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ABSTRACT

Developing Optimization Techniques for Logistical Tendering Using Reverse

Combinatorial Auctions

by

Jennifer Kiser

In business-to-business logistical sourcing events, companies regularly use a bidding

process known as tendering in the procurement of transportation services from third-

party providers. Usually in the form of an auction involving a single buyer and one or

more sellers, the buyer must make decisions regarding with which suppliers to partner

and how to distribute the transportation lanes and volume among its suppliers; this is

equivalent to solving the optimization problem commonly referred to as the Winner

Determination Problem. In order to take into account the complexities inherent

to the procurement problem, such as considering a suppliers network, economies of

scope, and the inclusion of business rules and preferences on the behalf of the buyer,

we present the development of a mixed-integer linear program to model the reverse

combinatorial auction for logistical tenders.
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1 MOTIVATION

Companies regularly use tendering in the procurement of transportation services

from third-party providers, usually in the form of an auction. Common types of

auctions include forward auctions, reverse auctions, combinatorial auctions, and con-

ditional (also referred to as expressive) auctions [24]. A traditional (forward) auction,

simply referred to as an auction, is from the perspective of the seller where the high-

est bidder is the winner, while a reverse auction is from the perspective of the buyer

where the lowest bidder is the winner [13]. In each of these types of auctions, bids are

limited to single items. Combinatorial auctions allow bids to be placed on bundles,

packages, or sets of items [30]. Similarly, reverse combinatorial auctions allow bids to

be placed on one or more items and are from the perspective of the buyer.

The company that purchases the services is referred to as the buyer or shipper,

and the corresponding company that provides the desired services is referred to as the

supplier or carrier. Partnerships, and ultimately contracts, between the buyer and

supplier are established through a bidding process, otherwise referred to as a tender.

Buyers forecast expected demand on individual lanes, where a lane is defined to be

a shipping route consisting of an origin and a destination. The buyer bids out the

lanes for which it requires service, along with the estimated volume of the lane. The

shipper responds with a quoted price for which it will service either an individual

lane or a set of lanes in the form of a bid. By placing a bid, the carrier agrees to

service that lane at the quoted price and enters into a contract with the buyer. Once

the buyer receives bids from all potential carriers, the buyer evaluates all of the bids

on each lane and chooses the winner, usually awarding an individual lane or a set of
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lanes to the lowest bidder.

Often the buyer will assign carriers to lanes based on other characteristics and

constraints in addition to cost. Optimization problem solved by the buyer is an con-

venient and practical approach. The buyer matches carriers to the lanes it is best

able to serve. This in turn reduces costs across the supply chain [7]. The optimiza-

tion problem consists of minimizing total transportation cost subject to one or more

constraints. For instance, the constraints may ensure that each lane is awarded to at

most one carrier, the volume awarded on each lane does not exceed the expected de-

mand, or the number of lanes awarded to a given carrier does not exceed the volume

the carrier is willing to supply [4, 19, 33].

Operations research is a branch of mathematics that studies constrained opti-

mization. A buyer can define an optimization problem in the form of a cost function

subject to constraints. This allows the buyer to consider several factors in addition to

the price of a bid when determining how to assign carriers to lanes. Each of the con-

straints to which the cost function is subject, along with any additional constraints

that represent the buyer’s business rules and/or preferences, are formalized mathe-

matically. The cost function, which represents the total cost of its transportation

services in the form of a sum of submitted bids, is minimized subject to all of the

business constraints. The mathematical techniques used in operations research to

solve the optimization problem provide the buyer with the optimal allocation.

The goal of this work is to present a comprehensive and cohesive outline of not

only the formulation, but also the implementation of an optimization problem which

to use in commercial logistical tendering. We proceed by presenting an introduction
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to tendering optimization and outline several aspects of the supply chain in chapter 2.

We also include specific instances for which a business may find the use of optimization

techniques both desirable and effective during the logistics procurement process. We

proceed to present an overview of linear programming along with the combinatorial

auction optimization models in chapter 3, while chapter 4 consists of an introduction

to stochastic programming and the stochastic linear programming models. All of the

methods and implementation details of the models are found in chapter 5, the results

are presented in chapter 6, and lastly, our future work and conclusions can be found

in chapter 7.
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2 TENDERING OPTIMIZATION

In order to formalize the outlined optimization problem, it is important to outline

several aspects of the supply chain pertaining to transportation procurement. This

chapter consists of delineating logistics and sourcing as it relates to the supply chain,

the tendering methodology pertaining to a firm’s transportation needs, and how lo-

gistics pertains to economies of scope in sections 2.1, 2.2, and 2.3, respectively. The

resulting allocation problem is described in section 2.4, followed by detailed examples

in section 2.5 as further motivation for the need to apply operations research tech-

niques to formally define the tendering optimization problem. Lastly, we conclude

the chapter with a discussion on the role of electronic auctions in the procurement of

logistical services and its use in solving the outlined allocation problem.

2.1 Introduction to Logistics and Sourcing

Logistics is regarded as the portion of the supply chain that deals with the orga-

nization and management of the transportation of goods and services [5]. The most

common modes of transportation services utilized by businesses include air, freight

or rail, water, road via truckload (TL) or less-than-truckload (LTL), pipeline, and

intermodal [35]. Intermodal transportation services consist of any combination of

two or more of the aforementioned services, such as the use of truckload or less-than

truckload in conjunction with freight services where the trucking service acts as an

intermediary in order to transport goods, perhaps from a warehouse or distribution

center to a loading dock.

Because each transportation mode consists of unique trade-offs between cost and
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lead time, individual business needs must be considered when making logistical deci-

sions, such as choosing a mode of transportation. A company may employ different

modes of transportation for different products depending on the size and value of

the product it needs shipped. The design and implementation of a company’s sup-

ply chain further impacts the decisions involved in choosing transportation services.

Depending on the use and proximity of warehouses and distribution centers, certain

modes of transportation may be more cost efficient, maintain adequate inventory

levels, and produce desired customer responsiveness levels [5].

In addition to choosing an adequate mode of transportation, a company must

decide to either manage their own transportation services in-house or to outsource

these services. Businesses that invest in establishing and managing their own trans-

portation needs are commonly referred to as 4PL, while those businesses that procure

transportation services from a third party logistics provider are referred to as 3PL

[35]. In these types of business-to-business (B2B) transactions, the business that is

purchasing or sourcing the transportation services is commonly referred to as the

shipper or buyer, and the 3PLs that provide transportation services are commonly

referred to as the carriers or suppliers.

A third party provider should provide a company with the benefits of combining

lower costs with higher quality service than what the company could provide on its

own. Additional benefits gained by outsourcing logistical services include being able

to focus on the business’s main strengths and core competencies, improvements in

customer service, and decreases in labor problems due to the transfer of responsibil-

ity to the third party provider [10]. However, involving a third party also brings risk
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associated with it, such as shifting power from one enterprise to another or underes-

timating the costs (either monetary, time, or reputation costs) incurred in organizing

and managing numerous outside firms [5]. The decision to outsource services through

a 3PL should not solely be based on an increase in savings across the supply chain but

should also take into account the risks involved when a third party entity is involved.

In todays global market, businesses often make the decision to procure or obtain

transportation services from a third party logistics provider. In the United States

alone, logistics and transportation spending in 2015 made up 8 percent of the coun-

try’s annual gross domestic product (GDP) by totaling $1.48 trillion [36].

2.2 The Procurement and Tendering Process

In general when a firm makes the decision to outsource its transportation services,

the company is faced with numerous decisions. The buyer must decide with which

supplier to partner and how to allocate the needed transportation routes and volume

among its suppliers. Procurement through tendering can be viewed as a three step

process: bid preparation, bid execution, and bid analysis and assignment [4].

The first step in the procurement process is a planning phase – deciding the

specific details of the buyer’s demand, what needs to be tendered, and which suppliers

to contact. When preparing the tender, the shipper first defines the main objective

or goal of the tender. Most commonly the supplier will outsource transportation

services with the goal of reducing costs or increasing revenue. Other common goals

may involve sustainability, consolidating business, reducing lead times, etc. Defining

the buyer’s goals in the beginning will guide the tender and aid in decision making
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throughout the rest of the bid preparation stage.

Once the main objective of the tender is established, the buyer then decides the

specifications of the lots to be bid out. For each lot (i.e., lane) in the tender, the point

of origin, the destination, and the estimated volume on the lane must be specified.

Other properties such as average payload, expected number of annual loads, and the

current cost of servicing that lane may be included to encourage more robust bids

from suppliers. In addition to determining the lanes to be sourced, the buyer must

decide if a lane should be awarded to a single source or if more than one source will

be allowed to service a lane. For example, a firm that has regular shipments from Los

Angeles to Miami must decide if it will bid out the lanes between Los Angeles and

Miami as numerous individual lanes, allow the demand to be divided into a portion

of smaller lanes, or tender the entire set of lanes together to be awarded to a single

supplier. These decisions directly affect the end results of the allocation based on the

suppliers’ reaction to the tender based on the bids received.

Another consideration to address while preparing the tender involves supplier

eligibility: which suppliers will be considered in the tender process.

Supplier eligibility is another consideration the buyer will need to address during

the preparation phase of the tender. Specifically, the buyer determines which suppliers

will be considered in the tender process A buyer may allow any carrier to participate

in the tender through an open market setting or establish a proprietary setting in

which suppliers are put through a qualification process and then chosen to participate

in the tender based on their capabilities [1]. The requirements for a supplier to be

considered for qualification should be clearly outlined and coincide with the buyer’s
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main objectives of the tender. Only those carriers that aid in achieving the goals of

the buyer should be considered eligible for participation. The basis of the supplier’s

eligibility may include prior business relations, standards such as sustainability efforts,

reputation and/or risk involvement in dealing with the prospective supplier, customer

satisfaction rates, available resources, the ability to meet demand, etc.

Lastly, the tender preparation phase outlines how a supplier should submit their

bids, the decision criteria the shipper uses to evaluate and select winning bids, and

the time frame suppliers have to submit bids. How a supplier submits bids on a lane

is determined by the type of auction used. The traditional auction format allows for

bids to be submitted on each lane independent of all other lanes, while a combinatorial

auction allows carriers to submit bids on packages or sets of lanes. Once all of these

details have been established by the buyer, the next step is to execute the tender. In

this step the tender is formally issued to the potential suppliers. After inviting carriers

to the tender, the buyer awaits responses in the form of bids from the suppliers.

After the launch of the project and all bidding is complete, the buyer evaluates

the bids and gives feedback to the suppliers. The approach a buyer uses to analyze

bids varies depending on (1) the type of auction issued in the tender, (2) the inclusion

of the business constraints and/or preferences, and (3) the buyer’s main objective and

goal(s) of the tender. The buyer determines the final lot allocation after analyzing

the supplier’s data under different scenarios. Finally, the buyer awards its business

to the selected suppliers and informs all participants of the outcome of the tender.
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2.3 Economies of Scope

Transportation providers face economies of scope due to synergies or a dependence

between inbound and outbound travel costs. Carriers typically ship packages on a

lane consisting of an origin and a destination. However, a carrier’s revenue is highly

dependent on the costs incurred from traveling not only to the destination, but also on

the return trip. This creates an interdependence between the two adjacent lanes: the

cost of a delivery from the origin to the destination also depends on either or possibly

both the cost of the return trip to the origin or the cost of traveling to the next pickup

location. For example, a carrier that delivers a product from New York to Chicago

still incurs travel costs on the return trip from Chicago to New York. Economies

of scope are achieved if the carrier can obtain a delivery (or partial delivery) on the

return trip and thus increases its revenue. Factors in the carrier’s network such as

commuting without a load (i.e., deadheading), dead times while loading or unloading,

and variability in lead times all have an additional effect on the cost of a shipment

[4].

Shippers frequently issue a tender in order to outsource the needed transportation

services to the lowest bidder. However, due to the inherently complicated nature of

logistics, the process of sourcing transportation services via an auction introduces

numerous complexities as previously outlined. In a single-lane, noncombinatorial

auction format that awards suppliers based solely on the lowest bid, these complexities

are not taken into account. Hence economies of scope are most likely not going to

be achieved by the carrier in that scenario. Rather than awarding carriers based

solely on lowest cost, the problem of how to assign carriers to the lanes that achieve
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economies of scope and ultimately minimize cost across the supply chain must be

addressed. Based on the supplier’s transportation network and cost structure, which

is usually unavailable to the buyer during the auction, the buyer is left to solve the

resulting allocation problem consisting of matching those carriers to the demand it

can best handle.

2.4 The Winner Determination Problem

For this research, we focus on 3PL businesses in which B2B outsourcing occurs

through the use of online combinatorial auctions. We are interested in outlining the

process for which companies (referred to as buyers) acquire goods and/or services

through an auction for which suppliers place bids on lanes, commonly referred to as

lots. This method of selecting suppliers is commonly referred to as a tender [2]. In

logistical services, the lot of the tender is comprised of the point of origin and the

destination. For instance, routes from Chicago to Dallas, Paris to New York, or Los

Angeles to Tokyo are examples of domestic and international lanes.

