
East Tennessee State University
Digital Commons @ East Tennessee State University

Undergraduate Honors Theses Student Works

5-2018

Building Data Visualization Applications to
Facilitate Vehicular Networking Research
Noah Carter

Follow this and additional works at: https://dc.etsu.edu/honors

Part of the Computer and Systems Architecture Commons, Digital Communications and
Networking Commons, and the Technology and Innovation Commons

This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State
University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee
State University. For more information, please contact digilib@etsu.edu.

Recommended Citation
Carter, Noah, "Building Data Visualization Applications to Facilitate Vehicular Networking Research" (2018). Undergraduate Honors
Theses. Paper 459. https://dc.etsu.edu/honors/459

https://dc.etsu.edu?utm_source=dc.etsu.edu%2Fhonors%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/student-works?utm_source=dc.etsu.edu%2Fhonors%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.etsu.edu/honors?utm_source=dc.etsu.edu%2Fhonors%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=dc.etsu.edu%2Fhonors%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=dc.etsu.edu%2Fhonors%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=dc.etsu.edu%2Fhonors%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=dc.etsu.edu%2Fhonors%2F459&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu


1

Simulating Vehicle Movement and Multi-Hop
Connectivity from Basic Safety Messages

Noah Carter∗, Mohammad A. Hoque∗, Md Salman Ahmed†
∗Department of Computing, East Tennessee State University

†Department of Computer Science, Virginia Polytechnic Institute and State University
∗{carterns, hoquem}@etsu.edu

†ahmedms@vt.edu

Abstract—The Basic Safety Message (BSM) is a standardized
communication packet that is sent every tenth of a second
between connected vehicles using Dedicated Short Range Com-
munication (DSRC). BSMs contain data about the sending
vehicle’s state, such as speed, location, and the status of the
turn signal [1]. Presently, many BSM datasets from various
United States locations are available through the connected
vehicle testbeds of U.S. Department of Transportation. However,
without a proper visualization tool, it is not possible to analyze
or obtain a visual overview of the spatio-temporal distribution of
the data. For this purpose, a web application has been developed
which can ingest a raw BSM dataset and display a time-based
simulation of vehicle movement. The simulation also displays
multi-hop vehicular network connectivity for DSRC. This paper
gives details about the application, including an explanation of
the multi-hop partitioning algorithm used to classify the vehicles
into separate network partitions. A performance analysis for the
simulation is included, in which it is suggested that calculating
a connectivity matrix with the multi-hop partitioning algorithm
is computationally expensive for a large number of vehicles.

I. INTRODUCTION

Dedicated Short Range Communication (DSRC) offers the
potential for a variety of safety-critical applications that lever-
age vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication modes. These applications follow stan-
dard communication protocols defined by SAE J2735 and
IEEE 1609.x. One of the primary requirements for one class of
safety applications is the broadcast of Basic Safety Messages
(BSM) every tenth of a second through which the vehicles
share their locations, speed, direction, and mobility informa-
tion. When other vehicles and drivers have more information
about the world around them, they can make better and safer
decisions. This is the benefit of sending and receiving BSMs.
Such communication is one example of Vehicle-to-Vehicle
(V2V) communication, which has major implications for road
safety and efficiency and is being widely studied.

DSRC is a short-range communication medium over which
BSMs can be sent. However, because the range of DSRC
is in many cases less than 1000 meters, it is necessary and
useful to employ ‘multi-hop’ communication. In multi-hop
communication, messages traverse a network of vehicles (that
act as message relays) in order to reach their destinations.
Thus, rather than going directly from the source vehicle to the
targets, the messages ‘hop’ along an ad hoc network of closer
vehicles to eventually reach as many targets as possible.

II. RELATED WORKS

A. BSM Data Analysis

Some BSM datasets are publicly available and are inter-
esting subjects for data analysis. This includes, for example,
the Safety Pilot Model Deployment project, in which tens
of Michigan volunteers’ vehicles were mounted with BSM-
broadcasting devices. One aspect of such data analysis is
visualization and simulation. Allowing an analyst to see the
data in a helpful and intuitive format enables the analyst to
make more informed and strategic decisions [1], [2]. Our
previous research has utilized BSM data for analyzing mobility
patterns and developing various safety-critical applications in
connected vehicle environments [3]–[12].

The application described in this paper is intended to assist
an analyst in visualizing location-related aspects of BSM
data, specifically vehicle locations and vehicle connectivity
partitions. To display the latter, it is necessary to calculate
the partitions using a multi-hop partitioning algorithm.

