectral resolution XMM-Newton spectra. The
absorbing column derived from spectral fitting corresponds
well with the interstellar reddening, using the conversion factor

» ´-N E 5.8 10H B V
21 cm−2 (Bohlin et al. 1978).

The observed flux in the –0.2 10 keV band is » ´f 1.9x
- - -10 erg cm s12 2 1. Using the column density from the two-

temperature fit, the (unabsorbed) model luminosity becomes
» ´ -L 6.8 10 erg sx

33 1, or » -L Llog 5.7x bol , which is a
factor of two larger than that found in previous studies (e.g.,
Rauw 2011).

With the caveat that the contribution of the soft plasma
components might be underestimated, the emission-measure-
weighted temperature of the X-ray emitting plasma is»13 MK
(1.1 keV), while the hottest plasma component has a temper-
ature of »22 MK (1.9 keV). This is significantly higher than
could be explained by intrinsic shocks in the relatively slow

wind of Cyg OB2 12. The high temperature could be explained,
however, by a collision of a fast wind with ~ -v 1000 km s 1

from a presumable OB-type companion with the slow wind of
the blue hypergiant. The simple colliding wind model (see
Equations (1)–(4) in Luehrs 1997) allows us to crudely estimate
the possible location of the wind–wind collision region in
Cyg OB2 12. The colliding wind zone is expected to be
concave around the O-type component, with the apex of the
colliding wind cone located at about »40 au from the
secondary ( *» R1000 ,O assuming * = R R9,O ) and »70 au
( *» +R66 ,BI ) from the primary. This is a prediction that, in
principle, could be checked by investigating the high-resolution
X-ray spectra (see Section 3.2.1).
In such a wide binary the plasma cooling in the colliding

wind zone is adiabatic. The resulting X-ray luminosity scales
inversely with the binary separation (Stevens et al. 1992).
Therefore, for a binary on elliptic orbit, the modulation of
X-ray flux on the timescale associated with the binary period is

Figure 4. Chandra HETGS spectrum of Cyg OB2 12 with prominent lines identified. Lines from He-like ions are marked below the spectrum, while H-like and other
Fe lines are marked above the spectrum. The observation is in black, with a model in red, and residuals in the lower panel in blue. For illustration only, counts were
converted to photon flux using the instrument responses (but still include the instrumental resolution), combining the positive and negative first orders of the spectrum
from the HEG and MEG arms.

Figure 5. HETGS zeroth-order count spectrum (black histogram with gray
error bars), plasma model (red), and residuals (lower panel, blue).

Table 2
Parameters from Simultaneous Fits of the MEG, HEG, and Zeroth-order

Spectra of Cyg OB2 12 in the –0.6 7.0 keV Range with Three-temperature or
Two-temperature apec Plasma Models Accounting for Interstellar Absorption
(via phabs) (Balucinska-Church & McCammon 1992; Smith et al. 2001)

Three-temp. Two-temp.

-[ ]N 10 cmH
22 2 2.05±0.05a 1.8±0.03

[ ]kT keV1 0.20±0.04 L
[ ]kT keV2 0.81±0.1 0.77± 0.1
[ ]kT keV3 1.86± 0.2 1.95±0.2

-[ ]EM 10 cm1
56 3 33.89±13.60 L

-[ ]EM 10 cm2
56 3 2.50±0.34 2.60±0.34

-[ ]EM 10 cm3
56 3 1.01±0.30 1.10±0.30

- - -[f 10 erg cm sx
12 2 1] 1.9±0.2b

Notes.
a Error margins refer to s1 uncertainty.
b Observed flux in the –0.6 7.0 keV band.
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expected. In the case of Cyg OB2 12, one would expect to
observe X-ray variability on timescales >30 years. This
prediction can also be checked observationally.