Beginning in the early 1990’s, companies began using auctions in the procure-

ment of transportation services. Sears Logistical Services (SLS) was one of the first

corporations to implement an auction in order to consolidate their logistical services

and reduce costs: in 1993, through the use of a combined-value auction, SLS reduced

its transportation costs from $190 million to $165 million per year on a total of 854

lanes [19]. Other major corporations to carry out the procurement of transportation

through electronic exchanges include Walmart, Home Depot Inc., Kmart Corpora-

tion, Staples Inc., Compaq Computer Company, and The Limited Inc, which claimed
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to have saved $1.24 million in its shipping costs in 2001 by implementing an online

combinatorial auction [6]. However, procurement auctions are not restricted to only

the purchasing of transportation. In the early 2000’s CombineNet hosted over 400

sourcing events for the procurement of a vast number of goods and services, such as

transportation, direct and indirect materials, packaging, chemicals, healthcare, and

telecommunications, and claims savings of $4.4 billion to its customers between 2001

and 2006 [31].

Traditionally, the supplier that provides the “best” bid on a lane or set of lanes

is chosen as the winner for that lot, where the “best” bid is equivalent to the lowest

monetary bid placed on a given lane. However, with the use of online auctions in

conjunction with an increase in the globalization of trade, the lowest bid may not

necessarily result in the “best” or optimal allocation. Choosing the lowest bid on

a given lane may have considerable long-term effects on the buyer’s entire supply

chain, relations between the supplier and buyer, and the supplier’s ability to fulfill

its obligations to its customers. Such characteristics, along with the inclusion of the

buyer’s business rules and preferences, must be taken into account in addition to the

monetary value of each supplier’s bid.

The establishment of the winner determination problem is due to the complexities

that stem from tenders performed on an electronic exchange. The winner determi-

nation problem equates to obtaining an optimal solution on all sets of lanes. This

results in an optimal allocation of total demand among the chosen suppliers [6]. Such

an allocation is considered optimal because, although it may not return the lowest bid

on each individual lane, it will bring additional value to the entire supply chain. The
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value that an optimal allocation brings may differ on a case by case basis depending

on the buyer’s desired end result, such as minimizing transportation cost, increasing

the number of sustainable carriers, increasing the number of minority owned carriers,

or decreasing the lead time on shipments to its customers. In each of these scenarios,

choosing the lowest bid on each individual lane will most likely not result in achiev-

ing the firm’s main sourcing objective; whereas the buyer is able to achieve its main

objective by obtaining an optimal allocation that takes into account the buyer’s busi-

ness rules and preferences. Thus solving the resulting winner determination problem,

otherwise known as the allocation problem, is the main goal of the tender.

2.5 Allocation Examples

Next we present several examples to illustrate the resulting allocation problem in

order to showcase its complexity. Consider the following scenario: suppose that a

manufacturing company (referred to as the Buyer) needs to purchase freight services

from its main facility in Boston to five regional distribution centers located throughout

the country. The five lanes the buyer needs serviced all have the same origin with

destinations in Los Angeles, Phoenix, Chicago, Jacksonville, and New York City,

designated LA, PHO, CHI, JAX, and NYC, respectively.

The Buyer has implemented an auction for the procurement of its freight services

involving five suppliers: Supplier A, B, C, D, and E, respectively. Table 1 contains

the spreadsheet representation of data the Buyer compiled at the end of the bidding

process. Each row in the table represents one bid, which consist of the lane being bid

on, the bid amount, and the seller that placed the bid. The Buyer then determines
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the winner of each lane based on the lowest bid on a lane-by-lane basis without taking

any constraints or preferences into consideration. Based solely on the lowest bid, the

winning carrier for lane LA is Supplier C at a cost of $100, lane CHI is Supplier A at

$95, lane PHO is Supplier D at $300, lane NYC is Supplier E at $75, and lane JAX

is Supplier A at $180. The cost of transportation services on these five lanes totals

to $750.

Table 1: Allocation main example: suppliers’ bids sorted by lane and lowest bid

amount.

Lane Bid Amount ($) Placed By

LA 100 Supplier C
LA 125 Supplier B
LA 160 Supplier A
LA 210 Supplier D
CHI 95 Supplier A
CHI 125 Supplier C
PHO 300 Supplier D
PHO 375 Supplier B
PHO 510 Supplier A
NYC 75 Supplier E
NYC 85 Supplier D
NYC 90 Supplier B
NYC 120 Supplier A
JAX 180 Supplier A

Next we present several scenarios that introduce specific business rules, con-

straints, and or preferences placed on the auction by the buyer using bids presented

in Table 1, unless otherwise noted.

Scenario 1: Non-price Attributes. In addition to the price of a shipper’s

bid, the buyer wants to take into account one or more non-price attributes, such as
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a supplier’s reputation or preference to an incumbent. The buyer has worked with

supplier A and supplier B in the past and has established good working relationships

with each of them. In light of this, the Buyer would like to continue working with

both of these shippers, so the Buyer decides to award at least one lane to supplier A

and supplier B. Alternatively, the Buyer could have chosen to award a certain % of

lanes, in this case 20%, to its incumbent suppliers.

The traditional method outlined above based exclusively on the lowest bid does not

award any business to supplier B; however, the Buyer could make a quick comparison

and award lane NYC to supplier B instead of supplier E. This results in an increase

in the Buyer’s transportation cost by $15, resulting in a total cost of $765, but the

benefits of working with and continuing to build relationships with its incumbent

suppliers outweighs the price increase in the end. Table 2 indicates the winning bids

for this scenario in bold text, while the bid placed by supplier E that was dropped is

distinguished in italicized text for a convenient comparison between the bids.

Table 2: Inclusion of non-price attributes allocation example: suppliers’ bids in de-

scending order by lane and lowest bid amount.

Lane Bid ($) Placed By Lane Bid ($) Placed By

LA 100 Supplier C PHO 375 Supplier B
LA 125 Supplier B PHO 510 Supplier A
LA 160 Supplier A NYC 75 Supplier E
LA 210 Supplier D NYC 85 Supplier D
CHI 95 Supplier A NYC 90 Supplier B
CHI 125 Supplier C NYC 120 Supplier A
PHO 300 Supplier D JAX 180 Supplier A

Scenario 2: Minimizing Risk. The Buyer may be in a position such that it
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wants to minimize risk and the costs associated with organizing and collaborating with

several suppliers. The Buyer may decide to limit the number of different suppliers it

will award business. Notice that the Buyer’s original allocation allowed it to maintain

contracts with four suppliers: supplier A, C, D, and E. If the Buyer desires to partner

with no more than three carriers, the traditional method of choosing suppliers would

not incorporate this preference. Because of the small number of bids received in the

tender, the Buyer could easily notice that awarding the Los Angeles lane to supplier D

instead of supplier E would fulfill its preference and only increase its transportation

cost by $10. Table 3 presents only the bids that require consideration in order to

reduce the number of suppliers in the allocation from four to three with the winning

bids in bold and the dropped bid in italics. It is important to note that in a tender

consisting of only 14 bids it is not difficult to make this comparison, but doing so

for a tender with hundreds or possibly thousands of bids would not be feasible or

desirable.

Table 3: Minimization of risk allocation example: suppliers’ bids in descending order

by lane and lowest bid amount.

Lane Bid ($) Placed By Lane Bid ($) Placed By

LA 100 Supplier C PHO 375 Supplier B
LA 125 Supplier B NYC 75 Supplier E

PHO 300 Supplier D NYC 85 Supplier D

Scenario 3: Conditional Bids. Conditional bids are often used in a tender

to allow the shipper to partition lanes into a desirable package of lanes for which it

could service at a lower cost than any subset of the individual lanes. These savings are
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passed along to the buyer resulting in lower costs across the supply chain. Conditional

bids are often in the form of XOR statements: conditions on a bid are specified by

the supplier using if, else, or if-else statements [19]. Bids of this form typically allow a

carrier to benefit from economies of scope by taking advantage of other lanes it services

within its network. We present three scenarios that a carrier may take advantage of

conditional bids to reduce it’s cost by placing more competitive bids.

Based on the supplier’s cost structure, a supplier may be able to provide trans-

portation services on a set (or package) of lanes at a lower cost than if each lane was

considered individually. For instance, supplier C could reduce it’s internal costs if

it serviced both lanes to Los Angeles (LA) and Chicago (CHI), perhaps by forming

a closed loop based using other services it provides. If the Buyer allows bidders to

place conditional bids, supplier C could place a more competitive bid such that it

would service LA and CHI for $175 if awarded both lanes. The resulting bid could be

viewed as reducing its bid on CHI by $50 (from $125 to $75) under the condition that

supplier C would be awarded LA and CHI, which would be a win-win scenario since

the Buyer reduces its procurement costs by $20 and supplier C improves its underly-

ing cost structure. Table 4 presents the bids from the current allocation without the

inclusion of conditional bids versus the alternative allocation that takes into account

the use of conditional bids.

Alternatively, a carrier’s limited resources may restrict the total amount of ad-

ditional volume under new contracts it is willing to undertake. However, because

the carrier does not know which lanes it may be awarded, the carrier does not want

to limit the bids it places and risk being awarded less business than desired. Based
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Table 4: Conditional bids scenario: current allocation versus alternative allocation

containing supplier C’s packaged bid set.

Current Allocation Alternative Allocation
Lane Bid ($) Placed By Lane Bid ($) Placed By

LA 100 Supplier C LA 100 Supplier C
LA 125 Supplier B LA 125 Supplier B
CHI 95 Supplier A CHI 95 Supplier A
CHI 125 Supplier C CHI 75 Supplier C

on supplier A’s current volume across its network, it possesses enough resources to

service either the lane to CHI or JAX but not both lanes. Given the current bids

in Table 1, supplier A would be awarded both of these lanes without the ability to

follow through on both contracts, while the use of conditional bids would not lead to

problems associated with this situation such as delayed shipments, negative effects on

the buyer-shipper relationship, and higher transportation costs. In this circumstance

the Buyer would need to award lane CHI to supplier C, resulting in an increase of its

costs by $30 while avoiding the previously outlined difficulties.

Finally, a carrier may wish to be more competitive in its bids by offering a discount

for its services if award a minimum volume. Rather than placing a conditional bid

on specific lanes to take advantage of economies of scope, this tactic allows a carrier

to incorporate economies of scale by increasing its overall production. For instance,

supplier D might offer a discount of 20% if awarded two or more lanes. The Buyer

could easily reduce each of the bids placed by supplier D by 20% and compare the

current bids with this set of new bids presented in Table 5. A quick assessment shows

that the Buyer would not be able to lower its transportation costs using an allocation
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that incorporates supplier D’s conditional bid. In the end, the Buyer would benefit

from its original allocation chosen from Table 1.

Table 5: Conditional bids containing supplier D’s reduced bids (sorted by lane and

lowest bid amount).

Lane Bid Amount ($) Placed By

LA 100 Supplier C
LA 125 Supplier B
LA 160 Supplier A
LA 210 Supplier D
CHI 95 Supplier A
CHI 125 Supplier C
PHO 300 Supplier D
PHO 375 Supplier B
PHO 510 Supplier A
NYC 75 Supplier D
NYC 85 Supplier E
NYC 90 Supplier B
NYC 120 Supplier A
JAX 180 Supplier A

With only five lanes and five suppliers participating in the tender, the Buyer could

manage all of the constraints and conditional bids outlined without much difficulty.

Each alternate allocation could be produced and compared using spreadsheets or ta-

bles and the allocation resulting in the lowest costs that follows the desired constraints

would be chosen. Because of the small number of constraints in our example, it would

not be difficult for the Buyer to determine the optimal allocation; however, in the

worst case scenario the Buyer is at risk of receiving up to (25 − 1) or 31 different

conditional bids [6]. While sorting through all of these bids would not be impossi-

ble, analyzing all of them simultaneously results in an allocation that would be more
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difficult and tedious to obtain.

In light of this, how much more difficult would it be for a company to determine

an allocation for a tender consisting of hundreds of participants and thousands of

bids? A problem of that magnitude would be nearly impossible to solve using only

spreadsheets and tables. Businesses rely heavily on software that is able to handle

and analyze a large number of supplier-lane combinations – possibly an exponential

number of combinations. This further motivates us and leads us to the need for

software which implements operations research in the form of optimization techniques.

One type of software that has these and other capabilities, such as streamlining the

entire tendering process from beginning to end, is the electronic auction.

2.6 Electronic Auctions

Traditionally, the procurement of logistical services involved reverse auctions that

use either a request for quote (RFQ) or request for proposal (RFP) for which the buyer

issues a request for services to potential suppliers, the suppliers submit either quotes

or proposals, respectively, for the desired services, and the carriers are selected based

only on lowest cost [4, 6, 24]. As discussed previously, determining transportation

services based on the cost of an individual lane may not result in the optimal allocation

because of the intertwined cost adjacent lanes have on one another throughout the

network. This interdependence in a carrier’s network is a problem not addressed by

the traditional procurement method of a reverse auction.