B. Multi-Hop Partitioning Algorithm

Hoque et al. [11] introduced a multi-hop partitioning al-
gorithm based on a modification of Warshall’s algorithm. The
purpose of the algorithm is to distinguish each vehicular ad hoc
network partition–i.e., each connected component of vehicles
that are within multi-hop communication range of each other.
Again, vehicles can communicate directly, but they may also
do so indirectly via one or more intermediate vehicles through
which data and messages can pass (or ‘hop’). All vehicles
that can communicate with each other by one of these two
means are grouped together as a partition in the output of
the algorithm. The result is a collection of partitions. The
current work has further extended the algorithm developed
by Hoque et. al. [11] to provide a graphical interface to
visualize the connected components within a metro area using
an empirically obtained BSM dataset.

The algorithm begins (see Figure 1) by reading in vehicle
locations and calculating a square, symmetric ‘distance ma-
trix.’ Each element ai,j of the distance matrix is the calculated
distance between the two vehicles that are represented by row
i and column j. Each entry of the distance matrix is then
translated into a boolean value by determining whether it is
less than or greater than the predetermined DSRC range (i.e.,
the maximum distance a given DSRC device can broadcast



2

communications). Those distances that are less than the range
become 1; others become 0. Using boolean algebra, the
newly-formed boolean matrix is then multiplied by a copy
of itself. This multiplication represents the first ‘hop,’ and the
result is a ‘connectivity matrix.’

The algorithm then proceeds with a series of boolean
matrix multiplications, each of which represents a new hop.
Every iteration has the possibility of stringing together and
consolidating more vehicles into a partition. Once a matrix
multiplication results in a connectivity matrix identical to the
operands, then the connectivity matrix is considered finalized.
Any two vehicles i and j which have a 1 at ai,j are said to be
connected together by multi-hop communication. They share
the same connectivity partition.

Fig. 1: Flowchart for a multi-hop partitioning algorithm,
simplified from Hoque et al.’s [11] implementation.

III. APPLICATION

A. Concept and Purpose
The purpose of the application is to ingest BSM data and use

it to display a simulation of vehicle activity and connectivity

with respect to time. The simulator takes as input Basic Safety
Messages from multiple vehicles. Ideally, these are BSMs
from vehicles that were concurrently producing BSM output
and that therefore have similar timestamps. Once these BSMs
are uploaded as a CSV, for any given timestamp the simulator
can display the position of each vehicle as a pin on a map. The
user can progress from one timestamp to the next, watching
the pins move along the roads on the map (see Figure 5).

In addition to its position, each pin has a color and a
character(s). Pins with matching color-character combinations
are in the same connectivity partition–they are able to send
data to each other via multi-hop communication (see Figure
2). For example, if two pins are within the DSRC range of
each other, they can communicate with a single hop (and
will therefore share the same color and character for each
timeframe in which they are within range). If two pins are
not within the DSRC range, then they cannot communicate
unless there exists a middle pin that they can both reach via
DSRC. If there is at least one mutually-reachable middle pin
between the two pins, the external pins can use the middle pin
to help broadcast their message, creating an ad-hoc network
and successfully utilizing multi-hop communication.

Fig. 2: Vehicle locations represented using markers of different
colors

In Figure 2, vehicle locations are represented with pins. The
three vehicles at the bottom left share the same connectivity
partition; they have the same color and character because they
can reach each other via multi-hop communication. With the
passing of each timeframe, the colors and characters on the
pins will change. This is because vehicles move in and out
of range, alternately leaving and mingling among connectivity
partitions. The range of DSRC devices–which determines the
maximum distance of a single hop–can be adjusted by the user;
the default DSRC range, which is based on prior research, is
1000 meters.



3

The simulation was created with C# and ASP.NET;
Javascript calls were made to the Google Maps API.

B. Usage

An example of the expected input format is a large CSV
with the structure of Figure 3. Each row should be an abbre-
viated form of a BSM; all BSM fields are removed except
the five listed. After uploading, the user must only click ”Run
Simulation” or step through the timestamps one-by-one.

Fig. 3: Expected CSV input format for the simulation

IV. PERFORMANCE ANALYSIS

A performance analysis of the simulation was conducted.
This was done in order to study the efficiency of both the
simulation as a whole and the underlying multi-hop partition-
ing algorithm as the number of vehicles increased within a
confined space. The result was a greater understanding of some
of the application’s performance limitations. The multihop
partitioning algorithm was identified as taking the bulk of the
computation time. Future performance analysis should study
the effects of keeping vehicle density constant as vehicle count
changes.