3.1. Temporal Variations of the X-Ray Flux

The X-ray light curve during our Chandra HETG observa-
tion (36 hr exposure time) is shown in Figure 6. It is consistent
with being constant, albeit the variance seems to increase
toward the end of the observation. Compared to the exposure
time, the characteristic wind flow time in Cyg OB2 12 is long,

*= »¥
-t R v 120 hrflow

1 or 5 days. Any variability on a much
shorter timescale thus would be difficult to explain.

Cyg OB2 12 has been sporadically observed in X-rays since
this range became accessible (Harnden et al. 1979; Kitamoto &
Mukai 1996). Waldron et al. (1998) pointed out that in the
1980s and 1990s, the X-ray emission of Cyg OB2 12 may have
been steadily increasing at a slow rate. They also reported
short-term variability at the level of 20%, but were not able to
firmly attribute this variability to the star itself (due to
suspected instrumental effects).

Albacete Colombo et al. (2007) reported a roughly linear
decrease of the Chandra ACIS count rate of Cyg OB2 12 from
» -0.18 count s 1 to » -0.16 count s 1 during a 98 ks exposure.

Rauw (2011) analyzed six XMM-Newton observations of the
Cyg OB2 region (four in 2004 and two in 2007) with a total
exposure time of 148 ks. Cyg OB2 12 revealed variability at a
10% level, with timescales from a few days to a few weeks. A
larger variation of the X-ray flux (40%) was seen between
observations made in 2004 and 2007. These variations were
attributed to changes in the column density of absorption, while
the plasma temperature was found to be relatively constant.
The Cyg OB2 12 X-ray spectra were best fitted by multi-
temperature plasma models with = kT 0.76 0.031 and =kT2

2.03 0.19 keV.
Further investigating the temporal evolution of the X-ray

flux from Cyg OB2 12, Cazorla et al. (2014) also included
observations obtained by the Swift and Suzaku X-ray
telescopes. A decrease of X-ray flux between 2004 and 2011

(MJD 53000–56000) by 40% earlier noticed by Rauw (2011)
was confirmed.
Our latest observation yields a flux that is 33% higher than

the previous XMM-Newton observation obtained on 2011-06-
25 (MJD 55737), thus showing an opposite trend than before.
We have additionally derived the flux from the earliest,

serendipitous Chandra HETG observation (Observation Iden-
tifier 2572, observed in 2002); while far off-axis and not useful
for high-resolution analysis, that observation is sufficient to
determine a flux of ´ - - -1 10 erg cm s12 2 1 from the nearly
1000 counts in the two dispersed spectra on the detector array.
Other previous Chandra observations of Cyg OB2 12 without
grating were affected by pileup (Rauw et al. 2015) and are
therefore not useful for flux estimates.
Figure 7 shows the evolution of the X-ray flux from

Cyg OB2 12 over time, combining our recent observation with
all useful previous data from Chandra, as well as that from
XMM-Newton.7 The X-ray flux varied by up to a factor of two.
If the X-rays from Cyg OB2 12 were powered by wind–wind

collision in a binary, modulations on the orbital timescale
would be expected, especially if the orbit was eccentric. The
recent discovery of a binary companion with a 30-yr period
(cf. Section 2.3) supports this expectation. However, Figure 7
does not clearly suggest such a regular behavior. On the
contrary, short-term variability has been observed too (see
insert in Figure 7). As made clear from the first four XMM-
Newton observations, the X-ray flux can change by
∼20%within just one month (Rauw 2011). Hence, one cannot
exclude that the observed light curve reflects only random
variability.

3.2. Analysis of the X-Ray Emission Line Spectrum

3.2.1. Lines of He-like Ions

The HETGS spectrum of Cyg OB2 12 is dominated by
strong emission lines (see Figure 4). Among them are the

Figure 6. Chandra HETG X-ray light curve of Cyg OB2 12 in the –0.6 7.0 keV
band during our observation on 2015 Jan 14. The data are binned to 8 ks. Error
bars indicate 1σ statistics.