Auctions performed using online software implement powerful mathematical op-

timization solvers and algorithms in order to determine the optimal allocation of
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carriers’ bids. In addition to providing optimal solutions to the winner determination

problem, these tools have the ability to include side constraints, business rules, and

buyer preferences into the final allocation [31]. The inclusion of these features puts

both the buyer and shipper at an advantage by utilizing cost saving techniques not

offered through traditional procurement methods.

Obtaining an optimal solution that accounts for business constraints results in

the optimal assignment of carriers to the lanes for which they are able to best serve.

Awarding business to carriers in this fashion has a positive impact on the entire

supply chain. If the buyer reduces the costs of its suppliers, the buyer benefits when

these savings are passed on in the form of lower transportation costs. Pairing carriers

with lanes optimally potentially provides the buyer with other benefits in the form

of increased customer satisfaction, improvements in carrier efficiency, shorter and/or

more reliable lead times, or better relations with its suppliers. These benefits may

further directly or indirectly reduce costs across the supply chain.

Electronic auctions offer many other time and cost saving benefits to both the

supplier and shipper. Honeywell, a United States based technology company with

approximate sales of $39 billion in 2016, claims that the use of electronic sourcing

tools has reduced the time it takes for suppliers to submit bids from up to three

weeks to less than 72 hours [1, 11]. Because the auction is performed through an

online platform, bids are received simultaneously in real-time, allowing for improved

communication and synchronous negotiations with suppliers.

Online platforms offer the extra advantage of being able to better handle the

complexities of combinatorial auctions through sophisticated optimization algorithms.
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Determining an allocation on a small set of lanes is trivial and may be accomplished

using spreadsheets; however, combinatorial auctions may result in an exponential

number of possible combinations of bids. Such a problem is categorized as NP-

complete: in the worst case scenario the buyer is not able to obtain an exact solution

to the winner determination problem in polynomial time [26]. In these situations an

approximation may be used.

Even though the use of online software in the procurement of logistical service

has numerous benefits, namely monetary savings for the buyer, there are still some

issues to address. In particular, software offered through a third-party provider can

be viewed as a “black box” because of the lack of information regarding the optimizer

and/or algorithms the software uses to obtain its solutions. While some companies

may release older versions of their search algorithms, it is in the best interest of the

company that the ideas and techniques behind their algorithms are kept proprietary.

From the buyer’s perspective, the buyer inputs information regarding the lots, the

suppliers’ corresponding bids, and business constraints. The software outputs the

optimal allocation of lots. One of the key interests in this research is to investigate

how a buyer can be assured an optimal allocation has been determined if little to

nothing is known about the optimization techniques used in determining the given

allocation.
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3 COMBINATORIAL AUCTION OPTIMIZATION MODELS

In the following chapters we formalize the winner determination problem both as a

mixed-integer linear program and as a stochastic linear program. Our goal is to solve

the allocation problem by modeling the combinatorial auction as an optimization

problem. Since we are interested in the auction from the buyer’s perspective, the

goal of the linear program is to assign carriers to lanes in such a fashion that the

collection of accepted bids results in the minimal cost to the buyer. Solving this

optimization problem accomplishes the buyer’s goal of minimizing its total logistical

costs by determining an optimal allocation of suppliers across all lanes. Using this

optimization program, we then incorporate stochastic programming into the model

in order to investigate how the allocation is affected by uncertain changes in future

demand levels.

We proceed by first presenting a brief overview of linear programming in section

3.1, then proceed to present the reverse combinatorial auction (RCA) base optimiza-

tion model, which contains only the most basic constraints that ensure an optimal

allocation. We then build upon the base model in later sections by introducing vari-

ous constraints that the buyer may wish to use in the tender process. Each constraint

represents one or more of the buyer’s business rules. Therefore any number of the

constraints may be simultaneously incorporated into the optimization model to model

different business scenarios.

After establishing the base model in section 3.2.1, we present an example to il-

lustrate its formulation and implementation as a stand alone model in section 3.2.2.

Then we proceed to introduce of a new business rule corresponding to the number of
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distinct carriers in the program and its corresponding constraint(s) as a linear pro-

gram in section 3.3.1. This section is organized such that the carrier constraint model

is presented as an extension of the base model and is followed with an example to

illustrate the development of the model.

3.1 Introduction to Linear Programming

Optimization problems involving the maximization or minimization of a linear

function subject to one or more linear constraints are classified as linear programs

[21]. The linear function that is being either maximized or minimized is referred to as

the objective function, and each of the constraints may be in the form of an equality

or inequality [8]. Given an objective function and a set of constraints, we can write

any linear program in standard form given by

minimize c1x1 + x2x2 + · · ·+ cnxn

subject to ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi, i = 1 . . .m

x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0

where the goal of the program is to find values for the variables x1, . . . , xn that

minimize the objective function. Such a solution that minimizes the objective while

satisfying all of the constraints is said to be a feasible solution [16]. Typically this is
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presented in a more compact form using vector notation given by

minimize cTx (1)

subject to Ax ≤ b (2)

x ≥ 0 (3)

where x ∈ Rn is the variable that minimizes the objective function, cT ∈ Rn and

A ∈ Rm×n are the coefficients of the objective and the constraints, respectively,

and b ∈ Rm is the right hand side of the constraint inequality [27]. In a concrete

linear programming model, the values of cT and A will be defined explicitly, and in

an abstract model, the values of the coefficients will be defined implicitly and then

provided by a data set at run time.

Linear programming is used extensively in the field known as operations research,

which can be traced back to the first world war when it was used to improve military

operations [28]. Operations research uses optimization techniques for decision-making

in business and other industries involving highly complex problems. In addition to

linear programming problems that involve a linear objective function and linear con-

straints, mixed-integer programming problems may also be found under the umbrella

of operations research. These types of problems have the additional requirement that

one or more of the variables are restricted to taking on integer values [30].

Numerous real world problems can be modeled as either linear programming prob-

lems or mixed-integer programming problems. Examples of these types of problems

include the assignment or allocation problem of assigning objects to tasks, the max-

imum flow problem of determining which route across a network maximizes flow,
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the minimum spanning tree problem finds the connected sub-tree with the shortest

distance across the network, and the shortest route problem determines the shortest

distance between two nodes within a network [25].

3.2 Reverse Combinatorial Auction: Base Optimization Model

In this research, we have developed a linear program that models the highly com-

plex problem of procurement through outsourcing. Specifically, our work is focused

on business-to-business sourcing events used in transportation procurement from the

perspective of the business that is purchasing the logistical services. While one of our

goals is to develop a linear program that incorporates numerous business rules and

constraints, the base optimization model includes complexities that require the use

of optimization techniques to obtain a feasible solution to the problem. Even with

the inclusion of only the basic business rules and constraints, some of the complexi-

ties the buyer may face could include the large number of suppliers, bids, and lanes,

organizing an extensive national or global network, how the demand across lanes is

spread out over a period of time, and the potential for bids placed on a bundle or

package of lanes [34]. Therefore we first present the base optimization model as a

stand alone model that is able to handle these complexities.

3.2.1 Deterministic RCA Base Model

As is evident from the examples presented in section 2.5, the sourcing event is

modeled as a reverse combinatorial auction from the perspective of the buyer. Since

the buyer desires to procure its needed services at the lowest possible cost, we employ a
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minimization optimization problem in the base model in which the objective function

minimizes the cost of the set of accepted bids, which represent the purchasing of

transportation services from third-party providers. Minimizing the objective function

in this way ensures that any feasible solution of the model will produce the minimal

costs to the buyer subject to the given set of constraints. The overall cost to the

buyer is represented in the objective function as the sum of the winning bids.

Although the base model does not incorporate any business constraints, the linear

program does include constraints to ensure a feasible solution is obtained for the

buyer. A feasible solution must provide a set of winning bids that meet the buyer’s

total demand across all lanes in the network. Moreover, each bid must be accepted in

an all-or-nothing fashion, and each bid cannot be awarded more than one time. For a

given bid, either the entire bundle of items need be assigned to a single carrier or none

of the lots are awarded to the carrier. This ensures that no partial bids are awarded.

All of these considerations will be represented in the linear program as constraints

for which any feasible solution satisfies.

The first and most basic combinatorial auction optimization problem we present

is a linear problem consisting of an objective function and three constraints adapted

from [3, 18]. We let the sets LANES and BIDS represent the set of all items in

the auction and the set of all received bids, respectively. The indexing over these

respective lanes is given by l = 1, . . . ,m, for l ∈ LANES, which represents item l in

the auction, and b = 1, . . . , n, for b ∈ BIDS, which represents bid b out of the set of

all bids. Note that there are a total of m bids and n items. Each bid b ∈ BIDS is

comprised of the set {vb, Sb} where vb represents the bid value or price of bid b and
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Sb is the subset of items contained corresponding to a bundle/package of lanes. We

assume that Sb 6= ∅ ∀ b ∈ BIDS. We represent the total demand over all lanes with

D. If each lane occurs with multiplicity 1 and the total demand is distributed evenly

across all lanes, then D = m [30].

Referring to the procurement example outlined in section 2.5, Table 1 consisting

of five lanes (LA, CHI, PHO, NYC, and JAX) with five bidders A, B, C, D, and

E, and 14 bids; we may denote the lanes and bids using the set notation outlined

above as LANES = {1, 2, 3, 4, 5} and BIDS = {1, 2, ..., 14}, respectively. Then our

indexing sets are l = 1, . . . , 5 and b = 1, . . . , 14, respectively. We also note that using

this notation we have bid b = 1 is comprised of the set {100, {1}}, where the bid

amount is v1 = 100 and the package of lanes is the singleton set S1 = {1}.

In standard form the program is given by

minimize
n∑

b=1

xbvb (4)

subject to
n∑

b=1

xb|Sb| = D (5)

n∑
b=1

δlbxb = dl ∀ l = 1, . . . ,m (6)

xb ∈ {0, 1}. (7)

The constraint given in Equation (6) refers to an incidence matrix for bids, δ

where the lth row corresponds to the lth item and the bth column, δb, corresponds to

the bth bid. Each element of the matrix δ is defined as

δlb =

{
1 if l ∈ Sb

0 if l /∈ Sb
.
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For our example, the incidence matrix for bids, is given by

δ =


1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1


where δ1,1 = 1 represents the first lane, l = 1, being in the bid package of the first bid,

b = 1, and δ2,1 = 0 shows that the second lane, l = 2, is not part of the bid package

for the first bid, b = 1. Summing over each row of the δ matrix produces the total

number of bids placed on the corresponding lane, while summing over each column

gives the total number of lanes in the corresponding bid package. Note that the sum

of each column being equal to one shows that each bid in the program consists of

only a single lane rather than bid packages of more than one lane.

Lastly, the decision variable corresponding the the bth bid is given by xb where

xb =

{
1 if bid b is accepted
0 otherwise

.

All model variables and parameters are summarized in Table 6.

Table 6: Parameters and variables for the deterministic RCA Base Model

m: Total number of unique lanes in the network
n: Total number of active bids in the tender
l: Indexing parameter over the set of all lanes, l = 1, . . . ,m
b: Indexing parameter over the set of all bids, b = 1, . . . , n
vb: Value of bid b
Sb: Bundle of lanes in bid b
xb: Decision variable for bid b; 1 if bid b is accepted, 0 otherwise
δlb: Variable for lane l; 1 if lane l ∈ Sb, 0 otherwise
D: Total demand across all lanes in the network
dl Total demand on lane l
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3.2.2 Base Model Example

We extend the procurement example presented in section 2.5 to include five new

bid packages that consist of more than one lane to illustrate the Reverse Combinatorial

Auction (RCA) model. Table 7 presents the extended data set consisting of the 19

total bids.

Table 7: Bid packages to illustrate the reverse combinatorial auction base model.

Lane(s) Bid Amount ($) Placed By

LA 100 Supplier C
LA 125 Supplier B
LA 160 Supplier A
LA 210 Supplier D
CHI 95 Supplier A
CHI 125 Supplier C
PHO 300 Supplier D
PHO 375 Supplier B
PHO 510 Supplier A
NYC 75 Supplier D
NYC 85 Supplier E
NYC 90 Supplier B
NYC 120 Supplier A
JAX 180 Supplier A

LA, JAX 300 Supplier A
LA, CHI, NYC 350 Supplier C

CHI, NYC 190 Supplier D
CHI, PHO, NYC, JAX 690 Supplier E

LA, CHI, PHO 450 Supplier B

The linear program still consists of five lanes (LA, CHI, PHO, NYC, and JAX)

with five bidders A, B, C, D, and E, with a total of 19 bids. Denoting the lanes

and bids using our set notation gives the sets LANES = {1, 2, 3, 4, 5} and BIDS =

{1, 2, ..., 19}, respectively. Then our indexing sets are l = 1, . . . , 5 and b = 1, . . . , 19,
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respectively. Bids one through 14, as presented in the previous section, are denoted

in the same fashion; bid b = 1 is comprised of the set {100, {1}}, where the bid

amount is v1 = 100 and the package of lanes is the singleton set S1 = {1}. Note that

bid b = 15 consisting of two lanes is denoted by the set {300, {1, 5}}, where the bid

amount is v15 = 300 and the package of lanes is the set S15 = {1, 5} referring to lanes

LA and JAX, respectively.