A. Process

The performance testing was done by artificially generating
BSM data files and measuring the simulation’s performance in

milliseconds when run on these files. Each generated file had
a different number of vehicles per timestamp (N ); some had
as few as 1 vehicle and others had as many as 200 vehicles per
timestamp. All vehicles’ positions were constrained within a
fixed rectangular area of 348.16 km in Ann Arbor, Michigan.
They would appear at random points within the green rectangle
in Figure 4. Rather than only appearing on road surfaces,
they could appear at random anywhere within this rectangle.
Also, their positions in one timestamp did not influence
their positions in the next timestamp. Whereas vehicles were
confined to a given territory in the generated data, as the
number of vehicles increased the density rose quickly.

For test files that contained many vehicles, fewer timestamps
were included. This was done to normalize the test file sizes to
less than 5000 KB. It was observed during the experiment that
the application incurred a significant amount of delay when
uploading files larger than about 4500 KB.

The GPS coordinates of the confining rectangle for
generated data are as follows, as seen in Figure 4: (42.356186,
-83.522030), (42.356186, -83.816270), (42.226673, -
83.522030), and (42.226673, -83.816270).

In Figure 5, the graphical interface for the simulator has few
vehicles (it has a sparse distribution). In Figure 6, however,
there is a dense distribution of vehicles and the corresponding
partitioning is shown. In Figure 6, the time to calculate the
connectivity matrix has become very noticeable following the
rise in vehicle count. The number of partitions has increased
to its peak and will begin to lower if additional vehicles are
introduced.

B. Results and Conclusions
The completion time was measured in milliseconds and

logged for various parts of the simulation process. Also logged
was the number of individual input vehicles within the BSM
timestamp. After numerous runs with different input CSVs, the
log files were combed for the data and patterns were observed;
see Figures 7, 8, 9, and 10.

The time needed to populate the display with pins was
insignificant, even when the population of vehicles was large
(see Figure 7). This was important to verify because it was
necessary to determine whether delays were being caused by
the internal multi-hop process or by the display medium.

Note that the simulation began to take considerable time at
a certain point (see Figure 9). This may present a problem
for those that wish to use the current tool to study very large
vehicle populations (in excess of 200 vehicles). In the future,
an ‘export simulation’ functionality could be implemented that
could allow the user to run the simulation in the background
and output the results to a file, to be displayed later.

From Figure 7, it appears that time required for rendering
the graphic display would increase linearly as the number
of vehicles increases. The display of each additional vehicle
requires only the fetching of the appropriate pin image from
Google’s server and the display of that pin. Ultimately, time to
display was insignificant (relative to the amount of time needed
to perform the consecutive matrix multiplications to form the
multi-hop partitions). Note however that this depends on the
strength of Internet connection.



4

Fig. 4: Geographical location of the sample dataset used for simulation

Fig. 5: Graphical interface of the simulator with sparse distribution of nodes

In Figure 8, the distance calculation has become more ex-
pensive as the number of vehicles has increased. A prerequisite
to performing the partition calculations was the calculation
of the distance from every vehicle to every other vehicle.
These calculations needed to take place exactly once before
the partitions of any particular timestamp could be determined.
Calculating these distances involved approximately n2 amount
of work. (The formula for this is n(n− 1)/2, which is close
to n2.) The results were in accordance with this expectation.
Though the calculation of distances would have eventually
become a problem as the number of vehicles increased, it
would still be a tiny fraction of the amount of work needed to
perform the partition calculations (assuming that the vehicle
density was allowed to increase).

A series of consecutive matrix multiplications forms the
multi-hop partitions. In Figure 9, we see that as the number

of vehicles increased, the multi-hop algorithm became the
most costly part of the simulation. It was concluded that
this algorithm is overall the most work-intensive part of the
simulation by far. At 200 vehicles (0.5 vehicles per km2 ),
each timestamp was taking 6 seconds on average.