Figure 7. X-ray flux of Cyg OB2 12 in the 0.5–10 keV band as measured at
different epochs within ~10 years. All data points except the first and the last
ones show X-ray fluxes from XMM-Newton observations, adopted from
Cazorla et al. (2014). The first red point is from a serendipitous Chandra
observation, while the last red point represents our Chandra observation on
2015 Jan 14 (MJD 57036). The error bars are smaller than the size of the
symbols. The inset shows that significant X-ray variability is also observed on a
shorter timescale (»30 days).

7 The two instruments are cross-calibrated within ∼10%; see http://xmm2.
esac.esa.int/external/xmm_sw_cal/calib/documentation/index.shtml.
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prominent lines of the He-like ions Si XIII and Mg XI

(Figure 8). These ions show characteristic “fir triplets” of a
forbidden (z), an intercombination (x+ y), and a resonance (w)
line (Gabriel & Jordan 1969).

In order to measure the f/i ratios from this spectrum, ( )r ,
as accurately as possible, we used the global multi-temperature
fit to first provide an approximate plasma model. Then, we
fitted the lines locally using the density-dependent emissivities
for Mg or Si.8 The fits are shown in Figure 8, and the obtained
values for obs are given in Table 3 together with their 90%
confidence intervals.

Considering the theory, the ratio of fluxes between the
forbidden and intercombination lines, = +( ) ( )n T z x y,e rad ,
is sensitive to the UV radiative field and to the electron density
(e.g., Porquet et al. 2001). Strong UV radiation leads to a
significant depopulation of the upper level of the forbidden line

to the upper levels of the intercombination lines (Blumenthal
et al. 1972). For the characteristic densities of OB and WRstar
winds, this is the dominant mechanism for forbidden line
depopulation (e.g., Leutenegger et al. 2007; Waldron &
Cassinelli 2007; Oskinova et al. 2012). Since the radiation
field dilutes with distance from the stellar surface, the ratio
between forbidden and intercombination lines provides infor-
mation about the location of the X-ray emitting plasma.
The upper level of the forbidden line transition can also be

depopulated by electron collisions. However, to be significant
this process requires electron densities that are comparable to the
“critical” value nc, which is ´ -4 10 cm13 3 and ´ -6 10 cm12 3

for Si XIII and Mg XI, respectively (Blumenthal et al. 1972).
Cyg OB2 12 has relatively dense wind, low effective

temperature, and yet a very hot X-ray plasma. For these
conditions, it is not clear a priori which mechanism of
forbidden line depopulation dominates. Hence, in order to
correctly apply the fir diagnostic, we employed our PoWR
model (cf. Section 2.1). For modeling the f/i ratio, we follow
the recipe by Shenar et al. (2015), which is based on
Blumenthal et al. (1972).
For the wavelengths of the depopulating transitions (865Å

for Si XIII, 1034Å for Mg XI) we extract the mean intensities at
each radial layer in the stellar wind, as provided by our PoWR
model calculation for Cyg OB2 12. Note that all effects, such as
diffuse emission, limb darkening, and attenuation of UV flux in
the wind, are automatically included in the model in a
consistent manner. The density in the wind is also taken from
our PoWR model. Taking the same density for the collisional
depopulation relies on the assumption that the densities in the
shock-heated plasma are similar to the smooth-wind densities
at the same radii. This is a reasonable first approximation, since
hydrodynamical simulations for wind-embedded shocks powered
by the line-driving instability did not predict large overdensities
in the shocked material (Feldmeier et al. 1997).
Furthermore, the modeling of the f/i ratio requires the

relevant atomic data. The transition wavelengths and oscillator
strengths are extracted from the NIST database. The asymptotic
value for the f/i ratio, R0, which enters the the theoretical
computation of ( )r , is slightly temperature-dependent; the
values adopted here are read off from Figure 8 in Porquet &
Dubau (2000) for the highest temperatures provided.
The results of our f/i analysis are illustrated in Figure 9. For

the He-like ions Si XIII and Mg XI, the predicted f/i ratio( )r is
plotted as a function of the radial location r of the emitting
plasma.
Different temperature plasma components (with 6MK and