In this example, the incidence matrix for bids δ, delta, for the 19 bids is given by

δ =


1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0

 .
In contrast to the δ matrix in section 3.2.1, we note that summing over columns 15

through 19 indicates the cardinality of the corresponding bid package, where |S15| = 2,

|S16| = 3, |S17| = 2, |S18| = 4, and |S19| = 3, are all greater than one.

Lastly, the linear program given by

minimize
n∑

b=1

xbvb

subject to

n∑
b=1

xb|Sb| = D

n∑
b=1

δlbxb = dl ∀ l = 1, . . . ,m

xb ∈ {0, 1}

consists of 19 decision variables x = [x1, x2, . . . , x19]. Solving the reverse combina-

torial auction linear program results in each of the decision variables taking on the

binary values of either zero or one, where xi = 1 refers to the acceptance of bid b = i
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and xi = 0 results in the rejection of bid b = i.

3.2.3 Base Model Example: Implementation and Results

Before proceeding to the formulation and implementation of the carrier constraint

model, we wish to present the results of the example data set when implemented

through computer simulation. While we will discuss the details of the methods and

implementation of the model(s) in chapter 5, the goal of this section is to fully com-

plete the presentation of the example data using the base model here. Moreover, this

will allow us to focus on solely the results of the larger, real world data set provided

by Eastman Chemical Company in chapter 6, thus minimizing any confusion between

the results of the two different data sets.

For implementation of the base model example, the Python file and the corre-

sponding data file were executed using GLPK as the default solver. The computer

code contained in the Python file used in the implementation of the base model ex-

ample data set may be found in Appendix A. We refer the reader to chapter 5 for an

in-depth discussion of the program’s implementation and methods.

The program consisted of one objective, seven constraints, and 20 variables, for

which the objective was minimized. Upon termination, one optimal solution was

found with an objective value of $705 and the resulting decision variable values were

returned as x10 = x14 = x19 = 1 and xi = 0, for i 6= 10, 14, 19. In other words, the

10th, 14th, and 19th bids were accepted with all other bids being rejected. Table 8

represents the information pertaining to the winning bids.
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Table 8: Winning bid packages upon implementation of the base model example via

Pyomo.

Lane(s) Bid Amount ($) Placed By

NYC 75 Supplier D
JAX 180 Supplier A

LA, CHI, PHO 450 Supplier B

3.3 Reverse Combinatorial Auction: Carrier Constraints Model

3.3.1 Deterministic Carrier Constraint Model

Using the reverse combinatorial auction base optimization model given in Equa-

tions 4 through 7, we wish to incorporate one or more constraints in order to determine

a minimum and/or a maximum number of different carriers in the final allocation.

We begin by first formulating the carrier constraint for a maximum number of carriers

as follows.

First, we introduce a new indexing set, denoted CARRIERS, which represents

the set of all carriers in the linear program where c = 1, . . . , r indexes over the set and

the total number of participants in the tender is equal to r. Two new parameters,

denoted zc and Mc are also introduced into the base optimization model to track

which carriers are assigned bids and will be in the final allocation. The variable zc

tracks whether each individual carrier c will appear in the final allocation, where

zc =

{
1, if carrier c has at least one accepted bid
0, otherwise

,

and Mc denotes the total number of bids placed by carrier c [3].

For illustrative purposes, suppose carrier r places two bids, i.e., Mc = 2, and let
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x1 and x2 be the corresponding decision variables, respectively. Then if either bid or

both bids from carrier r are accepted, i.e., x1 = 1 and/or x2 = 1, then carrier c has

at least one accepted bid and zr = 1. Alternatively, we can write that if x1 + x2 ≥ 1,

then zc = 1. On the other hand, if both bids are rejected we have that x1 + x2 = 0,

and so zc = 0. This allows us to denote zc for this example as

zc =

{
1, if x1 + x2 ≥ 1
0, otherwise

.

We further note that because zc is binary, we also have the inequality x1 + x2 ≤

Mczc. Recall, zc can only equal 0 if x1 and x2 = 0; therefore, if x1 and x2 = 0, zc = 0

and hence x1 + x2 = 0 ≤Mczc = 0. In the case that only one xi = 1, i = 1 or 2, then

the inequality still holds as zc = 1 in this case, and x1 + x2 = 1 ≤ Mczc = 2(1) = 2.

If both x1 and x2 equal 1, then x1 + x2 = 2 and zc = 1 which implies x1 + x2 = 2 ≤

Mczc = 2.

We can further verify these inequalities by noticing that, without loss of generality,

if x1 + x2 = 1, then the first inequality is satisfied regardless of whether zc = 0 or

zc = 1. However, in this situation the second inequality becomes 1 ≤ Mczc = 2zc,

which implies that zc ≥ 1/2. Therefore zc must be equal to 1. Alternatively, if

x1 + x2 = 0 where both bids are rejected, then this forces zc to be equal to zero [29].

We can generalize this for a carrier c placing Mc = n total bids with corresponding

decision variables x1, x2, . . . , xn, then

zc =

{
1, if x1 + x2 + · · ·+ xn ≥ 1
0, otherwise

.

This leads to

zc ≤ x1 + x2 + · · ·+ xn ≤Mczc. (8)
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Similar to the base model, we also introduce a new incidence matrix for carriers,

denoted γ, where the cth row, corresponds to the cth carrier and the bth column

corresponds to the bth bid. Each entry in this incidence matrix for lanes is defined as

γcb =

{
1 if carrier c placed bid b
0 otherwise

.

For our example in section 2.5, the incidence matrix for carriers, denoted γ, is

given by

γ =


0 0 1 0 1 0 0 0 1 0 0 0 1 1
0 1 0 0 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0


where γ3,1 = 1 signifies that the third carrier, c = 3, placed the first bid, b =

1, corresponding to row 3, column 1. We note that summing over each row of γ

produces the total number of bids placed by a carrier, i.e.,
∑

b∈BIDS γcb = Mc ∀c ∈

CARRIERS.

This defines a new parameter in the optimization model that serves as a counter

for the total number of carriers in the final allocation. Note that we now assume each

bid is of the form {vb, Sb, cb}, which includes the parameter cb that is used to track

which bids belong to each carrier when setting up the incidence matrix for lanes γ.

When combined with the constraints outlined in the previous section, we obtain
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the following linear program:

minimize

n∑
b=1

xbvb (9)

subject to

n∑
b=1

xb|Sb| = D (10)

n∑
b=1

δlbxb = dl ∀ l = 1, . . . ,m (11)

n∑
b=1

γcbxb −Mczc ≤ 0 ∀ c = 1, . . . , r (12)

zc −
n∑

b=1

γcbxb ≤ 0 ∀ c = 1, . . . , r (13)

r∑
c=1

zc ≥ minCarrier (14)

r∑
c=1

zc ≤ maxCarrier (15)

xb ∈ {0, 1} ∀ b = 1, . . . , n (16)

zc ∈ {0, 1} ∀ c = 1, . . . , r. (17)

The model variables and parameters are summarized in Table 9.

In the carrier constraint model given by Equations (9) – (17), it can be observed

that the constraint given by Equation (10) is the same as in the base model, which

requires the total demand over all lanes to be met by the accepted bids. Likewise

the constraint given by Equation (11) requires the total demand on each lane to be

met by the accepted bids. Constraints given by Equations (12) and (13) use the

inequality established in Equation 8, zc <= x1 + ... + xn <= Mczc for each carrier

c. In other words, for each carrier c, zc must satisfy this constraint if carrier c is

present in a winning bid (indicated by the incidence matrix for lanes, γ). Next we
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Table 9: Parameters and variables for the RCA Model with maximum carrier con-

straints.

m: Total number of unique lanes in the network
n: Total number of active bids in the tender
j: Total number of unique carriers in the tender
l: Indexing parameter over the set of all lanes, l = 1, . . . ,m
b: Indexing parameter over the set of all bids, b = 1, . . . , n
r: Indexing parameter over the set of all carriers, c = 1, . . . , r
vb: Value of bid b
Sb: Bundle of lanes in bid b
cb: Carrier of bid b
xb: Decision variable for bid b; 1 if bid b is accepted, 0 otherwise
zc: Decision variable for carrier c; 1 if carrier r has at least one

Accepted bid, 0 otherwise
δlb: Variable for lane l; 1 if lane l ∈ Sb, 0 otherwise
γcb: Variable for carrier c; 1 if carrier c placed bid b, 0 otherwise
Mc: Total number of bids placed by carrier r
D: Total demand across all lanes in the network
dl: Total demand on lane l

maxCarrier: Maximum number of different carriers
minCarrier: Minimum number of different carriers

let the predetermined maximum number of carriers the buyer wishes to have in the

final allocation be denoted by maxCarrier, and the predetermined minimum number

of carriers be denoted as minCarrier, where Equations (14) and (15) represent the

constraints that requires the maximum and minimum number of carriers to be met by

the total number of different carriers, respectively. Finally, the constraints represented

by Equations (16) and (17) require the decision variables to only take on the values

of either zero or one corresponding to a decision of inclusion for a value of one and

exclusion for a value of zero.

If only one of the two carrier constraints needs to be implemented into the model
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rather than restricting both the minimum and maximum number of constraints, a

simple modification is necessary. If a buyer requires a minimum number of carriers

but not a maximum, then the buyer would set maxCarrier = a, where a is the total

number of carriers in the program. On the other hand, if a buyer desires a maximum

number of carriers but not a minimum, then let minCarrier = 0.

Thus we have outlined how to incorporate a constraint that allows for a restriction

on the maximum or minimum number of carriers in the program. We proceed by

presenting an example of the Deterministic Maximum Carrier Constraint Model in

the next section.

3.3.2 Carrier Constraint Model Example

We again refer to the extension the procurement example in section 3.2.2 where

the bid packages are given again in Table 10. All of the variable and parameter values

presented in the base model example found in section 3.2.2 have not been changed,

but now we consider the inclusion of the carrier constraints on the linear program,

for which we must consider information regarding the carriers. Our new indexing

set corresponding to the five suppliers A, B, C, D, and E, respectively, is given by

CARRIERS = {1, 2, . . . , 5} with indexing set c = 1, . . . , 5. Additionally, we denote

the total number of bids placed by each carrier as the vector Mc, where we have

Mc = [6, 4, 3, 4, 2]. In this example the incidence matrix γ is given by

γ =


0 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
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Table 10: Bid packages used in the RCA Base Model example.

Lane(s) Bid Amount ($) Placed By

LA 100 Supplier C
LA 125 Supplier B
LA 160 Supplier A
LA 168 Supplier D
CHI 95 Supplier A
CHI 125 Supplier C
PHO 240 Supplier D
PHO 375 Supplier B
PHO 510 Supplier A
NYC 68 Supplier D
NYC 75 Supplier E
NYC 90 Supplier B
NYC 120 Supplier A
JAX 180 Supplier A

LA, JAX 300 Supplier A
LA, CHI, NYC 350 Supplier C

CHI, NYC 190 Supplier D
CHI, PHO, NYC, JAX 690 Supplier E

LA, CHI, PHO 450 Supplier B

where γi,j = 1 if carrier c = i placed bid b = j, and γi,j = 0 if carrier c = i did not

place bid b = j. We can see that the sum of each row equals the corresponding value

of Mc. For example, summing over the first row represents the six bids placed by

carrier c = 1 and corresponds to M1 = 6.

In addition to the decision variable xi in the base model, the carrier constraint

model also contains the decision variable zc where a value of 1 corresponds to carrier c

belonging to the set of carriers with at least one bid in the final allocation. Otherwise

a value of 0 corresponds to carrier c does not have have any accepted bids and will

be appear in the final allocation.
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3.3.3 Carrier Constraint Model Example: Implementation and Results

Next we conclude the presentation of the carrier model example using the data

presented in Table 10 by presenting the several different results of the program for

various restrictions on the maximum and/or minimum number of carriers. We have

included the Pyomo code from Python file in Appendix B for which the reader may

reference.

First we note that formaxCarrier = 3, the program confirms the results presented

in section 8 for which suppliers A, B, and D were chosen to participate in the final

allocation for a total cost of $705. This was established by the optimal solution by

setting the decision variables z1 = z2 = z5 = 1 and z3 = z4 = 0. Hence we may

change the values of the maximum number of carriers and/or minimum number of

carriers to observe changes in the optimal allocation.

Let maxCarrier = 2. Then the resulting linear program consists of one objective,

19 constraints, and 25 decision variables. Upon termination of the program, one

solution was obtained that satisfied all of the constraints and minimized the objective.