The simulation was run each time assuming that each
vehicle had a DSRC range of 1000 meters (1 km). As the
number of vehicles within the rectangle increased, so did the
number of partitions (Figure 10). The number of partitions
increased as vehicle density increased, up to a saturation point.
However, the rate of increase declined as the density grew.
It was observed that at a density of 0.5 vehicles per km2,
the number of partitions began to decrease. If even greater
densities had been tested, the number of partitions would have
fallen to 1. It is expected that at a density of 1 vehicle per km2

(where the square root of the inverse of the density equals



5

Fig. 6: Graphical interface of the simulator with high density of nodes

Fig. 7: Average time to render graphic display

the transmission range) there would have been 1 partition on
average. Again, however, the artificial data allowed vehicles
to disperse themselves randomly. In real data, vehicles would
limit themselves to the roads, effectively reducing the space
between vehicles. Thus for real data the density at which
there would have been only a single partition would have
been considerably less than that of this artificial data. This is
especially true when the roads are less like a grid and more like
a highway, or when the DSRC transmission range is increased
by flat land and few obstacles.

C. Limitations

The program written to artificially generate BSM data
permitted vehicles to be randomly generated anywhere in
the rectangular area. In reality, vehicles stay on roads and
often share the same road. They do not have the freedom
of going everywhere. Thus, in reality, vehicles will be less

Fig. 8: Average time to calculate distances between vehicles

Fig. 9: Time complexity of partitioning algorithm



6

Fig. 10: Average number of partitions

sparse and less dispersed than they are in the artificially-
generated data. This means that, if real BSM data had been
used for performance analysis, there likely would have been
more partitions than were observed. The number of partitions
could have thereby had an impact on the time to calculate the
partitions. There is therefore a certain degree of uncertainty
regarding the extent to which the simulation will perform
similarly for real data. Since this application is intended to
assist transportation researchers and analysts, who generally
focus on real BSM data, in the future we will run the
performance analyses with real data.

V. CONCLUSION

An intuitive visual simulator has been developed to assist
transportation researchers and analysts to study BSM data.
This paper has documented the application and shared the
details of its performance analysis. The application success-
fully generates time-ordered displays that represent vehicle
positions and connectivity statuses. The complexity of the
partitioning algorithm has been determined to become the a
bottleneck when the number of vehicles increases within a
confined space. In a future build of the tests, it will be a goal
to compare the effects of vehicle population size with those
of vehicle population density. For example, keeping vehicle
density constant while increasing vehicle population may
produce interesting results. In addition, another advancement
would be to perform the performance analyses with real data
instead of generated data.

REFERENCES

[1] S. P. M. Deployment and members of the test conductor team, “Safety
pilot model deployment one day sample data, from ann arbor, michi-
gan,” U.S. Dept of Transportation Intelligent Transportation Systems
Joint Program Office, 2014.

[2] J. Liu and A. Khattak, “Delivering improved alerts, warnings, and
control assistance using basic safety messages transmitted between
vehicles,” Elsevier, 2016.

[3] M. A. Hoque, X. Hong, and B. Dixon, “Analysis of mobility patterns
for urban taxi cabs,” in Computing, Networking and Communications
(ICNC), 2012 International Conference on. IEEE, 2012, pp. 756–760.

[4] A. Elbery, H. Rakha, M. Y. ElNainay, and M. A. Hoque, “An inte-
grated architecture for simulation and modeling of small-and medium-
sized transportation and communication networks,” in Smart Cities,
Green Technologies, and Intelligent Transport Systems: 4th International
Conference, SMARTGREENS 2015, and 1st International Conference
VEHITS 2015, Lisbon, Portugal, May 20-22, 2015, Revised Selected
Papers. Springer International Publishing, 2015, pp. 282–303.

[5] M. S. Ahmed, M. A. Hoque, and P. Pfeiffer, “Comparative study of
connected vehicle simulators,” in SoutheastCon 2016. IEEE, 2016, pp.
1–7.

[6] M. S. Ahmed, M. A. Hoque, and A. J. Khattak, “Demo: Real-time
vehicle movement tracking on android devices through bluetooth com-
munication with dsrc devices,” in Vehicular Networking Conference
(VNC), 2016 IEEE. IEEE, 2016, pp. 1–2.

[7] M. S. Ahmed and M. A. Hoque, “Partitioning of urban transportation
networks utilizing real-world traffic parameters for distributed simulation
in sumo,” in Vehicular Networking Conference (VNC), 2016 IEEE.
IEEE, 2016, pp. 1–4.

[8] M. S. Ahmed, M. A. Hoque, J. Rios-Torres, and A. Khattak, “Demo:
Freeway merge assistance system using dsrc,” in 2nd ACM International
Workshop on Smart, Autonomous, and Connected Vehicular Systems and
Services, 2017, pp. 83–84.