20MK) may contribute significantly to the emission in Mg XI
and Mg XII lines. A better measurement of the S XV, Si XIII, and

Figure 8. Si XIII (top) and Mg XI (bottom) fir triplets in the MEG first-order
spectra of Cyg OB2 12. In each plot, the top panels show the photon count
spectra as a black histogram, with the best-fit model as the red histogram. The
rest-frame wavelengths for the resonance, intercombination, and forbidden
lines are marked. Residuals are shown in the lower part of each panel.

Table 3
Ratios  = f i for He-like ions in the HETGS Spectrum of Cyg OB2 12

Ion l ( )w [Å] obs R0

Si XIII 6.65 3.22 (2.5 K 3.9) 3.02
Mg XI 9.17 0.78 (0.2 K 2.3) 3.70

Notes. Wavelengths refer to the resonance lines (w component). For obs, the
measured values are given together with their 90% confidence intervals. The
last column gives the asymptotic ratio R0 that has been adopted for the
calculation (see the text).

8 See http://space.mit.edu/cxc/analysis/he_modifier for details, emissivity
data, and code.
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Mg XI line ratios would help to constrain the relative
contributions of plasma components to the line spectrum.9

First, we test whether collisional or radiative excitation is
the dominant process for the forbidden line depopulation. The
calculations reveal that in the wind of Cyg OB2 12, neither the
UV field (which is weak due to the low effective temperature of
the star) nor the electron collisions are able to depopulate the
forbidden line upper state! With growing distance r, the
predicted f/i ratio ( )r soon approaches the limiting value R0.
Note that Figure 9 zooms-in at the photosphere/wind transition
region, as can be recognized from the Rosseland-mean optical
depth scale indicated at the top of the diagrams.10 The red
dotted line is calculated for zero electron density, i.e.,
neglecting collisional depopulation, while the blue curves take
collisional depopulation into account. The large difference
between these two curves reveals the leading role of collisions
for this process in these layers.

The (blue) theoretical curve may now be compared to the
measured f/i ratio obs, which is also indicated in each of
the panels of Figure 9 by a horizontal line together with the
uncertainty of the measurements (90% confidence interval,
green-shaded band).
For Si XIII the measured obs is consistent with the limiting

R0, i.e., with the absence of any depopulating process. Hence,
the X-ray emitting plasma could reside anywhere in the wind,
and its location cannot be constrained.
A better constraint is provided by Mg XI. As can be seen

from the lower panel of Figure 9, the observed ratio of
forbidden to intercombination lines indicates that, at least
within the 90% confidence interval, the measured obs is not
consistent with R0, i.e., depopulation is required. Densities that
are comparable to nc are only encountered in or very close to
the photosphere. Hence we must conclude from Figure 9 that
the fir triplet of Mg XI is emitted from plasma located at

*<r R1.15 , i.e., practically directly at the photosphere. In this
case, the X-ray emission lines shall be narrow and would be
unresolved even with HETGS grating spectrometry. This is
because the wind expansion velocity at these radii is very
small. Moreover, as can be seen in Figure 3, below *R1.8 , the
stellar wind of Cyg OB2 12 is optically thick for radiation at
l Å9.2 . Therefore, if radiation could originate in deeper wind
layers, the spectral signatures of stellar wind absorption could
be expected. With all these in mind, the investigation of
spectral lines should further help in constraining the hot plasma
location.