The resulting total cost of the allocation was found to be $720 with x12 = x14 = x19 =

1 representing the winning bids and xi = 0 for i 6= 12, 14, 19 representing the losing

bids. Moreover, we have z1 = z2 = 1 for the two carriers that will be in the final

allocation and z3 = z4 = z5 = 0 for those carriers that will not be participating

in the allocation. The information regarding the winning bids is presented in Table

11. We may conclude that for maxCarrier = 2, we have suppliers A and B as the

only carriers, which has caused an increase in the tender cost due to the restriction

imposed by the maximum number of carriers.
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Table 11: Winning bids for the carrier constraint example with maxCarrier = 2.

Lane(s) Bid Amount ($) Placed By

NYC 90 Supplier B
JAX 180 Supplier A

LA, CHI, PHO 450 Supplier B

Suppose that we wish to allocate all of the volume to the same carrier by letting

maxCarrier = 1. Then the resulting optimal solution allocates all five lanes to

supplier A for a total cost of $1,025. Our optimization solver provides the solution

given by x5 = x9 = x13 = x15 = 1 and xi 6= 1 for the remaining decision variables

corresponding to the winning and losing bids, and for the carriers, z1 = 1 while

z2 = z3 = z4 = z5 = 0. Hence bids 3, 5, 13, and 15 placed by supplier A allows for

all of the demand to be met by a single carrier. We summarize the winning bids in

Table 12.

Table 12: Winning bids for the carrier constraint example with maxCarrier = 1.

Lane(s) Bid Amount ($) Placed By

CHI 95 Supplier A
PHO 510 Supplier A
NYC 120 Supplier A

LA, JAX 300 Supplier A

Note in each of these previous instances, only the maximum carrier constraint is

activated, which is achieved by setting minCarrier = 0.

Next let minCarrier = 4. Here we only want to activate the minimum number

of carriers, so we may set maxCarrier = 5. The optimal solution returns decision

variable values of x1 = x5 = x7 = x10 = x14 = 1 and z1 = z3 = z4 = z5 = 1 with the
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remaining decision variables taking on the value of zero. The total allocation cost

is $760 when four different shippers are issued accepting bids. Table 13 summarizes

this simulation’s results.

Table 13: Winning bids for the carrier constraint example with minCarrier = 4.

Lane(s) Bid Amount ($) Placed By

LA 100 Supplier C
CHI 95 Supplier A
PHO 300 Supplier D
NYC 85 Supplier E
JAX 180 Supplier A
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4 STOCHASTIC PROGRAMMING

4.1 Overview of Stochastic Programming

The deterministic model bases its outcomes on data for which the demand values

are estimated. However, in reality a business does not know with certainty that

these predictions will be reliable. When dealing with uncertainty in one or more of

the model parameters, such as demand on individual lanes, an alternate approach is

to develop a stochastic optimization program. Stochastic programming implements

uncertainty in parameter values by using the expected value(s) of the parameter in

the objective function, and then either minimizes or maximizes over the expected

value similarly to the deterministic model [17]. In regards to the implementation of

stochastic programs for the use of transportation procurement, there are two common

approaches: two-stage stochastic programming and simulation via K-scenarios [20].

Transportation procurement models in the form of the winner determination prob-

lem utilize unknown values of future demand levels across all lanes in a network.

Although there is uncertainty in the needed shipment levels, a business must make

decisions regarding which carriers to assign to each lane using an estimated value of

demand. Only after the decision has been made and enforced and after a period of

time has elapsed are the true demand values realized. Issues occur that may be very

costly to the shipper when the actual and estimated demand values greatly differ [12].

Typically two outcomes occur when the estimated demand values do not match

the actual demand. If the actual demand values are less than the predicted values, the

carrier may lose revenue because of the lower volume that needs to be shipped. On
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the other hand, if the actual demand values exceed the predicted value, there may be

an outcome such that the carrier is unable to ship the excess volume, and the shipper

is faced with a new set of decisions regarding how to transport the excess demand,

possibly at a higher cost by outsourcing to another third-party logistics provider [22].

In either case, once the actual volume on each lane is known, the shipper must make

a recourse decision if the true demand differs from the estimated values.

One approach of dealing with uncertainty through stochastic programming is the

two-stage stochastic linear program. In this optimization problem there are two

decision variables referring to each of the two stages: the first set of decisions are

made under uncertainty using the estimated demand values, while the second set of

decisions, often referred to as recourse decisions, are made after the true demand

values are known without the presence of uncertainty [22]. The classical two-stage

stochastic linear program introduces uncertainty into the deterministic model as the

expectation of the cost of the recourse action and is given in [15] by

minimize cTx + ED[min(qTy)]

subject to Ax = b

Tx +Wy ≤ h

x ≥ 0, y ≥ 0

where x ∈ Rn is the first-stage decision variable made before the actual demand

values are known, and y ∈ Rm is the second-stage decision variable based on the

parameters, q, T,W,h, and the cost of the recourse action min(qTy), is subject to the

constraint Tx + Wy ≤ h that is activated when the predicted and realized demand
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values differ [32].

We can observe that the objective function of the classical two-stage stochas-

tic linear program is comprised of a deterministic part, cTx, and a stochastic part,

ED[min(qTy)]. In this generalized form, each of these parts represent two different

decisions to be made: which bids to accept/reject and how much volume to allocate

to those carriers with accepted bids. The coefficients of the objective function are

given by cT and qT , while the coefficients of the constraints for which the objective

must satisfy are represented by A, b, T , W , and h. While there is no change in the

definition of the first-stage decision variable, x, which signifies those bids the carrier

should accept corresponding to a forecasted demand value, the introduction of the

second-stage decision variable, y, allows the shipper to determine how much volume

should be assigned to each carrier on a given lane using the actual demand values.

Note that for the type of transportation procurement problem we are interested in for-

mulating, we do not consider the amount of volume to allocate to each carrier, rather

we only assume that the stochastic portion will include the total demand value as the

random variable.

In the transportation procurement problem, we let the random variable in the

stochastic program be the sum of the demand on the individual lanes represented by

the overall demand,

D =
∑

l∈LANES

dl.

Hence the total demand as the random variable Dk is defined as the sum of the
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demand on the individual lanes for the kth variable such that

Dk =
∑

l∈LANES

dlk.

If the shipper views the overall demand as a random variable with some known

probability distribution, then the implementation of the stochastic program can be

performed using a K-scenarios approach. Specifically, if our random variable can take

on a finite number of different values, K, such that

D ∈ {D1, D2, . . . , DK}

with corresponding probabilities p1, p2, . . . , pK , where the probability of the kth de-

mand value is given by Pr(k) = P (D = Dk) = pk, then the Law of Large Numbers

allows us to assume a uniform distribution with a summation of the average cost of

the recourse action in order to replace the expectation of the cost of the recourse

action with a summation of the average cost of the recourse action [17, 32]. Thus we

have that

ED[min(qTy)] =
K∑
k=1

pkq
Tyk,

where each random demand value Dk corresponds to the decision variable yk for the

kth variable where yk = [y1k, y2k, . . . , ymk], with the objective coefficients qT given by

the bid values, vT . Essentially this allows us to reduce the two-stage stochastic linear
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program to

minimize cTx +
K∑
k=1

pkq
Tyk

subject to Ax = b

Tx +Wyk ≤ hk k = 1, . . . , K

x ≥ 0, yk ≥ 0

where we utilize the weighted average in the objective function.

Furthermore, we can proceed using the sample average approximation where for

a large enough value of K and if the set of random variables Dk, k = 1, ..., K is

independent and identically distributed across the scenarios, then the probability of

each of our demand values is given by pk = 1/K for each k = 1, . . . , K [17]. We

assume Dk is independent and identically distributed and that k is sufficiently large

so that we may assume a uniform distribution. Hence we may make this substitution

in our objective function to obtain

minimize cTx +
K∑
k=1

1

K
qTyk

subject to Ax = b

Tx +Wyk ≤ hk k = 1, . . . , K

x ≥ 0, yk ≥ 0

for random variable of the continuous type.

Our main concern with creating a stochastic linear program for tending procure-

ment is to not only analyze how changes in the predicted demand values affect the
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overall cost, but specifically consider how variation among those lanes with the great-

est predicted demand values affects cost. We proceed in section 4.2 by formulating a

stochastic linear program of the base model presented in sections 3.2.1 and 3.2.2 for a

tendering auction. Much of the focus for the remaining paper will be implementation

of the stochastic linear program base model; however, data containing combinatorial

bids is not included in the implementation of the base model in this paper and is

left as an area of future work. Section 4.3 contains the formulation of the stochastic

carrier constraint model. The methods and implementation of the stochastic base

model can be found in chapter 5.

4.2 Stochastic Linear Program: Base Model

Based on the deterministic linear program presented in section 3.2.1, we wish to

introduce a way to model uncertainty in the estimated demand values. According

to the methods previously outlined, we achieve this through the optimization of the

expected value of demand in the form of a summation using a K-scenarios approach

and the sample average approximation. Our assumptions under this model are that

our choice of K is sufficiently large, we have a known probability distribution for

the random variable representing the demand on a lane, dl, and the set of random

variables for total demand, Dk, is independent and identically distributed across all

scenarios.

For the stochastic linear program, if we have that the coefficients of the objective

function, cT and qT , are assigned to be c = [0, 0, . . . , 0] and

q = v = [v1, v2, . . . , vn] ,
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respectively, and if the coefficients for the constraints are given by the matrices T and

W such that T is defined to the zero matrix and

W =

[
1
T

δ

]
=


1 1 . . . 1
δ11 δ12 . . . δ1n
...

...
. . .

...
δm1 δm2 . . . δmn


where 1 is the ones vector and δ is the incidence matrix for lanes. Moreover, hk is a

vector of the right hand side of the constraints such that

hk =

[
Dk

dk

]
=


Dk

d1k
d2k
...

dmk


where hk will vary with the set of random variables, Dk. Then we have the following

base model of the stochastic linear program given as

minimize
K∑
k=1

n∑
b=1

(
ybkvb/K

)
subject to

n∑
b=1

ybk = DK ∀ k = 1, . . . , K

n∑
b=1

δlbybk = dlk ∀ l = 1, . . . ,m, ∀ k = 1, . . . , K

ybk ∈ {0, 1}

where K is the total number of scenarios, or samples of the random variable for the

set of demand values Dk, in the program, and the decision variable is yk.

We now include double indexed variables and parameters to represent values cor-

responding to one sample (i.e., scenario) of the random variable. The parameter for

the demand on each lane, dlk, is not only indexed by the corresponding lane, l, but
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it is also associated with a specific scenario as shown by the index k. Moreover, our

decision variable given by ybk represents the decision to either reject or accept bid b

for scenario k, where the random demand value of the lane corresponding to bid b may

cause a bid to be accepted in some scenarios and rejected in others, thus changing the

outcome of the linear program. The overall demand value, given by Dk, which is the

sum of the individual demand across all lanes, will also vary as the demand values on

each lane are sampled. The remaining parameters are left unchanged as their values

will not differ from one sample of the random variable to another. A summary of the

definitions of these values can be found in Table 14.

Table 14: Parameters and variables for the stochastic RCA Base Model

m: Total number of unique lanes in the network
n: Total number of active bids in the tender
K: Total number of scenarios obtained by sampling the random variable
l: Indexing parameter over the set of all lanes, l = 1, . . . ,m
b: Indexing parameter over the set of all bids, b = 1, . . . , n
k: Indexing parameter over the set of all scenarios, k = 1, . . . , K
vb: Value of bid b
ybk: Decision variable for bid b and scenario k; 1 if bid b for scenario k is

accepted, 0 otherwise
δlb: Variable for lane l; 1 if lane l ∈ Sb, 0 otherwise
Dk: Total demand for scenario k across all lanes in the network
dlk Total demand on lane l for scenario k

4.3 Stochastic Linear Program: Carrier Constraint Model

We next present an extension of the base model of the stochastic linear program

to include constraints for the maximum and/or minimum number of different carriers

to appear in the program. Similarly to the methods used to include the constraints in
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the deterministic model by building on the base model, we introduce a second decision

variable that will be doubly indexed according to the corresponding carrier, c, and

the corresponding scenario, k such that both of the decision variables will depend on

a sample of the random variable. All of the assumptions used in the base stochastic

linear program also apply to the carrier constraint stochastic linear program.

The stochastic carrier constraint model is given by

minimize

K∑
k=1

n∑
b=1

(
ybkvb/K

)
subject to

n∑
b=1

ybk = DK ∀ k = 1, . . . , K

n∑
b=1

δlbybk = dlk ∀ l = 1, . . . ,m, ∀ k = 1, . . . , K

n∑
b=1

γcbybk −Mczck ≤ 0 ∀ c = 1, . . . , j, ∀ k = 1, . . . , K

zck −
n∑

b=1

γcbybk ≤ 0 ∀ c = 1, . . . , j, ∀ k = 1, . . . , K

j∑
c=1

zck ≥ minCarrier ∀ k = 1, . . . , K

j∑
c=1

zck ≤ maxCarrier ∀ k = 1, . . . , K

ybk ∈ {0, 1}

zck ∈ {0, 1}

where K is again the total number of scenarios in the program. Similar to the deter-

ministic carrier constraint model, we introduce the decision variable zck corresponding

to carrier c for scenario k, which will appear in the final allocation for a value of 1 as

determined by the optimal solution of the program. The formulation of the remain-
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ing constraints and parameters does not change from the deterministic model found

in section 3.3.1. The variable and parameter definitions for the stochastic carrier

constraint model can be found in Table 15.