[9] D. Jordan, N. Kyte, S. Murray, M. A. Hoque, M. S. Ahmed, and
A. Khattak, “Poster: Investigating doppler effects on vehicle-to-vehicle
communication: An experimental study,” in 2nd ACM International
Workshop on Smart, Autonomous, and Connected Vehicular Systems and
Services, 2017, pp. 77–78.

[10] M. S. Ahmed, M. A. Hoque, and A. J. Khattak, “Intersection approach
advisory through vehicle-to-infrastructure communication using signal
phase and timing information at signalized intersection,” Tech. Rep.,
2018.

[11] M. A. Hoque, X. Hong, and B. Dixon, “Efficient multi-hop connectiv-
ity analysis in urban vehicular networks,” Vehicular Communications,
vol. 1, no. 2, pp. 78–90, 2014.

[12] M. A. Hoque, X. Hong, and S. M. Ahmed, “Parallel closed-loop
connected vehicle simulator for large-scale transportation network man-
agement: Challenges, issues, and solution approaches,” IEEE Intelligent
Transportation Systems Magazine, vol. 10, no. 4, 2018.



1

Displaying Real-Time Signal Phase and Timing
Information Using a Client-Server Application

Model
Noah Carter, Nusrat Chowdhury, Mohammad A. Hoque, Jacob Hoyos, Matthew Dale, JT Blevins, Nick Hodge

Department of Computing
East Tennessee State University

{carterns, hoquem, hoyosj, dalems, blevinsjt, hodgen, chowdhury,}@etsu.edu

Abstract—Present-day roadway intersections are characteris-
tically dangerous and inefficient. Vehicle-to-Infrastructure com-
munication provides a means for improving these conditions.
For example, communication between a traffic controller and
a human driver’s mobile device can provide the driver with
foreknowledge about current traffic signal states or upcoming
state changes. A proof-of-concept version of such a client-server
application has been developed which allows a server to ingest
live data from a traffic controller and send it to a requesting
web client over HTTP. The client machine displays the live
intersection data in the form of an intuitive GUI. This paper
presents the details of that system. The intended use is to serve
as a basis for building and testing future applications which
access live traffic controller data.

I. INTRODUCTION

Intersections are generally less efficient and less safe than
other parts of the roadway. More than 50% of crash-related
fatalities and injuries in the United States occur at or near
an intersection [1]. Sudden decelerations, idle time, and ac-
celerations from stop lead to an increased rate of fuel con-
sumption at these locations, thereby releasing a larger quantity
of environmentally-harmful emissions and incurring higher
fuel expenses. Elevations in fuel consumption and the risk of
collision escalate costs to society and the environment while
endangering drivers and inducing anxiety.

These suboptimal conditions are created in part by drivers’
imperfect knowledge regarding the timing of future signal
changes. If given foreknowledge of upcoming state changes,
motorists would have a longer reaction time, allowing them
to adjust their speed appropriately and/or gradually. Vehicle-
to-infrastructure (V2I) communication provides an avenue
for providing such foresight. To obtain real-time information
about an intersection’s current and upcoming state, it is neces-
sary to access the Signal Phase and Timing (SPaT) information
of a traffic controller.

A traffic controller is a device that continuously dictates
the live behavior of traffic lights at an intersection. Traffic
controllers can communicate with Signal Phase and Timing
(SPaT) packets over UDP. These SPaT packets contain infor-
mation about the current state of the intersection as well as the
timing for and the configuration of the next upcoming state.

Applications can be designed to capture and parse these
SPaT packets such that they become human-readable. The

application described in this paper parses SPaT and displays
it in an intuitive GUI. The application also submits the parsed
data to a remote virtual server hosted by Amazon Web Services
(AWS). The AWS server makes the data available to web
clients and provides them with a web UI for displaying the
current intersection status.

An important aspect of this application is that it relies on
a centralized V2I communication strategy which can employ
cellular technology (LTE). All personal devices with access
to the World Wide Web–including mobile devices–can poten-
tially view this web GUI representation of an intersection.
Another topic of note is that this research assesses the latency
of cellular technology when sending and receiving live inter-
section data. It was found that for this particular application
there is very low latency; the client machines can depict traffic
signal states in what is almost real-time.

II. RELATED WORK

Many researchers have employed SPaT packets and the
mobile LTE network for their assistive V2I applications. For
example, Audi America utilized LTE as the V2I communica-
tion medium for a smart traffic light information system [2].
Audi also developed an optimal speed advisory system that
suggests a traveling speed to motorists which, if followed,
will allow the vehicle to reach an intersection during a green
light phase. This advisory uses 3G/4G communication and a
backend server [3].