3.2.2. X-Ray Emission Line Profiles

X-ray line profiles formed in a stellar wind are influenced by
two effects, the Doppler shift due to the wind expansion, and
the absorption that is caused by the continuum opacity of the
cool wind material. The Doppler shifts can broaden the
emission line profile up to  ¥v (Macfarlane et al. 1991;
Ignace 2001; Owocki & Cohen 2001), while absorption and
obscuration affect the back hemisphere more than the front
hemisphere and thus cause the line profiles to become skewed
and effectively blueshifted (Oskinova et al. 2006). Especially if
X-rays were produced close to the photosphere, we would
expect to find these signatures of wind absorption. As can be
seen from Figure 3, at *R1.18 the optical depth for X-rays
already exceeds unity for any wavelengths>3 Å and increases
further with wavelength. At least such lines as Mg XIIl8.42 Å
and Mg XIIl Å9.17 should show signs of wind absorption.
To model the X-ray emission line profiles for Cyg OB2 12,

we perform the same kind of calculations as described in
Oskinova et al. (2006). The wind density and the opacities are
again taken from our PoWR model for this star. The main
parameter of these calculations is the radius at which the X-ray
plasma appears; since the emissivity scales with the square of
the density, most of the photons are produced close to this
onset radius.
Based on the result from the fir analysis (Section 3.2.1), we

adopt an onset radius for X-ray emission close to the
photosphere (its precise value is not relevant). The model then
predicts that the profiles would not be broadened by the wind
velocity, because the latter is still tiny close to the photosphere.
The FWHM of the line profile would be only ≈20 km s−1, i.e.,
the observed profile should only reflect the instrumental profile,
which is much broader.

Figure 9. Theoretical  =( )r f i as a function of the radial location of the
X-ray emitting plasma for the fir triplet from Si XIII (top panel) and Mg XI
(bottom). The red dashed curves are computed assuming that the depopulation
of the forbidden level is by the photoexcitation only, while the blue solid
curves include the contributions of collisions. In each panel, the measured
value is indicated by a horizontal black line, while the green-shaded band
indicated its error margin. The intersections of ( )r (blue curve) with the
observed values obs and their error margins are indicated by vertical dashed
and dotted lines, respectively.

9 These arguments were suggested by the reviewer.
10 The stellar radius R* refers, by our definition, to t = 20Rosseland , while
t = 2 3Rosseland is the radius from which most of the photospheric flux escapes.
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This expectation can be tested with the resonance lines of the
hydrogen-like ions Mg XII at 8.42Å and Si XIV at 6.18Å.
Figure 10 shows that in both cases the observed profile is
significantly broader than the predicted profile convolved with
the instrumental response. In other words, the Chandra
HETGS observation resolves these profiles.

To quantify the broadening of these lines, we fit their profiles
with apec models over a small region of interest for each line,
assuming that all lines in the region have the same Gaussian
shape and a common Doppler shift.

The fits and confidence contours obtained with the Interactive
Spectral Interpretation System software package are shown in
Figure 11. Both lines are intrinsically broadened. For both lines,
the best fit indicates FWHM values in excess of 700 km s−1. The
lines are hardly Doppler-shifted against their rest wavelengths;
centroid shifts by more than 150 km s−1 can be ruled out. Such
broad and unshifted lines are not expected from the CygOB2 12
wind model.

4. Discussion and Summary

4.1. A Scenario for the Origin of X-Ray Emission
from Cyg OB2 12.

The analysis of new high-resolution X-ray spectra of
Cyg OB2 12, combined with modeling of its stellar wind by
a non-LTE stellar atmosphere, provided fresh insights on the
nature of Cyg OB2 12. Considering all observational facts
together, the X-ray observations of Cyg OB2 12 are best
explained by a colliding winds scenario.