Table 15: Parameters and variables for the stochastic RCA Carrier Constraint Model

m: Total number of unique lanes in the network
n: Total number of active bids in the tender
j: Total number of unique carriers in the tender
K: Total number of scenarios obtained by sampling the random variable
l: Indexing parameter over the set of all lanes, l = 1, . . . ,m
b: Indexing parameter over the set of all bids, b = 1, . . . , n
r: Indexing parameter over the set of all carriers, c = 1, . . . , r
k: Indexing parameter over the set of all scenarios, k = 1, . . . , K
vb: Value of bid b
cb: Carrier of bid b
ybk: Decision variable for bid b and scenario k; 1 if bid b for scenario k is

accepted, 0 otherwise
zck: Decision variable for carrier c and scenario k; 1 if carrier c

has at least one accepted bid, 0 otherwise
δlb: Variable for lane l; 1 if lane l ∈ Sb, 0 otherwise
γcb: Variable for carrier c; 1 if carrier c placed bid b, 0 otherwise
Mc: Total number of bids placed by carrier c
Dk: Total demand for scenario k across all lanes in the network
dlk Total demand on lane l for scenario k

maxCarrier: Maximum number of different carriers
minCarrier: Minimum number of different carriers
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5 METHODS AND IMPLEMENTATION

5.1 Software and Packages

In this chapter we discuss the methods used to implement the models and discuss

in detail how to solve reverse combinatorial auction for a set of data. Implementation

of the deterministic and stochastic models was completed in the cloud through the

collaborative software system CoCalc by SageMath Incorporated [14]. Optimization

techniques primarily used the Anaconda Python 3 distribution and relied heavily on

Pyomo: Python Optimization Modeling Objects, which is designed specifically for

the use of modeling and analyzing complex optimization problems through the use of

its built-in modeling objects and solvers [9].

Python was chosen as the main programming language not only because of its

object-oriented abilities, but also because of the extensive number of libraries and

software packages that are readily available through its open-source nature. Fur-

thermore, because Pyomo supports the object-oriented structure and can be used in

conjunction with Python and its myriad of packages and libraries, the entire modeling

process was completed seamlessly within a single Jupyter notebook. In addition to

the capabilities brought by the Pyomo software package, the usage of Python’s data

analysis library pandas allowed for straightforward methods to upload data used to

instantiate the optimization model’s sets and parameters by employing the library’s

built-in data structures [23]. Additionally, NumPy and SciPy packages were utilized

for there scientific computing capabilities on the resulting optimization solution data.

Lastly, the Matplotlib plotting library allowed for the use of high quality visualization
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and plotting tools.

We proceed to discuss the format of the data used and then outline the general

steps of the computational modeling process. Note that slight modifications of the

process are required depending on the model and the modeler’s preferences, such as

in regards to the input data format, inclusion of certain constraints, desired output

format, data analysis, etc. The data used for this research was presented within an

excel spreadsheet consisting of three worksheets for the lots, bids, and vendors data,

respectively. All of the code implemented using a Jupyter notebook for the Eastman

data set can be found in Appendices C and D.

5.2 Data and Preprocessing Steps

Before we proceed to the computational steps of the modeling process, we first

discuss the characteristics of the data set and the prepocessing steps taken to ensure

the data was in a compatible format. All of the example data provided throughout

the chapter represents data used in a European bulk truck tender. While data was

provided by Eastman Chemical Company for the use of the stochastic programming

optimization model, we will also be referring to example data as all data from Eastman

Chemical Company used in this thesis is confidential. Moreover, the data provided

does not include bid packages, but each bid corresponds to a single lane. Appendix

C contains the code for the deterministic models in section 3.2.1 for which the data

consists of packaged bids; otherwise, it will be assumed that any data discussed or

referred to in this and the following chapters will not consist of packaged bids. The

implementation methods provided here will serve as guidelines for the use of packaged
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bids if the reader so desires.

Excel spreadsheets are used to organize the tender data and consist of three work-

sheets for information regarding the lots (i.e., the lanes), the submitted bids, and

the carriers participating in the tender, where each row of the worksheet represents a

single lane, a single bid, or a single vendor, respectively. Data pertaining to the lanes

includes information on the lane identification number, the proportion of the mini-

mum and maximum number of shares of the total volume to be allocated, the total

volume represented as number of tanks, and the current rate for transport on a lane,

if such information is available to the shipper. Data on the submitted bids include an

identification number for each bid, which consists of the corresponding lane number

and carrier name, the name of the carrier (i.e., the logistics service provider), and

the bid amount for one unit of volume on the corresponding lane. The carrier work-

sheet consists of the shipper’s name, the minimum and maximum number of tanks

to be allocated to the carrier, and if the carrier is considered active, where the active

variable might serve as a constraint to automatically include or exclude a vendor if

desired.

For our computational needs and due to the form of the data set received by our

liason at Eastman Chemical Company, three modifications were applied to the data

set in the preprocessing stage, which we will outline here. Firstly, because the data

set contained duplicates bids that were able to be ignored, we removed all of those

duplicated bids. This was completed manually in the preproccessing stage rather than

in the Jupyter notebook to eliminate the need to execute unnecessary commands each

time the linear program was processed. Next we removed any vendors from the data
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set that did not submit any bids in the tender. This was done because of errors it

was causing in the linear program and had no effect on the final outcomes as those

carriers would not have any bids to consider.

In the final preprocessing stage, we chose to include a dummy or ghost vendor in

the data set with bids on every lane that were much higher than the actual submitted

bids. These bids were created in order to represent those lanes that would not be

chosen as being optimally serviced by a participating vendor in the tender. In this

fashion, the shipper would have information regarding which lanes would not appear

in the allocation so that they would be able to take further action to provide a logisti-

cal provider whether it be through a second tender or through individual negotiations

with suppliers. The creation of a ghost vendor is the most important preprocessing

step because of the implications that would arise if a lane was not allocated to any

of the participating vendors during the initial tender.

5.3 Modeling Process

The start of each project within a Jupyter notebook on the CoCalc server begins

with importing the main libraries previously mentioned, along with the entirety of the

Pyomo module. Next we create an instance of a pyomo model for the implementation

of the linear program. Here we have chosen to define it as a concrete model because,

although the model will be implemented in pyomo in its abstract form, the data is

to uploaded and fed into the model at the time of its creation inside of the Jupyter

notebook.

The data file(s) were uploaded next, and a Pandas DataFrame was created for each
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Figure 1: The first eight rows of the bids DataFrame using an example data set.

worksheet in the excel file. Figure 1 illustrates a snippet of the DataFrame containing

the submitted bids where each row represents a single bid and the columns represent

the corresponding variable values of the bid: the bid’s identification key, the name of

carrier that placed the bid, the lane number, and the rate per unit volume at which

the carrier is willing to service the lane. Note that the example data set is more

generic than data provided for an actual tender; here the logistics service providers

are simply numbered one through eight rather than given more realistic names.

Next a DataFrame was built for the program’s parameter(s) δ and γ (only if

the carrier constraint was being included in the linear program). Each of these

DataFrames were then used to create dictionaries of the δ and γ values, respectively,

which were then used to initialize the corresponding pyomo model parameters that

were to be used in buidling the optimization program. Recall that the δ parameter

gives information regarding which lanes are in a bid package to the linear program,

while γ gives information regarding which carriers placed which bids. Both of these

parameters were used in defining the constraints of the linear program.

In a similar fashion, the DataFrames containing the bids and the lanes were used to

construct dictionaries of the bid values and the total volume on each lane, respectively.
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Each of these dictionaries were then used to initialize two pyomo model parameters

where the bidValue parameter contains the value of each bid and the demand param-

eter contains the total volume on each lane. Since each of these parameters is defined

as a vector in the theoretical model, the size of each of the parameters was defined by

a set object in pyomo where the size of each set is determined by the corresponding

DataFrame’s index values.

Additional parameters, such as the total demand, which is represented here as the

total number of lanes in the program, and the maximum and/or minimum number

of carriers, were defined as would be required for the program’s constraints. If the

carrier constraints were to be included in the linear program, an array containing

the total number of bids placed by a each carrier, represented by M in the carrier

constraint model, also had to be created. This array was then used to initialize the

pyomo model parameter.

Here we can see the overall trend or steps needed thus far in developing the

computational model(s) in pyomo out of the abstract model(s) presented previously.

For each parameter in the abstract model, we first define the parameter in python

using a suitable data structure, either an array for those parameters that are single

indexed or a dictionary for the double indexed parameters. These python objects

are then used to initialize the pyomo model object that represents the theoretical

parameter. These parameters will then be used to build the objective function and

constraints that make up the optimization model.

In addition to defining and initializing each of the parameters as a pyomo model

parameter object, we also define the decision variable(s). The base model includes
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the decision variable, x, for each bid in the program. The carrier constraint model

includes not only the decision variable given by x, but also includes a second decision

variable, z, for each carrier in the program. Unlike the parameter indices, the number

of indices for the decision variables, x and z, may be either single or double indexed

if the deterministic or stochastic model, respectively.

Once all of the parameter and variable model objects are created in pyomo, the

final step in establishing the pyomo model is to define the objective function and all

of the constraints. In pyomo this is achieved by writing a function for each object

that will return the expression given in the linear program. Then the pyomo model

objects are created using the built-in Objective and Constraint functions.

After the entire linear program has been created in pyomo, the model is ran

through one of pyomo’s built-in solvers. For our research, we used the GNU Linear

Programming Kit (GLPK) as the default solver.
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6 RESULTS

We now proceed to present several results of the deterministic and stochastic

models using the data set provided by Eastman Chemical Company. As mentioned

in section 5.2, because the data is confidential, we will not discuss any specifics of the

data. Any references to exact lanes, bids, and/or carriers in the data set will be done

using an alias.

While the majority of the results presented here deal with the inclusion of variation

in the base model through implementation of the stochastic base model, we first briefly

discuss the results of the deterministic base model to use as a basis of comparison

for the stochastic model results. We then present results that include variation on

only the lane with the highest estimated demand value, followed by results that

include variation on the two lanes with the highest demand values. In each of these

two simulations, we will discuss how the total cost changes through the inclusion of

random demand values, the distribution of the random demand values on those lanes

with varying demand, and compare the variation on the allocation’s total cost when

one lane versus two lanes have random demand. Lastly, we do include on result of

the deterministic carrier constraint model, but we leave the implementation of the

stochastic carrier constraint model for an area of possible future work.

6.1 Deterministic Model

For confidentiality reasons, all results presented in the following sections will refer

to the suppliers by an alias name. The original data set contains 234 lanes that must

be allocated among 17 suppliers that placed bids on one or more of the lanes. This
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shippers will be referred to as Supplier 1, Supplier 2, etc. As discussed in section 5.2,

one additional supplier was added to the data set, referred to as a dummy vendor, for

the purpose of ensuring a feasible solution to the linear program would be found. We

now proceed to present the results of the base model and then the carrier constraint

model for the deterministic demand values.

6.1.1 Base Model

Upon obtaining the feasible solution to the deterministic base model linear pro-

gram, the results show that the 234 lanes are optimally allocated among 15 of the 17

suppliers that participated in the tender. We found that the dummy vendor was not

assigned any lanes, which is desirable and favorable for the buyer since this implies

that all of the lanes will be serviced in the initial tender without the need for a second

round of bidding. The total cost of the deterministic base model to service all 234

lanes is $8,241,155.

A summary of the results for each supplier may be found in Table 16, which

contains the total number of lanes assigned to each supplier and the total cost to

service all of the lanes assigned to the respective supplier. Note that the rate on the

individual lanes varies and is left undisclosed. Furthermore, there are two carriers that

do not appear in Table 16, Supplier 12 and Supplier 16, as a result of not procuring

any lanes in the tender process.
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Table 16: Summary of the results of the winning carriers for the deterministic base

model.

Carrier Lane Count Total Volume Total Rate

Supplier 1 7 109 $177,636
Supplier 2 14 65 $224,290
Supplier 3 48 990 $225,5901
Supplier 4 6 32 $50,387
Supplier 5 23 372 $698,971
Supplier 6 28 251 $617,639
Supplier 7 1 470 $1,681,190
Supplier 8 11 124 $335,531
Supplier 9 14 195 $426,551
Supplier 10 3 51 $140,050
Supplier 11 2 10 $14,325
Supplier 13 16 65 $121,685
Supplier 14 24 340 $552,031
Supplier 15 11 167 $426,549
Supplier 17 26 317 $518,419

6.1.2 Carrier Constraints Model

For the carrier constraint model using the deterministic demand values, our results

consider only the activation of the maximum number of constraints and the change

in the tender’s total cost due to the inclusion of this restriction. It can be observed

from Figure 2 that there is a negative association between the number of carriers in

the final allocation with the tender’s total cost. As the restriction on the maximum

number of carriers is lessened, the cost of the tender decreases.
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Figure 2: Maximum number of carriers versus total allocation cost.