An environmental research group from the University of
California Riverside developed a similar application using
SPaT data and LTE. It gave drivers advance notice about the
upcoming traffic signal timing. Their study also contrasted
the fuel consumption of an informed driver with that of an
uninformed driver [4]. Yet another similar pollution-reducing
application was developed with support from the USDOT.
It relayed real-time SPaT information to drivers such that
they were able to make informed choices [5]. Ahmed et. al
proposed an advisory system that generates live traffic signal
information and a speed advisory to help the driver reach a
destination intersection on time [6]. Like the above works,
Ahmed et. al used SPaT information to inform their advisory
algorithm. However, instead of LTE/3G/4G, Dedicated Short
Range Communication (DSRC)–a decentralized technology–
was employed.



2

Each of the above Intelligent Transportation System (ITS)
applications help to reduce the number of unexpected stops
and starts that drivers need to perform. They thereby reduce
emissions, fuel use, and safety hazards. Advances in connected
vehicle technology create opportunities to develop many such
applications that can boost drivers’ awareness and thereby
raise transportation efficiency and safety.

The system described in this paper does not yet include
advanced user features, such as an advisory algorithm which
can suggest a speed to drivers. It is not intended as a finished
product, but as a basis for further application development. It
focuses on quickly delivering real-time SPaT information to
multiple mobile devices simultaneously, and it does so (like
the applications of Audi and California Riverside) over the
WWW. The desktop UI and the web client UI are intended to
assist future researchers in testing the accuracy of their parses
of SPaT communications.

III. ARCHITECTURE AND IMPLEMENTATION

A. Overall Architecture

The task of the system is to allow users to remotely
monitor the status of a roadway intersection using the browser
of a personal device. As a web app, this implementation
does not require the installation of additional software on
client machines. Figure 1 gives an overview of the system
architecture. The system consists of a traffic controller, a local
network switch, a local machine which serves data to AWS,
the AWS virtual cloud server instance, and the clients.

First, the traffic controller (a Siemens m60) and a local
Windows machine are connected over Ethernet on the same
subnet. The traffic controller continuously transmits SPaT data
in UDP over Ethernet with a frequency of ten times per second.
As aforementioned, these SPaT packets contain information
about current signal state of intersections. The local Windows
machine runs a C# application which parses the SPaT data; the
human-readable, parsed SPaT is displayed alongside a visual
GUI representation of the intersection (see Figure 4).

Meanwhile, upon receiving a changed SPaT configuration
the Windows application is triggered to make an asynchronous
HTTP request containing the parsed data structure as its
content. The request is made to an AWS virtual server (which
in our tests happened to be in Oregon). This central Windows
cloud server hosts an ASP.NET controller which receives the
updated data structure within the request and saves it as text
to a public HTML file (via an overwrite) on the singular AWS
instance.

Next, various client machines (such as phones, tablets, or
desktops) may navigate to a public URL hosted by the same
AWS instance. The corresponding ASP.NET controller returns
another HTML page which contains an Ajax call. The Ajax
runs on the client machine, repeatedly requesting the saved,
client-readable SPaT text file from the AWS environment at
an interval of once per 100 milliseconds. Upon receiving
a parsed SPaT file with updated information, the client’s
page uses JavaScript to interpret the text and then recreate
a visual component of the page. This component is a GUI
that represents the live intersection (see Figure 1).

B. Interpreting SPaT Packets

Note that to parse and represent the traffic status of the
intersection visually, both the local Windows GUI and the web
UI were coded to expect the traffic signal’s control cycle to be
an 8-phase cycle. This type of cycle accounts for left, through,
and implied right movement within the intersection of two
roads (a minor street and a major street). Figure 2 illustrates a
classic 8-phase intersection. In this type of cycle, each of the
8 phases correspond to a particular direction and are assigned
a phase number between 1 and 8.

The UIs account for all of the 8 phases and consist of four
separate traffic signals. However, the application described
here is limited to an 8-phase cycle; it cannot dynamically
interpret other types of intersections. Figures 4(a), 4(b), and
4(c) depict the GUI of the Windows application. In Figure
4(a), green arrows are lit on the minor street to represent the
left turns which correspond to phase 3 and 7. In Figure 4(b),
left turn lights are lit green for the major street, corresponding
to phase 1 and 5. Figure 4(c) shows that the intersection is
permitting the through movements of phase 4 and 8. During
phase changes, green lights are be replaced by yellow lights.