(1) The X-ray spectrum from CygOB2 12 is well described by
a thermal plasma in collisional equilibrium. Because of high
interstellar absorption, only the rather hard part of
the spectrum is observable. The highest temperature plasma
components with T 20X MK cannot be explained
by intrinsic shocks in the relatively slow wind of
CygOB2 12 ( »¥

-v 400 km s 1).
(2) The X-ray luminosity is higher than expected from a mid-

B spectral type.
(3) The X-ray emission lines are broad. The line width (up to

-1000 km s 1) indicates that the X-ray emitting plasma
moves with higher velocities than possible in the slow,
cool wind of Cyg OB2 12 ( »¥

-v 400 km s 1).
(4) The stellar wind opacities computed with our non-LTE

models are high. If X-rays were to emerge from the inner
wind, we would expect to see strong signs of wind
attenuation in X-ray spectra. These are not observed.

(5) The non-LTE stellar atmosphere models indicate that
collisions dominate over the UV de-excitation of the forbidden
lines in the He-like triplets seen in CygOB2 12’s X-ray
spectrum. Hence the measured forbidden-to-intercombination
line-flux ratios provide information about plasma densities.
Based on the analysis of MgXI lines, we conclude that the
X-ray plasma has densities in excess of 1013 cm−3. Such high
densities could be achieved either at CygOB2 12’s photo-
sphere, or in a hypothetical colliding wind region.

Figure 10. Lines of Mg XII (top panel) and Si XIV (bottom) in the (co-added
MEG±1) spectrum of Cyg OB2 12 (black histograms); the red curves show a
model profile assuming that the X-ray-emitting plasma expands according to a
β-velocity law with =¥v 400 km s−1. The rest-frame wavelengths of the
doublet components are indicated in blue.

Figure 11. Bold ovals show the s1 confidence contours for the Doppler shift of
the centroid (x-axis) and the width (FWHM, y-axis) for the Si XIV (red) and the
Mg XII (blue) lines, respectively. Gray contours refer to 90% confidence.
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(6) Assuming that the secondary is an O-type star, we estimate
that the apex of the colliding wind shock is located at

*~ R1000 , O from the secondary (see Section 3). At these
distances, the UV flux from the secondary is strongly diluted,
and does not dominate the forbidden line depopulation. To
fully understand X-ray emission from CygOB2 12we need
to better establish its binary properties.

On the basis of the above points, and taking into account
the recent detection of a close-by companion to Cyg OB2 12,
the colliding wind scenario seems to provide the most plausible
explanation. This conclusion requires further quantitative
testing that will become possible only when the secondary
type and orbital parameters are known. Until then, the question
of whether the density required for forbidden line depopulation
can indeed be produced in the colliding wind zone of
Cyg OB2 12 remains open.

The high-temperature plasma must occur in quite dense
regions. For a colliding wind zone, the pre-shock densities of
the primary and the secondary winds are several orders of
magnitude lower than needed to explain the f/i line ratios. In
radiative shock, high densities can be achieved in the post-
shock cooling zone, but those regions are deficient in X-ray-
emitting gas. Radiative shocks are known to be unstable via
thin-shell instability (Vishniac 1994); perhaps some form of
dynamical mixing allows for both high densities and high
temperatures to coexist.

It is informative to compare the f/i ratios measured in
Cyg OB2 12 (see Table 3) with those determined for the well-
known colliding wind binaries, e.g., the »f i 5 ratio
measured in the HETGS spectrum of Mg XI in the WR-binary
WR 140 is consistent with the absence of the forbidden line
depopulation mechanism (Pollock et al. 2005). Similarly, in
case of the LBV-binary ηCar, Henley et al. (2008) measured in
the HETGS spectrum of Si XIII the ratio >f i 5.

The hydrodynamic simulations of the massive binary ηCar
display quite hot gas components and high densities (Parkin
et al. 2011). ηCar involves a primary with a dense and
relatively slow wind orbited by a secondary with a consider-
ably faster wind. The models indicate that orbital motion of the
stars in ηCar helps to stabilize the wind collision zone against
thin-shell instabilities. The orbital period for ηCar is only ∼5
years; the longer orbital period of Cyg OB2 12 could allow for
stronger thin-shell instabilities and a greater level of mixing,
resulting in the presence of hot, dense zones.