6.2 Stochastic Base Model

For the stochastic base model, our primary goal is to introduce variation first on

those lanes with the highest demand in order to observe how unknown changes in

the demand on those lanes would affect the overall cost of the allocation. We focus

on the lanes with the highest demand, because we expect to be able to attribute the

greatest changes in the total cost to those lanes. Specifically, we are interested in the

lanes with a total demand volume of 200 tanks or more. In the data set provided,

there are only two lanes that have total demand over 200 for which we will refer to

as lane 1 and lane 2, where lane 1 has a total demand of 470 tanks and lane 2 has a

total demand of 345 tanks. Before presenting the results of the stochastic base model

in sections 6.2.2 and 6.2.3, we first wish to discuss how the K values for demand were
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chosen using the triangular distribution.

6.2.1 Stochastic Results Using the Triangular Distribution

Results for the stochastic portion of the models is based on the triangular distri-

bution for choosing the random demand values. A triangular distribution is defined

by three values: a = minimum value, b = maximum value, and c = the mode. A tri-

angular distribution is denoted by Tri(a, b, c) [37]. The probability density function

for the triangular distribution is

f(x) =


2(x−a)

(b−a)(c−a) where a ≤ x ≤ c

2(b−x)
(b−a)(c−a) where c < x ≤ b

which implies that the cumulative density function is given by

F (x) =


(x−a)2

(b−a)(c−a) where a ≤ x ≤ c

(b−x)2
(b−a)(c−a) where c < x ≤ b

.

The mean of a triangular distribution in terms of its parameters is given by

a+ b+ c

3
.

represents the mean of the triangular distribution [37]. Implementation of the tri-

angular distribution is achieved using the distribution’s built-in function available

through Python’s NumPy library. We refer the reader to Appendix D for the code

used in the implementation of the stochastic portion of the work.

For the stochastic model, we focus on randomizing only a subset of the lanes at a

time. We begin by randomizing the demand on the lane with the highest estimated
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demand value first. After obtaining the results for the scenarios involving only a

single lane having random demand, we proceed to also randomize the demand on the

lane with the next highest estimated demand value. Proceeding in this manner, by

increasing the number of lanes with stochastic demand one at a time, we desire to

observe the behavior of the tender’s total cost, along with changes in the variation of

the cost across all simulations.

Results for each simulation are achieved as follows. We first choose the lane(s)

that will have random demand values as explained previously and designate the total

number of K-scenarios. Once the lane(s) are chosen to randomize, we fix the de-

mand values for the K-scenarios on the remaining lanes using the lane’s respective

deterministic demand value. On the lanes that have been chosen to have random

demand values, a new demand value is obtained from the triangular distribution for

each K-scenario using the lane’s estimated demand value as the mode. The minimum

and maximum parameters for the triangular distribution are obtained by varying the

mode by a predetermined percentage that depends on the lane’s estimated demand.

For the lanes with more than 20 units volume, we decrease the deterministic

demand by 10% to obtain the triangular distribution’s minimum, and we increase

the deterministic demand by 10% to obtain the triangular distribution’s maximum.

Likewise for lanes having between 5 and 19 units of volume, we decrease the deter-

ministic demand by 5% and increase the deterministic demand by 5% to obtain the

triangular distribution’s minimum and maximum parameter values, respectively. For

lanes with less than 5 units of volume, we decrease the deterministic demand by 1%

and increase the deterministic demand by 1% to obtain the triangular distribution’s
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minimum and maximum parameter values, respectively. For example, if we let µ be

the expected (i.e., deterministic) volume for lane i and assume that the estimated

demand is greater than 20 units of volume, then the triangular distribution used to

obtain the random demand values is defined as Tri(0.9µ, µ, 1.1µ).

6.2.2 Variation on lane 1 only.

We begin by varying the total demand on lane 1 for a total of K = 1000 sim-

ulations. In choosing the 1, 000 demand values for lane 1, we fixed the demand on

every other lane, and drew each random demand value for lane 1 from a triangular

distribution as described in section 6.2.1. The expected demand volume on lane 1

in the Eastman data set is equal to µ = 470 units of volume. Thus the triangular

distribution for lane 1 is given by

Tri(0.9µ, µ, 1.1µ) = Tri(423, 470, 517)

where the minimum volume for lane 1 is 423 units and the maximum is 517 units.

The resulting average cost over all K-scenarios when only lane 1 is varied totals

$8,242,313 as compared to $8,241,155 when no variation is assumed. Additional

summary statistics of the K = 1000 simulations may be found in Table 17. We can

observe that with the introduction of random demand values on lane 1, not only is

there an increase in the mean, but the median total cost is also larger than the total

cost for the deterministic model. However, we find that the resulting increase in the

average cost of the allocation is 0.014%, which is less than a one percent increase

from the deterministic model.
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Table 17: Summary statistics for total cost with variation on one lane only.

Statistic Allocation Cost

Minimum $8,080,190
First quartile $8,198,231

Median $8,244,732
Third quartile $8,288,550

Maximum $8,398,543

Figure 3 shows the histogram of the random demand values for lane 1 with K =

1000 scenarios with an overlay of the triangular distribution’s probability density

function to confirm the random values fit the distribution.

Moreover, Figure 4 shows the histogram of the total cost of each scenario when

variation in the demand value of lane 1 is introduced with K = 1000 scenarios. An

overlay of the triangular distribution’s probability density function is included to

reveal that the total cost also follows the distribution. Note the total cost is in U.S.

dollar amounts.

6.2.3 Variation on lanes 1 and 2.

Next we vary the total demand on lanes 1 and 2 simultaneously for K = 1024

scenarios. The dual variation was found by choosing a perfect square for the value of

K where the square root of K is used for the number of random demand values on

lane 1, i.e., we select
√

1024 = 32 demand values for lane 1. Then for each of those

values, we fix the demand on lane 1 and then vary the demand on lane 2 a total of

32 times. This is repeated for each random value of lane 1, which allows us to find a

total of 1, 024 different combinations (or scenarios) of demand values with both lanes
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Figure 3: Random demand values for one lane with an overlay of the triangular

distribution and K = 1000 total scenarios.

Figure 4: Total cost of each simulation with random demand values for variation on

one lane with an overlay of the triangular distribution and K = 1000 total scenarios.
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1 and 2 having random demand.

Our simulations show that the average cost of the allocation over all K-scenarios

when lanes 1 and 2 are varied in this manner totals $8,238,348 as compared with

an average cost of $8,242,313 when variation is only on lane 1 and a total cost of

$8,241,155 when no variation is assumed. The summary statistics for variation on

both lanes is presented in Table 18, along with the summary statistics for variation

on only lane 1. We can observe that the both the average total cost and the median

total cost have both increased by varying the demand on lane 2 in addition to varying

the demand on lane 1.

Table 18: Summary statistics for the total cost with variation on one lane only com-

pared with variation on two lanes.

Statistic Allocation Cost Lane 1 Allocation Cost Lanes 1 and 2

Minimum $8,080,190 $8,063,386
First quartile $8,198,231 $8,186,220

Median $8,244,732 $8,239,756
Third quartile $8,288,550 $8,290,183

Maximum $8,398,543 $8,422,191

Figure 5 shows the histogram of the total cost of each scenario when variation

in the demand value of lanes 1 and 2 is introduced with K = 1024 scenarios. An

overlay of the triangular distribution’s probability density function is included to

reveal that the total cost also follows the distribution. Note the total cost is in U.S.

dollar amounts.

We also notice that there is an increase in variation in the total cost when two

lanes take on random demand values compared with only one lane. Figure 6 shows
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Figure 5: Total cost of each simulation with random demand values for two lanes

with an overlay of the triangular distribution and K = 1024 total scenarios.

Figure 6: Side by side boxplot of the variation in total cost when only one lane has

random demand versus two having random demand.

the side-by-side boxplots of the distribution of the total cost when only lane 1 has

random demand versus lanes 1 and 2 having random demand values.
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While the median of the two distributions does not differ significantly, we observe

that the Buyer may be faced with a resulting allocation that would have a higher cost

upon the actualized demand values, while on the other hand, the resulting allocation

may have a lower cost upon the actualized demand values. This illuminates the

element of risk involved in using estimated demand values in the tender process. We

expect to see the variation in the total cost continue to increase as the number of

lanes with random demand values increases.
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7 CONCLUSION AND FUTURE WORK

In conclusion, in this thesis, we developed a mixed-integer constraint model for the

procurement of logistical services through a reverse combinatorial auction. We have

outlined the development of a base model that does not account for additional business

rules in the form of constraints in the mixed-integer linear program. Additionally,

we have developed a linear program that does consider restrictions placed on the

maximum and minimum number of carriers in the program. A deterministic model

has been presented for both the base model and the carrier constraint model that

allows the buyer to use estimated demand values. Additionally, we have shown the

development and use of a stochastic model for which certain lanes have random

demand values drawn from a triangular distribution through stochastic programming

techniques.

Implementation of all of the models we have presented was completed using the

free CoCalc software available online. After completing any preprocessing steps for

the data set to remove duplicates and ensure the data is error free and in a com-

patible format, all of the coding was written in Python for which numerous libraries

were used including NumPy and SciPy, and the linear programming portion of the

computational program was completed in the Python package Pyomo. The Python

and Pyomo code may be located in the appendix.

Upon implementation of the stochastic models using the data set provided by

Eastman Chemical Company, our results indicate that when variation is assumed

on a lane’s demand, the average cost of the tender will increase. We observe that

when compared to the deterministic cost of $8,241,155 for the allocation, an average
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increase of $1,158 occurs when variation for the lane with the highest demand is

introduced. Over 1,000 simulations with random demand on one lane, we observe

the tender’s average total cost to be $8,242,313 as compared to $8,241,155 when no

variation is assume. This upward trend in the allocation’s cost continues when a

second lane’s demand is also randomized. Varying two lanes results in an average

cost of $8,238,348 as compared with $8,242,313 when variation is only on lane 1 and

$8,241,155 when no variation is assumed. Hence the tender’s average cost increases

by $2,807 from the deterministic model. Moreover, we expect that this trend will be

seen as the number of lanes with random demand continues to increase.

While this work outlines the process taken to develop and implement a linear pro-

gram representation of a reverse combinatorial model, there are numerous avenues of

future work to be explored. In particular, increasing the number of lanes with random

demand for the stochastic model to verify the behavior of the tender’s cost would be

the next steps to complete. Additional areas of future work include implementing the

carrier constraint stochastic model, assuming combinations of bids using the Eastman

data, and the implementation of the stochastic model with combination bids. Fur-

thermore, there are numerous business rules that might be considered and combined

with the base model in the form of additional constraints. Lastly, incorporating more

business rules in the more of linear constraints is another area of future work. The

models could include such rules as restricting the number of total units allocated, or

allocating a certain percentage of the total volume, to a given carrier, restricting the

total volume allocated to any carrier, incorporating incentives or priority to certain

carriers, automatically rejecting or including certain carriers from the final allocation,
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limiting the number of different carriers shipping from the same location, and limiting

the number of carriers shipping to the same region.