The desktop application utilizes the C# implementation of
the UDP Client to read in SPaT data streams in raw bytes.
Each SPaT packet contains 246 (or sometimes 245) bytes.
See Figure 3. Bytes 210, 212, and 214–representing phases
1-8 of red, yellow, and green lights respectively–are relevant
to the display. The packets are sent in UDP with the National
Transportation Communications for Intelligent Transportation
System Protocol (NTCIP), which is a common protocol used
by many transportation devices.

C. Implementation Details

In the Windows and web UIs, the active traffic lights as
determined from the SPaT are mapped to static JPG images of
active lights that appear and disappear based on the activation
of the appropriate bits. By default the local Windows applica-
tion is configured to send data to an existing remote, public
ASP.NET controller. However, it can run without a destination
to which it egresses SPaT data. Or, it can transfer the data over
HTTP to a local machine running the appropriate ASP.NET
environment.

It was observed that if a significant programmatic pause was
used as part of the Windows application or if HTTP calls were
made too often (i.e., ten times per second), the local Windows
machine would gradually fall behind the traffic controller.
Eventually this would result in all remote clients displaying
inaccurate views because of the substantial lag. Removing all
programmatic pauses from the server and only performing
HTTP requests for updated configurations prevented this issue.
It also decreased any initial synchronization time needed
between the traffic controller and the other devices.

D. Experimentation, Testing and Latency Analysis

1) Resource Usage: Testing during March 2018 involved
16 hours of cumulative program runtime; as a result, the AWS
server instance reached more than 85% of the monthly free tier
limit for file inputs and outputs, with 8.5 million I/Os. That is,



3

Fig. 1: Overall communication architecture for the application

Fig. 2: A standard 8-phase intersection, as used for the
application

the server read or wrote to its text files 8.5 million times. This
rate is not sustainable. Writing to a file has the advantage that
the file is easily available to all HTTP clients, but opening,
writing to, reading from, and closing that file is expensive
(computationally and financially). Another approach should
be taken to allow all clients to obtain the stored information,
without sacrificing the current low latency (see below). TCP
sockets were suggested as an alternative to maintaining a text
file on the server.

Several hours of uninterrupted testing resulted in a high

temperature of the mobile device used in this experiment. It
may be beneficial to revisit and observe the extent to which the
client’s resources are used by the Ajax calls, which currently
pull text from the server and rebuild the HTML display at
a rate of once per millisecond. A lower update frequency
may reduce the cost of the software while not introducing
noticeable latency.

2) Testing with a Live Intersection: The application was
tested at the Tennessee Traffic Division of Johnson City.
The traffic engineers directed the traffic controller for the
intersection of Indian Ridge Rd and West Market St to send
its SPaT data to the IP address of our Windows laptop. This
intersection was largely a classic 8-phase intersection, with W
Market being the major and Indian Ridge being the minor.
The laptop received the SPaT data and, using the previously-
discussed methods, sent it to the ASP.NET controller on AWS.
Multiple cell phones then accessed the client web page and
textual SPaT over LTE, displaying the intersection’s state live.

The delays between the laptop’s display and the cell phones’
displays were, to the human eye, observable but not significant.
It was estimated as less than 0.2 seconds. This meant that
the data was traveling from the laptop to the AWS server
instance in Oregon, being requested by the phones, and being
transmitted to and displayed by the phones with, from a human
visual perspective, practically with no latency.

As a way of comparison, the actual intersection was then
observed with two methods: via the division’s live-feed traffic
video cameras and in-person. The video received by the
divisions traffic cameras was observed to have a noticeably
greater latency than that of the research application. On the
phones, the display would update roughly 1.0 seconds sooner
than the traffic division’s live videos. (This may have been
because of the way the cameras were configured or because
the cameras needed to transport large video files while the



4

Fig. 3: SPaT packets consist of 245 or 246 bytes. Only certain bytes are relevant for this application.

research application needed only to make HTTP requests with
small content loads.) When physically standing outside at the
intersection, the delays between the actual traffic lights and
the phones were, likewise, hardly noticeable to the human
eye. The delay was approximately 0.3 seconds (as repeatedly
measured with a camera and a stopwatch).