4.2. On the Binary Evolutionary History of Blue Hypergiants

The binary hypothesis is further supported by another
consideration. Using archival X-ray data, we conducted a
survey of all 16 known Galactic blue hypergiants. We found
that the majority of these objects were not detected in X-rays.
Some of the hypergiants, namely HD 80077, Wd 1-5, Wd 1-13,
and HD 160529, were observed with modern telescopes and
deep exposures, putting low upper limits on their respective
X-ray luminosities. For example, the upper limit for
HD 160529 (B8-A9 Ia+) is < -( )L Llog 8.5x bol (Nazé et al.
2012). Especially interesting are the early-type hypergiants
HD 169454 (B1 Ia+) and z1 Sco (B1.5 Ia+), both of which were
not detected during the ROSAT All-Sky Survey, with an upper
limit for z1 Sco at < -( )L Llog 8x bol . It appears safe to
conclude that blue hypergiants, in general, are not significant

X-ray sources, with the X-ray luminosity not exceeding~ -10 9

of their bolometric luminosity.
The two blue hypergiants that are outstandingly X-ray bright

are BP Cru (B1 Ia+) and the subject of our study, Cyg OB2 12
(B3–4 Ia+). Both of them are binaries. BP Cru is a well-known
high-mass X-ray binary where a neutron star accretes the wind
of its hypergiant companion (e.g., Kaper et al. 2006). Its X-ray
luminosity, ~ -L 10 erg sx

37 1 is determined by the accretion
rate onto the neutron star. The X-ray luminosity of
Cyg OB2 12, however, is too low to suggest such a scenario.
Except these two, no other binary hypergiants are confirmed so
far. Though the number of known Galactic hypergiants is
small, the very low binary fraction among them is in stark
contrast with the general OB star population.
We suggest that all blue hypergiants are the products of binary

evolution. Clark et al. (2014) discussed in detail the role of binarity
in explaining the apparently single blue hypergiant Wd 1-5. In the
case of CygOB2 12, the single star evolutionary models do not
predict such extreme stars (Ekström et al. 2012). Therefore, we
propose that CygOB2 12 is either a former mass gainer in a very
massive system with a large initial mass ratio, or a merger product.
In the former case if it would have been possible for the

system to increase its orbital separation following the mass
exchange, then the presently fainter companion of Cyg OB2 12
may be the stripped remnant of the primary, e.g., a helium star
of WR-type. Such a star would have a strong and fast stellar
wind, and help to explain the observed X-ray emission.
However, such a WR companion would have a spectrum
dominated by emission lines. We carefully considered the
spectrum of Cyg OB2 12 for such contamination, but we do not
find any traces of WR features.
It seems more plausible that CygOB2 12 is a result of a

merger. Blue supergiant stars are expected to be mergers resulting
from binary evolution (Podsiadlowski et al. 1992). We are not
aware of detailed binary evolution models for blue hypergiants.
However, the low binary fraction among these types of stars,
along with their enhanced nitrogen abundances (Clark et al.
2012), may be a smoking gun pointing to their origin.
We propose the following scenario. The progenitor of

Cyg OB2 12 was initially a hierarchical multiple system, as is
common among massive stars (e.g., Shenar et al. 2015). The
eccentric Kozai–Lidov mechanism (Naoz & Fabrycky 2014)
caused the strong inclination and eccentricity fluctuations,
resulting in tidal tightening of the inner binary. This inner tight
binary merged and is observed today as the blue hypergiant.
The initial tertiary is the present day binary component of
Cyg OB2 12. These two stars form a colliding wind system
where the slow and dense wind of a blue hypergiant collides
with the fast wind of its late O-type companion.
Furthermore, we have shown that the single blue hypergiants

are X-ray-dim. If observed, bright X-ray emission from a blue
hypergiant is a strong indicator of its binarity. We conclude that
the majority of Galactic blue hypergiants are currently single
stars but with previous binary evolutionary history.
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