Transportation procurement benefits from the implementation of optimization

techniques because of the complex aspects involved in determining how to assign

carriers to lanes over large networks. Economies of scope, inter-dependencies across

lanes, and back haul costs must be considered by the shipper when placing bids on

either individual or sets of lanes. The reverse combinatorial auction allows the buyer

to receive more robust and competitive bids that will ultimately reduce costs across

the entire supply chain if the problem of assigning carriers to lanes is completed so

that an optimal outcome will be produced. We have shown one method of achieving

this optimal solution using techniques from operations research through deterministic

and stochastic versions of a mixed-integer linear program.
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APPENDICES

A Base Model Example Code

from pyomo . envi ron import ∗

model = AbstractModel ( )

model . numBids = Param( with in=NonNegat iveIntegers )

model . numItems = Param( with in=NonNegat iveIntegers )

model . BIDS = RangeSet (1 , model . numBids )

model .LANES = RangeSet (1 , model . numItems )

model . bidValue = Param( model . BIDS)

model . demand = Param( model .LANES)

model . d e l t a = Param( model .LANES, model . BIDS , i n i t i a l i z e =0)

model . c a r d i n a l i t y = Param( model . BIDS)

model . x = Var ( model . BIDS , domain = Binary )

de f o b j e x p r e s s i o n ( model ) :

r e turn summation ( model . bidValue , model . x )

model .OBJ = Object ive ( r u l e=ob j exp r e s s i on , s ense=minimize )

de f c o n s t r a i n t r u l e ( model , l ) :

r e turn sum( model . d e l t a [ l , b ]∗model . x [ b ]

f o r b in model . BIDS) <= model . demand [ l ]

model . xConstra int = Constra int ( model .LANES, r u l e=c o n s t r a i n t r u l e )
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de f demand cons t ra in t ru l e ( model ) :

r e turn sum( model . x [ b ]∗model . c a r d i n a l i t y [ b ]

f o r b in model . BIDS) >= model . numItems

model . demandConstraint = Constra int ( r u l e=demand cons t ra in t ru l e )
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B Carrier Constraint Model Example Code

from pyomo . envi ron import ∗

model = AbstractModel ( )

model . numBids = Param( with in=NonNegat iveIntegers )

model . numItems = Param( with in=NonNegat iveIntegers )

model . numCarriers = Param( with in=NonNegat iveIntegers )

model . BIDS = RangeSet (1 , model . numBids )

model .LANES = RangeSet (1 , model . numItems )

model .CARRIERS = RangeSet (1 , model . numCarriers )

model . bidValue = Param( model . BIDS)

model . demand = Param( model .LANES)

model . c a r d i n a l i t y = Param( model . BIDS)

model .M = Param( model .CARRIERS)

model . d e l t a = Param( model .LANES, model . BIDS , i n i t i a l i z e =0)

model . gamma = Param( model .CARRIERS, model . BIDS , i n i t i a l i z e =0)

model . maxCarriers = Param ( )

model . minCarr ie r s = Param ( )

model . x = Var ( model . BIDS , domain = Binary )

model . z = Var ( model .CARRIERS, domain = Binary )

de f o b j e x p r e s s i o n ( model ) :
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r e turn summation ( model . bidValue , model . x )

model .OBJ = Object ive ( r u l e=ob j exp r e s s i on , s ense=minimize )

de f c o n s t r a i n t r u l e ( model , l ) :

r e turn sum( model . d e l t a [ l , b ]∗model . x [ b ] f o r b in model . BIDS)

<= model . demand [ l ]

model . xConstra int = Constra int ( model .LANES, r u l e=c o n s t r a i n t r u l e )

de f demand cons t ra in t ru l e ( model ) :

r e turn sum( model . x [ b ]∗model . c a r d i n a l i t y [ b ] f o r b in model . BIDS)

>= model . numItems

model . demandConstraint = Constra int ( r u l e=demand cons t ra in t ru l e )

de f c o n s t r a i n t 2 r u l e ( model , k ) :

r e turn sum( model . gamma[ k , b ]∗model . x [ b ] f o r b in model . BIDS) −

model .M[ k ]∗model . z [ k ] <= 0

model . upperBoundConstraint = Constra int ( model .CARRIERS,

r u l e=c o n s t r a i n t 2 r u l e )

de f c o n s t r a i n t 3 r u l e ( model , k ) :

r e turn model . z [ k ] − sum( model . gamma[ k , b ]∗model . x [ b ] f o r b

in model . BIDS) <= 0

model . lowerBoundConstraint = Constra int ( model .CARRIERS,

r u l e=c o n s t r a i n t 3 r u l e )
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de f c o n s t r a i n t 4 r u l e ( model ) :

r e turn sum( model . z [ i ] f o r i in model .CARRIERS) <=

model . maxCarriers

model . zConst ra int = Constra int ( r u l e=c o n s t r a i n t 4 r u l e )

de f c o n s t r a i n t 5 r u l e ( model ) :

r e turn sum( model . z [ i ] f o r i in model .CARRIERS) >=

model . minCarr ie r s

model . zConstra int2 = Constra int ( r u l e=c o n s t r a i n t 5 r u l e )
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C Deterministic Portion of the Program Code via Jupyter Notebook

#Import o f main l i b r a r i e s

%matp lo t l i b i n l i n e

from matp lo t l i b import pyplot as p l t

import numpy as np

from f u t u r e import d i v i s i o n , p r i n t f u n c t i o n

from pandas import r e a d e x c e l

from pandas import DataFrame

from pandas import ExcelWriter

from pandas import Exce lF i l e

#Import o f the pyomo module

from pyomo . envi ron import ∗

#Creat ion o f a Concrete Model

model = ConcreteModel ( )

BidsDf = r e a d e x c e l ( ’ TenderDataUpdatedCarriersRemoved . x lsx ’ ,

sheet name=’Bids ’ )

LanesDf = r e a d e x c e l ( ’ TenderDataUpdatedCarriersRemoved . x lsx ’ ,

sheet name=’Lots ’ )

#Create a data from f o r de l t a

de l taDf = DataFrame (np . z e r o s ( ( l en ( LanesDf . index ) ,
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l en ( BidsDf . index ) ) ) )

f o r bid in BidsDf . index :

temp = BidsDf . l o c [ bid , ’ LaneID ’ ] [ 4 : ]

de l taDf . at [ f l o a t ( temp ) − 1 , bid ] = 1

#Number o f l ane s in the program

model . numItems = len ( LanesDf . index )

## Def ine s e t s

model . BIDS = Set ( i n i t i a l i z e = BidsDf . index . va lue s )

model .LANES = Set ( i n i t i a l i z e = LanesDf . index . va lue s )

# Create a d i c t i o n a r y o f the bid va lue s

bidValues = d i c t ( )

f o r bid in BidsDf . index :

bidValues [ bid ] = BidsDf . l o c [ bid , ’ModelRateCUR ’ ] ∗

LanesDf . l o c [ i n t ( BidsDf . l o c [ bid , ’ LaneID ’ ] [ 4 : ] ) − 1 ,

’ Total Volume (# of tank ) ’ ]

#I n i t i a l i z e bidValue parameter with the value o f each bid

model . bidValue = Param( model . BIDS , i n i t i a l i z e = bidValues ,

doc=’Value o f each bid in the program ’ )

#Create a d i c t i o n a r y o f the t o t a l volume on each lane

demandValues = d i c t ( )
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f o r lane in LanesDf . index :

demandValues [ l ane ] = 1

#I n i t i a l i z e demand parameter with the t o t a l volume on each lane

model . demand = Param( model .LANES, i n i t i a l i z e = demandValues ,

doc=’Total demand on each lane ’ )

#Create a d i c t i o n a r y o f the de l t a va lue s

de l t a = d i c t ( )

f o r lane in LanesDf . index :

f o r bid in BidsDf . index :

d e l t a [ ( lane , bid ) ] = de l taDf . l o c [ lane , bid ]

#I n i t i a l i z e the de l t a parameter

model . d e l t a = Param( model .LANES, model . BIDS , i n i t i a l i z e=de l ta ,

doc=’ de l t a g i v e s in fo rmat ion regard ing which l ane s

are in a bid package ’ )

#Def ine the d e c i s i o n v a r i a b l e

model . x = Var ( model . BIDS , domain = Binary , doc=’ Dec i s i on v a r i a b l e

f o r each bid in the program ’ )

#Object ive minimizes the sum of x b ∗ v b over a l l b ids

de f o b j e x p r e s s i o n ( model ) :

r e turn sum( model . bidValue [ i ]∗model . x [ i ] f o r i in model . BIDS)
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model .OBJ = Object ive ( r u l e=ob j exp r e s s i on , s ense=minimize ,

doc=’ Object ive func t i on d e f i n i t i o n ’ )

#Def ine c o n s t r a i n t s

de f demand cons t ra in t ru l e ( model ) :

r e turn sum( model . x [ b ] f o r b in model . BIDS) >= model . numItems

model . demandConstraint = Constra int ( r u l e=demand cons t ra in t ru l e )

de f c o n s t r a i n t r u l e ( model , l ) :

r e turn sum( model . d e l t a [ l , b ]∗model . x [ b ] f o r b in model . BIDS)

>= 1 #model . demand [ l ] = 1 f o r a l l l

model . xConstra int = Constra int ( model .LANES, r u l e=c o n s t r a i n t r u l e )

#Display o f the output in order to r e t r i e v e and use in python

de f pyomo postprocess ( opt ions=None , i n s t ance=None , r e s u l t s=None ) :

model . x . d i sp l ay ( )

#Run the model

from pyomo . opt import So lverFactory

import pyomo . env i ron

opt = SolverFactory (” glpk ”)

r e s u l t s = opt . s o l v e ( model )

#Create a dataframe c o n s i s t i n g o f the winning b ids

winningBids = [ ]
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index = 0

bidNum = 0

f o r p in range ( 2 4 3 3 ) :

i f model . x [ p ] . va lue > 0 :

winningBids . append (bidNum)

bidNum += 1

index += 1

winningBidsDf = BidsDf . i l o c [ winningBids ]
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D Stochastic Portion of the Program Code via Jupyter Notebook

D.1 Single Lane Randomization

#Begin randomizing the demand on the lane with h ighe s t

volume only ( lane 193 in the data f i l e )

#Number s c e n a r i o s

K = 1000

#Create a d i c t i o n a r y o f the t o t a l volume on each lane

and an array o f the random volume f o r lane 193

demandArray = [ ]

demandValues = d i c t ( )

f o r lane in LanesDf . index :

f o r s c e n a r i o in range (0 ,K) :

average = LanesDf . l o c [ lane , ’ Total Volume (# of tank ) ’ ]

i f average >= 400 :

demandValues [ lane , s c e n a r i o ] =

round (np . random . t r i a n g u l a r ( 0 . 9∗ average ,

average , 1 .1∗ average ) , 0 )

demandArray . append ( demandValues [ lane , s c e n a r i o ] )

e l s e :

demandValues [ lane , s c e n a r i o ] = average
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#Create an array o f the t o t a l co s t f o r each k−s c e n a r i o

co s tPerScenar i o = [ ]

co s t = 0

f o r s c e n a r i o in range (0 ,K) :

co s t = 0

f o r bid in winningBidsDf . index :

co s t += winningBidsDf . l o c [ bid , ’ModelRateCUR ’ ] ∗

demandValues [ i n t ( winningBidsDf . l o c [ bid ,

‘ LaneID ’ ] [ 4 : ] ) − 1 , s c e n a r i o ]

co s tPerScenar i o . append ( co s t )

D.2 Two Lane Randomization

#Vary the demand on two l ane s with h i ghe s t volume

#Number s c e n a r i o s

K = 32

#Create a d i c t i o n a r y o f the t o t a l volume on each lane

demandValues2 = d i c t ( )

lane193DemandArray = [ ]

lane63DemandArray = [ ]

f o r lane in LanesDf . index :

f o r s c en a r i o 1 in range (0 ,K) :
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f o r s c en a r i o 2 in range (0 ,K) :

average = LanesDf . l o c [ lane , ’ Total Volume

(# of tank ) ’ ]

i f average == 470 :

demandValues2 [ lane , s cenar io1 , s c e na r i o2 ] =

round (np . random . t r i a n g u l a r ( 0 . 9∗ average ,

average , 1 .1∗ average ) , 0 )

lane193DemandArray . append ( demandValues2 [ lane ,

s cenar io1 , s c en a r i o 2 ] )

e l i f average == 345 :

demandValues2 [ lane , s cenar io1 , s c e na r i o2 ] =

round (np . random . t r i a n g u l a r ( 0 . 9∗ average ,

average , 1 .1∗ average ) , 0 )

lane63DemandArray . append ( demandValues2 [ lane ,

s cenar io1 , s c en a r i o 2 ] )

e l s e :

demandValues2 [ lane , s cenar io1 , s c e na r i o2 ] =

average

#Create an array o f the t o t a l co s t f o r each k−s c e n a r i o

cos tPerScenar io2 = [ ] #cos t per s c e n a r i o l ane s 193 and 63
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are var i ed

costOnlyVaryLane193 = [ ] #cos t per s c e n a r i o only lane 193

i s var i ed

cos t1 = 0

cos t2 = 0

f o r s c en a r i o 1 in range (0 ,K) :

f o r s c en a r i o 2 in range (0 ,K) :

co s t1 = 0

cos t2 = 0

f o r bid in winningBidsDf . index :

co s t1 += winningBidsDf . l o c [ bid ,

’ModelRateCUR ’ ] ∗ demandValues2 [ i n t (

winningBidsDf . l o c [ bid , ‘ LaneID ’ ] [ 4 : ] ) − 1 ,

s cenar io1 , s c en a r i o 2 ]

i f i n t ( winningBidsDf . l o c [ bid , ’ LaneID ’ ] [ 4 : ] ) == 63 :

cos t2 += winningBidsDf . l o c [ bid , ’ ModelRateCUR ’ ]∗3 4 5

e l s e :

co s t2 += winningBidsDf . l o c [ bid , ’ ModelRateCUR ’ ] ∗

demandValues2 [ i n t ( winningBidsDf . l o c [ bid ,

‘ LaneID ’ ] [ 4 : ] ) − 1 , s cenar io1 , s c e na r i o2 ]
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cos tPerScenar io2 . append ( cos t1 )

costOnlyVaryLane193 . append ( cos t2 )
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