For the most part, the display was accurate, in addition to
being fast. However, there were unexpected inaccuracies in the
display. For example, a light would show as green on the phone
when in reality both green and green left-turn were triggered.
This was due, in part, to the fact that the particular intersection
was using unanticipated phase logic. Though 8-phase, the
intersection utilized “overlaps,” in which the activation of a
single light can be triggered by the activation of more than one
individual phase. Removing this display bug from the research
application will simply be a matter of modifying the way the
SPaT data structure is interpreted.

E. Research Benefits

Although the web application does not include a driver
speed advisory, it is a proof of concept and prototype for
further development. A team of graduate students at East
Tennesssee State University is currently developing an ap-
plication that should give drivers foreknowledge about the
upcoming status of intersections, similar to those developed
in by California Riverside and others. Part of their project
requires a central server to relay SPaT data to mobile devices
over the wireless mobile network. AWS was discussed as the
potential host for the centralized portion of their application,

but there were concerns about latency. (Minimizing latency
is critical to delivering timely notifications to drivers.) The
low latency of the research application discussed here has
now demonstrated that AWS and the mobile network could
be suitable communication mediums for such applications.
Hence, the researchers at ETSU’s Vehicular Networking Lab
plan to use proposed application as a starting point for the
AWS-hosted, centralized portion of their safety and efficiency
V2I application.

F. Future Development

Many issues with this application can be fixed in the short
term. Currently, the application parses SPaT data from the
controller into an arbitrary, homegrown data structure; the
client machines are set up to interpret that format. SAE
J7235 is a new standardized format that has been recently
developed by the Society of Automotive Engineers to make
SPaT communications uniform. A new work item is to update
the message format of the this application to the new standard
message format for SPaT data, SAE J7235.

Also, the local Windows application presently sends only
the traffic light data from bytes 211, 213, and 215 to AWS.
These contain the light statuses of an 8-phase intersection.
Eventually, the application should also send the “map data,”
which communicates other details about the intersection such
as its location.

The UIs are limited in that they can only interpret the SPaT
data from 8-phase intersection configurations. Future work
could include removing this limitation by enabling the ability



5

(a)

(b)

(c)

Fig. 4: GUI of the Windows desktop application

to display variantly phased intersections. Lastly, the CSS of
the client page could be enhanced to make the HTML display
more user-friendly on mobile devices. In figure 1, the mobile
device screen displays the current view of the application.

G. Conclusion

The system discussed here provides an improvable archi-
tecture and a prototype for other applications which require
a centralized server to host SPaT data. It can be modified
and adjusted to assist with the development of centralized
V2I applications. The low latency observed when testing on
the mobile network with a real intersection has encouraged
university graduate researchers to pursue AWS as a host for
their centralized applications.

REFERENCES

[1] “Intersection safety,” U.S. Department of Transportation, date last
accessed 31-July-2017. [Online]. Available: https:https://www.fhwa.dot.
gov/research/topics/safety/intersections/

[2] M. Zweck and M. Schuch, “Traffic light assistant: Applying coopera-
tive its in european cities and vehicles,” Connected Vehicles and Expo
(ICCVE), 2013 International Conference on IEEE, 2013.

[3] H. Xia, K. Boriboonsomsin, F. Schweizer, A. Winckler, K. Zhou, W. B.
Zhang, and M. Barth, “Field operational testing of eco-approach tech-
nology at a fixed-time signalized intersection,” Intelligent Transportation
Systems (ITSC), 2012 15th International IEEE Conference (pp. 188-193),
9 2012.

[4] Y. Zhao, S. Li, S. Hu, L. Su, S. Yao, H. Shao, and T. ... Abdelzaher,
“Greendrive: A smartphone-based intelligent speed adaptation system
with real-time traffic signal prediction,” In Proceedings of the 8th In-
ternational Conference on Cyber-Physical Systems (pp. 229-238) ACM,
4 2017.

[5] “Audi announces the first vehicle to infrastructure (v2i)
service - the new traffic light information system.” Audi,
08 2016, date last accessed 31-July-2017. [Online]. Avail-
able: https://www.audiusa.com/newsroom/news/press-releases/2016/08/
audi-announces-first-vehicle-to-infrastructure-service

[6] M. S. Ahmed, M. A. Hoque, and A. Khattak, “Intersection approach
advisory through vehicle-to-infrastructure communication using signal
phase and timing (spat) information at signalized intersection,” In Trans-
portation Research Board 97th Annual Meeting no. 18-05804., 2018.


	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2018

	Building Data Visualization Applications to Facilitate Vehicular Networking Research
	Noah Carter
	Recommended Citation


	MergedFile

